]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
cleanup: use value_lazy_at instead of allocate_value_lazy/attribute setter
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "cp-support.h"
43 #include "observer.h"
44 #include "objfiles.h"
45 #include "symtab.h"
46 #include "exceptions.h"
47
48 extern unsigned int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (const char *, struct value *,
55 int, struct type *, int);
56
57 static struct value *search_struct_method (const char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct value **, int,
62 const char *, const char *,
63 struct symbol ***,
64 struct badness_vector **,
65 const int no_adl);
66
67 static
68 int find_oload_champ_namespace_loop (struct value **, int,
69 const char *, const char *,
70 int, struct symbol ***,
71 struct badness_vector **, int *,
72 const int no_adl);
73
74 static int find_oload_champ (struct value **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, const char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("Overload resolution in evaluating "
123 "C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135
136 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
137 if (sym != NULL)
138 {
139 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 {
141 error (_("\"%s\" exists in this program but is not a function."),
142 name);
143 }
144
145 if (objf_p)
146 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147
148 return value_of_variable (sym, NULL);
149 }
150 else
151 {
152 struct bound_minimal_symbol msymbol =
153 lookup_bound_minimal_symbol (name);
154
155 if (msymbol.minsym != NULL)
156 {
157 struct objfile *objfile = msymbol.objfile;
158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
159
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
166
167 if (objf_p)
168 *objf_p = objfile;
169
170 return value_from_pointer (type, maddr);
171 }
172 else
173 {
174 if (!target_has_execution)
175 error (_("evaluation of this expression "
176 "requires the target program to be active"));
177 else
178 error (_("evaluation of this expression requires the "
179 "program to have a function \"%s\"."),
180 name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: "
203 "you need to start the target first"));
204 else
205 error (_("No memory available to program: call to malloc failed"));
206 }
207 return val;
208 }
209
210 static CORE_ADDR
211 allocate_space_in_inferior (int len)
212 {
213 return value_as_long (value_allocate_space_in_inferior (len));
214 }
215
216 /* Cast struct value VAL to type TYPE and return as a value.
217 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
218 for this to work. Typedef to one of the codes is permitted.
219 Returns NULL if the cast is neither an upcast nor a downcast. */
220
221 static struct value *
222 value_cast_structs (struct type *type, struct value *v2)
223 {
224 struct type *t1;
225 struct type *t2;
226 struct value *v;
227
228 gdb_assert (type != NULL && v2 != NULL);
229
230 t1 = check_typedef (type);
231 t2 = check_typedef (value_type (v2));
232
233 /* Check preconditions. */
234 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t1) == TYPE_CODE_UNION)
236 && !!"Precondition is that type is of STRUCT or UNION kind.");
237 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t2) == TYPE_CODE_UNION)
239 && !!"Precondition is that value is of STRUCT or UNION kind");
240
241 if (TYPE_NAME (t1) != NULL
242 && TYPE_NAME (t2) != NULL
243 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 return NULL;
245
246 /* Upcasting: look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type. */
249 if (TYPE_NAME (t1) != NULL)
250 {
251 v = search_struct_field (type_name_no_tag (t1),
252 v2, 0, t2, 1);
253 if (v)
254 return v;
255 }
256
257 /* Downcasting: look in the type of the target to see if it contains the
258 type of the source as a superclass. If so, we'll need to
259 offset the pointer rather than just change its type. */
260 if (TYPE_NAME (t2) != NULL)
261 {
262 /* Try downcasting using the run-time type of the value. */
263 int full, top, using_enc;
264 struct type *real_type;
265
266 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 if (real_type)
268 {
269 v = value_full_object (v2, real_type, full, top, using_enc);
270 v = value_at_lazy (real_type, value_address (v));
271
272 /* We might be trying to cast to the outermost enclosing
273 type, in which case search_struct_field won't work. */
274 if (TYPE_NAME (real_type) != NULL
275 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 return v;
277
278 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
279 if (v)
280 return v;
281 }
282
283 /* Try downcasting using information from the destination type
284 T2. This wouldn't work properly for classes with virtual
285 bases, but those were handled above. */
286 v = search_struct_field (type_name_no_tag (t2),
287 value_zero (t1, not_lval), 0, t1, 1);
288 if (v)
289 {
290 /* Downcasting is possible (t1 is superclass of v2). */
291 CORE_ADDR addr2 = value_address (v2);
292
293 addr2 -= value_address (v) + value_embedded_offset (v);
294 return value_at (type, addr2);
295 }
296 }
297
298 return NULL;
299 }
300
301 /* Cast one pointer or reference type to another. Both TYPE and
302 the type of ARG2 should be pointer types, or else both should be
303 reference types. If SUBCLASS_CHECK is non-zero, this will force a
304 check to see whether TYPE is a superclass of ARG2's type. If
305 SUBCLASS_CHECK is zero, then the subclass check is done only when
306 ARG2 is itself non-zero. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2,
310 int subclass_check)
311 {
312 struct type *type1 = check_typedef (type);
313 struct type *type2 = check_typedef (value_type (arg2));
314 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
315 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
316
317 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
318 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
319 && (subclass_check || !value_logical_not (arg2)))
320 {
321 struct value *v2;
322
323 if (TYPE_CODE (type2) == TYPE_CODE_REF)
324 v2 = coerce_ref (arg2);
325 else
326 v2 = value_ind (arg2);
327 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
328 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
329 v2 = value_cast_structs (t1, v2);
330 /* At this point we have what we can have, un-dereference if needed. */
331 if (v2)
332 {
333 struct value *v = value_addr (v2);
334
335 deprecated_set_value_type (v, type);
336 return v;
337 }
338 }
339
340 /* No superclass found, just change the pointer type. */
341 arg2 = value_copy (arg2);
342 deprecated_set_value_type (arg2, type);
343 set_value_enclosing_type (arg2, type);
344 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
345 return arg2;
346 }
347
348 /* Cast value ARG2 to type TYPE and return as a value.
349 More general than a C cast: accepts any two types of the same length,
350 and if ARG2 is an lvalue it can be cast into anything at all. */
351 /* In C++, casts may change pointer or object representations. */
352
353 struct value *
354 value_cast (struct type *type, struct value *arg2)
355 {
356 enum type_code code1;
357 enum type_code code2;
358 int scalar;
359 struct type *type2;
360
361 int convert_to_boolean = 0;
362
363 if (value_type (arg2) == type)
364 return arg2;
365
366 code1 = TYPE_CODE (check_typedef (type));
367
368 /* Check if we are casting struct reference to struct reference. */
369 if (code1 == TYPE_CODE_REF)
370 {
371 /* We dereference type; then we recurse and finally
372 we generate value of the given reference. Nothing wrong with
373 that. */
374 struct type *t1 = check_typedef (type);
375 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
376 struct value *val = value_cast (dereftype, arg2);
377
378 return value_ref (val);
379 }
380
381 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
382
383 if (code2 == TYPE_CODE_REF)
384 /* We deref the value and then do the cast. */
385 return value_cast (type, coerce_ref (arg2));
386
387 CHECK_TYPEDEF (type);
388 code1 = TYPE_CODE (type);
389 arg2 = coerce_ref (arg2);
390 type2 = check_typedef (value_type (arg2));
391
392 /* You can't cast to a reference type. See value_cast_pointers
393 instead. */
394 gdb_assert (code1 != TYPE_CODE_REF);
395
396 /* A cast to an undetermined-length array_type, such as
397 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
398 where N is sizeof(OBJECT)/sizeof(TYPE). */
399 if (code1 == TYPE_CODE_ARRAY)
400 {
401 struct type *element_type = TYPE_TARGET_TYPE (type);
402 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
403
404 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
405 {
406 struct type *range_type = TYPE_INDEX_TYPE (type);
407 int val_length = TYPE_LENGTH (type2);
408 LONGEST low_bound, high_bound, new_length;
409
410 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
411 low_bound = 0, high_bound = 0;
412 new_length = val_length / element_length;
413 if (val_length % element_length != 0)
414 warning (_("array element type size does not "
415 "divide object size in cast"));
416 /* FIXME-type-allocation: need a way to free this type when
417 we are done with it. */
418 range_type = create_range_type ((struct type *) NULL,
419 TYPE_TARGET_TYPE (range_type),
420 low_bound,
421 new_length + low_bound - 1);
422 deprecated_set_value_type (arg2,
423 create_array_type ((struct type *) NULL,
424 element_type,
425 range_type));
426 return arg2;
427 }
428 }
429
430 if (current_language->c_style_arrays
431 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
432 && !TYPE_VECTOR (type2))
433 arg2 = value_coerce_array (arg2);
434
435 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
436 arg2 = value_coerce_function (arg2);
437
438 type2 = check_typedef (value_type (arg2));
439 code2 = TYPE_CODE (type2);
440
441 if (code1 == TYPE_CODE_COMPLEX)
442 return cast_into_complex (type, arg2);
443 if (code1 == TYPE_CODE_BOOL)
444 {
445 code1 = TYPE_CODE_INT;
446 convert_to_boolean = 1;
447 }
448 if (code1 == TYPE_CODE_CHAR)
449 code1 = TYPE_CODE_INT;
450 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
451 code2 = TYPE_CODE_INT;
452
453 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
454 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
455 || code2 == TYPE_CODE_RANGE);
456
457 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
458 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
459 && TYPE_NAME (type) != 0)
460 {
461 struct value *v = value_cast_structs (type, arg2);
462
463 if (v)
464 return v;
465 }
466
467 if (code1 == TYPE_CODE_FLT && scalar)
468 return value_from_double (type, value_as_double (arg2));
469 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
470 {
471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
472 int dec_len = TYPE_LENGTH (type);
473 gdb_byte dec[16];
474
475 if (code2 == TYPE_CODE_FLT)
476 decimal_from_floating (arg2, dec, dec_len, byte_order);
477 else if (code2 == TYPE_CODE_DECFLOAT)
478 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
479 byte_order, dec, dec_len, byte_order);
480 else
481 /* The only option left is an integral type. */
482 decimal_from_integral (arg2, dec, dec_len, byte_order);
483
484 return value_from_decfloat (type, dec);
485 }
486 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
487 || code1 == TYPE_CODE_RANGE)
488 && (scalar || code2 == TYPE_CODE_PTR
489 || code2 == TYPE_CODE_MEMBERPTR))
490 {
491 LONGEST longest;
492
493 /* When we cast pointers to integers, we mustn't use
494 gdbarch_pointer_to_address to find the address the pointer
495 represents, as value_as_long would. GDB should evaluate
496 expressions just as the compiler would --- and the compiler
497 sees a cast as a simple reinterpretation of the pointer's
498 bits. */
499 if (code2 == TYPE_CODE_PTR)
500 longest = extract_unsigned_integer
501 (value_contents (arg2), TYPE_LENGTH (type2),
502 gdbarch_byte_order (get_type_arch (type2)));
503 else
504 longest = value_as_long (arg2);
505 return value_from_longest (type, convert_to_boolean ?
506 (LONGEST) (longest ? 1 : 0) : longest);
507 }
508 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
509 || code2 == TYPE_CODE_ENUM
510 || code2 == TYPE_CODE_RANGE))
511 {
512 /* TYPE_LENGTH (type) is the length of a pointer, but we really
513 want the length of an address! -- we are really dealing with
514 addresses (i.e., gdb representations) not pointers (i.e.,
515 target representations) here.
516
517 This allows things like "print *(int *)0x01000234" to work
518 without printing a misleading message -- which would
519 otherwise occur when dealing with a target having two byte
520 pointers and four byte addresses. */
521
522 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
523 LONGEST longest = value_as_long (arg2);
524
525 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
526 {
527 if (longest >= ((LONGEST) 1 << addr_bit)
528 || longest <= -((LONGEST) 1 << addr_bit))
529 warning (_("value truncated"));
530 }
531 return value_from_longest (type, longest);
532 }
533 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 struct value *result = allocate_value (type);
537
538 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
539 return result;
540 }
541 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
542 && value_as_long (arg2) == 0)
543 {
544 /* The Itanium C++ ABI represents NULL pointers to members as
545 minus one, instead of biasing the normal case. */
546 return value_from_longest (type, -1);
547 }
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
549 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("Cannot convert between vector values of different sizes"));
552 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
553 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
554 error (_("can only cast scalar to vector of same size"));
555 else if (code1 == TYPE_CODE_VOID)
556 {
557 return value_zero (type, not_lval);
558 }
559 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
560 {
561 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
562 return value_cast_pointers (type, arg2, 0);
563
564 arg2 = value_copy (arg2);
565 deprecated_set_value_type (arg2, type);
566 set_value_enclosing_type (arg2, type);
567 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
568 return arg2;
569 }
570 else if (VALUE_LVAL (arg2) == lval_memory)
571 return value_at_lazy (type, value_address (arg2));
572 else
573 {
574 error (_("Invalid cast."));
575 return 0;
576 }
577 }
578
579 /* The C++ reinterpret_cast operator. */
580
581 struct value *
582 value_reinterpret_cast (struct type *type, struct value *arg)
583 {
584 struct value *result;
585 struct type *real_type = check_typedef (type);
586 struct type *arg_type, *dest_type;
587 int is_ref = 0;
588 enum type_code dest_code, arg_code;
589
590 /* Do reference, function, and array conversion. */
591 arg = coerce_array (arg);
592
593 /* Attempt to preserve the type the user asked for. */
594 dest_type = type;
595
596 /* If we are casting to a reference type, transform
597 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
598 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
599 {
600 is_ref = 1;
601 arg = value_addr (arg);
602 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
603 real_type = lookup_pointer_type (real_type);
604 }
605
606 arg_type = value_type (arg);
607
608 dest_code = TYPE_CODE (real_type);
609 arg_code = TYPE_CODE (arg_type);
610
611 /* We can convert pointer types, or any pointer type to int, or int
612 type to pointer. */
613 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
615 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
617 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
618 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
619 || (dest_code == arg_code
620 && (dest_code == TYPE_CODE_PTR
621 || dest_code == TYPE_CODE_METHODPTR
622 || dest_code == TYPE_CODE_MEMBERPTR)))
623 result = value_cast (dest_type, arg);
624 else
625 error (_("Invalid reinterpret_cast"));
626
627 if (is_ref)
628 result = value_cast (type, value_ref (value_ind (result)));
629
630 return result;
631 }
632
633 /* A helper for value_dynamic_cast. This implements the first of two
634 runtime checks: we iterate over all the base classes of the value's
635 class which are equal to the desired class; if only one of these
636 holds the value, then it is the answer. */
637
638 static int
639 dynamic_cast_check_1 (struct type *desired_type,
640 const gdb_byte *valaddr,
641 int embedded_offset,
642 CORE_ADDR address,
643 struct value *val,
644 struct type *search_type,
645 CORE_ADDR arg_addr,
646 struct type *arg_type,
647 struct value **result)
648 {
649 int i, result_count = 0;
650
651 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
652 {
653 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
654 address, val);
655
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 {
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
660 {
661 ++result_count;
662 if (!*result)
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
665 }
666 }
667 else
668 result_count += dynamic_cast_check_1 (desired_type,
669 valaddr,
670 embedded_offset + offset,
671 address, val,
672 TYPE_BASECLASS (search_type, i),
673 arg_addr,
674 arg_type,
675 result);
676 }
677
678 return result_count;
679 }
680
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
684
685 static int
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
688 int embedded_offset,
689 CORE_ADDR address,
690 struct value *val,
691 struct type *search_type,
692 struct value **result)
693 {
694 int i, result_count = 0;
695
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
697 {
698 int offset;
699
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 continue;
702
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 address, val);
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
706 {
707 ++result_count;
708 if (*result == NULL)
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
711 }
712 else
713 result_count += dynamic_cast_check_2 (desired_type,
714 valaddr,
715 embedded_offset + offset,
716 address, val,
717 TYPE_BASECLASS (search_type, i),
718 result);
719 }
720
721 return result_count;
722 }
723
724 /* The C++ dynamic_cast operator. */
725
726 struct value *
727 value_dynamic_cast (struct type *type, struct value *arg)
728 {
729 int full, top, using_enc;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
734 CORE_ADDR addr;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 {
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
757 }
758
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
762
763 arg = value_ind (arg);
764 }
765 else
766 {
767 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 error (_("Argument to dynamic_cast does not have class type"));
769 }
770
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
774
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
778 {
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
782 }
783
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 if (! rtti_type)
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
790 if (full)
791 {
792 /* Done. */
793 }
794 else if (using_enc)
795 addr += top;
796 else
797 addr += top + value_embedded_offset (arg);
798
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
804
805 tem = value_at (type, addr);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
822 }
823
824 /* The second dynamic check specified in 5.2.7. */
825 result = NULL;
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
834
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
837
838 error (_("dynamic_cast failed"));
839 }
840
841 /* Create a value of type TYPE that is zero, and return it. */
842
843 struct value *
844 value_zero (struct type *type, enum lval_type lv)
845 {
846 struct value *val = allocate_value (type);
847
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
849 return val;
850 }
851
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853
854 struct value *
855 value_one (struct type *type)
856 {
857 struct type *type1 = check_typedef (type);
858 struct value *val;
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
861 {
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 gdb_byte v[16];
864
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
869 {
870 val = value_from_double (type, (DOUBLEST) 1);
871 }
872 else if (is_integral_type (type1))
873 {
874 val = value_from_longest (type, (LONGEST) 1);
875 }
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
877 {
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
879 int i;
880 LONGEST low_bound, high_bound;
881 struct value *tmp;
882
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
885
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
888 {
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
892 }
893 }
894 else
895 {
896 error (_("Not a numeric type."));
897 }
898
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
901
902 return val;
903 }
904
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
906
907 static struct value *
908 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
909 {
910 struct value *val;
911
912 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
913 error (_("Attempt to dereference a generic pointer."));
914
915 val = value_from_contents_and_address (type, NULL, addr);
916
917 if (!lazy)
918 value_fetch_lazy (val);
919
920 return val;
921 }
922
923 /* Return a value with type TYPE located at ADDR.
924
925 Call value_at only if the data needs to be fetched immediately;
926 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
927 value_at_lazy instead. value_at_lazy simply records the address of
928 the data and sets the lazy-evaluation-required flag. The lazy flag
929 is tested in the value_contents macro, which is used if and when
930 the contents are actually required.
931
932 Note: value_at does *NOT* handle embedded offsets; perform such
933 adjustments before or after calling it. */
934
935 struct value *
936 value_at (struct type *type, CORE_ADDR addr)
937 {
938 return get_value_at (type, addr, 0);
939 }
940
941 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
942
943 struct value *
944 value_at_lazy (struct type *type, CORE_ADDR addr)
945 {
946 return get_value_at (type, addr, 1);
947 }
948
949 void
950 read_value_memory (struct value *val, int embedded_offset,
951 int stack, CORE_ADDR memaddr,
952 gdb_byte *buffer, size_t length)
953 {
954 if (length)
955 {
956 VEC(mem_range_s) *available_memory;
957
958 if (!traceframe_available_memory (&available_memory, memaddr, length))
959 {
960 if (stack)
961 read_stack (memaddr, buffer, length);
962 else
963 read_memory (memaddr, buffer, length);
964 }
965 else
966 {
967 struct target_section_table *table;
968 struct cleanup *old_chain;
969 CORE_ADDR unavail;
970 mem_range_s *r;
971 int i;
972
973 /* Fallback to reading from read-only sections. */
974 table = target_get_section_table (&exec_ops);
975 available_memory =
976 section_table_available_memory (available_memory,
977 memaddr, length,
978 table->sections,
979 table->sections_end);
980
981 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
982 &available_memory);
983
984 normalize_mem_ranges (available_memory);
985
986 /* Mark which bytes are unavailable, and read those which
987 are available. */
988
989 unavail = memaddr;
990
991 for (i = 0;
992 VEC_iterate (mem_range_s, available_memory, i, r);
993 i++)
994 {
995 if (mem_ranges_overlap (r->start, r->length,
996 memaddr, length))
997 {
998 CORE_ADDR lo1, hi1, lo2, hi2;
999 CORE_ADDR start, end;
1000
1001 /* Get the intersection window. */
1002 lo1 = memaddr;
1003 hi1 = memaddr + length;
1004 lo2 = r->start;
1005 hi2 = r->start + r->length;
1006 start = max (lo1, lo2);
1007 end = min (hi1, hi2);
1008
1009 gdb_assert (end - memaddr <= length);
1010
1011 if (start > unavail)
1012 mark_value_bytes_unavailable (val,
1013 (embedded_offset
1014 + unavail - memaddr),
1015 start - unavail);
1016 unavail = end;
1017
1018 read_memory (start, buffer + start - memaddr, end - start);
1019 }
1020 }
1021
1022 if (unavail != memaddr + length)
1023 mark_value_bytes_unavailable (val,
1024 embedded_offset + unavail - memaddr,
1025 (memaddr + length) - unavail);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030 }
1031
1032 /* Store the contents of FROMVAL into the location of TOVAL.
1033 Return a new value with the location of TOVAL and contents of FROMVAL. */
1034
1035 struct value *
1036 value_assign (struct value *toval, struct value *fromval)
1037 {
1038 struct type *type;
1039 struct value *val;
1040 struct frame_id old_frame;
1041
1042 if (!deprecated_value_modifiable (toval))
1043 error (_("Left operand of assignment is not a modifiable lvalue."));
1044
1045 toval = coerce_ref (toval);
1046
1047 type = value_type (toval);
1048 if (VALUE_LVAL (toval) != lval_internalvar)
1049 fromval = value_cast (type, fromval);
1050 else
1051 {
1052 /* Coerce arrays and functions to pointers, except for arrays
1053 which only live in GDB's storage. */
1054 if (!value_must_coerce_to_target (fromval))
1055 fromval = coerce_array (fromval);
1056 }
1057
1058 CHECK_TYPEDEF (type);
1059
1060 /* Since modifying a register can trash the frame chain, and
1061 modifying memory can trash the frame cache, we save the old frame
1062 and then restore the new frame afterwards. */
1063 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1064
1065 switch (VALUE_LVAL (toval))
1066 {
1067 case lval_internalvar:
1068 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1069 return value_of_internalvar (get_type_arch (type),
1070 VALUE_INTERNALVAR (toval));
1071
1072 case lval_internalvar_component:
1073 {
1074 int offset = value_offset (toval);
1075
1076 /* Are we dealing with a bitfield?
1077
1078 It is important to mention that `value_parent (toval)' is
1079 non-NULL iff `value_bitsize (toval)' is non-zero. */
1080 if (value_bitsize (toval))
1081 {
1082 /* VALUE_INTERNALVAR below refers to the parent value, while
1083 the offset is relative to this parent value. */
1084 gdb_assert (value_parent (value_parent (toval)) == NULL);
1085 offset += value_offset (value_parent (toval));
1086 }
1087
1088 set_internalvar_component (VALUE_INTERNALVAR (toval),
1089 offset,
1090 value_bitpos (toval),
1091 value_bitsize (toval),
1092 fromval);
1093 }
1094 break;
1095
1096 case lval_memory:
1097 {
1098 const gdb_byte *dest_buffer;
1099 CORE_ADDR changed_addr;
1100 int changed_len;
1101 gdb_byte buffer[sizeof (LONGEST)];
1102
1103 if (value_bitsize (toval))
1104 {
1105 struct value *parent = value_parent (toval);
1106
1107 changed_addr = value_address (parent) + value_offset (toval);
1108 changed_len = (value_bitpos (toval)
1109 + value_bitsize (toval)
1110 + HOST_CHAR_BIT - 1)
1111 / HOST_CHAR_BIT;
1112
1113 /* If we can read-modify-write exactly the size of the
1114 containing type (e.g. short or int) then do so. This
1115 is safer for volatile bitfields mapped to hardware
1116 registers. */
1117 if (changed_len < TYPE_LENGTH (type)
1118 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1119 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1120 changed_len = TYPE_LENGTH (type);
1121
1122 if (changed_len > (int) sizeof (LONGEST))
1123 error (_("Can't handle bitfields which "
1124 "don't fit in a %d bit word."),
1125 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1126
1127 read_memory (changed_addr, buffer, changed_len);
1128 modify_field (type, buffer, value_as_long (fromval),
1129 value_bitpos (toval), value_bitsize (toval));
1130 dest_buffer = buffer;
1131 }
1132 else
1133 {
1134 changed_addr = value_address (toval);
1135 changed_len = TYPE_LENGTH (type);
1136 dest_buffer = value_contents (fromval);
1137 }
1138
1139 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1140 }
1141 break;
1142
1143 case lval_register:
1144 {
1145 struct frame_info *frame;
1146 struct gdbarch *gdbarch;
1147 int value_reg;
1148
1149 /* Figure out which frame this is in currently. */
1150 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1151 value_reg = VALUE_REGNUM (toval);
1152
1153 if (!frame)
1154 error (_("Value being assigned to is no longer active."));
1155
1156 gdbarch = get_frame_arch (frame);
1157 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1158 {
1159 /* If TOVAL is a special machine register requiring
1160 conversion of program values to a special raw
1161 format. */
1162 gdbarch_value_to_register (gdbarch, frame,
1163 VALUE_REGNUM (toval), type,
1164 value_contents (fromval));
1165 }
1166 else
1167 {
1168 if (value_bitsize (toval))
1169 {
1170 struct value *parent = value_parent (toval);
1171 int offset = value_offset (parent) + value_offset (toval);
1172 int changed_len;
1173 gdb_byte buffer[sizeof (LONGEST)];
1174 int optim, unavail;
1175
1176 changed_len = (value_bitpos (toval)
1177 + value_bitsize (toval)
1178 + HOST_CHAR_BIT - 1)
1179 / HOST_CHAR_BIT;
1180
1181 if (changed_len > (int) sizeof (LONGEST))
1182 error (_("Can't handle bitfields which "
1183 "don't fit in a %d bit word."),
1184 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1185
1186 if (!get_frame_register_bytes (frame, value_reg, offset,
1187 changed_len, buffer,
1188 &optim, &unavail))
1189 {
1190 if (optim)
1191 error (_("value has been optimized out"));
1192 if (unavail)
1193 throw_error (NOT_AVAILABLE_ERROR,
1194 _("value is not available"));
1195 }
1196
1197 modify_field (type, buffer, value_as_long (fromval),
1198 value_bitpos (toval), value_bitsize (toval));
1199
1200 put_frame_register_bytes (frame, value_reg, offset,
1201 changed_len, buffer);
1202 }
1203 else
1204 {
1205 put_frame_register_bytes (frame, value_reg,
1206 value_offset (toval),
1207 TYPE_LENGTH (type),
1208 value_contents (fromval));
1209 }
1210 }
1211
1212 if (deprecated_register_changed_hook)
1213 deprecated_register_changed_hook (-1);
1214 break;
1215 }
1216
1217 case lval_computed:
1218 {
1219 const struct lval_funcs *funcs = value_computed_funcs (toval);
1220
1221 if (funcs->write != NULL)
1222 {
1223 funcs->write (toval, fromval);
1224 break;
1225 }
1226 }
1227 /* Fall through. */
1228
1229 default:
1230 error (_("Left operand of assignment is not an lvalue."));
1231 }
1232
1233 /* Assigning to the stack pointer, frame pointer, and other
1234 (architecture and calling convention specific) registers may
1235 cause the frame cache and regcache to be out of date. Assigning to memory
1236 also can. We just do this on all assignments to registers or
1237 memory, for simplicity's sake; I doubt the slowdown matters. */
1238 switch (VALUE_LVAL (toval))
1239 {
1240 case lval_memory:
1241 case lval_register:
1242 case lval_computed:
1243
1244 observer_notify_target_changed (&current_target);
1245
1246 /* Having destroyed the frame cache, restore the selected
1247 frame. */
1248
1249 /* FIXME: cagney/2002-11-02: There has to be a better way of
1250 doing this. Instead of constantly saving/restoring the
1251 frame. Why not create a get_selected_frame() function that,
1252 having saved the selected frame's ID can automatically
1253 re-find the previously selected frame automatically. */
1254
1255 {
1256 struct frame_info *fi = frame_find_by_id (old_frame);
1257
1258 if (fi != NULL)
1259 select_frame (fi);
1260 }
1261
1262 break;
1263 default:
1264 break;
1265 }
1266
1267 /* If the field does not entirely fill a LONGEST, then zero the sign
1268 bits. If the field is signed, and is negative, then sign
1269 extend. */
1270 if ((value_bitsize (toval) > 0)
1271 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1272 {
1273 LONGEST fieldval = value_as_long (fromval);
1274 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1275
1276 fieldval &= valmask;
1277 if (!TYPE_UNSIGNED (type)
1278 && (fieldval & (valmask ^ (valmask >> 1))))
1279 fieldval |= ~valmask;
1280
1281 fromval = value_from_longest (type, fieldval);
1282 }
1283
1284 /* The return value is a copy of TOVAL so it shares its location
1285 information, but its contents are updated from FROMVAL. This
1286 implies the returned value is not lazy, even if TOVAL was. */
1287 val = value_copy (toval);
1288 set_value_lazy (val, 0);
1289 memcpy (value_contents_raw (val), value_contents (fromval),
1290 TYPE_LENGTH (type));
1291
1292 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1293 in the case of pointer types. For object types, the enclosing type
1294 and embedded offset must *not* be copied: the target object refered
1295 to by TOVAL retains its original dynamic type after assignment. */
1296 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1297 {
1298 set_value_enclosing_type (val, value_enclosing_type (fromval));
1299 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1300 }
1301
1302 return val;
1303 }
1304
1305 /* Extend a value VAL to COUNT repetitions of its type. */
1306
1307 struct value *
1308 value_repeat (struct value *arg1, int count)
1309 {
1310 struct value *val;
1311
1312 if (VALUE_LVAL (arg1) != lval_memory)
1313 error (_("Only values in memory can be extended with '@'."));
1314 if (count < 1)
1315 error (_("Invalid number %d of repetitions."), count);
1316
1317 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1318
1319 VALUE_LVAL (val) = lval_memory;
1320 set_value_address (val, value_address (arg1));
1321
1322 read_value_memory (val, 0, value_stack (val), value_address (val),
1323 value_contents_all_raw (val),
1324 TYPE_LENGTH (value_enclosing_type (val)));
1325
1326 return val;
1327 }
1328
1329 struct value *
1330 value_of_variable (struct symbol *var, const struct block *b)
1331 {
1332 struct frame_info *frame;
1333
1334 if (!symbol_read_needs_frame (var))
1335 frame = NULL;
1336 else if (!b)
1337 frame = get_selected_frame (_("No frame selected."));
1338 else
1339 {
1340 frame = block_innermost_frame (b);
1341 if (!frame)
1342 {
1343 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1344 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1345 error (_("No frame is currently executing in block %s."),
1346 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1347 else
1348 error (_("No frame is currently executing in specified block"));
1349 }
1350 }
1351
1352 return read_var_value (var, frame);
1353 }
1354
1355 struct value *
1356 address_of_variable (struct symbol *var, const struct block *b)
1357 {
1358 struct type *type = SYMBOL_TYPE (var);
1359 struct value *val;
1360
1361 /* Evaluate it first; if the result is a memory address, we're fine.
1362 Lazy evaluation pays off here. */
1363
1364 val = value_of_variable (var, b);
1365
1366 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1367 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1368 {
1369 CORE_ADDR addr = value_address (val);
1370
1371 return value_from_pointer (lookup_pointer_type (type), addr);
1372 }
1373
1374 /* Not a memory address; check what the problem was. */
1375 switch (VALUE_LVAL (val))
1376 {
1377 case lval_register:
1378 {
1379 struct frame_info *frame;
1380 const char *regname;
1381
1382 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1383 gdb_assert (frame);
1384
1385 regname = gdbarch_register_name (get_frame_arch (frame),
1386 VALUE_REGNUM (val));
1387 gdb_assert (regname && *regname);
1388
1389 error (_("Address requested for identifier "
1390 "\"%s\" which is in register $%s"),
1391 SYMBOL_PRINT_NAME (var), regname);
1392 break;
1393 }
1394
1395 default:
1396 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1397 SYMBOL_PRINT_NAME (var));
1398 break;
1399 }
1400
1401 return val;
1402 }
1403
1404 /* Return one if VAL does not live in target memory, but should in order
1405 to operate on it. Otherwise return zero. */
1406
1407 int
1408 value_must_coerce_to_target (struct value *val)
1409 {
1410 struct type *valtype;
1411
1412 /* The only lval kinds which do not live in target memory. */
1413 if (VALUE_LVAL (val) != not_lval
1414 && VALUE_LVAL (val) != lval_internalvar)
1415 return 0;
1416
1417 valtype = check_typedef (value_type (val));
1418
1419 switch (TYPE_CODE (valtype))
1420 {
1421 case TYPE_CODE_ARRAY:
1422 return TYPE_VECTOR (valtype) ? 0 : 1;
1423 case TYPE_CODE_STRING:
1424 return 1;
1425 default:
1426 return 0;
1427 }
1428 }
1429
1430 /* Make sure that VAL lives in target memory if it's supposed to. For
1431 instance, strings are constructed as character arrays in GDB's
1432 storage, and this function copies them to the target. */
1433
1434 struct value *
1435 value_coerce_to_target (struct value *val)
1436 {
1437 LONGEST length;
1438 CORE_ADDR addr;
1439
1440 if (!value_must_coerce_to_target (val))
1441 return val;
1442
1443 length = TYPE_LENGTH (check_typedef (value_type (val)));
1444 addr = allocate_space_in_inferior (length);
1445 write_memory (addr, value_contents (val), length);
1446 return value_at_lazy (value_type (val), addr);
1447 }
1448
1449 /* Given a value which is an array, return a value which is a pointer
1450 to its first element, regardless of whether or not the array has a
1451 nonzero lower bound.
1452
1453 FIXME: A previous comment here indicated that this routine should
1454 be substracting the array's lower bound. It's not clear to me that
1455 this is correct. Given an array subscripting operation, it would
1456 certainly work to do the adjustment here, essentially computing:
1457
1458 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1459
1460 However I believe a more appropriate and logical place to account
1461 for the lower bound is to do so in value_subscript, essentially
1462 computing:
1463
1464 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1465
1466 As further evidence consider what would happen with operations
1467 other than array subscripting, where the caller would get back a
1468 value that had an address somewhere before the actual first element
1469 of the array, and the information about the lower bound would be
1470 lost because of the coercion to pointer type. */
1471
1472 struct value *
1473 value_coerce_array (struct value *arg1)
1474 {
1475 struct type *type = check_typedef (value_type (arg1));
1476
1477 /* If the user tries to do something requiring a pointer with an
1478 array that has not yet been pushed to the target, then this would
1479 be a good time to do so. */
1480 arg1 = value_coerce_to_target (arg1);
1481
1482 if (VALUE_LVAL (arg1) != lval_memory)
1483 error (_("Attempt to take address of value not located in memory."));
1484
1485 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1486 value_address (arg1));
1487 }
1488
1489 /* Given a value which is a function, return a value which is a pointer
1490 to it. */
1491
1492 struct value *
1493 value_coerce_function (struct value *arg1)
1494 {
1495 struct value *retval;
1496
1497 if (VALUE_LVAL (arg1) != lval_memory)
1498 error (_("Attempt to take address of value not located in memory."));
1499
1500 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1501 value_address (arg1));
1502 return retval;
1503 }
1504
1505 /* Return a pointer value for the object for which ARG1 is the
1506 contents. */
1507
1508 struct value *
1509 value_addr (struct value *arg1)
1510 {
1511 struct value *arg2;
1512 struct type *type = check_typedef (value_type (arg1));
1513
1514 if (TYPE_CODE (type) == TYPE_CODE_REF)
1515 {
1516 /* Copy the value, but change the type from (T&) to (T*). We
1517 keep the same location information, which is efficient, and
1518 allows &(&X) to get the location containing the reference. */
1519 arg2 = value_copy (arg1);
1520 deprecated_set_value_type (arg2,
1521 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1522 return arg2;
1523 }
1524 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1525 return value_coerce_function (arg1);
1526
1527 /* If this is an array that has not yet been pushed to the target,
1528 then this would be a good time to force it to memory. */
1529 arg1 = value_coerce_to_target (arg1);
1530
1531 if (VALUE_LVAL (arg1) != lval_memory)
1532 error (_("Attempt to take address of value not located in memory."));
1533
1534 /* Get target memory address. */
1535 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1536 (value_address (arg1)
1537 + value_embedded_offset (arg1)));
1538
1539 /* This may be a pointer to a base subobject; so remember the
1540 full derived object's type ... */
1541 set_value_enclosing_type (arg2,
1542 lookup_pointer_type (value_enclosing_type (arg1)));
1543 /* ... and also the relative position of the subobject in the full
1544 object. */
1545 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1546 return arg2;
1547 }
1548
1549 /* Return a reference value for the object for which ARG1 is the
1550 contents. */
1551
1552 struct value *
1553 value_ref (struct value *arg1)
1554 {
1555 struct value *arg2;
1556 struct type *type = check_typedef (value_type (arg1));
1557
1558 if (TYPE_CODE (type) == TYPE_CODE_REF)
1559 return arg1;
1560
1561 arg2 = value_addr (arg1);
1562 deprecated_set_value_type (arg2, lookup_reference_type (type));
1563 return arg2;
1564 }
1565
1566 /* Given a value of a pointer type, apply the C unary * operator to
1567 it. */
1568
1569 struct value *
1570 value_ind (struct value *arg1)
1571 {
1572 struct type *base_type;
1573 struct value *arg2;
1574
1575 arg1 = coerce_array (arg1);
1576
1577 base_type = check_typedef (value_type (arg1));
1578
1579 if (VALUE_LVAL (arg1) == lval_computed)
1580 {
1581 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1582
1583 if (funcs->indirect)
1584 {
1585 struct value *result = funcs->indirect (arg1);
1586
1587 if (result)
1588 return result;
1589 }
1590 }
1591
1592 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1593 {
1594 struct type *enc_type;
1595
1596 /* We may be pointing to something embedded in a larger object.
1597 Get the real type of the enclosing object. */
1598 enc_type = check_typedef (value_enclosing_type (arg1));
1599 enc_type = TYPE_TARGET_TYPE (enc_type);
1600
1601 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1602 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1603 /* For functions, go through find_function_addr, which knows
1604 how to handle function descriptors. */
1605 arg2 = value_at_lazy (enc_type,
1606 find_function_addr (arg1, NULL));
1607 else
1608 /* Retrieve the enclosing object pointed to. */
1609 arg2 = value_at_lazy (enc_type,
1610 (value_as_address (arg1)
1611 - value_pointed_to_offset (arg1)));
1612
1613 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1614 }
1615
1616 error (_("Attempt to take contents of a non-pointer value."));
1617 return 0; /* For lint -- never reached. */
1618 }
1619 \f
1620 /* Create a value for an array by allocating space in GDB, copying the
1621 data into that space, and then setting up an array value.
1622
1623 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1624 is populated from the values passed in ELEMVEC.
1625
1626 The element type of the array is inherited from the type of the
1627 first element, and all elements must have the same size (though we
1628 don't currently enforce any restriction on their types). */
1629
1630 struct value *
1631 value_array (int lowbound, int highbound, struct value **elemvec)
1632 {
1633 int nelem;
1634 int idx;
1635 unsigned int typelength;
1636 struct value *val;
1637 struct type *arraytype;
1638
1639 /* Validate that the bounds are reasonable and that each of the
1640 elements have the same size. */
1641
1642 nelem = highbound - lowbound + 1;
1643 if (nelem <= 0)
1644 {
1645 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1646 }
1647 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1648 for (idx = 1; idx < nelem; idx++)
1649 {
1650 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1651 {
1652 error (_("array elements must all be the same size"));
1653 }
1654 }
1655
1656 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1657 lowbound, highbound);
1658
1659 if (!current_language->c_style_arrays)
1660 {
1661 val = allocate_value (arraytype);
1662 for (idx = 0; idx < nelem; idx++)
1663 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1664 typelength);
1665 return val;
1666 }
1667
1668 /* Allocate space to store the array, and then initialize it by
1669 copying in each element. */
1670
1671 val = allocate_value (arraytype);
1672 for (idx = 0; idx < nelem; idx++)
1673 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1674 return val;
1675 }
1676
1677 struct value *
1678 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1679 {
1680 struct value *val;
1681 int lowbound = current_language->string_lower_bound;
1682 ssize_t highbound = len / TYPE_LENGTH (char_type);
1683 struct type *stringtype
1684 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1685
1686 val = allocate_value (stringtype);
1687 memcpy (value_contents_raw (val), ptr, len);
1688 return val;
1689 }
1690
1691 /* Create a value for a string constant by allocating space in the
1692 inferior, copying the data into that space, and returning the
1693 address with type TYPE_CODE_STRING. PTR points to the string
1694 constant data; LEN is number of characters.
1695
1696 Note that string types are like array of char types with a lower
1697 bound of zero and an upper bound of LEN - 1. Also note that the
1698 string may contain embedded null bytes. */
1699
1700 struct value *
1701 value_string (char *ptr, ssize_t len, struct type *char_type)
1702 {
1703 struct value *val;
1704 int lowbound = current_language->string_lower_bound;
1705 ssize_t highbound = len / TYPE_LENGTH (char_type);
1706 struct type *stringtype
1707 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1708
1709 val = allocate_value (stringtype);
1710 memcpy (value_contents_raw (val), ptr, len);
1711 return val;
1712 }
1713
1714 \f
1715 /* See if we can pass arguments in T2 to a function which takes
1716 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1717 a NULL-terminated vector. If some arguments need coercion of some
1718 sort, then the coerced values are written into T2. Return value is
1719 0 if the arguments could be matched, or the position at which they
1720 differ if not.
1721
1722 STATICP is nonzero if the T1 argument list came from a static
1723 member function. T2 will still include the ``this'' pointer, but
1724 it will be skipped.
1725
1726 For non-static member functions, we ignore the first argument,
1727 which is the type of the instance variable. This is because we
1728 want to handle calls with objects from derived classes. This is
1729 not entirely correct: we should actually check to make sure that a
1730 requested operation is type secure, shouldn't we? FIXME. */
1731
1732 static int
1733 typecmp (int staticp, int varargs, int nargs,
1734 struct field t1[], struct value *t2[])
1735 {
1736 int i;
1737
1738 if (t2 == 0)
1739 internal_error (__FILE__, __LINE__,
1740 _("typecmp: no argument list"));
1741
1742 /* Skip ``this'' argument if applicable. T2 will always include
1743 THIS. */
1744 if (staticp)
1745 t2 ++;
1746
1747 for (i = 0;
1748 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1749 i++)
1750 {
1751 struct type *tt1, *tt2;
1752
1753 if (!t2[i])
1754 return i + 1;
1755
1756 tt1 = check_typedef (t1[i].type);
1757 tt2 = check_typedef (value_type (t2[i]));
1758
1759 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1760 /* We should be doing hairy argument matching, as below. */
1761 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1762 == TYPE_CODE (tt2)))
1763 {
1764 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1765 t2[i] = value_coerce_array (t2[i]);
1766 else
1767 t2[i] = value_ref (t2[i]);
1768 continue;
1769 }
1770
1771 /* djb - 20000715 - Until the new type structure is in the
1772 place, and we can attempt things like implicit conversions,
1773 we need to do this so you can take something like a map<const
1774 char *>, and properly access map["hello"], because the
1775 argument to [] will be a reference to a pointer to a char,
1776 and the argument will be a pointer to a char. */
1777 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1778 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1779 {
1780 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1781 }
1782 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1783 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1784 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1785 {
1786 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1787 }
1788 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1789 continue;
1790 /* Array to pointer is a `trivial conversion' according to the
1791 ARM. */
1792
1793 /* We should be doing much hairier argument matching (see
1794 section 13.2 of the ARM), but as a quick kludge, just check
1795 for the same type code. */
1796 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1797 return i + 1;
1798 }
1799 if (varargs || t2[i] == NULL)
1800 return 0;
1801 return i + 1;
1802 }
1803
1804 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1805 and *LAST_BOFFSET, and possibly throws an exception if the field
1806 search has yielded ambiguous results. */
1807
1808 static void
1809 update_search_result (struct value **result_ptr, struct value *v,
1810 int *last_boffset, int boffset,
1811 const char *name, struct type *type)
1812 {
1813 if (v != NULL)
1814 {
1815 if (*result_ptr != NULL
1816 /* The result is not ambiguous if all the classes that are
1817 found occupy the same space. */
1818 && *last_boffset != boffset)
1819 error (_("base class '%s' is ambiguous in type '%s'"),
1820 name, TYPE_SAFE_NAME (type));
1821 *result_ptr = v;
1822 *last_boffset = boffset;
1823 }
1824 }
1825
1826 /* A helper for search_struct_field. This does all the work; most
1827 arguments are as passed to search_struct_field. The result is
1828 stored in *RESULT_PTR, which must be initialized to NULL.
1829 OUTERMOST_TYPE is the type of the initial type passed to
1830 search_struct_field; this is used for error reporting when the
1831 lookup is ambiguous. */
1832
1833 static void
1834 do_search_struct_field (const char *name, struct value *arg1, int offset,
1835 struct type *type, int looking_for_baseclass,
1836 struct value **result_ptr,
1837 int *last_boffset,
1838 struct type *outermost_type)
1839 {
1840 int i;
1841 int nbases;
1842
1843 CHECK_TYPEDEF (type);
1844 nbases = TYPE_N_BASECLASSES (type);
1845
1846 if (!looking_for_baseclass)
1847 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1848 {
1849 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1850
1851 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1852 {
1853 struct value *v;
1854
1855 if (field_is_static (&TYPE_FIELD (type, i)))
1856 {
1857 v = value_static_field (type, i);
1858 if (v == 0)
1859 error (_("field %s is nonexistent or "
1860 "has been optimized out"),
1861 name);
1862 }
1863 else
1864 v = value_primitive_field (arg1, offset, i, type);
1865 *result_ptr = v;
1866 return;
1867 }
1868
1869 if (t_field_name
1870 && (t_field_name[0] == '\0'
1871 || (TYPE_CODE (type) == TYPE_CODE_UNION
1872 && (strcmp_iw (t_field_name, "else") == 0))))
1873 {
1874 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1875
1876 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1877 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1878 {
1879 /* Look for a match through the fields of an anonymous
1880 union, or anonymous struct. C++ provides anonymous
1881 unions.
1882
1883 In the GNU Chill (now deleted from GDB)
1884 implementation of variant record types, each
1885 <alternative field> has an (anonymous) union type,
1886 each member of the union represents a <variant
1887 alternative>. Each <variant alternative> is
1888 represented as a struct, with a member for each
1889 <variant field>. */
1890
1891 struct value *v = NULL;
1892 int new_offset = offset;
1893
1894 /* This is pretty gross. In G++, the offset in an
1895 anonymous union is relative to the beginning of the
1896 enclosing struct. In the GNU Chill (now deleted
1897 from GDB) implementation of variant records, the
1898 bitpos is zero in an anonymous union field, so we
1899 have to add the offset of the union here. */
1900 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1901 || (TYPE_NFIELDS (field_type) > 0
1902 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1903 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1904
1905 do_search_struct_field (name, arg1, new_offset,
1906 field_type,
1907 looking_for_baseclass, &v,
1908 last_boffset,
1909 outermost_type);
1910 if (v)
1911 {
1912 *result_ptr = v;
1913 return;
1914 }
1915 }
1916 }
1917 }
1918
1919 for (i = 0; i < nbases; i++)
1920 {
1921 struct value *v = NULL;
1922 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1923 /* If we are looking for baseclasses, this is what we get when
1924 we hit them. But it could happen that the base part's member
1925 name is not yet filled in. */
1926 int found_baseclass = (looking_for_baseclass
1927 && TYPE_BASECLASS_NAME (type, i) != NULL
1928 && (strcmp_iw (name,
1929 TYPE_BASECLASS_NAME (type,
1930 i)) == 0));
1931 int boffset = value_embedded_offset (arg1) + offset;
1932
1933 if (BASETYPE_VIA_VIRTUAL (type, i))
1934 {
1935 struct value *v2;
1936
1937 boffset = baseclass_offset (type, i,
1938 value_contents_for_printing (arg1),
1939 value_embedded_offset (arg1) + offset,
1940 value_address (arg1),
1941 arg1);
1942
1943 /* The virtual base class pointer might have been clobbered
1944 by the user program. Make sure that it still points to a
1945 valid memory location. */
1946
1947 boffset += value_embedded_offset (arg1) + offset;
1948 if (boffset < 0
1949 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1950 {
1951 CORE_ADDR base_addr;
1952
1953 base_addr = value_address (arg1) + boffset;
1954 v2 = value_at_lazy (basetype, base_addr);
1955 if (target_read_memory (base_addr,
1956 value_contents_raw (v2),
1957 TYPE_LENGTH (value_type (basetype))) != 0)
1958 error (_("virtual baseclass botch"));
1959 }
1960 else
1961 {
1962 v2 = value_copy (arg1);
1963 deprecated_set_value_type (v2, basetype);
1964 set_value_embedded_offset (v2, boffset);
1965 }
1966
1967 if (found_baseclass)
1968 v = v2;
1969 else
1970 {
1971 do_search_struct_field (name, v2, 0,
1972 TYPE_BASECLASS (type, i),
1973 looking_for_baseclass,
1974 result_ptr, last_boffset,
1975 outermost_type);
1976 }
1977 }
1978 else if (found_baseclass)
1979 v = value_primitive_field (arg1, offset, i, type);
1980 else
1981 {
1982 do_search_struct_field (name, arg1,
1983 offset + TYPE_BASECLASS_BITPOS (type,
1984 i) / 8,
1985 basetype, looking_for_baseclass,
1986 result_ptr, last_boffset,
1987 outermost_type);
1988 }
1989
1990 update_search_result (result_ptr, v, last_boffset,
1991 boffset, name, outermost_type);
1992 }
1993 }
1994
1995 /* Helper function used by value_struct_elt to recurse through
1996 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1997 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1998 TYPE. If found, return value, else return NULL.
1999
2000 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2001 fields, look for a baseclass named NAME. */
2002
2003 static struct value *
2004 search_struct_field (const char *name, struct value *arg1, int offset,
2005 struct type *type, int looking_for_baseclass)
2006 {
2007 struct value *result = NULL;
2008 int boffset = 0;
2009
2010 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2011 &result, &boffset, type);
2012 return result;
2013 }
2014
2015 /* Helper function used by value_struct_elt to recurse through
2016 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2017 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2018 TYPE.
2019
2020 If found, return value, else if name matched and args not return
2021 (value) -1, else return NULL. */
2022
2023 static struct value *
2024 search_struct_method (const char *name, struct value **arg1p,
2025 struct value **args, int offset,
2026 int *static_memfuncp, struct type *type)
2027 {
2028 int i;
2029 struct value *v;
2030 int name_matched = 0;
2031 char dem_opname[64];
2032
2033 CHECK_TYPEDEF (type);
2034 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2035 {
2036 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2037
2038 /* FIXME! May need to check for ARM demangling here. */
2039 if (strncmp (t_field_name, "__", 2) == 0 ||
2040 strncmp (t_field_name, "op", 2) == 0 ||
2041 strncmp (t_field_name, "type", 4) == 0)
2042 {
2043 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2044 t_field_name = dem_opname;
2045 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2046 t_field_name = dem_opname;
2047 }
2048 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2049 {
2050 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2051 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2052
2053 name_matched = 1;
2054 check_stub_method_group (type, i);
2055 if (j > 0 && args == 0)
2056 error (_("cannot resolve overloaded method "
2057 "`%s': no arguments supplied"), name);
2058 else if (j == 0 && args == 0)
2059 {
2060 v = value_fn_field (arg1p, f, j, type, offset);
2061 if (v != NULL)
2062 return v;
2063 }
2064 else
2065 while (j >= 0)
2066 {
2067 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2068 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2069 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2070 TYPE_FN_FIELD_ARGS (f, j), args))
2071 {
2072 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2073 return value_virtual_fn_field (arg1p, f, j,
2074 type, offset);
2075 if (TYPE_FN_FIELD_STATIC_P (f, j)
2076 && static_memfuncp)
2077 *static_memfuncp = 1;
2078 v = value_fn_field (arg1p, f, j, type, offset);
2079 if (v != NULL)
2080 return v;
2081 }
2082 j--;
2083 }
2084 }
2085 }
2086
2087 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2088 {
2089 int base_offset;
2090 int this_offset;
2091
2092 if (BASETYPE_VIA_VIRTUAL (type, i))
2093 {
2094 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2095 struct value *base_val;
2096 const gdb_byte *base_valaddr;
2097
2098 /* The virtual base class pointer might have been
2099 clobbered by the user program. Make sure that it
2100 still points to a valid memory location. */
2101
2102 if (offset < 0 || offset >= TYPE_LENGTH (type))
2103 {
2104 gdb_byte *tmp;
2105 struct cleanup *back_to;
2106 CORE_ADDR address;
2107
2108 tmp = xmalloc (TYPE_LENGTH (baseclass));
2109 back_to = make_cleanup (xfree, tmp);
2110 address = value_address (*arg1p);
2111
2112 if (target_read_memory (address + offset,
2113 tmp, TYPE_LENGTH (baseclass)) != 0)
2114 error (_("virtual baseclass botch"));
2115
2116 base_val = value_from_contents_and_address (baseclass,
2117 tmp,
2118 address + offset);
2119 base_valaddr = value_contents_for_printing (base_val);
2120 this_offset = 0;
2121 do_cleanups (back_to);
2122 }
2123 else
2124 {
2125 base_val = *arg1p;
2126 base_valaddr = value_contents_for_printing (*arg1p);
2127 this_offset = offset;
2128 }
2129
2130 base_offset = baseclass_offset (type, i, base_valaddr,
2131 this_offset, value_address (base_val),
2132 base_val);
2133 }
2134 else
2135 {
2136 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2137 }
2138 v = search_struct_method (name, arg1p, args, base_offset + offset,
2139 static_memfuncp, TYPE_BASECLASS (type, i));
2140 if (v == (struct value *) - 1)
2141 {
2142 name_matched = 1;
2143 }
2144 else if (v)
2145 {
2146 /* FIXME-bothner: Why is this commented out? Why is it here? */
2147 /* *arg1p = arg1_tmp; */
2148 return v;
2149 }
2150 }
2151 if (name_matched)
2152 return (struct value *) - 1;
2153 else
2154 return NULL;
2155 }
2156
2157 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2158 extract the component named NAME from the ultimate target
2159 structure/union and return it as a value with its appropriate type.
2160 ERR is used in the error message if *ARGP's type is wrong.
2161
2162 C++: ARGS is a list of argument types to aid in the selection of
2163 an appropriate method. Also, handle derived types.
2164
2165 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2166 where the truthvalue of whether the function that was resolved was
2167 a static member function or not is stored.
2168
2169 ERR is an error message to be printed in case the field is not
2170 found. */
2171
2172 struct value *
2173 value_struct_elt (struct value **argp, struct value **args,
2174 const char *name, int *static_memfuncp, const char *err)
2175 {
2176 struct type *t;
2177 struct value *v;
2178
2179 *argp = coerce_array (*argp);
2180
2181 t = check_typedef (value_type (*argp));
2182
2183 /* Follow pointers until we get to a non-pointer. */
2184
2185 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2186 {
2187 *argp = value_ind (*argp);
2188 /* Don't coerce fn pointer to fn and then back again! */
2189 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2190 *argp = coerce_array (*argp);
2191 t = check_typedef (value_type (*argp));
2192 }
2193
2194 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2195 && TYPE_CODE (t) != TYPE_CODE_UNION)
2196 error (_("Attempt to extract a component of a value that is not a %s."),
2197 err);
2198
2199 /* Assume it's not, unless we see that it is. */
2200 if (static_memfuncp)
2201 *static_memfuncp = 0;
2202
2203 if (!args)
2204 {
2205 /* if there are no arguments ...do this... */
2206
2207 /* Try as a field first, because if we succeed, there is less
2208 work to be done. */
2209 v = search_struct_field (name, *argp, 0, t, 0);
2210 if (v)
2211 return v;
2212
2213 /* C++: If it was not found as a data field, then try to
2214 return it as a pointer to a method. */
2215 v = search_struct_method (name, argp, args, 0,
2216 static_memfuncp, t);
2217
2218 if (v == (struct value *) - 1)
2219 error (_("Cannot take address of method %s."), name);
2220 else if (v == 0)
2221 {
2222 if (TYPE_NFN_FIELDS (t))
2223 error (_("There is no member or method named %s."), name);
2224 else
2225 error (_("There is no member named %s."), name);
2226 }
2227 return v;
2228 }
2229
2230 v = search_struct_method (name, argp, args, 0,
2231 static_memfuncp, t);
2232
2233 if (v == (struct value *) - 1)
2234 {
2235 error (_("One of the arguments you tried to pass to %s could not "
2236 "be converted to what the function wants."), name);
2237 }
2238 else if (v == 0)
2239 {
2240 /* See if user tried to invoke data as function. If so, hand it
2241 back. If it's not callable (i.e., a pointer to function),
2242 gdb should give an error. */
2243 v = search_struct_field (name, *argp, 0, t, 0);
2244 /* If we found an ordinary field, then it is not a method call.
2245 So, treat it as if it were a static member function. */
2246 if (v && static_memfuncp)
2247 *static_memfuncp = 1;
2248 }
2249
2250 if (!v)
2251 throw_error (NOT_FOUND_ERROR,
2252 _("Structure has no component named %s."), name);
2253 return v;
2254 }
2255
2256 /* Search through the methods of an object (and its bases) to find a
2257 specified method. Return the pointer to the fn_field list of
2258 overloaded instances.
2259
2260 Helper function for value_find_oload_list.
2261 ARGP is a pointer to a pointer to a value (the object).
2262 METHOD is a string containing the method name.
2263 OFFSET is the offset within the value.
2264 TYPE is the assumed type of the object.
2265 NUM_FNS is the number of overloaded instances.
2266 BASETYPE is set to the actual type of the subobject where the
2267 method is found.
2268 BOFFSET is the offset of the base subobject where the method is found. */
2269
2270 static struct fn_field *
2271 find_method_list (struct value **argp, const char *method,
2272 int offset, struct type *type, int *num_fns,
2273 struct type **basetype, int *boffset)
2274 {
2275 int i;
2276 struct fn_field *f;
2277 CHECK_TYPEDEF (type);
2278
2279 *num_fns = 0;
2280
2281 /* First check in object itself. */
2282 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2283 {
2284 /* pai: FIXME What about operators and type conversions? */
2285 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2286
2287 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2288 {
2289 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2290 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2291
2292 *num_fns = len;
2293 *basetype = type;
2294 *boffset = offset;
2295
2296 /* Resolve any stub methods. */
2297 check_stub_method_group (type, i);
2298
2299 return f;
2300 }
2301 }
2302
2303 /* Not found in object, check in base subobjects. */
2304 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2305 {
2306 int base_offset;
2307
2308 if (BASETYPE_VIA_VIRTUAL (type, i))
2309 {
2310 base_offset = baseclass_offset (type, i,
2311 value_contents_for_printing (*argp),
2312 value_offset (*argp) + offset,
2313 value_address (*argp), *argp);
2314 }
2315 else /* Non-virtual base, simply use bit position from debug
2316 info. */
2317 {
2318 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2319 }
2320 f = find_method_list (argp, method, base_offset + offset,
2321 TYPE_BASECLASS (type, i), num_fns,
2322 basetype, boffset);
2323 if (f)
2324 return f;
2325 }
2326 return NULL;
2327 }
2328
2329 /* Return the list of overloaded methods of a specified name.
2330
2331 ARGP is a pointer to a pointer to a value (the object).
2332 METHOD is the method name.
2333 OFFSET is the offset within the value contents.
2334 NUM_FNS is the number of overloaded instances.
2335 BASETYPE is set to the type of the base subobject that defines the
2336 method.
2337 BOFFSET is the offset of the base subobject which defines the method. */
2338
2339 static struct fn_field *
2340 value_find_oload_method_list (struct value **argp, const char *method,
2341 int offset, int *num_fns,
2342 struct type **basetype, int *boffset)
2343 {
2344 struct type *t;
2345
2346 t = check_typedef (value_type (*argp));
2347
2348 /* Code snarfed from value_struct_elt. */
2349 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2350 {
2351 *argp = value_ind (*argp);
2352 /* Don't coerce fn pointer to fn and then back again! */
2353 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2354 *argp = coerce_array (*argp);
2355 t = check_typedef (value_type (*argp));
2356 }
2357
2358 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2359 && TYPE_CODE (t) != TYPE_CODE_UNION)
2360 error (_("Attempt to extract a component of a "
2361 "value that is not a struct or union"));
2362
2363 return find_method_list (argp, method, 0, t, num_fns,
2364 basetype, boffset);
2365 }
2366
2367 /* Given an array of arguments (ARGS) (which includes an
2368 entry for "this" in the case of C++ methods), the number of
2369 arguments NARGS, the NAME of a function, and whether it's a method or
2370 not (METHOD), find the best function that matches on the argument types
2371 according to the overload resolution rules.
2372
2373 METHOD can be one of three values:
2374 NON_METHOD for non-member functions.
2375 METHOD: for member functions.
2376 BOTH: used for overload resolution of operators where the
2377 candidates are expected to be either member or non member
2378 functions. In this case the first argument ARGTYPES
2379 (representing 'this') is expected to be a reference to the
2380 target object, and will be dereferenced when attempting the
2381 non-member search.
2382
2383 In the case of class methods, the parameter OBJ is an object value
2384 in which to search for overloaded methods.
2385
2386 In the case of non-method functions, the parameter FSYM is a symbol
2387 corresponding to one of the overloaded functions.
2388
2389 Return value is an integer: 0 -> good match, 10 -> debugger applied
2390 non-standard coercions, 100 -> incompatible.
2391
2392 If a method is being searched for, VALP will hold the value.
2393 If a non-method is being searched for, SYMP will hold the symbol
2394 for it.
2395
2396 If a method is being searched for, and it is a static method,
2397 then STATICP will point to a non-zero value.
2398
2399 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2400 ADL overload candidates when performing overload resolution for a fully
2401 qualified name.
2402
2403 Note: This function does *not* check the value of
2404 overload_resolution. Caller must check it to see whether overload
2405 resolution is permitted. */
2406
2407 int
2408 find_overload_match (struct value **args, int nargs,
2409 const char *name, enum oload_search_type method,
2410 struct value **objp, struct symbol *fsym,
2411 struct value **valp, struct symbol **symp,
2412 int *staticp, const int no_adl)
2413 {
2414 struct value *obj = (objp ? *objp : NULL);
2415 struct type *obj_type = obj ? value_type (obj) : NULL;
2416 /* Index of best overloaded function. */
2417 int func_oload_champ = -1;
2418 int method_oload_champ = -1;
2419
2420 /* The measure for the current best match. */
2421 struct badness_vector *method_badness = NULL;
2422 struct badness_vector *func_badness = NULL;
2423
2424 struct value *temp = obj;
2425 /* For methods, the list of overloaded methods. */
2426 struct fn_field *fns_ptr = NULL;
2427 /* For non-methods, the list of overloaded function symbols. */
2428 struct symbol **oload_syms = NULL;
2429 /* Number of overloaded instances being considered. */
2430 int num_fns = 0;
2431 struct type *basetype = NULL;
2432 int boffset;
2433
2434 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2435
2436 const char *obj_type_name = NULL;
2437 const char *func_name = NULL;
2438 enum oload_classification match_quality;
2439 enum oload_classification method_match_quality = INCOMPATIBLE;
2440 enum oload_classification func_match_quality = INCOMPATIBLE;
2441
2442 /* Get the list of overloaded methods or functions. */
2443 if (method == METHOD || method == BOTH)
2444 {
2445 gdb_assert (obj);
2446
2447 /* OBJ may be a pointer value rather than the object itself. */
2448 obj = coerce_ref (obj);
2449 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2450 obj = coerce_ref (value_ind (obj));
2451 obj_type_name = TYPE_NAME (value_type (obj));
2452
2453 /* First check whether this is a data member, e.g. a pointer to
2454 a function. */
2455 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2456 {
2457 *valp = search_struct_field (name, obj, 0,
2458 check_typedef (value_type (obj)), 0);
2459 if (*valp)
2460 {
2461 *staticp = 1;
2462 do_cleanups (all_cleanups);
2463 return 0;
2464 }
2465 }
2466
2467 /* Retrieve the list of methods with the name NAME. */
2468 fns_ptr = value_find_oload_method_list (&temp, name,
2469 0, &num_fns,
2470 &basetype, &boffset);
2471 /* If this is a method only search, and no methods were found
2472 the search has faild. */
2473 if (method == METHOD && (!fns_ptr || !num_fns))
2474 error (_("Couldn't find method %s%s%s"),
2475 obj_type_name,
2476 (obj_type_name && *obj_type_name) ? "::" : "",
2477 name);
2478 /* If we are dealing with stub method types, they should have
2479 been resolved by find_method_list via
2480 value_find_oload_method_list above. */
2481 if (fns_ptr)
2482 {
2483 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2484 method_oload_champ = find_oload_champ (args, nargs, method,
2485 num_fns, fns_ptr,
2486 oload_syms, &method_badness);
2487
2488 method_match_quality =
2489 classify_oload_match (method_badness, nargs,
2490 oload_method_static (method, fns_ptr,
2491 method_oload_champ));
2492
2493 make_cleanup (xfree, method_badness);
2494 }
2495
2496 }
2497
2498 if (method == NON_METHOD || method == BOTH)
2499 {
2500 const char *qualified_name = NULL;
2501
2502 /* If the overload match is being search for both as a method
2503 and non member function, the first argument must now be
2504 dereferenced. */
2505 if (method == BOTH)
2506 args[0] = value_ind (args[0]);
2507
2508 if (fsym)
2509 {
2510 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2511
2512 /* If we have a function with a C++ name, try to extract just
2513 the function part. Do not try this for non-functions (e.g.
2514 function pointers). */
2515 if (qualified_name
2516 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2517 == TYPE_CODE_FUNC)
2518 {
2519 char *temp;
2520
2521 temp = cp_func_name (qualified_name);
2522
2523 /* If cp_func_name did not remove anything, the name of the
2524 symbol did not include scope or argument types - it was
2525 probably a C-style function. */
2526 if (temp)
2527 {
2528 make_cleanup (xfree, temp);
2529 if (strcmp (temp, qualified_name) == 0)
2530 func_name = NULL;
2531 else
2532 func_name = temp;
2533 }
2534 }
2535 }
2536 else
2537 {
2538 func_name = name;
2539 qualified_name = name;
2540 }
2541
2542 /* If there was no C++ name, this must be a C-style function or
2543 not a function at all. Just return the same symbol. Do the
2544 same if cp_func_name fails for some reason. */
2545 if (func_name == NULL)
2546 {
2547 *symp = fsym;
2548 do_cleanups (all_cleanups);
2549 return 0;
2550 }
2551
2552 func_oload_champ = find_oload_champ_namespace (args, nargs,
2553 func_name,
2554 qualified_name,
2555 &oload_syms,
2556 &func_badness,
2557 no_adl);
2558
2559 if (func_oload_champ >= 0)
2560 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2561
2562 make_cleanup (xfree, oload_syms);
2563 make_cleanup (xfree, func_badness);
2564 }
2565
2566 /* Did we find a match ? */
2567 if (method_oload_champ == -1 && func_oload_champ == -1)
2568 throw_error (NOT_FOUND_ERROR,
2569 _("No symbol \"%s\" in current context."),
2570 name);
2571
2572 /* If we have found both a method match and a function
2573 match, find out which one is better, and calculate match
2574 quality. */
2575 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2576 {
2577 switch (compare_badness (func_badness, method_badness))
2578 {
2579 case 0: /* Top two contenders are equally good. */
2580 /* FIXME: GDB does not support the general ambiguous case.
2581 All candidates should be collected and presented the
2582 user. */
2583 error (_("Ambiguous overload resolution"));
2584 break;
2585 case 1: /* Incomparable top contenders. */
2586 /* This is an error incompatible candidates
2587 should not have been proposed. */
2588 error (_("Internal error: incompatible "
2589 "overload candidates proposed"));
2590 break;
2591 case 2: /* Function champion. */
2592 method_oload_champ = -1;
2593 match_quality = func_match_quality;
2594 break;
2595 case 3: /* Method champion. */
2596 func_oload_champ = -1;
2597 match_quality = method_match_quality;
2598 break;
2599 default:
2600 error (_("Internal error: unexpected overload comparison result"));
2601 break;
2602 }
2603 }
2604 else
2605 {
2606 /* We have either a method match or a function match. */
2607 if (method_oload_champ >= 0)
2608 match_quality = method_match_quality;
2609 else
2610 match_quality = func_match_quality;
2611 }
2612
2613 if (match_quality == INCOMPATIBLE)
2614 {
2615 if (method == METHOD)
2616 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2617 obj_type_name,
2618 (obj_type_name && *obj_type_name) ? "::" : "",
2619 name);
2620 else
2621 error (_("Cannot resolve function %s to any overloaded instance"),
2622 func_name);
2623 }
2624 else if (match_quality == NON_STANDARD)
2625 {
2626 if (method == METHOD)
2627 warning (_("Using non-standard conversion to match "
2628 "method %s%s%s to supplied arguments"),
2629 obj_type_name,
2630 (obj_type_name && *obj_type_name) ? "::" : "",
2631 name);
2632 else
2633 warning (_("Using non-standard conversion to match "
2634 "function %s to supplied arguments"),
2635 func_name);
2636 }
2637
2638 if (staticp != NULL)
2639 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2640
2641 if (method_oload_champ >= 0)
2642 {
2643 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2644 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2645 basetype, boffset);
2646 else
2647 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2648 basetype, boffset);
2649 }
2650 else
2651 *symp = oload_syms[func_oload_champ];
2652
2653 if (objp)
2654 {
2655 struct type *temp_type = check_typedef (value_type (temp));
2656 struct type *objtype = check_typedef (obj_type);
2657
2658 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2659 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2660 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2661 {
2662 temp = value_addr (temp);
2663 }
2664 *objp = temp;
2665 }
2666
2667 do_cleanups (all_cleanups);
2668
2669 switch (match_quality)
2670 {
2671 case INCOMPATIBLE:
2672 return 100;
2673 case NON_STANDARD:
2674 return 10;
2675 default: /* STANDARD */
2676 return 0;
2677 }
2678 }
2679
2680 /* Find the best overload match, searching for FUNC_NAME in namespaces
2681 contained in QUALIFIED_NAME until it either finds a good match or
2682 runs out of namespaces. It stores the overloaded functions in
2683 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2684 calling function is responsible for freeing *OLOAD_SYMS and
2685 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2686 performned. */
2687
2688 static int
2689 find_oload_champ_namespace (struct value **args, int nargs,
2690 const char *func_name,
2691 const char *qualified_name,
2692 struct symbol ***oload_syms,
2693 struct badness_vector **oload_champ_bv,
2694 const int no_adl)
2695 {
2696 int oload_champ;
2697
2698 find_oload_champ_namespace_loop (args, nargs,
2699 func_name,
2700 qualified_name, 0,
2701 oload_syms, oload_champ_bv,
2702 &oload_champ,
2703 no_adl);
2704
2705 return oload_champ;
2706 }
2707
2708 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2709 how deep we've looked for namespaces, and the champ is stored in
2710 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2711 if it isn't. Other arguments are the same as in
2712 find_oload_champ_namespace
2713
2714 It is the caller's responsibility to free *OLOAD_SYMS and
2715 *OLOAD_CHAMP_BV. */
2716
2717 static int
2718 find_oload_champ_namespace_loop (struct value **args, int nargs,
2719 const char *func_name,
2720 const char *qualified_name,
2721 int namespace_len,
2722 struct symbol ***oload_syms,
2723 struct badness_vector **oload_champ_bv,
2724 int *oload_champ,
2725 const int no_adl)
2726 {
2727 int next_namespace_len = namespace_len;
2728 int searched_deeper = 0;
2729 int num_fns = 0;
2730 struct cleanup *old_cleanups;
2731 int new_oload_champ;
2732 struct symbol **new_oload_syms;
2733 struct badness_vector *new_oload_champ_bv;
2734 char *new_namespace;
2735
2736 if (next_namespace_len != 0)
2737 {
2738 gdb_assert (qualified_name[next_namespace_len] == ':');
2739 next_namespace_len += 2;
2740 }
2741 next_namespace_len +=
2742 cp_find_first_component (qualified_name + next_namespace_len);
2743
2744 /* Initialize these to values that can safely be xfree'd. */
2745 *oload_syms = NULL;
2746 *oload_champ_bv = NULL;
2747
2748 /* First, see if we have a deeper namespace we can search in.
2749 If we get a good match there, use it. */
2750
2751 if (qualified_name[next_namespace_len] == ':')
2752 {
2753 searched_deeper = 1;
2754
2755 if (find_oload_champ_namespace_loop (args, nargs,
2756 func_name, qualified_name,
2757 next_namespace_len,
2758 oload_syms, oload_champ_bv,
2759 oload_champ, no_adl))
2760 {
2761 return 1;
2762 }
2763 };
2764
2765 /* If we reach here, either we're in the deepest namespace or we
2766 didn't find a good match in a deeper namespace. But, in the
2767 latter case, we still have a bad match in a deeper namespace;
2768 note that we might not find any match at all in the current
2769 namespace. (There's always a match in the deepest namespace,
2770 because this overload mechanism only gets called if there's a
2771 function symbol to start off with.) */
2772
2773 old_cleanups = make_cleanup (xfree, *oload_syms);
2774 make_cleanup (xfree, *oload_champ_bv);
2775 new_namespace = alloca (namespace_len + 1);
2776 strncpy (new_namespace, qualified_name, namespace_len);
2777 new_namespace[namespace_len] = '\0';
2778 new_oload_syms = make_symbol_overload_list (func_name,
2779 new_namespace);
2780
2781 /* If we have reached the deepest level perform argument
2782 determined lookup. */
2783 if (!searched_deeper && !no_adl)
2784 {
2785 int ix;
2786 struct type **arg_types;
2787
2788 /* Prepare list of argument types for overload resolution. */
2789 arg_types = (struct type **)
2790 alloca (nargs * (sizeof (struct type *)));
2791 for (ix = 0; ix < nargs; ix++)
2792 arg_types[ix] = value_type (args[ix]);
2793 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2794 }
2795
2796 while (new_oload_syms[num_fns])
2797 ++num_fns;
2798
2799 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2800 NULL, new_oload_syms,
2801 &new_oload_champ_bv);
2802
2803 /* Case 1: We found a good match. Free earlier matches (if any),
2804 and return it. Case 2: We didn't find a good match, but we're
2805 not the deepest function. Then go with the bad match that the
2806 deeper function found. Case 3: We found a bad match, and we're
2807 the deepest function. Then return what we found, even though
2808 it's a bad match. */
2809
2810 if (new_oload_champ != -1
2811 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2812 {
2813 *oload_syms = new_oload_syms;
2814 *oload_champ = new_oload_champ;
2815 *oload_champ_bv = new_oload_champ_bv;
2816 do_cleanups (old_cleanups);
2817 return 1;
2818 }
2819 else if (searched_deeper)
2820 {
2821 xfree (new_oload_syms);
2822 xfree (new_oload_champ_bv);
2823 discard_cleanups (old_cleanups);
2824 return 0;
2825 }
2826 else
2827 {
2828 *oload_syms = new_oload_syms;
2829 *oload_champ = new_oload_champ;
2830 *oload_champ_bv = new_oload_champ_bv;
2831 do_cleanups (old_cleanups);
2832 return 0;
2833 }
2834 }
2835
2836 /* Look for a function to take NARGS args of ARGS. Find
2837 the best match from among the overloaded methods or functions
2838 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2839 The number of methods/functions in the list is given by NUM_FNS.
2840 Return the index of the best match; store an indication of the
2841 quality of the match in OLOAD_CHAMP_BV.
2842
2843 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2844
2845 static int
2846 find_oload_champ (struct value **args, int nargs, int method,
2847 int num_fns, struct fn_field *fns_ptr,
2848 struct symbol **oload_syms,
2849 struct badness_vector **oload_champ_bv)
2850 {
2851 int ix;
2852 /* A measure of how good an overloaded instance is. */
2853 struct badness_vector *bv;
2854 /* Index of best overloaded function. */
2855 int oload_champ = -1;
2856 /* Current ambiguity state for overload resolution. */
2857 int oload_ambiguous = 0;
2858 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2859
2860 *oload_champ_bv = NULL;
2861
2862 /* Consider each candidate in turn. */
2863 for (ix = 0; ix < num_fns; ix++)
2864 {
2865 int jj;
2866 int static_offset = oload_method_static (method, fns_ptr, ix);
2867 int nparms;
2868 struct type **parm_types;
2869
2870 if (method)
2871 {
2872 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2873 }
2874 else
2875 {
2876 /* If it's not a method, this is the proper place. */
2877 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2878 }
2879
2880 /* Prepare array of parameter types. */
2881 parm_types = (struct type **)
2882 xmalloc (nparms * (sizeof (struct type *)));
2883 for (jj = 0; jj < nparms; jj++)
2884 parm_types[jj] = (method
2885 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2886 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2887 jj));
2888
2889 /* Compare parameter types to supplied argument types. Skip
2890 THIS for static methods. */
2891 bv = rank_function (parm_types, nparms,
2892 args + static_offset,
2893 nargs - static_offset);
2894
2895 if (!*oload_champ_bv)
2896 {
2897 *oload_champ_bv = bv;
2898 oload_champ = 0;
2899 }
2900 else /* See whether current candidate is better or worse than
2901 previous best. */
2902 switch (compare_badness (bv, *oload_champ_bv))
2903 {
2904 case 0: /* Top two contenders are equally good. */
2905 oload_ambiguous = 1;
2906 break;
2907 case 1: /* Incomparable top contenders. */
2908 oload_ambiguous = 2;
2909 break;
2910 case 2: /* New champion, record details. */
2911 *oload_champ_bv = bv;
2912 oload_ambiguous = 0;
2913 oload_champ = ix;
2914 break;
2915 case 3:
2916 default:
2917 break;
2918 }
2919 xfree (parm_types);
2920 if (overload_debug)
2921 {
2922 if (method)
2923 fprintf_filtered (gdb_stderr,
2924 "Overloaded method instance %s, # of parms %d\n",
2925 fns_ptr[ix].physname, nparms);
2926 else
2927 fprintf_filtered (gdb_stderr,
2928 "Overloaded function instance "
2929 "%s # of parms %d\n",
2930 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2931 nparms);
2932 for (jj = 0; jj < nargs - static_offset; jj++)
2933 fprintf_filtered (gdb_stderr,
2934 "...Badness @ %d : %d\n",
2935 jj, bv->rank[jj].rank);
2936 fprintf_filtered (gdb_stderr, "Overload resolution "
2937 "champion is %d, ambiguous? %d\n",
2938 oload_champ, oload_ambiguous);
2939 }
2940 }
2941
2942 return oload_champ;
2943 }
2944
2945 /* Return 1 if we're looking at a static method, 0 if we're looking at
2946 a non-static method or a function that isn't a method. */
2947
2948 static int
2949 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2950 {
2951 if (method && fns_ptr && index >= 0
2952 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2953 return 1;
2954 else
2955 return 0;
2956 }
2957
2958 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2959
2960 static enum oload_classification
2961 classify_oload_match (struct badness_vector *oload_champ_bv,
2962 int nargs,
2963 int static_offset)
2964 {
2965 int ix;
2966 enum oload_classification worst = STANDARD;
2967
2968 for (ix = 1; ix <= nargs - static_offset; ix++)
2969 {
2970 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2971 or worse return INCOMPATIBLE. */
2972 if (compare_ranks (oload_champ_bv->rank[ix],
2973 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2974 return INCOMPATIBLE; /* Truly mismatched types. */
2975 /* Otherwise If this conversion is as bad as
2976 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2977 else if (compare_ranks (oload_champ_bv->rank[ix],
2978 NS_POINTER_CONVERSION_BADNESS) <= 0)
2979 worst = NON_STANDARD; /* Non-standard type conversions
2980 needed. */
2981 }
2982
2983 /* If no INCOMPATIBLE classification was found, return the worst one
2984 that was found (if any). */
2985 return worst;
2986 }
2987
2988 /* C++: return 1 is NAME is a legitimate name for the destructor of
2989 type TYPE. If TYPE does not have a destructor, or if NAME is
2990 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2991 have CHECK_TYPEDEF applied, this function will apply it itself. */
2992
2993 int
2994 destructor_name_p (const char *name, struct type *type)
2995 {
2996 if (name[0] == '~')
2997 {
2998 const char *dname = type_name_no_tag_or_error (type);
2999 const char *cp = strchr (dname, '<');
3000 unsigned int len;
3001
3002 /* Do not compare the template part for template classes. */
3003 if (cp == NULL)
3004 len = strlen (dname);
3005 else
3006 len = cp - dname;
3007 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3008 error (_("name of destructor must equal name of class"));
3009 else
3010 return 1;
3011 }
3012 return 0;
3013 }
3014
3015 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3016 return the appropriate member (or the address of the member, if
3017 WANT_ADDRESS). This function is used to resolve user expressions
3018 of the form "DOMAIN::NAME". For more details on what happens, see
3019 the comment before value_struct_elt_for_reference. */
3020
3021 struct value *
3022 value_aggregate_elt (struct type *curtype, char *name,
3023 struct type *expect_type, int want_address,
3024 enum noside noside)
3025 {
3026 switch (TYPE_CODE (curtype))
3027 {
3028 case TYPE_CODE_STRUCT:
3029 case TYPE_CODE_UNION:
3030 return value_struct_elt_for_reference (curtype, 0, curtype,
3031 name, expect_type,
3032 want_address, noside);
3033 case TYPE_CODE_NAMESPACE:
3034 return value_namespace_elt (curtype, name,
3035 want_address, noside);
3036 default:
3037 internal_error (__FILE__, __LINE__,
3038 _("non-aggregate type in value_aggregate_elt"));
3039 }
3040 }
3041
3042 /* Compares the two method/function types T1 and T2 for "equality"
3043 with respect to the methods' parameters. If the types of the
3044 two parameter lists are the same, returns 1; 0 otherwise. This
3045 comparison may ignore any artificial parameters in T1 if
3046 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3047 the first artificial parameter in T1, assumed to be a 'this' pointer.
3048
3049 The type T2 is expected to have come from make_params (in eval.c). */
3050
3051 static int
3052 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3053 {
3054 int start = 0;
3055
3056 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3057 ++start;
3058
3059 /* If skipping artificial fields, find the first real field
3060 in T1. */
3061 if (skip_artificial)
3062 {
3063 while (start < TYPE_NFIELDS (t1)
3064 && TYPE_FIELD_ARTIFICIAL (t1, start))
3065 ++start;
3066 }
3067
3068 /* Now compare parameters. */
3069
3070 /* Special case: a method taking void. T1 will contain no
3071 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3072 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3073 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3074 return 1;
3075
3076 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3077 {
3078 int i;
3079
3080 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3081 {
3082 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3083 TYPE_FIELD_TYPE (t2, i), NULL),
3084 EXACT_MATCH_BADNESS) != 0)
3085 return 0;
3086 }
3087
3088 return 1;
3089 }
3090
3091 return 0;
3092 }
3093
3094 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3095 return the address of this member as a "pointer to member" type.
3096 If INTYPE is non-null, then it will be the type of the member we
3097 are looking for. This will help us resolve "pointers to member
3098 functions". This function is used to resolve user expressions of
3099 the form "DOMAIN::NAME". */
3100
3101 static struct value *
3102 value_struct_elt_for_reference (struct type *domain, int offset,
3103 struct type *curtype, char *name,
3104 struct type *intype,
3105 int want_address,
3106 enum noside noside)
3107 {
3108 struct type *t = curtype;
3109 int i;
3110 struct value *v, *result;
3111
3112 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3113 && TYPE_CODE (t) != TYPE_CODE_UNION)
3114 error (_("Internal error: non-aggregate type "
3115 "to value_struct_elt_for_reference"));
3116
3117 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3118 {
3119 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3120
3121 if (t_field_name && strcmp (t_field_name, name) == 0)
3122 {
3123 if (field_is_static (&TYPE_FIELD (t, i)))
3124 {
3125 v = value_static_field (t, i);
3126 if (v == NULL)
3127 error (_("static field %s has been optimized out"),
3128 name);
3129 if (want_address)
3130 v = value_addr (v);
3131 return v;
3132 }
3133 if (TYPE_FIELD_PACKED (t, i))
3134 error (_("pointers to bitfield members not allowed"));
3135
3136 if (want_address)
3137 return value_from_longest
3138 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3139 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3141 return allocate_value (TYPE_FIELD_TYPE (t, i));
3142 else
3143 error (_("Cannot reference non-static field \"%s\""), name);
3144 }
3145 }
3146
3147 /* C++: If it was not found as a data field, then try to return it
3148 as a pointer to a method. */
3149
3150 /* Perform all necessary dereferencing. */
3151 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3152 intype = TYPE_TARGET_TYPE (intype);
3153
3154 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3155 {
3156 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3157 char dem_opname[64];
3158
3159 if (strncmp (t_field_name, "__", 2) == 0
3160 || strncmp (t_field_name, "op", 2) == 0
3161 || strncmp (t_field_name, "type", 4) == 0)
3162 {
3163 if (cplus_demangle_opname (t_field_name,
3164 dem_opname, DMGL_ANSI))
3165 t_field_name = dem_opname;
3166 else if (cplus_demangle_opname (t_field_name,
3167 dem_opname, 0))
3168 t_field_name = dem_opname;
3169 }
3170 if (t_field_name && strcmp (t_field_name, name) == 0)
3171 {
3172 int j;
3173 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3174 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3175
3176 check_stub_method_group (t, i);
3177
3178 if (intype)
3179 {
3180 for (j = 0; j < len; ++j)
3181 {
3182 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3183 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3184 intype, 1))
3185 break;
3186 }
3187
3188 if (j == len)
3189 error (_("no member function matches "
3190 "that type instantiation"));
3191 }
3192 else
3193 {
3194 int ii;
3195
3196 j = -1;
3197 for (ii = 0; ii < len; ++ii)
3198 {
3199 /* Skip artificial methods. This is necessary if,
3200 for example, the user wants to "print
3201 subclass::subclass" with only one user-defined
3202 constructor. There is no ambiguity in this case.
3203 We are careful here to allow artificial methods
3204 if they are the unique result. */
3205 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3206 {
3207 if (j == -1)
3208 j = ii;
3209 continue;
3210 }
3211
3212 /* Desired method is ambiguous if more than one
3213 method is defined. */
3214 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3215 error (_("non-unique member `%s' requires "
3216 "type instantiation"), name);
3217
3218 j = ii;
3219 }
3220
3221 if (j == -1)
3222 error (_("no matching member function"));
3223 }
3224
3225 if (TYPE_FN_FIELD_STATIC_P (f, j))
3226 {
3227 struct symbol *s =
3228 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3229 0, VAR_DOMAIN, 0);
3230
3231 if (s == NULL)
3232 return NULL;
3233
3234 if (want_address)
3235 return value_addr (read_var_value (s, 0));
3236 else
3237 return read_var_value (s, 0);
3238 }
3239
3240 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3241 {
3242 if (want_address)
3243 {
3244 result = allocate_value
3245 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3246 cplus_make_method_ptr (value_type (result),
3247 value_contents_writeable (result),
3248 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3249 }
3250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3251 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3252 else
3253 error (_("Cannot reference virtual member function \"%s\""),
3254 name);
3255 }
3256 else
3257 {
3258 struct symbol *s =
3259 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3260 0, VAR_DOMAIN, 0);
3261
3262 if (s == NULL)
3263 return NULL;
3264
3265 v = read_var_value (s, 0);
3266 if (!want_address)
3267 result = v;
3268 else
3269 {
3270 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3271 cplus_make_method_ptr (value_type (result),
3272 value_contents_writeable (result),
3273 value_address (v), 0);
3274 }
3275 }
3276 return result;
3277 }
3278 }
3279 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3280 {
3281 struct value *v;
3282 int base_offset;
3283
3284 if (BASETYPE_VIA_VIRTUAL (t, i))
3285 base_offset = 0;
3286 else
3287 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3288 v = value_struct_elt_for_reference (domain,
3289 offset + base_offset,
3290 TYPE_BASECLASS (t, i),
3291 name, intype,
3292 want_address, noside);
3293 if (v)
3294 return v;
3295 }
3296
3297 /* As a last chance, pretend that CURTYPE is a namespace, and look
3298 it up that way; this (frequently) works for types nested inside
3299 classes. */
3300
3301 return value_maybe_namespace_elt (curtype, name,
3302 want_address, noside);
3303 }
3304
3305 /* C++: Return the member NAME of the namespace given by the type
3306 CURTYPE. */
3307
3308 static struct value *
3309 value_namespace_elt (const struct type *curtype,
3310 char *name, int want_address,
3311 enum noside noside)
3312 {
3313 struct value *retval = value_maybe_namespace_elt (curtype, name,
3314 want_address,
3315 noside);
3316
3317 if (retval == NULL)
3318 error (_("No symbol \"%s\" in namespace \"%s\"."),
3319 name, TYPE_TAG_NAME (curtype));
3320
3321 return retval;
3322 }
3323
3324 /* A helper function used by value_namespace_elt and
3325 value_struct_elt_for_reference. It looks up NAME inside the
3326 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3327 is a class and NAME refers to a type in CURTYPE itself (as opposed
3328 to, say, some base class of CURTYPE). */
3329
3330 static struct value *
3331 value_maybe_namespace_elt (const struct type *curtype,
3332 char *name, int want_address,
3333 enum noside noside)
3334 {
3335 const char *namespace_name = TYPE_TAG_NAME (curtype);
3336 struct symbol *sym;
3337 struct value *result;
3338
3339 sym = cp_lookup_symbol_namespace (namespace_name, name,
3340 get_selected_block (0), VAR_DOMAIN);
3341
3342 if (sym == NULL)
3343 {
3344 char *concatenated_name = alloca (strlen (namespace_name) + 2
3345 + strlen (name) + 1);
3346
3347 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3348 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3349 }
3350
3351 if (sym == NULL)
3352 return NULL;
3353 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3354 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3355 result = allocate_value (SYMBOL_TYPE (sym));
3356 else
3357 result = value_of_variable (sym, get_selected_block (0));
3358
3359 if (result && want_address)
3360 result = value_addr (result);
3361
3362 return result;
3363 }
3364
3365 /* Given a pointer or a reference value V, find its real (RTTI) type.
3366
3367 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3368 and refer to the values computed for the object pointed to. */
3369
3370 struct type *
3371 value_rtti_indirect_type (struct value *v, int *full,
3372 int *top, int *using_enc)
3373 {
3374 struct value *target;
3375 struct type *type, *real_type, *target_type;
3376
3377 type = value_type (v);
3378 type = check_typedef (type);
3379 if (TYPE_CODE (type) == TYPE_CODE_REF)
3380 target = coerce_ref (v);
3381 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3382 target = value_ind (v);
3383 else
3384 return NULL;
3385
3386 real_type = value_rtti_type (target, full, top, using_enc);
3387
3388 if (real_type)
3389 {
3390 /* Copy qualifiers to the referenced object. */
3391 target_type = value_type (target);
3392 real_type = make_cv_type (TYPE_CONST (target_type),
3393 TYPE_VOLATILE (target_type), real_type, NULL);
3394 if (TYPE_CODE (type) == TYPE_CODE_REF)
3395 real_type = lookup_reference_type (real_type);
3396 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3397 real_type = lookup_pointer_type (real_type);
3398 else
3399 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3400
3401 /* Copy qualifiers to the pointer/reference. */
3402 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3403 real_type, NULL);
3404 }
3405
3406 return real_type;
3407 }
3408
3409 /* Given a value pointed to by ARGP, check its real run-time type, and
3410 if that is different from the enclosing type, create a new value
3411 using the real run-time type as the enclosing type (and of the same
3412 type as ARGP) and return it, with the embedded offset adjusted to
3413 be the correct offset to the enclosed object. RTYPE is the type,
3414 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3415 by value_rtti_type(). If these are available, they can be supplied
3416 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3417 NULL if they're not available. */
3418
3419 struct value *
3420 value_full_object (struct value *argp,
3421 struct type *rtype,
3422 int xfull, int xtop,
3423 int xusing_enc)
3424 {
3425 struct type *real_type;
3426 int full = 0;
3427 int top = -1;
3428 int using_enc = 0;
3429 struct value *new_val;
3430
3431 if (rtype)
3432 {
3433 real_type = rtype;
3434 full = xfull;
3435 top = xtop;
3436 using_enc = xusing_enc;
3437 }
3438 else
3439 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3440
3441 /* If no RTTI data, or if object is already complete, do nothing. */
3442 if (!real_type || real_type == value_enclosing_type (argp))
3443 return argp;
3444
3445 /* In a destructor we might see a real type that is a superclass of
3446 the object's type. In this case it is better to leave the object
3447 as-is. */
3448 if (full
3449 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3450 return argp;
3451
3452 /* If we have the full object, but for some reason the enclosing
3453 type is wrong, set it. */
3454 /* pai: FIXME -- sounds iffy */
3455 if (full)
3456 {
3457 argp = value_copy (argp);
3458 set_value_enclosing_type (argp, real_type);
3459 return argp;
3460 }
3461
3462 /* Check if object is in memory. */
3463 if (VALUE_LVAL (argp) != lval_memory)
3464 {
3465 warning (_("Couldn't retrieve complete object of RTTI "
3466 "type %s; object may be in register(s)."),
3467 TYPE_NAME (real_type));
3468
3469 return argp;
3470 }
3471
3472 /* All other cases -- retrieve the complete object. */
3473 /* Go back by the computed top_offset from the beginning of the
3474 object, adjusting for the embedded offset of argp if that's what
3475 value_rtti_type used for its computation. */
3476 new_val = value_at_lazy (real_type, value_address (argp) - top +
3477 (using_enc ? 0 : value_embedded_offset (argp)));
3478 deprecated_set_value_type (new_val, value_type (argp));
3479 set_value_embedded_offset (new_val, (using_enc
3480 ? top + value_embedded_offset (argp)
3481 : top));
3482 return new_val;
3483 }
3484
3485
3486 /* Return the value of the local variable, if one exists. Throw error
3487 otherwise, such as if the request is made in an inappropriate context. */
3488
3489 struct value *
3490 value_of_this (const struct language_defn *lang)
3491 {
3492 struct symbol *sym;
3493 struct block *b;
3494 struct frame_info *frame;
3495
3496 if (!lang->la_name_of_this)
3497 error (_("no `this' in current language"));
3498
3499 frame = get_selected_frame (_("no frame selected"));
3500
3501 b = get_frame_block (frame, NULL);
3502
3503 sym = lookup_language_this (lang, b);
3504 if (sym == NULL)
3505 error (_("current stack frame does not contain a variable named `%s'"),
3506 lang->la_name_of_this);
3507
3508 return read_var_value (sym, frame);
3509 }
3510
3511 /* Return the value of the local variable, if one exists. Return NULL
3512 otherwise. Never throw error. */
3513
3514 struct value *
3515 value_of_this_silent (const struct language_defn *lang)
3516 {
3517 struct value *ret = NULL;
3518 volatile struct gdb_exception except;
3519
3520 TRY_CATCH (except, RETURN_MASK_ERROR)
3521 {
3522 ret = value_of_this (lang);
3523 }
3524
3525 return ret;
3526 }
3527
3528 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3529 elements long, starting at LOWBOUND. The result has the same lower
3530 bound as the original ARRAY. */
3531
3532 struct value *
3533 value_slice (struct value *array, int lowbound, int length)
3534 {
3535 struct type *slice_range_type, *slice_type, *range_type;
3536 LONGEST lowerbound, upperbound;
3537 struct value *slice;
3538 struct type *array_type;
3539
3540 array_type = check_typedef (value_type (array));
3541 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3542 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3543 error (_("cannot take slice of non-array"));
3544
3545 range_type = TYPE_INDEX_TYPE (array_type);
3546 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3547 error (_("slice from bad array or bitstring"));
3548
3549 if (lowbound < lowerbound || length < 0
3550 || lowbound + length - 1 > upperbound)
3551 error (_("slice out of range"));
3552
3553 /* FIXME-type-allocation: need a way to free this type when we are
3554 done with it. */
3555 slice_range_type = create_range_type ((struct type *) NULL,
3556 TYPE_TARGET_TYPE (range_type),
3557 lowbound,
3558 lowbound + length - 1);
3559
3560 {
3561 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3562 LONGEST offset =
3563 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3564
3565 slice_type = create_array_type ((struct type *) NULL,
3566 element_type,
3567 slice_range_type);
3568 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3569
3570 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3571 slice = allocate_value_lazy (slice_type);
3572 else
3573 {
3574 slice = allocate_value (slice_type);
3575 value_contents_copy (slice, 0, array, offset,
3576 TYPE_LENGTH (slice_type));
3577 }
3578
3579 set_value_component_location (slice, array);
3580 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3581 set_value_offset (slice, value_offset (array) + offset);
3582 }
3583 return slice;
3584 }
3585
3586 /* Create a value for a FORTRAN complex number. Currently most of the
3587 time values are coerced to COMPLEX*16 (i.e. a complex number
3588 composed of 2 doubles. This really should be a smarter routine
3589 that figures out precision inteligently as opposed to assuming
3590 doubles. FIXME: fmb */
3591
3592 struct value *
3593 value_literal_complex (struct value *arg1,
3594 struct value *arg2,
3595 struct type *type)
3596 {
3597 struct value *val;
3598 struct type *real_type = TYPE_TARGET_TYPE (type);
3599
3600 val = allocate_value (type);
3601 arg1 = value_cast (real_type, arg1);
3602 arg2 = value_cast (real_type, arg2);
3603
3604 memcpy (value_contents_raw (val),
3605 value_contents (arg1), TYPE_LENGTH (real_type));
3606 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3607 value_contents (arg2), TYPE_LENGTH (real_type));
3608 return val;
3609 }
3610
3611 /* Cast a value into the appropriate complex data type. */
3612
3613 static struct value *
3614 cast_into_complex (struct type *type, struct value *val)
3615 {
3616 struct type *real_type = TYPE_TARGET_TYPE (type);
3617
3618 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3619 {
3620 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3621 struct value *re_val = allocate_value (val_real_type);
3622 struct value *im_val = allocate_value (val_real_type);
3623
3624 memcpy (value_contents_raw (re_val),
3625 value_contents (val), TYPE_LENGTH (val_real_type));
3626 memcpy (value_contents_raw (im_val),
3627 value_contents (val) + TYPE_LENGTH (val_real_type),
3628 TYPE_LENGTH (val_real_type));
3629
3630 return value_literal_complex (re_val, im_val, type);
3631 }
3632 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3633 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3634 return value_literal_complex (val,
3635 value_zero (real_type, not_lval),
3636 type);
3637 else
3638 error (_("cannot cast non-number to complex"));
3639 }
3640
3641 void
3642 _initialize_valops (void)
3643 {
3644 add_setshow_boolean_cmd ("overload-resolution", class_support,
3645 &overload_resolution, _("\
3646 Set overload resolution in evaluating C++ functions."), _("\
3647 Show overload resolution in evaluating C++ functions."),
3648 NULL, NULL,
3649 show_overload_resolution,
3650 &setlist, &showlist);
3651 overload_resolution = 1;
3652 }