]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
Remove old lint code
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "byte-vector.h"
43
44 extern unsigned int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (struct value **, int,
58 const char *, const char *,
59 struct symbol ***,
60 struct badness_vector **,
61 const int no_adl);
62
63 static
64 int find_oload_champ_namespace_loop (struct value **, int,
65 const char *, const char *,
66 int, struct symbol ***,
67 struct badness_vector **, int *,
68 const int no_adl);
69
70 static int find_oload_champ (struct value **, int, int,
71 struct fn_field *,
72 const std::vector<xmethod_worker_up> *,
73 struct symbol **, struct badness_vector **);
74
75 static int oload_method_static_p (struct fn_field *, int);
76
77 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
78
79 static enum
80 oload_classification classify_oload_match (struct badness_vector *,
81 int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 static void find_method_list (struct value **, const char *,
101 LONGEST, struct type *, struct fn_field **, int *,
102 std::vector<xmethod_worker_up> *,
103 struct type **, LONGEST *);
104
105 #if 0
106 /* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109 static int auto_abandon = 0;
110 #endif
111
112 int overload_resolution = 0;
113 static void
114 show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121 }
122
123 /* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127 struct value *
128 find_function_in_inferior (const char *name, struct objfile **objf_p)
129 {
130 struct block_symbol sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym.symbol != NULL)
134 {
135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym.symbol);
143
144 return value_of_variable (sym.symbol, sym.block);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179 }
180
181 /* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185 struct value *
186 value_allocate_space_in_inferior (int len)
187 {
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, NULL, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204 }
205
206 static CORE_ADDR
207 allocate_space_in_inferior (int len)
208 {
209 return value_as_long (value_allocate_space_in_inferior (len));
210 }
211
212 /* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217 static struct value *
218 value_cast_structs (struct type *type, struct value *v2)
219 {
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (TYPE_NAME (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, using_enc;
260 LONGEST top;
261 struct type *real_type;
262
263 real_type = value_rtti_type (v2, &full, &top, &using_enc);
264 if (real_type)
265 {
266 v = value_full_object (v2, real_type, full, top, using_enc);
267 v = value_at_lazy (real_type, value_address (v));
268 real_type = value_type (v);
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (TYPE_NAME (t2), v, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (TYPE_NAME (t2),
285 value_zero (t1, not_lval), t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_IS_REFERENCE (type2))
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 /* Check if we are casting struct reference to struct reference. */
365 if (TYPE_IS_REFERENCE (check_typedef (type)))
366 {
367 /* We dereference type; then we recurse and finally
368 we generate value of the given reference. Nothing wrong with
369 that. */
370 struct type *t1 = check_typedef (type);
371 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
372 struct value *val = value_cast (dereftype, arg2);
373
374 return value_ref (val, TYPE_CODE (t1));
375 }
376
377 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
378 /* We deref the value and then do the cast. */
379 return value_cast (type, coerce_ref (arg2));
380
381 /* Strip typedefs / resolve stubs in order to get at the type's
382 code/length, but remember the original type, to use as the
383 resulting type of the cast, in case it was a typedef. */
384 struct type *to_type = type;
385
386 type = check_typedef (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (!TYPE_IS_REFERENCE (type));
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_static_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (to_type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (to_type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (is_floating_type (type) && scalar)
467 {
468 if (is_floating_value (arg2))
469 {
470 struct value *v = allocate_value (to_type);
471 target_float_convert (value_contents (arg2), type2,
472 value_contents_raw (v), type);
473 return v;
474 }
475
476 /* The only option left is an integral type. */
477 if (TYPE_UNSIGNED (type2))
478 return value_from_ulongest (to_type, value_as_long (arg2));
479 else
480 return value_from_longest (to_type, value_as_long (arg2));
481 }
482 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
483 || code1 == TYPE_CODE_RANGE)
484 && (scalar || code2 == TYPE_CODE_PTR
485 || code2 == TYPE_CODE_MEMBERPTR))
486 {
487 LONGEST longest;
488
489 /* When we cast pointers to integers, we mustn't use
490 gdbarch_pointer_to_address to find the address the pointer
491 represents, as value_as_long would. GDB should evaluate
492 expressions just as the compiler would --- and the compiler
493 sees a cast as a simple reinterpretation of the pointer's
494 bits. */
495 if (code2 == TYPE_CODE_PTR)
496 longest = extract_unsigned_integer
497 (value_contents (arg2), TYPE_LENGTH (type2),
498 gdbarch_byte_order (get_type_arch (type2)));
499 else
500 longest = value_as_long (arg2);
501 return value_from_longest (to_type, convert_to_boolean ?
502 (LONGEST) (longest ? 1 : 0) : longest);
503 }
504 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
505 || code2 == TYPE_CODE_ENUM
506 || code2 == TYPE_CODE_RANGE))
507 {
508 /* TYPE_LENGTH (type) is the length of a pointer, but we really
509 want the length of an address! -- we are really dealing with
510 addresses (i.e., gdb representations) not pointers (i.e.,
511 target representations) here.
512
513 This allows things like "print *(int *)0x01000234" to work
514 without printing a misleading message -- which would
515 otherwise occur when dealing with a target having two byte
516 pointers and four byte addresses. */
517
518 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
519 LONGEST longest = value_as_long (arg2);
520
521 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
522 {
523 if (longest >= ((LONGEST) 1 << addr_bit)
524 || longest <= -((LONGEST) 1 << addr_bit))
525 warning (_("value truncated"));
526 }
527 return value_from_longest (to_type, longest);
528 }
529 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
530 && value_as_long (arg2) == 0)
531 {
532 struct value *result = allocate_value (to_type);
533
534 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
535 return result;
536 }
537 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
538 && value_as_long (arg2) == 0)
539 {
540 /* The Itanium C++ ABI represents NULL pointers to members as
541 minus one, instead of biasing the normal case. */
542 return value_from_longest (to_type, -1);
543 }
544 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
545 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
546 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
547 error (_("Cannot convert between vector values of different sizes"));
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
549 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
550 error (_("can only cast scalar to vector of same size"));
551 else if (code1 == TYPE_CODE_VOID)
552 {
553 return value_zero (to_type, not_lval);
554 }
555 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
556 {
557 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
558 return value_cast_pointers (to_type, arg2, 0);
559
560 arg2 = value_copy (arg2);
561 deprecated_set_value_type (arg2, to_type);
562 set_value_enclosing_type (arg2, to_type);
563 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
564 return arg2;
565 }
566 else if (VALUE_LVAL (arg2) == lval_memory)
567 return value_at_lazy (to_type, value_address (arg2));
568 else
569 {
570 error (_("Invalid cast."));
571 return 0;
572 }
573 }
574
575 /* The C++ reinterpret_cast operator. */
576
577 struct value *
578 value_reinterpret_cast (struct type *type, struct value *arg)
579 {
580 struct value *result;
581 struct type *real_type = check_typedef (type);
582 struct type *arg_type, *dest_type;
583 int is_ref = 0;
584 enum type_code dest_code, arg_code;
585
586 /* Do reference, function, and array conversion. */
587 arg = coerce_array (arg);
588
589 /* Attempt to preserve the type the user asked for. */
590 dest_type = type;
591
592 /* If we are casting to a reference type, transform
593 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
594 if (TYPE_IS_REFERENCE (real_type))
595 {
596 is_ref = 1;
597 arg = value_addr (arg);
598 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
599 real_type = lookup_pointer_type (real_type);
600 }
601
602 arg_type = value_type (arg);
603
604 dest_code = TYPE_CODE (real_type);
605 arg_code = TYPE_CODE (arg_type);
606
607 /* We can convert pointer types, or any pointer type to int, or int
608 type to pointer. */
609 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
610 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
611 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
613 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
615 || (dest_code == arg_code
616 && (dest_code == TYPE_CODE_PTR
617 || dest_code == TYPE_CODE_METHODPTR
618 || dest_code == TYPE_CODE_MEMBERPTR)))
619 result = value_cast (dest_type, arg);
620 else
621 error (_("Invalid reinterpret_cast"));
622
623 if (is_ref)
624 result = value_cast (type, value_ref (value_ind (result),
625 TYPE_CODE (type)));
626
627 return result;
628 }
629
630 /* A helper for value_dynamic_cast. This implements the first of two
631 runtime checks: we iterate over all the base classes of the value's
632 class which are equal to the desired class; if only one of these
633 holds the value, then it is the answer. */
634
635 static int
636 dynamic_cast_check_1 (struct type *desired_type,
637 const gdb_byte *valaddr,
638 LONGEST embedded_offset,
639 CORE_ADDR address,
640 struct value *val,
641 struct type *search_type,
642 CORE_ADDR arg_addr,
643 struct type *arg_type,
644 struct value **result)
645 {
646 int i, result_count = 0;
647
648 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
649 {
650 LONGEST offset = baseclass_offset (search_type, i, valaddr,
651 embedded_offset,
652 address, val);
653
654 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
655 {
656 if (address + embedded_offset + offset >= arg_addr
657 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
658 {
659 ++result_count;
660 if (!*result)
661 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
662 address + embedded_offset + offset);
663 }
664 }
665 else
666 result_count += dynamic_cast_check_1 (desired_type,
667 valaddr,
668 embedded_offset + offset,
669 address, val,
670 TYPE_BASECLASS (search_type, i),
671 arg_addr,
672 arg_type,
673 result);
674 }
675
676 return result_count;
677 }
678
679 /* A helper for value_dynamic_cast. This implements the second of two
680 runtime checks: we look for a unique public sibling class of the
681 argument's declared class. */
682
683 static int
684 dynamic_cast_check_2 (struct type *desired_type,
685 const gdb_byte *valaddr,
686 LONGEST embedded_offset,
687 CORE_ADDR address,
688 struct value *val,
689 struct type *search_type,
690 struct value **result)
691 {
692 int i, result_count = 0;
693
694 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
695 {
696 LONGEST offset;
697
698 if (! BASETYPE_VIA_PUBLIC (search_type, i))
699 continue;
700
701 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
702 address, val);
703 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
704 {
705 ++result_count;
706 if (*result == NULL)
707 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
708 address + embedded_offset + offset);
709 }
710 else
711 result_count += dynamic_cast_check_2 (desired_type,
712 valaddr,
713 embedded_offset + offset,
714 address, val,
715 TYPE_BASECLASS (search_type, i),
716 result);
717 }
718
719 return result_count;
720 }
721
722 /* The C++ dynamic_cast operator. */
723
724 struct value *
725 value_dynamic_cast (struct type *type, struct value *arg)
726 {
727 int full, using_enc;
728 LONGEST top;
729 struct type *resolved_type = check_typedef (type);
730 struct type *arg_type = check_typedef (value_type (arg));
731 struct type *class_type, *rtti_type;
732 struct value *result, *tem, *original_arg = arg;
733 CORE_ADDR addr;
734 int is_ref = TYPE_IS_REFERENCE (resolved_type);
735
736 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
737 && !TYPE_IS_REFERENCE (resolved_type))
738 error (_("Argument to dynamic_cast must be a pointer or reference type"));
739 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
740 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
741 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
742
743 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
744 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
745 {
746 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
747 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
748 && value_as_long (arg) == 0))
749 error (_("Argument to dynamic_cast does not have pointer type"));
750 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
751 {
752 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
753 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
754 error (_("Argument to dynamic_cast does "
755 "not have pointer to class type"));
756 }
757
758 /* Handle NULL pointers. */
759 if (value_as_long (arg) == 0)
760 return value_zero (type, not_lval);
761
762 arg = value_ind (arg);
763 }
764 else
765 {
766 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
767 error (_("Argument to dynamic_cast does not have class type"));
768 }
769
770 /* If the classes are the same, just return the argument. */
771 if (class_types_same_p (class_type, arg_type))
772 return value_cast (type, arg);
773
774 /* If the target type is a unique base class of the argument's
775 declared type, just cast it. */
776 if (is_ancestor (class_type, arg_type))
777 {
778 if (is_unique_ancestor (class_type, arg))
779 return value_cast (type, original_arg);
780 error (_("Ambiguous dynamic_cast"));
781 }
782
783 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
784 if (! rtti_type)
785 error (_("Couldn't determine value's most derived type for dynamic_cast"));
786
787 /* Compute the most derived object's address. */
788 addr = value_address (arg);
789 if (full)
790 {
791 /* Done. */
792 }
793 else if (using_enc)
794 addr += top;
795 else
796 addr += top + value_embedded_offset (arg);
797
798 /* dynamic_cast<void *> means to return a pointer to the
799 most-derived object. */
800 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
801 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
802 return value_at_lazy (type, addr);
803
804 tem = value_at (type, addr);
805 type = value_type (tem);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref
822 ? value_ref (result, TYPE_CODE (resolved_type))
823 : value_addr (result));
824 }
825
826 /* The second dynamic check specified in 5.2.7. */
827 result = NULL;
828 if (is_public_ancestor (arg_type, rtti_type)
829 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
830 value_contents_for_printing (tem),
831 value_embedded_offset (tem),
832 value_address (tem), tem,
833 rtti_type, &result) == 1)
834 return value_cast (type,
835 is_ref
836 ? value_ref (result, TYPE_CODE (resolved_type))
837 : value_addr (result));
838
839 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
840 return value_zero (type, not_lval);
841
842 error (_("dynamic_cast failed"));
843 }
844
845 /* Create a value of type TYPE that is zero, and return it. */
846
847 struct value *
848 value_zero (struct type *type, enum lval_type lv)
849 {
850 struct value *val = allocate_value (type);
851
852 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
853 return val;
854 }
855
856 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
857
858 struct value *
859 value_one (struct type *type)
860 {
861 struct type *type1 = check_typedef (type);
862 struct value *val;
863
864 if (is_integral_type (type1) || is_floating_type (type1))
865 {
866 val = value_from_longest (type, (LONGEST) 1);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
869 {
870 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
871 int i;
872 LONGEST low_bound, high_bound;
873 struct value *tmp;
874
875 if (!get_array_bounds (type1, &low_bound, &high_bound))
876 error (_("Could not determine the vector bounds"));
877
878 val = allocate_value (type);
879 for (i = 0; i < high_bound - low_bound + 1; i++)
880 {
881 tmp = value_one (eltype);
882 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
883 value_contents_all (tmp), TYPE_LENGTH (eltype));
884 }
885 }
886 else
887 {
888 error (_("Not a numeric type."));
889 }
890
891 /* value_one result is never used for assignments to. */
892 gdb_assert (VALUE_LVAL (val) == not_lval);
893
894 return val;
895 }
896
897 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
898 The type of the created value may differ from the passed type TYPE.
899 Make sure to retrieve the returned values's new type after this call
900 e.g. in case the type is a variable length array. */
901
902 static struct value *
903 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
904 {
905 struct value *val;
906
907 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
908 error (_("Attempt to dereference a generic pointer."));
909
910 val = value_from_contents_and_address (type, NULL, addr);
911
912 if (!lazy)
913 value_fetch_lazy (val);
914
915 return val;
916 }
917
918 /* Return a value with type TYPE located at ADDR.
919
920 Call value_at only if the data needs to be fetched immediately;
921 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
922 value_at_lazy instead. value_at_lazy simply records the address of
923 the data and sets the lazy-evaluation-required flag. The lazy flag
924 is tested in the value_contents macro, which is used if and when
925 the contents are actually required. The type of the created value
926 may differ from the passed type TYPE. Make sure to retrieve the
927 returned values's new type after this call e.g. in case the type
928 is a variable length array.
929
930 Note: value_at does *NOT* handle embedded offsets; perform such
931 adjustments before or after calling it. */
932
933 struct value *
934 value_at (struct type *type, CORE_ADDR addr)
935 {
936 return get_value_at (type, addr, 0);
937 }
938
939 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
940 The type of the created value may differ from the passed type TYPE.
941 Make sure to retrieve the returned values's new type after this call
942 e.g. in case the type is a variable length array. */
943
944 struct value *
945 value_at_lazy (struct type *type, CORE_ADDR addr)
946 {
947 return get_value_at (type, addr, 1);
948 }
949
950 void
951 read_value_memory (struct value *val, LONGEST bit_offset,
952 int stack, CORE_ADDR memaddr,
953 gdb_byte *buffer, size_t length)
954 {
955 ULONGEST xfered_total = 0;
956 struct gdbarch *arch = get_value_arch (val);
957 int unit_size = gdbarch_addressable_memory_unit_size (arch);
958 enum target_object object;
959
960 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
961
962 while (xfered_total < length)
963 {
964 enum target_xfer_status status;
965 ULONGEST xfered_partial;
966
967 status = target_xfer_partial (current_top_target (),
968 object, NULL,
969 buffer + xfered_total * unit_size, NULL,
970 memaddr + xfered_total,
971 length - xfered_total,
972 &xfered_partial);
973
974 if (status == TARGET_XFER_OK)
975 /* nothing */;
976 else if (status == TARGET_XFER_UNAVAILABLE)
977 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
978 + bit_offset),
979 xfered_partial * HOST_CHAR_BIT);
980 else if (status == TARGET_XFER_EOF)
981 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
982 else
983 memory_error (status, memaddr + xfered_total);
984
985 xfered_total += xfered_partial;
986 QUIT;
987 }
988 }
989
990 /* Store the contents of FROMVAL into the location of TOVAL.
991 Return a new value with the location of TOVAL and contents of FROMVAL. */
992
993 struct value *
994 value_assign (struct value *toval, struct value *fromval)
995 {
996 struct type *type;
997 struct value *val;
998 struct frame_id old_frame;
999
1000 if (!deprecated_value_modifiable (toval))
1001 error (_("Left operand of assignment is not a modifiable lvalue."));
1002
1003 toval = coerce_ref (toval);
1004
1005 type = value_type (toval);
1006 if (VALUE_LVAL (toval) != lval_internalvar)
1007 fromval = value_cast (type, fromval);
1008 else
1009 {
1010 /* Coerce arrays and functions to pointers, except for arrays
1011 which only live in GDB's storage. */
1012 if (!value_must_coerce_to_target (fromval))
1013 fromval = coerce_array (fromval);
1014 }
1015
1016 type = check_typedef (type);
1017
1018 /* Since modifying a register can trash the frame chain, and
1019 modifying memory can trash the frame cache, we save the old frame
1020 and then restore the new frame afterwards. */
1021 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1022
1023 switch (VALUE_LVAL (toval))
1024 {
1025 case lval_internalvar:
1026 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1027 return value_of_internalvar (get_type_arch (type),
1028 VALUE_INTERNALVAR (toval));
1029
1030 case lval_internalvar_component:
1031 {
1032 LONGEST offset = value_offset (toval);
1033
1034 /* Are we dealing with a bitfield?
1035
1036 It is important to mention that `value_parent (toval)' is
1037 non-NULL iff `value_bitsize (toval)' is non-zero. */
1038 if (value_bitsize (toval))
1039 {
1040 /* VALUE_INTERNALVAR below refers to the parent value, while
1041 the offset is relative to this parent value. */
1042 gdb_assert (value_parent (value_parent (toval)) == NULL);
1043 offset += value_offset (value_parent (toval));
1044 }
1045
1046 set_internalvar_component (VALUE_INTERNALVAR (toval),
1047 offset,
1048 value_bitpos (toval),
1049 value_bitsize (toval),
1050 fromval);
1051 }
1052 break;
1053
1054 case lval_memory:
1055 {
1056 const gdb_byte *dest_buffer;
1057 CORE_ADDR changed_addr;
1058 int changed_len;
1059 gdb_byte buffer[sizeof (LONGEST)];
1060
1061 if (value_bitsize (toval))
1062 {
1063 struct value *parent = value_parent (toval);
1064
1065 changed_addr = value_address (parent) + value_offset (toval);
1066 changed_len = (value_bitpos (toval)
1067 + value_bitsize (toval)
1068 + HOST_CHAR_BIT - 1)
1069 / HOST_CHAR_BIT;
1070
1071 /* If we can read-modify-write exactly the size of the
1072 containing type (e.g. short or int) then do so. This
1073 is safer for volatile bitfields mapped to hardware
1074 registers. */
1075 if (changed_len < TYPE_LENGTH (type)
1076 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1077 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1078 changed_len = TYPE_LENGTH (type);
1079
1080 if (changed_len > (int) sizeof (LONGEST))
1081 error (_("Can't handle bitfields which "
1082 "don't fit in a %d bit word."),
1083 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1084
1085 read_memory (changed_addr, buffer, changed_len);
1086 modify_field (type, buffer, value_as_long (fromval),
1087 value_bitpos (toval), value_bitsize (toval));
1088 dest_buffer = buffer;
1089 }
1090 else
1091 {
1092 changed_addr = value_address (toval);
1093 changed_len = type_length_units (type);
1094 dest_buffer = value_contents (fromval);
1095 }
1096
1097 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1098 }
1099 break;
1100
1101 case lval_register:
1102 {
1103 struct frame_info *frame;
1104 struct gdbarch *gdbarch;
1105 int value_reg;
1106
1107 /* Figure out which frame this is in currently.
1108
1109 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1110 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1111 put_frame_register_bytes() below. That function will (eventually)
1112 perform the necessary unwind operation by first obtaining the next
1113 frame. */
1114 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1115
1116 value_reg = VALUE_REGNUM (toval);
1117
1118 if (!frame)
1119 error (_("Value being assigned to is no longer active."));
1120
1121 gdbarch = get_frame_arch (frame);
1122
1123 if (value_bitsize (toval))
1124 {
1125 struct value *parent = value_parent (toval);
1126 LONGEST offset = value_offset (parent) + value_offset (toval);
1127 int changed_len;
1128 gdb_byte buffer[sizeof (LONGEST)];
1129 int optim, unavail;
1130
1131 changed_len = (value_bitpos (toval)
1132 + value_bitsize (toval)
1133 + HOST_CHAR_BIT - 1)
1134 / HOST_CHAR_BIT;
1135
1136 if (changed_len > (int) sizeof (LONGEST))
1137 error (_("Can't handle bitfields which "
1138 "don't fit in a %d bit word."),
1139 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1140
1141 if (!get_frame_register_bytes (frame, value_reg, offset,
1142 changed_len, buffer,
1143 &optim, &unavail))
1144 {
1145 if (optim)
1146 throw_error (OPTIMIZED_OUT_ERROR,
1147 _("value has been optimized out"));
1148 if (unavail)
1149 throw_error (NOT_AVAILABLE_ERROR,
1150 _("value is not available"));
1151 }
1152
1153 modify_field (type, buffer, value_as_long (fromval),
1154 value_bitpos (toval), value_bitsize (toval));
1155
1156 put_frame_register_bytes (frame, value_reg, offset,
1157 changed_len, buffer);
1158 }
1159 else
1160 {
1161 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1162 type))
1163 {
1164 /* If TOVAL is a special machine register requiring
1165 conversion of program values to a special raw
1166 format. */
1167 gdbarch_value_to_register (gdbarch, frame,
1168 VALUE_REGNUM (toval), type,
1169 value_contents (fromval));
1170 }
1171 else
1172 {
1173 put_frame_register_bytes (frame, value_reg,
1174 value_offset (toval),
1175 TYPE_LENGTH (type),
1176 value_contents (fromval));
1177 }
1178 }
1179
1180 gdb::observers::register_changed.notify (frame, value_reg);
1181 break;
1182 }
1183
1184 case lval_computed:
1185 {
1186 const struct lval_funcs *funcs = value_computed_funcs (toval);
1187
1188 if (funcs->write != NULL)
1189 {
1190 funcs->write (toval, fromval);
1191 break;
1192 }
1193 }
1194 /* Fall through. */
1195
1196 default:
1197 error (_("Left operand of assignment is not an lvalue."));
1198 }
1199
1200 /* Assigning to the stack pointer, frame pointer, and other
1201 (architecture and calling convention specific) registers may
1202 cause the frame cache and regcache to be out of date. Assigning to memory
1203 also can. We just do this on all assignments to registers or
1204 memory, for simplicity's sake; I doubt the slowdown matters. */
1205 switch (VALUE_LVAL (toval))
1206 {
1207 case lval_memory:
1208 case lval_register:
1209 case lval_computed:
1210
1211 gdb::observers::target_changed.notify (current_top_target ());
1212
1213 /* Having destroyed the frame cache, restore the selected
1214 frame. */
1215
1216 /* FIXME: cagney/2002-11-02: There has to be a better way of
1217 doing this. Instead of constantly saving/restoring the
1218 frame. Why not create a get_selected_frame() function that,
1219 having saved the selected frame's ID can automatically
1220 re-find the previously selected frame automatically. */
1221
1222 {
1223 struct frame_info *fi = frame_find_by_id (old_frame);
1224
1225 if (fi != NULL)
1226 select_frame (fi);
1227 }
1228
1229 break;
1230 default:
1231 break;
1232 }
1233
1234 /* If the field does not entirely fill a LONGEST, then zero the sign
1235 bits. If the field is signed, and is negative, then sign
1236 extend. */
1237 if ((value_bitsize (toval) > 0)
1238 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1239 {
1240 LONGEST fieldval = value_as_long (fromval);
1241 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1242
1243 fieldval &= valmask;
1244 if (!TYPE_UNSIGNED (type)
1245 && (fieldval & (valmask ^ (valmask >> 1))))
1246 fieldval |= ~valmask;
1247
1248 fromval = value_from_longest (type, fieldval);
1249 }
1250
1251 /* The return value is a copy of TOVAL so it shares its location
1252 information, but its contents are updated from FROMVAL. This
1253 implies the returned value is not lazy, even if TOVAL was. */
1254 val = value_copy (toval);
1255 set_value_lazy (val, 0);
1256 memcpy (value_contents_raw (val), value_contents (fromval),
1257 TYPE_LENGTH (type));
1258
1259 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1260 in the case of pointer types. For object types, the enclosing type
1261 and embedded offset must *not* be copied: the target object refered
1262 to by TOVAL retains its original dynamic type after assignment. */
1263 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1264 {
1265 set_value_enclosing_type (val, value_enclosing_type (fromval));
1266 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1267 }
1268
1269 return val;
1270 }
1271
1272 /* Extend a value VAL to COUNT repetitions of its type. */
1273
1274 struct value *
1275 value_repeat (struct value *arg1, int count)
1276 {
1277 struct value *val;
1278
1279 if (VALUE_LVAL (arg1) != lval_memory)
1280 error (_("Only values in memory can be extended with '@'."));
1281 if (count < 1)
1282 error (_("Invalid number %d of repetitions."), count);
1283
1284 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1285
1286 VALUE_LVAL (val) = lval_memory;
1287 set_value_address (val, value_address (arg1));
1288
1289 read_value_memory (val, 0, value_stack (val), value_address (val),
1290 value_contents_all_raw (val),
1291 type_length_units (value_enclosing_type (val)));
1292
1293 return val;
1294 }
1295
1296 struct value *
1297 value_of_variable (struct symbol *var, const struct block *b)
1298 {
1299 struct frame_info *frame = NULL;
1300
1301 if (symbol_read_needs_frame (var))
1302 frame = get_selected_frame (_("No frame selected."));
1303
1304 return read_var_value (var, b, frame);
1305 }
1306
1307 struct value *
1308 address_of_variable (struct symbol *var, const struct block *b)
1309 {
1310 struct type *type = SYMBOL_TYPE (var);
1311 struct value *val;
1312
1313 /* Evaluate it first; if the result is a memory address, we're fine.
1314 Lazy evaluation pays off here. */
1315
1316 val = value_of_variable (var, b);
1317 type = value_type (val);
1318
1319 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1320 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1321 {
1322 CORE_ADDR addr = value_address (val);
1323
1324 return value_from_pointer (lookup_pointer_type (type), addr);
1325 }
1326
1327 /* Not a memory address; check what the problem was. */
1328 switch (VALUE_LVAL (val))
1329 {
1330 case lval_register:
1331 {
1332 struct frame_info *frame;
1333 const char *regname;
1334
1335 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1336 gdb_assert (frame);
1337
1338 regname = gdbarch_register_name (get_frame_arch (frame),
1339 VALUE_REGNUM (val));
1340 gdb_assert (regname && *regname);
1341
1342 error (_("Address requested for identifier "
1343 "\"%s\" which is in register $%s"),
1344 SYMBOL_PRINT_NAME (var), regname);
1345 break;
1346 }
1347
1348 default:
1349 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1350 SYMBOL_PRINT_NAME (var));
1351 break;
1352 }
1353
1354 return val;
1355 }
1356
1357 /* Return one if VAL does not live in target memory, but should in order
1358 to operate on it. Otherwise return zero. */
1359
1360 int
1361 value_must_coerce_to_target (struct value *val)
1362 {
1363 struct type *valtype;
1364
1365 /* The only lval kinds which do not live in target memory. */
1366 if (VALUE_LVAL (val) != not_lval
1367 && VALUE_LVAL (val) != lval_internalvar
1368 && VALUE_LVAL (val) != lval_xcallable)
1369 return 0;
1370
1371 valtype = check_typedef (value_type (val));
1372
1373 switch (TYPE_CODE (valtype))
1374 {
1375 case TYPE_CODE_ARRAY:
1376 return TYPE_VECTOR (valtype) ? 0 : 1;
1377 case TYPE_CODE_STRING:
1378 return 1;
1379 default:
1380 return 0;
1381 }
1382 }
1383
1384 /* Make sure that VAL lives in target memory if it's supposed to. For
1385 instance, strings are constructed as character arrays in GDB's
1386 storage, and this function copies them to the target. */
1387
1388 struct value *
1389 value_coerce_to_target (struct value *val)
1390 {
1391 LONGEST length;
1392 CORE_ADDR addr;
1393
1394 if (!value_must_coerce_to_target (val))
1395 return val;
1396
1397 length = TYPE_LENGTH (check_typedef (value_type (val)));
1398 addr = allocate_space_in_inferior (length);
1399 write_memory (addr, value_contents (val), length);
1400 return value_at_lazy (value_type (val), addr);
1401 }
1402
1403 /* Given a value which is an array, return a value which is a pointer
1404 to its first element, regardless of whether or not the array has a
1405 nonzero lower bound.
1406
1407 FIXME: A previous comment here indicated that this routine should
1408 be substracting the array's lower bound. It's not clear to me that
1409 this is correct. Given an array subscripting operation, it would
1410 certainly work to do the adjustment here, essentially computing:
1411
1412 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1413
1414 However I believe a more appropriate and logical place to account
1415 for the lower bound is to do so in value_subscript, essentially
1416 computing:
1417
1418 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1419
1420 As further evidence consider what would happen with operations
1421 other than array subscripting, where the caller would get back a
1422 value that had an address somewhere before the actual first element
1423 of the array, and the information about the lower bound would be
1424 lost because of the coercion to pointer type. */
1425
1426 struct value *
1427 value_coerce_array (struct value *arg1)
1428 {
1429 struct type *type = check_typedef (value_type (arg1));
1430
1431 /* If the user tries to do something requiring a pointer with an
1432 array that has not yet been pushed to the target, then this would
1433 be a good time to do so. */
1434 arg1 = value_coerce_to_target (arg1);
1435
1436 if (VALUE_LVAL (arg1) != lval_memory)
1437 error (_("Attempt to take address of value not located in memory."));
1438
1439 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1440 value_address (arg1));
1441 }
1442
1443 /* Given a value which is a function, return a value which is a pointer
1444 to it. */
1445
1446 struct value *
1447 value_coerce_function (struct value *arg1)
1448 {
1449 struct value *retval;
1450
1451 if (VALUE_LVAL (arg1) != lval_memory)
1452 error (_("Attempt to take address of value not located in memory."));
1453
1454 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1455 value_address (arg1));
1456 return retval;
1457 }
1458
1459 /* Return a pointer value for the object for which ARG1 is the
1460 contents. */
1461
1462 struct value *
1463 value_addr (struct value *arg1)
1464 {
1465 struct value *arg2;
1466 struct type *type = check_typedef (value_type (arg1));
1467
1468 if (TYPE_IS_REFERENCE (type))
1469 {
1470 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1471 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1472 arg1 = coerce_ref (arg1);
1473 else
1474 {
1475 /* Copy the value, but change the type from (T&) to (T*). We
1476 keep the same location information, which is efficient, and
1477 allows &(&X) to get the location containing the reference.
1478 Do the same to its enclosing type for consistency. */
1479 struct type *type_ptr
1480 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1481 struct type *enclosing_type
1482 = check_typedef (value_enclosing_type (arg1));
1483 struct type *enclosing_type_ptr
1484 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1485
1486 arg2 = value_copy (arg1);
1487 deprecated_set_value_type (arg2, type_ptr);
1488 set_value_enclosing_type (arg2, enclosing_type_ptr);
1489
1490 return arg2;
1491 }
1492 }
1493 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1494 return value_coerce_function (arg1);
1495
1496 /* If this is an array that has not yet been pushed to the target,
1497 then this would be a good time to force it to memory. */
1498 arg1 = value_coerce_to_target (arg1);
1499
1500 if (VALUE_LVAL (arg1) != lval_memory)
1501 error (_("Attempt to take address of value not located in memory."));
1502
1503 /* Get target memory address. */
1504 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1505 (value_address (arg1)
1506 + value_embedded_offset (arg1)));
1507
1508 /* This may be a pointer to a base subobject; so remember the
1509 full derived object's type ... */
1510 set_value_enclosing_type (arg2,
1511 lookup_pointer_type (value_enclosing_type (arg1)));
1512 /* ... and also the relative position of the subobject in the full
1513 object. */
1514 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1515 return arg2;
1516 }
1517
1518 /* Return a reference value for the object for which ARG1 is the
1519 contents. */
1520
1521 struct value *
1522 value_ref (struct value *arg1, enum type_code refcode)
1523 {
1524 struct value *arg2;
1525 struct type *type = check_typedef (value_type (arg1));
1526
1527 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1528
1529 if ((TYPE_CODE (type) == TYPE_CODE_REF
1530 || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF)
1531 && TYPE_CODE (type) == refcode)
1532 return arg1;
1533
1534 arg2 = value_addr (arg1);
1535 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1536 return arg2;
1537 }
1538
1539 /* Given a value of a pointer type, apply the C unary * operator to
1540 it. */
1541
1542 struct value *
1543 value_ind (struct value *arg1)
1544 {
1545 struct type *base_type;
1546 struct value *arg2;
1547
1548 arg1 = coerce_array (arg1);
1549
1550 base_type = check_typedef (value_type (arg1));
1551
1552 if (VALUE_LVAL (arg1) == lval_computed)
1553 {
1554 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1555
1556 if (funcs->indirect)
1557 {
1558 struct value *result = funcs->indirect (arg1);
1559
1560 if (result)
1561 return result;
1562 }
1563 }
1564
1565 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1566 {
1567 struct type *enc_type;
1568
1569 /* We may be pointing to something embedded in a larger object.
1570 Get the real type of the enclosing object. */
1571 enc_type = check_typedef (value_enclosing_type (arg1));
1572 enc_type = TYPE_TARGET_TYPE (enc_type);
1573
1574 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1575 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1576 /* For functions, go through find_function_addr, which knows
1577 how to handle function descriptors. */
1578 arg2 = value_at_lazy (enc_type,
1579 find_function_addr (arg1, NULL));
1580 else
1581 /* Retrieve the enclosing object pointed to. */
1582 arg2 = value_at_lazy (enc_type,
1583 (value_as_address (arg1)
1584 - value_pointed_to_offset (arg1)));
1585
1586 enc_type = value_type (arg2);
1587 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1588 }
1589
1590 error (_("Attempt to take contents of a non-pointer value."));
1591 }
1592 \f
1593 /* Create a value for an array by allocating space in GDB, copying the
1594 data into that space, and then setting up an array value.
1595
1596 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1597 is populated from the values passed in ELEMVEC.
1598
1599 The element type of the array is inherited from the type of the
1600 first element, and all elements must have the same size (though we
1601 don't currently enforce any restriction on their types). */
1602
1603 struct value *
1604 value_array (int lowbound, int highbound, struct value **elemvec)
1605 {
1606 int nelem;
1607 int idx;
1608 ULONGEST typelength;
1609 struct value *val;
1610 struct type *arraytype;
1611
1612 /* Validate that the bounds are reasonable and that each of the
1613 elements have the same size. */
1614
1615 nelem = highbound - lowbound + 1;
1616 if (nelem <= 0)
1617 {
1618 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1619 }
1620 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1621 for (idx = 1; idx < nelem; idx++)
1622 {
1623 if (type_length_units (value_enclosing_type (elemvec[idx]))
1624 != typelength)
1625 {
1626 error (_("array elements must all be the same size"));
1627 }
1628 }
1629
1630 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1631 lowbound, highbound);
1632
1633 if (!current_language->c_style_arrays)
1634 {
1635 val = allocate_value (arraytype);
1636 for (idx = 0; idx < nelem; idx++)
1637 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1638 typelength);
1639 return val;
1640 }
1641
1642 /* Allocate space to store the array, and then initialize it by
1643 copying in each element. */
1644
1645 val = allocate_value (arraytype);
1646 for (idx = 0; idx < nelem; idx++)
1647 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1648 return val;
1649 }
1650
1651 struct value *
1652 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1653 {
1654 struct value *val;
1655 int lowbound = current_language->string_lower_bound;
1656 ssize_t highbound = len / TYPE_LENGTH (char_type);
1657 struct type *stringtype
1658 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1659
1660 val = allocate_value (stringtype);
1661 memcpy (value_contents_raw (val), ptr, len);
1662 return val;
1663 }
1664
1665 /* Create a value for a string constant by allocating space in the
1666 inferior, copying the data into that space, and returning the
1667 address with type TYPE_CODE_STRING. PTR points to the string
1668 constant data; LEN is number of characters.
1669
1670 Note that string types are like array of char types with a lower
1671 bound of zero and an upper bound of LEN - 1. Also note that the
1672 string may contain embedded null bytes. */
1673
1674 struct value *
1675 value_string (const char *ptr, ssize_t len, struct type *char_type)
1676 {
1677 struct value *val;
1678 int lowbound = current_language->string_lower_bound;
1679 ssize_t highbound = len / TYPE_LENGTH (char_type);
1680 struct type *stringtype
1681 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1682
1683 val = allocate_value (stringtype);
1684 memcpy (value_contents_raw (val), ptr, len);
1685 return val;
1686 }
1687
1688 \f
1689 /* See if we can pass arguments in T2 to a function which takes
1690 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1691 a NULL-terminated vector. If some arguments need coercion of some
1692 sort, then the coerced values are written into T2. Return value is
1693 0 if the arguments could be matched, or the position at which they
1694 differ if not.
1695
1696 STATICP is nonzero if the T1 argument list came from a static
1697 member function. T2 will still include the ``this'' pointer, but
1698 it will be skipped.
1699
1700 For non-static member functions, we ignore the first argument,
1701 which is the type of the instance variable. This is because we
1702 want to handle calls with objects from derived classes. This is
1703 not entirely correct: we should actually check to make sure that a
1704 requested operation is type secure, shouldn't we? FIXME. */
1705
1706 static int
1707 typecmp (int staticp, int varargs, int nargs,
1708 struct field t1[], struct value *t2[])
1709 {
1710 int i;
1711
1712 if (t2 == 0)
1713 internal_error (__FILE__, __LINE__,
1714 _("typecmp: no argument list"));
1715
1716 /* Skip ``this'' argument if applicable. T2 will always include
1717 THIS. */
1718 if (staticp)
1719 t2 ++;
1720
1721 for (i = 0;
1722 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1723 i++)
1724 {
1725 struct type *tt1, *tt2;
1726
1727 if (!t2[i])
1728 return i + 1;
1729
1730 tt1 = check_typedef (t1[i].type);
1731 tt2 = check_typedef (value_type (t2[i]));
1732
1733 if (TYPE_IS_REFERENCE (tt1)
1734 /* We should be doing hairy argument matching, as below. */
1735 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1736 == TYPE_CODE (tt2)))
1737 {
1738 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1739 t2[i] = value_coerce_array (t2[i]);
1740 else
1741 t2[i] = value_ref (t2[i], TYPE_CODE (tt1));
1742 continue;
1743 }
1744
1745 /* djb - 20000715 - Until the new type structure is in the
1746 place, and we can attempt things like implicit conversions,
1747 we need to do this so you can take something like a map<const
1748 char *>, and properly access map["hello"], because the
1749 argument to [] will be a reference to a pointer to a char,
1750 and the argument will be a pointer to a char. */
1751 while (TYPE_IS_REFERENCE (tt1) || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1752 {
1753 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1754 }
1755 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1756 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1757 || TYPE_IS_REFERENCE (tt2))
1758 {
1759 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1760 }
1761 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1762 continue;
1763 /* Array to pointer is a `trivial conversion' according to the
1764 ARM. */
1765
1766 /* We should be doing much hairier argument matching (see
1767 section 13.2 of the ARM), but as a quick kludge, just check
1768 for the same type code. */
1769 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1770 return i + 1;
1771 }
1772 if (varargs || t2[i] == NULL)
1773 return 0;
1774 return i + 1;
1775 }
1776
1777 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1778 and *LAST_BOFFSET, and possibly throws an exception if the field
1779 search has yielded ambiguous results. */
1780
1781 static void
1782 update_search_result (struct value **result_ptr, struct value *v,
1783 LONGEST *last_boffset, LONGEST boffset,
1784 const char *name, struct type *type)
1785 {
1786 if (v != NULL)
1787 {
1788 if (*result_ptr != NULL
1789 /* The result is not ambiguous if all the classes that are
1790 found occupy the same space. */
1791 && *last_boffset != boffset)
1792 error (_("base class '%s' is ambiguous in type '%s'"),
1793 name, TYPE_SAFE_NAME (type));
1794 *result_ptr = v;
1795 *last_boffset = boffset;
1796 }
1797 }
1798
1799 /* A helper for search_struct_field. This does all the work; most
1800 arguments are as passed to search_struct_field. The result is
1801 stored in *RESULT_PTR, which must be initialized to NULL.
1802 OUTERMOST_TYPE is the type of the initial type passed to
1803 search_struct_field; this is used for error reporting when the
1804 lookup is ambiguous. */
1805
1806 static void
1807 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
1808 struct type *type, int looking_for_baseclass,
1809 struct value **result_ptr,
1810 LONGEST *last_boffset,
1811 struct type *outermost_type)
1812 {
1813 int i;
1814 int nbases;
1815
1816 type = check_typedef (type);
1817 nbases = TYPE_N_BASECLASSES (type);
1818
1819 if (!looking_for_baseclass)
1820 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1821 {
1822 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1823
1824 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1825 {
1826 struct value *v;
1827
1828 if (field_is_static (&TYPE_FIELD (type, i)))
1829 v = value_static_field (type, i);
1830 else
1831 v = value_primitive_field (arg1, offset, i, type);
1832 *result_ptr = v;
1833 return;
1834 }
1835
1836 if (t_field_name
1837 && t_field_name[0] == '\0')
1838 {
1839 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1840
1841 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1842 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1843 {
1844 /* Look for a match through the fields of an anonymous
1845 union, or anonymous struct. C++ provides anonymous
1846 unions.
1847
1848 In the GNU Chill (now deleted from GDB)
1849 implementation of variant record types, each
1850 <alternative field> has an (anonymous) union type,
1851 each member of the union represents a <variant
1852 alternative>. Each <variant alternative> is
1853 represented as a struct, with a member for each
1854 <variant field>. */
1855
1856 struct value *v = NULL;
1857 LONGEST new_offset = offset;
1858
1859 /* This is pretty gross. In G++, the offset in an
1860 anonymous union is relative to the beginning of the
1861 enclosing struct. In the GNU Chill (now deleted
1862 from GDB) implementation of variant records, the
1863 bitpos is zero in an anonymous union field, so we
1864 have to add the offset of the union here. */
1865 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1866 || (TYPE_NFIELDS (field_type) > 0
1867 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1868 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1869
1870 do_search_struct_field (name, arg1, new_offset,
1871 field_type,
1872 looking_for_baseclass, &v,
1873 last_boffset,
1874 outermost_type);
1875 if (v)
1876 {
1877 *result_ptr = v;
1878 return;
1879 }
1880 }
1881 }
1882 }
1883
1884 for (i = 0; i < nbases; i++)
1885 {
1886 struct value *v = NULL;
1887 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1888 /* If we are looking for baseclasses, this is what we get when
1889 we hit them. But it could happen that the base part's member
1890 name is not yet filled in. */
1891 int found_baseclass = (looking_for_baseclass
1892 && TYPE_BASECLASS_NAME (type, i) != NULL
1893 && (strcmp_iw (name,
1894 TYPE_BASECLASS_NAME (type,
1895 i)) == 0));
1896 LONGEST boffset = value_embedded_offset (arg1) + offset;
1897
1898 if (BASETYPE_VIA_VIRTUAL (type, i))
1899 {
1900 struct value *v2;
1901
1902 boffset = baseclass_offset (type, i,
1903 value_contents_for_printing (arg1),
1904 value_embedded_offset (arg1) + offset,
1905 value_address (arg1),
1906 arg1);
1907
1908 /* The virtual base class pointer might have been clobbered
1909 by the user program. Make sure that it still points to a
1910 valid memory location. */
1911
1912 boffset += value_embedded_offset (arg1) + offset;
1913 if (boffset < 0
1914 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1915 {
1916 CORE_ADDR base_addr;
1917
1918 base_addr = value_address (arg1) + boffset;
1919 v2 = value_at_lazy (basetype, base_addr);
1920 if (target_read_memory (base_addr,
1921 value_contents_raw (v2),
1922 TYPE_LENGTH (value_type (v2))) != 0)
1923 error (_("virtual baseclass botch"));
1924 }
1925 else
1926 {
1927 v2 = value_copy (arg1);
1928 deprecated_set_value_type (v2, basetype);
1929 set_value_embedded_offset (v2, boffset);
1930 }
1931
1932 if (found_baseclass)
1933 v = v2;
1934 else
1935 {
1936 do_search_struct_field (name, v2, 0,
1937 TYPE_BASECLASS (type, i),
1938 looking_for_baseclass,
1939 result_ptr, last_boffset,
1940 outermost_type);
1941 }
1942 }
1943 else if (found_baseclass)
1944 v = value_primitive_field (arg1, offset, i, type);
1945 else
1946 {
1947 do_search_struct_field (name, arg1,
1948 offset + TYPE_BASECLASS_BITPOS (type,
1949 i) / 8,
1950 basetype, looking_for_baseclass,
1951 result_ptr, last_boffset,
1952 outermost_type);
1953 }
1954
1955 update_search_result (result_ptr, v, last_boffset,
1956 boffset, name, outermost_type);
1957 }
1958 }
1959
1960 /* Helper function used by value_struct_elt to recurse through
1961 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1962 it has (class) type TYPE. If found, return value, else return NULL.
1963
1964 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1965 fields, look for a baseclass named NAME. */
1966
1967 static struct value *
1968 search_struct_field (const char *name, struct value *arg1,
1969 struct type *type, int looking_for_baseclass)
1970 {
1971 struct value *result = NULL;
1972 LONGEST boffset = 0;
1973
1974 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1975 &result, &boffset, type);
1976 return result;
1977 }
1978
1979 /* Helper function used by value_struct_elt to recurse through
1980 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1981 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1982 TYPE.
1983
1984 If found, return value, else if name matched and args not return
1985 (value) -1, else return NULL. */
1986
1987 static struct value *
1988 search_struct_method (const char *name, struct value **arg1p,
1989 struct value **args, LONGEST offset,
1990 int *static_memfuncp, struct type *type)
1991 {
1992 int i;
1993 struct value *v;
1994 int name_matched = 0;
1995 char dem_opname[64];
1996
1997 type = check_typedef (type);
1998 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1999 {
2000 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2001
2002 /* FIXME! May need to check for ARM demangling here. */
2003 if (startswith (t_field_name, "__") ||
2004 startswith (t_field_name, "op") ||
2005 startswith (t_field_name, "type"))
2006 {
2007 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2008 t_field_name = dem_opname;
2009 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2010 t_field_name = dem_opname;
2011 }
2012 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2013 {
2014 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2015 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2016
2017 name_matched = 1;
2018 check_stub_method_group (type, i);
2019 if (j > 0 && args == 0)
2020 error (_("cannot resolve overloaded method "
2021 "`%s': no arguments supplied"), name);
2022 else if (j == 0 && args == 0)
2023 {
2024 v = value_fn_field (arg1p, f, j, type, offset);
2025 if (v != NULL)
2026 return v;
2027 }
2028 else
2029 while (j >= 0)
2030 {
2031 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2032 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2033 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2034 TYPE_FN_FIELD_ARGS (f, j), args))
2035 {
2036 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2037 return value_virtual_fn_field (arg1p, f, j,
2038 type, offset);
2039 if (TYPE_FN_FIELD_STATIC_P (f, j)
2040 && static_memfuncp)
2041 *static_memfuncp = 1;
2042 v = value_fn_field (arg1p, f, j, type, offset);
2043 if (v != NULL)
2044 return v;
2045 }
2046 j--;
2047 }
2048 }
2049 }
2050
2051 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2052 {
2053 LONGEST base_offset;
2054 LONGEST this_offset;
2055
2056 if (BASETYPE_VIA_VIRTUAL (type, i))
2057 {
2058 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2059 struct value *base_val;
2060 const gdb_byte *base_valaddr;
2061
2062 /* The virtual base class pointer might have been
2063 clobbered by the user program. Make sure that it
2064 still points to a valid memory location. */
2065
2066 if (offset < 0 || offset >= TYPE_LENGTH (type))
2067 {
2068 CORE_ADDR address;
2069
2070 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2071 address = value_address (*arg1p);
2072
2073 if (target_read_memory (address + offset,
2074 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2075 error (_("virtual baseclass botch"));
2076
2077 base_val = value_from_contents_and_address (baseclass,
2078 tmp.data (),
2079 address + offset);
2080 base_valaddr = value_contents_for_printing (base_val);
2081 this_offset = 0;
2082 }
2083 else
2084 {
2085 base_val = *arg1p;
2086 base_valaddr = value_contents_for_printing (*arg1p);
2087 this_offset = offset;
2088 }
2089
2090 base_offset = baseclass_offset (type, i, base_valaddr,
2091 this_offset, value_address (base_val),
2092 base_val);
2093 }
2094 else
2095 {
2096 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2097 }
2098 v = search_struct_method (name, arg1p, args, base_offset + offset,
2099 static_memfuncp, TYPE_BASECLASS (type, i));
2100 if (v == (struct value *) - 1)
2101 {
2102 name_matched = 1;
2103 }
2104 else if (v)
2105 {
2106 /* FIXME-bothner: Why is this commented out? Why is it here? */
2107 /* *arg1p = arg1_tmp; */
2108 return v;
2109 }
2110 }
2111 if (name_matched)
2112 return (struct value *) - 1;
2113 else
2114 return NULL;
2115 }
2116
2117 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2118 extract the component named NAME from the ultimate target
2119 structure/union and return it as a value with its appropriate type.
2120 ERR is used in the error message if *ARGP's type is wrong.
2121
2122 C++: ARGS is a list of argument types to aid in the selection of
2123 an appropriate method. Also, handle derived types.
2124
2125 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2126 where the truthvalue of whether the function that was resolved was
2127 a static member function or not is stored.
2128
2129 ERR is an error message to be printed in case the field is not
2130 found. */
2131
2132 struct value *
2133 value_struct_elt (struct value **argp, struct value **args,
2134 const char *name, int *static_memfuncp, const char *err)
2135 {
2136 struct type *t;
2137 struct value *v;
2138
2139 *argp = coerce_array (*argp);
2140
2141 t = check_typedef (value_type (*argp));
2142
2143 /* Follow pointers until we get to a non-pointer. */
2144
2145 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2146 {
2147 *argp = value_ind (*argp);
2148 /* Don't coerce fn pointer to fn and then back again! */
2149 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2150 *argp = coerce_array (*argp);
2151 t = check_typedef (value_type (*argp));
2152 }
2153
2154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2155 && TYPE_CODE (t) != TYPE_CODE_UNION)
2156 error (_("Attempt to extract a component of a value that is not a %s."),
2157 err);
2158
2159 /* Assume it's not, unless we see that it is. */
2160 if (static_memfuncp)
2161 *static_memfuncp = 0;
2162
2163 if (!args)
2164 {
2165 /* if there are no arguments ...do this... */
2166
2167 /* Try as a field first, because if we succeed, there is less
2168 work to be done. */
2169 v = search_struct_field (name, *argp, t, 0);
2170 if (v)
2171 return v;
2172
2173 /* C++: If it was not found as a data field, then try to
2174 return it as a pointer to a method. */
2175 v = search_struct_method (name, argp, args, 0,
2176 static_memfuncp, t);
2177
2178 if (v == (struct value *) - 1)
2179 error (_("Cannot take address of method %s."), name);
2180 else if (v == 0)
2181 {
2182 if (TYPE_NFN_FIELDS (t))
2183 error (_("There is no member or method named %s."), name);
2184 else
2185 error (_("There is no member named %s."), name);
2186 }
2187 return v;
2188 }
2189
2190 v = search_struct_method (name, argp, args, 0,
2191 static_memfuncp, t);
2192
2193 if (v == (struct value *) - 1)
2194 {
2195 error (_("One of the arguments you tried to pass to %s could not "
2196 "be converted to what the function wants."), name);
2197 }
2198 else if (v == 0)
2199 {
2200 /* See if user tried to invoke data as function. If so, hand it
2201 back. If it's not callable (i.e., a pointer to function),
2202 gdb should give an error. */
2203 v = search_struct_field (name, *argp, t, 0);
2204 /* If we found an ordinary field, then it is not a method call.
2205 So, treat it as if it were a static member function. */
2206 if (v && static_memfuncp)
2207 *static_memfuncp = 1;
2208 }
2209
2210 if (!v)
2211 throw_error (NOT_FOUND_ERROR,
2212 _("Structure has no component named %s."), name);
2213 return v;
2214 }
2215
2216 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2217 to a structure or union, extract and return its component (field) of
2218 type FTYPE at the specified BITPOS.
2219 Throw an exception on error. */
2220
2221 struct value *
2222 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2223 const char *err)
2224 {
2225 struct type *t;
2226 int i;
2227
2228 *argp = coerce_array (*argp);
2229
2230 t = check_typedef (value_type (*argp));
2231
2232 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2233 {
2234 *argp = value_ind (*argp);
2235 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2236 *argp = coerce_array (*argp);
2237 t = check_typedef (value_type (*argp));
2238 }
2239
2240 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2241 && TYPE_CODE (t) != TYPE_CODE_UNION)
2242 error (_("Attempt to extract a component of a value that is not a %s."),
2243 err);
2244
2245 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2246 {
2247 if (!field_is_static (&TYPE_FIELD (t, i))
2248 && bitpos == TYPE_FIELD_BITPOS (t, i)
2249 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2250 return value_primitive_field (*argp, 0, i, t);
2251 }
2252
2253 error (_("No field with matching bitpos and type."));
2254
2255 /* Never hit. */
2256 return NULL;
2257 }
2258
2259 /* See value.h. */
2260
2261 int
2262 value_union_variant (struct type *union_type, const gdb_byte *contents)
2263 {
2264 gdb_assert (TYPE_CODE (union_type) == TYPE_CODE_UNION
2265 && TYPE_FLAG_DISCRIMINATED_UNION (union_type));
2266
2267 struct dynamic_prop *discriminant_prop
2268 = get_dyn_prop (DYN_PROP_DISCRIMINATED, union_type);
2269 gdb_assert (discriminant_prop != nullptr);
2270
2271 struct discriminant_info *info
2272 = (struct discriminant_info *) discriminant_prop->data.baton;
2273 gdb_assert (info != nullptr);
2274
2275 /* If this is a univariant union, just return the sole field. */
2276 if (TYPE_NFIELDS (union_type) == 1)
2277 return 0;
2278 /* This should only happen for univariants, which we already dealt
2279 with. */
2280 gdb_assert (info->discriminant_index != -1);
2281
2282 /* Compute the discriminant. Note that unpack_field_as_long handles
2283 sign extension when necessary, as does the DWARF reader -- so
2284 signed discriminants will be handled correctly despite the use of
2285 an unsigned type here. */
2286 ULONGEST discriminant = unpack_field_as_long (union_type, contents,
2287 info->discriminant_index);
2288
2289 for (int i = 0; i < TYPE_NFIELDS (union_type); ++i)
2290 {
2291 if (i != info->default_index
2292 && i != info->discriminant_index
2293 && discriminant == info->discriminants[i])
2294 return i;
2295 }
2296
2297 if (info->default_index == -1)
2298 error (_("Could not find variant corresponding to discriminant %s"),
2299 pulongest (discriminant));
2300 return info->default_index;
2301 }
2302
2303 /* Search through the methods of an object (and its bases) to find a
2304 specified method. Return the pointer to the fn_field list FN_LIST of
2305 overloaded instances defined in the source language. If available
2306 and matching, a vector of matching xmethods defined in extension
2307 languages are also returned in XM_WORKER_VEC
2308
2309 Helper function for value_find_oload_list.
2310 ARGP is a pointer to a pointer to a value (the object).
2311 METHOD is a string containing the method name.
2312 OFFSET is the offset within the value.
2313 TYPE is the assumed type of the object.
2314 FN_LIST is the pointer to matching overloaded instances defined in
2315 source language. Since this is a recursive function, *FN_LIST
2316 should be set to NULL when calling this function.
2317 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2318 0 when calling this function.
2319 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2320 should also be set to NULL when calling this function.
2321 BASETYPE is set to the actual type of the subobject where the
2322 method is found.
2323 BOFFSET is the offset of the base subobject where the method is found. */
2324
2325 static void
2326 find_method_list (struct value **argp, const char *method,
2327 LONGEST offset, struct type *type,
2328 struct fn_field **fn_list, int *num_fns,
2329 std::vector<xmethod_worker_up> *xm_worker_vec,
2330 struct type **basetype, LONGEST *boffset)
2331 {
2332 int i;
2333 struct fn_field *f = NULL;
2334
2335 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2336 type = check_typedef (type);
2337
2338 /* First check in object itself.
2339 This function is called recursively to search through base classes.
2340 If there is a source method match found at some stage, then we need not
2341 look for source methods in consequent recursive calls. */
2342 if ((*fn_list) == NULL)
2343 {
2344 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2345 {
2346 /* pai: FIXME What about operators and type conversions? */
2347 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2348
2349 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2350 {
2351 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2352 f = TYPE_FN_FIELDLIST1 (type, i);
2353 *fn_list = f;
2354
2355 *num_fns = len;
2356 *basetype = type;
2357 *boffset = offset;
2358
2359 /* Resolve any stub methods. */
2360 check_stub_method_group (type, i);
2361
2362 break;
2363 }
2364 }
2365 }
2366
2367 /* Unlike source methods, xmethods can be accumulated over successive
2368 recursive calls. In other words, an xmethod named 'm' in a class
2369 will not hide an xmethod named 'm' in its base class(es). We want
2370 it to be this way because xmethods are after all convenience functions
2371 and hence there is no point restricting them with something like method
2372 hiding. Moreover, if hiding is done for xmethods as well, then we will
2373 have to provide a mechanism to un-hide (like the 'using' construct). */
2374 get_matching_xmethod_workers (type, method, xm_worker_vec);
2375
2376 /* If source methods are not found in current class, look for them in the
2377 base classes. We also have to go through the base classes to gather
2378 extension methods. */
2379 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2380 {
2381 LONGEST base_offset;
2382
2383 if (BASETYPE_VIA_VIRTUAL (type, i))
2384 {
2385 base_offset = baseclass_offset (type, i,
2386 value_contents_for_printing (*argp),
2387 value_offset (*argp) + offset,
2388 value_address (*argp), *argp);
2389 }
2390 else /* Non-virtual base, simply use bit position from debug
2391 info. */
2392 {
2393 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2394 }
2395
2396 find_method_list (argp, method, base_offset + offset,
2397 TYPE_BASECLASS (type, i), fn_list, num_fns,
2398 xm_worker_vec, basetype, boffset);
2399 }
2400 }
2401
2402 /* Return the list of overloaded methods of a specified name. The methods
2403 could be those GDB finds in the binary, or xmethod. Methods found in
2404 the binary are returned in FN_LIST, and xmethods are returned in
2405 XM_WORKER_VEC.
2406
2407 ARGP is a pointer to a pointer to a value (the object).
2408 METHOD is the method name.
2409 OFFSET is the offset within the value contents.
2410 FN_LIST is the pointer to matching overloaded instances defined in
2411 source language.
2412 NUM_FNS is the number of overloaded instances.
2413 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2414 extension languages.
2415 BASETYPE is set to the type of the base subobject that defines the
2416 method.
2417 BOFFSET is the offset of the base subobject which defines the method. */
2418
2419 static void
2420 value_find_oload_method_list (struct value **argp, const char *method,
2421 LONGEST offset, struct fn_field **fn_list,
2422 int *num_fns,
2423 std::vector<xmethod_worker_up> *xm_worker_vec,
2424 struct type **basetype, LONGEST *boffset)
2425 {
2426 struct type *t;
2427
2428 t = check_typedef (value_type (*argp));
2429
2430 /* Code snarfed from value_struct_elt. */
2431 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2432 {
2433 *argp = value_ind (*argp);
2434 /* Don't coerce fn pointer to fn and then back again! */
2435 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2436 *argp = coerce_array (*argp);
2437 t = check_typedef (value_type (*argp));
2438 }
2439
2440 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2441 && TYPE_CODE (t) != TYPE_CODE_UNION)
2442 error (_("Attempt to extract a component of a "
2443 "value that is not a struct or union"));
2444
2445 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2446
2447 /* Clear the lists. */
2448 *fn_list = NULL;
2449 *num_fns = 0;
2450 xm_worker_vec->clear ();
2451
2452 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2453 basetype, boffset);
2454 }
2455
2456 /* Given an array of arguments (ARGS) (which includes an
2457 entry for "this" in the case of C++ methods), the number of
2458 arguments NARGS, the NAME of a function, and whether it's a method or
2459 not (METHOD), find the best function that matches on the argument types
2460 according to the overload resolution rules.
2461
2462 METHOD can be one of three values:
2463 NON_METHOD for non-member functions.
2464 METHOD: for member functions.
2465 BOTH: used for overload resolution of operators where the
2466 candidates are expected to be either member or non member
2467 functions. In this case the first argument ARGTYPES
2468 (representing 'this') is expected to be a reference to the
2469 target object, and will be dereferenced when attempting the
2470 non-member search.
2471
2472 In the case of class methods, the parameter OBJ is an object value
2473 in which to search for overloaded methods.
2474
2475 In the case of non-method functions, the parameter FSYM is a symbol
2476 corresponding to one of the overloaded functions.
2477
2478 Return value is an integer: 0 -> good match, 10 -> debugger applied
2479 non-standard coercions, 100 -> incompatible.
2480
2481 If a method is being searched for, VALP will hold the value.
2482 If a non-method is being searched for, SYMP will hold the symbol
2483 for it.
2484
2485 If a method is being searched for, and it is a static method,
2486 then STATICP will point to a non-zero value.
2487
2488 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2489 ADL overload candidates when performing overload resolution for a fully
2490 qualified name.
2491
2492 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2493 read while picking the best overload match (it may be all zeroes and thus
2494 not have a vtable pointer), in which case skip virtual function lookup.
2495 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2496 the result type.
2497
2498 Note: This function does *not* check the value of
2499 overload_resolution. Caller must check it to see whether overload
2500 resolution is permitted. */
2501
2502 int
2503 find_overload_match (struct value **args, int nargs,
2504 const char *name, enum oload_search_type method,
2505 struct value **objp, struct symbol *fsym,
2506 struct value **valp, struct symbol **symp,
2507 int *staticp, const int no_adl,
2508 const enum noside noside)
2509 {
2510 struct value *obj = (objp ? *objp : NULL);
2511 struct type *obj_type = obj ? value_type (obj) : NULL;
2512 /* Index of best overloaded function. */
2513 int func_oload_champ = -1;
2514 int method_oload_champ = -1;
2515 int src_method_oload_champ = -1;
2516 int ext_method_oload_champ = -1;
2517
2518 /* The measure for the current best match. */
2519 struct badness_vector *method_badness = NULL;
2520 struct badness_vector *func_badness = NULL;
2521 struct badness_vector *ext_method_badness = NULL;
2522 struct badness_vector *src_method_badness = NULL;
2523
2524 struct value *temp = obj;
2525 /* For methods, the list of overloaded methods. */
2526 struct fn_field *fns_ptr = NULL;
2527 /* For non-methods, the list of overloaded function symbols. */
2528 struct symbol **oload_syms = NULL;
2529 /* For xmethods, the vector of xmethod workers. */
2530 std::vector<xmethod_worker_up> xm_worker_vec;
2531 /* Number of overloaded instances being considered. */
2532 int num_fns = 0;
2533 struct type *basetype = NULL;
2534 LONGEST boffset;
2535
2536 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2537
2538 const char *obj_type_name = NULL;
2539 const char *func_name = NULL;
2540 enum oload_classification match_quality;
2541 enum oload_classification method_match_quality = INCOMPATIBLE;
2542 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2543 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2544 enum oload_classification func_match_quality = INCOMPATIBLE;
2545
2546 /* Get the list of overloaded methods or functions. */
2547 if (method == METHOD || method == BOTH)
2548 {
2549 gdb_assert (obj);
2550
2551 /* OBJ may be a pointer value rather than the object itself. */
2552 obj = coerce_ref (obj);
2553 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2554 obj = coerce_ref (value_ind (obj));
2555 obj_type_name = TYPE_NAME (value_type (obj));
2556
2557 /* First check whether this is a data member, e.g. a pointer to
2558 a function. */
2559 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2560 {
2561 *valp = search_struct_field (name, obj,
2562 check_typedef (value_type (obj)), 0);
2563 if (*valp)
2564 {
2565 *staticp = 1;
2566 do_cleanups (all_cleanups);
2567 return 0;
2568 }
2569 }
2570
2571 /* Retrieve the list of methods with the name NAME. */
2572 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2573 &xm_worker_vec, &basetype, &boffset);
2574 /* If this is a method only search, and no methods were found
2575 the search has failed. */
2576 if (method == METHOD && (!fns_ptr || !num_fns) && xm_worker_vec.empty ())
2577 error (_("Couldn't find method %s%s%s"),
2578 obj_type_name,
2579 (obj_type_name && *obj_type_name) ? "::" : "",
2580 name);
2581 /* If we are dealing with stub method types, they should have
2582 been resolved by find_method_list via
2583 value_find_oload_method_list above. */
2584 if (fns_ptr)
2585 {
2586 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2587
2588 src_method_oload_champ = find_oload_champ (args, nargs,
2589 num_fns, fns_ptr, NULL,
2590 NULL, &src_method_badness);
2591
2592 src_method_match_quality = classify_oload_match
2593 (src_method_badness, nargs,
2594 oload_method_static_p (fns_ptr, src_method_oload_champ));
2595
2596 make_cleanup (xfree, src_method_badness);
2597 }
2598
2599 if (!xm_worker_vec.empty ())
2600 {
2601 ext_method_oload_champ = find_oload_champ (args, nargs,
2602 0, NULL, &xm_worker_vec,
2603 NULL, &ext_method_badness);
2604 ext_method_match_quality = classify_oload_match (ext_method_badness,
2605 nargs, 0);
2606 make_cleanup (xfree, ext_method_badness);
2607 }
2608
2609 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2610 {
2611 switch (compare_badness (ext_method_badness, src_method_badness))
2612 {
2613 case 0: /* Src method and xmethod are equally good. */
2614 /* If src method and xmethod are equally good, then
2615 xmethod should be the winner. Hence, fall through to the
2616 case where a xmethod is better than the source
2617 method, except when the xmethod match quality is
2618 non-standard. */
2619 /* FALLTHROUGH */
2620 case 1: /* Src method and ext method are incompatible. */
2621 /* If ext method match is not standard, then let source method
2622 win. Otherwise, fallthrough to let xmethod win. */
2623 if (ext_method_match_quality != STANDARD)
2624 {
2625 method_oload_champ = src_method_oload_champ;
2626 method_badness = src_method_badness;
2627 ext_method_oload_champ = -1;
2628 method_match_quality = src_method_match_quality;
2629 break;
2630 }
2631 /* FALLTHROUGH */
2632 case 2: /* Ext method is champion. */
2633 method_oload_champ = ext_method_oload_champ;
2634 method_badness = ext_method_badness;
2635 src_method_oload_champ = -1;
2636 method_match_quality = ext_method_match_quality;
2637 break;
2638 case 3: /* Src method is champion. */
2639 method_oload_champ = src_method_oload_champ;
2640 method_badness = src_method_badness;
2641 ext_method_oload_champ = -1;
2642 method_match_quality = src_method_match_quality;
2643 break;
2644 default:
2645 gdb_assert_not_reached ("Unexpected overload comparison "
2646 "result");
2647 break;
2648 }
2649 }
2650 else if (src_method_oload_champ >= 0)
2651 {
2652 method_oload_champ = src_method_oload_champ;
2653 method_badness = src_method_badness;
2654 method_match_quality = src_method_match_quality;
2655 }
2656 else if (ext_method_oload_champ >= 0)
2657 {
2658 method_oload_champ = ext_method_oload_champ;
2659 method_badness = ext_method_badness;
2660 method_match_quality = ext_method_match_quality;
2661 }
2662 }
2663
2664 if (method == NON_METHOD || method == BOTH)
2665 {
2666 const char *qualified_name = NULL;
2667
2668 /* If the overload match is being search for both as a method
2669 and non member function, the first argument must now be
2670 dereferenced. */
2671 if (method == BOTH)
2672 args[0] = value_ind (args[0]);
2673
2674 if (fsym)
2675 {
2676 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2677
2678 /* If we have a function with a C++ name, try to extract just
2679 the function part. Do not try this for non-functions (e.g.
2680 function pointers). */
2681 if (qualified_name
2682 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2683 == TYPE_CODE_FUNC)
2684 {
2685 char *temp;
2686
2687 temp = cp_func_name (qualified_name);
2688
2689 /* If cp_func_name did not remove anything, the name of the
2690 symbol did not include scope or argument types - it was
2691 probably a C-style function. */
2692 if (temp)
2693 {
2694 make_cleanup (xfree, temp);
2695 if (strcmp (temp, qualified_name) == 0)
2696 func_name = NULL;
2697 else
2698 func_name = temp;
2699 }
2700 }
2701 }
2702 else
2703 {
2704 func_name = name;
2705 qualified_name = name;
2706 }
2707
2708 /* If there was no C++ name, this must be a C-style function or
2709 not a function at all. Just return the same symbol. Do the
2710 same if cp_func_name fails for some reason. */
2711 if (func_name == NULL)
2712 {
2713 *symp = fsym;
2714 do_cleanups (all_cleanups);
2715 return 0;
2716 }
2717
2718 func_oload_champ = find_oload_champ_namespace (args, nargs,
2719 func_name,
2720 qualified_name,
2721 &oload_syms,
2722 &func_badness,
2723 no_adl);
2724
2725 if (func_oload_champ >= 0)
2726 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2727
2728 make_cleanup (xfree, oload_syms);
2729 make_cleanup (xfree, func_badness);
2730 }
2731
2732 /* Did we find a match ? */
2733 if (method_oload_champ == -1 && func_oload_champ == -1)
2734 throw_error (NOT_FOUND_ERROR,
2735 _("No symbol \"%s\" in current context."),
2736 name);
2737
2738 /* If we have found both a method match and a function
2739 match, find out which one is better, and calculate match
2740 quality. */
2741 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2742 {
2743 switch (compare_badness (func_badness, method_badness))
2744 {
2745 case 0: /* Top two contenders are equally good. */
2746 /* FIXME: GDB does not support the general ambiguous case.
2747 All candidates should be collected and presented the
2748 user. */
2749 error (_("Ambiguous overload resolution"));
2750 break;
2751 case 1: /* Incomparable top contenders. */
2752 /* This is an error incompatible candidates
2753 should not have been proposed. */
2754 error (_("Internal error: incompatible "
2755 "overload candidates proposed"));
2756 break;
2757 case 2: /* Function champion. */
2758 method_oload_champ = -1;
2759 match_quality = func_match_quality;
2760 break;
2761 case 3: /* Method champion. */
2762 func_oload_champ = -1;
2763 match_quality = method_match_quality;
2764 break;
2765 default:
2766 error (_("Internal error: unexpected overload comparison result"));
2767 break;
2768 }
2769 }
2770 else
2771 {
2772 /* We have either a method match or a function match. */
2773 if (method_oload_champ >= 0)
2774 match_quality = method_match_quality;
2775 else
2776 match_quality = func_match_quality;
2777 }
2778
2779 if (match_quality == INCOMPATIBLE)
2780 {
2781 if (method == METHOD)
2782 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2783 obj_type_name,
2784 (obj_type_name && *obj_type_name) ? "::" : "",
2785 name);
2786 else
2787 error (_("Cannot resolve function %s to any overloaded instance"),
2788 func_name);
2789 }
2790 else if (match_quality == NON_STANDARD)
2791 {
2792 if (method == METHOD)
2793 warning (_("Using non-standard conversion to match "
2794 "method %s%s%s to supplied arguments"),
2795 obj_type_name,
2796 (obj_type_name && *obj_type_name) ? "::" : "",
2797 name);
2798 else
2799 warning (_("Using non-standard conversion to match "
2800 "function %s to supplied arguments"),
2801 func_name);
2802 }
2803
2804 if (staticp != NULL)
2805 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2806
2807 if (method_oload_champ >= 0)
2808 {
2809 if (src_method_oload_champ >= 0)
2810 {
2811 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2812 && noside != EVAL_AVOID_SIDE_EFFECTS)
2813 {
2814 *valp = value_virtual_fn_field (&temp, fns_ptr,
2815 method_oload_champ, basetype,
2816 boffset);
2817 }
2818 else
2819 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2820 basetype, boffset);
2821 }
2822 else
2823 *valp = value_from_xmethod
2824 (std::move (xm_worker_vec[ext_method_oload_champ]));
2825 }
2826 else
2827 *symp = oload_syms[func_oload_champ];
2828
2829 if (objp)
2830 {
2831 struct type *temp_type = check_typedef (value_type (temp));
2832 struct type *objtype = check_typedef (obj_type);
2833
2834 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2835 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2836 || TYPE_IS_REFERENCE (objtype)))
2837 {
2838 temp = value_addr (temp);
2839 }
2840 *objp = temp;
2841 }
2842
2843 do_cleanups (all_cleanups);
2844
2845 switch (match_quality)
2846 {
2847 case INCOMPATIBLE:
2848 return 100;
2849 case NON_STANDARD:
2850 return 10;
2851 default: /* STANDARD */
2852 return 0;
2853 }
2854 }
2855
2856 /* Find the best overload match, searching for FUNC_NAME in namespaces
2857 contained in QUALIFIED_NAME until it either finds a good match or
2858 runs out of namespaces. It stores the overloaded functions in
2859 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2860 calling function is responsible for freeing *OLOAD_SYMS and
2861 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2862 performned. */
2863
2864 static int
2865 find_oload_champ_namespace (struct value **args, int nargs,
2866 const char *func_name,
2867 const char *qualified_name,
2868 struct symbol ***oload_syms,
2869 struct badness_vector **oload_champ_bv,
2870 const int no_adl)
2871 {
2872 int oload_champ;
2873
2874 find_oload_champ_namespace_loop (args, nargs,
2875 func_name,
2876 qualified_name, 0,
2877 oload_syms, oload_champ_bv,
2878 &oload_champ,
2879 no_adl);
2880
2881 return oload_champ;
2882 }
2883
2884 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2885 how deep we've looked for namespaces, and the champ is stored in
2886 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2887 if it isn't. Other arguments are the same as in
2888 find_oload_champ_namespace
2889
2890 It is the caller's responsibility to free *OLOAD_SYMS and
2891 *OLOAD_CHAMP_BV. */
2892
2893 static int
2894 find_oload_champ_namespace_loop (struct value **args, int nargs,
2895 const char *func_name,
2896 const char *qualified_name,
2897 int namespace_len,
2898 struct symbol ***oload_syms,
2899 struct badness_vector **oload_champ_bv,
2900 int *oload_champ,
2901 const int no_adl)
2902 {
2903 int next_namespace_len = namespace_len;
2904 int searched_deeper = 0;
2905 int num_fns = 0;
2906 struct cleanup *old_cleanups;
2907 int new_oload_champ;
2908 struct symbol **new_oload_syms;
2909 struct badness_vector *new_oload_champ_bv;
2910 char *new_namespace;
2911
2912 if (next_namespace_len != 0)
2913 {
2914 gdb_assert (qualified_name[next_namespace_len] == ':');
2915 next_namespace_len += 2;
2916 }
2917 next_namespace_len +=
2918 cp_find_first_component (qualified_name + next_namespace_len);
2919
2920 /* Initialize these to values that can safely be xfree'd. */
2921 *oload_syms = NULL;
2922 *oload_champ_bv = NULL;
2923
2924 /* First, see if we have a deeper namespace we can search in.
2925 If we get a good match there, use it. */
2926
2927 if (qualified_name[next_namespace_len] == ':')
2928 {
2929 searched_deeper = 1;
2930
2931 if (find_oload_champ_namespace_loop (args, nargs,
2932 func_name, qualified_name,
2933 next_namespace_len,
2934 oload_syms, oload_champ_bv,
2935 oload_champ, no_adl))
2936 {
2937 return 1;
2938 }
2939 };
2940
2941 /* If we reach here, either we're in the deepest namespace or we
2942 didn't find a good match in a deeper namespace. But, in the
2943 latter case, we still have a bad match in a deeper namespace;
2944 note that we might not find any match at all in the current
2945 namespace. (There's always a match in the deepest namespace,
2946 because this overload mechanism only gets called if there's a
2947 function symbol to start off with.) */
2948
2949 old_cleanups = make_cleanup (xfree, *oload_syms);
2950 make_cleanup (xfree, *oload_champ_bv);
2951 new_namespace = (char *) alloca (namespace_len + 1);
2952 strncpy (new_namespace, qualified_name, namespace_len);
2953 new_namespace[namespace_len] = '\0';
2954 new_oload_syms = make_symbol_overload_list (func_name,
2955 new_namespace);
2956
2957 /* If we have reached the deepest level perform argument
2958 determined lookup. */
2959 if (!searched_deeper && !no_adl)
2960 {
2961 int ix;
2962 struct type **arg_types;
2963
2964 /* Prepare list of argument types for overload resolution. */
2965 arg_types = (struct type **)
2966 alloca (nargs * (sizeof (struct type *)));
2967 for (ix = 0; ix < nargs; ix++)
2968 arg_types[ix] = value_type (args[ix]);
2969 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2970 }
2971
2972 while (new_oload_syms[num_fns])
2973 ++num_fns;
2974
2975 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2976 NULL, NULL, new_oload_syms,
2977 &new_oload_champ_bv);
2978
2979 /* Case 1: We found a good match. Free earlier matches (if any),
2980 and return it. Case 2: We didn't find a good match, but we're
2981 not the deepest function. Then go with the bad match that the
2982 deeper function found. Case 3: We found a bad match, and we're
2983 the deepest function. Then return what we found, even though
2984 it's a bad match. */
2985
2986 if (new_oload_champ != -1
2987 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2988 {
2989 *oload_syms = new_oload_syms;
2990 *oload_champ = new_oload_champ;
2991 *oload_champ_bv = new_oload_champ_bv;
2992 do_cleanups (old_cleanups);
2993 return 1;
2994 }
2995 else if (searched_deeper)
2996 {
2997 xfree (new_oload_syms);
2998 xfree (new_oload_champ_bv);
2999 discard_cleanups (old_cleanups);
3000 return 0;
3001 }
3002 else
3003 {
3004 *oload_syms = new_oload_syms;
3005 *oload_champ = new_oload_champ;
3006 *oload_champ_bv = new_oload_champ_bv;
3007 do_cleanups (old_cleanups);
3008 return 0;
3009 }
3010 }
3011
3012 /* Look for a function to take NARGS args of ARGS. Find
3013 the best match from among the overloaded methods or functions
3014 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
3015 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
3016 non-NULL.
3017
3018 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
3019 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
3020
3021 Return the index of the best match; store an indication of the
3022 quality of the match in OLOAD_CHAMP_BV.
3023
3024 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3025
3026 static int
3027 find_oload_champ (struct value **args, int nargs,
3028 int num_fns, struct fn_field *fns_ptr,
3029 const std::vector<xmethod_worker_up> *xm_worker_vec,
3030 struct symbol **oload_syms,
3031 struct badness_vector **oload_champ_bv)
3032 {
3033 int ix;
3034 /* A measure of how good an overloaded instance is. */
3035 struct badness_vector *bv;
3036 /* Index of best overloaded function. */
3037 int oload_champ = -1;
3038 /* Current ambiguity state for overload resolution. */
3039 int oload_ambiguous = 0;
3040 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3041
3042 /* A champion can be found among methods alone, or among functions
3043 alone, or in xmethods alone, but not in more than one of these
3044 groups. */
3045 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3046 == 1);
3047
3048 *oload_champ_bv = NULL;
3049
3050 int fn_count = xm_worker_vec != NULL ? xm_worker_vec->size () : num_fns;
3051
3052 /* Consider each candidate in turn. */
3053 for (ix = 0; ix < fn_count; ix++)
3054 {
3055 int jj;
3056 int static_offset = 0;
3057 int nparms;
3058 struct type **parm_types;
3059
3060 if (xm_worker_vec != NULL)
3061 {
3062 xmethod_worker *worker = (*xm_worker_vec)[ix].get ();
3063 parm_types = worker->get_arg_types (&nparms);
3064 }
3065 else
3066 {
3067 if (fns_ptr != NULL)
3068 {
3069 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3070 static_offset = oload_method_static_p (fns_ptr, ix);
3071 }
3072 else
3073 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3074
3075 parm_types = XNEWVEC (struct type *, nparms);
3076 for (jj = 0; jj < nparms; jj++)
3077 parm_types[jj] = (fns_ptr != NULL
3078 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3079 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3080 jj));
3081 }
3082
3083 /* Compare parameter types to supplied argument types. Skip
3084 THIS for static methods. */
3085 bv = rank_function (parm_types, nparms,
3086 args + static_offset,
3087 nargs - static_offset);
3088
3089 if (!*oload_champ_bv)
3090 {
3091 *oload_champ_bv = bv;
3092 oload_champ = 0;
3093 }
3094 else /* See whether current candidate is better or worse than
3095 previous best. */
3096 switch (compare_badness (bv, *oload_champ_bv))
3097 {
3098 case 0: /* Top two contenders are equally good. */
3099 oload_ambiguous = 1;
3100 break;
3101 case 1: /* Incomparable top contenders. */
3102 oload_ambiguous = 2;
3103 break;
3104 case 2: /* New champion, record details. */
3105 *oload_champ_bv = bv;
3106 oload_ambiguous = 0;
3107 oload_champ = ix;
3108 break;
3109 case 3:
3110 default:
3111 break;
3112 }
3113 xfree (parm_types);
3114 if (overload_debug)
3115 {
3116 if (fns_ptr != NULL)
3117 fprintf_filtered (gdb_stderr,
3118 "Overloaded method instance %s, # of parms %d\n",
3119 fns_ptr[ix].physname, nparms);
3120 else if (xm_worker_vec != NULL)
3121 fprintf_filtered (gdb_stderr,
3122 "Xmethod worker, # of parms %d\n",
3123 nparms);
3124 else
3125 fprintf_filtered (gdb_stderr,
3126 "Overloaded function instance "
3127 "%s # of parms %d\n",
3128 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3129 nparms);
3130 for (jj = 0; jj < nargs - static_offset; jj++)
3131 fprintf_filtered (gdb_stderr,
3132 "...Badness @ %d : %d\n",
3133 jj, bv->rank[jj].rank);
3134 fprintf_filtered (gdb_stderr, "Overload resolution "
3135 "champion is %d, ambiguous? %d\n",
3136 oload_champ, oload_ambiguous);
3137 }
3138 }
3139
3140 return oload_champ;
3141 }
3142
3143 /* Return 1 if we're looking at a static method, 0 if we're looking at
3144 a non-static method or a function that isn't a method. */
3145
3146 static int
3147 oload_method_static_p (struct fn_field *fns_ptr, int index)
3148 {
3149 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3150 return 1;
3151 else
3152 return 0;
3153 }
3154
3155 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3156
3157 static enum oload_classification
3158 classify_oload_match (struct badness_vector *oload_champ_bv,
3159 int nargs,
3160 int static_offset)
3161 {
3162 int ix;
3163 enum oload_classification worst = STANDARD;
3164
3165 for (ix = 1; ix <= nargs - static_offset; ix++)
3166 {
3167 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3168 or worse return INCOMPATIBLE. */
3169 if (compare_ranks (oload_champ_bv->rank[ix],
3170 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3171 return INCOMPATIBLE; /* Truly mismatched types. */
3172 /* Otherwise If this conversion is as bad as
3173 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3174 else if (compare_ranks (oload_champ_bv->rank[ix],
3175 NS_POINTER_CONVERSION_BADNESS) <= 0)
3176 worst = NON_STANDARD; /* Non-standard type conversions
3177 needed. */
3178 }
3179
3180 /* If no INCOMPATIBLE classification was found, return the worst one
3181 that was found (if any). */
3182 return worst;
3183 }
3184
3185 /* C++: return 1 is NAME is a legitimate name for the destructor of
3186 type TYPE. If TYPE does not have a destructor, or if NAME is
3187 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3188 have CHECK_TYPEDEF applied, this function will apply it itself. */
3189
3190 int
3191 destructor_name_p (const char *name, struct type *type)
3192 {
3193 if (name[0] == '~')
3194 {
3195 const char *dname = type_name_or_error (type);
3196 const char *cp = strchr (dname, '<');
3197 unsigned int len;
3198
3199 /* Do not compare the template part for template classes. */
3200 if (cp == NULL)
3201 len = strlen (dname);
3202 else
3203 len = cp - dname;
3204 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3205 error (_("name of destructor must equal name of class"));
3206 else
3207 return 1;
3208 }
3209 return 0;
3210 }
3211
3212 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3213 class". If the name is found, return a value representing it;
3214 otherwise throw an exception. */
3215
3216 static struct value *
3217 enum_constant_from_type (struct type *type, const char *name)
3218 {
3219 int i;
3220 int name_len = strlen (name);
3221
3222 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3223 && TYPE_DECLARED_CLASS (type));
3224
3225 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3226 {
3227 const char *fname = TYPE_FIELD_NAME (type, i);
3228 int len;
3229
3230 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3231 || fname == NULL)
3232 continue;
3233
3234 /* Look for the trailing "::NAME", since enum class constant
3235 names are qualified here. */
3236 len = strlen (fname);
3237 if (len + 2 >= name_len
3238 && fname[len - name_len - 2] == ':'
3239 && fname[len - name_len - 1] == ':'
3240 && strcmp (&fname[len - name_len], name) == 0)
3241 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3242 }
3243
3244 error (_("no constant named \"%s\" in enum \"%s\""),
3245 name, TYPE_NAME (type));
3246 }
3247
3248 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3249 return the appropriate member (or the address of the member, if
3250 WANT_ADDRESS). This function is used to resolve user expressions
3251 of the form "DOMAIN::NAME". For more details on what happens, see
3252 the comment before value_struct_elt_for_reference. */
3253
3254 struct value *
3255 value_aggregate_elt (struct type *curtype, const char *name,
3256 struct type *expect_type, int want_address,
3257 enum noside noside)
3258 {
3259 switch (TYPE_CODE (curtype))
3260 {
3261 case TYPE_CODE_STRUCT:
3262 case TYPE_CODE_UNION:
3263 return value_struct_elt_for_reference (curtype, 0, curtype,
3264 name, expect_type,
3265 want_address, noside);
3266 case TYPE_CODE_NAMESPACE:
3267 return value_namespace_elt (curtype, name,
3268 want_address, noside);
3269
3270 case TYPE_CODE_ENUM:
3271 return enum_constant_from_type (curtype, name);
3272
3273 default:
3274 internal_error (__FILE__, __LINE__,
3275 _("non-aggregate type in value_aggregate_elt"));
3276 }
3277 }
3278
3279 /* Compares the two method/function types T1 and T2 for "equality"
3280 with respect to the methods' parameters. If the types of the
3281 two parameter lists are the same, returns 1; 0 otherwise. This
3282 comparison may ignore any artificial parameters in T1 if
3283 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3284 the first artificial parameter in T1, assumed to be a 'this' pointer.
3285
3286 The type T2 is expected to have come from make_params (in eval.c). */
3287
3288 static int
3289 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3290 {
3291 int start = 0;
3292
3293 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3294 ++start;
3295
3296 /* If skipping artificial fields, find the first real field
3297 in T1. */
3298 if (skip_artificial)
3299 {
3300 while (start < TYPE_NFIELDS (t1)
3301 && TYPE_FIELD_ARTIFICIAL (t1, start))
3302 ++start;
3303 }
3304
3305 /* Now compare parameters. */
3306
3307 /* Special case: a method taking void. T1 will contain no
3308 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3309 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3310 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3311 return 1;
3312
3313 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3314 {
3315 int i;
3316
3317 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3318 {
3319 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3320 TYPE_FIELD_TYPE (t2, i), NULL),
3321 EXACT_MATCH_BADNESS) != 0)
3322 return 0;
3323 }
3324
3325 return 1;
3326 }
3327
3328 return 0;
3329 }
3330
3331 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3332 return the address of this member as a "pointer to member" type.
3333 If INTYPE is non-null, then it will be the type of the member we
3334 are looking for. This will help us resolve "pointers to member
3335 functions". This function is used to resolve user expressions of
3336 the form "DOMAIN::NAME". */
3337
3338 static struct value *
3339 value_struct_elt_for_reference (struct type *domain, int offset,
3340 struct type *curtype, const char *name,
3341 struct type *intype,
3342 int want_address,
3343 enum noside noside)
3344 {
3345 struct type *t = check_typedef (curtype);
3346 int i;
3347 struct value *v, *result;
3348
3349 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3350 && TYPE_CODE (t) != TYPE_CODE_UNION)
3351 error (_("Internal error: non-aggregate type "
3352 "to value_struct_elt_for_reference"));
3353
3354 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3355 {
3356 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3357
3358 if (t_field_name && strcmp (t_field_name, name) == 0)
3359 {
3360 if (field_is_static (&TYPE_FIELD (t, i)))
3361 {
3362 v = value_static_field (t, i);
3363 if (want_address)
3364 v = value_addr (v);
3365 return v;
3366 }
3367 if (TYPE_FIELD_PACKED (t, i))
3368 error (_("pointers to bitfield members not allowed"));
3369
3370 if (want_address)
3371 return value_from_longest
3372 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3373 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3374 else if (noside != EVAL_NORMAL)
3375 return allocate_value (TYPE_FIELD_TYPE (t, i));
3376 else
3377 {
3378 /* Try to evaluate NAME as a qualified name with implicit
3379 this pointer. In this case, attempt to return the
3380 equivalent to `this->*(&TYPE::NAME)'. */
3381 v = value_of_this_silent (current_language);
3382 if (v != NULL)
3383 {
3384 struct value *ptr;
3385 long mem_offset;
3386 struct type *type, *tmp;
3387
3388 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3389 type = check_typedef (value_type (ptr));
3390 gdb_assert (type != NULL
3391 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3392 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3393 v = value_cast_pointers (tmp, v, 1);
3394 mem_offset = value_as_long (ptr);
3395 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3396 result = value_from_pointer (tmp,
3397 value_as_long (v) + mem_offset);
3398 return value_ind (result);
3399 }
3400
3401 error (_("Cannot reference non-static field \"%s\""), name);
3402 }
3403 }
3404 }
3405
3406 /* C++: If it was not found as a data field, then try to return it
3407 as a pointer to a method. */
3408
3409 /* Perform all necessary dereferencing. */
3410 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3411 intype = TYPE_TARGET_TYPE (intype);
3412
3413 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3414 {
3415 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3416 char dem_opname[64];
3417
3418 if (startswith (t_field_name, "__")
3419 || startswith (t_field_name, "op")
3420 || startswith (t_field_name, "type"))
3421 {
3422 if (cplus_demangle_opname (t_field_name,
3423 dem_opname, DMGL_ANSI))
3424 t_field_name = dem_opname;
3425 else if (cplus_demangle_opname (t_field_name,
3426 dem_opname, 0))
3427 t_field_name = dem_opname;
3428 }
3429 if (t_field_name && strcmp (t_field_name, name) == 0)
3430 {
3431 int j;
3432 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3433 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3434
3435 check_stub_method_group (t, i);
3436
3437 if (intype)
3438 {
3439 for (j = 0; j < len; ++j)
3440 {
3441 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3442 continue;
3443 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3444 continue;
3445
3446 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3447 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3448 intype, 1))
3449 break;
3450 }
3451
3452 if (j == len)
3453 error (_("no member function matches "
3454 "that type instantiation"));
3455 }
3456 else
3457 {
3458 int ii;
3459
3460 j = -1;
3461 for (ii = 0; ii < len; ++ii)
3462 {
3463 /* Skip artificial methods. This is necessary if,
3464 for example, the user wants to "print
3465 subclass::subclass" with only one user-defined
3466 constructor. There is no ambiguity in this case.
3467 We are careful here to allow artificial methods
3468 if they are the unique result. */
3469 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3470 {
3471 if (j == -1)
3472 j = ii;
3473 continue;
3474 }
3475
3476 /* Desired method is ambiguous if more than one
3477 method is defined. */
3478 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3479 error (_("non-unique member `%s' requires "
3480 "type instantiation"), name);
3481
3482 j = ii;
3483 }
3484
3485 if (j == -1)
3486 error (_("no matching member function"));
3487 }
3488
3489 if (TYPE_FN_FIELD_STATIC_P (f, j))
3490 {
3491 struct symbol *s =
3492 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3493 0, VAR_DOMAIN, 0).symbol;
3494
3495 if (s == NULL)
3496 return NULL;
3497
3498 if (want_address)
3499 return value_addr (read_var_value (s, 0, 0));
3500 else
3501 return read_var_value (s, 0, 0);
3502 }
3503
3504 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3505 {
3506 if (want_address)
3507 {
3508 result = allocate_value
3509 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3510 cplus_make_method_ptr (value_type (result),
3511 value_contents_writeable (result),
3512 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3513 }
3514 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3515 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3516 else
3517 error (_("Cannot reference virtual member function \"%s\""),
3518 name);
3519 }
3520 else
3521 {
3522 struct symbol *s =
3523 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3524 0, VAR_DOMAIN, 0).symbol;
3525
3526 if (s == NULL)
3527 return NULL;
3528
3529 v = read_var_value (s, 0, 0);
3530 if (!want_address)
3531 result = v;
3532 else
3533 {
3534 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3535 cplus_make_method_ptr (value_type (result),
3536 value_contents_writeable (result),
3537 value_address (v), 0);
3538 }
3539 }
3540 return result;
3541 }
3542 }
3543 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3544 {
3545 struct value *v;
3546 int base_offset;
3547
3548 if (BASETYPE_VIA_VIRTUAL (t, i))
3549 base_offset = 0;
3550 else
3551 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3552 v = value_struct_elt_for_reference (domain,
3553 offset + base_offset,
3554 TYPE_BASECLASS (t, i),
3555 name, intype,
3556 want_address, noside);
3557 if (v)
3558 return v;
3559 }
3560
3561 /* As a last chance, pretend that CURTYPE is a namespace, and look
3562 it up that way; this (frequently) works for types nested inside
3563 classes. */
3564
3565 return value_maybe_namespace_elt (curtype, name,
3566 want_address, noside);
3567 }
3568
3569 /* C++: Return the member NAME of the namespace given by the type
3570 CURTYPE. */
3571
3572 static struct value *
3573 value_namespace_elt (const struct type *curtype,
3574 const char *name, int want_address,
3575 enum noside noside)
3576 {
3577 struct value *retval = value_maybe_namespace_elt (curtype, name,
3578 want_address,
3579 noside);
3580
3581 if (retval == NULL)
3582 error (_("No symbol \"%s\" in namespace \"%s\"."),
3583 name, TYPE_NAME (curtype));
3584
3585 return retval;
3586 }
3587
3588 /* A helper function used by value_namespace_elt and
3589 value_struct_elt_for_reference. It looks up NAME inside the
3590 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3591 is a class and NAME refers to a type in CURTYPE itself (as opposed
3592 to, say, some base class of CURTYPE). */
3593
3594 static struct value *
3595 value_maybe_namespace_elt (const struct type *curtype,
3596 const char *name, int want_address,
3597 enum noside noside)
3598 {
3599 const char *namespace_name = TYPE_NAME (curtype);
3600 struct block_symbol sym;
3601 struct value *result;
3602
3603 sym = cp_lookup_symbol_namespace (namespace_name, name,
3604 get_selected_block (0), VAR_DOMAIN);
3605
3606 if (sym.symbol == NULL)
3607 return NULL;
3608 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3609 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3610 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3611 else
3612 result = value_of_variable (sym.symbol, sym.block);
3613
3614 if (want_address)
3615 result = value_addr (result);
3616
3617 return result;
3618 }
3619
3620 /* Given a pointer or a reference value V, find its real (RTTI) type.
3621
3622 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3623 and refer to the values computed for the object pointed to. */
3624
3625 struct type *
3626 value_rtti_indirect_type (struct value *v, int *full,
3627 LONGEST *top, int *using_enc)
3628 {
3629 struct value *target = NULL;
3630 struct type *type, *real_type, *target_type;
3631
3632 type = value_type (v);
3633 type = check_typedef (type);
3634 if (TYPE_IS_REFERENCE (type))
3635 target = coerce_ref (v);
3636 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3637 {
3638
3639 TRY
3640 {
3641 target = value_ind (v);
3642 }
3643 CATCH (except, RETURN_MASK_ERROR)
3644 {
3645 if (except.error == MEMORY_ERROR)
3646 {
3647 /* value_ind threw a memory error. The pointer is NULL or
3648 contains an uninitialized value: we can't determine any
3649 type. */
3650 return NULL;
3651 }
3652 throw_exception (except);
3653 }
3654 END_CATCH
3655 }
3656 else
3657 return NULL;
3658
3659 real_type = value_rtti_type (target, full, top, using_enc);
3660
3661 if (real_type)
3662 {
3663 /* Copy qualifiers to the referenced object. */
3664 target_type = value_type (target);
3665 real_type = make_cv_type (TYPE_CONST (target_type),
3666 TYPE_VOLATILE (target_type), real_type, NULL);
3667 if (TYPE_IS_REFERENCE (type))
3668 real_type = lookup_reference_type (real_type, TYPE_CODE (type));
3669 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3670 real_type = lookup_pointer_type (real_type);
3671 else
3672 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3673
3674 /* Copy qualifiers to the pointer/reference. */
3675 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3676 real_type, NULL);
3677 }
3678
3679 return real_type;
3680 }
3681
3682 /* Given a value pointed to by ARGP, check its real run-time type, and
3683 if that is different from the enclosing type, create a new value
3684 using the real run-time type as the enclosing type (and of the same
3685 type as ARGP) and return it, with the embedded offset adjusted to
3686 be the correct offset to the enclosed object. RTYPE is the type,
3687 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3688 by value_rtti_type(). If these are available, they can be supplied
3689 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3690 NULL if they're not available. */
3691
3692 struct value *
3693 value_full_object (struct value *argp,
3694 struct type *rtype,
3695 int xfull, int xtop,
3696 int xusing_enc)
3697 {
3698 struct type *real_type;
3699 int full = 0;
3700 LONGEST top = -1;
3701 int using_enc = 0;
3702 struct value *new_val;
3703
3704 if (rtype)
3705 {
3706 real_type = rtype;
3707 full = xfull;
3708 top = xtop;
3709 using_enc = xusing_enc;
3710 }
3711 else
3712 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3713
3714 /* If no RTTI data, or if object is already complete, do nothing. */
3715 if (!real_type || real_type == value_enclosing_type (argp))
3716 return argp;
3717
3718 /* In a destructor we might see a real type that is a superclass of
3719 the object's type. In this case it is better to leave the object
3720 as-is. */
3721 if (full
3722 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3723 return argp;
3724
3725 /* If we have the full object, but for some reason the enclosing
3726 type is wrong, set it. */
3727 /* pai: FIXME -- sounds iffy */
3728 if (full)
3729 {
3730 argp = value_copy (argp);
3731 set_value_enclosing_type (argp, real_type);
3732 return argp;
3733 }
3734
3735 /* Check if object is in memory. */
3736 if (VALUE_LVAL (argp) != lval_memory)
3737 {
3738 warning (_("Couldn't retrieve complete object of RTTI "
3739 "type %s; object may be in register(s)."),
3740 TYPE_NAME (real_type));
3741
3742 return argp;
3743 }
3744
3745 /* All other cases -- retrieve the complete object. */
3746 /* Go back by the computed top_offset from the beginning of the
3747 object, adjusting for the embedded offset of argp if that's what
3748 value_rtti_type used for its computation. */
3749 new_val = value_at_lazy (real_type, value_address (argp) - top +
3750 (using_enc ? 0 : value_embedded_offset (argp)));
3751 deprecated_set_value_type (new_val, value_type (argp));
3752 set_value_embedded_offset (new_val, (using_enc
3753 ? top + value_embedded_offset (argp)
3754 : top));
3755 return new_val;
3756 }
3757
3758
3759 /* Return the value of the local variable, if one exists. Throw error
3760 otherwise, such as if the request is made in an inappropriate context. */
3761
3762 struct value *
3763 value_of_this (const struct language_defn *lang)
3764 {
3765 struct block_symbol sym;
3766 const struct block *b;
3767 struct frame_info *frame;
3768
3769 if (!lang->la_name_of_this)
3770 error (_("no `this' in current language"));
3771
3772 frame = get_selected_frame (_("no frame selected"));
3773
3774 b = get_frame_block (frame, NULL);
3775
3776 sym = lookup_language_this (lang, b);
3777 if (sym.symbol == NULL)
3778 error (_("current stack frame does not contain a variable named `%s'"),
3779 lang->la_name_of_this);
3780
3781 return read_var_value (sym.symbol, sym.block, frame);
3782 }
3783
3784 /* Return the value of the local variable, if one exists. Return NULL
3785 otherwise. Never throw error. */
3786
3787 struct value *
3788 value_of_this_silent (const struct language_defn *lang)
3789 {
3790 struct value *ret = NULL;
3791
3792 TRY
3793 {
3794 ret = value_of_this (lang);
3795 }
3796 CATCH (except, RETURN_MASK_ERROR)
3797 {
3798 }
3799 END_CATCH
3800
3801 return ret;
3802 }
3803
3804 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3805 elements long, starting at LOWBOUND. The result has the same lower
3806 bound as the original ARRAY. */
3807
3808 struct value *
3809 value_slice (struct value *array, int lowbound, int length)
3810 {
3811 struct type *slice_range_type, *slice_type, *range_type;
3812 LONGEST lowerbound, upperbound;
3813 struct value *slice;
3814 struct type *array_type;
3815
3816 array_type = check_typedef (value_type (array));
3817 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3818 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3819 error (_("cannot take slice of non-array"));
3820
3821 range_type = TYPE_INDEX_TYPE (array_type);
3822 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3823 error (_("slice from bad array or bitstring"));
3824
3825 if (lowbound < lowerbound || length < 0
3826 || lowbound + length - 1 > upperbound)
3827 error (_("slice out of range"));
3828
3829 /* FIXME-type-allocation: need a way to free this type when we are
3830 done with it. */
3831 slice_range_type = create_static_range_type ((struct type *) NULL,
3832 TYPE_TARGET_TYPE (range_type),
3833 lowbound,
3834 lowbound + length - 1);
3835
3836 {
3837 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3838 LONGEST offset
3839 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3840
3841 slice_type = create_array_type ((struct type *) NULL,
3842 element_type,
3843 slice_range_type);
3844 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3845
3846 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3847 slice = allocate_value_lazy (slice_type);
3848 else
3849 {
3850 slice = allocate_value (slice_type);
3851 value_contents_copy (slice, 0, array, offset,
3852 type_length_units (slice_type));
3853 }
3854
3855 set_value_component_location (slice, array);
3856 set_value_offset (slice, value_offset (array) + offset);
3857 }
3858
3859 return slice;
3860 }
3861
3862 /* Create a value for a FORTRAN complex number. Currently most of the
3863 time values are coerced to COMPLEX*16 (i.e. a complex number
3864 composed of 2 doubles. This really should be a smarter routine
3865 that figures out precision inteligently as opposed to assuming
3866 doubles. FIXME: fmb */
3867
3868 struct value *
3869 value_literal_complex (struct value *arg1,
3870 struct value *arg2,
3871 struct type *type)
3872 {
3873 struct value *val;
3874 struct type *real_type = TYPE_TARGET_TYPE (type);
3875
3876 val = allocate_value (type);
3877 arg1 = value_cast (real_type, arg1);
3878 arg2 = value_cast (real_type, arg2);
3879
3880 memcpy (value_contents_raw (val),
3881 value_contents (arg1), TYPE_LENGTH (real_type));
3882 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3883 value_contents (arg2), TYPE_LENGTH (real_type));
3884 return val;
3885 }
3886
3887 /* Cast a value into the appropriate complex data type. */
3888
3889 static struct value *
3890 cast_into_complex (struct type *type, struct value *val)
3891 {
3892 struct type *real_type = TYPE_TARGET_TYPE (type);
3893
3894 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3895 {
3896 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3897 struct value *re_val = allocate_value (val_real_type);
3898 struct value *im_val = allocate_value (val_real_type);
3899
3900 memcpy (value_contents_raw (re_val),
3901 value_contents (val), TYPE_LENGTH (val_real_type));
3902 memcpy (value_contents_raw (im_val),
3903 value_contents (val) + TYPE_LENGTH (val_real_type),
3904 TYPE_LENGTH (val_real_type));
3905
3906 return value_literal_complex (re_val, im_val, type);
3907 }
3908 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3909 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3910 return value_literal_complex (val,
3911 value_zero (real_type, not_lval),
3912 type);
3913 else
3914 error (_("cannot cast non-number to complex"));
3915 }
3916
3917 void
3918 _initialize_valops (void)
3919 {
3920 add_setshow_boolean_cmd ("overload-resolution", class_support,
3921 &overload_resolution, _("\
3922 Set overload resolution in evaluating C++ functions."), _("\
3923 Show overload resolution in evaluating C++ functions."),
3924 NULL, NULL,
3925 show_overload_resolution,
3926 &setlist, &showlist);
3927 overload_resolution = 1;
3928 }