]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 struct value *original_value,
92 int embedded_offset,
93 struct ui_file *stream);
94
95 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
96 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
97
98 struct value_print_options user_print_options =
99 {
100 Val_prettyformat_default, /* prettyformat */
101 0, /* prettyformat_arrays */
102 0, /* prettyformat_structs */
103 0, /* vtblprint */
104 1, /* unionprint */
105 1, /* addressprint */
106 0, /* objectprint */
107 PRINT_MAX_DEFAULT, /* print_max */
108 10, /* repeat_count_threshold */
109 0, /* output_format */
110 0, /* format */
111 0, /* stop_print_at_null */
112 0, /* print_array_indexes */
113 0, /* deref_ref */
114 1, /* static_field_print */
115 1, /* pascal_static_field_print */
116 0, /* raw */
117 0, /* summary */
118 1, /* symbol_print */
119 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
120 1 /* finish_print */
121 };
122
123 /* Initialize *OPTS to be a copy of the user print options. */
124 void
125 get_user_print_options (struct value_print_options *opts)
126 {
127 *opts = user_print_options;
128 }
129
130 /* Initialize *OPTS to be a copy of the user print options, but with
131 pretty-formatting disabled. */
132 void
133 get_no_prettyformat_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 opts->prettyformat = Val_no_prettyformat;
137 }
138
139 /* Initialize *OPTS to be a copy of the user print options, but using
140 FORMAT as the formatting option. */
141 void
142 get_formatted_print_options (struct value_print_options *opts,
143 char format)
144 {
145 *opts = user_print_options;
146 opts->format = format;
147 }
148
149 static void
150 show_print_max (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file,
154 _("Limit on string chars or array "
155 "elements to print is %s.\n"),
156 value);
157 }
158
159
160 /* Default input and output radixes, and output format letter. */
161
162 unsigned input_radix = 10;
163 static void
164 show_input_radix (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file,
168 _("Default input radix for entering numbers is %s.\n"),
169 value);
170 }
171
172 unsigned output_radix = 10;
173 static void
174 show_output_radix (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Default output radix for printing of values is %s.\n"),
179 value);
180 }
181
182 /* By default we print arrays without printing the index of each element in
183 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
184
185 static void
186 show_print_array_indexes (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
190 }
191
192 /* Print repeat counts if there are more than this many repetitions of an
193 element in an array. Referenced by the low level language dependent
194 print routines. */
195
196 static void
197 show_repeat_count_threshold (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
201 value);
202 }
203
204 /* If nonzero, stops printing of char arrays at first null. */
205
206 static void
207 show_stop_print_at_null (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Printing of char arrays to stop "
212 "at first null char is %s.\n"),
213 value);
214 }
215
216 /* Controls pretty printing of structures. */
217
218 static void
219 show_prettyformat_structs (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
223 }
224
225 /* Controls pretty printing of arrays. */
226
227 static void
228 show_prettyformat_arrays (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
232 }
233
234 /* If nonzero, causes unions inside structures or other unions to be
235 printed. */
236
237 static void
238 show_unionprint (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Printing of unions interior to structures is %s.\n"),
243 value);
244 }
245
246 /* If nonzero, causes machine addresses to be printed in certain contexts. */
247
248 static void
249 show_addressprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
253 }
254
255 static void
256 show_symbol_print (struct ui_file *file, int from_tty,
257 struct cmd_list_element *c, const char *value)
258 {
259 fprintf_filtered (file,
260 _("Printing of symbols when printing pointers is %s.\n"),
261 value);
262 }
263
264 \f
265
266 /* A helper function for val_print. When printing in "summary" mode,
267 we want to print scalar arguments, but not aggregate arguments.
268 This function distinguishes between the two. */
269
270 int
271 val_print_scalar_type_p (struct type *type)
272 {
273 type = check_typedef (type);
274 while (TYPE_IS_REFERENCE (type))
275 {
276 type = TYPE_TARGET_TYPE (type);
277 type = check_typedef (type);
278 }
279 switch (TYPE_CODE (type))
280 {
281 case TYPE_CODE_ARRAY:
282 case TYPE_CODE_STRUCT:
283 case TYPE_CODE_UNION:
284 case TYPE_CODE_SET:
285 case TYPE_CODE_STRING:
286 return 0;
287 default:
288 return 1;
289 }
290 }
291
292 /* A helper function for val_print. When printing with limited depth we
293 want to print string and scalar arguments, but not aggregate arguments.
294 This function distinguishes between the two. */
295
296 static bool
297 val_print_scalar_or_string_type_p (struct type *type,
298 const struct language_defn *language)
299 {
300 return (val_print_scalar_type_p (type)
301 || language->la_is_string_type_p (type));
302 }
303
304 /* See its definition in value.h. */
305
306 int
307 valprint_check_validity (struct ui_file *stream,
308 struct type *type,
309 LONGEST embedded_offset,
310 const struct value *val)
311 {
312 type = check_typedef (type);
313
314 if (type_not_associated (type))
315 {
316 val_print_not_associated (stream);
317 return 0;
318 }
319
320 if (type_not_allocated (type))
321 {
322 val_print_not_allocated (stream);
323 return 0;
324 }
325
326 if (TYPE_CODE (type) != TYPE_CODE_UNION
327 && TYPE_CODE (type) != TYPE_CODE_STRUCT
328 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
329 {
330 if (value_bits_any_optimized_out (val,
331 TARGET_CHAR_BIT * embedded_offset,
332 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
333 {
334 val_print_optimized_out (val, stream);
335 return 0;
336 }
337
338 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
339 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
340 {
341 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
342 int ref_is_addressable = 0;
343
344 if (is_ref)
345 {
346 const struct value *deref_val = coerce_ref_if_computed (val);
347
348 if (deref_val != NULL)
349 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
350 }
351
352 if (!is_ref || !ref_is_addressable)
353 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
354 stream);
355
356 /* C++ references should be valid even if they're synthetic. */
357 return is_ref;
358 }
359
360 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
361 {
362 val_print_unavailable (stream);
363 return 0;
364 }
365 }
366
367 return 1;
368 }
369
370 void
371 val_print_optimized_out (const struct value *val, struct ui_file *stream)
372 {
373 if (val != NULL && value_lval_const (val) == lval_register)
374 val_print_not_saved (stream);
375 else
376 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
377 }
378
379 void
380 val_print_not_saved (struct ui_file *stream)
381 {
382 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
383 }
384
385 void
386 val_print_unavailable (struct ui_file *stream)
387 {
388 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
389 }
390
391 void
392 val_print_invalid_address (struct ui_file *stream)
393 {
394 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
395 }
396
397 /* Print a pointer based on the type of its target.
398
399 Arguments to this functions are roughly the same as those in
400 generic_val_print. A difference is that ADDRESS is the address to print,
401 with embedded_offset already added. ELTTYPE represents
402 the pointed type after check_typedef. */
403
404 static void
405 print_unpacked_pointer (struct type *type, struct type *elttype,
406 CORE_ADDR address, struct ui_file *stream,
407 const struct value_print_options *options)
408 {
409 struct gdbarch *gdbarch = get_type_arch (type);
410
411 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
412 {
413 /* Try to print what function it points to. */
414 print_function_pointer_address (options, gdbarch, address, stream);
415 return;
416 }
417
418 if (options->symbol_print)
419 print_address_demangle (options, gdbarch, address, stream, demangle);
420 else if (options->addressprint)
421 fputs_filtered (paddress (gdbarch, address), stream);
422 }
423
424 /* generic_val_print helper for TYPE_CODE_ARRAY. */
425
426 static void
427 generic_val_print_array (struct value *val,
428 struct ui_file *stream, int recurse,
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
432 {
433 struct type *type = check_typedef (value_type (val));
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 value_print_array_elements (val, stream, recurse, options, 0);
451 fputs_filtered (decorations->array_end, stream);
452 }
453 else
454 {
455 /* Array of unspecified length: treat like pointer to first elt. */
456 print_unpacked_pointer (type, elttype, value_address (val),
457 stream, options);
458 }
459
460 }
461
462 /* generic_value_print helper for TYPE_CODE_PTR. */
463
464 static void
465 generic_value_print_ptr (struct value *val, struct ui_file *stream,
466 const struct value_print_options *options)
467 {
468
469 if (options->format && options->format != 's')
470 value_print_scalar_formatted (val, options, 0, stream);
471 else
472 {
473 struct type *type = check_typedef (value_type (val));
474 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
475 const gdb_byte *valaddr = value_contents_for_printing (val);
476 CORE_ADDR addr = unpack_pointer (type, valaddr);
477
478 print_unpacked_pointer (type, elttype, addr, stream, options);
479 }
480 }
481
482
483 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
484
485 static void
486 print_ref_address (struct type *type, const gdb_byte *address_buffer,
487 int embedded_offset, struct ui_file *stream)
488 {
489 struct gdbarch *gdbarch = get_type_arch (type);
490
491 if (address_buffer != NULL)
492 {
493 CORE_ADDR address
494 = extract_typed_address (address_buffer + embedded_offset, type);
495
496 fprintf_filtered (stream, "@");
497 fputs_filtered (paddress (gdbarch, address), stream);
498 }
499 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
500 }
501
502 /* If VAL is addressable, return the value contents buffer of a value that
503 represents a pointer to VAL. Otherwise return NULL. */
504
505 static const gdb_byte *
506 get_value_addr_contents (struct value *deref_val)
507 {
508 gdb_assert (deref_val != NULL);
509
510 if (value_lval_const (deref_val) == lval_memory)
511 return value_contents_for_printing_const (value_addr (deref_val));
512 else
513 {
514 /* We have a non-addressable value, such as a DW_AT_const_value. */
515 return NULL;
516 }
517 }
518
519 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
520
521 static void
522 generic_val_print_ref (struct type *type,
523 int embedded_offset, struct ui_file *stream, int recurse,
524 struct value *original_value,
525 const struct value_print_options *options)
526 {
527 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
528 struct value *deref_val = NULL;
529 const int value_is_synthetic
530 = value_bits_synthetic_pointer (original_value,
531 TARGET_CHAR_BIT * embedded_offset,
532 TARGET_CHAR_BIT * TYPE_LENGTH (type));
533 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
534 || options->deref_ref);
535 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
536 const gdb_byte *valaddr = value_contents_for_printing (original_value);
537
538 if (must_coerce_ref && type_is_defined)
539 {
540 deref_val = coerce_ref_if_computed (original_value);
541
542 if (deref_val != NULL)
543 {
544 /* More complicated computed references are not supported. */
545 gdb_assert (embedded_offset == 0);
546 }
547 else
548 deref_val = value_at (TYPE_TARGET_TYPE (type),
549 unpack_pointer (type, valaddr + embedded_offset));
550 }
551 /* Else, original_value isn't a synthetic reference or we don't have to print
552 the reference's contents.
553
554 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
555 cause original_value to be a not_lval instead of an lval_computed,
556 which will make value_bits_synthetic_pointer return false.
557 This happens because if options->objectprint is true, c_value_print will
558 overwrite original_value's contents with the result of coercing
559 the reference through value_addr, and then set its type back to
560 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
561 we can simply treat it as non-synthetic and move on. */
562
563 if (options->addressprint)
564 {
565 const gdb_byte *address = (value_is_synthetic && type_is_defined
566 ? get_value_addr_contents (deref_val)
567 : valaddr);
568
569 print_ref_address (type, address, embedded_offset, stream);
570
571 if (options->deref_ref)
572 fputs_filtered (": ", stream);
573 }
574
575 if (options->deref_ref)
576 {
577 if (type_is_defined)
578 common_val_print (deref_val, stream, recurse, options,
579 current_language);
580 else
581 fputs_filtered ("???", stream);
582 }
583 }
584
585 /* Helper function for generic_val_print_enum.
586 This is also used to print enums in TYPE_CODE_FLAGS values. */
587
588 static void
589 generic_val_print_enum_1 (struct type *type, LONGEST val,
590 struct ui_file *stream)
591 {
592 unsigned int i;
593 unsigned int len;
594
595 len = TYPE_NFIELDS (type);
596 for (i = 0; i < len; i++)
597 {
598 QUIT;
599 if (val == TYPE_FIELD_ENUMVAL (type, i))
600 {
601 break;
602 }
603 }
604 if (i < len)
605 {
606 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
607 stream);
608 }
609 else if (TYPE_FLAG_ENUM (type))
610 {
611 int first = 1;
612
613 /* We have a "flag" enum, so we try to decompose it into pieces as
614 appropriate. The enum may have multiple enumerators representing
615 the same bit, in which case we choose to only print the first one
616 we find. */
617 for (i = 0; i < len; ++i)
618 {
619 QUIT;
620
621 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
622 int nbits = count_one_bits_ll (enumval);
623
624 gdb_assert (nbits == 0 || nbits == 1);
625
626 if ((val & enumval) != 0)
627 {
628 if (first)
629 {
630 fputs_filtered ("(", stream);
631 first = 0;
632 }
633 else
634 fputs_filtered (" | ", stream);
635
636 val &= ~TYPE_FIELD_ENUMVAL (type, i);
637 fputs_styled (TYPE_FIELD_NAME (type, i),
638 variable_name_style.style (), stream);
639 }
640 }
641
642 if (val != 0)
643 {
644 /* There are leftover bits, print them. */
645 if (first)
646 fputs_filtered ("(", stream);
647 else
648 fputs_filtered (" | ", stream);
649
650 fputs_filtered ("unknown: 0x", stream);
651 print_longest (stream, 'x', 0, val);
652 fputs_filtered (")", stream);
653 }
654 else if (first)
655 {
656 /* Nothing has been printed and the value is 0, the enum value must
657 have been 0. */
658 fputs_filtered ("0", stream);
659 }
660 else
661 {
662 /* Something has been printed, close the parenthesis. */
663 fputs_filtered (")", stream);
664 }
665 }
666 else
667 print_longest (stream, 'd', 0, val);
668 }
669
670 /* generic_val_print helper for TYPE_CODE_ENUM. */
671
672 static void
673 generic_val_print_enum (struct type *type,
674 int embedded_offset, struct ui_file *stream,
675 struct value *original_value,
676 const struct value_print_options *options)
677 {
678 LONGEST val;
679 struct gdbarch *gdbarch = get_type_arch (type);
680 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
681
682 gdb_assert (!options->format);
683
684 const gdb_byte *valaddr = value_contents_for_printing (original_value);
685
686 val = unpack_long (type, valaddr + embedded_offset * unit_size);
687
688 generic_val_print_enum_1 (type, val, stream);
689 }
690
691 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
692
693 static void
694 generic_val_print_func (struct type *type,
695 int embedded_offset, CORE_ADDR address,
696 struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 struct gdbarch *gdbarch = get_type_arch (type);
701
702 gdb_assert (!options->format);
703
704 /* FIXME, we should consider, at least for ANSI C language,
705 eliminating the distinction made between FUNCs and POINTERs to
706 FUNCs. */
707 fprintf_filtered (stream, "{");
708 type_print (type, "", stream, -1);
709 fprintf_filtered (stream, "} ");
710 /* Try to print what function it points to, and its address. */
711 print_address_demangle (options, gdbarch, address, stream, demangle);
712 }
713
714 /* generic_value_print helper for TYPE_CODE_BOOL. */
715
716 static void
717 generic_value_print_bool
718 (struct value *value, struct ui_file *stream,
719 const struct value_print_options *options,
720 const struct generic_val_print_decorations *decorations)
721 {
722 if (options->format || options->output_format)
723 {
724 struct value_print_options opts = *options;
725 opts.format = (options->format ? options->format
726 : options->output_format);
727 value_print_scalar_formatted (value, &opts, 0, stream);
728 }
729 else
730 {
731 const gdb_byte *valaddr = value_contents_for_printing (value);
732 struct type *type = check_typedef (value_type (value));
733 LONGEST val = unpack_long (type, valaddr);
734 if (val == 0)
735 fputs_filtered (decorations->false_name, stream);
736 else if (val == 1)
737 fputs_filtered (decorations->true_name, stream);
738 else
739 print_longest (stream, 'd', 0, val);
740 }
741 }
742
743 /* generic_value_print helper for TYPE_CODE_INT. */
744
745 static void
746 generic_value_print_int (struct value *val, struct ui_file *stream,
747 const struct value_print_options *options)
748 {
749 struct value_print_options opts = *options;
750
751 opts.format = (options->format ? options->format
752 : options->output_format);
753 value_print_scalar_formatted (val, &opts, 0, stream);
754 }
755
756 /* generic_value_print helper for TYPE_CODE_CHAR. */
757
758 static void
759 generic_value_print_char (struct value *value, struct ui_file *stream,
760 const struct value_print_options *options)
761 {
762 if (options->format || options->output_format)
763 {
764 struct value_print_options opts = *options;
765
766 opts.format = (options->format ? options->format
767 : options->output_format);
768 value_print_scalar_formatted (value, &opts, 0, stream);
769 }
770 else
771 {
772 struct type *unresolved_type = value_type (value);
773 struct type *type = check_typedef (unresolved_type);
774 const gdb_byte *valaddr = value_contents_for_printing (value);
775
776 LONGEST val = unpack_long (type, valaddr);
777 if (TYPE_UNSIGNED (type))
778 fprintf_filtered (stream, "%u", (unsigned int) val);
779 else
780 fprintf_filtered (stream, "%d", (int) val);
781 fputs_filtered (" ", stream);
782 LA_PRINT_CHAR (val, unresolved_type, stream);
783 }
784 }
785
786 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
787
788 static void
789 generic_val_print_float (struct type *type,
790 int embedded_offset, struct ui_file *stream,
791 struct value *original_value,
792 const struct value_print_options *options)
793 {
794 struct gdbarch *gdbarch = get_type_arch (type);
795 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
796
797 gdb_assert (!options->format);
798
799 const gdb_byte *valaddr = value_contents_for_printing (original_value);
800
801 print_floating (valaddr + embedded_offset * unit_size, type, stream);
802 }
803
804 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
805
806 static void
807 generic_value_print_complex (struct value *val, struct ui_file *stream,
808 const struct value_print_options *options,
809 const struct generic_val_print_decorations
810 *decorations)
811 {
812 fprintf_filtered (stream, "%s", decorations->complex_prefix);
813
814 struct value *real_part = value_real_part (val);
815 value_print_scalar_formatted (real_part, options, 0, stream);
816 fprintf_filtered (stream, "%s", decorations->complex_infix);
817
818 struct value *imag_part = value_imaginary_part (val);
819 value_print_scalar_formatted (imag_part, options, 0, stream);
820 fprintf_filtered (stream, "%s", decorations->complex_suffix);
821 }
822
823 /* See valprint.h. */
824
825 void
826 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
827 const struct value_print_options *options,
828 const struct generic_val_print_decorations *decorations)
829 {
830 struct type *type = value_type (val);
831
832 type = check_typedef (type);
833 switch (TYPE_CODE (type))
834 {
835 case TYPE_CODE_ARRAY:
836 generic_val_print_array (val, stream, recurse, options, decorations);
837 break;
838
839 case TYPE_CODE_MEMBERPTR:
840 value_print_scalar_formatted (val, options, 0, stream);
841 break;
842
843 case TYPE_CODE_PTR:
844 generic_value_print_ptr (val, stream, options);
845 break;
846
847 case TYPE_CODE_REF:
848 case TYPE_CODE_RVALUE_REF:
849 generic_val_print_ref (type, 0, stream, recurse,
850 val, options);
851 break;
852
853 case TYPE_CODE_ENUM:
854 if (options->format)
855 value_print_scalar_formatted (val, options, 0, stream);
856 else
857 generic_val_print_enum (type, 0, stream, val, options);
858 break;
859
860 case TYPE_CODE_FLAGS:
861 if (options->format)
862 value_print_scalar_formatted (val, options, 0, stream);
863 else
864 val_print_type_code_flags (type, val, 0, stream);
865 break;
866
867 case TYPE_CODE_FUNC:
868 case TYPE_CODE_METHOD:
869 if (options->format)
870 value_print_scalar_formatted (val, options, 0, stream);
871 else
872 generic_val_print_func (type, 0, value_address (val), stream,
873 val, options);
874 break;
875
876 case TYPE_CODE_BOOL:
877 generic_value_print_bool (val, stream, options, decorations);
878 break;
879
880 case TYPE_CODE_RANGE:
881 /* FIXME: create_static_range_type does not set the unsigned bit in a
882 range type (I think it probably should copy it from the
883 target type), so we won't print values which are too large to
884 fit in a signed integer correctly. */
885 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
886 print with the target type, though, because the size of our
887 type and the target type might differ). */
888
889 /* FALLTHROUGH */
890
891 case TYPE_CODE_INT:
892 generic_value_print_int (val, stream, options);
893 break;
894
895 case TYPE_CODE_CHAR:
896 generic_value_print_char (val, stream, options);
897 break;
898
899 case TYPE_CODE_FLT:
900 case TYPE_CODE_DECFLOAT:
901 if (options->format)
902 value_print_scalar_formatted (val, options, 0, stream);
903 else
904 generic_val_print_float (type, 0, stream,
905 val, options);
906 break;
907
908 case TYPE_CODE_VOID:
909 fputs_filtered (decorations->void_name, stream);
910 break;
911
912 case TYPE_CODE_ERROR:
913 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
914 break;
915
916 case TYPE_CODE_UNDEF:
917 /* This happens (without TYPE_STUB set) on systems which don't use
918 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
919 and no complete type for struct foo in that file. */
920 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
921 break;
922
923 case TYPE_CODE_COMPLEX:
924 generic_value_print_complex (val, stream, options, decorations);
925 break;
926
927 case TYPE_CODE_UNION:
928 case TYPE_CODE_STRUCT:
929 case TYPE_CODE_METHODPTR:
930 default:
931 error (_("Unhandled type code %d in symbol table."),
932 TYPE_CODE (type));
933 }
934 }
935
936 /* Helper function for val_print and common_val_print that does the
937 work. Arguments are as to val_print, but FULL_VALUE, if given, is
938 the value to be printed. */
939
940 static void
941 do_val_print (struct value *value, struct ui_file *stream, int recurse,
942 const struct value_print_options *options,
943 const struct language_defn *language)
944 {
945 int ret = 0;
946 struct value_print_options local_opts = *options;
947 struct type *type = value_type (value);
948 struct type *real_type = check_typedef (type);
949
950 if (local_opts.prettyformat == Val_prettyformat_default)
951 local_opts.prettyformat = (local_opts.prettyformat_structs
952 ? Val_prettyformat : Val_no_prettyformat);
953
954 QUIT;
955
956 /* Ensure that the type is complete and not just a stub. If the type is
957 only a stub and we can't find and substitute its complete type, then
958 print appropriate string and return. */
959
960 if (TYPE_STUB (real_type))
961 {
962 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
963 return;
964 }
965
966 if (!valprint_check_validity (stream, real_type, 0, value))
967 return;
968
969 if (!options->raw)
970 {
971 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
972 language);
973 if (ret)
974 return;
975 }
976
977 /* Handle summary mode. If the value is a scalar, print it;
978 otherwise, print an ellipsis. */
979 if (options->summary && !val_print_scalar_type_p (type))
980 {
981 fprintf_filtered (stream, "...");
982 return;
983 }
984
985 /* If this value is too deep then don't print it. */
986 if (!val_print_scalar_or_string_type_p (type, language)
987 && val_print_check_max_depth (stream, recurse, options, language))
988 return;
989
990 try
991 {
992 language->la_value_print_inner (value, stream, recurse, &local_opts);
993 }
994 catch (const gdb_exception_error &except)
995 {
996 fprintf_styled (stream, metadata_style.style (),
997 _("<error reading variable>"));
998 }
999 }
1000
1001 /* See valprint.h. */
1002
1003 bool
1004 val_print_check_max_depth (struct ui_file *stream, int recurse,
1005 const struct value_print_options *options,
1006 const struct language_defn *language)
1007 {
1008 if (options->max_depth > -1 && recurse >= options->max_depth)
1009 {
1010 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1011 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1012 return true;
1013 }
1014
1015 return false;
1016 }
1017
1018 /* Check whether the value VAL is printable. Return 1 if it is;
1019 return 0 and print an appropriate error message to STREAM according to
1020 OPTIONS if it is not. */
1021
1022 static int
1023 value_check_printable (struct value *val, struct ui_file *stream,
1024 const struct value_print_options *options)
1025 {
1026 if (val == 0)
1027 {
1028 fprintf_styled (stream, metadata_style.style (),
1029 _("<address of value unknown>"));
1030 return 0;
1031 }
1032
1033 if (value_entirely_optimized_out (val))
1034 {
1035 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1036 fprintf_filtered (stream, "...");
1037 else
1038 val_print_optimized_out (val, stream);
1039 return 0;
1040 }
1041
1042 if (value_entirely_unavailable (val))
1043 {
1044 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1045 fprintf_filtered (stream, "...");
1046 else
1047 val_print_unavailable (stream);
1048 return 0;
1049 }
1050
1051 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1052 {
1053 fprintf_styled (stream, metadata_style.style (),
1054 _("<internal function %s>"),
1055 value_internal_function_name (val));
1056 return 0;
1057 }
1058
1059 if (type_not_associated (value_type (val)))
1060 {
1061 val_print_not_associated (stream);
1062 return 0;
1063 }
1064
1065 if (type_not_allocated (value_type (val)))
1066 {
1067 val_print_not_allocated (stream);
1068 return 0;
1069 }
1070
1071 return 1;
1072 }
1073
1074 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1075 to OPTIONS.
1076
1077 This is a preferable interface to val_print, above, because it uses
1078 GDB's value mechanism. */
1079
1080 void
1081 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1082 const struct value_print_options *options,
1083 const struct language_defn *language)
1084 {
1085 if (language->la_language == language_ada)
1086 /* The value might have a dynamic type, which would cause trouble
1087 below when trying to extract the value contents (since the value
1088 size is determined from the type size which is unknown). So
1089 get a fixed representation of our value. */
1090 val = ada_to_fixed_value (val);
1091
1092 if (value_lazy (val))
1093 value_fetch_lazy (val);
1094
1095 do_val_print (val, stream, recurse, options, language);
1096 }
1097
1098 /* See valprint.h. */
1099
1100 void
1101 common_val_print_checked (struct value *val, struct ui_file *stream,
1102 int recurse,
1103 const struct value_print_options *options,
1104 const struct language_defn *language)
1105 {
1106 if (!value_check_printable (val, stream, options))
1107 return;
1108 common_val_print (val, stream, recurse, options, language);
1109 }
1110
1111 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1112 is printed using the current_language syntax. */
1113
1114 void
1115 value_print (struct value *val, struct ui_file *stream,
1116 const struct value_print_options *options)
1117 {
1118 scoped_value_mark free_values;
1119
1120 if (!value_check_printable (val, stream, options))
1121 return;
1122
1123 if (!options->raw)
1124 {
1125 int r
1126 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1127 current_language);
1128
1129 if (r)
1130 return;
1131 }
1132
1133 LA_VALUE_PRINT (val, stream, options);
1134 }
1135
1136 static void
1137 val_print_type_code_flags (struct type *type, struct value *original_value,
1138 int embedded_offset, struct ui_file *stream)
1139 {
1140 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1141 + embedded_offset);
1142 ULONGEST val = unpack_long (type, valaddr);
1143 int field, nfields = TYPE_NFIELDS (type);
1144 struct gdbarch *gdbarch = get_type_arch (type);
1145 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1146
1147 fputs_filtered ("[", stream);
1148 for (field = 0; field < nfields; field++)
1149 {
1150 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1151 {
1152 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1153
1154 if (field_type == bool_type
1155 /* We require boolean types here to be one bit wide. This is a
1156 problematic place to notify the user of an internal error
1157 though. Instead just fall through and print the field as an
1158 int. */
1159 && TYPE_FIELD_BITSIZE (type, field) == 1)
1160 {
1161 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1162 fprintf_filtered
1163 (stream, " %ps",
1164 styled_string (variable_name_style.style (),
1165 TYPE_FIELD_NAME (type, field)));
1166 }
1167 else
1168 {
1169 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1170 ULONGEST field_val
1171 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1172
1173 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1174 field_val &= ((ULONGEST) 1 << field_len) - 1;
1175 fprintf_filtered (stream, " %ps=",
1176 styled_string (variable_name_style.style (),
1177 TYPE_FIELD_NAME (type, field)));
1178 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1179 generic_val_print_enum_1 (field_type, field_val, stream);
1180 else
1181 print_longest (stream, 'd', 0, field_val);
1182 }
1183 }
1184 }
1185 fputs_filtered (" ]", stream);
1186 }
1187
1188 /* See valprint.h. */
1189
1190 void
1191 value_print_scalar_formatted (struct value *val,
1192 const struct value_print_options *options,
1193 int size,
1194 struct ui_file *stream)
1195 {
1196 struct type *type = check_typedef (value_type (val));
1197
1198 gdb_assert (val != NULL);
1199
1200 /* If we get here with a string format, try again without it. Go
1201 all the way back to the language printers, which may call us
1202 again. */
1203 if (options->format == 's')
1204 {
1205 struct value_print_options opts = *options;
1206 opts.format = 0;
1207 opts.deref_ref = 0;
1208 common_val_print (val, stream, 0, &opts, current_language);
1209 return;
1210 }
1211
1212 /* value_contents_for_printing fetches all VAL's contents. They are
1213 needed to check whether VAL is optimized-out or unavailable
1214 below. */
1215 const gdb_byte *valaddr = value_contents_for_printing (val);
1216
1217 /* A scalar object that does not have all bits available can't be
1218 printed, because all bits contribute to its representation. */
1219 if (value_bits_any_optimized_out (val, 0,
1220 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1221 val_print_optimized_out (val, stream);
1222 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1223 val_print_unavailable (stream);
1224 else
1225 print_scalar_formatted (valaddr, type, options, size, stream);
1226 }
1227
1228 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1229 The raison d'etre of this function is to consolidate printing of
1230 LONG_LONG's into this one function. The format chars b,h,w,g are
1231 from print_scalar_formatted(). Numbers are printed using C
1232 format.
1233
1234 USE_C_FORMAT means to use C format in all cases. Without it,
1235 'o' and 'x' format do not include the standard C radix prefix
1236 (leading 0 or 0x).
1237
1238 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1239 and was intended to request formatting according to the current
1240 language and would be used for most integers that GDB prints. The
1241 exceptional cases were things like protocols where the format of
1242 the integer is a protocol thing, not a user-visible thing). The
1243 parameter remains to preserve the information of what things might
1244 be printed with language-specific format, should we ever resurrect
1245 that capability. */
1246
1247 void
1248 print_longest (struct ui_file *stream, int format, int use_c_format,
1249 LONGEST val_long)
1250 {
1251 const char *val;
1252
1253 switch (format)
1254 {
1255 case 'd':
1256 val = int_string (val_long, 10, 1, 0, 1); break;
1257 case 'u':
1258 val = int_string (val_long, 10, 0, 0, 1); break;
1259 case 'x':
1260 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1261 case 'b':
1262 val = int_string (val_long, 16, 0, 2, 1); break;
1263 case 'h':
1264 val = int_string (val_long, 16, 0, 4, 1); break;
1265 case 'w':
1266 val = int_string (val_long, 16, 0, 8, 1); break;
1267 case 'g':
1268 val = int_string (val_long, 16, 0, 16, 1); break;
1269 break;
1270 case 'o':
1271 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1272 default:
1273 internal_error (__FILE__, __LINE__,
1274 _("failed internal consistency check"));
1275 }
1276 fputs_filtered (val, stream);
1277 }
1278
1279 /* This used to be a macro, but I don't think it is called often enough
1280 to merit such treatment. */
1281 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1282 arguments to a function, number in a value history, register number, etc.)
1283 where the value must not be larger than can fit in an int. */
1284
1285 int
1286 longest_to_int (LONGEST arg)
1287 {
1288 /* Let the compiler do the work. */
1289 int rtnval = (int) arg;
1290
1291 /* Check for overflows or underflows. */
1292 if (sizeof (LONGEST) > sizeof (int))
1293 {
1294 if (rtnval != arg)
1295 {
1296 error (_("Value out of range."));
1297 }
1298 }
1299 return (rtnval);
1300 }
1301
1302 /* Print a floating point value of floating-point type TYPE,
1303 pointed to in GDB by VALADDR, on STREAM. */
1304
1305 void
1306 print_floating (const gdb_byte *valaddr, struct type *type,
1307 struct ui_file *stream)
1308 {
1309 std::string str = target_float_to_string (valaddr, type);
1310 fputs_filtered (str.c_str (), stream);
1311 }
1312
1313 void
1314 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1315 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1316 {
1317 const gdb_byte *p;
1318 unsigned int i;
1319 int b;
1320 bool seen_a_one = false;
1321
1322 /* Declared "int" so it will be signed.
1323 This ensures that right shift will shift in zeros. */
1324
1325 const int mask = 0x080;
1326
1327 if (byte_order == BFD_ENDIAN_BIG)
1328 {
1329 for (p = valaddr;
1330 p < valaddr + len;
1331 p++)
1332 {
1333 /* Every byte has 8 binary characters; peel off
1334 and print from the MSB end. */
1335
1336 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1337 {
1338 if (*p & (mask >> i))
1339 b = '1';
1340 else
1341 b = '0';
1342
1343 if (zero_pad || seen_a_one || b == '1')
1344 fputc_filtered (b, stream);
1345 if (b == '1')
1346 seen_a_one = true;
1347 }
1348 }
1349 }
1350 else
1351 {
1352 for (p = valaddr + len - 1;
1353 p >= valaddr;
1354 p--)
1355 {
1356 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1357 {
1358 if (*p & (mask >> i))
1359 b = '1';
1360 else
1361 b = '0';
1362
1363 if (zero_pad || seen_a_one || b == '1')
1364 fputc_filtered (b, stream);
1365 if (b == '1')
1366 seen_a_one = true;
1367 }
1368 }
1369 }
1370
1371 /* When not zero-padding, ensure that something is printed when the
1372 input is 0. */
1373 if (!zero_pad && !seen_a_one)
1374 fputc_filtered ('0', stream);
1375 }
1376
1377 /* A helper for print_octal_chars that emits a single octal digit,
1378 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1379
1380 static void
1381 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1382 {
1383 if (*seen_a_one || digit != 0)
1384 fprintf_filtered (stream, "%o", digit);
1385 if (digit != 0)
1386 *seen_a_one = true;
1387 }
1388
1389 /* VALADDR points to an integer of LEN bytes.
1390 Print it in octal on stream or format it in buf. */
1391
1392 void
1393 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1394 unsigned len, enum bfd_endian byte_order)
1395 {
1396 const gdb_byte *p;
1397 unsigned char octa1, octa2, octa3, carry;
1398 int cycle;
1399
1400 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1401 * the extra bits, which cycle every three bytes:
1402 *
1403 * Byte side: 0 1 2 3
1404 * | | | |
1405 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1406 *
1407 * Octal side: 0 1 carry 3 4 carry ...
1408 *
1409 * Cycle number: 0 1 2
1410 *
1411 * But of course we are printing from the high side, so we have to
1412 * figure out where in the cycle we are so that we end up with no
1413 * left over bits at the end.
1414 */
1415 #define BITS_IN_OCTAL 3
1416 #define HIGH_ZERO 0340
1417 #define LOW_ZERO 0034
1418 #define CARRY_ZERO 0003
1419 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1420 "cycle zero constants are wrong");
1421 #define HIGH_ONE 0200
1422 #define MID_ONE 0160
1423 #define LOW_ONE 0016
1424 #define CARRY_ONE 0001
1425 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1426 "cycle one constants are wrong");
1427 #define HIGH_TWO 0300
1428 #define MID_TWO 0070
1429 #define LOW_TWO 0007
1430 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1431 "cycle two constants are wrong");
1432
1433 /* For 32 we start in cycle 2, with two bits and one bit carry;
1434 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1435
1436 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1437 carry = 0;
1438
1439 fputs_filtered ("0", stream);
1440 bool seen_a_one = false;
1441 if (byte_order == BFD_ENDIAN_BIG)
1442 {
1443 for (p = valaddr;
1444 p < valaddr + len;
1445 p++)
1446 {
1447 switch (cycle)
1448 {
1449 case 0:
1450 /* No carry in, carry out two bits. */
1451
1452 octa1 = (HIGH_ZERO & *p) >> 5;
1453 octa2 = (LOW_ZERO & *p) >> 2;
1454 carry = (CARRY_ZERO & *p);
1455 emit_octal_digit (stream, &seen_a_one, octa1);
1456 emit_octal_digit (stream, &seen_a_one, octa2);
1457 break;
1458
1459 case 1:
1460 /* Carry in two bits, carry out one bit. */
1461
1462 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1463 octa2 = (MID_ONE & *p) >> 4;
1464 octa3 = (LOW_ONE & *p) >> 1;
1465 carry = (CARRY_ONE & *p);
1466 emit_octal_digit (stream, &seen_a_one, octa1);
1467 emit_octal_digit (stream, &seen_a_one, octa2);
1468 emit_octal_digit (stream, &seen_a_one, octa3);
1469 break;
1470
1471 case 2:
1472 /* Carry in one bit, no carry out. */
1473
1474 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1475 octa2 = (MID_TWO & *p) >> 3;
1476 octa3 = (LOW_TWO & *p);
1477 carry = 0;
1478 emit_octal_digit (stream, &seen_a_one, octa1);
1479 emit_octal_digit (stream, &seen_a_one, octa2);
1480 emit_octal_digit (stream, &seen_a_one, octa3);
1481 break;
1482
1483 default:
1484 error (_("Internal error in octal conversion;"));
1485 }
1486
1487 cycle++;
1488 cycle = cycle % BITS_IN_OCTAL;
1489 }
1490 }
1491 else
1492 {
1493 for (p = valaddr + len - 1;
1494 p >= valaddr;
1495 p--)
1496 {
1497 switch (cycle)
1498 {
1499 case 0:
1500 /* Carry out, no carry in */
1501
1502 octa1 = (HIGH_ZERO & *p) >> 5;
1503 octa2 = (LOW_ZERO & *p) >> 2;
1504 carry = (CARRY_ZERO & *p);
1505 emit_octal_digit (stream, &seen_a_one, octa1);
1506 emit_octal_digit (stream, &seen_a_one, octa2);
1507 break;
1508
1509 case 1:
1510 /* Carry in, carry out */
1511
1512 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1513 octa2 = (MID_ONE & *p) >> 4;
1514 octa3 = (LOW_ONE & *p) >> 1;
1515 carry = (CARRY_ONE & *p);
1516 emit_octal_digit (stream, &seen_a_one, octa1);
1517 emit_octal_digit (stream, &seen_a_one, octa2);
1518 emit_octal_digit (stream, &seen_a_one, octa3);
1519 break;
1520
1521 case 2:
1522 /* Carry in, no carry out */
1523
1524 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1525 octa2 = (MID_TWO & *p) >> 3;
1526 octa3 = (LOW_TWO & *p);
1527 carry = 0;
1528 emit_octal_digit (stream, &seen_a_one, octa1);
1529 emit_octal_digit (stream, &seen_a_one, octa2);
1530 emit_octal_digit (stream, &seen_a_one, octa3);
1531 break;
1532
1533 default:
1534 error (_("Internal error in octal conversion;"));
1535 }
1536
1537 cycle++;
1538 cycle = cycle % BITS_IN_OCTAL;
1539 }
1540 }
1541
1542 }
1543
1544 /* Possibly negate the integer represented by BYTES. It contains LEN
1545 bytes in the specified byte order. If the integer is negative,
1546 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1547 nothing and return false. */
1548
1549 static bool
1550 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1551 enum bfd_endian byte_order,
1552 gdb::byte_vector *out_vec)
1553 {
1554 gdb_byte sign_byte;
1555 gdb_assert (len > 0);
1556 if (byte_order == BFD_ENDIAN_BIG)
1557 sign_byte = bytes[0];
1558 else
1559 sign_byte = bytes[len - 1];
1560 if ((sign_byte & 0x80) == 0)
1561 return false;
1562
1563 out_vec->resize (len);
1564
1565 /* Compute -x == 1 + ~x. */
1566 if (byte_order == BFD_ENDIAN_LITTLE)
1567 {
1568 unsigned carry = 1;
1569 for (unsigned i = 0; i < len; ++i)
1570 {
1571 unsigned tem = (0xff & ~bytes[i]) + carry;
1572 (*out_vec)[i] = tem & 0xff;
1573 carry = tem / 256;
1574 }
1575 }
1576 else
1577 {
1578 unsigned carry = 1;
1579 for (unsigned i = len; i > 0; --i)
1580 {
1581 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1582 (*out_vec)[i - 1] = tem & 0xff;
1583 carry = tem / 256;
1584 }
1585 }
1586
1587 return true;
1588 }
1589
1590 /* VALADDR points to an integer of LEN bytes.
1591 Print it in decimal on stream or format it in buf. */
1592
1593 void
1594 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1595 unsigned len, bool is_signed,
1596 enum bfd_endian byte_order)
1597 {
1598 #define TEN 10
1599 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1600 #define CARRY_LEFT( x ) ((x) % TEN)
1601 #define SHIFT( x ) ((x) << 4)
1602 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1603 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1604
1605 const gdb_byte *p;
1606 int carry;
1607 int decimal_len;
1608 int i, j, decimal_digits;
1609 int dummy;
1610 int flip;
1611
1612 gdb::byte_vector negated_bytes;
1613 if (is_signed
1614 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1615 {
1616 fputs_filtered ("-", stream);
1617 valaddr = negated_bytes.data ();
1618 }
1619
1620 /* Base-ten number is less than twice as many digits
1621 as the base 16 number, which is 2 digits per byte. */
1622
1623 decimal_len = len * 2 * 2;
1624 std::vector<unsigned char> digits (decimal_len, 0);
1625
1626 /* Ok, we have an unknown number of bytes of data to be printed in
1627 * decimal.
1628 *
1629 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1630 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1631 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1632 *
1633 * The trick is that "digits" holds a base-10 number, but sometimes
1634 * the individual digits are > 10.
1635 *
1636 * Outer loop is per nibble (hex digit) of input, from MSD end to
1637 * LSD end.
1638 */
1639 decimal_digits = 0; /* Number of decimal digits so far */
1640 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1641 flip = 0;
1642 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1643 {
1644 /*
1645 * Multiply current base-ten number by 16 in place.
1646 * Each digit was between 0 and 9, now is between
1647 * 0 and 144.
1648 */
1649 for (j = 0; j < decimal_digits; j++)
1650 {
1651 digits[j] = SHIFT (digits[j]);
1652 }
1653
1654 /* Take the next nibble off the input and add it to what
1655 * we've got in the LSB position. Bottom 'digit' is now
1656 * between 0 and 159.
1657 *
1658 * "flip" is used to run this loop twice for each byte.
1659 */
1660 if (flip == 0)
1661 {
1662 /* Take top nibble. */
1663
1664 digits[0] += HIGH_NIBBLE (*p);
1665 flip = 1;
1666 }
1667 else
1668 {
1669 /* Take low nibble and bump our pointer "p". */
1670
1671 digits[0] += LOW_NIBBLE (*p);
1672 if (byte_order == BFD_ENDIAN_BIG)
1673 p++;
1674 else
1675 p--;
1676 flip = 0;
1677 }
1678
1679 /* Re-decimalize. We have to do this often enough
1680 * that we don't overflow, but once per nibble is
1681 * overkill. Easier this way, though. Note that the
1682 * carry is often larger than 10 (e.g. max initial
1683 * carry out of lowest nibble is 15, could bubble all
1684 * the way up greater than 10). So we have to do
1685 * the carrying beyond the last current digit.
1686 */
1687 carry = 0;
1688 for (j = 0; j < decimal_len - 1; j++)
1689 {
1690 digits[j] += carry;
1691
1692 /* "/" won't handle an unsigned char with
1693 * a value that if signed would be negative.
1694 * So extend to longword int via "dummy".
1695 */
1696 dummy = digits[j];
1697 carry = CARRY_OUT (dummy);
1698 digits[j] = CARRY_LEFT (dummy);
1699
1700 if (j >= decimal_digits && carry == 0)
1701 {
1702 /*
1703 * All higher digits are 0 and we
1704 * no longer have a carry.
1705 *
1706 * Note: "j" is 0-based, "decimal_digits" is
1707 * 1-based.
1708 */
1709 decimal_digits = j + 1;
1710 break;
1711 }
1712 }
1713 }
1714
1715 /* Ok, now "digits" is the decimal representation, with
1716 the "decimal_digits" actual digits. Print! */
1717
1718 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1719 ;
1720
1721 for (; i >= 0; i--)
1722 {
1723 fprintf_filtered (stream, "%1d", digits[i]);
1724 }
1725 }
1726
1727 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1728
1729 void
1730 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1731 unsigned len, enum bfd_endian byte_order,
1732 bool zero_pad)
1733 {
1734 const gdb_byte *p;
1735
1736 fputs_filtered ("0x", stream);
1737 if (byte_order == BFD_ENDIAN_BIG)
1738 {
1739 p = valaddr;
1740
1741 if (!zero_pad)
1742 {
1743 /* Strip leading 0 bytes, but be sure to leave at least a
1744 single byte at the end. */
1745 for (; p < valaddr + len - 1 && !*p; ++p)
1746 ;
1747 }
1748
1749 const gdb_byte *first = p;
1750 for (;
1751 p < valaddr + len;
1752 p++)
1753 {
1754 /* When not zero-padding, use a different format for the
1755 very first byte printed. */
1756 if (!zero_pad && p == first)
1757 fprintf_filtered (stream, "%x", *p);
1758 else
1759 fprintf_filtered (stream, "%02x", *p);
1760 }
1761 }
1762 else
1763 {
1764 p = valaddr + len - 1;
1765
1766 if (!zero_pad)
1767 {
1768 /* Strip leading 0 bytes, but be sure to leave at least a
1769 single byte at the end. */
1770 for (; p >= valaddr + 1 && !*p; --p)
1771 ;
1772 }
1773
1774 const gdb_byte *first = p;
1775 for (;
1776 p >= valaddr;
1777 p--)
1778 {
1779 /* When not zero-padding, use a different format for the
1780 very first byte printed. */
1781 if (!zero_pad && p == first)
1782 fprintf_filtered (stream, "%x", *p);
1783 else
1784 fprintf_filtered (stream, "%02x", *p);
1785 }
1786 }
1787 }
1788
1789 /* VALADDR points to a char integer of LEN bytes.
1790 Print it out in appropriate language form on stream.
1791 Omit any leading zero chars. */
1792
1793 void
1794 print_char_chars (struct ui_file *stream, struct type *type,
1795 const gdb_byte *valaddr,
1796 unsigned len, enum bfd_endian byte_order)
1797 {
1798 const gdb_byte *p;
1799
1800 if (byte_order == BFD_ENDIAN_BIG)
1801 {
1802 p = valaddr;
1803 while (p < valaddr + len - 1 && *p == 0)
1804 ++p;
1805
1806 while (p < valaddr + len)
1807 {
1808 LA_EMIT_CHAR (*p, type, stream, '\'');
1809 ++p;
1810 }
1811 }
1812 else
1813 {
1814 p = valaddr + len - 1;
1815 while (p > valaddr && *p == 0)
1816 --p;
1817
1818 while (p >= valaddr)
1819 {
1820 LA_EMIT_CHAR (*p, type, stream, '\'');
1821 --p;
1822 }
1823 }
1824 }
1825
1826 /* Print function pointer with inferior address ADDRESS onto stdio
1827 stream STREAM. */
1828
1829 void
1830 print_function_pointer_address (const struct value_print_options *options,
1831 struct gdbarch *gdbarch,
1832 CORE_ADDR address,
1833 struct ui_file *stream)
1834 {
1835 CORE_ADDR func_addr
1836 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1837 current_top_target ());
1838
1839 /* If the function pointer is represented by a description, print
1840 the address of the description. */
1841 if (options->addressprint && func_addr != address)
1842 {
1843 fputs_filtered ("@", stream);
1844 fputs_filtered (paddress (gdbarch, address), stream);
1845 fputs_filtered (": ", stream);
1846 }
1847 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1848 }
1849
1850
1851 /* Print on STREAM using the given OPTIONS the index for the element
1852 at INDEX of an array whose index type is INDEX_TYPE. */
1853
1854 void
1855 maybe_print_array_index (struct type *index_type, LONGEST index,
1856 struct ui_file *stream,
1857 const struct value_print_options *options)
1858 {
1859 struct value *index_value;
1860
1861 if (!options->print_array_indexes)
1862 return;
1863
1864 index_value = value_from_longest (index_type, index);
1865
1866 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1867 }
1868
1869 /* See valprint.h. */
1870
1871 void
1872 value_print_array_elements (struct value *val, struct ui_file *stream,
1873 int recurse,
1874 const struct value_print_options *options,
1875 unsigned int i)
1876 {
1877 unsigned int things_printed = 0;
1878 unsigned len;
1879 struct type *elttype, *index_type, *base_index_type;
1880 unsigned eltlen;
1881 /* Position of the array element we are examining to see
1882 whether it is repeated. */
1883 unsigned int rep1;
1884 /* Number of repetitions we have detected so far. */
1885 unsigned int reps;
1886 LONGEST low_bound, high_bound;
1887 LONGEST low_pos, high_pos;
1888
1889 struct type *type = check_typedef (value_type (val));
1890
1891 elttype = TYPE_TARGET_TYPE (type);
1892 eltlen = type_length_units (check_typedef (elttype));
1893 index_type = TYPE_INDEX_TYPE (type);
1894
1895 if (get_array_bounds (type, &low_bound, &high_bound))
1896 {
1897 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1898 base_index_type = TYPE_TARGET_TYPE (index_type);
1899 else
1900 base_index_type = index_type;
1901
1902 /* Non-contiguous enumerations types can by used as index types
1903 in some languages (e.g. Ada). In this case, the array length
1904 shall be computed from the positions of the first and last
1905 literal in the enumeration type, and not from the values
1906 of these literals. */
1907 if (!discrete_position (base_index_type, low_bound, &low_pos)
1908 || !discrete_position (base_index_type, high_bound, &high_pos))
1909 {
1910 warning (_("unable to get positions in array, use bounds instead"));
1911 low_pos = low_bound;
1912 high_pos = high_bound;
1913 }
1914
1915 /* The array length should normally be HIGH_POS - LOW_POS + 1.
1916 But we have to be a little extra careful, because some languages
1917 such as Ada allow LOW_POS to be greater than HIGH_POS for
1918 empty arrays. In that situation, the array length is just zero,
1919 not negative! */
1920 if (low_pos > high_pos)
1921 len = 0;
1922 else
1923 len = high_pos - low_pos + 1;
1924 }
1925 else
1926 {
1927 warning (_("unable to get bounds of array, assuming null array"));
1928 low_bound = 0;
1929 len = 0;
1930 }
1931
1932 annotate_array_section_begin (i, elttype);
1933
1934 for (; i < len && things_printed < options->print_max; i++)
1935 {
1936 scoped_value_mark free_values;
1937
1938 if (i != 0)
1939 {
1940 if (options->prettyformat_arrays)
1941 {
1942 fprintf_filtered (stream, ",\n");
1943 print_spaces_filtered (2 + 2 * recurse, stream);
1944 }
1945 else
1946 fprintf_filtered (stream, ", ");
1947 }
1948 wrap_here (n_spaces (2 + 2 * recurse));
1949 maybe_print_array_index (index_type, i + low_bound,
1950 stream, options);
1951
1952 rep1 = i + 1;
1953 reps = 1;
1954 /* Only check for reps if repeat_count_threshold is not set to
1955 UINT_MAX (unlimited). */
1956 if (options->repeat_count_threshold < UINT_MAX)
1957 {
1958 while (rep1 < len
1959 && value_contents_eq (val, i * eltlen,
1960 val, rep1 * eltlen,
1961 eltlen))
1962 {
1963 ++reps;
1964 ++rep1;
1965 }
1966 }
1967
1968 struct value *element = value_from_component (val, elttype, eltlen * i);
1969 common_val_print (element, stream, recurse + 1, options,
1970 current_language);
1971
1972 if (reps > options->repeat_count_threshold)
1973 {
1974 annotate_elt_rep (reps);
1975 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1976 metadata_style.style ().ptr (), reps, nullptr);
1977 annotate_elt_rep_end ();
1978
1979 i = rep1 - 1;
1980 things_printed += options->repeat_count_threshold;
1981 }
1982 else
1983 {
1984 annotate_elt ();
1985 things_printed++;
1986 }
1987 }
1988 annotate_array_section_end ();
1989 if (i < len)
1990 fprintf_filtered (stream, "...");
1991 }
1992
1993 /* Read LEN bytes of target memory at address MEMADDR, placing the
1994 results in GDB's memory at MYADDR. Returns a count of the bytes
1995 actually read, and optionally a target_xfer_status value in the
1996 location pointed to by ERRPTR if ERRPTR is non-null. */
1997
1998 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1999 function be eliminated. */
2000
2001 static int
2002 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2003 int len, int *errptr)
2004 {
2005 int nread; /* Number of bytes actually read. */
2006 int errcode; /* Error from last read. */
2007
2008 /* First try a complete read. */
2009 errcode = target_read_memory (memaddr, myaddr, len);
2010 if (errcode == 0)
2011 {
2012 /* Got it all. */
2013 nread = len;
2014 }
2015 else
2016 {
2017 /* Loop, reading one byte at a time until we get as much as we can. */
2018 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2019 {
2020 errcode = target_read_memory (memaddr++, myaddr++, 1);
2021 }
2022 /* If an error, the last read was unsuccessful, so adjust count. */
2023 if (errcode != 0)
2024 {
2025 nread--;
2026 }
2027 }
2028 if (errptr != NULL)
2029 {
2030 *errptr = errcode;
2031 }
2032 return (nread);
2033 }
2034
2035 /* Read a string from the inferior, at ADDR, with LEN characters of
2036 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2037 will be set to a newly allocated buffer containing the string, and
2038 BYTES_READ will be set to the number of bytes read. Returns 0 on
2039 success, or a target_xfer_status on failure.
2040
2041 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2042 (including eventual NULs in the middle or end of the string).
2043
2044 If LEN is -1, stops at the first null character (not necessarily
2045 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2046 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2047 the string.
2048
2049 Unless an exception is thrown, BUFFER will always be allocated, even on
2050 failure. In this case, some characters might have been read before the
2051 failure happened. Check BYTES_READ to recognize this situation.
2052
2053 Note: There was a FIXME asking to make this code use target_read_string,
2054 but this function is more general (can read past null characters, up to
2055 given LEN). Besides, it is used much more often than target_read_string
2056 so it is more tested. Perhaps callers of target_read_string should use
2057 this function instead? */
2058
2059 int
2060 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2061 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2062 int *bytes_read)
2063 {
2064 int errcode; /* Errno returned from bad reads. */
2065 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2066 gdb_byte *bufptr; /* Pointer to next available byte in
2067 buffer. */
2068
2069 /* Loop until we either have all the characters, or we encounter
2070 some error, such as bumping into the end of the address space. */
2071
2072 buffer->reset (nullptr);
2073
2074 if (len > 0)
2075 {
2076 /* We want fetchlimit chars, so we might as well read them all in
2077 one operation. */
2078 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2079
2080 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2081 bufptr = buffer->get ();
2082
2083 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2084 / width;
2085 addr += nfetch * width;
2086 bufptr += nfetch * width;
2087 }
2088 else if (len == -1)
2089 {
2090 unsigned long bufsize = 0;
2091 unsigned int chunksize; /* Size of each fetch, in chars. */
2092 int found_nul; /* Non-zero if we found the nul char. */
2093 gdb_byte *limit; /* First location past end of fetch buffer. */
2094
2095 found_nul = 0;
2096 /* We are looking for a NUL terminator to end the fetching, so we
2097 might as well read in blocks that are large enough to be efficient,
2098 but not so large as to be slow if fetchlimit happens to be large.
2099 So we choose the minimum of 8 and fetchlimit. We used to use 200
2100 instead of 8 but 200 is way too big for remote debugging over a
2101 serial line. */
2102 chunksize = std::min (8u, fetchlimit);
2103
2104 do
2105 {
2106 QUIT;
2107 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2108
2109 if (*buffer == NULL)
2110 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2111 else
2112 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2113 (nfetch + bufsize) * width));
2114
2115 bufptr = buffer->get () + bufsize * width;
2116 bufsize += nfetch;
2117
2118 /* Read as much as we can. */
2119 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2120 / width;
2121
2122 /* Scan this chunk for the null character that terminates the string
2123 to print. If found, we don't need to fetch any more. Note
2124 that bufptr is explicitly left pointing at the next character
2125 after the null character, or at the next character after the end
2126 of the buffer. */
2127
2128 limit = bufptr + nfetch * width;
2129 while (bufptr < limit)
2130 {
2131 unsigned long c;
2132
2133 c = extract_unsigned_integer (bufptr, width, byte_order);
2134 addr += width;
2135 bufptr += width;
2136 if (c == 0)
2137 {
2138 /* We don't care about any error which happened after
2139 the NUL terminator. */
2140 errcode = 0;
2141 found_nul = 1;
2142 break;
2143 }
2144 }
2145 }
2146 while (errcode == 0 /* no error */
2147 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2148 && !found_nul); /* haven't found NUL yet */
2149 }
2150 else
2151 { /* Length of string is really 0! */
2152 /* We always allocate *buffer. */
2153 buffer->reset ((gdb_byte *) xmalloc (1));
2154 bufptr = buffer->get ();
2155 errcode = 0;
2156 }
2157
2158 /* bufptr and addr now point immediately beyond the last byte which we
2159 consider part of the string (including a '\0' which ends the string). */
2160 *bytes_read = bufptr - buffer->get ();
2161
2162 QUIT;
2163
2164 return errcode;
2165 }
2166
2167 /* Return true if print_wchar can display W without resorting to a
2168 numeric escape, false otherwise. */
2169
2170 static int
2171 wchar_printable (gdb_wchar_t w)
2172 {
2173 return (gdb_iswprint (w)
2174 || w == LCST ('\a') || w == LCST ('\b')
2175 || w == LCST ('\f') || w == LCST ('\n')
2176 || w == LCST ('\r') || w == LCST ('\t')
2177 || w == LCST ('\v'));
2178 }
2179
2180 /* A helper function that converts the contents of STRING to wide
2181 characters and then appends them to OUTPUT. */
2182
2183 static void
2184 append_string_as_wide (const char *string,
2185 struct obstack *output)
2186 {
2187 for (; *string; ++string)
2188 {
2189 gdb_wchar_t w = gdb_btowc (*string);
2190 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2191 }
2192 }
2193
2194 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2195 original (target) bytes representing the character, ORIG_LEN is the
2196 number of valid bytes. WIDTH is the number of bytes in a base
2197 characters of the type. OUTPUT is an obstack to which wide
2198 characters are emitted. QUOTER is a (narrow) character indicating
2199 the style of quotes surrounding the character to be printed.
2200 NEED_ESCAPE is an in/out flag which is used to track numeric
2201 escapes across calls. */
2202
2203 static void
2204 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2205 int orig_len, int width,
2206 enum bfd_endian byte_order,
2207 struct obstack *output,
2208 int quoter, int *need_escapep)
2209 {
2210 int need_escape = *need_escapep;
2211
2212 *need_escapep = 0;
2213
2214 /* iswprint implementation on Windows returns 1 for tab character.
2215 In order to avoid different printout on this host, we explicitly
2216 use wchar_printable function. */
2217 switch (w)
2218 {
2219 case LCST ('\a'):
2220 obstack_grow_wstr (output, LCST ("\\a"));
2221 break;
2222 case LCST ('\b'):
2223 obstack_grow_wstr (output, LCST ("\\b"));
2224 break;
2225 case LCST ('\f'):
2226 obstack_grow_wstr (output, LCST ("\\f"));
2227 break;
2228 case LCST ('\n'):
2229 obstack_grow_wstr (output, LCST ("\\n"));
2230 break;
2231 case LCST ('\r'):
2232 obstack_grow_wstr (output, LCST ("\\r"));
2233 break;
2234 case LCST ('\t'):
2235 obstack_grow_wstr (output, LCST ("\\t"));
2236 break;
2237 case LCST ('\v'):
2238 obstack_grow_wstr (output, LCST ("\\v"));
2239 break;
2240 default:
2241 {
2242 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2243 && w != LCST ('8')
2244 && w != LCST ('9'))))
2245 {
2246 gdb_wchar_t wchar = w;
2247
2248 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2249 obstack_grow_wstr (output, LCST ("\\"));
2250 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2251 }
2252 else
2253 {
2254 int i;
2255
2256 for (i = 0; i + width <= orig_len; i += width)
2257 {
2258 char octal[30];
2259 ULONGEST value;
2260
2261 value = extract_unsigned_integer (&orig[i], width,
2262 byte_order);
2263 /* If the value fits in 3 octal digits, print it that
2264 way. Otherwise, print it as a hex escape. */
2265 if (value <= 0777)
2266 xsnprintf (octal, sizeof (octal), "\\%.3o",
2267 (int) (value & 0777));
2268 else
2269 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2270 append_string_as_wide (octal, output);
2271 }
2272 /* If we somehow have extra bytes, print them now. */
2273 while (i < orig_len)
2274 {
2275 char octal[5];
2276
2277 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2278 append_string_as_wide (octal, output);
2279 ++i;
2280 }
2281
2282 *need_escapep = 1;
2283 }
2284 break;
2285 }
2286 }
2287 }
2288
2289 /* Print the character C on STREAM as part of the contents of a
2290 literal string whose delimiter is QUOTER. ENCODING names the
2291 encoding of C. */
2292
2293 void
2294 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2295 int quoter, const char *encoding)
2296 {
2297 enum bfd_endian byte_order
2298 = type_byte_order (type);
2299 gdb_byte *c_buf;
2300 int need_escape = 0;
2301
2302 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2303 pack_long (c_buf, type, c);
2304
2305 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2306
2307 /* This holds the printable form of the wchar_t data. */
2308 auto_obstack wchar_buf;
2309
2310 while (1)
2311 {
2312 int num_chars;
2313 gdb_wchar_t *chars;
2314 const gdb_byte *buf;
2315 size_t buflen;
2316 int print_escape = 1;
2317 enum wchar_iterate_result result;
2318
2319 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2320 if (num_chars < 0)
2321 break;
2322 if (num_chars > 0)
2323 {
2324 /* If all characters are printable, print them. Otherwise,
2325 we're going to have to print an escape sequence. We
2326 check all characters because we want to print the target
2327 bytes in the escape sequence, and we don't know character
2328 boundaries there. */
2329 int i;
2330
2331 print_escape = 0;
2332 for (i = 0; i < num_chars; ++i)
2333 if (!wchar_printable (chars[i]))
2334 {
2335 print_escape = 1;
2336 break;
2337 }
2338
2339 if (!print_escape)
2340 {
2341 for (i = 0; i < num_chars; ++i)
2342 print_wchar (chars[i], buf, buflen,
2343 TYPE_LENGTH (type), byte_order,
2344 &wchar_buf, quoter, &need_escape);
2345 }
2346 }
2347
2348 /* This handles the NUM_CHARS == 0 case as well. */
2349 if (print_escape)
2350 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2351 byte_order, &wchar_buf, quoter, &need_escape);
2352 }
2353
2354 /* The output in the host encoding. */
2355 auto_obstack output;
2356
2357 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2358 (gdb_byte *) obstack_base (&wchar_buf),
2359 obstack_object_size (&wchar_buf),
2360 sizeof (gdb_wchar_t), &output, translit_char);
2361 obstack_1grow (&output, '\0');
2362
2363 fputs_filtered ((const char *) obstack_base (&output), stream);
2364 }
2365
2366 /* Return the repeat count of the next character/byte in ITER,
2367 storing the result in VEC. */
2368
2369 static int
2370 count_next_character (wchar_iterator *iter,
2371 std::vector<converted_character> *vec)
2372 {
2373 struct converted_character *current;
2374
2375 if (vec->empty ())
2376 {
2377 struct converted_character tmp;
2378 gdb_wchar_t *chars;
2379
2380 tmp.num_chars
2381 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2382 if (tmp.num_chars > 0)
2383 {
2384 gdb_assert (tmp.num_chars < MAX_WCHARS);
2385 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2386 }
2387 vec->push_back (tmp);
2388 }
2389
2390 current = &vec->back ();
2391
2392 /* Count repeated characters or bytes. */
2393 current->repeat_count = 1;
2394 if (current->num_chars == -1)
2395 {
2396 /* EOF */
2397 return -1;
2398 }
2399 else
2400 {
2401 gdb_wchar_t *chars;
2402 struct converted_character d;
2403 int repeat;
2404
2405 d.repeat_count = 0;
2406
2407 while (1)
2408 {
2409 /* Get the next character. */
2410 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2411
2412 /* If a character was successfully converted, save the character
2413 into the converted character. */
2414 if (d.num_chars > 0)
2415 {
2416 gdb_assert (d.num_chars < MAX_WCHARS);
2417 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2418 }
2419
2420 /* Determine if the current character is the same as this
2421 new character. */
2422 if (d.num_chars == current->num_chars && d.result == current->result)
2423 {
2424 /* There are two cases to consider:
2425
2426 1) Equality of converted character (num_chars > 0)
2427 2) Equality of non-converted character (num_chars == 0) */
2428 if ((current->num_chars > 0
2429 && memcmp (current->chars, d.chars,
2430 WCHAR_BUFLEN (current->num_chars)) == 0)
2431 || (current->num_chars == 0
2432 && current->buflen == d.buflen
2433 && memcmp (current->buf, d.buf, current->buflen) == 0))
2434 ++current->repeat_count;
2435 else
2436 break;
2437 }
2438 else
2439 break;
2440 }
2441
2442 /* Push this next converted character onto the result vector. */
2443 repeat = current->repeat_count;
2444 vec->push_back (d);
2445 return repeat;
2446 }
2447 }
2448
2449 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2450 character to use with string output. WIDTH is the size of the output
2451 character type. BYTE_ORDER is the target byte order. OPTIONS
2452 is the user's print options. */
2453
2454 static void
2455 print_converted_chars_to_obstack (struct obstack *obstack,
2456 const std::vector<converted_character> &chars,
2457 int quote_char, int width,
2458 enum bfd_endian byte_order,
2459 const struct value_print_options *options)
2460 {
2461 unsigned int idx;
2462 const converted_character *elem;
2463 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2464 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2465 int need_escape = 0;
2466
2467 /* Set the start state. */
2468 idx = 0;
2469 last = state = START;
2470 elem = NULL;
2471
2472 while (1)
2473 {
2474 switch (state)
2475 {
2476 case START:
2477 /* Nothing to do. */
2478 break;
2479
2480 case SINGLE:
2481 {
2482 int j;
2483
2484 /* We are outputting a single character
2485 (< options->repeat_count_threshold). */
2486
2487 if (last != SINGLE)
2488 {
2489 /* We were outputting some other type of content, so we
2490 must output and a comma and a quote. */
2491 if (last != START)
2492 obstack_grow_wstr (obstack, LCST (", "));
2493 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2494 }
2495 /* Output the character. */
2496 for (j = 0; j < elem->repeat_count; ++j)
2497 {
2498 if (elem->result == wchar_iterate_ok)
2499 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2500 byte_order, obstack, quote_char, &need_escape);
2501 else
2502 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2503 byte_order, obstack, quote_char, &need_escape);
2504 }
2505 }
2506 break;
2507
2508 case REPEAT:
2509 {
2510 int j;
2511
2512 /* We are outputting a character with a repeat count
2513 greater than options->repeat_count_threshold. */
2514
2515 if (last == SINGLE)
2516 {
2517 /* We were outputting a single string. Terminate the
2518 string. */
2519 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2520 }
2521 if (last != START)
2522 obstack_grow_wstr (obstack, LCST (", "));
2523
2524 /* Output the character and repeat string. */
2525 obstack_grow_wstr (obstack, LCST ("'"));
2526 if (elem->result == wchar_iterate_ok)
2527 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2528 byte_order, obstack, quote_char, &need_escape);
2529 else
2530 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2531 byte_order, obstack, quote_char, &need_escape);
2532 obstack_grow_wstr (obstack, LCST ("'"));
2533 std::string s = string_printf (_(" <repeats %u times>"),
2534 elem->repeat_count);
2535 for (j = 0; s[j]; ++j)
2536 {
2537 gdb_wchar_t w = gdb_btowc (s[j]);
2538 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2539 }
2540 }
2541 break;
2542
2543 case INCOMPLETE:
2544 /* We are outputting an incomplete sequence. */
2545 if (last == SINGLE)
2546 {
2547 /* If we were outputting a string of SINGLE characters,
2548 terminate the quote. */
2549 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2550 }
2551 if (last != START)
2552 obstack_grow_wstr (obstack, LCST (", "));
2553
2554 /* Output the incomplete sequence string. */
2555 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2556 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2557 obstack, 0, &need_escape);
2558 obstack_grow_wstr (obstack, LCST (">"));
2559
2560 /* We do not attempt to output anything after this. */
2561 state = FINISH;
2562 break;
2563
2564 case FINISH:
2565 /* All done. If we were outputting a string of SINGLE
2566 characters, the string must be terminated. Otherwise,
2567 REPEAT and INCOMPLETE are always left properly terminated. */
2568 if (last == SINGLE)
2569 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2570
2571 return;
2572 }
2573
2574 /* Get the next element and state. */
2575 last = state;
2576 if (state != FINISH)
2577 {
2578 elem = &chars[idx++];
2579 switch (elem->result)
2580 {
2581 case wchar_iterate_ok:
2582 case wchar_iterate_invalid:
2583 if (elem->repeat_count > options->repeat_count_threshold)
2584 state = REPEAT;
2585 else
2586 state = SINGLE;
2587 break;
2588
2589 case wchar_iterate_incomplete:
2590 state = INCOMPLETE;
2591 break;
2592
2593 case wchar_iterate_eof:
2594 state = FINISH;
2595 break;
2596 }
2597 }
2598 }
2599 }
2600
2601 /* Print the character string STRING, printing at most LENGTH
2602 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2603 the type of each character. OPTIONS holds the printing options;
2604 printing stops early if the number hits print_max; repeat counts
2605 are printed as appropriate. Print ellipses at the end if we had to
2606 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2607 QUOTE_CHAR is the character to print at each end of the string. If
2608 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2609 omitted. */
2610
2611 void
2612 generic_printstr (struct ui_file *stream, struct type *type,
2613 const gdb_byte *string, unsigned int length,
2614 const char *encoding, int force_ellipses,
2615 int quote_char, int c_style_terminator,
2616 const struct value_print_options *options)
2617 {
2618 enum bfd_endian byte_order = type_byte_order (type);
2619 unsigned int i;
2620 int width = TYPE_LENGTH (type);
2621 int finished = 0;
2622 struct converted_character *last;
2623
2624 if (length == -1)
2625 {
2626 unsigned long current_char = 1;
2627
2628 for (i = 0; current_char; ++i)
2629 {
2630 QUIT;
2631 current_char = extract_unsigned_integer (string + i * width,
2632 width, byte_order);
2633 }
2634 length = i;
2635 }
2636
2637 /* If the string was not truncated due to `set print elements', and
2638 the last byte of it is a null, we don't print that, in
2639 traditional C style. */
2640 if (c_style_terminator
2641 && !force_ellipses
2642 && length > 0
2643 && (extract_unsigned_integer (string + (length - 1) * width,
2644 width, byte_order) == 0))
2645 length--;
2646
2647 if (length == 0)
2648 {
2649 fputs_filtered ("\"\"", stream);
2650 return;
2651 }
2652
2653 /* Arrange to iterate over the characters, in wchar_t form. */
2654 wchar_iterator iter (string, length * width, encoding, width);
2655 std::vector<converted_character> converted_chars;
2656
2657 /* Convert characters until the string is over or the maximum
2658 number of printed characters has been reached. */
2659 i = 0;
2660 while (i < options->print_max)
2661 {
2662 int r;
2663
2664 QUIT;
2665
2666 /* Grab the next character and repeat count. */
2667 r = count_next_character (&iter, &converted_chars);
2668
2669 /* If less than zero, the end of the input string was reached. */
2670 if (r < 0)
2671 break;
2672
2673 /* Otherwise, add the count to the total print count and get
2674 the next character. */
2675 i += r;
2676 }
2677
2678 /* Get the last element and determine if the entire string was
2679 processed. */
2680 last = &converted_chars.back ();
2681 finished = (last->result == wchar_iterate_eof);
2682
2683 /* Ensure that CONVERTED_CHARS is terminated. */
2684 last->result = wchar_iterate_eof;
2685
2686 /* WCHAR_BUF is the obstack we use to represent the string in
2687 wchar_t form. */
2688 auto_obstack wchar_buf;
2689
2690 /* Print the output string to the obstack. */
2691 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2692 width, byte_order, options);
2693
2694 if (force_ellipses || !finished)
2695 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2696
2697 /* OUTPUT is where we collect `char's for printing. */
2698 auto_obstack output;
2699
2700 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2701 (gdb_byte *) obstack_base (&wchar_buf),
2702 obstack_object_size (&wchar_buf),
2703 sizeof (gdb_wchar_t), &output, translit_char);
2704 obstack_1grow (&output, '\0');
2705
2706 fputs_filtered ((const char *) obstack_base (&output), stream);
2707 }
2708
2709 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2710 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2711 stops at the first null byte, otherwise printing proceeds (including null
2712 bytes) until either print_max or LEN characters have been printed,
2713 whichever is smaller. ENCODING is the name of the string's
2714 encoding. It can be NULL, in which case the target encoding is
2715 assumed. */
2716
2717 int
2718 val_print_string (struct type *elttype, const char *encoding,
2719 CORE_ADDR addr, int len,
2720 struct ui_file *stream,
2721 const struct value_print_options *options)
2722 {
2723 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2724 int err; /* Non-zero if we got a bad read. */
2725 int found_nul; /* Non-zero if we found the nul char. */
2726 unsigned int fetchlimit; /* Maximum number of chars to print. */
2727 int bytes_read;
2728 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2729 struct gdbarch *gdbarch = get_type_arch (elttype);
2730 enum bfd_endian byte_order = type_byte_order (elttype);
2731 int width = TYPE_LENGTH (elttype);
2732
2733 /* First we need to figure out the limit on the number of characters we are
2734 going to attempt to fetch and print. This is actually pretty simple. If
2735 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2736 LEN is -1, then the limit is print_max. This is true regardless of
2737 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2738 because finding the null byte (or available memory) is what actually
2739 limits the fetch. */
2740
2741 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2742 options->print_max));
2743
2744 err = read_string (addr, len, width, fetchlimit, byte_order,
2745 &buffer, &bytes_read);
2746
2747 addr += bytes_read;
2748
2749 /* We now have either successfully filled the buffer to fetchlimit,
2750 or terminated early due to an error or finding a null char when
2751 LEN is -1. */
2752
2753 /* Determine found_nul by looking at the last character read. */
2754 found_nul = 0;
2755 if (bytes_read >= width)
2756 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2757 width, byte_order) == 0;
2758 if (len == -1 && !found_nul)
2759 {
2760 gdb_byte *peekbuf;
2761
2762 /* We didn't find a NUL terminator we were looking for. Attempt
2763 to peek at the next character. If not successful, or it is not
2764 a null byte, then force ellipsis to be printed. */
2765
2766 peekbuf = (gdb_byte *) alloca (width);
2767
2768 if (target_read_memory (addr, peekbuf, width) == 0
2769 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2770 force_ellipsis = 1;
2771 }
2772 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2773 {
2774 /* Getting an error when we have a requested length, or fetching less
2775 than the number of characters actually requested, always make us
2776 print ellipsis. */
2777 force_ellipsis = 1;
2778 }
2779
2780 /* If we get an error before fetching anything, don't print a string.
2781 But if we fetch something and then get an error, print the string
2782 and then the error message. */
2783 if (err == 0 || bytes_read > 0)
2784 {
2785 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2786 encoding, force_ellipsis, options);
2787 }
2788
2789 if (err != 0)
2790 {
2791 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2792
2793 fprintf_filtered (stream, _("<error: %ps>"),
2794 styled_string (metadata_style.style (),
2795 str.c_str ()));
2796 }
2797
2798 return (bytes_read / width);
2799 }
2800
2801 /* Handle 'show print max-depth'. */
2802
2803 static void
2804 show_print_max_depth (struct ui_file *file, int from_tty,
2805 struct cmd_list_element *c, const char *value)
2806 {
2807 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2808 }
2809 \f
2810
2811 /* The 'set input-radix' command writes to this auxiliary variable.
2812 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2813 it is left unchanged. */
2814
2815 static unsigned input_radix_1 = 10;
2816
2817 /* Validate an input or output radix setting, and make sure the user
2818 knows what they really did here. Radix setting is confusing, e.g.
2819 setting the input radix to "10" never changes it! */
2820
2821 static void
2822 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2823 {
2824 set_input_radix_1 (from_tty, input_radix_1);
2825 }
2826
2827 static void
2828 set_input_radix_1 (int from_tty, unsigned radix)
2829 {
2830 /* We don't currently disallow any input radix except 0 or 1, which don't
2831 make any mathematical sense. In theory, we can deal with any input
2832 radix greater than 1, even if we don't have unique digits for every
2833 value from 0 to radix-1, but in practice we lose on large radix values.
2834 We should either fix the lossage or restrict the radix range more.
2835 (FIXME). */
2836
2837 if (radix < 2)
2838 {
2839 input_radix_1 = input_radix;
2840 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2841 radix);
2842 }
2843 input_radix_1 = input_radix = radix;
2844 if (from_tty)
2845 {
2846 printf_filtered (_("Input radix now set to "
2847 "decimal %u, hex %x, octal %o.\n"),
2848 radix, radix, radix);
2849 }
2850 }
2851
2852 /* The 'set output-radix' command writes to this auxiliary variable.
2853 If the requested radix is valid, OUTPUT_RADIX is updated,
2854 otherwise, it is left unchanged. */
2855
2856 static unsigned output_radix_1 = 10;
2857
2858 static void
2859 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2860 {
2861 set_output_radix_1 (from_tty, output_radix_1);
2862 }
2863
2864 static void
2865 set_output_radix_1 (int from_tty, unsigned radix)
2866 {
2867 /* Validate the radix and disallow ones that we aren't prepared to
2868 handle correctly, leaving the radix unchanged. */
2869 switch (radix)
2870 {
2871 case 16:
2872 user_print_options.output_format = 'x'; /* hex */
2873 break;
2874 case 10:
2875 user_print_options.output_format = 0; /* decimal */
2876 break;
2877 case 8:
2878 user_print_options.output_format = 'o'; /* octal */
2879 break;
2880 default:
2881 output_radix_1 = output_radix;
2882 error (_("Unsupported output radix ``decimal %u''; "
2883 "output radix unchanged."),
2884 radix);
2885 }
2886 output_radix_1 = output_radix = radix;
2887 if (from_tty)
2888 {
2889 printf_filtered (_("Output radix now set to "
2890 "decimal %u, hex %x, octal %o.\n"),
2891 radix, radix, radix);
2892 }
2893 }
2894
2895 /* Set both the input and output radix at once. Try to set the output radix
2896 first, since it has the most restrictive range. An radix that is valid as
2897 an output radix is also valid as an input radix.
2898
2899 It may be useful to have an unusual input radix. If the user wishes to
2900 set an input radix that is not valid as an output radix, he needs to use
2901 the 'set input-radix' command. */
2902
2903 static void
2904 set_radix (const char *arg, int from_tty)
2905 {
2906 unsigned radix;
2907
2908 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2909 set_output_radix_1 (0, radix);
2910 set_input_radix_1 (0, radix);
2911 if (from_tty)
2912 {
2913 printf_filtered (_("Input and output radices now set to "
2914 "decimal %u, hex %x, octal %o.\n"),
2915 radix, radix, radix);
2916 }
2917 }
2918
2919 /* Show both the input and output radices. */
2920
2921 static void
2922 show_radix (const char *arg, int from_tty)
2923 {
2924 if (from_tty)
2925 {
2926 if (input_radix == output_radix)
2927 {
2928 printf_filtered (_("Input and output radices set to "
2929 "decimal %u, hex %x, octal %o.\n"),
2930 input_radix, input_radix, input_radix);
2931 }
2932 else
2933 {
2934 printf_filtered (_("Input radix set to decimal "
2935 "%u, hex %x, octal %o.\n"),
2936 input_radix, input_radix, input_radix);
2937 printf_filtered (_("Output radix set to decimal "
2938 "%u, hex %x, octal %o.\n"),
2939 output_radix, output_radix, output_radix);
2940 }
2941 }
2942 }
2943 \f
2944
2945 /* Controls printing of vtbl's. */
2946 static void
2947 show_vtblprint (struct ui_file *file, int from_tty,
2948 struct cmd_list_element *c, const char *value)
2949 {
2950 fprintf_filtered (file, _("\
2951 Printing of C++ virtual function tables is %s.\n"),
2952 value);
2953 }
2954
2955 /* Controls looking up an object's derived type using what we find in
2956 its vtables. */
2957 static void
2958 show_objectprint (struct ui_file *file, int from_tty,
2959 struct cmd_list_element *c,
2960 const char *value)
2961 {
2962 fprintf_filtered (file, _("\
2963 Printing of object's derived type based on vtable info is %s.\n"),
2964 value);
2965 }
2966
2967 static void
2968 show_static_field_print (struct ui_file *file, int from_tty,
2969 struct cmd_list_element *c,
2970 const char *value)
2971 {
2972 fprintf_filtered (file,
2973 _("Printing of C++ static members is %s.\n"),
2974 value);
2975 }
2976
2977 \f
2978
2979 /* A couple typedefs to make writing the options a bit more
2980 convenient. */
2981 using boolean_option_def
2982 = gdb::option::boolean_option_def<value_print_options>;
2983 using uinteger_option_def
2984 = gdb::option::uinteger_option_def<value_print_options>;
2985 using zuinteger_unlimited_option_def
2986 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2987
2988 /* Definitions of options for the "print" and "compile print"
2989 commands. */
2990 static const gdb::option::option_def value_print_option_defs[] = {
2991
2992 boolean_option_def {
2993 "address",
2994 [] (value_print_options *opt) { return &opt->addressprint; },
2995 show_addressprint, /* show_cmd_cb */
2996 N_("Set printing of addresses."),
2997 N_("Show printing of addresses."),
2998 NULL, /* help_doc */
2999 },
3000
3001 boolean_option_def {
3002 "array",
3003 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3004 show_prettyformat_arrays, /* show_cmd_cb */
3005 N_("Set pretty formatting of arrays."),
3006 N_("Show pretty formatting of arrays."),
3007 NULL, /* help_doc */
3008 },
3009
3010 boolean_option_def {
3011 "array-indexes",
3012 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3013 show_print_array_indexes, /* show_cmd_cb */
3014 N_("Set printing of array indexes."),
3015 N_("Show printing of array indexes."),
3016 NULL, /* help_doc */
3017 },
3018
3019 uinteger_option_def {
3020 "elements",
3021 [] (value_print_options *opt) { return &opt->print_max; },
3022 show_print_max, /* show_cmd_cb */
3023 N_("Set limit on string chars or array elements to print."),
3024 N_("Show limit on string chars or array elements to print."),
3025 N_("\"unlimited\" causes there to be no limit."),
3026 },
3027
3028 zuinteger_unlimited_option_def {
3029 "max-depth",
3030 [] (value_print_options *opt) { return &opt->max_depth; },
3031 show_print_max_depth, /* show_cmd_cb */
3032 N_("Set maximum print depth for nested structures, unions and arrays."),
3033 N_("Show maximum print depth for nested structures, unions, and arrays."),
3034 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3035 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3036 Use \"unlimited\" to print the complete structure.")
3037 },
3038
3039 boolean_option_def {
3040 "null-stop",
3041 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3042 show_stop_print_at_null, /* show_cmd_cb */
3043 N_("Set printing of char arrays to stop at first null char."),
3044 N_("Show printing of char arrays to stop at first null char."),
3045 NULL, /* help_doc */
3046 },
3047
3048 boolean_option_def {
3049 "object",
3050 [] (value_print_options *opt) { return &opt->objectprint; },
3051 show_objectprint, /* show_cmd_cb */
3052 _("Set printing of C++ virtual function tables."),
3053 _("Show printing of C++ virtual function tables."),
3054 NULL, /* help_doc */
3055 },
3056
3057 boolean_option_def {
3058 "pretty",
3059 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3060 show_prettyformat_structs, /* show_cmd_cb */
3061 N_("Set pretty formatting of structures."),
3062 N_("Show pretty formatting of structures."),
3063 NULL, /* help_doc */
3064 },
3065
3066 boolean_option_def {
3067 "raw-values",
3068 [] (value_print_options *opt) { return &opt->raw; },
3069 NULL, /* show_cmd_cb */
3070 N_("Set whether to print values in raw form."),
3071 N_("Show whether to print values in raw form."),
3072 N_("If set, values are printed in raw form, bypassing any\n\
3073 pretty-printers for that value.")
3074 },
3075
3076 uinteger_option_def {
3077 "repeats",
3078 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3079 show_repeat_count_threshold, /* show_cmd_cb */
3080 N_("Set threshold for repeated print elements."),
3081 N_("Show threshold for repeated print elements."),
3082 N_("\"unlimited\" causes all elements to be individually printed."),
3083 },
3084
3085 boolean_option_def {
3086 "static-members",
3087 [] (value_print_options *opt) { return &opt->static_field_print; },
3088 show_static_field_print, /* show_cmd_cb */
3089 N_("Set printing of C++ static members."),
3090 N_("Show printing of C++ static members."),
3091 NULL, /* help_doc */
3092 },
3093
3094 boolean_option_def {
3095 "symbol",
3096 [] (value_print_options *opt) { return &opt->symbol_print; },
3097 show_symbol_print, /* show_cmd_cb */
3098 N_("Set printing of symbol names when printing pointers."),
3099 N_("Show printing of symbol names when printing pointers."),
3100 NULL, /* help_doc */
3101 },
3102
3103 boolean_option_def {
3104 "union",
3105 [] (value_print_options *opt) { return &opt->unionprint; },
3106 show_unionprint, /* show_cmd_cb */
3107 N_("Set printing of unions interior to structures."),
3108 N_("Show printing of unions interior to structures."),
3109 NULL, /* help_doc */
3110 },
3111
3112 boolean_option_def {
3113 "vtbl",
3114 [] (value_print_options *opt) { return &opt->vtblprint; },
3115 show_vtblprint, /* show_cmd_cb */
3116 N_("Set printing of C++ virtual function tables."),
3117 N_("Show printing of C++ virtual function tables."),
3118 NULL, /* help_doc */
3119 },
3120 };
3121
3122 /* See valprint.h. */
3123
3124 gdb::option::option_def_group
3125 make_value_print_options_def_group (value_print_options *opts)
3126 {
3127 return {{value_print_option_defs}, opts};
3128 }
3129
3130 void _initialize_valprint ();
3131 void
3132 _initialize_valprint ()
3133 {
3134 cmd_list_element *cmd;
3135
3136 add_basic_prefix_cmd ("print", no_class,
3137 _("Generic command for setting how things print."),
3138 &setprintlist, "set print ", 0, &setlist);
3139 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3140 /* Prefer set print to set prompt. */
3141 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3142
3143 add_show_prefix_cmd ("print", no_class,
3144 _("Generic command for showing print settings."),
3145 &showprintlist, "show print ", 0, &showlist);
3146 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3147 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3148
3149 cmd = add_basic_prefix_cmd ("raw", no_class,
3150 _("\
3151 Generic command for setting what things to print in \"raw\" mode."),
3152 &setprintrawlist, "set print raw ", 0,
3153 &setprintlist);
3154 deprecate_cmd (cmd, nullptr);
3155
3156 cmd = add_show_prefix_cmd ("raw", no_class,
3157 _("Generic command for showing \"print raw\" settings."),
3158 &showprintrawlist, "show print raw ", 0,
3159 &showprintlist);
3160 deprecate_cmd (cmd, nullptr);
3161
3162 gdb::option::add_setshow_cmds_for_options
3163 (class_support, &user_print_options, value_print_option_defs,
3164 &setprintlist, &showprintlist);
3165
3166 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3167 _("\
3168 Set default input radix for entering numbers."), _("\
3169 Show default input radix for entering numbers."), NULL,
3170 set_input_radix,
3171 show_input_radix,
3172 &setlist, &showlist);
3173
3174 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3175 _("\
3176 Set default output radix for printing of values."), _("\
3177 Show default output radix for printing of values."), NULL,
3178 set_output_radix,
3179 show_output_radix,
3180 &setlist, &showlist);
3181
3182 /* The "set radix" and "show radix" commands are special in that
3183 they are like normal set and show commands but allow two normally
3184 independent variables to be either set or shown with a single
3185 command. So the usual deprecated_add_set_cmd() and [deleted]
3186 add_show_from_set() commands aren't really appropriate. */
3187 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3188 longer true - show can display anything. */
3189 add_cmd ("radix", class_support, set_radix, _("\
3190 Set default input and output number radices.\n\
3191 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3192 Without an argument, sets both radices back to the default value of 10."),
3193 &setlist);
3194 add_cmd ("radix", class_support, show_radix, _("\
3195 Show the default input and output number radices.\n\
3196 Use 'show input-radix' or 'show output-radix' to independently show each."),
3197 &showlist);
3198 }