]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
* breakpoint.c:
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
70 static void
71 show_print_max (struct ui_file *file, int from_tty,
72 struct cmd_list_element *c, const char *value)
73 {
74 fprintf_filtered (file, _("\
75 Limit on string chars or array elements to print is %s.\n"),
76 value);
77 }
78
79
80 /* Default input and output radixes, and output format letter. */
81
82 unsigned input_radix = 10;
83 static void
84 show_input_radix (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Default input radix for entering numbers is %s.\n"),
89 value);
90 }
91
92 unsigned output_radix = 10;
93 static void
94 show_output_radix (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Default output radix for printing of values is %s.\n"),
99 value);
100 }
101 int output_format = 0;
102
103 /* By default we print arrays without printing the index of each element in
104 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
105
106 static int print_array_indexes = 0;
107 static void
108 show_print_array_indexes (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
112 }
113
114 /* Print repeat counts if there are more than this many repetitions of an
115 element in an array. Referenced by the low level language dependent
116 print routines. */
117
118 unsigned int repeat_count_threshold = 10;
119 static void
120 show_repeat_count_threshold (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
124 value);
125 }
126
127 /* If nonzero, stops printing of char arrays at first null. */
128
129 int stop_print_at_null;
130 static void
131 show_stop_print_at_null (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file, _("\
135 Printing of char arrays to stop at first null char is %s.\n"),
136 value);
137 }
138
139 /* Controls pretty printing of structures. */
140
141 int prettyprint_structs;
142 static void
143 show_prettyprint_structs (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
147 }
148
149 /* Controls pretty printing of arrays. */
150
151 int prettyprint_arrays;
152 static void
153 show_prettyprint_arrays (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
157 }
158
159 /* If nonzero, causes unions inside structures or other unions to be
160 printed. */
161
162 int unionprint; /* Controls printing of nested unions. */
163 static void
164 show_unionprint (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Printing of unions interior to structures is %s.\n"),
169 value);
170 }
171
172 /* If nonzero, causes machine addresses to be printed in certain contexts. */
173
174 int addressprint; /* Controls printing of machine addresses */
175 static void
176 show_addressprint (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
180 }
181 \f
182
183 /* Print data of type TYPE located at VALADDR (within GDB), which came from
184 the inferior at address ADDRESS, onto stdio stream STREAM according to
185 FORMAT (a letter, or 0 for natural format using TYPE).
186
187 If DEREF_REF is nonzero, then dereference references, otherwise just print
188 them like pointers.
189
190 The PRETTY parameter controls prettyprinting.
191
192 If the data are a string pointer, returns the number of string characters
193 printed.
194
195 FIXME: The data at VALADDR is in target byte order. If gdb is ever
196 enhanced to be able to debug more than the single target it was compiled
197 for (specific CPU type and thus specific target byte ordering), then
198 either the print routines are going to have to take this into account,
199 or the data is going to have to be passed into here already converted
200 to the host byte ordering, whichever is more convenient. */
201
202
203 int
204 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
205 CORE_ADDR address, struct ui_file *stream, int format,
206 int deref_ref, int recurse, enum val_prettyprint pretty)
207 {
208 struct type *real_type = check_typedef (type);
209 if (pretty == Val_pretty_default)
210 {
211 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
212 }
213
214 QUIT;
215
216 /* Ensure that the type is complete and not just a stub. If the type is
217 only a stub and we can't find and substitute its complete type, then
218 print appropriate string and return. */
219
220 if (TYPE_STUB (real_type))
221 {
222 fprintf_filtered (stream, "<incomplete type>");
223 gdb_flush (stream);
224 return (0);
225 }
226
227 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
228 stream, format, deref_ref, recurse, pretty));
229 }
230
231 /* Check whether the value VAL is printable. Return 1 if it is;
232 return 0 and print an appropriate error message to STREAM if it
233 is not. */
234
235 static int
236 value_check_printable (struct value *val, struct ui_file *stream)
237 {
238 if (val == 0)
239 {
240 fprintf_filtered (stream, _("<address of value unknown>"));
241 return 0;
242 }
243
244 if (value_optimized_out (val))
245 {
246 fprintf_filtered (stream, _("<value optimized out>"));
247 return 0;
248 }
249
250 return 1;
251 }
252
253 /* Print the value VAL onto stream STREAM according to FORMAT (a
254 letter, or 0 for natural format using TYPE).
255
256 If DEREF_REF is nonzero, then dereference references, otherwise just print
257 them like pointers.
258
259 The PRETTY parameter controls prettyprinting.
260
261 If the data are a string pointer, returns the number of string characters
262 printed.
263
264 This is a preferable interface to val_print, above, because it uses
265 GDB's value mechanism. */
266
267 int
268 common_val_print (struct value *val, struct ui_file *stream, int format,
269 int deref_ref, int recurse, enum val_prettyprint pretty)
270 {
271 if (!value_check_printable (val, stream))
272 return 0;
273
274 return val_print (value_type (val), value_contents_all (val),
275 value_embedded_offset (val), VALUE_ADDRESS (val),
276 stream, format, deref_ref, recurse, pretty);
277 }
278
279 /* Print the value VAL in C-ish syntax on stream STREAM.
280 FORMAT is a format-letter, or 0 for print in natural format of data type.
281 If the object printed is a string pointer, returns
282 the number of string bytes printed. */
283
284 int
285 value_print (struct value *val, struct ui_file *stream, int format,
286 enum val_prettyprint pretty)
287 {
288 if (!value_check_printable (val, stream))
289 return 0;
290
291 return LA_VALUE_PRINT (val, stream, format, pretty);
292 }
293
294 /* Called by various <lang>_val_print routines to print
295 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
296 value. STREAM is where to print the value. */
297
298 void
299 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
300 struct ui_file *stream)
301 {
302 if (TYPE_LENGTH (type) > sizeof (LONGEST))
303 {
304 LONGEST val;
305
306 if (TYPE_UNSIGNED (type)
307 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
308 &val))
309 {
310 print_longest (stream, 'u', 0, val);
311 }
312 else
313 {
314 /* Signed, or we couldn't turn an unsigned value into a
315 LONGEST. For signed values, one could assume two's
316 complement (a reasonable assumption, I think) and do
317 better than this. */
318 print_hex_chars (stream, (unsigned char *) valaddr,
319 TYPE_LENGTH (type));
320 }
321 }
322 else
323 {
324 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
325 unpack_long (type, valaddr));
326 }
327 }
328
329 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
330 The raison d'etre of this function is to consolidate printing of
331 LONG_LONG's into this one function. The format chars b,h,w,g are
332 from print_scalar_formatted(). Numbers are printed using C
333 format.
334
335 USE_C_FORMAT means to use C format in all cases. Without it,
336 'o' and 'x' format do not include the standard C radix prefix
337 (leading 0 or 0x).
338
339 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
340 and was intended to request formating according to the current
341 language and would be used for most integers that GDB prints. The
342 exceptional cases were things like protocols where the format of
343 the integer is a protocol thing, not a user-visible thing). The
344 parameter remains to preserve the information of what things might
345 be printed with language-specific format, should we ever resurrect
346 that capability. */
347
348 void
349 print_longest (struct ui_file *stream, int format, int use_c_format,
350 LONGEST val_long)
351 {
352 const char *val;
353
354 switch (format)
355 {
356 case 'd':
357 val = int_string (val_long, 10, 1, 0, 1); break;
358 case 'u':
359 val = int_string (val_long, 10, 0, 0, 1); break;
360 case 'x':
361 val = int_string (val_long, 16, 0, 0, use_c_format); break;
362 case 'b':
363 val = int_string (val_long, 16, 0, 2, 1); break;
364 case 'h':
365 val = int_string (val_long, 16, 0, 4, 1); break;
366 case 'w':
367 val = int_string (val_long, 16, 0, 8, 1); break;
368 case 'g':
369 val = int_string (val_long, 16, 0, 16, 1); break;
370 break;
371 case 'o':
372 val = int_string (val_long, 8, 0, 0, use_c_format); break;
373 default:
374 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
375 }
376 fputs_filtered (val, stream);
377 }
378
379 /* This used to be a macro, but I don't think it is called often enough
380 to merit such treatment. */
381 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
382 arguments to a function, number in a value history, register number, etc.)
383 where the value must not be larger than can fit in an int. */
384
385 int
386 longest_to_int (LONGEST arg)
387 {
388 /* Let the compiler do the work */
389 int rtnval = (int) arg;
390
391 /* Check for overflows or underflows */
392 if (sizeof (LONGEST) > sizeof (int))
393 {
394 if (rtnval != arg)
395 {
396 error (_("Value out of range."));
397 }
398 }
399 return (rtnval);
400 }
401
402 /* Print a floating point value of type TYPE (not always a
403 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
404
405 void
406 print_floating (const gdb_byte *valaddr, struct type *type,
407 struct ui_file *stream)
408 {
409 DOUBLEST doub;
410 int inv;
411 const struct floatformat *fmt = NULL;
412 unsigned len = TYPE_LENGTH (type);
413
414 /* If it is a floating-point, check for obvious problems. */
415 if (TYPE_CODE (type) == TYPE_CODE_FLT)
416 fmt = floatformat_from_type (type);
417 if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
418 {
419 if (floatformat_is_negative (fmt, valaddr))
420 fprintf_filtered (stream, "-");
421 fprintf_filtered (stream, "nan(");
422 fputs_filtered ("0x", stream);
423 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
424 fprintf_filtered (stream, ")");
425 return;
426 }
427
428 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
429 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
430 needs to be used as that takes care of any necessary type
431 conversions. Such conversions are of course direct to DOUBLEST
432 and disregard any possible target floating point limitations.
433 For instance, a u64 would be converted and displayed exactly on a
434 host with 80 bit DOUBLEST but with loss of information on a host
435 with 64 bit DOUBLEST. */
436
437 doub = unpack_double (type, valaddr, &inv);
438 if (inv)
439 {
440 fprintf_filtered (stream, "<invalid float value>");
441 return;
442 }
443
444 /* FIXME: kettenis/2001-01-20: The following code makes too much
445 assumptions about the host and target floating point format. */
446
447 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
448 not necessarily be a TYPE_CODE_FLT, the below ignores that and
449 instead uses the type's length to determine the precision of the
450 floating-point value being printed. */
451
452 if (len < sizeof (double))
453 fprintf_filtered (stream, "%.9g", (double) doub);
454 else if (len == sizeof (double))
455 fprintf_filtered (stream, "%.17g", (double) doub);
456 else
457 #ifdef PRINTF_HAS_LONG_DOUBLE
458 fprintf_filtered (stream, "%.35Lg", doub);
459 #else
460 /* This at least wins with values that are representable as
461 doubles. */
462 fprintf_filtered (stream, "%.17g", (double) doub);
463 #endif
464 }
465
466 void
467 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
468 unsigned len)
469 {
470
471 #define BITS_IN_BYTES 8
472
473 const gdb_byte *p;
474 unsigned int i;
475 int b;
476
477 /* Declared "int" so it will be signed.
478 * This ensures that right shift will shift in zeros.
479 */
480 const int mask = 0x080;
481
482 /* FIXME: We should be not printing leading zeroes in most cases. */
483
484 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
485 {
486 for (p = valaddr;
487 p < valaddr + len;
488 p++)
489 {
490 /* Every byte has 8 binary characters; peel off
491 * and print from the MSB end.
492 */
493 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
494 {
495 if (*p & (mask >> i))
496 b = 1;
497 else
498 b = 0;
499
500 fprintf_filtered (stream, "%1d", b);
501 }
502 }
503 }
504 else
505 {
506 for (p = valaddr + len - 1;
507 p >= valaddr;
508 p--)
509 {
510 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
511 {
512 if (*p & (mask >> i))
513 b = 1;
514 else
515 b = 0;
516
517 fprintf_filtered (stream, "%1d", b);
518 }
519 }
520 }
521 }
522
523 /* VALADDR points to an integer of LEN bytes.
524 * Print it in octal on stream or format it in buf.
525 */
526 void
527 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
528 unsigned len)
529 {
530 const gdb_byte *p;
531 unsigned char octa1, octa2, octa3, carry;
532 int cycle;
533
534 /* FIXME: We should be not printing leading zeroes in most cases. */
535
536
537 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
538 * the extra bits, which cycle every three bytes:
539 *
540 * Byte side: 0 1 2 3
541 * | | | |
542 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
543 *
544 * Octal side: 0 1 carry 3 4 carry ...
545 *
546 * Cycle number: 0 1 2
547 *
548 * But of course we are printing from the high side, so we have to
549 * figure out where in the cycle we are so that we end up with no
550 * left over bits at the end.
551 */
552 #define BITS_IN_OCTAL 3
553 #define HIGH_ZERO 0340
554 #define LOW_ZERO 0016
555 #define CARRY_ZERO 0003
556 #define HIGH_ONE 0200
557 #define MID_ONE 0160
558 #define LOW_ONE 0016
559 #define CARRY_ONE 0001
560 #define HIGH_TWO 0300
561 #define MID_TWO 0070
562 #define LOW_TWO 0007
563
564 /* For 32 we start in cycle 2, with two bits and one bit carry;
565 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
566 */
567 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
568 carry = 0;
569
570 fputs_filtered ("0", stream);
571 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
572 {
573 for (p = valaddr;
574 p < valaddr + len;
575 p++)
576 {
577 switch (cycle)
578 {
579 case 0:
580 /* No carry in, carry out two bits.
581 */
582 octa1 = (HIGH_ZERO & *p) >> 5;
583 octa2 = (LOW_ZERO & *p) >> 2;
584 carry = (CARRY_ZERO & *p);
585 fprintf_filtered (stream, "%o", octa1);
586 fprintf_filtered (stream, "%o", octa2);
587 break;
588
589 case 1:
590 /* Carry in two bits, carry out one bit.
591 */
592 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
593 octa2 = (MID_ONE & *p) >> 4;
594 octa3 = (LOW_ONE & *p) >> 1;
595 carry = (CARRY_ONE & *p);
596 fprintf_filtered (stream, "%o", octa1);
597 fprintf_filtered (stream, "%o", octa2);
598 fprintf_filtered (stream, "%o", octa3);
599 break;
600
601 case 2:
602 /* Carry in one bit, no carry out.
603 */
604 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
605 octa2 = (MID_TWO & *p) >> 3;
606 octa3 = (LOW_TWO & *p);
607 carry = 0;
608 fprintf_filtered (stream, "%o", octa1);
609 fprintf_filtered (stream, "%o", octa2);
610 fprintf_filtered (stream, "%o", octa3);
611 break;
612
613 default:
614 error (_("Internal error in octal conversion;"));
615 }
616
617 cycle++;
618 cycle = cycle % BITS_IN_OCTAL;
619 }
620 }
621 else
622 {
623 for (p = valaddr + len - 1;
624 p >= valaddr;
625 p--)
626 {
627 switch (cycle)
628 {
629 case 0:
630 /* Carry out, no carry in */
631 octa1 = (HIGH_ZERO & *p) >> 5;
632 octa2 = (LOW_ZERO & *p) >> 2;
633 carry = (CARRY_ZERO & *p);
634 fprintf_filtered (stream, "%o", octa1);
635 fprintf_filtered (stream, "%o", octa2);
636 break;
637
638 case 1:
639 /* Carry in, carry out */
640 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
641 octa2 = (MID_ONE & *p) >> 4;
642 octa3 = (LOW_ONE & *p) >> 1;
643 carry = (CARRY_ONE & *p);
644 fprintf_filtered (stream, "%o", octa1);
645 fprintf_filtered (stream, "%o", octa2);
646 fprintf_filtered (stream, "%o", octa3);
647 break;
648
649 case 2:
650 /* Carry in, no carry out */
651 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
652 octa2 = (MID_TWO & *p) >> 3;
653 octa3 = (LOW_TWO & *p);
654 carry = 0;
655 fprintf_filtered (stream, "%o", octa1);
656 fprintf_filtered (stream, "%o", octa2);
657 fprintf_filtered (stream, "%o", octa3);
658 break;
659
660 default:
661 error (_("Internal error in octal conversion;"));
662 }
663
664 cycle++;
665 cycle = cycle % BITS_IN_OCTAL;
666 }
667 }
668
669 }
670
671 /* VALADDR points to an integer of LEN bytes.
672 * Print it in decimal on stream or format it in buf.
673 */
674 void
675 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
676 unsigned len)
677 {
678 #define TEN 10
679 #define TWO_TO_FOURTH 16
680 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
681 #define CARRY_LEFT( x ) ((x) % TEN)
682 #define SHIFT( x ) ((x) << 4)
683 #define START_P \
684 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
685 #define NOT_END_P \
686 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
687 #define NEXT_P \
688 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
689 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
690 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
691
692 const gdb_byte *p;
693 unsigned char *digits;
694 int carry;
695 int decimal_len;
696 int i, j, decimal_digits;
697 int dummy;
698 int flip;
699
700 /* Base-ten number is less than twice as many digits
701 * as the base 16 number, which is 2 digits per byte.
702 */
703 decimal_len = len * 2 * 2;
704 digits = xmalloc (decimal_len);
705
706 for (i = 0; i < decimal_len; i++)
707 {
708 digits[i] = 0;
709 }
710
711 /* Ok, we have an unknown number of bytes of data to be printed in
712 * decimal.
713 *
714 * Given a hex number (in nibbles) as XYZ, we start by taking X and
715 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
716 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
717 *
718 * The trick is that "digits" holds a base-10 number, but sometimes
719 * the individual digits are > 10.
720 *
721 * Outer loop is per nibble (hex digit) of input, from MSD end to
722 * LSD end.
723 */
724 decimal_digits = 0; /* Number of decimal digits so far */
725 p = START_P;
726 flip = 0;
727 while (NOT_END_P)
728 {
729 /*
730 * Multiply current base-ten number by 16 in place.
731 * Each digit was between 0 and 9, now is between
732 * 0 and 144.
733 */
734 for (j = 0; j < decimal_digits; j++)
735 {
736 digits[j] = SHIFT (digits[j]);
737 }
738
739 /* Take the next nibble off the input and add it to what
740 * we've got in the LSB position. Bottom 'digit' is now
741 * between 0 and 159.
742 *
743 * "flip" is used to run this loop twice for each byte.
744 */
745 if (flip == 0)
746 {
747 /* Take top nibble.
748 */
749 digits[0] += HIGH_NIBBLE (*p);
750 flip = 1;
751 }
752 else
753 {
754 /* Take low nibble and bump our pointer "p".
755 */
756 digits[0] += LOW_NIBBLE (*p);
757 NEXT_P;
758 flip = 0;
759 }
760
761 /* Re-decimalize. We have to do this often enough
762 * that we don't overflow, but once per nibble is
763 * overkill. Easier this way, though. Note that the
764 * carry is often larger than 10 (e.g. max initial
765 * carry out of lowest nibble is 15, could bubble all
766 * the way up greater than 10). So we have to do
767 * the carrying beyond the last current digit.
768 */
769 carry = 0;
770 for (j = 0; j < decimal_len - 1; j++)
771 {
772 digits[j] += carry;
773
774 /* "/" won't handle an unsigned char with
775 * a value that if signed would be negative.
776 * So extend to longword int via "dummy".
777 */
778 dummy = digits[j];
779 carry = CARRY_OUT (dummy);
780 digits[j] = CARRY_LEFT (dummy);
781
782 if (j >= decimal_digits && carry == 0)
783 {
784 /*
785 * All higher digits are 0 and we
786 * no longer have a carry.
787 *
788 * Note: "j" is 0-based, "decimal_digits" is
789 * 1-based.
790 */
791 decimal_digits = j + 1;
792 break;
793 }
794 }
795 }
796
797 /* Ok, now "digits" is the decimal representation, with
798 * the "decimal_digits" actual digits. Print!
799 */
800 for (i = decimal_digits - 1; i >= 0; i--)
801 {
802 fprintf_filtered (stream, "%1d", digits[i]);
803 }
804 xfree (digits);
805 }
806
807 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
808
809 void
810 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
811 unsigned len)
812 {
813 const gdb_byte *p;
814
815 /* FIXME: We should be not printing leading zeroes in most cases. */
816
817 fputs_filtered ("0x", stream);
818 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
819 {
820 for (p = valaddr;
821 p < valaddr + len;
822 p++)
823 {
824 fprintf_filtered (stream, "%02x", *p);
825 }
826 }
827 else
828 {
829 for (p = valaddr + len - 1;
830 p >= valaddr;
831 p--)
832 {
833 fprintf_filtered (stream, "%02x", *p);
834 }
835 }
836 }
837
838 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
839 Omit any leading zero chars. */
840
841 void
842 print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
843 unsigned len)
844 {
845 const gdb_byte *p;
846
847 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
848 {
849 p = valaddr;
850 while (p < valaddr + len - 1 && *p == 0)
851 ++p;
852
853 while (p < valaddr + len)
854 {
855 LA_EMIT_CHAR (*p, stream, '\'');
856 ++p;
857 }
858 }
859 else
860 {
861 p = valaddr + len - 1;
862 while (p > valaddr && *p == 0)
863 --p;
864
865 while (p >= valaddr)
866 {
867 LA_EMIT_CHAR (*p, stream, '\'');
868 --p;
869 }
870 }
871 }
872
873 /* Return non-zero if the debugger should print the index of each element
874 when printing array values. */
875
876 int
877 print_array_indexes_p (void)
878 {
879 return print_array_indexes;
880 }
881
882 /* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
883 Save it into LOW_BOUND if not NULL.
884
885 Return 1 if the operation was successful. Return zero otherwise,
886 in which case the value of LOW_BOUND is unmodified.
887
888 Computing the array lower bound is pretty easy, but this function
889 does some additional verifications before returning the low bound.
890 If something incorrect is detected, it is better to return a status
891 rather than throwing an error, making it easier for the caller to
892 implement an error-recovery plan. For instance, it may decide to
893 warn the user that the bound was not found and then use a default
894 value instead. */
895
896 int
897 get_array_low_bound (struct type *type, long *low_bound)
898 {
899 struct type *index = TYPE_INDEX_TYPE (type);
900 long low = 0;
901
902 if (index == NULL)
903 return 0;
904
905 if (TYPE_CODE (index) != TYPE_CODE_RANGE
906 && TYPE_CODE (index) != TYPE_CODE_ENUM)
907 return 0;
908
909 low = TYPE_LOW_BOUND (index);
910 if (low > TYPE_HIGH_BOUND (index))
911 return 0;
912
913 if (low_bound)
914 *low_bound = low;
915
916 return 1;
917 }
918
919 /* Print on STREAM using the given FORMAT the index for the element
920 at INDEX of an array whose index type is INDEX_TYPE. */
921
922 void
923 maybe_print_array_index (struct type *index_type, LONGEST index,
924 struct ui_file *stream, int format,
925 enum val_prettyprint pretty)
926 {
927 struct value *index_value;
928
929 if (!print_array_indexes)
930 return;
931
932 index_value = value_from_longest (index_type, index);
933
934 LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
935 }
936
937 /* Called by various <lang>_val_print routines to print elements of an
938 array in the form "<elem1>, <elem2>, <elem3>, ...".
939
940 (FIXME?) Assumes array element separator is a comma, which is correct
941 for all languages currently handled.
942 (FIXME?) Some languages have a notation for repeated array elements,
943 perhaps we should try to use that notation when appropriate.
944 */
945
946 void
947 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
948 CORE_ADDR address, struct ui_file *stream,
949 int format, int deref_ref,
950 int recurse, enum val_prettyprint pretty,
951 unsigned int i)
952 {
953 unsigned int things_printed = 0;
954 unsigned len;
955 struct type *elttype, *index_type;
956 unsigned eltlen;
957 /* Position of the array element we are examining to see
958 whether it is repeated. */
959 unsigned int rep1;
960 /* Number of repetitions we have detected so far. */
961 unsigned int reps;
962 long low_bound_index = 0;
963
964 elttype = TYPE_TARGET_TYPE (type);
965 eltlen = TYPE_LENGTH (check_typedef (elttype));
966 len = TYPE_LENGTH (type) / eltlen;
967 index_type = TYPE_INDEX_TYPE (type);
968
969 /* Get the array low bound. This only makes sense if the array
970 has one or more element in it. */
971 if (len > 0 && !get_array_low_bound (type, &low_bound_index))
972 {
973 warning ("unable to get low bound of array, using zero as default");
974 low_bound_index = 0;
975 }
976
977 annotate_array_section_begin (i, elttype);
978
979 for (; i < len && things_printed < print_max; i++)
980 {
981 if (i != 0)
982 {
983 if (prettyprint_arrays)
984 {
985 fprintf_filtered (stream, ",\n");
986 print_spaces_filtered (2 + 2 * recurse, stream);
987 }
988 else
989 {
990 fprintf_filtered (stream, ", ");
991 }
992 }
993 wrap_here (n_spaces (2 + 2 * recurse));
994 maybe_print_array_index (index_type, i + low_bound_index,
995 stream, format, pretty);
996
997 rep1 = i + 1;
998 reps = 1;
999 while ((rep1 < len) &&
1000 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1001 {
1002 ++reps;
1003 ++rep1;
1004 }
1005
1006 if (reps > repeat_count_threshold)
1007 {
1008 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1009 deref_ref, recurse + 1, pretty);
1010 annotate_elt_rep (reps);
1011 fprintf_filtered (stream, " <repeats %u times>", reps);
1012 annotate_elt_rep_end ();
1013
1014 i = rep1 - 1;
1015 things_printed += repeat_count_threshold;
1016 }
1017 else
1018 {
1019 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1020 deref_ref, recurse + 1, pretty);
1021 annotate_elt ();
1022 things_printed++;
1023 }
1024 }
1025 annotate_array_section_end ();
1026 if (i < len)
1027 {
1028 fprintf_filtered (stream, "...");
1029 }
1030 }
1031
1032 /* Read LEN bytes of target memory at address MEMADDR, placing the
1033 results in GDB's memory at MYADDR. Returns a count of the bytes
1034 actually read, and optionally an errno value in the location
1035 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1036
1037 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1038 function be eliminated. */
1039
1040 static int
1041 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1042 {
1043 int nread; /* Number of bytes actually read. */
1044 int errcode; /* Error from last read. */
1045
1046 /* First try a complete read. */
1047 errcode = target_read_memory (memaddr, myaddr, len);
1048 if (errcode == 0)
1049 {
1050 /* Got it all. */
1051 nread = len;
1052 }
1053 else
1054 {
1055 /* Loop, reading one byte at a time until we get as much as we can. */
1056 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1057 {
1058 errcode = target_read_memory (memaddr++, myaddr++, 1);
1059 }
1060 /* If an error, the last read was unsuccessful, so adjust count. */
1061 if (errcode != 0)
1062 {
1063 nread--;
1064 }
1065 }
1066 if (errnoptr != NULL)
1067 {
1068 *errnoptr = errcode;
1069 }
1070 return (nread);
1071 }
1072
1073 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1074 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1075 stops at the first null byte, otherwise printing proceeds (including null
1076 bytes) until either print_max or LEN characters have been printed,
1077 whichever is smaller. */
1078
1079 /* FIXME: Use target_read_string. */
1080
1081 int
1082 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1083 {
1084 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1085 int errcode; /* Errno returned from bad reads. */
1086 unsigned int fetchlimit; /* Maximum number of chars to print. */
1087 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1088 unsigned int chunksize; /* Size of each fetch, in chars. */
1089 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1090 char *bufptr; /* Pointer to next available byte in buffer. */
1091 char *limit; /* First location past end of fetch buffer. */
1092 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1093 int found_nul; /* Non-zero if we found the nul char */
1094
1095 /* First we need to figure out the limit on the number of characters we are
1096 going to attempt to fetch and print. This is actually pretty simple. If
1097 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1098 LEN is -1, then the limit is print_max. This is true regardless of
1099 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1100 because finding the null byte (or available memory) is what actually
1101 limits the fetch. */
1102
1103 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1104
1105 /* Now decide how large of chunks to try to read in one operation. This
1106 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1107 so we might as well read them all in one operation. If LEN is -1, we
1108 are looking for a null terminator to end the fetching, so we might as
1109 well read in blocks that are large enough to be efficient, but not so
1110 large as to be slow if fetchlimit happens to be large. So we choose the
1111 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1112 200 is way too big for remote debugging over a serial line. */
1113
1114 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1115
1116 /* Loop until we either have all the characters to print, or we encounter
1117 some error, such as bumping into the end of the address space. */
1118
1119 found_nul = 0;
1120 old_chain = make_cleanup (null_cleanup, 0);
1121
1122 if (len > 0)
1123 {
1124 buffer = (char *) xmalloc (len * width);
1125 bufptr = buffer;
1126 old_chain = make_cleanup (xfree, buffer);
1127
1128 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1129 / width;
1130 addr += nfetch * width;
1131 bufptr += nfetch * width;
1132 }
1133 else if (len == -1)
1134 {
1135 unsigned long bufsize = 0;
1136 do
1137 {
1138 QUIT;
1139 nfetch = min (chunksize, fetchlimit - bufsize);
1140
1141 if (buffer == NULL)
1142 buffer = (char *) xmalloc (nfetch * width);
1143 else
1144 {
1145 discard_cleanups (old_chain);
1146 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1147 }
1148
1149 old_chain = make_cleanup (xfree, buffer);
1150 bufptr = buffer + bufsize * width;
1151 bufsize += nfetch;
1152
1153 /* Read as much as we can. */
1154 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1155 / width;
1156
1157 /* Scan this chunk for the null byte that terminates the string
1158 to print. If found, we don't need to fetch any more. Note
1159 that bufptr is explicitly left pointing at the next character
1160 after the null byte, or at the next character after the end of
1161 the buffer. */
1162
1163 limit = bufptr + nfetch * width;
1164 while (bufptr < limit)
1165 {
1166 unsigned long c;
1167
1168 c = extract_unsigned_integer (bufptr, width);
1169 addr += width;
1170 bufptr += width;
1171 if (c == 0)
1172 {
1173 /* We don't care about any error which happened after
1174 the NULL terminator. */
1175 errcode = 0;
1176 found_nul = 1;
1177 break;
1178 }
1179 }
1180 }
1181 while (errcode == 0 /* no error */
1182 && bufptr - buffer < fetchlimit * width /* no overrun */
1183 && !found_nul); /* haven't found nul yet */
1184 }
1185 else
1186 { /* length of string is really 0! */
1187 buffer = bufptr = NULL;
1188 errcode = 0;
1189 }
1190
1191 /* bufptr and addr now point immediately beyond the last byte which we
1192 consider part of the string (including a '\0' which ends the string). */
1193
1194 /* We now have either successfully filled the buffer to fetchlimit, or
1195 terminated early due to an error or finding a null char when LEN is -1. */
1196
1197 if (len == -1 && !found_nul)
1198 {
1199 char *peekbuf;
1200
1201 /* We didn't find a null terminator we were looking for. Attempt
1202 to peek at the next character. If not successful, or it is not
1203 a null byte, then force ellipsis to be printed. */
1204
1205 peekbuf = (char *) alloca (width);
1206
1207 if (target_read_memory (addr, peekbuf, width) == 0
1208 && extract_unsigned_integer (peekbuf, width) != 0)
1209 force_ellipsis = 1;
1210 }
1211 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1212 {
1213 /* Getting an error when we have a requested length, or fetching less
1214 than the number of characters actually requested, always make us
1215 print ellipsis. */
1216 force_ellipsis = 1;
1217 }
1218
1219 QUIT;
1220
1221 /* If we get an error before fetching anything, don't print a string.
1222 But if we fetch something and then get an error, print the string
1223 and then the error message. */
1224 if (errcode == 0 || bufptr > buffer)
1225 {
1226 if (addressprint)
1227 {
1228 fputs_filtered (" ", stream);
1229 }
1230 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1231 }
1232
1233 if (errcode != 0)
1234 {
1235 if (errcode == EIO)
1236 {
1237 fprintf_filtered (stream, " <Address ");
1238 deprecated_print_address_numeric (addr, 1, stream);
1239 fprintf_filtered (stream, " out of bounds>");
1240 }
1241 else
1242 {
1243 fprintf_filtered (stream, " <Error reading address ");
1244 deprecated_print_address_numeric (addr, 1, stream);
1245 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1246 }
1247 }
1248 gdb_flush (stream);
1249 do_cleanups (old_chain);
1250 return ((bufptr - buffer) / width);
1251 }
1252 \f
1253
1254 /* Validate an input or output radix setting, and make sure the user
1255 knows what they really did here. Radix setting is confusing, e.g.
1256 setting the input radix to "10" never changes it! */
1257
1258 static void
1259 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1260 {
1261 set_input_radix_1 (from_tty, input_radix);
1262 }
1263
1264 static void
1265 set_input_radix_1 (int from_tty, unsigned radix)
1266 {
1267 /* We don't currently disallow any input radix except 0 or 1, which don't
1268 make any mathematical sense. In theory, we can deal with any input
1269 radix greater than 1, even if we don't have unique digits for every
1270 value from 0 to radix-1, but in practice we lose on large radix values.
1271 We should either fix the lossage or restrict the radix range more.
1272 (FIXME). */
1273
1274 if (radix < 2)
1275 {
1276 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1277 value. */
1278 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1279 radix);
1280 }
1281 input_radix = radix;
1282 if (from_tty)
1283 {
1284 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1285 radix, radix, radix);
1286 }
1287 }
1288
1289 static void
1290 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1291 {
1292 set_output_radix_1 (from_tty, output_radix);
1293 }
1294
1295 static void
1296 set_output_radix_1 (int from_tty, unsigned radix)
1297 {
1298 /* Validate the radix and disallow ones that we aren't prepared to
1299 handle correctly, leaving the radix unchanged. */
1300 switch (radix)
1301 {
1302 case 16:
1303 output_format = 'x'; /* hex */
1304 break;
1305 case 10:
1306 output_format = 0; /* decimal */
1307 break;
1308 case 8:
1309 output_format = 'o'; /* octal */
1310 break;
1311 default:
1312 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1313 value. */
1314 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1315 radix);
1316 }
1317 output_radix = radix;
1318 if (from_tty)
1319 {
1320 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1321 radix, radix, radix);
1322 }
1323 }
1324
1325 /* Set both the input and output radix at once. Try to set the output radix
1326 first, since it has the most restrictive range. An radix that is valid as
1327 an output radix is also valid as an input radix.
1328
1329 It may be useful to have an unusual input radix. If the user wishes to
1330 set an input radix that is not valid as an output radix, he needs to use
1331 the 'set input-radix' command. */
1332
1333 static void
1334 set_radix (char *arg, int from_tty)
1335 {
1336 unsigned radix;
1337
1338 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1339 set_output_radix_1 (0, radix);
1340 set_input_radix_1 (0, radix);
1341 if (from_tty)
1342 {
1343 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1344 radix, radix, radix);
1345 }
1346 }
1347
1348 /* Show both the input and output radices. */
1349
1350 static void
1351 show_radix (char *arg, int from_tty)
1352 {
1353 if (from_tty)
1354 {
1355 if (input_radix == output_radix)
1356 {
1357 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1358 input_radix, input_radix, input_radix);
1359 }
1360 else
1361 {
1362 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1363 input_radix, input_radix, input_radix);
1364 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1365 output_radix, output_radix, output_radix);
1366 }
1367 }
1368 }
1369 \f
1370
1371 static void
1372 set_print (char *arg, int from_tty)
1373 {
1374 printf_unfiltered (
1375 "\"set print\" must be followed by the name of a print subcommand.\n");
1376 help_list (setprintlist, "set print ", -1, gdb_stdout);
1377 }
1378
1379 static void
1380 show_print (char *args, int from_tty)
1381 {
1382 cmd_show_list (showprintlist, from_tty, "");
1383 }
1384 \f
1385 void
1386 _initialize_valprint (void)
1387 {
1388 struct cmd_list_element *c;
1389
1390 add_prefix_cmd ("print", no_class, set_print,
1391 _("Generic command for setting how things print."),
1392 &setprintlist, "set print ", 0, &setlist);
1393 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1394 /* prefer set print to set prompt */
1395 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1396
1397 add_prefix_cmd ("print", no_class, show_print,
1398 _("Generic command for showing print settings."),
1399 &showprintlist, "show print ", 0, &showlist);
1400 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1401 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1402
1403 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1404 Set limit on string chars or array elements to print."), _("\
1405 Show limit on string chars or array elements to print."), _("\
1406 \"set print elements 0\" causes there to be no limit."),
1407 NULL,
1408 show_print_max,
1409 &setprintlist, &showprintlist);
1410
1411 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1412 Set printing of char arrays to stop at first null char."), _("\
1413 Show printing of char arrays to stop at first null char."), NULL,
1414 NULL,
1415 show_stop_print_at_null,
1416 &setprintlist, &showprintlist);
1417
1418 add_setshow_uinteger_cmd ("repeats", no_class,
1419 &repeat_count_threshold, _("\
1420 Set threshold for repeated print elements."), _("\
1421 Show threshold for repeated print elements."), _("\
1422 \"set print repeats 0\" causes all elements to be individually printed."),
1423 NULL,
1424 show_repeat_count_threshold,
1425 &setprintlist, &showprintlist);
1426
1427 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1428 Set prettyprinting of structures."), _("\
1429 Show prettyprinting of structures."), NULL,
1430 NULL,
1431 show_prettyprint_structs,
1432 &setprintlist, &showprintlist);
1433
1434 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1435 Set printing of unions interior to structures."), _("\
1436 Show printing of unions interior to structures."), NULL,
1437 NULL,
1438 show_unionprint,
1439 &setprintlist, &showprintlist);
1440
1441 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1442 Set prettyprinting of arrays."), _("\
1443 Show prettyprinting of arrays."), NULL,
1444 NULL,
1445 show_prettyprint_arrays,
1446 &setprintlist, &showprintlist);
1447
1448 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1449 Set printing of addresses."), _("\
1450 Show printing of addresses."), NULL,
1451 NULL,
1452 show_addressprint,
1453 &setprintlist, &showprintlist);
1454
1455 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1456 Set default input radix for entering numbers."), _("\
1457 Show default input radix for entering numbers."), NULL,
1458 set_input_radix,
1459 show_input_radix,
1460 &setlist, &showlist);
1461
1462 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1463 Set default output radix for printing of values."), _("\
1464 Show default output radix for printing of values."), NULL,
1465 set_output_radix,
1466 show_output_radix,
1467 &setlist, &showlist);
1468
1469 /* The "set radix" and "show radix" commands are special in that
1470 they are like normal set and show commands but allow two normally
1471 independent variables to be either set or shown with a single
1472 command. So the usual deprecated_add_set_cmd() and [deleted]
1473 add_show_from_set() commands aren't really appropriate. */
1474 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1475 longer true - show can display anything. */
1476 add_cmd ("radix", class_support, set_radix, _("\
1477 Set default input and output number radices.\n\
1478 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1479 Without an argument, sets both radices back to the default value of 10."),
1480 &setlist);
1481 add_cmd ("radix", class_support, show_radix, _("\
1482 Show the default input and output number radices.\n\
1483 Use 'show input-radix' or 'show output-radix' to independently show each."),
1484 &showlist);
1485
1486 add_setshow_boolean_cmd ("array-indexes", class_support,
1487 &print_array_indexes, _("\
1488 Set printing of array indexes."), _("\
1489 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1490 &setprintlist, &showprintlist);
1491
1492 /* Give people the defaults which they are used to. */
1493 prettyprint_structs = 0;
1494 prettyprint_arrays = 0;
1495 unionprint = 1;
1496 addressprint = 1;
1497 print_max = PRINT_MAX_DEFAULT;
1498 }