]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
Make "print" and "compile print" support -OPT options
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "common/byte-vector.h"
39 #include "cli/cli-option.h"
40
41 /* Maximum number of wchars returned from wchar_iterate. */
42 #define MAX_WCHARS 4
43
44 /* A convenience macro to compute the size of a wchar_t buffer containing X
45 characters. */
46 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
47
48 /* Character buffer size saved while iterating over wchars. */
49 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
50
51 /* A structure to encapsulate state information from iterated
52 character conversions. */
53 struct converted_character
54 {
55 /* The number of characters converted. */
56 int num_chars;
57
58 /* The result of the conversion. See charset.h for more. */
59 enum wchar_iterate_result result;
60
61 /* The (saved) converted character(s). */
62 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
63
64 /* The first converted target byte. */
65 const gdb_byte *buf;
66
67 /* The number of bytes converted. */
68 size_t buflen;
69
70 /* How many times this character(s) is repeated. */
71 int repeat_count;
72 };
73
74 /* Command lists for set/show print raw. */
75 struct cmd_list_element *setprintrawlist;
76 struct cmd_list_element *showprintrawlist;
77
78 /* Prototypes for local functions */
79
80 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
81 int len, int *errptr);
82
83 static void set_input_radix_1 (int, unsigned);
84
85 static void set_output_radix_1 (int, unsigned);
86
87 static void val_print_type_code_flags (struct type *type,
88 const gdb_byte *valaddr,
89 struct ui_file *stream);
90
91 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
92 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
93
94 struct value_print_options user_print_options =
95 {
96 Val_prettyformat_default, /* prettyformat */
97 0, /* prettyformat_arrays */
98 0, /* prettyformat_structs */
99 0, /* vtblprint */
100 1, /* unionprint */
101 1, /* addressprint */
102 0, /* objectprint */
103 PRINT_MAX_DEFAULT, /* print_max */
104 10, /* repeat_count_threshold */
105 0, /* output_format */
106 0, /* format */
107 0, /* stop_print_at_null */
108 0, /* print_array_indexes */
109 0, /* deref_ref */
110 1, /* static_field_print */
111 1, /* pascal_static_field_print */
112 0, /* raw */
113 0, /* summary */
114 1, /* symbol_print */
115 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
116 1 /* finish_print */
117 };
118
119 /* Initialize *OPTS to be a copy of the user print options. */
120 void
121 get_user_print_options (struct value_print_options *opts)
122 {
123 *opts = user_print_options;
124 }
125
126 /* Initialize *OPTS to be a copy of the user print options, but with
127 pretty-formatting disabled. */
128 void
129 get_no_prettyformat_print_options (struct value_print_options *opts)
130 {
131 *opts = user_print_options;
132 opts->prettyformat = Val_no_prettyformat;
133 }
134
135 /* Initialize *OPTS to be a copy of the user print options, but using
136 FORMAT as the formatting option. */
137 void
138 get_formatted_print_options (struct value_print_options *opts,
139 char format)
140 {
141 *opts = user_print_options;
142 opts->format = format;
143 }
144
145 static void
146 show_print_max (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file,
150 _("Limit on string chars or array "
151 "elements to print is %s.\n"),
152 value);
153 }
154
155
156 /* Default input and output radixes, and output format letter. */
157
158 unsigned input_radix = 10;
159 static void
160 show_input_radix (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file,
164 _("Default input radix for entering numbers is %s.\n"),
165 value);
166 }
167
168 unsigned output_radix = 10;
169 static void
170 show_output_radix (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file,
174 _("Default output radix for printing of values is %s.\n"),
175 value);
176 }
177
178 /* By default we print arrays without printing the index of each element in
179 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
180
181 static void
182 show_print_array_indexes (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
186 }
187
188 /* Print repeat counts if there are more than this many repetitions of an
189 element in an array. Referenced by the low level language dependent
190 print routines. */
191
192 static void
193 show_repeat_count_threshold (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
197 value);
198 }
199
200 /* If nonzero, stops printing of char arrays at first null. */
201
202 static void
203 show_stop_print_at_null (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file,
207 _("Printing of char arrays to stop "
208 "at first null char is %s.\n"),
209 value);
210 }
211
212 /* Controls pretty printing of structures. */
213
214 static void
215 show_prettyformat_structs (struct ui_file *file, int from_tty,
216 struct cmd_list_element *c, const char *value)
217 {
218 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
219 }
220
221 /* Controls pretty printing of arrays. */
222
223 static void
224 show_prettyformat_arrays (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
228 }
229
230 /* If nonzero, causes unions inside structures or other unions to be
231 printed. */
232
233 static void
234 show_unionprint (struct ui_file *file, int from_tty,
235 struct cmd_list_element *c, const char *value)
236 {
237 fprintf_filtered (file,
238 _("Printing of unions interior to structures is %s.\n"),
239 value);
240 }
241
242 /* If nonzero, causes machine addresses to be printed in certain contexts. */
243
244 static void
245 show_addressprint (struct ui_file *file, int from_tty,
246 struct cmd_list_element *c, const char *value)
247 {
248 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
249 }
250
251 static void
252 show_symbol_print (struct ui_file *file, int from_tty,
253 struct cmd_list_element *c, const char *value)
254 {
255 fprintf_filtered (file,
256 _("Printing of symbols when printing pointers is %s.\n"),
257 value);
258 }
259
260 \f
261
262 /* A helper function for val_print. When printing in "summary" mode,
263 we want to print scalar arguments, but not aggregate arguments.
264 This function distinguishes between the two. */
265
266 int
267 val_print_scalar_type_p (struct type *type)
268 {
269 type = check_typedef (type);
270 while (TYPE_IS_REFERENCE (type))
271 {
272 type = TYPE_TARGET_TYPE (type);
273 type = check_typedef (type);
274 }
275 switch (TYPE_CODE (type))
276 {
277 case TYPE_CODE_ARRAY:
278 case TYPE_CODE_STRUCT:
279 case TYPE_CODE_UNION:
280 case TYPE_CODE_SET:
281 case TYPE_CODE_STRING:
282 return 0;
283 default:
284 return 1;
285 }
286 }
287
288 /* A helper function for val_print. When printing with limited depth we
289 want to print string and scalar arguments, but not aggregate arguments.
290 This function distinguishes between the two. */
291
292 static bool
293 val_print_scalar_or_string_type_p (struct type *type,
294 const struct language_defn *language)
295 {
296 return (val_print_scalar_type_p (type)
297 || language->la_is_string_type_p (type));
298 }
299
300 /* See its definition in value.h. */
301
302 int
303 valprint_check_validity (struct ui_file *stream,
304 struct type *type,
305 LONGEST embedded_offset,
306 const struct value *val)
307 {
308 type = check_typedef (type);
309
310 if (type_not_associated (type))
311 {
312 val_print_not_associated (stream);
313 return 0;
314 }
315
316 if (type_not_allocated (type))
317 {
318 val_print_not_allocated (stream);
319 return 0;
320 }
321
322 if (TYPE_CODE (type) != TYPE_CODE_UNION
323 && TYPE_CODE (type) != TYPE_CODE_STRUCT
324 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
325 {
326 if (value_bits_any_optimized_out (val,
327 TARGET_CHAR_BIT * embedded_offset,
328 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
329 {
330 val_print_optimized_out (val, stream);
331 return 0;
332 }
333
334 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
335 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
336 {
337 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
338 int ref_is_addressable = 0;
339
340 if (is_ref)
341 {
342 const struct value *deref_val = coerce_ref_if_computed (val);
343
344 if (deref_val != NULL)
345 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
346 }
347
348 if (!is_ref || !ref_is_addressable)
349 fputs_filtered (_("<synthetic pointer>"), stream);
350
351 /* C++ references should be valid even if they're synthetic. */
352 return is_ref;
353 }
354
355 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
356 {
357 val_print_unavailable (stream);
358 return 0;
359 }
360 }
361
362 return 1;
363 }
364
365 void
366 val_print_optimized_out (const struct value *val, struct ui_file *stream)
367 {
368 if (val != NULL && value_lval_const (val) == lval_register)
369 val_print_not_saved (stream);
370 else
371 fprintf_filtered (stream, _("<optimized out>"));
372 }
373
374 void
375 val_print_not_saved (struct ui_file *stream)
376 {
377 fprintf_filtered (stream, _("<not saved>"));
378 }
379
380 void
381 val_print_unavailable (struct ui_file *stream)
382 {
383 fprintf_filtered (stream, _("<unavailable>"));
384 }
385
386 void
387 val_print_invalid_address (struct ui_file *stream)
388 {
389 fprintf_filtered (stream, _("<invalid address>"));
390 }
391
392 /* Print a pointer based on the type of its target.
393
394 Arguments to this functions are roughly the same as those in
395 generic_val_print. A difference is that ADDRESS is the address to print,
396 with embedded_offset already added. ELTTYPE represents
397 the pointed type after check_typedef. */
398
399 static void
400 print_unpacked_pointer (struct type *type, struct type *elttype,
401 CORE_ADDR address, struct ui_file *stream,
402 const struct value_print_options *options)
403 {
404 struct gdbarch *gdbarch = get_type_arch (type);
405
406 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
407 {
408 /* Try to print what function it points to. */
409 print_function_pointer_address (options, gdbarch, address, stream);
410 return;
411 }
412
413 if (options->symbol_print)
414 print_address_demangle (options, gdbarch, address, stream, demangle);
415 else if (options->addressprint)
416 fputs_filtered (paddress (gdbarch, address), stream);
417 }
418
419 /* generic_val_print helper for TYPE_CODE_ARRAY. */
420
421 static void
422 generic_val_print_array (struct type *type,
423 int embedded_offset, CORE_ADDR address,
424 struct ui_file *stream, int recurse,
425 struct value *original_value,
426 const struct value_print_options *options,
427 const struct
428 generic_val_print_decorations *decorations)
429 {
430 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
431 struct type *elttype = check_typedef (unresolved_elttype);
432
433 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
434 {
435 LONGEST low_bound, high_bound;
436
437 if (!get_array_bounds (type, &low_bound, &high_bound))
438 error (_("Could not determine the array high bound"));
439
440 if (options->prettyformat_arrays)
441 {
442 print_spaces_filtered (2 + 2 * recurse, stream);
443 }
444
445 fputs_filtered (decorations->array_start, stream);
446 val_print_array_elements (type, embedded_offset,
447 address, stream,
448 recurse, original_value, options, 0);
449 fputs_filtered (decorations->array_end, stream);
450 }
451 else
452 {
453 /* Array of unspecified length: treat like pointer to first elt. */
454 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
455 options);
456 }
457
458 }
459
460 /* generic_val_print helper for TYPE_CODE_PTR. */
461
462 static void
463 generic_val_print_ptr (struct type *type,
464 int embedded_offset, struct ui_file *stream,
465 struct value *original_value,
466 const struct value_print_options *options)
467 {
468 struct gdbarch *gdbarch = get_type_arch (type);
469 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
470
471 if (options->format && options->format != 's')
472 {
473 val_print_scalar_formatted (type, embedded_offset,
474 original_value, options, 0, stream);
475 }
476 else
477 {
478 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
479 struct type *elttype = check_typedef (unresolved_elttype);
480 const gdb_byte *valaddr = value_contents_for_printing (original_value);
481 CORE_ADDR addr = unpack_pointer (type,
482 valaddr + embedded_offset * unit_size);
483
484 print_unpacked_pointer (type, elttype, addr, stream, options);
485 }
486 }
487
488
489 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
490
491 static void
492 generic_val_print_memberptr (struct type *type,
493 int embedded_offset, struct ui_file *stream,
494 struct value *original_value,
495 const struct value_print_options *options)
496 {
497 val_print_scalar_formatted (type, embedded_offset,
498 original_value, options, 0, stream);
499 }
500
501 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
502
503 static void
504 print_ref_address (struct type *type, const gdb_byte *address_buffer,
505 int embedded_offset, struct ui_file *stream)
506 {
507 struct gdbarch *gdbarch = get_type_arch (type);
508
509 if (address_buffer != NULL)
510 {
511 CORE_ADDR address
512 = extract_typed_address (address_buffer + embedded_offset, type);
513
514 fprintf_filtered (stream, "@");
515 fputs_filtered (paddress (gdbarch, address), stream);
516 }
517 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
518 }
519
520 /* If VAL is addressable, return the value contents buffer of a value that
521 represents a pointer to VAL. Otherwise return NULL. */
522
523 static const gdb_byte *
524 get_value_addr_contents (struct value *deref_val)
525 {
526 gdb_assert (deref_val != NULL);
527
528 if (value_lval_const (deref_val) == lval_memory)
529 return value_contents_for_printing_const (value_addr (deref_val));
530 else
531 {
532 /* We have a non-addressable value, such as a DW_AT_const_value. */
533 return NULL;
534 }
535 }
536
537 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
538
539 static void
540 generic_val_print_ref (struct type *type,
541 int embedded_offset, struct ui_file *stream, int recurse,
542 struct value *original_value,
543 const struct value_print_options *options)
544 {
545 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
546 struct value *deref_val = NULL;
547 const int value_is_synthetic
548 = value_bits_synthetic_pointer (original_value,
549 TARGET_CHAR_BIT * embedded_offset,
550 TARGET_CHAR_BIT * TYPE_LENGTH (type));
551 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
552 || options->deref_ref);
553 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
554 const gdb_byte *valaddr = value_contents_for_printing (original_value);
555
556 if (must_coerce_ref && type_is_defined)
557 {
558 deref_val = coerce_ref_if_computed (original_value);
559
560 if (deref_val != NULL)
561 {
562 /* More complicated computed references are not supported. */
563 gdb_assert (embedded_offset == 0);
564 }
565 else
566 deref_val = value_at (TYPE_TARGET_TYPE (type),
567 unpack_pointer (type, valaddr + embedded_offset));
568 }
569 /* Else, original_value isn't a synthetic reference or we don't have to print
570 the reference's contents.
571
572 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
573 cause original_value to be a not_lval instead of an lval_computed,
574 which will make value_bits_synthetic_pointer return false.
575 This happens because if options->objectprint is true, c_value_print will
576 overwrite original_value's contents with the result of coercing
577 the reference through value_addr, and then set its type back to
578 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
579 we can simply treat it as non-synthetic and move on. */
580
581 if (options->addressprint)
582 {
583 const gdb_byte *address = (value_is_synthetic && type_is_defined
584 ? get_value_addr_contents (deref_val)
585 : valaddr);
586
587 print_ref_address (type, address, embedded_offset, stream);
588
589 if (options->deref_ref)
590 fputs_filtered (": ", stream);
591 }
592
593 if (options->deref_ref)
594 {
595 if (type_is_defined)
596 common_val_print (deref_val, stream, recurse, options,
597 current_language);
598 else
599 fputs_filtered ("???", stream);
600 }
601 }
602
603 /* Helper function for generic_val_print_enum.
604 This is also used to print enums in TYPE_CODE_FLAGS values. */
605
606 static void
607 generic_val_print_enum_1 (struct type *type, LONGEST val,
608 struct ui_file *stream)
609 {
610 unsigned int i;
611 unsigned int len;
612
613 len = TYPE_NFIELDS (type);
614 for (i = 0; i < len; i++)
615 {
616 QUIT;
617 if (val == TYPE_FIELD_ENUMVAL (type, i))
618 {
619 break;
620 }
621 }
622 if (i < len)
623 {
624 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
625 }
626 else if (TYPE_FLAG_ENUM (type))
627 {
628 int first = 1;
629
630 /* We have a "flag" enum, so we try to decompose it into
631 pieces as appropriate. A flag enum has disjoint
632 constants by definition. */
633 fputs_filtered ("(", stream);
634 for (i = 0; i < len; ++i)
635 {
636 QUIT;
637
638 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
639 {
640 if (!first)
641 fputs_filtered (" | ", stream);
642 first = 0;
643
644 val &= ~TYPE_FIELD_ENUMVAL (type, i);
645 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
646 }
647 }
648
649 if (first || val != 0)
650 {
651 if (!first)
652 fputs_filtered (" | ", stream);
653 fputs_filtered ("unknown: ", stream);
654 print_longest (stream, 'd', 0, val);
655 }
656
657 fputs_filtered (")", stream);
658 }
659 else
660 print_longest (stream, 'd', 0, val);
661 }
662
663 /* generic_val_print helper for TYPE_CODE_ENUM. */
664
665 static void
666 generic_val_print_enum (struct type *type,
667 int embedded_offset, struct ui_file *stream,
668 struct value *original_value,
669 const struct value_print_options *options)
670 {
671 LONGEST val;
672 struct gdbarch *gdbarch = get_type_arch (type);
673 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
674
675 if (options->format)
676 {
677 val_print_scalar_formatted (type, embedded_offset,
678 original_value, options, 0, stream);
679 }
680 else
681 {
682 const gdb_byte *valaddr = value_contents_for_printing (original_value);
683
684 val = unpack_long (type, valaddr + embedded_offset * unit_size);
685
686 generic_val_print_enum_1 (type, val, stream);
687 }
688 }
689
690 /* generic_val_print helper for TYPE_CODE_FLAGS. */
691
692 static void
693 generic_val_print_flags (struct type *type,
694 int embedded_offset, struct ui_file *stream,
695 struct value *original_value,
696 const struct value_print_options *options)
697
698 {
699 if (options->format)
700 val_print_scalar_formatted (type, embedded_offset, original_value,
701 options, 0, stream);
702 else
703 {
704 const gdb_byte *valaddr = value_contents_for_printing (original_value);
705
706 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
707 }
708 }
709
710 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
711
712 static void
713 generic_val_print_func (struct type *type,
714 int embedded_offset, CORE_ADDR address,
715 struct ui_file *stream,
716 struct value *original_value,
717 const struct value_print_options *options)
718 {
719 struct gdbarch *gdbarch = get_type_arch (type);
720
721 if (options->format)
722 {
723 val_print_scalar_formatted (type, embedded_offset,
724 original_value, options, 0, stream);
725 }
726 else
727 {
728 /* FIXME, we should consider, at least for ANSI C language,
729 eliminating the distinction made between FUNCs and POINTERs
730 to FUNCs. */
731 fprintf_filtered (stream, "{");
732 type_print (type, "", stream, -1);
733 fprintf_filtered (stream, "} ");
734 /* Try to print what function it points to, and its address. */
735 print_address_demangle (options, gdbarch, address, stream, demangle);
736 }
737 }
738
739 /* generic_val_print helper for TYPE_CODE_BOOL. */
740
741 static void
742 generic_val_print_bool (struct type *type,
743 int embedded_offset, struct ui_file *stream,
744 struct value *original_value,
745 const struct value_print_options *options,
746 const struct generic_val_print_decorations *decorations)
747 {
748 LONGEST val;
749 struct gdbarch *gdbarch = get_type_arch (type);
750 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
751
752 if (options->format || options->output_format)
753 {
754 struct value_print_options opts = *options;
755 opts.format = (options->format ? options->format
756 : options->output_format);
757 val_print_scalar_formatted (type, embedded_offset,
758 original_value, &opts, 0, stream);
759 }
760 else
761 {
762 const gdb_byte *valaddr = value_contents_for_printing (original_value);
763
764 val = unpack_long (type, valaddr + embedded_offset * unit_size);
765 if (val == 0)
766 fputs_filtered (decorations->false_name, stream);
767 else if (val == 1)
768 fputs_filtered (decorations->true_name, stream);
769 else
770 print_longest (stream, 'd', 0, val);
771 }
772 }
773
774 /* generic_val_print helper for TYPE_CODE_INT. */
775
776 static void
777 generic_val_print_int (struct type *type,
778 int embedded_offset, struct ui_file *stream,
779 struct value *original_value,
780 const struct value_print_options *options)
781 {
782 struct value_print_options opts = *options;
783
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789
790 /* generic_val_print helper for TYPE_CODE_CHAR. */
791
792 static void
793 generic_val_print_char (struct type *type, struct type *unresolved_type,
794 int embedded_offset,
795 struct ui_file *stream,
796 struct value *original_value,
797 const struct value_print_options *options)
798 {
799 LONGEST val;
800 struct gdbarch *gdbarch = get_type_arch (type);
801 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
802
803 if (options->format || options->output_format)
804 {
805 struct value_print_options opts = *options;
806
807 opts.format = (options->format ? options->format
808 : options->output_format);
809 val_print_scalar_formatted (type, embedded_offset,
810 original_value, &opts, 0, stream);
811 }
812 else
813 {
814 const gdb_byte *valaddr = value_contents_for_printing (original_value);
815
816 val = unpack_long (type, valaddr + embedded_offset * unit_size);
817 if (TYPE_UNSIGNED (type))
818 fprintf_filtered (stream, "%u", (unsigned int) val);
819 else
820 fprintf_filtered (stream, "%d", (int) val);
821 fputs_filtered (" ", stream);
822 LA_PRINT_CHAR (val, unresolved_type, stream);
823 }
824 }
825
826 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
827
828 static void
829 generic_val_print_float (struct type *type,
830 int embedded_offset, struct ui_file *stream,
831 struct value *original_value,
832 const struct value_print_options *options)
833 {
834 struct gdbarch *gdbarch = get_type_arch (type);
835 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
836
837 if (options->format)
838 {
839 val_print_scalar_formatted (type, embedded_offset,
840 original_value, options, 0, stream);
841 }
842 else
843 {
844 const gdb_byte *valaddr = value_contents_for_printing (original_value);
845
846 print_floating (valaddr + embedded_offset * unit_size, type, stream);
847 }
848 }
849
850 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
851
852 static void
853 generic_val_print_complex (struct type *type,
854 int embedded_offset, struct ui_file *stream,
855 struct value *original_value,
856 const struct value_print_options *options,
857 const struct generic_val_print_decorations
858 *decorations)
859 {
860 struct gdbarch *gdbarch = get_type_arch (type);
861 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
862 const gdb_byte *valaddr = value_contents_for_printing (original_value);
863
864 fprintf_filtered (stream, "%s", decorations->complex_prefix);
865 if (options->format)
866 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
867 embedded_offset, original_value, options, 0,
868 stream);
869 else
870 print_floating (valaddr + embedded_offset * unit_size,
871 TYPE_TARGET_TYPE (type), stream);
872 fprintf_filtered (stream, "%s", decorations->complex_infix);
873 if (options->format)
874 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
875 embedded_offset
876 + type_length_units (TYPE_TARGET_TYPE (type)),
877 original_value, options, 0, stream);
878 else
879 print_floating (valaddr + embedded_offset * unit_size
880 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
881 TYPE_TARGET_TYPE (type), stream);
882 fprintf_filtered (stream, "%s", decorations->complex_suffix);
883 }
884
885 /* A generic val_print that is suitable for use by language
886 implementations of the la_val_print method. This function can
887 handle most type codes, though not all, notably exception
888 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
889 the caller.
890
891 Most arguments are as to val_print.
892
893 The additional DECORATIONS argument can be used to customize the
894 output in some small, language-specific ways. */
895
896 void
897 generic_val_print (struct type *type,
898 int embedded_offset, CORE_ADDR address,
899 struct ui_file *stream, int recurse,
900 struct value *original_value,
901 const struct value_print_options *options,
902 const struct generic_val_print_decorations *decorations)
903 {
904 struct type *unresolved_type = type;
905
906 type = check_typedef (type);
907 switch (TYPE_CODE (type))
908 {
909 case TYPE_CODE_ARRAY:
910 generic_val_print_array (type, embedded_offset, address, stream,
911 recurse, original_value, options, decorations);
912 break;
913
914 case TYPE_CODE_MEMBERPTR:
915 generic_val_print_memberptr (type, embedded_offset, stream,
916 original_value, options);
917 break;
918
919 case TYPE_CODE_PTR:
920 generic_val_print_ptr (type, embedded_offset, stream,
921 original_value, options);
922 break;
923
924 case TYPE_CODE_REF:
925 case TYPE_CODE_RVALUE_REF:
926 generic_val_print_ref (type, embedded_offset, stream, recurse,
927 original_value, options);
928 break;
929
930 case TYPE_CODE_ENUM:
931 generic_val_print_enum (type, embedded_offset, stream,
932 original_value, options);
933 break;
934
935 case TYPE_CODE_FLAGS:
936 generic_val_print_flags (type, embedded_offset, stream,
937 original_value, options);
938 break;
939
940 case TYPE_CODE_FUNC:
941 case TYPE_CODE_METHOD:
942 generic_val_print_func (type, embedded_offset, address, stream,
943 original_value, options);
944 break;
945
946 case TYPE_CODE_BOOL:
947 generic_val_print_bool (type, embedded_offset, stream,
948 original_value, options, decorations);
949 break;
950
951 case TYPE_CODE_RANGE:
952 /* FIXME: create_static_range_type does not set the unsigned bit in a
953 range type (I think it probably should copy it from the
954 target type), so we won't print values which are too large to
955 fit in a signed integer correctly. */
956 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
957 print with the target type, though, because the size of our
958 type and the target type might differ). */
959
960 /* FALLTHROUGH */
961
962 case TYPE_CODE_INT:
963 generic_val_print_int (type, embedded_offset, stream,
964 original_value, options);
965 break;
966
967 case TYPE_CODE_CHAR:
968 generic_val_print_char (type, unresolved_type, embedded_offset,
969 stream, original_value, options);
970 break;
971
972 case TYPE_CODE_FLT:
973 case TYPE_CODE_DECFLOAT:
974 generic_val_print_float (type, embedded_offset, stream,
975 original_value, options);
976 break;
977
978 case TYPE_CODE_VOID:
979 fputs_filtered (decorations->void_name, stream);
980 break;
981
982 case TYPE_CODE_ERROR:
983 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
984 break;
985
986 case TYPE_CODE_UNDEF:
987 /* This happens (without TYPE_STUB set) on systems which don't use
988 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
989 and no complete type for struct foo in that file. */
990 fprintf_filtered (stream, _("<incomplete type>"));
991 break;
992
993 case TYPE_CODE_COMPLEX:
994 generic_val_print_complex (type, embedded_offset, stream,
995 original_value, options, decorations);
996 break;
997
998 case TYPE_CODE_UNION:
999 case TYPE_CODE_STRUCT:
1000 case TYPE_CODE_METHODPTR:
1001 default:
1002 error (_("Unhandled type code %d in symbol table."),
1003 TYPE_CODE (type));
1004 }
1005 }
1006
1007 /* Print using the given LANGUAGE the data of type TYPE located at
1008 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1009 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1010 stdio stream STREAM according to OPTIONS. VAL is the whole object
1011 that came from ADDRESS.
1012
1013 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1014 further helper subroutines as subfields of TYPE are printed. In
1015 such cases, VAL is passed down unadjusted, so
1016 that VAL can be queried for metadata about the contents data being
1017 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1018 buffer. For example: "has this field been optimized out", or "I'm
1019 printing an object while inspecting a traceframe; has this
1020 particular piece of data been collected?".
1021
1022 RECURSE indicates the amount of indentation to supply before
1023 continuation lines; this amount is roughly twice the value of
1024 RECURSE. */
1025
1026 void
1027 val_print (struct type *type, LONGEST embedded_offset,
1028 CORE_ADDR address, struct ui_file *stream, int recurse,
1029 struct value *val,
1030 const struct value_print_options *options,
1031 const struct language_defn *language)
1032 {
1033 int ret = 0;
1034 struct value_print_options local_opts = *options;
1035 struct type *real_type = check_typedef (type);
1036
1037 if (local_opts.prettyformat == Val_prettyformat_default)
1038 local_opts.prettyformat = (local_opts.prettyformat_structs
1039 ? Val_prettyformat : Val_no_prettyformat);
1040
1041 QUIT;
1042
1043 /* Ensure that the type is complete and not just a stub. If the type is
1044 only a stub and we can't find and substitute its complete type, then
1045 print appropriate string and return. */
1046
1047 if (TYPE_STUB (real_type))
1048 {
1049 fprintf_filtered (stream, _("<incomplete type>"));
1050 return;
1051 }
1052
1053 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1054 return;
1055
1056 if (!options->raw)
1057 {
1058 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1059 address, stream, recurse,
1060 val, options, language);
1061 if (ret)
1062 return;
1063 }
1064
1065 /* Handle summary mode. If the value is a scalar, print it;
1066 otherwise, print an ellipsis. */
1067 if (options->summary && !val_print_scalar_type_p (type))
1068 {
1069 fprintf_filtered (stream, "...");
1070 return;
1071 }
1072
1073 /* If this value is too deep then don't print it. */
1074 if (!val_print_scalar_or_string_type_p (type, language)
1075 && val_print_check_max_depth (stream, recurse, options, language))
1076 return;
1077
1078 try
1079 {
1080 language->la_val_print (type, embedded_offset, address,
1081 stream, recurse, val,
1082 &local_opts);
1083 }
1084 catch (const gdb_exception_error &except)
1085 {
1086 fprintf_filtered (stream, _("<error reading variable>"));
1087 }
1088 }
1089
1090 /* See valprint.h. */
1091
1092 bool
1093 val_print_check_max_depth (struct ui_file *stream, int recurse,
1094 const struct value_print_options *options,
1095 const struct language_defn *language)
1096 {
1097 if (options->max_depth > -1 && recurse >= options->max_depth)
1098 {
1099 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1100 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1101 return true;
1102 }
1103
1104 return false;
1105 }
1106
1107 /* Check whether the value VAL is printable. Return 1 if it is;
1108 return 0 and print an appropriate error message to STREAM according to
1109 OPTIONS if it is not. */
1110
1111 static int
1112 value_check_printable (struct value *val, struct ui_file *stream,
1113 const struct value_print_options *options)
1114 {
1115 if (val == 0)
1116 {
1117 fprintf_filtered (stream, _("<address of value unknown>"));
1118 return 0;
1119 }
1120
1121 if (value_entirely_optimized_out (val))
1122 {
1123 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1124 fprintf_filtered (stream, "...");
1125 else
1126 val_print_optimized_out (val, stream);
1127 return 0;
1128 }
1129
1130 if (value_entirely_unavailable (val))
1131 {
1132 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1133 fprintf_filtered (stream, "...");
1134 else
1135 val_print_unavailable (stream);
1136 return 0;
1137 }
1138
1139 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1140 {
1141 fprintf_filtered (stream, _("<internal function %s>"),
1142 value_internal_function_name (val));
1143 return 0;
1144 }
1145
1146 if (type_not_associated (value_type (val)))
1147 {
1148 val_print_not_associated (stream);
1149 return 0;
1150 }
1151
1152 if (type_not_allocated (value_type (val)))
1153 {
1154 val_print_not_allocated (stream);
1155 return 0;
1156 }
1157
1158 return 1;
1159 }
1160
1161 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1162 to OPTIONS.
1163
1164 This is a preferable interface to val_print, above, because it uses
1165 GDB's value mechanism. */
1166
1167 void
1168 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1169 const struct value_print_options *options,
1170 const struct language_defn *language)
1171 {
1172 if (!value_check_printable (val, stream, options))
1173 return;
1174
1175 if (language->la_language == language_ada)
1176 /* The value might have a dynamic type, which would cause trouble
1177 below when trying to extract the value contents (since the value
1178 size is determined from the type size which is unknown). So
1179 get a fixed representation of our value. */
1180 val = ada_to_fixed_value (val);
1181
1182 if (value_lazy (val))
1183 value_fetch_lazy (val);
1184
1185 val_print (value_type (val),
1186 value_embedded_offset (val), value_address (val),
1187 stream, recurse,
1188 val, options, language);
1189 }
1190
1191 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1192 is printed using the current_language syntax. */
1193
1194 void
1195 value_print (struct value *val, struct ui_file *stream,
1196 const struct value_print_options *options)
1197 {
1198 if (!value_check_printable (val, stream, options))
1199 return;
1200
1201 if (!options->raw)
1202 {
1203 int r
1204 = apply_ext_lang_val_pretty_printer (value_type (val),
1205 value_embedded_offset (val),
1206 value_address (val),
1207 stream, 0,
1208 val, options, current_language);
1209
1210 if (r)
1211 return;
1212 }
1213
1214 LA_VALUE_PRINT (val, stream, options);
1215 }
1216
1217 static void
1218 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1219 struct ui_file *stream)
1220 {
1221 ULONGEST val = unpack_long (type, valaddr);
1222 int field, nfields = TYPE_NFIELDS (type);
1223 struct gdbarch *gdbarch = get_type_arch (type);
1224 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1225
1226 fputs_filtered ("[", stream);
1227 for (field = 0; field < nfields; field++)
1228 {
1229 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1230 {
1231 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1232
1233 if (field_type == bool_type
1234 /* We require boolean types here to be one bit wide. This is a
1235 problematic place to notify the user of an internal error
1236 though. Instead just fall through and print the field as an
1237 int. */
1238 && TYPE_FIELD_BITSIZE (type, field) == 1)
1239 {
1240 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1241 fprintf_filtered (stream, " %s",
1242 TYPE_FIELD_NAME (type, field));
1243 }
1244 else
1245 {
1246 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1247 ULONGEST field_val
1248 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1249
1250 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1251 field_val &= ((ULONGEST) 1 << field_len) - 1;
1252 fprintf_filtered (stream, " %s=",
1253 TYPE_FIELD_NAME (type, field));
1254 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1255 generic_val_print_enum_1 (field_type, field_val, stream);
1256 else
1257 print_longest (stream, 'd', 0, field_val);
1258 }
1259 }
1260 }
1261 fputs_filtered (" ]", stream);
1262 }
1263
1264 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1265 according to OPTIONS and SIZE on STREAM. Format i is not supported
1266 at this level.
1267
1268 This is how the elements of an array or structure are printed
1269 with a format. */
1270
1271 void
1272 val_print_scalar_formatted (struct type *type,
1273 LONGEST embedded_offset,
1274 struct value *val,
1275 const struct value_print_options *options,
1276 int size,
1277 struct ui_file *stream)
1278 {
1279 struct gdbarch *arch = get_type_arch (type);
1280 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1281
1282 gdb_assert (val != NULL);
1283
1284 /* If we get here with a string format, try again without it. Go
1285 all the way back to the language printers, which may call us
1286 again. */
1287 if (options->format == 's')
1288 {
1289 struct value_print_options opts = *options;
1290 opts.format = 0;
1291 opts.deref_ref = 0;
1292 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1293 current_language);
1294 return;
1295 }
1296
1297 /* value_contents_for_printing fetches all VAL's contents. They are
1298 needed to check whether VAL is optimized-out or unavailable
1299 below. */
1300 const gdb_byte *valaddr = value_contents_for_printing (val);
1301
1302 /* A scalar object that does not have all bits available can't be
1303 printed, because all bits contribute to its representation. */
1304 if (value_bits_any_optimized_out (val,
1305 TARGET_CHAR_BIT * embedded_offset,
1306 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1307 val_print_optimized_out (val, stream);
1308 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1309 val_print_unavailable (stream);
1310 else
1311 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1312 options, size, stream);
1313 }
1314
1315 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1316 The raison d'etre of this function is to consolidate printing of
1317 LONG_LONG's into this one function. The format chars b,h,w,g are
1318 from print_scalar_formatted(). Numbers are printed using C
1319 format.
1320
1321 USE_C_FORMAT means to use C format in all cases. Without it,
1322 'o' and 'x' format do not include the standard C radix prefix
1323 (leading 0 or 0x).
1324
1325 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1326 and was intended to request formating according to the current
1327 language and would be used for most integers that GDB prints. The
1328 exceptional cases were things like protocols where the format of
1329 the integer is a protocol thing, not a user-visible thing). The
1330 parameter remains to preserve the information of what things might
1331 be printed with language-specific format, should we ever resurrect
1332 that capability. */
1333
1334 void
1335 print_longest (struct ui_file *stream, int format, int use_c_format,
1336 LONGEST val_long)
1337 {
1338 const char *val;
1339
1340 switch (format)
1341 {
1342 case 'd':
1343 val = int_string (val_long, 10, 1, 0, 1); break;
1344 case 'u':
1345 val = int_string (val_long, 10, 0, 0, 1); break;
1346 case 'x':
1347 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1348 case 'b':
1349 val = int_string (val_long, 16, 0, 2, 1); break;
1350 case 'h':
1351 val = int_string (val_long, 16, 0, 4, 1); break;
1352 case 'w':
1353 val = int_string (val_long, 16, 0, 8, 1); break;
1354 case 'g':
1355 val = int_string (val_long, 16, 0, 16, 1); break;
1356 break;
1357 case 'o':
1358 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1359 default:
1360 internal_error (__FILE__, __LINE__,
1361 _("failed internal consistency check"));
1362 }
1363 fputs_filtered (val, stream);
1364 }
1365
1366 /* This used to be a macro, but I don't think it is called often enough
1367 to merit such treatment. */
1368 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1369 arguments to a function, number in a value history, register number, etc.)
1370 where the value must not be larger than can fit in an int. */
1371
1372 int
1373 longest_to_int (LONGEST arg)
1374 {
1375 /* Let the compiler do the work. */
1376 int rtnval = (int) arg;
1377
1378 /* Check for overflows or underflows. */
1379 if (sizeof (LONGEST) > sizeof (int))
1380 {
1381 if (rtnval != arg)
1382 {
1383 error (_("Value out of range."));
1384 }
1385 }
1386 return (rtnval);
1387 }
1388
1389 /* Print a floating point value of floating-point type TYPE,
1390 pointed to in GDB by VALADDR, on STREAM. */
1391
1392 void
1393 print_floating (const gdb_byte *valaddr, struct type *type,
1394 struct ui_file *stream)
1395 {
1396 std::string str = target_float_to_string (valaddr, type);
1397 fputs_filtered (str.c_str (), stream);
1398 }
1399
1400 void
1401 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1402 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1403 {
1404 const gdb_byte *p;
1405 unsigned int i;
1406 int b;
1407 bool seen_a_one = false;
1408
1409 /* Declared "int" so it will be signed.
1410 This ensures that right shift will shift in zeros. */
1411
1412 const int mask = 0x080;
1413
1414 if (byte_order == BFD_ENDIAN_BIG)
1415 {
1416 for (p = valaddr;
1417 p < valaddr + len;
1418 p++)
1419 {
1420 /* Every byte has 8 binary characters; peel off
1421 and print from the MSB end. */
1422
1423 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1424 {
1425 if (*p & (mask >> i))
1426 b = '1';
1427 else
1428 b = '0';
1429
1430 if (zero_pad || seen_a_one || b == '1')
1431 fputc_filtered (b, stream);
1432 if (b == '1')
1433 seen_a_one = true;
1434 }
1435 }
1436 }
1437 else
1438 {
1439 for (p = valaddr + len - 1;
1440 p >= valaddr;
1441 p--)
1442 {
1443 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1444 {
1445 if (*p & (mask >> i))
1446 b = '1';
1447 else
1448 b = '0';
1449
1450 if (zero_pad || seen_a_one || b == '1')
1451 fputc_filtered (b, stream);
1452 if (b == '1')
1453 seen_a_one = true;
1454 }
1455 }
1456 }
1457
1458 /* When not zero-padding, ensure that something is printed when the
1459 input is 0. */
1460 if (!zero_pad && !seen_a_one)
1461 fputc_filtered ('0', stream);
1462 }
1463
1464 /* A helper for print_octal_chars that emits a single octal digit,
1465 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1466
1467 static void
1468 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1469 {
1470 if (*seen_a_one || digit != 0)
1471 fprintf_filtered (stream, "%o", digit);
1472 if (digit != 0)
1473 *seen_a_one = true;
1474 }
1475
1476 /* VALADDR points to an integer of LEN bytes.
1477 Print it in octal on stream or format it in buf. */
1478
1479 void
1480 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1481 unsigned len, enum bfd_endian byte_order)
1482 {
1483 const gdb_byte *p;
1484 unsigned char octa1, octa2, octa3, carry;
1485 int cycle;
1486
1487 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1488 * the extra bits, which cycle every three bytes:
1489 *
1490 * Byte side: 0 1 2 3
1491 * | | | |
1492 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1493 *
1494 * Octal side: 0 1 carry 3 4 carry ...
1495 *
1496 * Cycle number: 0 1 2
1497 *
1498 * But of course we are printing from the high side, so we have to
1499 * figure out where in the cycle we are so that we end up with no
1500 * left over bits at the end.
1501 */
1502 #define BITS_IN_OCTAL 3
1503 #define HIGH_ZERO 0340
1504 #define LOW_ZERO 0034
1505 #define CARRY_ZERO 0003
1506 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1507 "cycle zero constants are wrong");
1508 #define HIGH_ONE 0200
1509 #define MID_ONE 0160
1510 #define LOW_ONE 0016
1511 #define CARRY_ONE 0001
1512 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1513 "cycle one constants are wrong");
1514 #define HIGH_TWO 0300
1515 #define MID_TWO 0070
1516 #define LOW_TWO 0007
1517 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1518 "cycle two constants are wrong");
1519
1520 /* For 32 we start in cycle 2, with two bits and one bit carry;
1521 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1522
1523 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1524 carry = 0;
1525
1526 fputs_filtered ("0", stream);
1527 bool seen_a_one = false;
1528 if (byte_order == BFD_ENDIAN_BIG)
1529 {
1530 for (p = valaddr;
1531 p < valaddr + len;
1532 p++)
1533 {
1534 switch (cycle)
1535 {
1536 case 0:
1537 /* No carry in, carry out two bits. */
1538
1539 octa1 = (HIGH_ZERO & *p) >> 5;
1540 octa2 = (LOW_ZERO & *p) >> 2;
1541 carry = (CARRY_ZERO & *p);
1542 emit_octal_digit (stream, &seen_a_one, octa1);
1543 emit_octal_digit (stream, &seen_a_one, octa2);
1544 break;
1545
1546 case 1:
1547 /* Carry in two bits, carry out one bit. */
1548
1549 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1550 octa2 = (MID_ONE & *p) >> 4;
1551 octa3 = (LOW_ONE & *p) >> 1;
1552 carry = (CARRY_ONE & *p);
1553 emit_octal_digit (stream, &seen_a_one, octa1);
1554 emit_octal_digit (stream, &seen_a_one, octa2);
1555 emit_octal_digit (stream, &seen_a_one, octa3);
1556 break;
1557
1558 case 2:
1559 /* Carry in one bit, no carry out. */
1560
1561 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1562 octa2 = (MID_TWO & *p) >> 3;
1563 octa3 = (LOW_TWO & *p);
1564 carry = 0;
1565 emit_octal_digit (stream, &seen_a_one, octa1);
1566 emit_octal_digit (stream, &seen_a_one, octa2);
1567 emit_octal_digit (stream, &seen_a_one, octa3);
1568 break;
1569
1570 default:
1571 error (_("Internal error in octal conversion;"));
1572 }
1573
1574 cycle++;
1575 cycle = cycle % BITS_IN_OCTAL;
1576 }
1577 }
1578 else
1579 {
1580 for (p = valaddr + len - 1;
1581 p >= valaddr;
1582 p--)
1583 {
1584 switch (cycle)
1585 {
1586 case 0:
1587 /* Carry out, no carry in */
1588
1589 octa1 = (HIGH_ZERO & *p) >> 5;
1590 octa2 = (LOW_ZERO & *p) >> 2;
1591 carry = (CARRY_ZERO & *p);
1592 emit_octal_digit (stream, &seen_a_one, octa1);
1593 emit_octal_digit (stream, &seen_a_one, octa2);
1594 break;
1595
1596 case 1:
1597 /* Carry in, carry out */
1598
1599 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1600 octa2 = (MID_ONE & *p) >> 4;
1601 octa3 = (LOW_ONE & *p) >> 1;
1602 carry = (CARRY_ONE & *p);
1603 emit_octal_digit (stream, &seen_a_one, octa1);
1604 emit_octal_digit (stream, &seen_a_one, octa2);
1605 emit_octal_digit (stream, &seen_a_one, octa3);
1606 break;
1607
1608 case 2:
1609 /* Carry in, no carry out */
1610
1611 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1612 octa2 = (MID_TWO & *p) >> 3;
1613 octa3 = (LOW_TWO & *p);
1614 carry = 0;
1615 emit_octal_digit (stream, &seen_a_one, octa1);
1616 emit_octal_digit (stream, &seen_a_one, octa2);
1617 emit_octal_digit (stream, &seen_a_one, octa3);
1618 break;
1619
1620 default:
1621 error (_("Internal error in octal conversion;"));
1622 }
1623
1624 cycle++;
1625 cycle = cycle % BITS_IN_OCTAL;
1626 }
1627 }
1628
1629 }
1630
1631 /* Possibly negate the integer represented by BYTES. It contains LEN
1632 bytes in the specified byte order. If the integer is negative,
1633 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1634 nothing and return false. */
1635
1636 static bool
1637 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1638 enum bfd_endian byte_order,
1639 gdb::byte_vector *out_vec)
1640 {
1641 gdb_byte sign_byte;
1642 gdb_assert (len > 0);
1643 if (byte_order == BFD_ENDIAN_BIG)
1644 sign_byte = bytes[0];
1645 else
1646 sign_byte = bytes[len - 1];
1647 if ((sign_byte & 0x80) == 0)
1648 return false;
1649
1650 out_vec->resize (len);
1651
1652 /* Compute -x == 1 + ~x. */
1653 if (byte_order == BFD_ENDIAN_LITTLE)
1654 {
1655 unsigned carry = 1;
1656 for (unsigned i = 0; i < len; ++i)
1657 {
1658 unsigned tem = (0xff & ~bytes[i]) + carry;
1659 (*out_vec)[i] = tem & 0xff;
1660 carry = tem / 256;
1661 }
1662 }
1663 else
1664 {
1665 unsigned carry = 1;
1666 for (unsigned i = len; i > 0; --i)
1667 {
1668 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1669 (*out_vec)[i - 1] = tem & 0xff;
1670 carry = tem / 256;
1671 }
1672 }
1673
1674 return true;
1675 }
1676
1677 /* VALADDR points to an integer of LEN bytes.
1678 Print it in decimal on stream or format it in buf. */
1679
1680 void
1681 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1682 unsigned len, bool is_signed,
1683 enum bfd_endian byte_order)
1684 {
1685 #define TEN 10
1686 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1687 #define CARRY_LEFT( x ) ((x) % TEN)
1688 #define SHIFT( x ) ((x) << 4)
1689 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1690 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1691
1692 const gdb_byte *p;
1693 int carry;
1694 int decimal_len;
1695 int i, j, decimal_digits;
1696 int dummy;
1697 int flip;
1698
1699 gdb::byte_vector negated_bytes;
1700 if (is_signed
1701 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1702 {
1703 fputs_filtered ("-", stream);
1704 valaddr = negated_bytes.data ();
1705 }
1706
1707 /* Base-ten number is less than twice as many digits
1708 as the base 16 number, which is 2 digits per byte. */
1709
1710 decimal_len = len * 2 * 2;
1711 std::vector<unsigned char> digits (decimal_len, 0);
1712
1713 /* Ok, we have an unknown number of bytes of data to be printed in
1714 * decimal.
1715 *
1716 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1717 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1718 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1719 *
1720 * The trick is that "digits" holds a base-10 number, but sometimes
1721 * the individual digits are > 10.
1722 *
1723 * Outer loop is per nibble (hex digit) of input, from MSD end to
1724 * LSD end.
1725 */
1726 decimal_digits = 0; /* Number of decimal digits so far */
1727 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1728 flip = 0;
1729 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1730 {
1731 /*
1732 * Multiply current base-ten number by 16 in place.
1733 * Each digit was between 0 and 9, now is between
1734 * 0 and 144.
1735 */
1736 for (j = 0; j < decimal_digits; j++)
1737 {
1738 digits[j] = SHIFT (digits[j]);
1739 }
1740
1741 /* Take the next nibble off the input and add it to what
1742 * we've got in the LSB position. Bottom 'digit' is now
1743 * between 0 and 159.
1744 *
1745 * "flip" is used to run this loop twice for each byte.
1746 */
1747 if (flip == 0)
1748 {
1749 /* Take top nibble. */
1750
1751 digits[0] += HIGH_NIBBLE (*p);
1752 flip = 1;
1753 }
1754 else
1755 {
1756 /* Take low nibble and bump our pointer "p". */
1757
1758 digits[0] += LOW_NIBBLE (*p);
1759 if (byte_order == BFD_ENDIAN_BIG)
1760 p++;
1761 else
1762 p--;
1763 flip = 0;
1764 }
1765
1766 /* Re-decimalize. We have to do this often enough
1767 * that we don't overflow, but once per nibble is
1768 * overkill. Easier this way, though. Note that the
1769 * carry is often larger than 10 (e.g. max initial
1770 * carry out of lowest nibble is 15, could bubble all
1771 * the way up greater than 10). So we have to do
1772 * the carrying beyond the last current digit.
1773 */
1774 carry = 0;
1775 for (j = 0; j < decimal_len - 1; j++)
1776 {
1777 digits[j] += carry;
1778
1779 /* "/" won't handle an unsigned char with
1780 * a value that if signed would be negative.
1781 * So extend to longword int via "dummy".
1782 */
1783 dummy = digits[j];
1784 carry = CARRY_OUT (dummy);
1785 digits[j] = CARRY_LEFT (dummy);
1786
1787 if (j >= decimal_digits && carry == 0)
1788 {
1789 /*
1790 * All higher digits are 0 and we
1791 * no longer have a carry.
1792 *
1793 * Note: "j" is 0-based, "decimal_digits" is
1794 * 1-based.
1795 */
1796 decimal_digits = j + 1;
1797 break;
1798 }
1799 }
1800 }
1801
1802 /* Ok, now "digits" is the decimal representation, with
1803 the "decimal_digits" actual digits. Print! */
1804
1805 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1806 ;
1807
1808 for (; i >= 0; i--)
1809 {
1810 fprintf_filtered (stream, "%1d", digits[i]);
1811 }
1812 }
1813
1814 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1815
1816 void
1817 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1818 unsigned len, enum bfd_endian byte_order,
1819 bool zero_pad)
1820 {
1821 const gdb_byte *p;
1822
1823 fputs_filtered ("0x", stream);
1824 if (byte_order == BFD_ENDIAN_BIG)
1825 {
1826 p = valaddr;
1827
1828 if (!zero_pad)
1829 {
1830 /* Strip leading 0 bytes, but be sure to leave at least a
1831 single byte at the end. */
1832 for (; p < valaddr + len - 1 && !*p; ++p)
1833 ;
1834 }
1835
1836 const gdb_byte *first = p;
1837 for (;
1838 p < valaddr + len;
1839 p++)
1840 {
1841 /* When not zero-padding, use a different format for the
1842 very first byte printed. */
1843 if (!zero_pad && p == first)
1844 fprintf_filtered (stream, "%x", *p);
1845 else
1846 fprintf_filtered (stream, "%02x", *p);
1847 }
1848 }
1849 else
1850 {
1851 p = valaddr + len - 1;
1852
1853 if (!zero_pad)
1854 {
1855 /* Strip leading 0 bytes, but be sure to leave at least a
1856 single byte at the end. */
1857 for (; p >= valaddr + 1 && !*p; --p)
1858 ;
1859 }
1860
1861 const gdb_byte *first = p;
1862 for (;
1863 p >= valaddr;
1864 p--)
1865 {
1866 /* When not zero-padding, use a different format for the
1867 very first byte printed. */
1868 if (!zero_pad && p == first)
1869 fprintf_filtered (stream, "%x", *p);
1870 else
1871 fprintf_filtered (stream, "%02x", *p);
1872 }
1873 }
1874 }
1875
1876 /* VALADDR points to a char integer of LEN bytes.
1877 Print it out in appropriate language form on stream.
1878 Omit any leading zero chars. */
1879
1880 void
1881 print_char_chars (struct ui_file *stream, struct type *type,
1882 const gdb_byte *valaddr,
1883 unsigned len, enum bfd_endian byte_order)
1884 {
1885 const gdb_byte *p;
1886
1887 if (byte_order == BFD_ENDIAN_BIG)
1888 {
1889 p = valaddr;
1890 while (p < valaddr + len - 1 && *p == 0)
1891 ++p;
1892
1893 while (p < valaddr + len)
1894 {
1895 LA_EMIT_CHAR (*p, type, stream, '\'');
1896 ++p;
1897 }
1898 }
1899 else
1900 {
1901 p = valaddr + len - 1;
1902 while (p > valaddr && *p == 0)
1903 --p;
1904
1905 while (p >= valaddr)
1906 {
1907 LA_EMIT_CHAR (*p, type, stream, '\'');
1908 --p;
1909 }
1910 }
1911 }
1912
1913 /* Print function pointer with inferior address ADDRESS onto stdio
1914 stream STREAM. */
1915
1916 void
1917 print_function_pointer_address (const struct value_print_options *options,
1918 struct gdbarch *gdbarch,
1919 CORE_ADDR address,
1920 struct ui_file *stream)
1921 {
1922 CORE_ADDR func_addr
1923 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1924 current_top_target ());
1925
1926 /* If the function pointer is represented by a description, print
1927 the address of the description. */
1928 if (options->addressprint && func_addr != address)
1929 {
1930 fputs_filtered ("@", stream);
1931 fputs_filtered (paddress (gdbarch, address), stream);
1932 fputs_filtered (": ", stream);
1933 }
1934 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1935 }
1936
1937
1938 /* Print on STREAM using the given OPTIONS the index for the element
1939 at INDEX of an array whose index type is INDEX_TYPE. */
1940
1941 void
1942 maybe_print_array_index (struct type *index_type, LONGEST index,
1943 struct ui_file *stream,
1944 const struct value_print_options *options)
1945 {
1946 struct value *index_value;
1947
1948 if (!options->print_array_indexes)
1949 return;
1950
1951 index_value = value_from_longest (index_type, index);
1952
1953 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1954 }
1955
1956 /* Called by various <lang>_val_print routines to print elements of an
1957 array in the form "<elem1>, <elem2>, <elem3>, ...".
1958
1959 (FIXME?) Assumes array element separator is a comma, which is correct
1960 for all languages currently handled.
1961 (FIXME?) Some languages have a notation for repeated array elements,
1962 perhaps we should try to use that notation when appropriate. */
1963
1964 void
1965 val_print_array_elements (struct type *type,
1966 LONGEST embedded_offset,
1967 CORE_ADDR address, struct ui_file *stream,
1968 int recurse,
1969 struct value *val,
1970 const struct value_print_options *options,
1971 unsigned int i)
1972 {
1973 unsigned int things_printed = 0;
1974 unsigned len;
1975 struct type *elttype, *index_type, *base_index_type;
1976 unsigned eltlen;
1977 /* Position of the array element we are examining to see
1978 whether it is repeated. */
1979 unsigned int rep1;
1980 /* Number of repetitions we have detected so far. */
1981 unsigned int reps;
1982 LONGEST low_bound, high_bound;
1983 LONGEST low_pos, high_pos;
1984
1985 elttype = TYPE_TARGET_TYPE (type);
1986 eltlen = type_length_units (check_typedef (elttype));
1987 index_type = TYPE_INDEX_TYPE (type);
1988
1989 if (get_array_bounds (type, &low_bound, &high_bound))
1990 {
1991 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1992 base_index_type = TYPE_TARGET_TYPE (index_type);
1993 else
1994 base_index_type = index_type;
1995
1996 /* Non-contiguous enumerations types can by used as index types
1997 in some languages (e.g. Ada). In this case, the array length
1998 shall be computed from the positions of the first and last
1999 literal in the enumeration type, and not from the values
2000 of these literals. */
2001 if (!discrete_position (base_index_type, low_bound, &low_pos)
2002 || !discrete_position (base_index_type, high_bound, &high_pos))
2003 {
2004 warning (_("unable to get positions in array, use bounds instead"));
2005 low_pos = low_bound;
2006 high_pos = high_bound;
2007 }
2008
2009 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2010 But we have to be a little extra careful, because some languages
2011 such as Ada allow LOW_POS to be greater than HIGH_POS for
2012 empty arrays. In that situation, the array length is just zero,
2013 not negative! */
2014 if (low_pos > high_pos)
2015 len = 0;
2016 else
2017 len = high_pos - low_pos + 1;
2018 }
2019 else
2020 {
2021 warning (_("unable to get bounds of array, assuming null array"));
2022 low_bound = 0;
2023 len = 0;
2024 }
2025
2026 annotate_array_section_begin (i, elttype);
2027
2028 for (; i < len && things_printed < options->print_max; i++)
2029 {
2030 if (i != 0)
2031 {
2032 if (options->prettyformat_arrays)
2033 {
2034 fprintf_filtered (stream, ",\n");
2035 print_spaces_filtered (2 + 2 * recurse, stream);
2036 }
2037 else
2038 {
2039 fprintf_filtered (stream, ", ");
2040 }
2041 }
2042 wrap_here (n_spaces (2 + 2 * recurse));
2043 maybe_print_array_index (index_type, i + low_bound,
2044 stream, options);
2045
2046 rep1 = i + 1;
2047 reps = 1;
2048 /* Only check for reps if repeat_count_threshold is not set to
2049 UINT_MAX (unlimited). */
2050 if (options->repeat_count_threshold < UINT_MAX)
2051 {
2052 while (rep1 < len
2053 && value_contents_eq (val,
2054 embedded_offset + i * eltlen,
2055 val,
2056 (embedded_offset
2057 + rep1 * eltlen),
2058 eltlen))
2059 {
2060 ++reps;
2061 ++rep1;
2062 }
2063 }
2064
2065 if (reps > options->repeat_count_threshold)
2066 {
2067 val_print (elttype, embedded_offset + i * eltlen,
2068 address, stream, recurse + 1, val, options,
2069 current_language);
2070 annotate_elt_rep (reps);
2071 fprintf_filtered (stream, " <repeats %u times>", reps);
2072 annotate_elt_rep_end ();
2073
2074 i = rep1 - 1;
2075 things_printed += options->repeat_count_threshold;
2076 }
2077 else
2078 {
2079 val_print (elttype, embedded_offset + i * eltlen,
2080 address,
2081 stream, recurse + 1, val, options, current_language);
2082 annotate_elt ();
2083 things_printed++;
2084 }
2085 }
2086 annotate_array_section_end ();
2087 if (i < len)
2088 {
2089 fprintf_filtered (stream, "...");
2090 }
2091 }
2092
2093 /* Read LEN bytes of target memory at address MEMADDR, placing the
2094 results in GDB's memory at MYADDR. Returns a count of the bytes
2095 actually read, and optionally a target_xfer_status value in the
2096 location pointed to by ERRPTR if ERRPTR is non-null. */
2097
2098 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2099 function be eliminated. */
2100
2101 static int
2102 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2103 int len, int *errptr)
2104 {
2105 int nread; /* Number of bytes actually read. */
2106 int errcode; /* Error from last read. */
2107
2108 /* First try a complete read. */
2109 errcode = target_read_memory (memaddr, myaddr, len);
2110 if (errcode == 0)
2111 {
2112 /* Got it all. */
2113 nread = len;
2114 }
2115 else
2116 {
2117 /* Loop, reading one byte at a time until we get as much as we can. */
2118 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2119 {
2120 errcode = target_read_memory (memaddr++, myaddr++, 1);
2121 }
2122 /* If an error, the last read was unsuccessful, so adjust count. */
2123 if (errcode != 0)
2124 {
2125 nread--;
2126 }
2127 }
2128 if (errptr != NULL)
2129 {
2130 *errptr = errcode;
2131 }
2132 return (nread);
2133 }
2134
2135 /* Read a string from the inferior, at ADDR, with LEN characters of
2136 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2137 will be set to a newly allocated buffer containing the string, and
2138 BYTES_READ will be set to the number of bytes read. Returns 0 on
2139 success, or a target_xfer_status on failure.
2140
2141 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2142 (including eventual NULs in the middle or end of the string).
2143
2144 If LEN is -1, stops at the first null character (not necessarily
2145 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2146 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2147 the string.
2148
2149 Unless an exception is thrown, BUFFER will always be allocated, even on
2150 failure. In this case, some characters might have been read before the
2151 failure happened. Check BYTES_READ to recognize this situation.
2152
2153 Note: There was a FIXME asking to make this code use target_read_string,
2154 but this function is more general (can read past null characters, up to
2155 given LEN). Besides, it is used much more often than target_read_string
2156 so it is more tested. Perhaps callers of target_read_string should use
2157 this function instead? */
2158
2159 int
2160 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2161 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2162 int *bytes_read)
2163 {
2164 int errcode; /* Errno returned from bad reads. */
2165 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2166 gdb_byte *bufptr; /* Pointer to next available byte in
2167 buffer. */
2168
2169 /* Loop until we either have all the characters, or we encounter
2170 some error, such as bumping into the end of the address space. */
2171
2172 buffer->reset (nullptr);
2173
2174 if (len > 0)
2175 {
2176 /* We want fetchlimit chars, so we might as well read them all in
2177 one operation. */
2178 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2179
2180 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2181 bufptr = buffer->get ();
2182
2183 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2184 / width;
2185 addr += nfetch * width;
2186 bufptr += nfetch * width;
2187 }
2188 else if (len == -1)
2189 {
2190 unsigned long bufsize = 0;
2191 unsigned int chunksize; /* Size of each fetch, in chars. */
2192 int found_nul; /* Non-zero if we found the nul char. */
2193 gdb_byte *limit; /* First location past end of fetch buffer. */
2194
2195 found_nul = 0;
2196 /* We are looking for a NUL terminator to end the fetching, so we
2197 might as well read in blocks that are large enough to be efficient,
2198 but not so large as to be slow if fetchlimit happens to be large.
2199 So we choose the minimum of 8 and fetchlimit. We used to use 200
2200 instead of 8 but 200 is way too big for remote debugging over a
2201 serial line. */
2202 chunksize = std::min (8u, fetchlimit);
2203
2204 do
2205 {
2206 QUIT;
2207 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2208
2209 if (*buffer == NULL)
2210 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2211 else
2212 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2213 (nfetch + bufsize) * width));
2214
2215 bufptr = buffer->get () + bufsize * width;
2216 bufsize += nfetch;
2217
2218 /* Read as much as we can. */
2219 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2220 / width;
2221
2222 /* Scan this chunk for the null character that terminates the string
2223 to print. If found, we don't need to fetch any more. Note
2224 that bufptr is explicitly left pointing at the next character
2225 after the null character, or at the next character after the end
2226 of the buffer. */
2227
2228 limit = bufptr + nfetch * width;
2229 while (bufptr < limit)
2230 {
2231 unsigned long c;
2232
2233 c = extract_unsigned_integer (bufptr, width, byte_order);
2234 addr += width;
2235 bufptr += width;
2236 if (c == 0)
2237 {
2238 /* We don't care about any error which happened after
2239 the NUL terminator. */
2240 errcode = 0;
2241 found_nul = 1;
2242 break;
2243 }
2244 }
2245 }
2246 while (errcode == 0 /* no error */
2247 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2248 && !found_nul); /* haven't found NUL yet */
2249 }
2250 else
2251 { /* Length of string is really 0! */
2252 /* We always allocate *buffer. */
2253 buffer->reset ((gdb_byte *) xmalloc (1));
2254 bufptr = buffer->get ();
2255 errcode = 0;
2256 }
2257
2258 /* bufptr and addr now point immediately beyond the last byte which we
2259 consider part of the string (including a '\0' which ends the string). */
2260 *bytes_read = bufptr - buffer->get ();
2261
2262 QUIT;
2263
2264 return errcode;
2265 }
2266
2267 /* Return true if print_wchar can display W without resorting to a
2268 numeric escape, false otherwise. */
2269
2270 static int
2271 wchar_printable (gdb_wchar_t w)
2272 {
2273 return (gdb_iswprint (w)
2274 || w == LCST ('\a') || w == LCST ('\b')
2275 || w == LCST ('\f') || w == LCST ('\n')
2276 || w == LCST ('\r') || w == LCST ('\t')
2277 || w == LCST ('\v'));
2278 }
2279
2280 /* A helper function that converts the contents of STRING to wide
2281 characters and then appends them to OUTPUT. */
2282
2283 static void
2284 append_string_as_wide (const char *string,
2285 struct obstack *output)
2286 {
2287 for (; *string; ++string)
2288 {
2289 gdb_wchar_t w = gdb_btowc (*string);
2290 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2291 }
2292 }
2293
2294 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2295 original (target) bytes representing the character, ORIG_LEN is the
2296 number of valid bytes. WIDTH is the number of bytes in a base
2297 characters of the type. OUTPUT is an obstack to which wide
2298 characters are emitted. QUOTER is a (narrow) character indicating
2299 the style of quotes surrounding the character to be printed.
2300 NEED_ESCAPE is an in/out flag which is used to track numeric
2301 escapes across calls. */
2302
2303 static void
2304 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2305 int orig_len, int width,
2306 enum bfd_endian byte_order,
2307 struct obstack *output,
2308 int quoter, int *need_escapep)
2309 {
2310 int need_escape = *need_escapep;
2311
2312 *need_escapep = 0;
2313
2314 /* iswprint implementation on Windows returns 1 for tab character.
2315 In order to avoid different printout on this host, we explicitly
2316 use wchar_printable function. */
2317 switch (w)
2318 {
2319 case LCST ('\a'):
2320 obstack_grow_wstr (output, LCST ("\\a"));
2321 break;
2322 case LCST ('\b'):
2323 obstack_grow_wstr (output, LCST ("\\b"));
2324 break;
2325 case LCST ('\f'):
2326 obstack_grow_wstr (output, LCST ("\\f"));
2327 break;
2328 case LCST ('\n'):
2329 obstack_grow_wstr (output, LCST ("\\n"));
2330 break;
2331 case LCST ('\r'):
2332 obstack_grow_wstr (output, LCST ("\\r"));
2333 break;
2334 case LCST ('\t'):
2335 obstack_grow_wstr (output, LCST ("\\t"));
2336 break;
2337 case LCST ('\v'):
2338 obstack_grow_wstr (output, LCST ("\\v"));
2339 break;
2340 default:
2341 {
2342 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2343 && w != LCST ('8')
2344 && w != LCST ('9'))))
2345 {
2346 gdb_wchar_t wchar = w;
2347
2348 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2349 obstack_grow_wstr (output, LCST ("\\"));
2350 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2351 }
2352 else
2353 {
2354 int i;
2355
2356 for (i = 0; i + width <= orig_len; i += width)
2357 {
2358 char octal[30];
2359 ULONGEST value;
2360
2361 value = extract_unsigned_integer (&orig[i], width,
2362 byte_order);
2363 /* If the value fits in 3 octal digits, print it that
2364 way. Otherwise, print it as a hex escape. */
2365 if (value <= 0777)
2366 xsnprintf (octal, sizeof (octal), "\\%.3o",
2367 (int) (value & 0777));
2368 else
2369 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2370 append_string_as_wide (octal, output);
2371 }
2372 /* If we somehow have extra bytes, print them now. */
2373 while (i < orig_len)
2374 {
2375 char octal[5];
2376
2377 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2378 append_string_as_wide (octal, output);
2379 ++i;
2380 }
2381
2382 *need_escapep = 1;
2383 }
2384 break;
2385 }
2386 }
2387 }
2388
2389 /* Print the character C on STREAM as part of the contents of a
2390 literal string whose delimiter is QUOTER. ENCODING names the
2391 encoding of C. */
2392
2393 void
2394 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2395 int quoter, const char *encoding)
2396 {
2397 enum bfd_endian byte_order
2398 = gdbarch_byte_order (get_type_arch (type));
2399 gdb_byte *c_buf;
2400 int need_escape = 0;
2401
2402 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2403 pack_long (c_buf, type, c);
2404
2405 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2406
2407 /* This holds the printable form of the wchar_t data. */
2408 auto_obstack wchar_buf;
2409
2410 while (1)
2411 {
2412 int num_chars;
2413 gdb_wchar_t *chars;
2414 const gdb_byte *buf;
2415 size_t buflen;
2416 int print_escape = 1;
2417 enum wchar_iterate_result result;
2418
2419 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2420 if (num_chars < 0)
2421 break;
2422 if (num_chars > 0)
2423 {
2424 /* If all characters are printable, print them. Otherwise,
2425 we're going to have to print an escape sequence. We
2426 check all characters because we want to print the target
2427 bytes in the escape sequence, and we don't know character
2428 boundaries there. */
2429 int i;
2430
2431 print_escape = 0;
2432 for (i = 0; i < num_chars; ++i)
2433 if (!wchar_printable (chars[i]))
2434 {
2435 print_escape = 1;
2436 break;
2437 }
2438
2439 if (!print_escape)
2440 {
2441 for (i = 0; i < num_chars; ++i)
2442 print_wchar (chars[i], buf, buflen,
2443 TYPE_LENGTH (type), byte_order,
2444 &wchar_buf, quoter, &need_escape);
2445 }
2446 }
2447
2448 /* This handles the NUM_CHARS == 0 case as well. */
2449 if (print_escape)
2450 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2451 byte_order, &wchar_buf, quoter, &need_escape);
2452 }
2453
2454 /* The output in the host encoding. */
2455 auto_obstack output;
2456
2457 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2458 (gdb_byte *) obstack_base (&wchar_buf),
2459 obstack_object_size (&wchar_buf),
2460 sizeof (gdb_wchar_t), &output, translit_char);
2461 obstack_1grow (&output, '\0');
2462
2463 fputs_filtered ((const char *) obstack_base (&output), stream);
2464 }
2465
2466 /* Return the repeat count of the next character/byte in ITER,
2467 storing the result in VEC. */
2468
2469 static int
2470 count_next_character (wchar_iterator *iter,
2471 std::vector<converted_character> *vec)
2472 {
2473 struct converted_character *current;
2474
2475 if (vec->empty ())
2476 {
2477 struct converted_character tmp;
2478 gdb_wchar_t *chars;
2479
2480 tmp.num_chars
2481 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2482 if (tmp.num_chars > 0)
2483 {
2484 gdb_assert (tmp.num_chars < MAX_WCHARS);
2485 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2486 }
2487 vec->push_back (tmp);
2488 }
2489
2490 current = &vec->back ();
2491
2492 /* Count repeated characters or bytes. */
2493 current->repeat_count = 1;
2494 if (current->num_chars == -1)
2495 {
2496 /* EOF */
2497 return -1;
2498 }
2499 else
2500 {
2501 gdb_wchar_t *chars;
2502 struct converted_character d;
2503 int repeat;
2504
2505 d.repeat_count = 0;
2506
2507 while (1)
2508 {
2509 /* Get the next character. */
2510 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2511
2512 /* If a character was successfully converted, save the character
2513 into the converted character. */
2514 if (d.num_chars > 0)
2515 {
2516 gdb_assert (d.num_chars < MAX_WCHARS);
2517 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2518 }
2519
2520 /* Determine if the current character is the same as this
2521 new character. */
2522 if (d.num_chars == current->num_chars && d.result == current->result)
2523 {
2524 /* There are two cases to consider:
2525
2526 1) Equality of converted character (num_chars > 0)
2527 2) Equality of non-converted character (num_chars == 0) */
2528 if ((current->num_chars > 0
2529 && memcmp (current->chars, d.chars,
2530 WCHAR_BUFLEN (current->num_chars)) == 0)
2531 || (current->num_chars == 0
2532 && current->buflen == d.buflen
2533 && memcmp (current->buf, d.buf, current->buflen) == 0))
2534 ++current->repeat_count;
2535 else
2536 break;
2537 }
2538 else
2539 break;
2540 }
2541
2542 /* Push this next converted character onto the result vector. */
2543 repeat = current->repeat_count;
2544 vec->push_back (d);
2545 return repeat;
2546 }
2547 }
2548
2549 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2550 character to use with string output. WIDTH is the size of the output
2551 character type. BYTE_ORDER is the target byte order. OPTIONS
2552 is the user's print options. */
2553
2554 static void
2555 print_converted_chars_to_obstack (struct obstack *obstack,
2556 const std::vector<converted_character> &chars,
2557 int quote_char, int width,
2558 enum bfd_endian byte_order,
2559 const struct value_print_options *options)
2560 {
2561 unsigned int idx;
2562 const converted_character *elem;
2563 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2564 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2565 int need_escape = 0;
2566
2567 /* Set the start state. */
2568 idx = 0;
2569 last = state = START;
2570 elem = NULL;
2571
2572 while (1)
2573 {
2574 switch (state)
2575 {
2576 case START:
2577 /* Nothing to do. */
2578 break;
2579
2580 case SINGLE:
2581 {
2582 int j;
2583
2584 /* We are outputting a single character
2585 (< options->repeat_count_threshold). */
2586
2587 if (last != SINGLE)
2588 {
2589 /* We were outputting some other type of content, so we
2590 must output and a comma and a quote. */
2591 if (last != START)
2592 obstack_grow_wstr (obstack, LCST (", "));
2593 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2594 }
2595 /* Output the character. */
2596 for (j = 0; j < elem->repeat_count; ++j)
2597 {
2598 if (elem->result == wchar_iterate_ok)
2599 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2600 byte_order, obstack, quote_char, &need_escape);
2601 else
2602 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2603 byte_order, obstack, quote_char, &need_escape);
2604 }
2605 }
2606 break;
2607
2608 case REPEAT:
2609 {
2610 int j;
2611
2612 /* We are outputting a character with a repeat count
2613 greater than options->repeat_count_threshold. */
2614
2615 if (last == SINGLE)
2616 {
2617 /* We were outputting a single string. Terminate the
2618 string. */
2619 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2620 }
2621 if (last != START)
2622 obstack_grow_wstr (obstack, LCST (", "));
2623
2624 /* Output the character and repeat string. */
2625 obstack_grow_wstr (obstack, LCST ("'"));
2626 if (elem->result == wchar_iterate_ok)
2627 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2628 byte_order, obstack, quote_char, &need_escape);
2629 else
2630 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2631 byte_order, obstack, quote_char, &need_escape);
2632 obstack_grow_wstr (obstack, LCST ("'"));
2633 std::string s = string_printf (_(" <repeats %u times>"),
2634 elem->repeat_count);
2635 for (j = 0; s[j]; ++j)
2636 {
2637 gdb_wchar_t w = gdb_btowc (s[j]);
2638 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2639 }
2640 }
2641 break;
2642
2643 case INCOMPLETE:
2644 /* We are outputting an incomplete sequence. */
2645 if (last == SINGLE)
2646 {
2647 /* If we were outputting a string of SINGLE characters,
2648 terminate the quote. */
2649 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2650 }
2651 if (last != START)
2652 obstack_grow_wstr (obstack, LCST (", "));
2653
2654 /* Output the incomplete sequence string. */
2655 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2656 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2657 obstack, 0, &need_escape);
2658 obstack_grow_wstr (obstack, LCST (">"));
2659
2660 /* We do not attempt to outupt anything after this. */
2661 state = FINISH;
2662 break;
2663
2664 case FINISH:
2665 /* All done. If we were outputting a string of SINGLE
2666 characters, the string must be terminated. Otherwise,
2667 REPEAT and INCOMPLETE are always left properly terminated. */
2668 if (last == SINGLE)
2669 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2670
2671 return;
2672 }
2673
2674 /* Get the next element and state. */
2675 last = state;
2676 if (state != FINISH)
2677 {
2678 elem = &chars[idx++];
2679 switch (elem->result)
2680 {
2681 case wchar_iterate_ok:
2682 case wchar_iterate_invalid:
2683 if (elem->repeat_count > options->repeat_count_threshold)
2684 state = REPEAT;
2685 else
2686 state = SINGLE;
2687 break;
2688
2689 case wchar_iterate_incomplete:
2690 state = INCOMPLETE;
2691 break;
2692
2693 case wchar_iterate_eof:
2694 state = FINISH;
2695 break;
2696 }
2697 }
2698 }
2699 }
2700
2701 /* Print the character string STRING, printing at most LENGTH
2702 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2703 the type of each character. OPTIONS holds the printing options;
2704 printing stops early if the number hits print_max; repeat counts
2705 are printed as appropriate. Print ellipses at the end if we had to
2706 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2707 QUOTE_CHAR is the character to print at each end of the string. If
2708 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2709 omitted. */
2710
2711 void
2712 generic_printstr (struct ui_file *stream, struct type *type,
2713 const gdb_byte *string, unsigned int length,
2714 const char *encoding, int force_ellipses,
2715 int quote_char, int c_style_terminator,
2716 const struct value_print_options *options)
2717 {
2718 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2719 unsigned int i;
2720 int width = TYPE_LENGTH (type);
2721 int finished = 0;
2722 struct converted_character *last;
2723
2724 if (length == -1)
2725 {
2726 unsigned long current_char = 1;
2727
2728 for (i = 0; current_char; ++i)
2729 {
2730 QUIT;
2731 current_char = extract_unsigned_integer (string + i * width,
2732 width, byte_order);
2733 }
2734 length = i;
2735 }
2736
2737 /* If the string was not truncated due to `set print elements', and
2738 the last byte of it is a null, we don't print that, in
2739 traditional C style. */
2740 if (c_style_terminator
2741 && !force_ellipses
2742 && length > 0
2743 && (extract_unsigned_integer (string + (length - 1) * width,
2744 width, byte_order) == 0))
2745 length--;
2746
2747 if (length == 0)
2748 {
2749 fputs_filtered ("\"\"", stream);
2750 return;
2751 }
2752
2753 /* Arrange to iterate over the characters, in wchar_t form. */
2754 wchar_iterator iter (string, length * width, encoding, width);
2755 std::vector<converted_character> converted_chars;
2756
2757 /* Convert characters until the string is over or the maximum
2758 number of printed characters has been reached. */
2759 i = 0;
2760 while (i < options->print_max)
2761 {
2762 int r;
2763
2764 QUIT;
2765
2766 /* Grab the next character and repeat count. */
2767 r = count_next_character (&iter, &converted_chars);
2768
2769 /* If less than zero, the end of the input string was reached. */
2770 if (r < 0)
2771 break;
2772
2773 /* Otherwise, add the count to the total print count and get
2774 the next character. */
2775 i += r;
2776 }
2777
2778 /* Get the last element and determine if the entire string was
2779 processed. */
2780 last = &converted_chars.back ();
2781 finished = (last->result == wchar_iterate_eof);
2782
2783 /* Ensure that CONVERTED_CHARS is terminated. */
2784 last->result = wchar_iterate_eof;
2785
2786 /* WCHAR_BUF is the obstack we use to represent the string in
2787 wchar_t form. */
2788 auto_obstack wchar_buf;
2789
2790 /* Print the output string to the obstack. */
2791 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2792 width, byte_order, options);
2793
2794 if (force_ellipses || !finished)
2795 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2796
2797 /* OUTPUT is where we collect `char's for printing. */
2798 auto_obstack output;
2799
2800 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2801 (gdb_byte *) obstack_base (&wchar_buf),
2802 obstack_object_size (&wchar_buf),
2803 sizeof (gdb_wchar_t), &output, translit_char);
2804 obstack_1grow (&output, '\0');
2805
2806 fputs_filtered ((const char *) obstack_base (&output), stream);
2807 }
2808
2809 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2810 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2811 stops at the first null byte, otherwise printing proceeds (including null
2812 bytes) until either print_max or LEN characters have been printed,
2813 whichever is smaller. ENCODING is the name of the string's
2814 encoding. It can be NULL, in which case the target encoding is
2815 assumed. */
2816
2817 int
2818 val_print_string (struct type *elttype, const char *encoding,
2819 CORE_ADDR addr, int len,
2820 struct ui_file *stream,
2821 const struct value_print_options *options)
2822 {
2823 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2824 int err; /* Non-zero if we got a bad read. */
2825 int found_nul; /* Non-zero if we found the nul char. */
2826 unsigned int fetchlimit; /* Maximum number of chars to print. */
2827 int bytes_read;
2828 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2829 struct gdbarch *gdbarch = get_type_arch (elttype);
2830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2831 int width = TYPE_LENGTH (elttype);
2832
2833 /* First we need to figure out the limit on the number of characters we are
2834 going to attempt to fetch and print. This is actually pretty simple. If
2835 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2836 LEN is -1, then the limit is print_max. This is true regardless of
2837 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2838 because finding the null byte (or available memory) is what actually
2839 limits the fetch. */
2840
2841 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2842 options->print_max));
2843
2844 err = read_string (addr, len, width, fetchlimit, byte_order,
2845 &buffer, &bytes_read);
2846
2847 addr += bytes_read;
2848
2849 /* We now have either successfully filled the buffer to fetchlimit,
2850 or terminated early due to an error or finding a null char when
2851 LEN is -1. */
2852
2853 /* Determine found_nul by looking at the last character read. */
2854 found_nul = 0;
2855 if (bytes_read >= width)
2856 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2857 width, byte_order) == 0;
2858 if (len == -1 && !found_nul)
2859 {
2860 gdb_byte *peekbuf;
2861
2862 /* We didn't find a NUL terminator we were looking for. Attempt
2863 to peek at the next character. If not successful, or it is not
2864 a null byte, then force ellipsis to be printed. */
2865
2866 peekbuf = (gdb_byte *) alloca (width);
2867
2868 if (target_read_memory (addr, peekbuf, width) == 0
2869 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2870 force_ellipsis = 1;
2871 }
2872 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2873 {
2874 /* Getting an error when we have a requested length, or fetching less
2875 than the number of characters actually requested, always make us
2876 print ellipsis. */
2877 force_ellipsis = 1;
2878 }
2879
2880 /* If we get an error before fetching anything, don't print a string.
2881 But if we fetch something and then get an error, print the string
2882 and then the error message. */
2883 if (err == 0 || bytes_read > 0)
2884 {
2885 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2886 encoding, force_ellipsis, options);
2887 }
2888
2889 if (err != 0)
2890 {
2891 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2892
2893 fprintf_filtered (stream, "<error: ");
2894 fputs_filtered (str.c_str (), stream);
2895 fprintf_filtered (stream, ">");
2896 }
2897
2898 return (bytes_read / width);
2899 }
2900
2901 /* Handle 'show print max-depth'. */
2902
2903 static void
2904 show_print_max_depth (struct ui_file *file, int from_tty,
2905 struct cmd_list_element *c, const char *value)
2906 {
2907 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2908 }
2909 \f
2910
2911 /* The 'set input-radix' command writes to this auxiliary variable.
2912 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2913 it is left unchanged. */
2914
2915 static unsigned input_radix_1 = 10;
2916
2917 /* Validate an input or output radix setting, and make sure the user
2918 knows what they really did here. Radix setting is confusing, e.g.
2919 setting the input radix to "10" never changes it! */
2920
2921 static void
2922 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2923 {
2924 set_input_radix_1 (from_tty, input_radix_1);
2925 }
2926
2927 static void
2928 set_input_radix_1 (int from_tty, unsigned radix)
2929 {
2930 /* We don't currently disallow any input radix except 0 or 1, which don't
2931 make any mathematical sense. In theory, we can deal with any input
2932 radix greater than 1, even if we don't have unique digits for every
2933 value from 0 to radix-1, but in practice we lose on large radix values.
2934 We should either fix the lossage or restrict the radix range more.
2935 (FIXME). */
2936
2937 if (radix < 2)
2938 {
2939 input_radix_1 = input_radix;
2940 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2941 radix);
2942 }
2943 input_radix_1 = input_radix = radix;
2944 if (from_tty)
2945 {
2946 printf_filtered (_("Input radix now set to "
2947 "decimal %u, hex %x, octal %o.\n"),
2948 radix, radix, radix);
2949 }
2950 }
2951
2952 /* The 'set output-radix' command writes to this auxiliary variable.
2953 If the requested radix is valid, OUTPUT_RADIX is updated,
2954 otherwise, it is left unchanged. */
2955
2956 static unsigned output_radix_1 = 10;
2957
2958 static void
2959 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2960 {
2961 set_output_radix_1 (from_tty, output_radix_1);
2962 }
2963
2964 static void
2965 set_output_radix_1 (int from_tty, unsigned radix)
2966 {
2967 /* Validate the radix and disallow ones that we aren't prepared to
2968 handle correctly, leaving the radix unchanged. */
2969 switch (radix)
2970 {
2971 case 16:
2972 user_print_options.output_format = 'x'; /* hex */
2973 break;
2974 case 10:
2975 user_print_options.output_format = 0; /* decimal */
2976 break;
2977 case 8:
2978 user_print_options.output_format = 'o'; /* octal */
2979 break;
2980 default:
2981 output_radix_1 = output_radix;
2982 error (_("Unsupported output radix ``decimal %u''; "
2983 "output radix unchanged."),
2984 radix);
2985 }
2986 output_radix_1 = output_radix = radix;
2987 if (from_tty)
2988 {
2989 printf_filtered (_("Output radix now set to "
2990 "decimal %u, hex %x, octal %o.\n"),
2991 radix, radix, radix);
2992 }
2993 }
2994
2995 /* Set both the input and output radix at once. Try to set the output radix
2996 first, since it has the most restrictive range. An radix that is valid as
2997 an output radix is also valid as an input radix.
2998
2999 It may be useful to have an unusual input radix. If the user wishes to
3000 set an input radix that is not valid as an output radix, he needs to use
3001 the 'set input-radix' command. */
3002
3003 static void
3004 set_radix (const char *arg, int from_tty)
3005 {
3006 unsigned radix;
3007
3008 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3009 set_output_radix_1 (0, radix);
3010 set_input_radix_1 (0, radix);
3011 if (from_tty)
3012 {
3013 printf_filtered (_("Input and output radices now set to "
3014 "decimal %u, hex %x, octal %o.\n"),
3015 radix, radix, radix);
3016 }
3017 }
3018
3019 /* Show both the input and output radices. */
3020
3021 static void
3022 show_radix (const char *arg, int from_tty)
3023 {
3024 if (from_tty)
3025 {
3026 if (input_radix == output_radix)
3027 {
3028 printf_filtered (_("Input and output radices set to "
3029 "decimal %u, hex %x, octal %o.\n"),
3030 input_radix, input_radix, input_radix);
3031 }
3032 else
3033 {
3034 printf_filtered (_("Input radix set to decimal "
3035 "%u, hex %x, octal %o.\n"),
3036 input_radix, input_radix, input_radix);
3037 printf_filtered (_("Output radix set to decimal "
3038 "%u, hex %x, octal %o.\n"),
3039 output_radix, output_radix, output_radix);
3040 }
3041 }
3042 }
3043 \f
3044
3045 static void
3046 set_print (const char *arg, int from_tty)
3047 {
3048 printf_unfiltered (
3049 "\"set print\" must be followed by the name of a print subcommand.\n");
3050 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3051 }
3052
3053 static void
3054 show_print (const char *args, int from_tty)
3055 {
3056 cmd_show_list (showprintlist, from_tty, "");
3057 }
3058
3059 static void
3060 set_print_raw (const char *arg, int from_tty)
3061 {
3062 printf_unfiltered (
3063 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3064 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3065 }
3066
3067 static void
3068 show_print_raw (const char *args, int from_tty)
3069 {
3070 cmd_show_list (showprintrawlist, from_tty, "");
3071 }
3072
3073 /* Controls printing of vtbl's. */
3074 static void
3075 show_vtblprint (struct ui_file *file, int from_tty,
3076 struct cmd_list_element *c, const char *value)
3077 {
3078 fprintf_filtered (file, _("\
3079 Printing of C++ virtual function tables is %s.\n"),
3080 value);
3081 }
3082
3083 /* Controls looking up an object's derived type using what we find in
3084 its vtables. */
3085 static void
3086 show_objectprint (struct ui_file *file, int from_tty,
3087 struct cmd_list_element *c,
3088 const char *value)
3089 {
3090 fprintf_filtered (file, _("\
3091 Printing of object's derived type based on vtable info is %s.\n"),
3092 value);
3093 }
3094
3095 static void
3096 show_static_field_print (struct ui_file *file, int from_tty,
3097 struct cmd_list_element *c,
3098 const char *value)
3099 {
3100 fprintf_filtered (file,
3101 _("Printing of C++ static members is %s.\n"),
3102 value);
3103 }
3104
3105 \f
3106
3107 /* A couple typedefs to make writing the options a bit more
3108 convenient. */
3109 using boolean_option_def
3110 = gdb::option::boolean_option_def<value_print_options>;
3111 using uinteger_option_def
3112 = gdb::option::uinteger_option_def<value_print_options>;
3113 using zuinteger_unlimited_option_def
3114 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3115
3116 /* Definions of options for the "print" and "compile print"
3117 commands. */
3118 static const gdb::option::option_def value_print_option_defs[] = {
3119
3120 boolean_option_def {
3121 "address",
3122 [] (value_print_options *opt) { return &opt->addressprint; },
3123 show_addressprint, /* show_cmd_cb */
3124 N_("Set printing of addresses."),
3125 N_("Show printing of addresses."),
3126 NULL, /* help_doc */
3127 },
3128
3129 boolean_option_def {
3130 "array",
3131 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3132 show_prettyformat_arrays, /* show_cmd_cb */
3133 N_("Set pretty formatting of arrays."),
3134 N_("Show pretty formatting of arrays."),
3135 NULL, /* help_doc */
3136 },
3137
3138 boolean_option_def {
3139 "array-indexes",
3140 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3141 show_print_array_indexes, /* show_cmd_cb */
3142 N_("Set printing of array indexes."),
3143 N_("Show printing of array indexes"),
3144 NULL, /* help_doc */
3145 },
3146
3147 uinteger_option_def {
3148 "elements",
3149 [] (value_print_options *opt) { return &opt->print_max; },
3150 show_print_max, /* show_cmd_cb */
3151 N_("Set limit on string chars or array elements to print."),
3152 N_("Show limit on string chars or array elements to print."),
3153 N_("\"unlimited\" causes there to be no limit."),
3154 },
3155
3156 zuinteger_unlimited_option_def {
3157 "max-depth",
3158 [] (value_print_options *opt) { return &opt->max_depth; },
3159 show_print_max_depth, /* show_cmd_cb */
3160 N_("Set maximum print depth for nested structures, unions and arrays."),
3161 N_("Show maximum print depth for nested structures, unions, and arrays."),
3162 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3163 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3164 Use \"unlimited\" to print the complete structure.")
3165 },
3166
3167 boolean_option_def {
3168 "null-stop",
3169 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3170 show_stop_print_at_null, /* show_cmd_cb */
3171 N_("Set printing of char arrays to stop at first null char."),
3172 N_("Show printing of char arrays to stop at first null char."),
3173 NULL, /* help_doc */
3174 },
3175
3176 boolean_option_def {
3177 "object",
3178 [] (value_print_options *opt) { return &opt->objectprint; },
3179 show_objectprint, /* show_cmd_cb */
3180 _("Set printing of C++ virtual function tables."),
3181 _("Show printing of C++ virtual function tables."),
3182 NULL, /* help_doc */
3183 },
3184
3185 boolean_option_def {
3186 "pretty",
3187 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3188 show_prettyformat_structs, /* show_cmd_cb */
3189 N_("Set pretty formatting of structures."),
3190 N_("Show pretty formatting of structures."),
3191 NULL, /* help_doc */
3192 },
3193
3194 uinteger_option_def {
3195 "repeats",
3196 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3197 show_repeat_count_threshold, /* show_cmd_cb */
3198 N_("Set threshold for repeated print elements."),
3199 N_("Show threshold for repeated print elements."),
3200 N_("\"unlimited\" causes all elements to be individually printed."),
3201 },
3202
3203 boolean_option_def {
3204 "static-members",
3205 [] (value_print_options *opt) { return &opt->static_field_print; },
3206 show_static_field_print, /* show_cmd_cb */
3207 N_("Set printing of C++ static members."),
3208 N_("Show printing of C++ static members."),
3209 NULL, /* help_doc */
3210 },
3211
3212 boolean_option_def {
3213 "symbol",
3214 [] (value_print_options *opt) { return &opt->symbol_print; },
3215 show_symbol_print, /* show_cmd_cb */
3216 N_("Set printing of symbol names when printing pointers."),
3217 N_("Show printing of symbol names when printing pointers."),
3218 NULL, /* help_doc */
3219 },
3220
3221 boolean_option_def {
3222 "union",
3223 [] (value_print_options *opt) { return &opt->unionprint; },
3224 show_unionprint, /* show_cmd_cb */
3225 N_("Set printing of unions interior to structures."),
3226 N_("Show printing of unions interior to structures."),
3227 NULL, /* help_doc */
3228 },
3229
3230 boolean_option_def {
3231 "vtbl",
3232 [] (value_print_options *opt) { return &opt->vtblprint; },
3233 show_vtblprint, /* show_cmd_cb */
3234 N_("Set printing of C++ virtual function tables."),
3235 N_("Show printing of C++ virtual function tables."),
3236 NULL, /* help_doc */
3237 },
3238 };
3239
3240 /* See valprint.h. */
3241
3242 gdb::option::option_def_group
3243 make_value_print_options_def_group (value_print_options *opts)
3244 {
3245 return {{value_print_option_defs}, opts};
3246 }
3247
3248 void
3249 _initialize_valprint (void)
3250 {
3251 add_prefix_cmd ("print", no_class, set_print,
3252 _("Generic command for setting how things print."),
3253 &setprintlist, "set print ", 0, &setlist);
3254 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3255 /* Prefer set print to set prompt. */
3256 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3257
3258 add_prefix_cmd ("print", no_class, show_print,
3259 _("Generic command for showing print settings."),
3260 &showprintlist, "show print ", 0, &showlist);
3261 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3262 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3263
3264 add_prefix_cmd ("raw", no_class, set_print_raw,
3265 _("\
3266 Generic command for setting what things to print in \"raw\" mode."),
3267 &setprintrawlist, "set print raw ", 0, &setprintlist);
3268 add_prefix_cmd ("raw", no_class, show_print_raw,
3269 _("Generic command for showing \"print raw\" settings."),
3270 &showprintrawlist, "show print raw ", 0, &showprintlist);
3271
3272 gdb::option::add_setshow_cmds_for_options
3273 (class_support, &user_print_options, value_print_option_defs,
3274 &setprintlist, &showprintlist);
3275
3276 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3277 _("\
3278 Set default input radix for entering numbers."), _("\
3279 Show default input radix for entering numbers."), NULL,
3280 set_input_radix,
3281 show_input_radix,
3282 &setlist, &showlist);
3283
3284 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3285 _("\
3286 Set default output radix for printing of values."), _("\
3287 Show default output radix for printing of values."), NULL,
3288 set_output_radix,
3289 show_output_radix,
3290 &setlist, &showlist);
3291
3292 /* The "set radix" and "show radix" commands are special in that
3293 they are like normal set and show commands but allow two normally
3294 independent variables to be either set or shown with a single
3295 command. So the usual deprecated_add_set_cmd() and [deleted]
3296 add_show_from_set() commands aren't really appropriate. */
3297 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3298 longer true - show can display anything. */
3299 add_cmd ("radix", class_support, set_radix, _("\
3300 Set default input and output number radices.\n\
3301 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3302 Without an argument, sets both radices back to the default value of 10."),
3303 &setlist);
3304 add_cmd ("radix", class_support, show_radix, _("\
3305 Show the default input and output number radices.\n\
3306 Use 'show input-radix' or 'show output-radix' to independently show each."),
3307 &showlist);
3308 }