]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
Remove spurious exceptions.h inclusions
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "doublest.h"
32 #include "regcache.h"
33 #include "block.h"
34 #include "dfp.h"
35 #include "objfiles.h"
36 #include "valprint.h"
37 #include "cli/cli-decode.h"
38 #include "extension.h"
39 #include <ctype.h>
40 #include "tracepoint.h"
41 #include "cp-abi.h"
42 #include "user-regs.h"
43
44 /* Prototypes for exported functions. */
45
46 void _initialize_values (void);
47
48 /* Definition of a user function. */
49 struct internal_function
50 {
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61 };
62
63 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65 struct range
66 {
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72 };
73
74 typedef struct range range_s;
75
76 DEF_VEC_O(range_s);
77
78 /* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81 static int
82 ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84 {
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90 }
91
92 /* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97 static int
98 range_lessthan (const range_s *r1, const range_s *r2)
99 {
100 return r1->offset < r2->offset;
101 }
102
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106 static int
107 ranges_contain (VEC(range_s) *ranges, int offset, int length)
108 {
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165 }
166
167 static struct cmd_list_element *functionlist;
168
169 /* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
172 struct value
173 {
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
203
204 /* If the value has been released. */
205 unsigned int released : 1;
206
207 /* Register number if the value is from a register. */
208 short regnum;
209
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
220
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
324
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
331 VEC(range_s) *unavailable;
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
341 };
342
343 int
344 value_bits_available (const struct value *value, int offset, int length)
345 {
346 gdb_assert (!value->lazy);
347
348 return !ranges_contain (value->unavailable, offset, length);
349 }
350
351 int
352 value_bytes_available (const struct value *value, int offset, int length)
353 {
354 return value_bits_available (value,
355 offset * TARGET_CHAR_BIT,
356 length * TARGET_CHAR_BIT);
357 }
358
359 int
360 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
361 {
362 gdb_assert (!value->lazy);
363
364 return ranges_contain (value->optimized_out, bit_offset, bit_length);
365 }
366
367 int
368 value_entirely_available (struct value *value)
369 {
370 /* We can only tell whether the whole value is available when we try
371 to read it. */
372 if (value->lazy)
373 value_fetch_lazy (value);
374
375 if (VEC_empty (range_s, value->unavailable))
376 return 1;
377 return 0;
378 }
379
380 /* Returns true if VALUE is entirely covered by RANGES. If the value
381 is lazy, it'll be read now. Note that RANGE is a pointer to
382 pointer because reading the value might change *RANGE. */
383
384 static int
385 value_entirely_covered_by_range_vector (struct value *value,
386 VEC(range_s) **ranges)
387 {
388 /* We can only tell whether the whole value is optimized out /
389 unavailable when we try to read it. */
390 if (value->lazy)
391 value_fetch_lazy (value);
392
393 if (VEC_length (range_s, *ranges) == 1)
394 {
395 struct range *t = VEC_index (range_s, *ranges, 0);
396
397 if (t->offset == 0
398 && t->length == (TARGET_CHAR_BIT
399 * TYPE_LENGTH (value_enclosing_type (value))))
400 return 1;
401 }
402
403 return 0;
404 }
405
406 int
407 value_entirely_unavailable (struct value *value)
408 {
409 return value_entirely_covered_by_range_vector (value, &value->unavailable);
410 }
411
412 int
413 value_entirely_optimized_out (struct value *value)
414 {
415 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
416 }
417
418 /* Insert into the vector pointed to by VECTORP the bit range starting of
419 OFFSET bits, and extending for the next LENGTH bits. */
420
421 static void
422 insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
423 {
424 range_s newr;
425 int i;
426
427 /* Insert the range sorted. If there's overlap or the new range
428 would be contiguous with an existing range, merge. */
429
430 newr.offset = offset;
431 newr.length = length;
432
433 /* Do a binary search for the position the given range would be
434 inserted if we only considered the starting OFFSET of ranges.
435 Call that position I. Since we also have LENGTH to care for
436 (this is a range afterall), we need to check if the _previous_
437 range overlaps the I range. E.g., calling R the new range:
438
439 #1 - overlaps with previous
440
441 R
442 |-...-|
443 |---| |---| |------| ... |--|
444 0 1 2 N
445
446 I=1
447
448 In the case #1 above, the binary search would return `I=1',
449 meaning, this OFFSET should be inserted at position 1, and the
450 current position 1 should be pushed further (and become 2). But,
451 note that `0' overlaps with R, so we want to merge them.
452
453 A similar consideration needs to be taken if the new range would
454 be contiguous with the previous range:
455
456 #2 - contiguous with previous
457
458 R
459 |-...-|
460 |--| |---| |------| ... |--|
461 0 1 2 N
462
463 I=1
464
465 If there's no overlap with the previous range, as in:
466
467 #3 - not overlapping and not contiguous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 or if I is 0:
477
478 #4 - R is the range with lowest offset
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=0
486
487 ... we just push the new range to I.
488
489 All the 4 cases above need to consider that the new range may
490 also overlap several of the ranges that follow, or that R may be
491 contiguous with the following range, and merge. E.g.,
492
493 #5 - overlapping following ranges
494
495 R
496 |------------------------|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=0
501
502 or:
503
504 R
505 |-------|
506 |--| |---| |------| ... |--|
507 0 1 2 N
508
509 I=1
510
511 */
512
513 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
514 if (i > 0)
515 {
516 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
517
518 if (ranges_overlap (bef->offset, bef->length, offset, length))
519 {
520 /* #1 */
521 ULONGEST l = min (bef->offset, offset);
522 ULONGEST h = max (bef->offset + bef->length, offset + length);
523
524 bef->offset = l;
525 bef->length = h - l;
526 i--;
527 }
528 else if (offset == bef->offset + bef->length)
529 {
530 /* #2 */
531 bef->length += length;
532 i--;
533 }
534 else
535 {
536 /* #3 */
537 VEC_safe_insert (range_s, *vectorp, i, &newr);
538 }
539 }
540 else
541 {
542 /* #4 */
543 VEC_safe_insert (range_s, *vectorp, i, &newr);
544 }
545
546 /* Check whether the ranges following the one we've just added or
547 touched can be folded in (#5 above). */
548 if (i + 1 < VEC_length (range_s, *vectorp))
549 {
550 struct range *t;
551 struct range *r;
552 int removed = 0;
553 int next = i + 1;
554
555 /* Get the range we just touched. */
556 t = VEC_index (range_s, *vectorp, i);
557 removed = 0;
558
559 i = next;
560 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
561 if (r->offset <= t->offset + t->length)
562 {
563 ULONGEST l, h;
564
565 l = min (t->offset, r->offset);
566 h = max (t->offset + t->length, r->offset + r->length);
567
568 t->offset = l;
569 t->length = h - l;
570
571 removed++;
572 }
573 else
574 {
575 /* If we couldn't merge this one, we won't be able to
576 merge following ones either, since the ranges are
577 always sorted by OFFSET. */
578 break;
579 }
580
581 if (removed != 0)
582 VEC_block_remove (range_s, *vectorp, next, removed);
583 }
584 }
585
586 void
587 mark_value_bits_unavailable (struct value *value, int offset, int length)
588 {
589 insert_into_bit_range_vector (&value->unavailable, offset, length);
590 }
591
592 void
593 mark_value_bytes_unavailable (struct value *value, int offset, int length)
594 {
595 mark_value_bits_unavailable (value,
596 offset * TARGET_CHAR_BIT,
597 length * TARGET_CHAR_BIT);
598 }
599
600 /* Find the first range in RANGES that overlaps the range defined by
601 OFFSET and LENGTH, starting at element POS in the RANGES vector,
602 Returns the index into RANGES where such overlapping range was
603 found, or -1 if none was found. */
604
605 static int
606 find_first_range_overlap (VEC(range_s) *ranges, int pos,
607 int offset, int length)
608 {
609 range_s *r;
610 int i;
611
612 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
613 if (ranges_overlap (r->offset, r->length, offset, length))
614 return i;
615
616 return -1;
617 }
618
619 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
620 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
621 return non-zero.
622
623 It must always be the case that:
624 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
625
626 It is assumed that memory can be accessed from:
627 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
628 to:
629 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
630 / TARGET_CHAR_BIT) */
631 static int
632 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
633 const gdb_byte *ptr2, size_t offset2_bits,
634 size_t length_bits)
635 {
636 gdb_assert (offset1_bits % TARGET_CHAR_BIT
637 == offset2_bits % TARGET_CHAR_BIT);
638
639 if (offset1_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 gdb_byte mask, b1, b2;
643
644 /* The offset from the base pointers PTR1 and PTR2 is not a complete
645 number of bytes. A number of bits up to either the next exact
646 byte boundary, or LENGTH_BITS (which ever is sooner) will be
647 compared. */
648 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
649 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
650 mask = (1 << bits) - 1;
651
652 if (length_bits < bits)
653 {
654 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
655 bits = length_bits;
656 }
657
658 /* Now load the two bytes and mask off the bits we care about. */
659 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
660 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
661
662 if (b1 != b2)
663 return 1;
664
665 /* Now update the length and offsets to take account of the bits
666 we've just compared. */
667 length_bits -= bits;
668 offset1_bits += bits;
669 offset2_bits += bits;
670 }
671
672 if (length_bits % TARGET_CHAR_BIT != 0)
673 {
674 size_t bits;
675 size_t o1, o2;
676 gdb_byte mask, b1, b2;
677
678 /* The length is not an exact number of bytes. After the previous
679 IF.. block then the offsets are byte aligned, or the
680 length is zero (in which case this code is not reached). Compare
681 a number of bits at the end of the region, starting from an exact
682 byte boundary. */
683 bits = length_bits % TARGET_CHAR_BIT;
684 o1 = offset1_bits + length_bits - bits;
685 o2 = offset2_bits + length_bits - bits;
686
687 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
688 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
689
690 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
691 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
692
693 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
694 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
695
696 if (b1 != b2)
697 return 1;
698
699 length_bits -= bits;
700 }
701
702 if (length_bits > 0)
703 {
704 /* We've now taken care of any stray "bits" at the start, or end of
705 the region to compare, the remainder can be covered with a simple
706 memcmp. */
707 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
708 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
709 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
710
711 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
712 ptr2 + offset2_bits / TARGET_CHAR_BIT,
713 length_bits / TARGET_CHAR_BIT);
714 }
715
716 /* Length is zero, regions match. */
717 return 0;
718 }
719
720 /* Helper struct for find_first_range_overlap_and_match and
721 value_contents_bits_eq. Keep track of which slot of a given ranges
722 vector have we last looked at. */
723
724 struct ranges_and_idx
725 {
726 /* The ranges. */
727 VEC(range_s) *ranges;
728
729 /* The range we've last found in RANGES. Given ranges are sorted,
730 we can start the next lookup here. */
731 int idx;
732 };
733
734 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
735 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
736 ranges starting at OFFSET2 bits. Return true if the ranges match
737 and fill in *L and *H with the overlapping window relative to
738 (both) OFFSET1 or OFFSET2. */
739
740 static int
741 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
742 struct ranges_and_idx *rp2,
743 int offset1, int offset2,
744 int length, ULONGEST *l, ULONGEST *h)
745 {
746 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
747 offset1, length);
748 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
749 offset2, length);
750
751 if (rp1->idx == -1 && rp2->idx == -1)
752 {
753 *l = length;
754 *h = length;
755 return 1;
756 }
757 else if (rp1->idx == -1 || rp2->idx == -1)
758 return 0;
759 else
760 {
761 range_s *r1, *r2;
762 ULONGEST l1, h1;
763 ULONGEST l2, h2;
764
765 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
766 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
767
768 /* Get the unavailable windows intersected by the incoming
769 ranges. The first and last ranges that overlap the argument
770 range may be wider than said incoming arguments ranges. */
771 l1 = max (offset1, r1->offset);
772 h1 = min (offset1 + length, r1->offset + r1->length);
773
774 l2 = max (offset2, r2->offset);
775 h2 = min (offset2 + length, offset2 + r2->length);
776
777 /* Make them relative to the respective start offsets, so we can
778 compare them for equality. */
779 l1 -= offset1;
780 h1 -= offset1;
781
782 l2 -= offset2;
783 h2 -= offset2;
784
785 /* Different ranges, no match. */
786 if (l1 != l2 || h1 != h2)
787 return 0;
788
789 *h = h1;
790 *l = l1;
791 return 1;
792 }
793 }
794
795 /* Helper function for value_contents_eq. The only difference is that
796 this function is bit rather than byte based.
797
798 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
799 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
800 Return true if the available bits match. */
801
802 static int
803 value_contents_bits_eq (const struct value *val1, int offset1,
804 const struct value *val2, int offset2,
805 int length)
806 {
807 /* Each array element corresponds to a ranges source (unavailable,
808 optimized out). '1' is for VAL1, '2' for VAL2. */
809 struct ranges_and_idx rp1[2], rp2[2];
810
811 /* See function description in value.h. */
812 gdb_assert (!val1->lazy && !val2->lazy);
813
814 /* We shouldn't be trying to compare past the end of the values. */
815 gdb_assert (offset1 + length
816 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
817 gdb_assert (offset2 + length
818 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
819
820 memset (&rp1, 0, sizeof (rp1));
821 memset (&rp2, 0, sizeof (rp2));
822 rp1[0].ranges = val1->unavailable;
823 rp2[0].ranges = val2->unavailable;
824 rp1[1].ranges = val1->optimized_out;
825 rp2[1].ranges = val2->optimized_out;
826
827 while (length > 0)
828 {
829 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
830 int i;
831
832 for (i = 0; i < 2; i++)
833 {
834 ULONGEST l_tmp, h_tmp;
835
836 /* The contents only match equal if the invalid/unavailable
837 contents ranges match as well. */
838 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
839 offset1, offset2, length,
840 &l_tmp, &h_tmp))
841 return 0;
842
843 /* We're interested in the lowest/first range found. */
844 if (i == 0 || l_tmp < l)
845 {
846 l = l_tmp;
847 h = h_tmp;
848 }
849 }
850
851 /* Compare the available/valid contents. */
852 if (memcmp_with_bit_offsets (val1->contents, offset1,
853 val2->contents, offset2, l) != 0)
854 return 0;
855
856 length -= h;
857 offset1 += h;
858 offset2 += h;
859 }
860
861 return 1;
862 }
863
864 int
865 value_contents_eq (const struct value *val1, int offset1,
866 const struct value *val2, int offset2,
867 int length)
868 {
869 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
870 val2, offset2 * TARGET_CHAR_BIT,
871 length * TARGET_CHAR_BIT);
872 }
873
874 /* Prototypes for local functions. */
875
876 static void show_values (char *, int);
877
878 static void show_convenience (char *, int);
879
880
881 /* The value-history records all the values printed
882 by print commands during this session. Each chunk
883 records 60 consecutive values. The first chunk on
884 the chain records the most recent values.
885 The total number of values is in value_history_count. */
886
887 #define VALUE_HISTORY_CHUNK 60
888
889 struct value_history_chunk
890 {
891 struct value_history_chunk *next;
892 struct value *values[VALUE_HISTORY_CHUNK];
893 };
894
895 /* Chain of chunks now in use. */
896
897 static struct value_history_chunk *value_history_chain;
898
899 static int value_history_count; /* Abs number of last entry stored. */
900
901 \f
902 /* List of all value objects currently allocated
903 (except for those released by calls to release_value)
904 This is so they can be freed after each command. */
905
906 static struct value *all_values;
907
908 /* Allocate a lazy value for type TYPE. Its actual content is
909 "lazily" allocated too: the content field of the return value is
910 NULL; it will be allocated when it is fetched from the target. */
911
912 struct value *
913 allocate_value_lazy (struct type *type)
914 {
915 struct value *val;
916
917 /* Call check_typedef on our type to make sure that, if TYPE
918 is a TYPE_CODE_TYPEDEF, its length is set to the length
919 of the target type instead of zero. However, we do not
920 replace the typedef type by the target type, because we want
921 to keep the typedef in order to be able to set the VAL's type
922 description correctly. */
923 check_typedef (type);
924
925 val = (struct value *) xzalloc (sizeof (struct value));
926 val->contents = NULL;
927 val->next = all_values;
928 all_values = val;
929 val->type = type;
930 val->enclosing_type = type;
931 VALUE_LVAL (val) = not_lval;
932 val->location.address = 0;
933 VALUE_FRAME_ID (val) = null_frame_id;
934 val->offset = 0;
935 val->bitpos = 0;
936 val->bitsize = 0;
937 VALUE_REGNUM (val) = -1;
938 val->lazy = 1;
939 val->embedded_offset = 0;
940 val->pointed_to_offset = 0;
941 val->modifiable = 1;
942 val->initialized = 1; /* Default to initialized. */
943
944 /* Values start out on the all_values chain. */
945 val->reference_count = 1;
946
947 return val;
948 }
949
950 /* Allocate the contents of VAL if it has not been allocated yet. */
951
952 static void
953 allocate_value_contents (struct value *val)
954 {
955 if (!val->contents)
956 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
957 }
958
959 /* Allocate a value and its contents for type TYPE. */
960
961 struct value *
962 allocate_value (struct type *type)
963 {
964 struct value *val = allocate_value_lazy (type);
965
966 allocate_value_contents (val);
967 val->lazy = 0;
968 return val;
969 }
970
971 /* Allocate a value that has the correct length
972 for COUNT repetitions of type TYPE. */
973
974 struct value *
975 allocate_repeat_value (struct type *type, int count)
976 {
977 int low_bound = current_language->string_lower_bound; /* ??? */
978 /* FIXME-type-allocation: need a way to free this type when we are
979 done with it. */
980 struct type *array_type
981 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
982
983 return allocate_value (array_type);
984 }
985
986 struct value *
987 allocate_computed_value (struct type *type,
988 const struct lval_funcs *funcs,
989 void *closure)
990 {
991 struct value *v = allocate_value_lazy (type);
992
993 VALUE_LVAL (v) = lval_computed;
994 v->location.computed.funcs = funcs;
995 v->location.computed.closure = closure;
996
997 return v;
998 }
999
1000 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1001
1002 struct value *
1003 allocate_optimized_out_value (struct type *type)
1004 {
1005 struct value *retval = allocate_value_lazy (type);
1006
1007 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1008 set_value_lazy (retval, 0);
1009 return retval;
1010 }
1011
1012 /* Accessor methods. */
1013
1014 struct value *
1015 value_next (struct value *value)
1016 {
1017 return value->next;
1018 }
1019
1020 struct type *
1021 value_type (const struct value *value)
1022 {
1023 return value->type;
1024 }
1025 void
1026 deprecated_set_value_type (struct value *value, struct type *type)
1027 {
1028 value->type = type;
1029 }
1030
1031 int
1032 value_offset (const struct value *value)
1033 {
1034 return value->offset;
1035 }
1036 void
1037 set_value_offset (struct value *value, int offset)
1038 {
1039 value->offset = offset;
1040 }
1041
1042 int
1043 value_bitpos (const struct value *value)
1044 {
1045 return value->bitpos;
1046 }
1047 void
1048 set_value_bitpos (struct value *value, int bit)
1049 {
1050 value->bitpos = bit;
1051 }
1052
1053 int
1054 value_bitsize (const struct value *value)
1055 {
1056 return value->bitsize;
1057 }
1058 void
1059 set_value_bitsize (struct value *value, int bit)
1060 {
1061 value->bitsize = bit;
1062 }
1063
1064 struct value *
1065 value_parent (struct value *value)
1066 {
1067 return value->parent;
1068 }
1069
1070 /* See value.h. */
1071
1072 void
1073 set_value_parent (struct value *value, struct value *parent)
1074 {
1075 struct value *old = value->parent;
1076
1077 value->parent = parent;
1078 if (parent != NULL)
1079 value_incref (parent);
1080 value_free (old);
1081 }
1082
1083 gdb_byte *
1084 value_contents_raw (struct value *value)
1085 {
1086 allocate_value_contents (value);
1087 return value->contents + value->embedded_offset;
1088 }
1089
1090 gdb_byte *
1091 value_contents_all_raw (struct value *value)
1092 {
1093 allocate_value_contents (value);
1094 return value->contents;
1095 }
1096
1097 struct type *
1098 value_enclosing_type (struct value *value)
1099 {
1100 return value->enclosing_type;
1101 }
1102
1103 /* Look at value.h for description. */
1104
1105 struct type *
1106 value_actual_type (struct value *value, int resolve_simple_types,
1107 int *real_type_found)
1108 {
1109 struct value_print_options opts;
1110 struct type *result;
1111
1112 get_user_print_options (&opts);
1113
1114 if (real_type_found)
1115 *real_type_found = 0;
1116 result = value_type (value);
1117 if (opts.objectprint)
1118 {
1119 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1120 fetch its rtti type. */
1121 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1122 || TYPE_CODE (result) == TYPE_CODE_REF)
1123 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1124 == TYPE_CODE_STRUCT)
1125 {
1126 struct type *real_type;
1127
1128 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1129 if (real_type)
1130 {
1131 if (real_type_found)
1132 *real_type_found = 1;
1133 result = real_type;
1134 }
1135 }
1136 else if (resolve_simple_types)
1137 {
1138 if (real_type_found)
1139 *real_type_found = 1;
1140 result = value_enclosing_type (value);
1141 }
1142 }
1143
1144 return result;
1145 }
1146
1147 void
1148 error_value_optimized_out (void)
1149 {
1150 error (_("value has been optimized out"));
1151 }
1152
1153 static void
1154 require_not_optimized_out (const struct value *value)
1155 {
1156 if (!VEC_empty (range_s, value->optimized_out))
1157 {
1158 if (value->lval == lval_register)
1159 error (_("register has not been saved in frame"));
1160 else
1161 error_value_optimized_out ();
1162 }
1163 }
1164
1165 static void
1166 require_available (const struct value *value)
1167 {
1168 if (!VEC_empty (range_s, value->unavailable))
1169 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1170 }
1171
1172 const gdb_byte *
1173 value_contents_for_printing (struct value *value)
1174 {
1175 if (value->lazy)
1176 value_fetch_lazy (value);
1177 return value->contents;
1178 }
1179
1180 const gdb_byte *
1181 value_contents_for_printing_const (const struct value *value)
1182 {
1183 gdb_assert (!value->lazy);
1184 return value->contents;
1185 }
1186
1187 const gdb_byte *
1188 value_contents_all (struct value *value)
1189 {
1190 const gdb_byte *result = value_contents_for_printing (value);
1191 require_not_optimized_out (value);
1192 require_available (value);
1193 return result;
1194 }
1195
1196 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1197 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1198
1199 static void
1200 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1201 VEC (range_s) *src_range, int src_bit_offset,
1202 int bit_length)
1203 {
1204 range_s *r;
1205 int i;
1206
1207 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1208 {
1209 ULONGEST h, l;
1210
1211 l = max (r->offset, src_bit_offset);
1212 h = min (r->offset + r->length, src_bit_offset + bit_length);
1213
1214 if (l < h)
1215 insert_into_bit_range_vector (dst_range,
1216 dst_bit_offset + (l - src_bit_offset),
1217 h - l);
1218 }
1219 }
1220
1221 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1222 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1223
1224 static void
1225 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1226 const struct value *src, int src_bit_offset,
1227 int bit_length)
1228 {
1229 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1230 src->unavailable, src_bit_offset,
1231 bit_length);
1232 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1233 src->optimized_out, src_bit_offset,
1234 bit_length);
1235 }
1236
1237 /* Copy LENGTH bytes of SRC value's (all) contents
1238 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1239 contents, starting at DST_OFFSET. If unavailable contents are
1240 being copied from SRC, the corresponding DST contents are marked
1241 unavailable accordingly. Neither DST nor SRC may be lazy
1242 values.
1243
1244 It is assumed the contents of DST in the [DST_OFFSET,
1245 DST_OFFSET+LENGTH) range are wholly available. */
1246
1247 void
1248 value_contents_copy_raw (struct value *dst, int dst_offset,
1249 struct value *src, int src_offset, int length)
1250 {
1251 range_s *r;
1252 int i;
1253 int src_bit_offset, dst_bit_offset, bit_length;
1254
1255 /* A lazy DST would make that this copy operation useless, since as
1256 soon as DST's contents were un-lazied (by a later value_contents
1257 call, say), the contents would be overwritten. A lazy SRC would
1258 mean we'd be copying garbage. */
1259 gdb_assert (!dst->lazy && !src->lazy);
1260
1261 /* The overwritten DST range gets unavailability ORed in, not
1262 replaced. Make sure to remember to implement replacing if it
1263 turns out actually necessary. */
1264 gdb_assert (value_bytes_available (dst, dst_offset, length));
1265 gdb_assert (!value_bits_any_optimized_out (dst,
1266 TARGET_CHAR_BIT * dst_offset,
1267 TARGET_CHAR_BIT * length));
1268
1269 /* Copy the data. */
1270 memcpy (value_contents_all_raw (dst) + dst_offset,
1271 value_contents_all_raw (src) + src_offset,
1272 length);
1273
1274 /* Copy the meta-data, adjusted. */
1275 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1276 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1277 bit_length = length * TARGET_CHAR_BIT;
1278
1279 value_ranges_copy_adjusted (dst, dst_bit_offset,
1280 src, src_bit_offset,
1281 bit_length);
1282 }
1283
1284 /* Copy LENGTH bytes of SRC value's (all) contents
1285 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1286 (all) contents, starting at DST_OFFSET. If unavailable contents
1287 are being copied from SRC, the corresponding DST contents are
1288 marked unavailable accordingly. DST must not be lazy. If SRC is
1289 lazy, it will be fetched now.
1290
1291 It is assumed the contents of DST in the [DST_OFFSET,
1292 DST_OFFSET+LENGTH) range are wholly available. */
1293
1294 void
1295 value_contents_copy (struct value *dst, int dst_offset,
1296 struct value *src, int src_offset, int length)
1297 {
1298 if (src->lazy)
1299 value_fetch_lazy (src);
1300
1301 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1302 }
1303
1304 int
1305 value_lazy (struct value *value)
1306 {
1307 return value->lazy;
1308 }
1309
1310 void
1311 set_value_lazy (struct value *value, int val)
1312 {
1313 value->lazy = val;
1314 }
1315
1316 int
1317 value_stack (struct value *value)
1318 {
1319 return value->stack;
1320 }
1321
1322 void
1323 set_value_stack (struct value *value, int val)
1324 {
1325 value->stack = val;
1326 }
1327
1328 const gdb_byte *
1329 value_contents (struct value *value)
1330 {
1331 const gdb_byte *result = value_contents_writeable (value);
1332 require_not_optimized_out (value);
1333 require_available (value);
1334 return result;
1335 }
1336
1337 gdb_byte *
1338 value_contents_writeable (struct value *value)
1339 {
1340 if (value->lazy)
1341 value_fetch_lazy (value);
1342 return value_contents_raw (value);
1343 }
1344
1345 int
1346 value_optimized_out (struct value *value)
1347 {
1348 /* We can only know if a value is optimized out once we have tried to
1349 fetch it. */
1350 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1351 value_fetch_lazy (value);
1352
1353 return !VEC_empty (range_s, value->optimized_out);
1354 }
1355
1356 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1357 the following LENGTH bytes. */
1358
1359 void
1360 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1361 {
1362 mark_value_bits_optimized_out (value,
1363 offset * TARGET_CHAR_BIT,
1364 length * TARGET_CHAR_BIT);
1365 }
1366
1367 /* See value.h. */
1368
1369 void
1370 mark_value_bits_optimized_out (struct value *value, int offset, int length)
1371 {
1372 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1373 }
1374
1375 int
1376 value_bits_synthetic_pointer (const struct value *value,
1377 int offset, int length)
1378 {
1379 if (value->lval != lval_computed
1380 || !value->location.computed.funcs->check_synthetic_pointer)
1381 return 0;
1382 return value->location.computed.funcs->check_synthetic_pointer (value,
1383 offset,
1384 length);
1385 }
1386
1387 int
1388 value_embedded_offset (struct value *value)
1389 {
1390 return value->embedded_offset;
1391 }
1392
1393 void
1394 set_value_embedded_offset (struct value *value, int val)
1395 {
1396 value->embedded_offset = val;
1397 }
1398
1399 int
1400 value_pointed_to_offset (struct value *value)
1401 {
1402 return value->pointed_to_offset;
1403 }
1404
1405 void
1406 set_value_pointed_to_offset (struct value *value, int val)
1407 {
1408 value->pointed_to_offset = val;
1409 }
1410
1411 const struct lval_funcs *
1412 value_computed_funcs (const struct value *v)
1413 {
1414 gdb_assert (value_lval_const (v) == lval_computed);
1415
1416 return v->location.computed.funcs;
1417 }
1418
1419 void *
1420 value_computed_closure (const struct value *v)
1421 {
1422 gdb_assert (v->lval == lval_computed);
1423
1424 return v->location.computed.closure;
1425 }
1426
1427 enum lval_type *
1428 deprecated_value_lval_hack (struct value *value)
1429 {
1430 return &value->lval;
1431 }
1432
1433 enum lval_type
1434 value_lval_const (const struct value *value)
1435 {
1436 return value->lval;
1437 }
1438
1439 CORE_ADDR
1440 value_address (const struct value *value)
1441 {
1442 if (value->lval == lval_internalvar
1443 || value->lval == lval_internalvar_component
1444 || value->lval == lval_xcallable)
1445 return 0;
1446 if (value->parent != NULL)
1447 return value_address (value->parent) + value->offset;
1448 else
1449 return value->location.address + value->offset;
1450 }
1451
1452 CORE_ADDR
1453 value_raw_address (struct value *value)
1454 {
1455 if (value->lval == lval_internalvar
1456 || value->lval == lval_internalvar_component
1457 || value->lval == lval_xcallable)
1458 return 0;
1459 return value->location.address;
1460 }
1461
1462 void
1463 set_value_address (struct value *value, CORE_ADDR addr)
1464 {
1465 gdb_assert (value->lval != lval_internalvar
1466 && value->lval != lval_internalvar_component
1467 && value->lval != lval_xcallable);
1468 value->location.address = addr;
1469 }
1470
1471 struct internalvar **
1472 deprecated_value_internalvar_hack (struct value *value)
1473 {
1474 return &value->location.internalvar;
1475 }
1476
1477 struct frame_id *
1478 deprecated_value_frame_id_hack (struct value *value)
1479 {
1480 return &value->frame_id;
1481 }
1482
1483 short *
1484 deprecated_value_regnum_hack (struct value *value)
1485 {
1486 return &value->regnum;
1487 }
1488
1489 int
1490 deprecated_value_modifiable (struct value *value)
1491 {
1492 return value->modifiable;
1493 }
1494 \f
1495 /* Return a mark in the value chain. All values allocated after the
1496 mark is obtained (except for those released) are subject to being freed
1497 if a subsequent value_free_to_mark is passed the mark. */
1498 struct value *
1499 value_mark (void)
1500 {
1501 return all_values;
1502 }
1503
1504 /* Take a reference to VAL. VAL will not be deallocated until all
1505 references are released. */
1506
1507 void
1508 value_incref (struct value *val)
1509 {
1510 val->reference_count++;
1511 }
1512
1513 /* Release a reference to VAL, which was acquired with value_incref.
1514 This function is also called to deallocate values from the value
1515 chain. */
1516
1517 void
1518 value_free (struct value *val)
1519 {
1520 if (val)
1521 {
1522 gdb_assert (val->reference_count > 0);
1523 val->reference_count--;
1524 if (val->reference_count > 0)
1525 return;
1526
1527 /* If there's an associated parent value, drop our reference to
1528 it. */
1529 if (val->parent != NULL)
1530 value_free (val->parent);
1531
1532 if (VALUE_LVAL (val) == lval_computed)
1533 {
1534 const struct lval_funcs *funcs = val->location.computed.funcs;
1535
1536 if (funcs->free_closure)
1537 funcs->free_closure (val);
1538 }
1539 else if (VALUE_LVAL (val) == lval_xcallable)
1540 free_xmethod_worker (val->location.xm_worker);
1541
1542 xfree (val->contents);
1543 VEC_free (range_s, val->unavailable);
1544 }
1545 xfree (val);
1546 }
1547
1548 /* Free all values allocated since MARK was obtained by value_mark
1549 (except for those released). */
1550 void
1551 value_free_to_mark (struct value *mark)
1552 {
1553 struct value *val;
1554 struct value *next;
1555
1556 for (val = all_values; val && val != mark; val = next)
1557 {
1558 next = val->next;
1559 val->released = 1;
1560 value_free (val);
1561 }
1562 all_values = val;
1563 }
1564
1565 /* Free all the values that have been allocated (except for those released).
1566 Call after each command, successful or not.
1567 In practice this is called before each command, which is sufficient. */
1568
1569 void
1570 free_all_values (void)
1571 {
1572 struct value *val;
1573 struct value *next;
1574
1575 for (val = all_values; val; val = next)
1576 {
1577 next = val->next;
1578 val->released = 1;
1579 value_free (val);
1580 }
1581
1582 all_values = 0;
1583 }
1584
1585 /* Frees all the elements in a chain of values. */
1586
1587 void
1588 free_value_chain (struct value *v)
1589 {
1590 struct value *next;
1591
1592 for (; v; v = next)
1593 {
1594 next = value_next (v);
1595 value_free (v);
1596 }
1597 }
1598
1599 /* Remove VAL from the chain all_values
1600 so it will not be freed automatically. */
1601
1602 void
1603 release_value (struct value *val)
1604 {
1605 struct value *v;
1606
1607 if (all_values == val)
1608 {
1609 all_values = val->next;
1610 val->next = NULL;
1611 val->released = 1;
1612 return;
1613 }
1614
1615 for (v = all_values; v; v = v->next)
1616 {
1617 if (v->next == val)
1618 {
1619 v->next = val->next;
1620 val->next = NULL;
1621 val->released = 1;
1622 break;
1623 }
1624 }
1625 }
1626
1627 /* If the value is not already released, release it.
1628 If the value is already released, increment its reference count.
1629 That is, this function ensures that the value is released from the
1630 value chain and that the caller owns a reference to it. */
1631
1632 void
1633 release_value_or_incref (struct value *val)
1634 {
1635 if (val->released)
1636 value_incref (val);
1637 else
1638 release_value (val);
1639 }
1640
1641 /* Release all values up to mark */
1642 struct value *
1643 value_release_to_mark (struct value *mark)
1644 {
1645 struct value *val;
1646 struct value *next;
1647
1648 for (val = next = all_values; next; next = next->next)
1649 {
1650 if (next->next == mark)
1651 {
1652 all_values = next->next;
1653 next->next = NULL;
1654 return val;
1655 }
1656 next->released = 1;
1657 }
1658 all_values = 0;
1659 return val;
1660 }
1661
1662 /* Return a copy of the value ARG.
1663 It contains the same contents, for same memory address,
1664 but it's a different block of storage. */
1665
1666 struct value *
1667 value_copy (struct value *arg)
1668 {
1669 struct type *encl_type = value_enclosing_type (arg);
1670 struct value *val;
1671
1672 if (value_lazy (arg))
1673 val = allocate_value_lazy (encl_type);
1674 else
1675 val = allocate_value (encl_type);
1676 val->type = arg->type;
1677 VALUE_LVAL (val) = VALUE_LVAL (arg);
1678 val->location = arg->location;
1679 val->offset = arg->offset;
1680 val->bitpos = arg->bitpos;
1681 val->bitsize = arg->bitsize;
1682 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1683 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1684 val->lazy = arg->lazy;
1685 val->embedded_offset = value_embedded_offset (arg);
1686 val->pointed_to_offset = arg->pointed_to_offset;
1687 val->modifiable = arg->modifiable;
1688 if (!value_lazy (val))
1689 {
1690 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1691 TYPE_LENGTH (value_enclosing_type (arg)));
1692
1693 }
1694 val->unavailable = VEC_copy (range_s, arg->unavailable);
1695 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1696 set_value_parent (val, arg->parent);
1697 if (VALUE_LVAL (val) == lval_computed)
1698 {
1699 const struct lval_funcs *funcs = val->location.computed.funcs;
1700
1701 if (funcs->copy_closure)
1702 val->location.computed.closure = funcs->copy_closure (val);
1703 }
1704 return val;
1705 }
1706
1707 /* Return a version of ARG that is non-lvalue. */
1708
1709 struct value *
1710 value_non_lval (struct value *arg)
1711 {
1712 if (VALUE_LVAL (arg) != not_lval)
1713 {
1714 struct type *enc_type = value_enclosing_type (arg);
1715 struct value *val = allocate_value (enc_type);
1716
1717 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1718 TYPE_LENGTH (enc_type));
1719 val->type = arg->type;
1720 set_value_embedded_offset (val, value_embedded_offset (arg));
1721 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1722 return val;
1723 }
1724 return arg;
1725 }
1726
1727 void
1728 set_value_component_location (struct value *component,
1729 const struct value *whole)
1730 {
1731 gdb_assert (whole->lval != lval_xcallable);
1732
1733 if (whole->lval == lval_internalvar)
1734 VALUE_LVAL (component) = lval_internalvar_component;
1735 else
1736 VALUE_LVAL (component) = whole->lval;
1737
1738 component->location = whole->location;
1739 if (whole->lval == lval_computed)
1740 {
1741 const struct lval_funcs *funcs = whole->location.computed.funcs;
1742
1743 if (funcs->copy_closure)
1744 component->location.computed.closure = funcs->copy_closure (whole);
1745 }
1746 }
1747
1748 \f
1749 /* Access to the value history. */
1750
1751 /* Record a new value in the value history.
1752 Returns the absolute history index of the entry. */
1753
1754 int
1755 record_latest_value (struct value *val)
1756 {
1757 int i;
1758
1759 /* We don't want this value to have anything to do with the inferior anymore.
1760 In particular, "set $1 = 50" should not affect the variable from which
1761 the value was taken, and fast watchpoints should be able to assume that
1762 a value on the value history never changes. */
1763 if (value_lazy (val))
1764 value_fetch_lazy (val);
1765 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1766 from. This is a bit dubious, because then *&$1 does not just return $1
1767 but the current contents of that location. c'est la vie... */
1768 val->modifiable = 0;
1769
1770 /* The value may have already been released, in which case we're adding a
1771 new reference for its entry in the history. That is why we call
1772 release_value_or_incref here instead of release_value. */
1773 release_value_or_incref (val);
1774
1775 /* Here we treat value_history_count as origin-zero
1776 and applying to the value being stored now. */
1777
1778 i = value_history_count % VALUE_HISTORY_CHUNK;
1779 if (i == 0)
1780 {
1781 struct value_history_chunk *new
1782 = (struct value_history_chunk *)
1783
1784 xmalloc (sizeof (struct value_history_chunk));
1785 memset (new->values, 0, sizeof new->values);
1786 new->next = value_history_chain;
1787 value_history_chain = new;
1788 }
1789
1790 value_history_chain->values[i] = val;
1791
1792 /* Now we regard value_history_count as origin-one
1793 and applying to the value just stored. */
1794
1795 return ++value_history_count;
1796 }
1797
1798 /* Return a copy of the value in the history with sequence number NUM. */
1799
1800 struct value *
1801 access_value_history (int num)
1802 {
1803 struct value_history_chunk *chunk;
1804 int i;
1805 int absnum = num;
1806
1807 if (absnum <= 0)
1808 absnum += value_history_count;
1809
1810 if (absnum <= 0)
1811 {
1812 if (num == 0)
1813 error (_("The history is empty."));
1814 else if (num == 1)
1815 error (_("There is only one value in the history."));
1816 else
1817 error (_("History does not go back to $$%d."), -num);
1818 }
1819 if (absnum > value_history_count)
1820 error (_("History has not yet reached $%d."), absnum);
1821
1822 absnum--;
1823
1824 /* Now absnum is always absolute and origin zero. */
1825
1826 chunk = value_history_chain;
1827 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1828 - absnum / VALUE_HISTORY_CHUNK;
1829 i > 0; i--)
1830 chunk = chunk->next;
1831
1832 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1833 }
1834
1835 static void
1836 show_values (char *num_exp, int from_tty)
1837 {
1838 int i;
1839 struct value *val;
1840 static int num = 1;
1841
1842 if (num_exp)
1843 {
1844 /* "show values +" should print from the stored position.
1845 "show values <exp>" should print around value number <exp>. */
1846 if (num_exp[0] != '+' || num_exp[1] != '\0')
1847 num = parse_and_eval_long (num_exp) - 5;
1848 }
1849 else
1850 {
1851 /* "show values" means print the last 10 values. */
1852 num = value_history_count - 9;
1853 }
1854
1855 if (num <= 0)
1856 num = 1;
1857
1858 for (i = num; i < num + 10 && i <= value_history_count; i++)
1859 {
1860 struct value_print_options opts;
1861
1862 val = access_value_history (i);
1863 printf_filtered (("$%d = "), i);
1864 get_user_print_options (&opts);
1865 value_print (val, gdb_stdout, &opts);
1866 printf_filtered (("\n"));
1867 }
1868
1869 /* The next "show values +" should start after what we just printed. */
1870 num += 10;
1871
1872 /* Hitting just return after this command should do the same thing as
1873 "show values +". If num_exp is null, this is unnecessary, since
1874 "show values +" is not useful after "show values". */
1875 if (from_tty && num_exp)
1876 {
1877 num_exp[0] = '+';
1878 num_exp[1] = '\0';
1879 }
1880 }
1881 \f
1882 /* Internal variables. These are variables within the debugger
1883 that hold values assigned by debugger commands.
1884 The user refers to them with a '$' prefix
1885 that does not appear in the variable names stored internally. */
1886
1887 struct internalvar
1888 {
1889 struct internalvar *next;
1890 char *name;
1891
1892 /* We support various different kinds of content of an internal variable.
1893 enum internalvar_kind specifies the kind, and union internalvar_data
1894 provides the data associated with this particular kind. */
1895
1896 enum internalvar_kind
1897 {
1898 /* The internal variable is empty. */
1899 INTERNALVAR_VOID,
1900
1901 /* The value of the internal variable is provided directly as
1902 a GDB value object. */
1903 INTERNALVAR_VALUE,
1904
1905 /* A fresh value is computed via a call-back routine on every
1906 access to the internal variable. */
1907 INTERNALVAR_MAKE_VALUE,
1908
1909 /* The internal variable holds a GDB internal convenience function. */
1910 INTERNALVAR_FUNCTION,
1911
1912 /* The variable holds an integer value. */
1913 INTERNALVAR_INTEGER,
1914
1915 /* The variable holds a GDB-provided string. */
1916 INTERNALVAR_STRING,
1917
1918 } kind;
1919
1920 union internalvar_data
1921 {
1922 /* A value object used with INTERNALVAR_VALUE. */
1923 struct value *value;
1924
1925 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1926 struct
1927 {
1928 /* The functions to call. */
1929 const struct internalvar_funcs *functions;
1930
1931 /* The function's user-data. */
1932 void *data;
1933 } make_value;
1934
1935 /* The internal function used with INTERNALVAR_FUNCTION. */
1936 struct
1937 {
1938 struct internal_function *function;
1939 /* True if this is the canonical name for the function. */
1940 int canonical;
1941 } fn;
1942
1943 /* An integer value used with INTERNALVAR_INTEGER. */
1944 struct
1945 {
1946 /* If type is non-NULL, it will be used as the type to generate
1947 a value for this internal variable. If type is NULL, a default
1948 integer type for the architecture is used. */
1949 struct type *type;
1950 LONGEST val;
1951 } integer;
1952
1953 /* A string value used with INTERNALVAR_STRING. */
1954 char *string;
1955 } u;
1956 };
1957
1958 static struct internalvar *internalvars;
1959
1960 /* If the variable does not already exist create it and give it the
1961 value given. If no value is given then the default is zero. */
1962 static void
1963 init_if_undefined_command (char* args, int from_tty)
1964 {
1965 struct internalvar* intvar;
1966
1967 /* Parse the expression - this is taken from set_command(). */
1968 struct expression *expr = parse_expression (args);
1969 register struct cleanup *old_chain =
1970 make_cleanup (free_current_contents, &expr);
1971
1972 /* Validate the expression.
1973 Was the expression an assignment?
1974 Or even an expression at all? */
1975 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1976 error (_("Init-if-undefined requires an assignment expression."));
1977
1978 /* Extract the variable from the parsed expression.
1979 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1980 if (expr->elts[1].opcode != OP_INTERNALVAR)
1981 error (_("The first parameter to init-if-undefined "
1982 "should be a GDB variable."));
1983 intvar = expr->elts[2].internalvar;
1984
1985 /* Only evaluate the expression if the lvalue is void.
1986 This may still fail if the expresssion is invalid. */
1987 if (intvar->kind == INTERNALVAR_VOID)
1988 evaluate_expression (expr);
1989
1990 do_cleanups (old_chain);
1991 }
1992
1993
1994 /* Look up an internal variable with name NAME. NAME should not
1995 normally include a dollar sign.
1996
1997 If the specified internal variable does not exist,
1998 the return value is NULL. */
1999
2000 struct internalvar *
2001 lookup_only_internalvar (const char *name)
2002 {
2003 struct internalvar *var;
2004
2005 for (var = internalvars; var; var = var->next)
2006 if (strcmp (var->name, name) == 0)
2007 return var;
2008
2009 return NULL;
2010 }
2011
2012 /* Complete NAME by comparing it to the names of internal variables.
2013 Returns a vector of newly allocated strings, or NULL if no matches
2014 were found. */
2015
2016 VEC (char_ptr) *
2017 complete_internalvar (const char *name)
2018 {
2019 VEC (char_ptr) *result = NULL;
2020 struct internalvar *var;
2021 int len;
2022
2023 len = strlen (name);
2024
2025 for (var = internalvars; var; var = var->next)
2026 if (strncmp (var->name, name, len) == 0)
2027 {
2028 char *r = xstrdup (var->name);
2029
2030 VEC_safe_push (char_ptr, result, r);
2031 }
2032
2033 return result;
2034 }
2035
2036 /* Create an internal variable with name NAME and with a void value.
2037 NAME should not normally include a dollar sign. */
2038
2039 struct internalvar *
2040 create_internalvar (const char *name)
2041 {
2042 struct internalvar *var;
2043
2044 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
2045 var->name = concat (name, (char *)NULL);
2046 var->kind = INTERNALVAR_VOID;
2047 var->next = internalvars;
2048 internalvars = var;
2049 return var;
2050 }
2051
2052 /* Create an internal variable with name NAME and register FUN as the
2053 function that value_of_internalvar uses to create a value whenever
2054 this variable is referenced. NAME should not normally include a
2055 dollar sign. DATA is passed uninterpreted to FUN when it is
2056 called. CLEANUP, if not NULL, is called when the internal variable
2057 is destroyed. It is passed DATA as its only argument. */
2058
2059 struct internalvar *
2060 create_internalvar_type_lazy (const char *name,
2061 const struct internalvar_funcs *funcs,
2062 void *data)
2063 {
2064 struct internalvar *var = create_internalvar (name);
2065
2066 var->kind = INTERNALVAR_MAKE_VALUE;
2067 var->u.make_value.functions = funcs;
2068 var->u.make_value.data = data;
2069 return var;
2070 }
2071
2072 /* See documentation in value.h. */
2073
2074 int
2075 compile_internalvar_to_ax (struct internalvar *var,
2076 struct agent_expr *expr,
2077 struct axs_value *value)
2078 {
2079 if (var->kind != INTERNALVAR_MAKE_VALUE
2080 || var->u.make_value.functions->compile_to_ax == NULL)
2081 return 0;
2082
2083 var->u.make_value.functions->compile_to_ax (var, expr, value,
2084 var->u.make_value.data);
2085 return 1;
2086 }
2087
2088 /* Look up an internal variable with name NAME. NAME should not
2089 normally include a dollar sign.
2090
2091 If the specified internal variable does not exist,
2092 one is created, with a void value. */
2093
2094 struct internalvar *
2095 lookup_internalvar (const char *name)
2096 {
2097 struct internalvar *var;
2098
2099 var = lookup_only_internalvar (name);
2100 if (var)
2101 return var;
2102
2103 return create_internalvar (name);
2104 }
2105
2106 /* Return current value of internal variable VAR. For variables that
2107 are not inherently typed, use a value type appropriate for GDBARCH. */
2108
2109 struct value *
2110 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2111 {
2112 struct value *val;
2113 struct trace_state_variable *tsv;
2114
2115 /* If there is a trace state variable of the same name, assume that
2116 is what we really want to see. */
2117 tsv = find_trace_state_variable (var->name);
2118 if (tsv)
2119 {
2120 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2121 &(tsv->value));
2122 if (tsv->value_known)
2123 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2124 tsv->value);
2125 else
2126 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2127 return val;
2128 }
2129
2130 switch (var->kind)
2131 {
2132 case INTERNALVAR_VOID:
2133 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2134 break;
2135
2136 case INTERNALVAR_FUNCTION:
2137 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2138 break;
2139
2140 case INTERNALVAR_INTEGER:
2141 if (!var->u.integer.type)
2142 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2143 var->u.integer.val);
2144 else
2145 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2146 break;
2147
2148 case INTERNALVAR_STRING:
2149 val = value_cstring (var->u.string, strlen (var->u.string),
2150 builtin_type (gdbarch)->builtin_char);
2151 break;
2152
2153 case INTERNALVAR_VALUE:
2154 val = value_copy (var->u.value);
2155 if (value_lazy (val))
2156 value_fetch_lazy (val);
2157 break;
2158
2159 case INTERNALVAR_MAKE_VALUE:
2160 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2161 var->u.make_value.data);
2162 break;
2163
2164 default:
2165 internal_error (__FILE__, __LINE__, _("bad kind"));
2166 }
2167
2168 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2169 on this value go back to affect the original internal variable.
2170
2171 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2172 no underlying modifyable state in the internal variable.
2173
2174 Likewise, if the variable's value is a computed lvalue, we want
2175 references to it to produce another computed lvalue, where
2176 references and assignments actually operate through the
2177 computed value's functions.
2178
2179 This means that internal variables with computed values
2180 behave a little differently from other internal variables:
2181 assignments to them don't just replace the previous value
2182 altogether. At the moment, this seems like the behavior we
2183 want. */
2184
2185 if (var->kind != INTERNALVAR_MAKE_VALUE
2186 && val->lval != lval_computed)
2187 {
2188 VALUE_LVAL (val) = lval_internalvar;
2189 VALUE_INTERNALVAR (val) = var;
2190 }
2191
2192 return val;
2193 }
2194
2195 int
2196 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2197 {
2198 if (var->kind == INTERNALVAR_INTEGER)
2199 {
2200 *result = var->u.integer.val;
2201 return 1;
2202 }
2203
2204 if (var->kind == INTERNALVAR_VALUE)
2205 {
2206 struct type *type = check_typedef (value_type (var->u.value));
2207
2208 if (TYPE_CODE (type) == TYPE_CODE_INT)
2209 {
2210 *result = value_as_long (var->u.value);
2211 return 1;
2212 }
2213 }
2214
2215 return 0;
2216 }
2217
2218 static int
2219 get_internalvar_function (struct internalvar *var,
2220 struct internal_function **result)
2221 {
2222 switch (var->kind)
2223 {
2224 case INTERNALVAR_FUNCTION:
2225 *result = var->u.fn.function;
2226 return 1;
2227
2228 default:
2229 return 0;
2230 }
2231 }
2232
2233 void
2234 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2235 int bitsize, struct value *newval)
2236 {
2237 gdb_byte *addr;
2238
2239 switch (var->kind)
2240 {
2241 case INTERNALVAR_VALUE:
2242 addr = value_contents_writeable (var->u.value);
2243
2244 if (bitsize)
2245 modify_field (value_type (var->u.value), addr + offset,
2246 value_as_long (newval), bitpos, bitsize);
2247 else
2248 memcpy (addr + offset, value_contents (newval),
2249 TYPE_LENGTH (value_type (newval)));
2250 break;
2251
2252 default:
2253 /* We can never get a component of any other kind. */
2254 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2255 }
2256 }
2257
2258 void
2259 set_internalvar (struct internalvar *var, struct value *val)
2260 {
2261 enum internalvar_kind new_kind;
2262 union internalvar_data new_data = { 0 };
2263
2264 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2265 error (_("Cannot overwrite convenience function %s"), var->name);
2266
2267 /* Prepare new contents. */
2268 switch (TYPE_CODE (check_typedef (value_type (val))))
2269 {
2270 case TYPE_CODE_VOID:
2271 new_kind = INTERNALVAR_VOID;
2272 break;
2273
2274 case TYPE_CODE_INTERNAL_FUNCTION:
2275 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2276 new_kind = INTERNALVAR_FUNCTION;
2277 get_internalvar_function (VALUE_INTERNALVAR (val),
2278 &new_data.fn.function);
2279 /* Copies created here are never canonical. */
2280 break;
2281
2282 default:
2283 new_kind = INTERNALVAR_VALUE;
2284 new_data.value = value_copy (val);
2285 new_data.value->modifiable = 1;
2286
2287 /* Force the value to be fetched from the target now, to avoid problems
2288 later when this internalvar is referenced and the target is gone or
2289 has changed. */
2290 if (value_lazy (new_data.value))
2291 value_fetch_lazy (new_data.value);
2292
2293 /* Release the value from the value chain to prevent it from being
2294 deleted by free_all_values. From here on this function should not
2295 call error () until new_data is installed into the var->u to avoid
2296 leaking memory. */
2297 release_value (new_data.value);
2298 break;
2299 }
2300
2301 /* Clean up old contents. */
2302 clear_internalvar (var);
2303
2304 /* Switch over. */
2305 var->kind = new_kind;
2306 var->u = new_data;
2307 /* End code which must not call error(). */
2308 }
2309
2310 void
2311 set_internalvar_integer (struct internalvar *var, LONGEST l)
2312 {
2313 /* Clean up old contents. */
2314 clear_internalvar (var);
2315
2316 var->kind = INTERNALVAR_INTEGER;
2317 var->u.integer.type = NULL;
2318 var->u.integer.val = l;
2319 }
2320
2321 void
2322 set_internalvar_string (struct internalvar *var, const char *string)
2323 {
2324 /* Clean up old contents. */
2325 clear_internalvar (var);
2326
2327 var->kind = INTERNALVAR_STRING;
2328 var->u.string = xstrdup (string);
2329 }
2330
2331 static void
2332 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2333 {
2334 /* Clean up old contents. */
2335 clear_internalvar (var);
2336
2337 var->kind = INTERNALVAR_FUNCTION;
2338 var->u.fn.function = f;
2339 var->u.fn.canonical = 1;
2340 /* Variables installed here are always the canonical version. */
2341 }
2342
2343 void
2344 clear_internalvar (struct internalvar *var)
2345 {
2346 /* Clean up old contents. */
2347 switch (var->kind)
2348 {
2349 case INTERNALVAR_VALUE:
2350 value_free (var->u.value);
2351 break;
2352
2353 case INTERNALVAR_STRING:
2354 xfree (var->u.string);
2355 break;
2356
2357 case INTERNALVAR_MAKE_VALUE:
2358 if (var->u.make_value.functions->destroy != NULL)
2359 var->u.make_value.functions->destroy (var->u.make_value.data);
2360 break;
2361
2362 default:
2363 break;
2364 }
2365
2366 /* Reset to void kind. */
2367 var->kind = INTERNALVAR_VOID;
2368 }
2369
2370 char *
2371 internalvar_name (struct internalvar *var)
2372 {
2373 return var->name;
2374 }
2375
2376 static struct internal_function *
2377 create_internal_function (const char *name,
2378 internal_function_fn handler, void *cookie)
2379 {
2380 struct internal_function *ifn = XNEW (struct internal_function);
2381
2382 ifn->name = xstrdup (name);
2383 ifn->handler = handler;
2384 ifn->cookie = cookie;
2385 return ifn;
2386 }
2387
2388 char *
2389 value_internal_function_name (struct value *val)
2390 {
2391 struct internal_function *ifn;
2392 int result;
2393
2394 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2395 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2396 gdb_assert (result);
2397
2398 return ifn->name;
2399 }
2400
2401 struct value *
2402 call_internal_function (struct gdbarch *gdbarch,
2403 const struct language_defn *language,
2404 struct value *func, int argc, struct value **argv)
2405 {
2406 struct internal_function *ifn;
2407 int result;
2408
2409 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2410 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2411 gdb_assert (result);
2412
2413 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2414 }
2415
2416 /* The 'function' command. This does nothing -- it is just a
2417 placeholder to let "help function NAME" work. This is also used as
2418 the implementation of the sub-command that is created when
2419 registering an internal function. */
2420 static void
2421 function_command (char *command, int from_tty)
2422 {
2423 /* Do nothing. */
2424 }
2425
2426 /* Clean up if an internal function's command is destroyed. */
2427 static void
2428 function_destroyer (struct cmd_list_element *self, void *ignore)
2429 {
2430 xfree ((char *) self->name);
2431 xfree ((char *) self->doc);
2432 }
2433
2434 /* Add a new internal function. NAME is the name of the function; DOC
2435 is a documentation string describing the function. HANDLER is
2436 called when the function is invoked. COOKIE is an arbitrary
2437 pointer which is passed to HANDLER and is intended for "user
2438 data". */
2439 void
2440 add_internal_function (const char *name, const char *doc,
2441 internal_function_fn handler, void *cookie)
2442 {
2443 struct cmd_list_element *cmd;
2444 struct internal_function *ifn;
2445 struct internalvar *var = lookup_internalvar (name);
2446
2447 ifn = create_internal_function (name, handler, cookie);
2448 set_internalvar_function (var, ifn);
2449
2450 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2451 &functionlist);
2452 cmd->destroyer = function_destroyer;
2453 }
2454
2455 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2456 prevent cycles / duplicates. */
2457
2458 void
2459 preserve_one_value (struct value *value, struct objfile *objfile,
2460 htab_t copied_types)
2461 {
2462 if (TYPE_OBJFILE (value->type) == objfile)
2463 value->type = copy_type_recursive (objfile, value->type, copied_types);
2464
2465 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2466 value->enclosing_type = copy_type_recursive (objfile,
2467 value->enclosing_type,
2468 copied_types);
2469 }
2470
2471 /* Likewise for internal variable VAR. */
2472
2473 static void
2474 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2475 htab_t copied_types)
2476 {
2477 switch (var->kind)
2478 {
2479 case INTERNALVAR_INTEGER:
2480 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2481 var->u.integer.type
2482 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2483 break;
2484
2485 case INTERNALVAR_VALUE:
2486 preserve_one_value (var->u.value, objfile, copied_types);
2487 break;
2488 }
2489 }
2490
2491 /* Update the internal variables and value history when OBJFILE is
2492 discarded; we must copy the types out of the objfile. New global types
2493 will be created for every convenience variable which currently points to
2494 this objfile's types, and the convenience variables will be adjusted to
2495 use the new global types. */
2496
2497 void
2498 preserve_values (struct objfile *objfile)
2499 {
2500 htab_t copied_types;
2501 struct value_history_chunk *cur;
2502 struct internalvar *var;
2503 int i;
2504
2505 /* Create the hash table. We allocate on the objfile's obstack, since
2506 it is soon to be deleted. */
2507 copied_types = create_copied_types_hash (objfile);
2508
2509 for (cur = value_history_chain; cur; cur = cur->next)
2510 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2511 if (cur->values[i])
2512 preserve_one_value (cur->values[i], objfile, copied_types);
2513
2514 for (var = internalvars; var; var = var->next)
2515 preserve_one_internalvar (var, objfile, copied_types);
2516
2517 preserve_ext_lang_values (objfile, copied_types);
2518
2519 htab_delete (copied_types);
2520 }
2521
2522 static void
2523 show_convenience (char *ignore, int from_tty)
2524 {
2525 struct gdbarch *gdbarch = get_current_arch ();
2526 struct internalvar *var;
2527 int varseen = 0;
2528 struct value_print_options opts;
2529
2530 get_user_print_options (&opts);
2531 for (var = internalvars; var; var = var->next)
2532 {
2533 volatile struct gdb_exception ex;
2534
2535 if (!varseen)
2536 {
2537 varseen = 1;
2538 }
2539 printf_filtered (("$%s = "), var->name);
2540
2541 TRY_CATCH (ex, RETURN_MASK_ERROR)
2542 {
2543 struct value *val;
2544
2545 val = value_of_internalvar (gdbarch, var);
2546 value_print (val, gdb_stdout, &opts);
2547 }
2548 if (ex.reason < 0)
2549 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2550 printf_filtered (("\n"));
2551 }
2552 if (!varseen)
2553 {
2554 /* This text does not mention convenience functions on purpose.
2555 The user can't create them except via Python, and if Python support
2556 is installed this message will never be printed ($_streq will
2557 exist). */
2558 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2559 "Convenience variables have "
2560 "names starting with \"$\";\n"
2561 "use \"set\" as in \"set "
2562 "$foo = 5\" to define them.\n"));
2563 }
2564 }
2565 \f
2566 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2567
2568 struct value *
2569 value_of_xmethod (struct xmethod_worker *worker)
2570 {
2571 if (worker->value == NULL)
2572 {
2573 struct value *v;
2574
2575 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2576 v->lval = lval_xcallable;
2577 v->location.xm_worker = worker;
2578 v->modifiable = 0;
2579 worker->value = v;
2580 }
2581
2582 return worker->value;
2583 }
2584
2585 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2586
2587 struct value *
2588 call_xmethod (struct value *method, int argc, struct value **argv)
2589 {
2590 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2591 && method->lval == lval_xcallable && argc > 0);
2592
2593 return invoke_xmethod (method->location.xm_worker,
2594 argv[0], argv + 1, argc - 1);
2595 }
2596 \f
2597 /* Extract a value as a C number (either long or double).
2598 Knows how to convert fixed values to double, or
2599 floating values to long.
2600 Does not deallocate the value. */
2601
2602 LONGEST
2603 value_as_long (struct value *val)
2604 {
2605 /* This coerces arrays and functions, which is necessary (e.g.
2606 in disassemble_command). It also dereferences references, which
2607 I suspect is the most logical thing to do. */
2608 val = coerce_array (val);
2609 return unpack_long (value_type (val), value_contents (val));
2610 }
2611
2612 DOUBLEST
2613 value_as_double (struct value *val)
2614 {
2615 DOUBLEST foo;
2616 int inv;
2617
2618 foo = unpack_double (value_type (val), value_contents (val), &inv);
2619 if (inv)
2620 error (_("Invalid floating value found in program."));
2621 return foo;
2622 }
2623
2624 /* Extract a value as a C pointer. Does not deallocate the value.
2625 Note that val's type may not actually be a pointer; value_as_long
2626 handles all the cases. */
2627 CORE_ADDR
2628 value_as_address (struct value *val)
2629 {
2630 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2631
2632 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2633 whether we want this to be true eventually. */
2634 #if 0
2635 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2636 non-address (e.g. argument to "signal", "info break", etc.), or
2637 for pointers to char, in which the low bits *are* significant. */
2638 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2639 #else
2640
2641 /* There are several targets (IA-64, PowerPC, and others) which
2642 don't represent pointers to functions as simply the address of
2643 the function's entry point. For example, on the IA-64, a
2644 function pointer points to a two-word descriptor, generated by
2645 the linker, which contains the function's entry point, and the
2646 value the IA-64 "global pointer" register should have --- to
2647 support position-independent code. The linker generates
2648 descriptors only for those functions whose addresses are taken.
2649
2650 On such targets, it's difficult for GDB to convert an arbitrary
2651 function address into a function pointer; it has to either find
2652 an existing descriptor for that function, or call malloc and
2653 build its own. On some targets, it is impossible for GDB to
2654 build a descriptor at all: the descriptor must contain a jump
2655 instruction; data memory cannot be executed; and code memory
2656 cannot be modified.
2657
2658 Upon entry to this function, if VAL is a value of type `function'
2659 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2660 value_address (val) is the address of the function. This is what
2661 you'll get if you evaluate an expression like `main'. The call
2662 to COERCE_ARRAY below actually does all the usual unary
2663 conversions, which includes converting values of type `function'
2664 to `pointer to function'. This is the challenging conversion
2665 discussed above. Then, `unpack_long' will convert that pointer
2666 back into an address.
2667
2668 So, suppose the user types `disassemble foo' on an architecture
2669 with a strange function pointer representation, on which GDB
2670 cannot build its own descriptors, and suppose further that `foo'
2671 has no linker-built descriptor. The address->pointer conversion
2672 will signal an error and prevent the command from running, even
2673 though the next step would have been to convert the pointer
2674 directly back into the same address.
2675
2676 The following shortcut avoids this whole mess. If VAL is a
2677 function, just return its address directly. */
2678 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2679 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2680 return value_address (val);
2681
2682 val = coerce_array (val);
2683
2684 /* Some architectures (e.g. Harvard), map instruction and data
2685 addresses onto a single large unified address space. For
2686 instance: An architecture may consider a large integer in the
2687 range 0x10000000 .. 0x1000ffff to already represent a data
2688 addresses (hence not need a pointer to address conversion) while
2689 a small integer would still need to be converted integer to
2690 pointer to address. Just assume such architectures handle all
2691 integer conversions in a single function. */
2692
2693 /* JimB writes:
2694
2695 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2696 must admonish GDB hackers to make sure its behavior matches the
2697 compiler's, whenever possible.
2698
2699 In general, I think GDB should evaluate expressions the same way
2700 the compiler does. When the user copies an expression out of
2701 their source code and hands it to a `print' command, they should
2702 get the same value the compiler would have computed. Any
2703 deviation from this rule can cause major confusion and annoyance,
2704 and needs to be justified carefully. In other words, GDB doesn't
2705 really have the freedom to do these conversions in clever and
2706 useful ways.
2707
2708 AndrewC pointed out that users aren't complaining about how GDB
2709 casts integers to pointers; they are complaining that they can't
2710 take an address from a disassembly listing and give it to `x/i'.
2711 This is certainly important.
2712
2713 Adding an architecture method like integer_to_address() certainly
2714 makes it possible for GDB to "get it right" in all circumstances
2715 --- the target has complete control over how things get done, so
2716 people can Do The Right Thing for their target without breaking
2717 anyone else. The standard doesn't specify how integers get
2718 converted to pointers; usually, the ABI doesn't either, but
2719 ABI-specific code is a more reasonable place to handle it. */
2720
2721 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2722 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2723 && gdbarch_integer_to_address_p (gdbarch))
2724 return gdbarch_integer_to_address (gdbarch, value_type (val),
2725 value_contents (val));
2726
2727 return unpack_long (value_type (val), value_contents (val));
2728 #endif
2729 }
2730 \f
2731 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2732 as a long, or as a double, assuming the raw data is described
2733 by type TYPE. Knows how to convert different sizes of values
2734 and can convert between fixed and floating point. We don't assume
2735 any alignment for the raw data. Return value is in host byte order.
2736
2737 If you want functions and arrays to be coerced to pointers, and
2738 references to be dereferenced, call value_as_long() instead.
2739
2740 C++: It is assumed that the front-end has taken care of
2741 all matters concerning pointers to members. A pointer
2742 to member which reaches here is considered to be equivalent
2743 to an INT (or some size). After all, it is only an offset. */
2744
2745 LONGEST
2746 unpack_long (struct type *type, const gdb_byte *valaddr)
2747 {
2748 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2749 enum type_code code = TYPE_CODE (type);
2750 int len = TYPE_LENGTH (type);
2751 int nosign = TYPE_UNSIGNED (type);
2752
2753 switch (code)
2754 {
2755 case TYPE_CODE_TYPEDEF:
2756 return unpack_long (check_typedef (type), valaddr);
2757 case TYPE_CODE_ENUM:
2758 case TYPE_CODE_FLAGS:
2759 case TYPE_CODE_BOOL:
2760 case TYPE_CODE_INT:
2761 case TYPE_CODE_CHAR:
2762 case TYPE_CODE_RANGE:
2763 case TYPE_CODE_MEMBERPTR:
2764 if (nosign)
2765 return extract_unsigned_integer (valaddr, len, byte_order);
2766 else
2767 return extract_signed_integer (valaddr, len, byte_order);
2768
2769 case TYPE_CODE_FLT:
2770 return extract_typed_floating (valaddr, type);
2771
2772 case TYPE_CODE_DECFLOAT:
2773 /* libdecnumber has a function to convert from decimal to integer, but
2774 it doesn't work when the decimal number has a fractional part. */
2775 return decimal_to_doublest (valaddr, len, byte_order);
2776
2777 case TYPE_CODE_PTR:
2778 case TYPE_CODE_REF:
2779 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2780 whether we want this to be true eventually. */
2781 return extract_typed_address (valaddr, type);
2782
2783 default:
2784 error (_("Value can't be converted to integer."));
2785 }
2786 return 0; /* Placate lint. */
2787 }
2788
2789 /* Return a double value from the specified type and address.
2790 INVP points to an int which is set to 0 for valid value,
2791 1 for invalid value (bad float format). In either case,
2792 the returned double is OK to use. Argument is in target
2793 format, result is in host format. */
2794
2795 DOUBLEST
2796 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2797 {
2798 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2799 enum type_code code;
2800 int len;
2801 int nosign;
2802
2803 *invp = 0; /* Assume valid. */
2804 CHECK_TYPEDEF (type);
2805 code = TYPE_CODE (type);
2806 len = TYPE_LENGTH (type);
2807 nosign = TYPE_UNSIGNED (type);
2808 if (code == TYPE_CODE_FLT)
2809 {
2810 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2811 floating-point value was valid (using the macro
2812 INVALID_FLOAT). That test/macro have been removed.
2813
2814 It turns out that only the VAX defined this macro and then
2815 only in a non-portable way. Fixing the portability problem
2816 wouldn't help since the VAX floating-point code is also badly
2817 bit-rotten. The target needs to add definitions for the
2818 methods gdbarch_float_format and gdbarch_double_format - these
2819 exactly describe the target floating-point format. The
2820 problem here is that the corresponding floatformat_vax_f and
2821 floatformat_vax_d values these methods should be set to are
2822 also not defined either. Oops!
2823
2824 Hopefully someone will add both the missing floatformat
2825 definitions and the new cases for floatformat_is_valid (). */
2826
2827 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2828 {
2829 *invp = 1;
2830 return 0.0;
2831 }
2832
2833 return extract_typed_floating (valaddr, type);
2834 }
2835 else if (code == TYPE_CODE_DECFLOAT)
2836 return decimal_to_doublest (valaddr, len, byte_order);
2837 else if (nosign)
2838 {
2839 /* Unsigned -- be sure we compensate for signed LONGEST. */
2840 return (ULONGEST) unpack_long (type, valaddr);
2841 }
2842 else
2843 {
2844 /* Signed -- we are OK with unpack_long. */
2845 return unpack_long (type, valaddr);
2846 }
2847 }
2848
2849 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2850 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2851 We don't assume any alignment for the raw data. Return value is in
2852 host byte order.
2853
2854 If you want functions and arrays to be coerced to pointers, and
2855 references to be dereferenced, call value_as_address() instead.
2856
2857 C++: It is assumed that the front-end has taken care of
2858 all matters concerning pointers to members. A pointer
2859 to member which reaches here is considered to be equivalent
2860 to an INT (or some size). After all, it is only an offset. */
2861
2862 CORE_ADDR
2863 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2864 {
2865 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2866 whether we want this to be true eventually. */
2867 return unpack_long (type, valaddr);
2868 }
2869
2870 \f
2871 /* Get the value of the FIELDNO'th field (which must be static) of
2872 TYPE. */
2873
2874 struct value *
2875 value_static_field (struct type *type, int fieldno)
2876 {
2877 struct value *retval;
2878
2879 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2880 {
2881 case FIELD_LOC_KIND_PHYSADDR:
2882 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2883 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2884 break;
2885 case FIELD_LOC_KIND_PHYSNAME:
2886 {
2887 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2888 /* TYPE_FIELD_NAME (type, fieldno); */
2889 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2890
2891 if (sym == NULL)
2892 {
2893 /* With some compilers, e.g. HP aCC, static data members are
2894 reported as non-debuggable symbols. */
2895 struct bound_minimal_symbol msym
2896 = lookup_minimal_symbol (phys_name, NULL, NULL);
2897
2898 if (!msym.minsym)
2899 return allocate_optimized_out_value (type);
2900 else
2901 {
2902 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2903 BMSYMBOL_VALUE_ADDRESS (msym));
2904 }
2905 }
2906 else
2907 retval = value_of_variable (sym, NULL);
2908 break;
2909 }
2910 default:
2911 gdb_assert_not_reached ("unexpected field location kind");
2912 }
2913
2914 return retval;
2915 }
2916
2917 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2918 You have to be careful here, since the size of the data area for the value
2919 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2920 than the old enclosing type, you have to allocate more space for the
2921 data. */
2922
2923 void
2924 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2925 {
2926 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2927 val->contents =
2928 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2929
2930 val->enclosing_type = new_encl_type;
2931 }
2932
2933 /* Given a value ARG1 (offset by OFFSET bytes)
2934 of a struct or union type ARG_TYPE,
2935 extract and return the value of one of its (non-static) fields.
2936 FIELDNO says which field. */
2937
2938 struct value *
2939 value_primitive_field (struct value *arg1, int offset,
2940 int fieldno, struct type *arg_type)
2941 {
2942 struct value *v;
2943 struct type *type;
2944
2945 CHECK_TYPEDEF (arg_type);
2946 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2947
2948 /* Call check_typedef on our type to make sure that, if TYPE
2949 is a TYPE_CODE_TYPEDEF, its length is set to the length
2950 of the target type instead of zero. However, we do not
2951 replace the typedef type by the target type, because we want
2952 to keep the typedef in order to be able to print the type
2953 description correctly. */
2954 check_typedef (type);
2955
2956 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2957 {
2958 /* Handle packed fields.
2959
2960 Create a new value for the bitfield, with bitpos and bitsize
2961 set. If possible, arrange offset and bitpos so that we can
2962 do a single aligned read of the size of the containing type.
2963 Otherwise, adjust offset to the byte containing the first
2964 bit. Assume that the address, offset, and embedded offset
2965 are sufficiently aligned. */
2966
2967 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2968 int container_bitsize = TYPE_LENGTH (type) * 8;
2969
2970 v = allocate_value_lazy (type);
2971 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2972 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2973 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2974 v->bitpos = bitpos % container_bitsize;
2975 else
2976 v->bitpos = bitpos % 8;
2977 v->offset = (value_embedded_offset (arg1)
2978 + offset
2979 + (bitpos - v->bitpos) / 8);
2980 set_value_parent (v, arg1);
2981 if (!value_lazy (arg1))
2982 value_fetch_lazy (v);
2983 }
2984 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2985 {
2986 /* This field is actually a base subobject, so preserve the
2987 entire object's contents for later references to virtual
2988 bases, etc. */
2989 int boffset;
2990
2991 /* Lazy register values with offsets are not supported. */
2992 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2993 value_fetch_lazy (arg1);
2994
2995 /* We special case virtual inheritance here because this
2996 requires access to the contents, which we would rather avoid
2997 for references to ordinary fields of unavailable values. */
2998 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2999 boffset = baseclass_offset (arg_type, fieldno,
3000 value_contents (arg1),
3001 value_embedded_offset (arg1),
3002 value_address (arg1),
3003 arg1);
3004 else
3005 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3006
3007 if (value_lazy (arg1))
3008 v = allocate_value_lazy (value_enclosing_type (arg1));
3009 else
3010 {
3011 v = allocate_value (value_enclosing_type (arg1));
3012 value_contents_copy_raw (v, 0, arg1, 0,
3013 TYPE_LENGTH (value_enclosing_type (arg1)));
3014 }
3015 v->type = type;
3016 v->offset = value_offset (arg1);
3017 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3018 }
3019 else
3020 {
3021 /* Plain old data member */
3022 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3023
3024 /* Lazy register values with offsets are not supported. */
3025 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3026 value_fetch_lazy (arg1);
3027
3028 if (value_lazy (arg1))
3029 v = allocate_value_lazy (type);
3030 else
3031 {
3032 v = allocate_value (type);
3033 value_contents_copy_raw (v, value_embedded_offset (v),
3034 arg1, value_embedded_offset (arg1) + offset,
3035 TYPE_LENGTH (type));
3036 }
3037 v->offset = (value_offset (arg1) + offset
3038 + value_embedded_offset (arg1));
3039 }
3040 set_value_component_location (v, arg1);
3041 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
3042 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
3043 return v;
3044 }
3045
3046 /* Given a value ARG1 of a struct or union type,
3047 extract and return the value of one of its (non-static) fields.
3048 FIELDNO says which field. */
3049
3050 struct value *
3051 value_field (struct value *arg1, int fieldno)
3052 {
3053 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3054 }
3055
3056 /* Return a non-virtual function as a value.
3057 F is the list of member functions which contains the desired method.
3058 J is an index into F which provides the desired method.
3059
3060 We only use the symbol for its address, so be happy with either a
3061 full symbol or a minimal symbol. */
3062
3063 struct value *
3064 value_fn_field (struct value **arg1p, struct fn_field *f,
3065 int j, struct type *type,
3066 int offset)
3067 {
3068 struct value *v;
3069 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3070 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3071 struct symbol *sym;
3072 struct bound_minimal_symbol msym;
3073
3074 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
3075 if (sym != NULL)
3076 {
3077 memset (&msym, 0, sizeof (msym));
3078 }
3079 else
3080 {
3081 gdb_assert (sym == NULL);
3082 msym = lookup_bound_minimal_symbol (physname);
3083 if (msym.minsym == NULL)
3084 return NULL;
3085 }
3086
3087 v = allocate_value (ftype);
3088 if (sym)
3089 {
3090 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3091 }
3092 else
3093 {
3094 /* The minimal symbol might point to a function descriptor;
3095 resolve it to the actual code address instead. */
3096 struct objfile *objfile = msym.objfile;
3097 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3098
3099 set_value_address (v,
3100 gdbarch_convert_from_func_ptr_addr
3101 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3102 }
3103
3104 if (arg1p)
3105 {
3106 if (type != value_type (*arg1p))
3107 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3108 value_addr (*arg1p)));
3109
3110 /* Move the `this' pointer according to the offset.
3111 VALUE_OFFSET (*arg1p) += offset; */
3112 }
3113
3114 return v;
3115 }
3116
3117 \f
3118
3119 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3120 VALADDR, and store the result in *RESULT.
3121 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3122
3123 Extracting bits depends on endianness of the machine. Compute the
3124 number of least significant bits to discard. For big endian machines,
3125 we compute the total number of bits in the anonymous object, subtract
3126 off the bit count from the MSB of the object to the MSB of the
3127 bitfield, then the size of the bitfield, which leaves the LSB discard
3128 count. For little endian machines, the discard count is simply the
3129 number of bits from the LSB of the anonymous object to the LSB of the
3130 bitfield.
3131
3132 If the field is signed, we also do sign extension. */
3133
3134 static LONGEST
3135 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3136 int bitpos, int bitsize)
3137 {
3138 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3139 ULONGEST val;
3140 ULONGEST valmask;
3141 int lsbcount;
3142 int bytes_read;
3143 int read_offset;
3144
3145 /* Read the minimum number of bytes required; there may not be
3146 enough bytes to read an entire ULONGEST. */
3147 CHECK_TYPEDEF (field_type);
3148 if (bitsize)
3149 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3150 else
3151 bytes_read = TYPE_LENGTH (field_type);
3152
3153 read_offset = bitpos / 8;
3154
3155 val = extract_unsigned_integer (valaddr + read_offset,
3156 bytes_read, byte_order);
3157
3158 /* Extract bits. See comment above. */
3159
3160 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3161 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3162 else
3163 lsbcount = (bitpos % 8);
3164 val >>= lsbcount;
3165
3166 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3167 If the field is signed, and is negative, then sign extend. */
3168
3169 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3170 {
3171 valmask = (((ULONGEST) 1) << bitsize) - 1;
3172 val &= valmask;
3173 if (!TYPE_UNSIGNED (field_type))
3174 {
3175 if (val & (valmask ^ (valmask >> 1)))
3176 {
3177 val |= ~valmask;
3178 }
3179 }
3180 }
3181
3182 return val;
3183 }
3184
3185 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3186 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3187 ORIGINAL_VALUE, which must not be NULL. See
3188 unpack_value_bits_as_long for more details. */
3189
3190 int
3191 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3192 int embedded_offset, int fieldno,
3193 const struct value *val, LONGEST *result)
3194 {
3195 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3196 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3197 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3198 int bit_offset;
3199
3200 gdb_assert (val != NULL);
3201
3202 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3203 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3204 || !value_bits_available (val, bit_offset, bitsize))
3205 return 0;
3206
3207 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3208 bitpos, bitsize);
3209 return 1;
3210 }
3211
3212 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3213 object at VALADDR. See unpack_bits_as_long for more details. */
3214
3215 LONGEST
3216 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3217 {
3218 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3219 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3220 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3221
3222 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3223 }
3224
3225 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3226 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3227 the contents in DEST_VAL, zero or sign extending if the type of
3228 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3229 VAL. If the VAL's contents required to extract the bitfield from
3230 are unavailable/optimized out, DEST_VAL is correspondingly
3231 marked unavailable/optimized out. */
3232
3233 void
3234 unpack_value_bitfield (struct value *dest_val,
3235 int bitpos, int bitsize,
3236 const gdb_byte *valaddr, int embedded_offset,
3237 const struct value *val)
3238 {
3239 enum bfd_endian byte_order;
3240 int src_bit_offset;
3241 int dst_bit_offset;
3242 LONGEST num;
3243 struct type *field_type = value_type (dest_val);
3244
3245 /* First, unpack and sign extend the bitfield as if it was wholly
3246 available. Invalid/unavailable bits are read as zero, but that's
3247 OK, as they'll end up marked below. */
3248 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3249 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3250 bitpos, bitsize);
3251 store_signed_integer (value_contents_raw (dest_val),
3252 TYPE_LENGTH (field_type), byte_order, num);
3253
3254 /* Now copy the optimized out / unavailability ranges to the right
3255 bits. */
3256 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3257 if (byte_order == BFD_ENDIAN_BIG)
3258 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3259 else
3260 dst_bit_offset = 0;
3261 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3262 val, src_bit_offset, bitsize);
3263 }
3264
3265 /* Return a new value with type TYPE, which is FIELDNO field of the
3266 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3267 of VAL. If the VAL's contents required to extract the bitfield
3268 from are unavailable/optimized out, the new value is
3269 correspondingly marked unavailable/optimized out. */
3270
3271 struct value *
3272 value_field_bitfield (struct type *type, int fieldno,
3273 const gdb_byte *valaddr,
3274 int embedded_offset, const struct value *val)
3275 {
3276 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3277 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3278 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3279
3280 unpack_value_bitfield (res_val, bitpos, bitsize,
3281 valaddr, embedded_offset, val);
3282
3283 return res_val;
3284 }
3285
3286 /* Modify the value of a bitfield. ADDR points to a block of memory in
3287 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3288 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3289 indicate which bits (in target bit order) comprise the bitfield.
3290 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3291 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3292
3293 void
3294 modify_field (struct type *type, gdb_byte *addr,
3295 LONGEST fieldval, int bitpos, int bitsize)
3296 {
3297 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3298 ULONGEST oword;
3299 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3300 int bytesize;
3301
3302 /* Normalize BITPOS. */
3303 addr += bitpos / 8;
3304 bitpos %= 8;
3305
3306 /* If a negative fieldval fits in the field in question, chop
3307 off the sign extension bits. */
3308 if ((~fieldval & ~(mask >> 1)) == 0)
3309 fieldval &= mask;
3310
3311 /* Warn if value is too big to fit in the field in question. */
3312 if (0 != (fieldval & ~mask))
3313 {
3314 /* FIXME: would like to include fieldval in the message, but
3315 we don't have a sprintf_longest. */
3316 warning (_("Value does not fit in %d bits."), bitsize);
3317
3318 /* Truncate it, otherwise adjoining fields may be corrupted. */
3319 fieldval &= mask;
3320 }
3321
3322 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3323 false valgrind reports. */
3324
3325 bytesize = (bitpos + bitsize + 7) / 8;
3326 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3327
3328 /* Shifting for bit field depends on endianness of the target machine. */
3329 if (gdbarch_bits_big_endian (get_type_arch (type)))
3330 bitpos = bytesize * 8 - bitpos - bitsize;
3331
3332 oword &= ~(mask << bitpos);
3333 oword |= fieldval << bitpos;
3334
3335 store_unsigned_integer (addr, bytesize, byte_order, oword);
3336 }
3337 \f
3338 /* Pack NUM into BUF using a target format of TYPE. */
3339
3340 void
3341 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3342 {
3343 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3344 int len;
3345
3346 type = check_typedef (type);
3347 len = TYPE_LENGTH (type);
3348
3349 switch (TYPE_CODE (type))
3350 {
3351 case TYPE_CODE_INT:
3352 case TYPE_CODE_CHAR:
3353 case TYPE_CODE_ENUM:
3354 case TYPE_CODE_FLAGS:
3355 case TYPE_CODE_BOOL:
3356 case TYPE_CODE_RANGE:
3357 case TYPE_CODE_MEMBERPTR:
3358 store_signed_integer (buf, len, byte_order, num);
3359 break;
3360
3361 case TYPE_CODE_REF:
3362 case TYPE_CODE_PTR:
3363 store_typed_address (buf, type, (CORE_ADDR) num);
3364 break;
3365
3366 default:
3367 error (_("Unexpected type (%d) encountered for integer constant."),
3368 TYPE_CODE (type));
3369 }
3370 }
3371
3372
3373 /* Pack NUM into BUF using a target format of TYPE. */
3374
3375 static void
3376 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3377 {
3378 int len;
3379 enum bfd_endian byte_order;
3380
3381 type = check_typedef (type);
3382 len = TYPE_LENGTH (type);
3383 byte_order = gdbarch_byte_order (get_type_arch (type));
3384
3385 switch (TYPE_CODE (type))
3386 {
3387 case TYPE_CODE_INT:
3388 case TYPE_CODE_CHAR:
3389 case TYPE_CODE_ENUM:
3390 case TYPE_CODE_FLAGS:
3391 case TYPE_CODE_BOOL:
3392 case TYPE_CODE_RANGE:
3393 case TYPE_CODE_MEMBERPTR:
3394 store_unsigned_integer (buf, len, byte_order, num);
3395 break;
3396
3397 case TYPE_CODE_REF:
3398 case TYPE_CODE_PTR:
3399 store_typed_address (buf, type, (CORE_ADDR) num);
3400 break;
3401
3402 default:
3403 error (_("Unexpected type (%d) encountered "
3404 "for unsigned integer constant."),
3405 TYPE_CODE (type));
3406 }
3407 }
3408
3409
3410 /* Convert C numbers into newly allocated values. */
3411
3412 struct value *
3413 value_from_longest (struct type *type, LONGEST num)
3414 {
3415 struct value *val = allocate_value (type);
3416
3417 pack_long (value_contents_raw (val), type, num);
3418 return val;
3419 }
3420
3421
3422 /* Convert C unsigned numbers into newly allocated values. */
3423
3424 struct value *
3425 value_from_ulongest (struct type *type, ULONGEST num)
3426 {
3427 struct value *val = allocate_value (type);
3428
3429 pack_unsigned_long (value_contents_raw (val), type, num);
3430
3431 return val;
3432 }
3433
3434
3435 /* Create a value representing a pointer of type TYPE to the address
3436 ADDR. */
3437
3438 struct value *
3439 value_from_pointer (struct type *type, CORE_ADDR addr)
3440 {
3441 struct value *val = allocate_value (type);
3442
3443 store_typed_address (value_contents_raw (val),
3444 check_typedef (type), addr);
3445 return val;
3446 }
3447
3448
3449 /* Create a value of type TYPE whose contents come from VALADDR, if it
3450 is non-null, and whose memory address (in the inferior) is
3451 ADDRESS. The type of the created value may differ from the passed
3452 type TYPE. Make sure to retrieve values new type after this call.
3453 Note that TYPE is not passed through resolve_dynamic_type; this is
3454 a special API intended for use only by Ada. */
3455
3456 struct value *
3457 value_from_contents_and_address_unresolved (struct type *type,
3458 const gdb_byte *valaddr,
3459 CORE_ADDR address)
3460 {
3461 struct value *v;
3462
3463 if (valaddr == NULL)
3464 v = allocate_value_lazy (type);
3465 else
3466 v = value_from_contents (type, valaddr);
3467 set_value_address (v, address);
3468 VALUE_LVAL (v) = lval_memory;
3469 return v;
3470 }
3471
3472 /* Create a value of type TYPE whose contents come from VALADDR, if it
3473 is non-null, and whose memory address (in the inferior) is
3474 ADDRESS. The type of the created value may differ from the passed
3475 type TYPE. Make sure to retrieve values new type after this call. */
3476
3477 struct value *
3478 value_from_contents_and_address (struct type *type,
3479 const gdb_byte *valaddr,
3480 CORE_ADDR address)
3481 {
3482 struct type *resolved_type = resolve_dynamic_type (type, address);
3483 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3484 struct value *v;
3485
3486 if (valaddr == NULL)
3487 v = allocate_value_lazy (resolved_type);
3488 else
3489 v = value_from_contents (resolved_type, valaddr);
3490 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3491 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3492 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3493 set_value_address (v, address);
3494 VALUE_LVAL (v) = lval_memory;
3495 return v;
3496 }
3497
3498 /* Create a value of type TYPE holding the contents CONTENTS.
3499 The new value is `not_lval'. */
3500
3501 struct value *
3502 value_from_contents (struct type *type, const gdb_byte *contents)
3503 {
3504 struct value *result;
3505
3506 result = allocate_value (type);
3507 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3508 return result;
3509 }
3510
3511 struct value *
3512 value_from_double (struct type *type, DOUBLEST num)
3513 {
3514 struct value *val = allocate_value (type);
3515 struct type *base_type = check_typedef (type);
3516 enum type_code code = TYPE_CODE (base_type);
3517
3518 if (code == TYPE_CODE_FLT)
3519 {
3520 store_typed_floating (value_contents_raw (val), base_type, num);
3521 }
3522 else
3523 error (_("Unexpected type encountered for floating constant."));
3524
3525 return val;
3526 }
3527
3528 struct value *
3529 value_from_decfloat (struct type *type, const gdb_byte *dec)
3530 {
3531 struct value *val = allocate_value (type);
3532
3533 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3534 return val;
3535 }
3536
3537 /* Extract a value from the history file. Input will be of the form
3538 $digits or $$digits. See block comment above 'write_dollar_variable'
3539 for details. */
3540
3541 struct value *
3542 value_from_history_ref (const char *h, const char **endp)
3543 {
3544 int index, len;
3545
3546 if (h[0] == '$')
3547 len = 1;
3548 else
3549 return NULL;
3550
3551 if (h[1] == '$')
3552 len = 2;
3553
3554 /* Find length of numeral string. */
3555 for (; isdigit (h[len]); len++)
3556 ;
3557
3558 /* Make sure numeral string is not part of an identifier. */
3559 if (h[len] == '_' || isalpha (h[len]))
3560 return NULL;
3561
3562 /* Now collect the index value. */
3563 if (h[1] == '$')
3564 {
3565 if (len == 2)
3566 {
3567 /* For some bizarre reason, "$$" is equivalent to "$$1",
3568 rather than to "$$0" as it ought to be! */
3569 index = -1;
3570 *endp += len;
3571 }
3572 else
3573 {
3574 char *local_end;
3575
3576 index = -strtol (&h[2], &local_end, 10);
3577 *endp = local_end;
3578 }
3579 }
3580 else
3581 {
3582 if (len == 1)
3583 {
3584 /* "$" is equivalent to "$0". */
3585 index = 0;
3586 *endp += len;
3587 }
3588 else
3589 {
3590 char *local_end;
3591
3592 index = strtol (&h[1], &local_end, 10);
3593 *endp = local_end;
3594 }
3595 }
3596
3597 return access_value_history (index);
3598 }
3599
3600 struct value *
3601 coerce_ref_if_computed (const struct value *arg)
3602 {
3603 const struct lval_funcs *funcs;
3604
3605 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3606 return NULL;
3607
3608 if (value_lval_const (arg) != lval_computed)
3609 return NULL;
3610
3611 funcs = value_computed_funcs (arg);
3612 if (funcs->coerce_ref == NULL)
3613 return NULL;
3614
3615 return funcs->coerce_ref (arg);
3616 }
3617
3618 /* Look at value.h for description. */
3619
3620 struct value *
3621 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3622 struct type *original_type,
3623 struct value *original_value)
3624 {
3625 /* Re-adjust type. */
3626 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3627
3628 /* Add embedding info. */
3629 set_value_enclosing_type (value, enc_type);
3630 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3631
3632 /* We may be pointing to an object of some derived type. */
3633 return value_full_object (value, NULL, 0, 0, 0);
3634 }
3635
3636 struct value *
3637 coerce_ref (struct value *arg)
3638 {
3639 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3640 struct value *retval;
3641 struct type *enc_type;
3642
3643 retval = coerce_ref_if_computed (arg);
3644 if (retval)
3645 return retval;
3646
3647 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3648 return arg;
3649
3650 enc_type = check_typedef (value_enclosing_type (arg));
3651 enc_type = TYPE_TARGET_TYPE (enc_type);
3652
3653 retval = value_at_lazy (enc_type,
3654 unpack_pointer (value_type (arg),
3655 value_contents (arg)));
3656 enc_type = value_type (retval);
3657 return readjust_indirect_value_type (retval, enc_type,
3658 value_type_arg_tmp, arg);
3659 }
3660
3661 struct value *
3662 coerce_array (struct value *arg)
3663 {
3664 struct type *type;
3665
3666 arg = coerce_ref (arg);
3667 type = check_typedef (value_type (arg));
3668
3669 switch (TYPE_CODE (type))
3670 {
3671 case TYPE_CODE_ARRAY:
3672 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3673 arg = value_coerce_array (arg);
3674 break;
3675 case TYPE_CODE_FUNC:
3676 arg = value_coerce_function (arg);
3677 break;
3678 }
3679 return arg;
3680 }
3681 \f
3682
3683 /* Return the return value convention that will be used for the
3684 specified type. */
3685
3686 enum return_value_convention
3687 struct_return_convention (struct gdbarch *gdbarch,
3688 struct value *function, struct type *value_type)
3689 {
3690 enum type_code code = TYPE_CODE (value_type);
3691
3692 if (code == TYPE_CODE_ERROR)
3693 error (_("Function return type unknown."));
3694
3695 /* Probe the architecture for the return-value convention. */
3696 return gdbarch_return_value (gdbarch, function, value_type,
3697 NULL, NULL, NULL);
3698 }
3699
3700 /* Return true if the function returning the specified type is using
3701 the convention of returning structures in memory (passing in the
3702 address as a hidden first parameter). */
3703
3704 int
3705 using_struct_return (struct gdbarch *gdbarch,
3706 struct value *function, struct type *value_type)
3707 {
3708 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3709 /* A void return value is never in memory. See also corresponding
3710 code in "print_return_value". */
3711 return 0;
3712
3713 return (struct_return_convention (gdbarch, function, value_type)
3714 != RETURN_VALUE_REGISTER_CONVENTION);
3715 }
3716
3717 /* Set the initialized field in a value struct. */
3718
3719 void
3720 set_value_initialized (struct value *val, int status)
3721 {
3722 val->initialized = status;
3723 }
3724
3725 /* Return the initialized field in a value struct. */
3726
3727 int
3728 value_initialized (struct value *val)
3729 {
3730 return val->initialized;
3731 }
3732
3733 /* Called only from the value_contents and value_contents_all()
3734 macros, if the current data for a variable needs to be loaded into
3735 value_contents(VAL). Fetches the data from the user's process, and
3736 clears the lazy flag to indicate that the data in the buffer is
3737 valid.
3738
3739 If the value is zero-length, we avoid calling read_memory, which
3740 would abort. We mark the value as fetched anyway -- all 0 bytes of
3741 it.
3742
3743 This function returns a value because it is used in the
3744 value_contents macro as part of an expression, where a void would
3745 not work. The value is ignored. */
3746
3747 int
3748 value_fetch_lazy (struct value *val)
3749 {
3750 gdb_assert (value_lazy (val));
3751 allocate_value_contents (val);
3752 /* A value is either lazy, or fully fetched. The
3753 availability/validity is only established as we try to fetch a
3754 value. */
3755 gdb_assert (VEC_empty (range_s, val->optimized_out));
3756 gdb_assert (VEC_empty (range_s, val->unavailable));
3757 if (value_bitsize (val))
3758 {
3759 /* To read a lazy bitfield, read the entire enclosing value. This
3760 prevents reading the same block of (possibly volatile) memory once
3761 per bitfield. It would be even better to read only the containing
3762 word, but we have no way to record that just specific bits of a
3763 value have been fetched. */
3764 struct type *type = check_typedef (value_type (val));
3765 struct value *parent = value_parent (val);
3766
3767 if (value_lazy (parent))
3768 value_fetch_lazy (parent);
3769
3770 unpack_value_bitfield (val,
3771 value_bitpos (val), value_bitsize (val),
3772 value_contents_for_printing (parent),
3773 value_offset (val), parent);
3774 }
3775 else if (VALUE_LVAL (val) == lval_memory)
3776 {
3777 CORE_ADDR addr = value_address (val);
3778 struct type *type = check_typedef (value_enclosing_type (val));
3779
3780 if (TYPE_LENGTH (type))
3781 read_value_memory (val, 0, value_stack (val),
3782 addr, value_contents_all_raw (val),
3783 TYPE_LENGTH (type));
3784 }
3785 else if (VALUE_LVAL (val) == lval_register)
3786 {
3787 struct frame_info *frame;
3788 int regnum;
3789 struct type *type = check_typedef (value_type (val));
3790 struct value *new_val = val, *mark = value_mark ();
3791
3792 /* Offsets are not supported here; lazy register values must
3793 refer to the entire register. */
3794 gdb_assert (value_offset (val) == 0);
3795
3796 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3797 {
3798 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3799
3800 frame = frame_find_by_id (frame_id);
3801 regnum = VALUE_REGNUM (new_val);
3802
3803 gdb_assert (frame != NULL);
3804
3805 /* Convertible register routines are used for multi-register
3806 values and for interpretation in different types
3807 (e.g. float or int from a double register). Lazy
3808 register values should have the register's natural type,
3809 so they do not apply. */
3810 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3811 regnum, type));
3812
3813 new_val = get_frame_register_value (frame, regnum);
3814
3815 /* If we get another lazy lval_register value, it means the
3816 register is found by reading it from the next frame.
3817 get_frame_register_value should never return a value with
3818 the frame id pointing to FRAME. If it does, it means we
3819 either have two consecutive frames with the same frame id
3820 in the frame chain, or some code is trying to unwind
3821 behind get_prev_frame's back (e.g., a frame unwind
3822 sniffer trying to unwind), bypassing its validations. In
3823 any case, it should always be an internal error to end up
3824 in this situation. */
3825 if (VALUE_LVAL (new_val) == lval_register
3826 && value_lazy (new_val)
3827 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3828 internal_error (__FILE__, __LINE__,
3829 _("infinite loop while fetching a register"));
3830 }
3831
3832 /* If it's still lazy (for instance, a saved register on the
3833 stack), fetch it. */
3834 if (value_lazy (new_val))
3835 value_fetch_lazy (new_val);
3836
3837 /* Copy the contents and the unavailability/optimized-out
3838 meta-data from NEW_VAL to VAL. */
3839 set_value_lazy (val, 0);
3840 value_contents_copy (val, value_embedded_offset (val),
3841 new_val, value_embedded_offset (new_val),
3842 TYPE_LENGTH (type));
3843
3844 if (frame_debug)
3845 {
3846 struct gdbarch *gdbarch;
3847 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3848 regnum = VALUE_REGNUM (val);
3849 gdbarch = get_frame_arch (frame);
3850
3851 fprintf_unfiltered (gdb_stdlog,
3852 "{ value_fetch_lazy "
3853 "(frame=%d,regnum=%d(%s),...) ",
3854 frame_relative_level (frame), regnum,
3855 user_reg_map_regnum_to_name (gdbarch, regnum));
3856
3857 fprintf_unfiltered (gdb_stdlog, "->");
3858 if (value_optimized_out (new_val))
3859 {
3860 fprintf_unfiltered (gdb_stdlog, " ");
3861 val_print_optimized_out (new_val, gdb_stdlog);
3862 }
3863 else
3864 {
3865 int i;
3866 const gdb_byte *buf = value_contents (new_val);
3867
3868 if (VALUE_LVAL (new_val) == lval_register)
3869 fprintf_unfiltered (gdb_stdlog, " register=%d",
3870 VALUE_REGNUM (new_val));
3871 else if (VALUE_LVAL (new_val) == lval_memory)
3872 fprintf_unfiltered (gdb_stdlog, " address=%s",
3873 paddress (gdbarch,
3874 value_address (new_val)));
3875 else
3876 fprintf_unfiltered (gdb_stdlog, " computed");
3877
3878 fprintf_unfiltered (gdb_stdlog, " bytes=");
3879 fprintf_unfiltered (gdb_stdlog, "[");
3880 for (i = 0; i < register_size (gdbarch, regnum); i++)
3881 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3882 fprintf_unfiltered (gdb_stdlog, "]");
3883 }
3884
3885 fprintf_unfiltered (gdb_stdlog, " }\n");
3886 }
3887
3888 /* Dispose of the intermediate values. This prevents
3889 watchpoints from trying to watch the saved frame pointer. */
3890 value_free_to_mark (mark);
3891 }
3892 else if (VALUE_LVAL (val) == lval_computed
3893 && value_computed_funcs (val)->read != NULL)
3894 value_computed_funcs (val)->read (val);
3895 else
3896 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3897
3898 set_value_lazy (val, 0);
3899 return 0;
3900 }
3901
3902 /* Implementation of the convenience function $_isvoid. */
3903
3904 static struct value *
3905 isvoid_internal_fn (struct gdbarch *gdbarch,
3906 const struct language_defn *language,
3907 void *cookie, int argc, struct value **argv)
3908 {
3909 int ret;
3910
3911 if (argc != 1)
3912 error (_("You must provide one argument for $_isvoid."));
3913
3914 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3915
3916 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3917 }
3918
3919 void
3920 _initialize_values (void)
3921 {
3922 add_cmd ("convenience", no_class, show_convenience, _("\
3923 Debugger convenience (\"$foo\") variables and functions.\n\
3924 Convenience variables are created when you assign them values;\n\
3925 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3926 \n\
3927 A few convenience variables are given values automatically:\n\
3928 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3929 \"$__\" holds the contents of the last address examined with \"x\"."
3930 #ifdef HAVE_PYTHON
3931 "\n\n\
3932 Convenience functions are defined via the Python API."
3933 #endif
3934 ), &showlist);
3935 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3936
3937 add_cmd ("values", no_set_class, show_values, _("\
3938 Elements of value history around item number IDX (or last ten)."),
3939 &showlist);
3940
3941 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3942 Initialize a convenience variable if necessary.\n\
3943 init-if-undefined VARIABLE = EXPRESSION\n\
3944 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3945 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3946 VARIABLE is already initialized."));
3947
3948 add_prefix_cmd ("function", no_class, function_command, _("\
3949 Placeholder command for showing help on convenience functions."),
3950 &functionlist, "function ", 0, &cmdlist);
3951
3952 add_internal_function ("_isvoid", _("\
3953 Check whether an expression is void.\n\
3954 Usage: $_isvoid (expression)\n\
3955 Return 1 if the expression is void, zero otherwise."),
3956 isvoid_internal_fn, NULL);
3957 }