]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/values.c
Protoization.
[thirdparty/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "scm-lang.h"
34 #include "demangle.h"
35
36 /* Prototypes for exported functions. */
37
38 void _initialize_values (void);
39
40 /* Prototypes for local functions. */
41
42 static value_ptr value_headof (value_ptr, struct type *, struct type *);
43
44 static void show_values (char *, int);
45
46 static void show_convenience (char *, int);
47
48 static int vb_match (struct type *, int, struct type *);
49
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56 #define VALUE_HISTORY_CHUNK 60
57
58 struct value_history_chunk
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
63
64 /* Chain of chunks now in use. */
65
66 static struct value_history_chunk *value_history_chain;
67
68 static int value_history_count; /* Abs number of last entry stored */
69 \f
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74 static value_ptr all_values;
75
76 /* Allocate a value that has the correct length for type TYPE. */
77
78 value_ptr
79 allocate_value (struct type *type)
80 {
81 register value_ptr val;
82 struct type *atype = check_typedef (type);
83
84 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
85 VALUE_NEXT (val) = all_values;
86 all_values = val;
87 VALUE_TYPE (val) = type;
88 VALUE_ENCLOSING_TYPE (val) = type;
89 VALUE_LVAL (val) = not_lval;
90 VALUE_ADDRESS (val) = 0;
91 VALUE_FRAME (val) = 0;
92 VALUE_OFFSET (val) = 0;
93 VALUE_BITPOS (val) = 0;
94 VALUE_BITSIZE (val) = 0;
95 VALUE_REGNO (val) = -1;
96 VALUE_LAZY (val) = 0;
97 VALUE_OPTIMIZED_OUT (val) = 0;
98 VALUE_BFD_SECTION (val) = NULL;
99 VALUE_EMBEDDED_OFFSET (val) = 0;
100 VALUE_POINTED_TO_OFFSET (val) = 0;
101 val->modifiable = 1;
102 return val;
103 }
104
105 /* Allocate a value that has the correct length
106 for COUNT repetitions type TYPE. */
107
108 value_ptr
109 allocate_repeat_value (struct type *type, int count)
110 {
111 int low_bound = current_language->string_lower_bound; /* ??? */
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 struct type *range_type
115 = create_range_type ((struct type *) NULL, builtin_type_int,
116 low_bound, count + low_bound - 1);
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 return allocate_value (create_array_type ((struct type *) NULL,
120 type, range_type));
121 }
122
123 /* Return a mark in the value chain. All values allocated after the
124 mark is obtained (except for those released) are subject to being freed
125 if a subsequent value_free_to_mark is passed the mark. */
126 value_ptr
127 value_mark (void)
128 {
129 return all_values;
130 }
131
132 /* Free all values allocated since MARK was obtained by value_mark
133 (except for those released). */
134 void
135 value_free_to_mark (value_ptr mark)
136 {
137 value_ptr val, next;
138
139 for (val = all_values; val && val != mark; val = next)
140 {
141 next = VALUE_NEXT (val);
142 value_free (val);
143 }
144 all_values = val;
145 }
146
147 /* Free all the values that have been allocated (except for those released).
148 Called after each command, successful or not. */
149
150 void
151 free_all_values (void)
152 {
153 register value_ptr val, next;
154
155 for (val = all_values; val; val = next)
156 {
157 next = VALUE_NEXT (val);
158 value_free (val);
159 }
160
161 all_values = 0;
162 }
163
164 /* Remove VAL from the chain all_values
165 so it will not be freed automatically. */
166
167 void
168 release_value (register value_ptr val)
169 {
170 register value_ptr v;
171
172 if (all_values == val)
173 {
174 all_values = val->next;
175 return;
176 }
177
178 for (v = all_values; v; v = v->next)
179 {
180 if (v->next == val)
181 {
182 v->next = val->next;
183 break;
184 }
185 }
186 }
187
188 /* Release all values up to mark */
189 value_ptr
190 value_release_to_mark (value_ptr mark)
191 {
192 value_ptr val, next;
193
194 for (val = next = all_values; next; next = VALUE_NEXT (next))
195 if (VALUE_NEXT (next) == mark)
196 {
197 all_values = VALUE_NEXT (next);
198 VALUE_NEXT (next) = 0;
199 return val;
200 }
201 all_values = 0;
202 return val;
203 }
204
205 /* Return a copy of the value ARG.
206 It contains the same contents, for same memory address,
207 but it's a different block of storage. */
208
209 value_ptr
210 value_copy (value_ptr arg)
211 {
212 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
213 register value_ptr val = allocate_value (encl_type);
214 VALUE_TYPE (val) = VALUE_TYPE (arg);
215 VALUE_LVAL (val) = VALUE_LVAL (arg);
216 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
217 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
218 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
219 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
220 VALUE_FRAME (val) = VALUE_FRAME (arg);
221 VALUE_REGNO (val) = VALUE_REGNO (arg);
222 VALUE_LAZY (val) = VALUE_LAZY (arg);
223 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
224 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
225 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
226 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
227 val->modifiable = arg->modifiable;
228 if (!VALUE_LAZY (val))
229 {
230 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
231 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
232
233 }
234 return val;
235 }
236 \f
237 /* Access to the value history. */
238
239 /* Record a new value in the value history.
240 Returns the absolute history index of the entry.
241 Result of -1 indicates the value was not saved; otherwise it is the
242 value history index of this new item. */
243
244 int
245 record_latest_value (value_ptr val)
246 {
247 int i;
248
249 /* We don't want this value to have anything to do with the inferior anymore.
250 In particular, "set $1 = 50" should not affect the variable from which
251 the value was taken, and fast watchpoints should be able to assume that
252 a value on the value history never changes. */
253 if (VALUE_LAZY (val))
254 value_fetch_lazy (val);
255 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
256 from. This is a bit dubious, because then *&$1 does not just return $1
257 but the current contents of that location. c'est la vie... */
258 val->modifiable = 0;
259 release_value (val);
260
261 /* Here we treat value_history_count as origin-zero
262 and applying to the value being stored now. */
263
264 i = value_history_count % VALUE_HISTORY_CHUNK;
265 if (i == 0)
266 {
267 register struct value_history_chunk *new
268 = (struct value_history_chunk *)
269 xmalloc (sizeof (struct value_history_chunk));
270 memset (new->values, 0, sizeof new->values);
271 new->next = value_history_chain;
272 value_history_chain = new;
273 }
274
275 value_history_chain->values[i] = val;
276
277 /* Now we regard value_history_count as origin-one
278 and applying to the value just stored. */
279
280 return ++value_history_count;
281 }
282
283 /* Return a copy of the value in the history with sequence number NUM. */
284
285 value_ptr
286 access_value_history (int num)
287 {
288 register struct value_history_chunk *chunk;
289 register int i;
290 register int absnum = num;
291
292 if (absnum <= 0)
293 absnum += value_history_count;
294
295 if (absnum <= 0)
296 {
297 if (num == 0)
298 error ("The history is empty.");
299 else if (num == 1)
300 error ("There is only one value in the history.");
301 else
302 error ("History does not go back to $$%d.", -num);
303 }
304 if (absnum > value_history_count)
305 error ("History has not yet reached $%d.", absnum);
306
307 absnum--;
308
309 /* Now absnum is always absolute and origin zero. */
310
311 chunk = value_history_chain;
312 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
313 i > 0; i--)
314 chunk = chunk->next;
315
316 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
317 }
318
319 /* Clear the value history entirely.
320 Must be done when new symbol tables are loaded,
321 because the type pointers become invalid. */
322
323 void
324 clear_value_history (void)
325 {
326 register struct value_history_chunk *next;
327 register int i;
328 register value_ptr val;
329
330 while (value_history_chain)
331 {
332 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
333 if ((val = value_history_chain->values[i]) != NULL)
334 free ((PTR) val);
335 next = value_history_chain->next;
336 free ((PTR) value_history_chain);
337 value_history_chain = next;
338 }
339 value_history_count = 0;
340 }
341
342 static void
343 show_values (char *num_exp, int from_tty)
344 {
345 register int i;
346 register value_ptr val;
347 static int num = 1;
348
349 if (num_exp)
350 {
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
353 if (num_exp[0] != '+' || num_exp[1] != '\0')
354 num = parse_and_eval_address (num_exp) - 5;
355 }
356 else
357 {
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
360 }
361
362 if (num <= 0)
363 num = 1;
364
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
366 {
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
371 }
372
373 /* The next "info history +" should start after what we just printed. */
374 num += 10;
375
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
380 {
381 num_exp[0] = '+';
382 num_exp[1] = '\0';
383 }
384 }
385 \f
386 /* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
390
391 static struct internalvar *internalvars;
392
393 /* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
395
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
398
399 struct internalvar *
400 lookup_internalvar (char *name)
401 {
402 register struct internalvar *var;
403
404 for (var = internalvars; var; var = var->next)
405 if (STREQ (var->name, name))
406 return var;
407
408 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
409 var->name = concat (name, NULL);
410 var->value = allocate_value (builtin_type_void);
411 release_value (var->value);
412 var->next = internalvars;
413 internalvars = var;
414 return var;
415 }
416
417 value_ptr
418 value_of_internalvar (struct internalvar *var)
419 {
420 register value_ptr val;
421
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 int bitsize, value_ptr newval)
438 {
439 register char *addr = VALUE_CONTENTS (var->value) + offset;
440
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
444 #endif
445
446 if (bitsize)
447 modify_field (addr, value_as_long (newval),
448 bitpos, bitsize);
449 else
450 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
451 }
452
453 void
454 set_internalvar (struct internalvar *var, value_ptr val)
455 {
456 value_ptr newval;
457
458 #ifdef IS_TRAPPED_INTERNALVAR
459 if (IS_TRAPPED_INTERNALVAR (var->name))
460 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
461 #endif
462
463 newval = value_copy (val);
464 newval->modifiable = 1;
465
466 /* Force the value to be fetched from the target now, to avoid problems
467 later when this internalvar is referenced and the target is gone or
468 has changed. */
469 if (VALUE_LAZY (newval))
470 value_fetch_lazy (newval);
471
472 /* Begin code which must not call error(). If var->value points to
473 something free'd, an error() obviously leaves a dangling pointer.
474 But we also get a danling pointer if var->value points to
475 something in the value chain (i.e., before release_value is
476 called), because after the error free_all_values will get called before
477 long. */
478 free ((PTR) var->value);
479 var->value = newval;
480 release_value (newval);
481 /* End code which must not call error(). */
482 }
483
484 char *
485 internalvar_name (struct internalvar *var)
486 {
487 return var->name;
488 }
489
490 /* Free all internalvars. Done when new symtabs are loaded,
491 because that makes the values invalid. */
492
493 void
494 clear_internalvars (void)
495 {
496 register struct internalvar *var;
497
498 while (internalvars)
499 {
500 var = internalvars;
501 internalvars = var->next;
502 free ((PTR) var->name);
503 free ((PTR) var->value);
504 free ((PTR) var);
505 }
506 }
507
508 static void
509 show_convenience (char *ignore, int from_tty)
510 {
511 register struct internalvar *var;
512 int varseen = 0;
513
514 for (var = internalvars; var; var = var->next)
515 {
516 #ifdef IS_TRAPPED_INTERNALVAR
517 if (IS_TRAPPED_INTERNALVAR (var->name))
518 continue;
519 #endif
520 if (!varseen)
521 {
522 varseen = 1;
523 }
524 printf_filtered ("$%s = ", var->name);
525 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
526 printf_filtered ("\n");
527 }
528 if (!varseen)
529 printf_unfiltered ("No debugger convenience variables now defined.\n\
530 Convenience variables have names starting with \"$\";\n\
531 use \"set\" as in \"set $foo = 5\" to define them.\n");
532 }
533 \f
534 /* Extract a value as a C number (either long or double).
535 Knows how to convert fixed values to double, or
536 floating values to long.
537 Does not deallocate the value. */
538
539 LONGEST
540 value_as_long (register value_ptr val)
541 {
542 /* This coerces arrays and functions, which is necessary (e.g.
543 in disassemble_command). It also dereferences references, which
544 I suspect is the most logical thing to do. */
545 COERCE_ARRAY (val);
546 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
547 }
548
549 DOUBLEST
550 value_as_double (register value_ptr val)
551 {
552 DOUBLEST foo;
553 int inv;
554
555 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
556 if (inv)
557 error ("Invalid floating value found in program.");
558 return foo;
559 }
560 /* Extract a value as a C pointer. Does not deallocate the value.
561 Note that val's type may not actually be a pointer; value_as_long
562 handles all the cases. */
563 CORE_ADDR
564 value_as_pointer (value_ptr val)
565 {
566 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
567 whether we want this to be true eventually. */
568 #if 0
569 /* ADDR_BITS_REMOVE is wrong if we are being called for a
570 non-address (e.g. argument to "signal", "info break", etc.), or
571 for pointers to char, in which the low bits *are* significant. */
572 return ADDR_BITS_REMOVE (value_as_long (val));
573 #else
574 COERCE_ARRAY (val);
575 /* In converting VAL to an address (CORE_ADDR), any small integers
576 are first cast to a generic pointer. The function unpack_long
577 will then correctly convert that pointer into a canonical address
578 (using POINTER_TO_ADDRESS).
579
580 Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
581 0xa0000000 -> (LONGEST) 0x00000000a0000000
582
583 With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
584 0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
585
586 If the user specifies an integer that is larger than the target
587 pointer type, it is assumed that it was intentional and the value
588 is converted directly into an ADDRESS. This ensures that no
589 information is discarded.
590
591 NOTE: The cast operation may eventualy be converted into a TARGET
592 method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
593 that the TARGET ISA/ABI can apply an arbitrary conversion.
594
595 NOTE: In pure harvard architectures function and data pointers
596 can be different and may require different integer to pointer
597 conversions. */
598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
599 && TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
600 {
601 val = value_cast (builtin_type_ptr, val);
602 }
603 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
604 #endif
605 }
606 \f
607 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
608 as a long, or as a double, assuming the raw data is described
609 by type TYPE. Knows how to convert different sizes of values
610 and can convert between fixed and floating point. We don't assume
611 any alignment for the raw data. Return value is in host byte order.
612
613 If you want functions and arrays to be coerced to pointers, and
614 references to be dereferenced, call value_as_long() instead.
615
616 C++: It is assumed that the front-end has taken care of
617 all matters concerning pointers to members. A pointer
618 to member which reaches here is considered to be equivalent
619 to an INT (or some size). After all, it is only an offset. */
620
621 LONGEST
622 unpack_long (struct type *type, char *valaddr)
623 {
624 register enum type_code code = TYPE_CODE (type);
625 register int len = TYPE_LENGTH (type);
626 register int nosign = TYPE_UNSIGNED (type);
627
628 if (current_language->la_language == language_scm
629 && is_scmvalue_type (type))
630 return scm_unpack (type, valaddr, TYPE_CODE_INT);
631
632 switch (code)
633 {
634 case TYPE_CODE_TYPEDEF:
635 return unpack_long (check_typedef (type), valaddr);
636 case TYPE_CODE_ENUM:
637 case TYPE_CODE_BOOL:
638 case TYPE_CODE_INT:
639 case TYPE_CODE_CHAR:
640 case TYPE_CODE_RANGE:
641 if (nosign)
642 return extract_unsigned_integer (valaddr, len);
643 else
644 return extract_signed_integer (valaddr, len);
645
646 case TYPE_CODE_FLT:
647 return extract_floating (valaddr, len);
648
649 case TYPE_CODE_PTR:
650 case TYPE_CODE_REF:
651 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
652 whether we want this to be true eventually. */
653 if (GDB_TARGET_IS_D10V
654 && len == 2)
655 return D10V_MAKE_DADDR (extract_address (valaddr, len));
656 return extract_typed_address (valaddr, type);
657
658 case TYPE_CODE_MEMBER:
659 error ("not implemented: member types in unpack_long");
660
661 default:
662 error ("Value can't be converted to integer.");
663 }
664 return 0; /* Placate lint. */
665 }
666
667 /* Return a double value from the specified type and address.
668 INVP points to an int which is set to 0 for valid value,
669 1 for invalid value (bad float format). In either case,
670 the returned double is OK to use. Argument is in target
671 format, result is in host format. */
672
673 DOUBLEST
674 unpack_double (struct type *type, char *valaddr, int *invp)
675 {
676 enum type_code code;
677 int len;
678 int nosign;
679
680 *invp = 0; /* Assume valid. */
681 CHECK_TYPEDEF (type);
682 code = TYPE_CODE (type);
683 len = TYPE_LENGTH (type);
684 nosign = TYPE_UNSIGNED (type);
685 if (code == TYPE_CODE_FLT)
686 {
687 #ifdef INVALID_FLOAT
688 if (INVALID_FLOAT (valaddr, len))
689 {
690 *invp = 1;
691 return 1.234567891011121314;
692 }
693 #endif
694 return extract_floating (valaddr, len);
695 }
696 else if (nosign)
697 {
698 /* Unsigned -- be sure we compensate for signed LONGEST. */
699 #if !defined (_MSC_VER) || (_MSC_VER > 900)
700 return (ULONGEST) unpack_long (type, valaddr);
701 #else
702 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
703 return (LONGEST) unpack_long (type, valaddr);
704 #endif /* _MSC_VER */
705 }
706 else
707 {
708 /* Signed -- we are OK with unpack_long. */
709 return unpack_long (type, valaddr);
710 }
711 }
712
713 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
714 as a CORE_ADDR, assuming the raw data is described by type TYPE.
715 We don't assume any alignment for the raw data. Return value is in
716 host byte order.
717
718 If you want functions and arrays to be coerced to pointers, and
719 references to be dereferenced, call value_as_pointer() instead.
720
721 C++: It is assumed that the front-end has taken care of
722 all matters concerning pointers to members. A pointer
723 to member which reaches here is considered to be equivalent
724 to an INT (or some size). After all, it is only an offset. */
725
726 CORE_ADDR
727 unpack_pointer (struct type *type, char *valaddr)
728 {
729 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
730 whether we want this to be true eventually. */
731 return unpack_long (type, valaddr);
732 }
733
734 \f
735 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
736
737 value_ptr
738 value_static_field (struct type *type, int fieldno)
739 {
740 CORE_ADDR addr;
741 asection *sect;
742 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
743 {
744 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
745 sect = NULL;
746 }
747 else
748 {
749 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
750 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
751 if (sym == NULL)
752 {
753 /* With some compilers, e.g. HP aCC, static data members are reported
754 as non-debuggable symbols */
755 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
756 if (!msym)
757 return NULL;
758 else
759 {
760 addr = SYMBOL_VALUE_ADDRESS (msym);
761 sect = SYMBOL_BFD_SECTION (msym);
762 }
763 }
764 else
765 {
766 addr = SYMBOL_VALUE_ADDRESS (sym);
767 sect = SYMBOL_BFD_SECTION (sym);
768 }
769 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
770 }
771 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
772 }
773
774 /* Given a value ARG1 (offset by OFFSET bytes)
775 of a struct or union type ARG_TYPE,
776 extract and return the value of one of its (non-static) fields.
777 FIELDNO says which field. */
778
779 value_ptr
780 value_primitive_field (register value_ptr arg1, int offset,
781 register int fieldno, register struct type *arg_type)
782 {
783 register value_ptr v;
784 register struct type *type;
785
786 CHECK_TYPEDEF (arg_type);
787 type = TYPE_FIELD_TYPE (arg_type, fieldno);
788
789 /* Handle packed fields */
790
791 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
792 {
793 v = value_from_longest (type,
794 unpack_field_as_long (arg_type,
795 VALUE_CONTENTS (arg1)
796 + offset,
797 fieldno));
798 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
799 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
800 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
801 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
802 }
803 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
804 {
805 /* This field is actually a base subobject, so preserve the
806 entire object's contents for later references to virtual
807 bases, etc. */
808 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
809 VALUE_TYPE (v) = arg_type;
810 if (VALUE_LAZY (arg1))
811 VALUE_LAZY (v) = 1;
812 else
813 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
814 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
815 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
816 VALUE_EMBEDDED_OFFSET (v)
817 = offset +
818 VALUE_EMBEDDED_OFFSET (arg1) +
819 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
820 }
821 else
822 {
823 /* Plain old data member */
824 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
825 v = allocate_value (type);
826 if (VALUE_LAZY (arg1))
827 VALUE_LAZY (v) = 1;
828 else
829 memcpy (VALUE_CONTENTS_RAW (v),
830 VALUE_CONTENTS_RAW (arg1) + offset,
831 TYPE_LENGTH (type));
832 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
833 }
834 VALUE_LVAL (v) = VALUE_LVAL (arg1);
835 if (VALUE_LVAL (arg1) == lval_internalvar)
836 VALUE_LVAL (v) = lval_internalvar_component;
837 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
838 VALUE_REGNO (v) = VALUE_REGNO (arg1);
839 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
840 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
841 return v;
842 }
843
844 /* Given a value ARG1 of a struct or union type,
845 extract and return the value of one of its (non-static) fields.
846 FIELDNO says which field. */
847
848 value_ptr
849 value_field (register value_ptr arg1, register int fieldno)
850 {
851 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
852 }
853
854 /* Return a non-virtual function as a value.
855 F is the list of member functions which contains the desired method.
856 J is an index into F which provides the desired method. */
857
858 value_ptr
859 value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
860 int offset)
861 {
862 register value_ptr v;
863 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
864 struct symbol *sym;
865
866 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
867 0, VAR_NAMESPACE, 0, NULL);
868 if (!sym)
869 return NULL;
870 /*
871 error ("Internal error: could not find physical method named %s",
872 TYPE_FN_FIELD_PHYSNAME (f, j));
873 */
874
875 v = allocate_value (ftype);
876 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
877 VALUE_TYPE (v) = ftype;
878
879 if (arg1p)
880 {
881 if (type != VALUE_TYPE (*arg1p))
882 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
883 value_addr (*arg1p)));
884
885 /* Move the `this' pointer according to the offset.
886 VALUE_OFFSET (*arg1p) += offset;
887 */
888 }
889
890 return v;
891 }
892
893 /* Return a virtual function as a value.
894 ARG1 is the object which provides the virtual function
895 table pointer. *ARG1P is side-effected in calling this function.
896 F is the list of member functions which contains the desired virtual
897 function.
898 J is an index into F which provides the desired virtual function.
899
900 TYPE is the type in which F is located. */
901 value_ptr
902 value_virtual_fn_field (value_ptr *arg1p, struct fn_field *f, int j,
903 struct type *type, int offset)
904 {
905 value_ptr arg1 = *arg1p;
906 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
907
908 if (TYPE_HAS_VTABLE (type))
909 {
910 /* Deal with HP/Taligent runtime model for virtual functions */
911 value_ptr vp;
912 value_ptr argp; /* arg1 cast to base */
913 CORE_ADDR coreptr; /* pointer to target address */
914 int class_index; /* which class segment pointer to use */
915 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
916
917 argp = value_cast (type, *arg1p);
918
919 if (VALUE_ADDRESS (argp) == 0)
920 error ("Address of object is null; object may not have been created.");
921
922 /* pai: FIXME -- 32x64 possible problem? */
923 /* First word (4 bytes) in object layout is the vtable pointer */
924 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
925 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
926
927 if (!coreptr)
928 error ("Virtual table pointer is null for object; object may not have been created.");
929
930 /* pai/1997-05-09
931 * FIXME: The code here currently handles only
932 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
933 * is introduced, the condition for the "if" below will have to
934 * be changed to be a test for the RRBC case. */
935
936 if (1)
937 {
938 /* Non-RRBC case; the virtual function pointers are stored at fixed
939 * offsets in the virtual table. */
940
941 /* Retrieve the offset in the virtual table from the debug
942 * info. The offset of the vfunc's entry is in words from
943 * the beginning of the vtable; but first we have to adjust
944 * by HP_ACC_VFUNC_START to account for other entries */
945
946 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
947 * which case the multiplier should be 8 and values should be long */
948 vp = value_at (builtin_type_int,
949 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
950
951 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
952 /* coreptr now contains the address of the virtual function */
953 /* (Actually, it contains the pointer to the plabel for the function. */
954 }
955 else
956 {
957 /* RRBC case; the virtual function pointers are found by double
958 * indirection through the class segment tables. */
959
960 /* Choose class segment depending on type we were passed */
961 class_index = class_index_in_primary_list (type);
962
963 /* Find class segment pointer. These are in the vtable slots after
964 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
965 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
966 * the multiplier below has to be 8 and value should be long. */
967 vp = value_at (builtin_type_int,
968 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
969 /* Indirect once more, offset by function index */
970 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
971 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
972 vp = value_at (builtin_type_int, coreptr, NULL);
973 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
974
975 /* coreptr now contains the address of the virtual function */
976 /* (Actually, it contains the pointer to the plabel for the function.) */
977
978 }
979
980 if (!coreptr)
981 error ("Address of virtual function is null; error in virtual table?");
982
983 /* Wrap this addr in a value and return pointer */
984 vp = allocate_value (ftype);
985 VALUE_TYPE (vp) = ftype;
986 VALUE_ADDRESS (vp) = coreptr;
987
988 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
989 return vp;
990 }
991 else
992 { /* Not using HP/Taligent runtime conventions; so try to
993 * use g++ conventions for virtual table */
994
995 struct type *entry_type;
996 /* First, get the virtual function table pointer. That comes
997 with a strange type, so cast it to type `pointer to long' (which
998 should serve just fine as a function type). Then, index into
999 the table, and convert final value to appropriate function type. */
1000 value_ptr entry, vfn, vtbl;
1001 value_ptr vi = value_from_longest (builtin_type_int,
1002 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1003 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1004 struct type *context;
1005 if (fcontext == NULL)
1006 /* We don't have an fcontext (e.g. the program was compiled with
1007 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1008 This won't work right for multiple inheritance, but at least we
1009 should do as well as GDB 3.x did. */
1010 fcontext = TYPE_VPTR_BASETYPE (type);
1011 context = lookup_pointer_type (fcontext);
1012 /* Now context is a pointer to the basetype containing the vtbl. */
1013 if (TYPE_TARGET_TYPE (context) != type1)
1014 {
1015 value_ptr tmp = value_cast (context, value_addr (arg1));
1016 VALUE_POINTED_TO_OFFSET (tmp) = 0;
1017 arg1 = value_ind (tmp);
1018 type1 = check_typedef (VALUE_TYPE (arg1));
1019 }
1020
1021 context = type1;
1022 /* Now context is the basetype containing the vtbl. */
1023
1024 /* This type may have been defined before its virtual function table
1025 was. If so, fill in the virtual function table entry for the
1026 type now. */
1027 if (TYPE_VPTR_FIELDNO (context) < 0)
1028 fill_in_vptr_fieldno (context);
1029
1030 /* The virtual function table is now an array of structures
1031 which have the form { int16 offset, delta; void *pfn; }. */
1032 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1033 TYPE_VPTR_BASETYPE (context));
1034
1035 /* With older versions of g++, the vtbl field pointed to an array
1036 of structures. Nowadays it points directly to the structure. */
1037 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
1038 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
1039 {
1040 /* Handle the case where the vtbl field points to an
1041 array of structures. */
1042 vtbl = value_ind (vtbl);
1043
1044 /* Index into the virtual function table. This is hard-coded because
1045 looking up a field is not cheap, and it may be important to save
1046 time, e.g. if the user has set a conditional breakpoint calling
1047 a virtual function. */
1048 entry = value_subscript (vtbl, vi);
1049 }
1050 else
1051 {
1052 /* Handle the case where the vtbl field points directly to a structure. */
1053 vtbl = value_add (vtbl, vi);
1054 entry = value_ind (vtbl);
1055 }
1056
1057 entry_type = check_typedef (VALUE_TYPE (entry));
1058
1059 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1060 {
1061 /* Move the `this' pointer according to the virtual function table. */
1062 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1063
1064 if (!VALUE_LAZY (arg1))
1065 {
1066 VALUE_LAZY (arg1) = 1;
1067 value_fetch_lazy (arg1);
1068 }
1069
1070 vfn = value_field (entry, 2);
1071 }
1072 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1073 vfn = entry;
1074 else
1075 error ("I'm confused: virtual function table has bad type");
1076 /* Reinstantiate the function pointer with the correct type. */
1077 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1078
1079 *arg1p = arg1;
1080 return vfn;
1081 }
1082 }
1083
1084 /* ARG is a pointer to an object we know to be at least
1085 a DTYPE. BTYPE is the most derived basetype that has
1086 already been searched (and need not be searched again).
1087 After looking at the vtables between BTYPE and DTYPE,
1088 return the most derived type we find. The caller must
1089 be satisfied when the return value == DTYPE.
1090
1091 FIXME-tiemann: should work with dossier entries as well.
1092 NOTICE - djb: I see no good reason at all to keep this function now that
1093 we have RTTI support. It's used in literally one place, and it's
1094 hard to keep this function up to date when it's purpose is served
1095 by value_rtti_type efficiently.
1096 Consider it gone for 5.1. */
1097
1098 static value_ptr
1099 value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
1100 {
1101 /* First collect the vtables we must look at for this object. */
1102 value_ptr arg, vtbl;
1103 struct symbol *sym;
1104 char *demangled_name;
1105 struct minimal_symbol *msymbol;
1106
1107 btype = TYPE_VPTR_BASETYPE (dtype);
1108 CHECK_TYPEDEF (btype);
1109 arg = in_arg;
1110 if (btype != dtype)
1111 arg = value_cast (lookup_pointer_type (btype), arg);
1112 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1113 {
1114 /*
1115 * Copy the value, but change the type from (T&) to (T*).
1116 * We keep the same location information, which is efficient,
1117 * and allows &(&X) to get the location containing the reference.
1118 */
1119 arg = value_copy (arg);
1120 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1121 }
1122 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1123 return arg;
1124
1125 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1126 /* Turn vtable into typeinfo function */
1127 VALUE_OFFSET(vtbl)+=4;
1128
1129 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
1130 if (msymbol == NULL
1131 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1132 {
1133 /* If we expected to find a vtable, but did not, let the user
1134 know that we aren't happy, but don't throw an error.
1135 FIXME: there has to be a better way to do this. */
1136 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1137 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1138 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1139 VALUE_TYPE (in_arg) = error_type;
1140 return in_arg;
1141 }
1142 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1143 *(strchr (demangled_name, ' ')) = '\0';
1144
1145 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1146 if (sym == NULL)
1147 error ("could not find type declaration for `%s'", demangled_name);
1148
1149 arg = in_arg;
1150 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1151 return arg;
1152 }
1153
1154 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1155 function tables, probe ARG's tables (including the vtables
1156 of its baseclasses) to figure out the most derived type that ARG
1157 could actually be a pointer to. */
1158
1159 value_ptr
1160 value_from_vtable_info (value_ptr arg, struct type *type)
1161 {
1162 /* Take care of preliminaries. */
1163 if (TYPE_VPTR_FIELDNO (type) < 0)
1164 fill_in_vptr_fieldno (type);
1165 if (TYPE_VPTR_FIELDNO (type) < 0)
1166 return 0;
1167
1168 return value_headof (arg, 0, type);
1169 }
1170
1171 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1172 pointer which is for the base class whose type is BASECLASS. */
1173
1174 static int
1175 vb_match (struct type *type, int index, struct type *basetype)
1176 {
1177 struct type *fieldtype;
1178 char *name = TYPE_FIELD_NAME (type, index);
1179 char *field_class_name = NULL;
1180
1181 if (*name != '_')
1182 return 0;
1183 /* gcc 2.4 uses _vb$. */
1184 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1185 field_class_name = name + 4;
1186 /* gcc 2.5 will use __vb_. */
1187 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1188 field_class_name = name + 5;
1189
1190 if (field_class_name == NULL)
1191 /* This field is not a virtual base class pointer. */
1192 return 0;
1193
1194 /* It's a virtual baseclass pointer, now we just need to find out whether
1195 it is for this baseclass. */
1196 fieldtype = TYPE_FIELD_TYPE (type, index);
1197 if (fieldtype == NULL
1198 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1199 /* "Can't happen". */
1200 return 0;
1201
1202 /* What we check for is that either the types are equal (needed for
1203 nameless types) or have the same name. This is ugly, and a more
1204 elegant solution should be devised (which would probably just push
1205 the ugliness into symbol reading unless we change the stabs format). */
1206 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1207 return 1;
1208
1209 if (TYPE_NAME (basetype) != NULL
1210 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1211 && STREQ (TYPE_NAME (basetype),
1212 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1213 return 1;
1214 return 0;
1215 }
1216
1217 /* Compute the offset of the baseclass which is
1218 the INDEXth baseclass of class TYPE,
1219 for value at VALADDR (in host) at ADDRESS (in target).
1220 The result is the offset of the baseclass value relative
1221 to (the address of)(ARG) + OFFSET.
1222
1223 -1 is returned on error. */
1224
1225 int
1226 baseclass_offset (struct type *type, int index, char *valaddr,
1227 CORE_ADDR address)
1228 {
1229 struct type *basetype = TYPE_BASECLASS (type, index);
1230
1231 if (BASETYPE_VIA_VIRTUAL (type, index))
1232 {
1233 /* Must hunt for the pointer to this virtual baseclass. */
1234 register int i, len = TYPE_NFIELDS (type);
1235 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1236
1237 /* First look for the virtual baseclass pointer
1238 in the fields. */
1239 for (i = n_baseclasses; i < len; i++)
1240 {
1241 if (vb_match (type, i, basetype))
1242 {
1243 CORE_ADDR addr
1244 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1245 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1246
1247 return addr - (LONGEST) address;
1248 }
1249 }
1250 /* Not in the fields, so try looking through the baseclasses. */
1251 for (i = index + 1; i < n_baseclasses; i++)
1252 {
1253 int boffset =
1254 baseclass_offset (type, i, valaddr, address);
1255 if (boffset)
1256 return boffset;
1257 }
1258 /* Not found. */
1259 return -1;
1260 }
1261
1262 /* Baseclass is easily computed. */
1263 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1264 }
1265 \f
1266 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1267 VALADDR.
1268
1269 Extracting bits depends on endianness of the machine. Compute the
1270 number of least significant bits to discard. For big endian machines,
1271 we compute the total number of bits in the anonymous object, subtract
1272 off the bit count from the MSB of the object to the MSB of the
1273 bitfield, then the size of the bitfield, which leaves the LSB discard
1274 count. For little endian machines, the discard count is simply the
1275 number of bits from the LSB of the anonymous object to the LSB of the
1276 bitfield.
1277
1278 If the field is signed, we also do sign extension. */
1279
1280 LONGEST
1281 unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1282 {
1283 ULONGEST val;
1284 ULONGEST valmask;
1285 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1286 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1287 int lsbcount;
1288 struct type *field_type;
1289
1290 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1291 field_type = TYPE_FIELD_TYPE (type, fieldno);
1292 CHECK_TYPEDEF (field_type);
1293
1294 /* Extract bits. See comment above. */
1295
1296 if (BITS_BIG_ENDIAN)
1297 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1298 else
1299 lsbcount = (bitpos % 8);
1300 val >>= lsbcount;
1301
1302 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1303 If the field is signed, and is negative, then sign extend. */
1304
1305 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1306 {
1307 valmask = (((ULONGEST) 1) << bitsize) - 1;
1308 val &= valmask;
1309 if (!TYPE_UNSIGNED (field_type))
1310 {
1311 if (val & (valmask ^ (valmask >> 1)))
1312 {
1313 val |= ~valmask;
1314 }
1315 }
1316 }
1317 return (val);
1318 }
1319
1320 /* Modify the value of a bitfield. ADDR points to a block of memory in
1321 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1322 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1323 indicate which bits (in target bit order) comprise the bitfield. */
1324
1325 void
1326 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1327 {
1328 LONGEST oword;
1329
1330 /* If a negative fieldval fits in the field in question, chop
1331 off the sign extension bits. */
1332 if (bitsize < (8 * (int) sizeof (fieldval))
1333 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1334 fieldval = fieldval & ((1 << bitsize) - 1);
1335
1336 /* Warn if value is too big to fit in the field in question. */
1337 if (bitsize < (8 * (int) sizeof (fieldval))
1338 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1339 {
1340 /* FIXME: would like to include fieldval in the message, but
1341 we don't have a sprintf_longest. */
1342 warning ("Value does not fit in %d bits.", bitsize);
1343
1344 /* Truncate it, otherwise adjoining fields may be corrupted. */
1345 fieldval = fieldval & ((1 << bitsize) - 1);
1346 }
1347
1348 oword = extract_signed_integer (addr, sizeof oword);
1349
1350 /* Shifting for bit field depends on endianness of the target machine. */
1351 if (BITS_BIG_ENDIAN)
1352 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1353
1354 /* Mask out old value, while avoiding shifts >= size of oword */
1355 if (bitsize < 8 * (int) sizeof (oword))
1356 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1357 else
1358 oword &= ~((~(ULONGEST) 0) << bitpos);
1359 oword |= fieldval << bitpos;
1360
1361 store_signed_integer (addr, sizeof oword, oword);
1362 }
1363 \f
1364 /* Convert C numbers into newly allocated values */
1365
1366 value_ptr
1367 value_from_longest (struct type *type, register LONGEST num)
1368 {
1369 register value_ptr val = allocate_value (type);
1370 register enum type_code code;
1371 register int len;
1372 retry:
1373 code = TYPE_CODE (type);
1374 len = TYPE_LENGTH (type);
1375
1376 switch (code)
1377 {
1378 case TYPE_CODE_TYPEDEF:
1379 type = check_typedef (type);
1380 goto retry;
1381 case TYPE_CODE_INT:
1382 case TYPE_CODE_CHAR:
1383 case TYPE_CODE_ENUM:
1384 case TYPE_CODE_BOOL:
1385 case TYPE_CODE_RANGE:
1386 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1387 break;
1388
1389 case TYPE_CODE_REF:
1390 case TYPE_CODE_PTR:
1391 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1392 break;
1393
1394 default:
1395 error ("Unexpected type (%d) encountered for integer constant.", code);
1396 }
1397 return val;
1398 }
1399
1400
1401 /* Create a value representing a pointer of type TYPE to the address
1402 ADDR. */
1403 value_ptr
1404 value_from_pointer (struct type *type, CORE_ADDR addr)
1405 {
1406 value_ptr val = allocate_value (type);
1407 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1408 return val;
1409 }
1410
1411
1412 /* Create a value for a string constant to be stored locally
1413 (not in the inferior's memory space, but in GDB memory).
1414 This is analogous to value_from_longest, which also does not
1415 use inferior memory. String shall NOT contain embedded nulls. */
1416
1417 value_ptr
1418 value_from_string (char *ptr)
1419 {
1420 value_ptr val;
1421 int len = strlen (ptr);
1422 int lowbound = current_language->string_lower_bound;
1423 struct type *rangetype =
1424 create_range_type ((struct type *) NULL,
1425 builtin_type_int,
1426 lowbound, len + lowbound - 1);
1427 struct type *stringtype =
1428 create_array_type ((struct type *) NULL,
1429 *current_language->string_char_type,
1430 rangetype);
1431
1432 val = allocate_value (stringtype);
1433 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1434 return val;
1435 }
1436
1437 value_ptr
1438 value_from_double (struct type *type, DOUBLEST num)
1439 {
1440 register value_ptr val = allocate_value (type);
1441 struct type *base_type = check_typedef (type);
1442 register enum type_code code = TYPE_CODE (base_type);
1443 register int len = TYPE_LENGTH (base_type);
1444
1445 if (code == TYPE_CODE_FLT)
1446 {
1447 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1448 }
1449 else
1450 error ("Unexpected type encountered for floating constant.");
1451
1452 return val;
1453 }
1454 \f
1455 /* Deal with the value that is "about to be returned". */
1456
1457 /* Return the value that a function returning now
1458 would be returning to its caller, assuming its type is VALTYPE.
1459 RETBUF is where we look for what ought to be the contents
1460 of the registers (in raw form). This is because it is often
1461 desirable to restore old values to those registers
1462 after saving the contents of interest, and then call
1463 this function using the saved values.
1464 struct_return is non-zero when the function in question is
1465 using the structure return conventions on the machine in question;
1466 0 when it is using the value returning conventions (this often
1467 means returning pointer to where structure is vs. returning value). */
1468
1469 value_ptr
1470 value_being_returned (valtype, retbuf, struct_return)
1471 register struct type *valtype;
1472 char *retbuf;
1473 int struct_return;
1474 /*ARGSUSED */
1475 {
1476 register value_ptr val;
1477 CORE_ADDR addr;
1478
1479 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1480 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1481 if (struct_return)
1482 {
1483 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1484 if (!addr)
1485 error ("Function return value unknown");
1486 return value_at (valtype, addr, NULL);
1487 }
1488
1489 val = allocate_value (valtype);
1490 CHECK_TYPEDEF (valtype);
1491 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1492
1493 return val;
1494 }
1495
1496 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1497 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1498 and TYPE is the type (which is known to be struct, union or array).
1499
1500 On most machines, the struct convention is used unless we are
1501 using gcc and the type is of a special size. */
1502 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1503 native compiler. GCC 2.3.3 was the last release that did it the
1504 old way. Since gcc2_compiled was not changed, we have no
1505 way to correctly win in all cases, so we just do the right thing
1506 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1507 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1508 would cause more chaos than dealing with some struct returns being
1509 handled wrong. */
1510
1511 int
1512 generic_use_struct_convention (int gcc_p, struct type *value_type)
1513 {
1514 return !((gcc_p == 1)
1515 && (TYPE_LENGTH (value_type) == 1
1516 || TYPE_LENGTH (value_type) == 2
1517 || TYPE_LENGTH (value_type) == 4
1518 || TYPE_LENGTH (value_type) == 8));
1519 }
1520
1521 #ifndef USE_STRUCT_CONVENTION
1522 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1523 #endif
1524
1525
1526 /* Return true if the function specified is using the structure returning
1527 convention on this machine to return arguments, or 0 if it is using
1528 the value returning convention. FUNCTION is the value representing
1529 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1530 is the type returned by the function. GCC_P is nonzero if compiled
1531 with GCC. */
1532
1533 int
1534 using_struct_return (function, funcaddr, value_type, gcc_p)
1535 value_ptr function;
1536 CORE_ADDR funcaddr;
1537 struct type *value_type;
1538 int gcc_p;
1539 /*ARGSUSED */
1540 {
1541 register enum type_code code = TYPE_CODE (value_type);
1542
1543 if (code == TYPE_CODE_ERROR)
1544 error ("Function return type unknown.");
1545
1546 if (code == TYPE_CODE_STRUCT
1547 || code == TYPE_CODE_UNION
1548 || code == TYPE_CODE_ARRAY
1549 || RETURN_VALUE_ON_STACK (value_type))
1550 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1551
1552 return 0;
1553 }
1554
1555 /* Store VAL so it will be returned if a function returns now.
1556 Does not verify that VAL's type matches what the current
1557 function wants to return. */
1558
1559 void
1560 set_return_value (value_ptr val)
1561 {
1562 struct type *type = check_typedef (VALUE_TYPE (val));
1563 register enum type_code code = TYPE_CODE (type);
1564
1565 if (code == TYPE_CODE_ERROR)
1566 error ("Function return type unknown.");
1567
1568 if (code == TYPE_CODE_STRUCT
1569 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1570 error ("GDB does not support specifying a struct or union return value.");
1571
1572 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1573 }
1574 \f
1575 void
1576 _initialize_values (void)
1577 {
1578 add_cmd ("convenience", no_class, show_convenience,
1579 "Debugger convenience (\"$foo\") variables.\n\
1580 These variables are created when you assign them values;\n\
1581 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1582 A few convenience variables are given values automatically:\n\
1583 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1584 \"$__\" holds the contents of the last address examined with \"x\".",
1585 &showlist);
1586
1587 add_cmd ("values", no_class, show_values,
1588 "Elements of value history around item number IDX (or last ten).",
1589 &showlist);
1590 }