]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
Snap const char * mess.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330,
17 Boston, MA 02111-1307, USA. */
18
19 #include "defs.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "wrapper.h"
25 #include "gdbcmd.h"
26 #include "gdb_string.h"
27 #include <math.h>
28
29 #include "varobj.h"
30
31 /* Non-zero if we want to see trace of varobj level stuff. */
32
33 int varobjdebug = 0;
34
35 /* String representations of gdb's format codes */
36 char *varobj_format_string[] =
37 { "natural", "binary", "decimal", "hexadecimal", "octal" };
38
39 /* String representations of gdb's known languages */
40 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
41
42 /* Data structures */
43
44 /* Every root variable has one of these structures saved in its
45 varobj. Members which must be free'd are noted. */
46 struct varobj_root
47 {
48
49 /* Alloc'd expression for this parent. */
50 struct expression *exp;
51
52 /* Block for which this expression is valid */
53 struct block *valid_block;
54
55 /* The frame for this expression */
56 struct frame_id frame;
57
58 /* If 1, "update" always recomputes the frame & valid block
59 using the currently selected frame. */
60 int use_selected_frame;
61
62 /* Language info for this variable and its children */
63 struct language_specific *lang;
64
65 /* The varobj for this root node. */
66 struct varobj *rootvar;
67
68 /* Next root variable */
69 struct varobj_root *next;
70 };
71
72 /* Every variable in the system has a structure of this type defined
73 for it. This structure holds all information necessary to manipulate
74 a particular object variable. Members which must be freed are noted. */
75 struct varobj
76 {
77
78 /* Alloc'd name of the variable for this object.. If this variable is a
79 child, then this name will be the child's source name.
80 (bar, not foo.bar) */
81 /* NOTE: This is the "expression" */
82 char *name;
83
84 /* The alloc'd name for this variable's object. This is here for
85 convenience when constructing this object's children. */
86 char *obj_name;
87
88 /* Index of this variable in its parent or -1 */
89 int index;
90
91 /* The type of this variable. This may NEVER be NULL. */
92 struct type *type;
93
94 /* The value of this expression or subexpression. This may be NULL. */
95 struct value *value;
96
97 /* Did an error occur evaluating the expression or getting its value? */
98 int error;
99
100 /* The number of (immediate) children this variable has */
101 int num_children;
102
103 /* If this object is a child, this points to its immediate parent. */
104 struct varobj *parent;
105
106 /* A list of this object's children */
107 struct varobj_child *children;
108
109 /* Description of the root variable. Points to root variable for children. */
110 struct varobj_root *root;
111
112 /* The format of the output for this object */
113 enum varobj_display_formats format;
114
115 /* Was this variable updated via a varobj_set_value operation */
116 int updated;
117 };
118
119 /* Every variable keeps a linked list of its children, described
120 by the following structure. */
121 /* FIXME: Deprecated. All should use vlist instead */
122
123 struct varobj_child
124 {
125
126 /* Pointer to the child's data */
127 struct varobj *child;
128
129 /* Pointer to the next child */
130 struct varobj_child *next;
131 };
132
133 /* A stack of varobjs */
134 /* FIXME: Deprecated. All should use vlist instead */
135
136 struct vstack
137 {
138 struct varobj *var;
139 struct vstack *next;
140 };
141
142 struct cpstack
143 {
144 char *name;
145 struct cpstack *next;
146 };
147
148 /* A list of varobjs */
149
150 struct vlist
151 {
152 struct varobj *var;
153 struct vlist *next;
154 };
155
156 /* Private function prototypes */
157
158 /* Helper functions for the above subcommands. */
159
160 static int delete_variable (struct cpstack **, struct varobj *, int);
161
162 static void delete_variable_1 (struct cpstack **, int *,
163 struct varobj *, int, int);
164
165 static int install_variable (struct varobj *);
166
167 static void uninstall_variable (struct varobj *);
168
169 static struct varobj *child_exists (struct varobj *, char *);
170
171 static struct varobj *create_child (struct varobj *, int, char *);
172
173 static void save_child_in_parent (struct varobj *, struct varobj *);
174
175 static void remove_child_from_parent (struct varobj *, struct varobj *);
176
177 /* Utility routines */
178
179 static struct varobj *new_variable (void);
180
181 static struct varobj *new_root_variable (void);
182
183 static void free_variable (struct varobj *var);
184
185 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
186
187 static struct type *get_type (struct varobj *var);
188
189 static struct type *get_type_deref (struct varobj *var);
190
191 static struct type *get_target_type (struct type *);
192
193 static enum varobj_display_formats variable_default_display (struct varobj *);
194
195 static int my_value_equal (struct value *, struct value *, int *);
196
197 static void vpush (struct vstack **pstack, struct varobj *var);
198
199 static struct varobj *vpop (struct vstack **pstack);
200
201 static void cppush (struct cpstack **pstack, char *name);
202
203 static char *cppop (struct cpstack **pstack);
204
205 /* Language-specific routines. */
206
207 static enum varobj_languages variable_language (struct varobj *var);
208
209 static int number_of_children (struct varobj *);
210
211 static char *name_of_variable (struct varobj *);
212
213 static char *name_of_child (struct varobj *, int);
214
215 static struct value *value_of_root (struct varobj **var_handle, int *);
216
217 static struct value *value_of_child (struct varobj *parent, int index);
218
219 static struct type *type_of_child (struct varobj *var);
220
221 static int variable_editable (struct varobj *var);
222
223 static char *my_value_of_variable (struct varobj *var);
224
225 static int type_changeable (struct varobj *var);
226
227 /* C implementation */
228
229 static int c_number_of_children (struct varobj *var);
230
231 static char *c_name_of_variable (struct varobj *parent);
232
233 static char *c_name_of_child (struct varobj *parent, int index);
234
235 static struct value *c_value_of_root (struct varobj **var_handle);
236
237 static struct value *c_value_of_child (struct varobj *parent, int index);
238
239 static struct type *c_type_of_child (struct varobj *parent, int index);
240
241 static int c_variable_editable (struct varobj *var);
242
243 static char *c_value_of_variable (struct varobj *var);
244
245 /* C++ implementation */
246
247 static int cplus_number_of_children (struct varobj *var);
248
249 static void cplus_class_num_children (struct type *type, int children[3]);
250
251 static char *cplus_name_of_variable (struct varobj *parent);
252
253 static char *cplus_name_of_child (struct varobj *parent, int index);
254
255 static struct value *cplus_value_of_root (struct varobj **var_handle);
256
257 static struct value *cplus_value_of_child (struct varobj *parent, int index);
258
259 static struct type *cplus_type_of_child (struct varobj *parent, int index);
260
261 static int cplus_variable_editable (struct varobj *var);
262
263 static char *cplus_value_of_variable (struct varobj *var);
264
265 /* Java implementation */
266
267 static int java_number_of_children (struct varobj *var);
268
269 static char *java_name_of_variable (struct varobj *parent);
270
271 static char *java_name_of_child (struct varobj *parent, int index);
272
273 static struct value *java_value_of_root (struct varobj **var_handle);
274
275 static struct value *java_value_of_child (struct varobj *parent, int index);
276
277 static struct type *java_type_of_child (struct varobj *parent, int index);
278
279 static int java_variable_editable (struct varobj *var);
280
281 static char *java_value_of_variable (struct varobj *var);
282
283 /* The language specific vector */
284
285 struct language_specific
286 {
287
288 /* The language of this variable */
289 enum varobj_languages language;
290
291 /* The number of children of PARENT. */
292 int (*number_of_children) (struct varobj * parent);
293
294 /* The name (expression) of a root varobj. */
295 char *(*name_of_variable) (struct varobj * parent);
296
297 /* The name of the INDEX'th child of PARENT. */
298 char *(*name_of_child) (struct varobj * parent, int index);
299
300 /* The ``struct value *'' of the root variable ROOT. */
301 struct value *(*value_of_root) (struct varobj ** root_handle);
302
303 /* The ``struct value *'' of the INDEX'th child of PARENT. */
304 struct value *(*value_of_child) (struct varobj * parent, int index);
305
306 /* The type of the INDEX'th child of PARENT. */
307 struct type *(*type_of_child) (struct varobj * parent, int index);
308
309 /* Is VAR editable? */
310 int (*variable_editable) (struct varobj * var);
311
312 /* The current value of VAR. */
313 char *(*value_of_variable) (struct varobj * var);
314 };
315
316 /* Array of known source language routines. */
317 static struct language_specific
318 languages[vlang_end][sizeof (struct language_specific)] = {
319 /* Unknown (try treating as C */
320 {
321 vlang_unknown,
322 c_number_of_children,
323 c_name_of_variable,
324 c_name_of_child,
325 c_value_of_root,
326 c_value_of_child,
327 c_type_of_child,
328 c_variable_editable,
329 c_value_of_variable}
330 ,
331 /* C */
332 {
333 vlang_c,
334 c_number_of_children,
335 c_name_of_variable,
336 c_name_of_child,
337 c_value_of_root,
338 c_value_of_child,
339 c_type_of_child,
340 c_variable_editable,
341 c_value_of_variable}
342 ,
343 /* C++ */
344 {
345 vlang_cplus,
346 cplus_number_of_children,
347 cplus_name_of_variable,
348 cplus_name_of_child,
349 cplus_value_of_root,
350 cplus_value_of_child,
351 cplus_type_of_child,
352 cplus_variable_editable,
353 cplus_value_of_variable}
354 ,
355 /* Java */
356 {
357 vlang_java,
358 java_number_of_children,
359 java_name_of_variable,
360 java_name_of_child,
361 java_value_of_root,
362 java_value_of_child,
363 java_type_of_child,
364 java_variable_editable,
365 java_value_of_variable}
366 };
367
368 /* A little convenience enum for dealing with C++/Java */
369 enum vsections
370 {
371 v_public = 0, v_private, v_protected
372 };
373
374 /* Private data */
375
376 /* Mappings of varobj_display_formats enums to gdb's format codes */
377 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
378
379 /* Header of the list of root variable objects */
380 static struct varobj_root *rootlist;
381 static int rootcount = 0; /* number of root varobjs in the list */
382
383 /* Prime number indicating the number of buckets in the hash table */
384 /* A prime large enough to avoid too many colisions */
385 #define VAROBJ_TABLE_SIZE 227
386
387 /* Pointer to the varobj hash table (built at run time) */
388 static struct vlist **varobj_table;
389
390 /* Is the variable X one of our "fake" children? */
391 #define CPLUS_FAKE_CHILD(x) \
392 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
393 \f
394
395 /* API Implementation */
396
397 /* Creates a varobj (not its children) */
398
399 /* Return the full FRAME which corresponds to the given CORE_ADDR
400 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
401
402 static struct frame_info *
403 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
404 {
405 struct frame_info *frame = NULL;
406
407 if (frame_addr == (CORE_ADDR) 0)
408 return NULL;
409
410 while (1)
411 {
412 frame = get_prev_frame (frame);
413 if (frame == NULL)
414 return NULL;
415 if (get_frame_base (frame) == frame_addr)
416 return frame;
417 }
418 }
419
420 struct varobj *
421 varobj_create (char *objname,
422 char *expression, CORE_ADDR frame, enum varobj_type type)
423 {
424 struct varobj *var;
425 struct frame_info *fi;
426 struct frame_info *old_fi = NULL;
427 struct block *block;
428 struct cleanup *old_chain;
429
430 /* Fill out a varobj structure for the (root) variable being constructed. */
431 var = new_root_variable ();
432 old_chain = make_cleanup_free_variable (var);
433
434 if (expression != NULL)
435 {
436 const char *p;
437 enum varobj_languages lang;
438
439 /* Parse and evaluate the expression, filling in as much
440 of the variable's data as possible */
441
442 /* Allow creator to specify context of variable */
443 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
444 fi = deprecated_selected_frame;
445 else
446 /* FIXME: cagney/2002-11-23: This code should be doing a
447 lookup using the frame ID and not just the frame's
448 ``address''. This, of course, means an interface change.
449 However, with out that interface change ISAs, such as the
450 ia64 with its two stacks, won't work. Similar goes for the
451 case where there is a frameless function. */
452 fi = find_frame_addr_in_frame_chain (frame);
453
454 /* frame = -2 means always use selected frame */
455 if (type == USE_SELECTED_FRAME)
456 var->root->use_selected_frame = 1;
457
458 block = NULL;
459 if (fi != NULL)
460 block = get_frame_block (fi, 0);
461
462 p = expression;
463 innermost_block = NULL;
464 /* Wrap the call to parse expression, so we can
465 return a sensible error. */
466 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
467 {
468 return NULL;
469 }
470
471 /* Don't allow variables to be created for types. */
472 if (var->root->exp->elts[0].opcode == OP_TYPE)
473 {
474 do_cleanups (old_chain);
475 fprintf_unfiltered (gdb_stderr,
476 "Attempt to use a type name as an expression.");
477 return NULL;
478 }
479
480 var->format = variable_default_display (var);
481 var->root->valid_block = innermost_block;
482 var->name = savestring (expression, strlen (expression));
483
484 /* When the frame is different from the current frame,
485 we must select the appropriate frame before parsing
486 the expression, otherwise the value will not be current.
487 Since select_frame is so benign, just call it for all cases. */
488 if (fi != NULL)
489 {
490 var->root->frame = get_frame_id (fi);
491 old_fi = deprecated_selected_frame;
492 select_frame (fi);
493 }
494
495 /* We definitively need to catch errors here.
496 If evaluate_expression succeeds we got the value we wanted.
497 But if it fails, we still go on with a call to evaluate_type() */
498 if (gdb_evaluate_expression (var->root->exp, &var->value))
499 {
500 /* no error */
501 release_value (var->value);
502 if (VALUE_LAZY (var->value))
503 gdb_value_fetch_lazy (var->value);
504 }
505 else
506 var->value = evaluate_type (var->root->exp);
507
508 var->type = VALUE_TYPE (var->value);
509
510 /* Set language info */
511 lang = variable_language (var);
512 var->root->lang = languages[lang];
513
514 /* Set ourselves as our root */
515 var->root->rootvar = var;
516
517 /* Reset the selected frame */
518 if (fi != NULL)
519 select_frame (old_fi);
520 }
521
522 /* If the variable object name is null, that means this
523 is a temporary variable, so don't install it. */
524
525 if ((var != NULL) && (objname != NULL))
526 {
527 var->obj_name = savestring (objname, strlen (objname));
528
529 /* If a varobj name is duplicated, the install will fail so
530 we must clenup */
531 if (!install_variable (var))
532 {
533 do_cleanups (old_chain);
534 return NULL;
535 }
536 }
537
538 discard_cleanups (old_chain);
539 return var;
540 }
541
542 /* Generates an unique name that can be used for a varobj */
543
544 char *
545 varobj_gen_name (void)
546 {
547 static int id = 0;
548 char *obj_name;
549
550 /* generate a name for this object */
551 id++;
552 xasprintf (&obj_name, "var%d", id);
553
554 return obj_name;
555 }
556
557 /* Given an "objname", returns the pointer to the corresponding varobj
558 or NULL if not found */
559
560 struct varobj *
561 varobj_get_handle (char *objname)
562 {
563 struct vlist *cv;
564 const char *chp;
565 unsigned int index = 0;
566 unsigned int i = 1;
567
568 for (chp = objname; *chp; chp++)
569 {
570 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
571 }
572
573 cv = *(varobj_table + index);
574 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
575 cv = cv->next;
576
577 if (cv == NULL)
578 error ("Variable object not found");
579
580 return cv->var;
581 }
582
583 /* Given the handle, return the name of the object */
584
585 char *
586 varobj_get_objname (struct varobj *var)
587 {
588 return var->obj_name;
589 }
590
591 /* Given the handle, return the expression represented by the object */
592
593 char *
594 varobj_get_expression (struct varobj *var)
595 {
596 return name_of_variable (var);
597 }
598
599 /* Deletes a varobj and all its children if only_children == 0,
600 otherwise deletes only the children; returns a malloc'ed list of all the
601 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
602
603 int
604 varobj_delete (struct varobj *var, char ***dellist, int only_children)
605 {
606 int delcount;
607 int mycount;
608 struct cpstack *result = NULL;
609 char **cp;
610
611 /* Initialize a stack for temporary results */
612 cppush (&result, NULL);
613
614 if (only_children)
615 /* Delete only the variable children */
616 delcount = delete_variable (&result, var, 1 /* only the children */ );
617 else
618 /* Delete the variable and all its children */
619 delcount = delete_variable (&result, var, 0 /* parent+children */ );
620
621 /* We may have been asked to return a list of what has been deleted */
622 if (dellist != NULL)
623 {
624 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
625
626 cp = *dellist;
627 mycount = delcount;
628 *cp = cppop (&result);
629 while ((*cp != NULL) && (mycount > 0))
630 {
631 mycount--;
632 cp++;
633 *cp = cppop (&result);
634 }
635
636 if (mycount || (*cp != NULL))
637 warning ("varobj_delete: assertion failed - mycount(=%d) <> 0",
638 mycount);
639 }
640
641 return delcount;
642 }
643
644 /* Set/Get variable object display format */
645
646 enum varobj_display_formats
647 varobj_set_display_format (struct varobj *var,
648 enum varobj_display_formats format)
649 {
650 switch (format)
651 {
652 case FORMAT_NATURAL:
653 case FORMAT_BINARY:
654 case FORMAT_DECIMAL:
655 case FORMAT_HEXADECIMAL:
656 case FORMAT_OCTAL:
657 var->format = format;
658 break;
659
660 default:
661 var->format = variable_default_display (var);
662 }
663
664 return var->format;
665 }
666
667 enum varobj_display_formats
668 varobj_get_display_format (struct varobj *var)
669 {
670 return var->format;
671 }
672
673 int
674 varobj_get_num_children (struct varobj *var)
675 {
676 if (var->num_children == -1)
677 var->num_children = number_of_children (var);
678
679 return var->num_children;
680 }
681
682 /* Creates a list of the immediate children of a variable object;
683 the return code is the number of such children or -1 on error */
684
685 int
686 varobj_list_children (struct varobj *var, struct varobj ***childlist)
687 {
688 struct varobj *child;
689 char *name;
690 int i;
691
692 /* sanity check: have we been passed a pointer? */
693 if (childlist == NULL)
694 return -1;
695
696 *childlist = NULL;
697
698 if (var->num_children == -1)
699 var->num_children = number_of_children (var);
700
701 /* List of children */
702 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
703
704 for (i = 0; i < var->num_children; i++)
705 {
706 /* Mark as the end in case we bail out */
707 *((*childlist) + i) = NULL;
708
709 /* check if child exists, if not create */
710 name = name_of_child (var, i);
711 child = child_exists (var, name);
712 if (child == NULL)
713 child = create_child (var, i, name);
714
715 *((*childlist) + i) = child;
716 }
717
718 /* End of list is marked by a NULL pointer */
719 *((*childlist) + i) = NULL;
720
721 return var->num_children;
722 }
723
724 /* Obtain the type of an object Variable as a string similar to the one gdb
725 prints on the console */
726
727 char *
728 varobj_get_type (struct varobj *var)
729 {
730 struct value *val;
731 struct cleanup *old_chain;
732 struct ui_file *stb;
733 char *thetype;
734 long length;
735
736 /* For the "fake" variables, do not return a type. (It's type is
737 NULL, too.) */
738 if (CPLUS_FAKE_CHILD (var))
739 return NULL;
740
741 stb = mem_fileopen ();
742 old_chain = make_cleanup_ui_file_delete (stb);
743
744 /* To print the type, we simply create a zero ``struct value *'' and
745 cast it to our type. We then typeprint this variable. */
746 val = value_zero (var->type, not_lval);
747 type_print (VALUE_TYPE (val), "", stb, -1);
748
749 thetype = ui_file_xstrdup (stb, &length);
750 do_cleanups (old_chain);
751 return thetype;
752 }
753
754 enum varobj_languages
755 varobj_get_language (struct varobj *var)
756 {
757 return variable_language (var);
758 }
759
760 int
761 varobj_get_attributes (struct varobj *var)
762 {
763 int attributes = 0;
764
765 if (variable_editable (var))
766 /* FIXME: define masks for attributes */
767 attributes |= 0x00000001; /* Editable */
768
769 return attributes;
770 }
771
772 char *
773 varobj_get_value (struct varobj *var)
774 {
775 return my_value_of_variable (var);
776 }
777
778 /* Set the value of an object variable (if it is editable) to the
779 value of the given expression */
780 /* Note: Invokes functions that can call error() */
781
782 int
783 varobj_set_value (struct varobj *var, char *expression)
784 {
785 struct value *val;
786 int error;
787 int offset = 0;
788
789 /* The argument "expression" contains the variable's new value.
790 We need to first construct a legal expression for this -- ugh! */
791 /* Does this cover all the bases? */
792 struct expression *exp;
793 struct value *value;
794 int saved_input_radix = input_radix;
795
796 if (var->value != NULL && variable_editable (var) && !var->error)
797 {
798 const char *s = expression;
799 int i;
800
801 input_radix = 10; /* ALWAYS reset to decimal temporarily */
802 if (!gdb_parse_exp_1 (&s, 0, 0, &exp))
803 /* We cannot proceed without a well-formed expression. */
804 return 0;
805 if (!gdb_evaluate_expression (exp, &value))
806 {
807 /* We cannot proceed without a valid expression. */
808 xfree (exp);
809 return 0;
810 }
811
812 if (!my_value_equal (var->value, value, &error))
813 var->updated = 1;
814 if (!gdb_value_assign (var->value, value, &val))
815 return 0;
816 value_free (var->value);
817 release_value (val);
818 var->value = val;
819 input_radix = saved_input_radix;
820 return 1;
821 }
822
823 return 0;
824 }
825
826 /* Returns a malloc'ed list with all root variable objects */
827 int
828 varobj_list (struct varobj ***varlist)
829 {
830 struct varobj **cv;
831 struct varobj_root *croot;
832 int mycount = rootcount;
833
834 /* Alloc (rootcount + 1) entries for the result */
835 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
836
837 cv = *varlist;
838 croot = rootlist;
839 while ((croot != NULL) && (mycount > 0))
840 {
841 *cv = croot->rootvar;
842 mycount--;
843 cv++;
844 croot = croot->next;
845 }
846 /* Mark the end of the list */
847 *cv = NULL;
848
849 if (mycount || (croot != NULL))
850 warning
851 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
852 rootcount, mycount);
853
854 return rootcount;
855 }
856
857 /* Update the values for a variable and its children. This is a
858 two-pronged attack. First, re-parse the value for the root's
859 expression to see if it's changed. Then go all the way
860 through its children, reconstructing them and noting if they've
861 changed.
862 Return value:
863 -1 if there was an error updating the varobj
864 -2 if the type changed
865 Otherwise it is the number of children + parent changed
866
867 Only root variables can be updated...
868
869 NOTE: This function may delete the caller's varobj. If it
870 returns -2, then it has done this and VARP will be modified
871 to point to the new varobj. */
872
873 int
874 varobj_update (struct varobj **varp, struct varobj ***changelist)
875 {
876 int changed = 0;
877 int type_changed;
878 int i;
879 int vleft;
880 int error2;
881 struct varobj *v;
882 struct varobj **cv;
883 struct varobj **templist = NULL;
884 struct value *new;
885 struct vstack *stack = NULL;
886 struct vstack *result = NULL;
887 struct frame_id old_fid;
888 struct frame_info *fi;
889
890 /* sanity check: have we been passed a pointer? */
891 if (changelist == NULL)
892 return -1;
893
894 /* Only root variables can be updated... */
895 if ((*varp)->root->rootvar != *varp)
896 /* Not a root var */
897 return -1;
898
899 /* Save the selected stack frame, since we will need to change it
900 in order to evaluate expressions. */
901 old_fid = get_frame_id (deprecated_selected_frame);
902
903 /* Update the root variable. value_of_root can return NULL
904 if the variable is no longer around, i.e. we stepped out of
905 the frame in which a local existed. We are letting the
906 value_of_root variable dispose of the varobj if the type
907 has changed. */
908 type_changed = 1;
909 new = value_of_root (varp, &type_changed);
910 if (new == NULL)
911 {
912 (*varp)->error = 1;
913 return -1;
914 }
915
916 /* Initialize a stack for temporary results */
917 vpush (&result, NULL);
918
919 /* If this is a "use_selected_frame" varobj, and its type has changed,
920 them note that it's changed. */
921 if (type_changed)
922 {
923 vpush (&result, *varp);
924 changed++;
925 }
926 /* If values are not equal, note that it's changed.
927 There a couple of exceptions here, though.
928 We don't want some types to be reported as "changed". */
929 else if (type_changeable (*varp) &&
930 ((*varp)->updated || !my_value_equal ((*varp)->value, new, &error2)))
931 {
932 vpush (&result, *varp);
933 (*varp)->updated = 0;
934 changed++;
935 /* error2 replaces var->error since this new value
936 WILL replace the old one. */
937 (*varp)->error = error2;
938 }
939
940 /* We must always keep around the new value for this root
941 variable expression, or we lose the updated children! */
942 value_free ((*varp)->value);
943 (*varp)->value = new;
944
945 /* Initialize a stack */
946 vpush (&stack, NULL);
947
948 /* Push the root's children */
949 if ((*varp)->children != NULL)
950 {
951 struct varobj_child *c;
952 for (c = (*varp)->children; c != NULL; c = c->next)
953 vpush (&stack, c->child);
954 }
955
956 /* Walk through the children, reconstructing them all. */
957 v = vpop (&stack);
958 while (v != NULL)
959 {
960 /* Push any children */
961 if (v->children != NULL)
962 {
963 struct varobj_child *c;
964 for (c = v->children; c != NULL; c = c->next)
965 vpush (&stack, c->child);
966 }
967
968 /* Update this variable */
969 new = value_of_child (v->parent, v->index);
970 if (type_changeable (v) &&
971 (v->updated || !my_value_equal (v->value, new, &error2)))
972 {
973 /* Note that it's changed */
974 vpush (&result, v);
975 v->updated = 0;
976 changed++;
977 }
978 /* error2 replaces v->error since this new value
979 WILL replace the old one. */
980 v->error = error2;
981
982 /* We must always keep new values, since children depend on it. */
983 if (v->value != NULL)
984 value_free (v->value);
985 v->value = new;
986
987 /* Get next child */
988 v = vpop (&stack);
989 }
990
991 /* Alloc (changed + 1) list entries */
992 /* FIXME: add a cleanup for the allocated list(s)
993 because one day the select_frame called below can longjump */
994 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
995 if (changed > 1)
996 {
997 templist = xmalloc ((changed + 1) * sizeof (struct varobj *));
998 cv = templist;
999 }
1000 else
1001 cv = *changelist;
1002
1003 /* Copy from result stack to list */
1004 vleft = changed;
1005 *cv = vpop (&result);
1006 while ((*cv != NULL) && (vleft > 0))
1007 {
1008 vleft--;
1009 cv++;
1010 *cv = vpop (&result);
1011 }
1012 if (vleft)
1013 warning ("varobj_update: assertion failed - vleft <> 0");
1014
1015 if (changed > 1)
1016 {
1017 /* Now we revert the order. */
1018 for (i = 0; i < changed; i++)
1019 *(*changelist + i) = *(templist + changed - 1 - i);
1020 *(*changelist + changed) = NULL;
1021 }
1022
1023 /* Restore selected frame */
1024 fi = frame_find_by_id (old_fid);
1025 if (fi)
1026 select_frame (fi);
1027
1028 if (type_changed)
1029 return -2;
1030 else
1031 return changed;
1032 }
1033 \f
1034
1035 /* Helper functions */
1036
1037 /*
1038 * Variable object construction/destruction
1039 */
1040
1041 static int
1042 delete_variable (struct cpstack **resultp, struct varobj *var,
1043 int only_children_p)
1044 {
1045 int delcount = 0;
1046
1047 delete_variable_1 (resultp, &delcount, var,
1048 only_children_p, 1 /* remove_from_parent_p */ );
1049
1050 return delcount;
1051 }
1052
1053 /* Delete the variable object VAR and its children */
1054 /* IMPORTANT NOTE: If we delete a variable which is a child
1055 and the parent is not removed we dump core. It must be always
1056 initially called with remove_from_parent_p set */
1057 static void
1058 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1059 struct varobj *var, int only_children_p,
1060 int remove_from_parent_p)
1061 {
1062 struct varobj_child *vc;
1063 struct varobj_child *next;
1064
1065 /* Delete any children of this variable, too. */
1066 for (vc = var->children; vc != NULL; vc = next)
1067 {
1068 if (!remove_from_parent_p)
1069 vc->child->parent = NULL;
1070 delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p);
1071 next = vc->next;
1072 xfree (vc);
1073 }
1074
1075 /* if we were called to delete only the children we are done here */
1076 if (only_children_p)
1077 return;
1078
1079 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1080 /* If the name is null, this is a temporary variable, that has not
1081 yet been installed, don't report it, it belongs to the caller... */
1082 if (var->obj_name != NULL)
1083 {
1084 cppush (resultp, xstrdup (var->obj_name));
1085 *delcountp = *delcountp + 1;
1086 }
1087
1088 /* If this variable has a parent, remove it from its parent's list */
1089 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1090 (as indicated by remove_from_parent_p) we don't bother doing an
1091 expensive list search to find the element to remove when we are
1092 discarding the list afterwards */
1093 if ((remove_from_parent_p) && (var->parent != NULL))
1094 {
1095 remove_child_from_parent (var->parent, var);
1096 }
1097
1098 if (var->obj_name != NULL)
1099 uninstall_variable (var);
1100
1101 /* Free memory associated with this variable */
1102 free_variable (var);
1103 }
1104
1105 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1106 static int
1107 install_variable (struct varobj *var)
1108 {
1109 struct vlist *cv;
1110 struct vlist *newvl;
1111 const char *chp;
1112 unsigned int index = 0;
1113 unsigned int i = 1;
1114
1115 for (chp = var->obj_name; *chp; chp++)
1116 {
1117 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1118 }
1119
1120 cv = *(varobj_table + index);
1121 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1122 cv = cv->next;
1123
1124 if (cv != NULL)
1125 error ("Duplicate variable object name");
1126
1127 /* Add varobj to hash table */
1128 newvl = xmalloc (sizeof (struct vlist));
1129 newvl->next = *(varobj_table + index);
1130 newvl->var = var;
1131 *(varobj_table + index) = newvl;
1132
1133 /* If root, add varobj to root list */
1134 if (var->root->rootvar == var)
1135 {
1136 /* Add to list of root variables */
1137 if (rootlist == NULL)
1138 var->root->next = NULL;
1139 else
1140 var->root->next = rootlist;
1141 rootlist = var->root;
1142 rootcount++;
1143 }
1144
1145 return 1; /* OK */
1146 }
1147
1148 /* Unistall the object VAR. */
1149 static void
1150 uninstall_variable (struct varobj *var)
1151 {
1152 struct vlist *cv;
1153 struct vlist *prev;
1154 struct varobj_root *cr;
1155 struct varobj_root *prer;
1156 const char *chp;
1157 unsigned int index = 0;
1158 unsigned int i = 1;
1159
1160 /* Remove varobj from hash table */
1161 for (chp = var->obj_name; *chp; chp++)
1162 {
1163 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1164 }
1165
1166 cv = *(varobj_table + index);
1167 prev = NULL;
1168 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1169 {
1170 prev = cv;
1171 cv = cv->next;
1172 }
1173
1174 if (varobjdebug)
1175 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1176
1177 if (cv == NULL)
1178 {
1179 warning
1180 ("Assertion failed: Could not find variable object \"%s\" to delete",
1181 var->obj_name);
1182 return;
1183 }
1184
1185 if (prev == NULL)
1186 *(varobj_table + index) = cv->next;
1187 else
1188 prev->next = cv->next;
1189
1190 xfree (cv);
1191
1192 /* If root, remove varobj from root list */
1193 if (var->root->rootvar == var)
1194 {
1195 /* Remove from list of root variables */
1196 if (rootlist == var->root)
1197 rootlist = var->root->next;
1198 else
1199 {
1200 prer = NULL;
1201 cr = rootlist;
1202 while ((cr != NULL) && (cr->rootvar != var))
1203 {
1204 prer = cr;
1205 cr = cr->next;
1206 }
1207 if (cr == NULL)
1208 {
1209 warning
1210 ("Assertion failed: Could not find varobj \"%s\" in root list",
1211 var->obj_name);
1212 return;
1213 }
1214 if (prer == NULL)
1215 rootlist = NULL;
1216 else
1217 prer->next = cr->next;
1218 }
1219 rootcount--;
1220 }
1221
1222 }
1223
1224 /* Does a child with the name NAME exist in VAR? If so, return its data.
1225 If not, return NULL. */
1226 static struct varobj *
1227 child_exists (struct varobj *var, char *name)
1228 {
1229 struct varobj_child *vc;
1230
1231 for (vc = var->children; vc != NULL; vc = vc->next)
1232 {
1233 if (strcmp (vc->child->name, name) == 0)
1234 return vc->child;
1235 }
1236
1237 return NULL;
1238 }
1239
1240 /* Create and install a child of the parent of the given name */
1241 static struct varobj *
1242 create_child (struct varobj *parent, int index, char *name)
1243 {
1244 struct varobj *child;
1245 char *childs_name;
1246
1247 child = new_variable ();
1248
1249 /* name is allocated by name_of_child */
1250 child->name = name;
1251 child->index = index;
1252 child->value = value_of_child (parent, index);
1253 if ((!CPLUS_FAKE_CHILD (child) && child->value == NULL) || parent->error)
1254 child->error = 1;
1255 child->parent = parent;
1256 child->root = parent->root;
1257 xasprintf (&childs_name, "%s.%s", parent->obj_name, name);
1258 child->obj_name = childs_name;
1259 install_variable (child);
1260
1261 /* Save a pointer to this child in the parent */
1262 save_child_in_parent (parent, child);
1263
1264 /* Note the type of this child */
1265 child->type = type_of_child (child);
1266
1267 return child;
1268 }
1269
1270 /* FIXME: This should be a generic add to list */
1271 /* Save CHILD in the PARENT's data. */
1272 static void
1273 save_child_in_parent (struct varobj *parent, struct varobj *child)
1274 {
1275 struct varobj_child *vc;
1276
1277 /* Insert the child at the top */
1278 vc = parent->children;
1279 parent->children =
1280 (struct varobj_child *) xmalloc (sizeof (struct varobj_child));
1281
1282 parent->children->next = vc;
1283 parent->children->child = child;
1284 }
1285
1286 /* FIXME: This should be a generic remove from list */
1287 /* Remove the CHILD from the PARENT's list of children. */
1288 static void
1289 remove_child_from_parent (struct varobj *parent, struct varobj *child)
1290 {
1291 struct varobj_child *vc, *prev;
1292
1293 /* Find the child in the parent's list */
1294 prev = NULL;
1295 for (vc = parent->children; vc != NULL;)
1296 {
1297 if (vc->child == child)
1298 break;
1299 prev = vc;
1300 vc = vc->next;
1301 }
1302
1303 if (prev == NULL)
1304 parent->children = vc->next;
1305 else
1306 prev->next = vc->next;
1307
1308 }
1309 \f
1310
1311 /*
1312 * Miscellaneous utility functions.
1313 */
1314
1315 /* Allocate memory and initialize a new variable */
1316 static struct varobj *
1317 new_variable (void)
1318 {
1319 struct varobj *var;
1320
1321 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1322 var->name = NULL;
1323 var->obj_name = NULL;
1324 var->index = -1;
1325 var->type = NULL;
1326 var->value = NULL;
1327 var->error = 0;
1328 var->num_children = -1;
1329 var->parent = NULL;
1330 var->children = NULL;
1331 var->format = 0;
1332 var->root = NULL;
1333 var->updated = 0;
1334
1335 return var;
1336 }
1337
1338 /* Allocate memory and initialize a new root variable */
1339 static struct varobj *
1340 new_root_variable (void)
1341 {
1342 struct varobj *var = new_variable ();
1343 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1344 var->root->lang = NULL;
1345 var->root->exp = NULL;
1346 var->root->valid_block = NULL;
1347 var->root->frame = null_frame_id;
1348 var->root->use_selected_frame = 0;
1349 var->root->rootvar = NULL;
1350
1351 return var;
1352 }
1353
1354 /* Free any allocated memory associated with VAR. */
1355 static void
1356 free_variable (struct varobj *var)
1357 {
1358 /* Free the expression if this is a root variable. */
1359 if (var->root->rootvar == var)
1360 {
1361 free_current_contents ((char **) &var->root->exp);
1362 xfree (var->root);
1363 }
1364
1365 xfree (var->name);
1366 xfree (var->obj_name);
1367 xfree (var);
1368 }
1369
1370 static void
1371 do_free_variable_cleanup (void *var)
1372 {
1373 free_variable (var);
1374 }
1375
1376 static struct cleanup *
1377 make_cleanup_free_variable (struct varobj *var)
1378 {
1379 return make_cleanup (do_free_variable_cleanup, var);
1380 }
1381
1382 /* This returns the type of the variable. This skips past typedefs
1383 and returns the real type of the variable. It also dereferences
1384 pointers and references.
1385
1386 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1387 except within get_target_type and get_type. */
1388 static struct type *
1389 get_type (struct varobj *var)
1390 {
1391 struct type *type;
1392 type = var->type;
1393
1394 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1395 type = TYPE_TARGET_TYPE (type);
1396
1397 return type;
1398 }
1399
1400 /* This returns the type of the variable, dereferencing pointers, too. */
1401 static struct type *
1402 get_type_deref (struct varobj *var)
1403 {
1404 struct type *type;
1405
1406 type = get_type (var);
1407
1408 if (type != NULL && (TYPE_CODE (type) == TYPE_CODE_PTR
1409 || TYPE_CODE (type) == TYPE_CODE_REF))
1410 type = get_target_type (type);
1411
1412 return type;
1413 }
1414
1415 /* This returns the target type (or NULL) of TYPE, also skipping
1416 past typedefs, just like get_type ().
1417
1418 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1419 except within get_target_type and get_type. */
1420 static struct type *
1421 get_target_type (struct type *type)
1422 {
1423 if (type != NULL)
1424 {
1425 type = TYPE_TARGET_TYPE (type);
1426 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1427 type = TYPE_TARGET_TYPE (type);
1428 }
1429
1430 return type;
1431 }
1432
1433 /* What is the default display for this variable? We assume that
1434 everything is "natural". Any exceptions? */
1435 static enum varobj_display_formats
1436 variable_default_display (struct varobj *var)
1437 {
1438 return FORMAT_NATURAL;
1439 }
1440
1441 /* This function is similar to gdb's value_equal, except that this
1442 one is "safe" -- it NEVER longjmps. It determines if the VAR's
1443 value is the same as VAL2. */
1444 static int
1445 my_value_equal (struct value *val1, struct value *val2, int *error2)
1446 {
1447 int r, err1, err2;
1448
1449 *error2 = 0;
1450 /* Special case: NULL values. If both are null, say
1451 they're equal. */
1452 if (val1 == NULL && val2 == NULL)
1453 return 1;
1454 else if (val1 == NULL || val2 == NULL)
1455 return 0;
1456
1457 /* This is bogus, but unfortunately necessary. We must know
1458 exactly what caused an error -- reading val1 or val2 -- so
1459 that we can really determine if we think that something has changed. */
1460 err1 = 0;
1461 err2 = 0;
1462 /* We do need to catch errors here because the whole purpose
1463 is to test if value_equal() has errored */
1464 if (!gdb_value_equal (val1, val1, &r))
1465 err1 = 1;
1466
1467 if (!gdb_value_equal (val2, val2, &r))
1468 *error2 = err2 = 1;
1469
1470 if (err1 != err2)
1471 return 0;
1472
1473 if (!gdb_value_equal (val1, val2, &r))
1474 {
1475 /* An error occurred, this could have happened if
1476 either val1 or val2 errored. ERR1 and ERR2 tell
1477 us which of these it is. If both errored, then
1478 we assume nothing has changed. If one of them is
1479 valid, though, then something has changed. */
1480 if (err1 == err2)
1481 {
1482 /* both the old and new values caused errors, so
1483 we say the value did not change */
1484 /* This is indeterminate, though. Perhaps we should
1485 be safe and say, yes, it changed anyway?? */
1486 return 1;
1487 }
1488 else
1489 {
1490 return 0;
1491 }
1492 }
1493
1494 return r;
1495 }
1496
1497 /* FIXME: The following should be generic for any pointer */
1498 static void
1499 vpush (struct vstack **pstack, struct varobj *var)
1500 {
1501 struct vstack *s;
1502
1503 s = (struct vstack *) xmalloc (sizeof (struct vstack));
1504 s->var = var;
1505 s->next = *pstack;
1506 *pstack = s;
1507 }
1508
1509 /* FIXME: The following should be generic for any pointer */
1510 static struct varobj *
1511 vpop (struct vstack **pstack)
1512 {
1513 struct vstack *s;
1514 struct varobj *v;
1515
1516 if ((*pstack)->var == NULL && (*pstack)->next == NULL)
1517 return NULL;
1518
1519 s = *pstack;
1520 v = s->var;
1521 *pstack = (*pstack)->next;
1522 xfree (s);
1523
1524 return v;
1525 }
1526
1527 /* FIXME: The following should be generic for any pointer */
1528 static void
1529 cppush (struct cpstack **pstack, char *name)
1530 {
1531 struct cpstack *s;
1532
1533 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1534 s->name = name;
1535 s->next = *pstack;
1536 *pstack = s;
1537 }
1538
1539 /* FIXME: The following should be generic for any pointer */
1540 static char *
1541 cppop (struct cpstack **pstack)
1542 {
1543 struct cpstack *s;
1544 char *v;
1545
1546 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1547 return NULL;
1548
1549 s = *pstack;
1550 v = s->name;
1551 *pstack = (*pstack)->next;
1552 xfree (s);
1553
1554 return v;
1555 }
1556 \f
1557 /*
1558 * Language-dependencies
1559 */
1560
1561 /* Common entry points */
1562
1563 /* Get the language of variable VAR. */
1564 static enum varobj_languages
1565 variable_language (struct varobj *var)
1566 {
1567 enum varobj_languages lang;
1568
1569 switch (var->root->exp->language_defn->la_language)
1570 {
1571 default:
1572 case language_c:
1573 lang = vlang_c;
1574 break;
1575 case language_cplus:
1576 lang = vlang_cplus;
1577 break;
1578 case language_java:
1579 lang = vlang_java;
1580 break;
1581 }
1582
1583 return lang;
1584 }
1585
1586 /* Return the number of children for a given variable.
1587 The result of this function is defined by the language
1588 implementation. The number of children returned by this function
1589 is the number of children that the user will see in the variable
1590 display. */
1591 static int
1592 number_of_children (struct varobj *var)
1593 {
1594 return (*var->root->lang->number_of_children) (var);;
1595 }
1596
1597 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1598 static char *
1599 name_of_variable (struct varobj *var)
1600 {
1601 return (*var->root->lang->name_of_variable) (var);
1602 }
1603
1604 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1605 static char *
1606 name_of_child (struct varobj *var, int index)
1607 {
1608 return (*var->root->lang->name_of_child) (var, index);
1609 }
1610
1611 /* What is the ``struct value *'' of the root variable VAR?
1612 TYPE_CHANGED controls what to do if the type of a
1613 use_selected_frame = 1 variable changes. On input,
1614 TYPE_CHANGED = 1 means discard the old varobj, and replace
1615 it with this one. TYPE_CHANGED = 0 means leave it around.
1616 NB: In both cases, var_handle will point to the new varobj,
1617 so if you use TYPE_CHANGED = 0, you will have to stash the
1618 old varobj pointer away somewhere before calling this.
1619 On return, TYPE_CHANGED will be 1 if the type has changed, and
1620 0 otherwise. */
1621 static struct value *
1622 value_of_root (struct varobj **var_handle, int *type_changed)
1623 {
1624 struct varobj *var;
1625
1626 if (var_handle == NULL)
1627 return NULL;
1628
1629 var = *var_handle;
1630
1631 /* This should really be an exception, since this should
1632 only get called with a root variable. */
1633
1634 if (var->root->rootvar != var)
1635 return NULL;
1636
1637 if (var->root->use_selected_frame)
1638 {
1639 struct varobj *tmp_var;
1640 char *old_type, *new_type;
1641 old_type = varobj_get_type (var);
1642 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1643 USE_SELECTED_FRAME);
1644 if (tmp_var == NULL)
1645 {
1646 return NULL;
1647 }
1648 new_type = varobj_get_type (tmp_var);
1649 if (strcmp (old_type, new_type) == 0)
1650 {
1651 varobj_delete (tmp_var, NULL, 0);
1652 *type_changed = 0;
1653 }
1654 else
1655 {
1656 if (*type_changed)
1657 {
1658 tmp_var->obj_name =
1659 savestring (var->obj_name, strlen (var->obj_name));
1660 varobj_delete (var, NULL, 0);
1661 }
1662 else
1663 {
1664 tmp_var->obj_name = varobj_gen_name ();
1665 }
1666 install_variable (tmp_var);
1667 *var_handle = tmp_var;
1668 var = *var_handle;
1669 *type_changed = 1;
1670 }
1671 }
1672 else
1673 {
1674 *type_changed = 0;
1675 }
1676
1677 return (*var->root->lang->value_of_root) (var_handle);
1678 }
1679
1680 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1681 static struct value *
1682 value_of_child (struct varobj *parent, int index)
1683 {
1684 struct value *value;
1685
1686 value = (*parent->root->lang->value_of_child) (parent, index);
1687
1688 /* If we're being lazy, fetch the real value of the variable. */
1689 if (value != NULL && VALUE_LAZY (value))
1690 {
1691 /* If we fail to fetch the value of the child, return
1692 NULL so that callers notice that we're leaving an
1693 error message. */
1694 if (!gdb_value_fetch_lazy (value))
1695 value = NULL;
1696 }
1697
1698 return value;
1699 }
1700
1701 /* What is the type of VAR? */
1702 static struct type *
1703 type_of_child (struct varobj *var)
1704 {
1705
1706 /* If the child had no evaluation errors, var->value
1707 will be non-NULL and contain a valid type. */
1708 if (var->value != NULL)
1709 return VALUE_TYPE (var->value);
1710
1711 /* Otherwise, we must compute the type. */
1712 return (*var->root->lang->type_of_child) (var->parent, var->index);
1713 }
1714
1715 /* Is this variable editable? Use the variable's type to make
1716 this determination. */
1717 static int
1718 variable_editable (struct varobj *var)
1719 {
1720 return (*var->root->lang->variable_editable) (var);
1721 }
1722
1723 /* GDB already has a command called "value_of_variable". Sigh. */
1724 static char *
1725 my_value_of_variable (struct varobj *var)
1726 {
1727 return (*var->root->lang->value_of_variable) (var);
1728 }
1729
1730 /* Is VAR something that can change? Depending on language,
1731 some variable's values never change. For example,
1732 struct and unions never change values. */
1733 static int
1734 type_changeable (struct varobj *var)
1735 {
1736 int r;
1737 struct type *type;
1738
1739 if (CPLUS_FAKE_CHILD (var))
1740 return 0;
1741
1742 type = get_type (var);
1743
1744 switch (TYPE_CODE (type))
1745 {
1746 case TYPE_CODE_STRUCT:
1747 case TYPE_CODE_UNION:
1748 case TYPE_CODE_ARRAY:
1749 r = 0;
1750 break;
1751
1752 default:
1753 r = 1;
1754 }
1755
1756 return r;
1757 }
1758
1759 /* C */
1760 static int
1761 c_number_of_children (struct varobj *var)
1762 {
1763 struct type *type;
1764 struct type *target;
1765 int children;
1766
1767 type = get_type (var);
1768 target = get_target_type (type);
1769 children = 0;
1770
1771 switch (TYPE_CODE (type))
1772 {
1773 case TYPE_CODE_ARRAY:
1774 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1775 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1776 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1777 else
1778 children = -1;
1779 break;
1780
1781 case TYPE_CODE_STRUCT:
1782 case TYPE_CODE_UNION:
1783 children = TYPE_NFIELDS (type);
1784 break;
1785
1786 case TYPE_CODE_PTR:
1787 /* This is where things get compilcated. All pointers have one child.
1788 Except, of course, for struct and union ptr, which we automagically
1789 dereference for the user and function ptrs, which have no children.
1790 We also don't dereference void* as we don't know what to show.
1791 We can show char* so we allow it to be dereferenced. If you decide
1792 to test for it, please mind that a little magic is necessary to
1793 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1794 TYPE_NAME == "char" */
1795
1796 switch (TYPE_CODE (target))
1797 {
1798 case TYPE_CODE_STRUCT:
1799 case TYPE_CODE_UNION:
1800 children = TYPE_NFIELDS (target);
1801 break;
1802
1803 case TYPE_CODE_FUNC:
1804 case TYPE_CODE_VOID:
1805 children = 0;
1806 break;
1807
1808 default:
1809 children = 1;
1810 }
1811 break;
1812
1813 default:
1814 /* Other types have no children */
1815 break;
1816 }
1817
1818 return children;
1819 }
1820
1821 static char *
1822 c_name_of_variable (struct varobj *parent)
1823 {
1824 return savestring (parent->name, strlen (parent->name));
1825 }
1826
1827 static char *
1828 c_name_of_child (struct varobj *parent, int index)
1829 {
1830 struct type *type;
1831 struct type *target;
1832 char *name;
1833 char *string;
1834
1835 type = get_type (parent);
1836 target = get_target_type (type);
1837
1838 switch (TYPE_CODE (type))
1839 {
1840 case TYPE_CODE_ARRAY:
1841 xasprintf (&name, "%d", index);
1842 break;
1843
1844 case TYPE_CODE_STRUCT:
1845 case TYPE_CODE_UNION:
1846 string = TYPE_FIELD_NAME (type, index);
1847 name = savestring (string, strlen (string));
1848 break;
1849
1850 case TYPE_CODE_PTR:
1851 switch (TYPE_CODE (target))
1852 {
1853 case TYPE_CODE_STRUCT:
1854 case TYPE_CODE_UNION:
1855 string = TYPE_FIELD_NAME (target, index);
1856 name = savestring (string, strlen (string));
1857 break;
1858
1859 default:
1860 xasprintf (&name, "*%s", parent->name);
1861 break;
1862 }
1863 break;
1864
1865 default:
1866 /* This should not happen */
1867 name = xstrdup ("???");
1868 }
1869
1870 return name;
1871 }
1872
1873 static struct value *
1874 c_value_of_root (struct varobj **var_handle)
1875 {
1876 struct value *new_val;
1877 struct varobj *var = *var_handle;
1878 struct frame_info *fi;
1879 int within_scope;
1880
1881 /* Only root variables can be updated... */
1882 if (var->root->rootvar != var)
1883 /* Not a root var */
1884 return NULL;
1885
1886
1887 /* Determine whether the variable is still around. */
1888 if (var->root->valid_block == NULL)
1889 within_scope = 1;
1890 else
1891 {
1892 reinit_frame_cache ();
1893 fi = frame_find_by_id (var->root->frame);
1894 within_scope = fi != NULL;
1895 /* FIXME: select_frame could fail */
1896 if (within_scope)
1897 select_frame (fi);
1898 }
1899
1900 if (within_scope)
1901 {
1902 /* We need to catch errors here, because if evaluate
1903 expression fails we just want to make val->error = 1 and
1904 go on */
1905 if (gdb_evaluate_expression (var->root->exp, &new_val))
1906 {
1907 if (VALUE_LAZY (new_val))
1908 {
1909 /* We need to catch errors because if
1910 value_fetch_lazy fails we still want to continue
1911 (after making val->error = 1) */
1912 /* FIXME: Shouldn't be using VALUE_CONTENTS? The
1913 comment on value_fetch_lazy() says it is only
1914 called from the macro... */
1915 if (!gdb_value_fetch_lazy (new_val))
1916 var->error = 1;
1917 else
1918 var->error = 0;
1919 }
1920 }
1921 else
1922 var->error = 1;
1923
1924 release_value (new_val);
1925 return new_val;
1926 }
1927
1928 return NULL;
1929 }
1930
1931 static struct value *
1932 c_value_of_child (struct varobj *parent, int index)
1933 {
1934 struct value *value;
1935 struct value *temp;
1936 struct value *indval;
1937 struct type *type, *target;
1938 char *name;
1939
1940 type = get_type (parent);
1941 target = get_target_type (type);
1942 name = name_of_child (parent, index);
1943 temp = parent->value;
1944 value = NULL;
1945
1946 if (temp != NULL)
1947 {
1948 switch (TYPE_CODE (type))
1949 {
1950 case TYPE_CODE_ARRAY:
1951 #if 0
1952 /* This breaks if the array lives in a (vector) register. */
1953 value = value_slice (temp, index, 1);
1954 temp = value_coerce_array (value);
1955 gdb_value_ind (temp, &value);
1956 #else
1957 indval = value_from_longest (builtin_type_int, (LONGEST) index);
1958 gdb_value_subscript (temp, indval, &value);
1959 #endif
1960 break;
1961
1962 case TYPE_CODE_STRUCT:
1963 case TYPE_CODE_UNION:
1964 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
1965 "vstructure");
1966 break;
1967
1968 case TYPE_CODE_PTR:
1969 switch (TYPE_CODE (target))
1970 {
1971 case TYPE_CODE_STRUCT:
1972 case TYPE_CODE_UNION:
1973 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
1974 "vstructure");
1975 break;
1976
1977 default:
1978 gdb_value_ind (temp, &value);
1979 break;
1980 }
1981 break;
1982
1983 default:
1984 break;
1985 }
1986 }
1987
1988 if (value != NULL)
1989 release_value (value);
1990
1991 xfree (name);
1992 return value;
1993 }
1994
1995 static struct type *
1996 c_type_of_child (struct varobj *parent, int index)
1997 {
1998 struct type *type;
1999 char *name = name_of_child (parent, index);
2000
2001 switch (TYPE_CODE (parent->type))
2002 {
2003 case TYPE_CODE_ARRAY:
2004 type = get_target_type (parent->type);
2005 break;
2006
2007 case TYPE_CODE_STRUCT:
2008 case TYPE_CODE_UNION:
2009 type = lookup_struct_elt_type (parent->type, name, 0);
2010 break;
2011
2012 case TYPE_CODE_PTR:
2013 switch (TYPE_CODE (get_target_type (parent->type)))
2014 {
2015 case TYPE_CODE_STRUCT:
2016 case TYPE_CODE_UNION:
2017 type = lookup_struct_elt_type (parent->type, name, 0);
2018 break;
2019
2020 default:
2021 type = get_target_type (parent->type);
2022 break;
2023 }
2024 break;
2025
2026 default:
2027 /* This should not happen as only the above types have children */
2028 warning ("Child of parent whose type does not allow children");
2029 /* FIXME: Can we still go on? */
2030 type = NULL;
2031 break;
2032 }
2033
2034 xfree (name);
2035 return type;
2036 }
2037
2038 static int
2039 c_variable_editable (struct varobj *var)
2040 {
2041 switch (TYPE_CODE (get_type (var)))
2042 {
2043 case TYPE_CODE_STRUCT:
2044 case TYPE_CODE_UNION:
2045 case TYPE_CODE_ARRAY:
2046 case TYPE_CODE_FUNC:
2047 case TYPE_CODE_MEMBER:
2048 case TYPE_CODE_METHOD:
2049 return 0;
2050 break;
2051
2052 default:
2053 return 1;
2054 break;
2055 }
2056 }
2057
2058 static char *
2059 c_value_of_variable (struct varobj *var)
2060 {
2061 /* BOGUS: if val_print sees a struct/class, it will print out its
2062 children instead of "{...}" */
2063
2064 switch (TYPE_CODE (get_type (var)))
2065 {
2066 case TYPE_CODE_STRUCT:
2067 case TYPE_CODE_UNION:
2068 return xstrdup ("{...}");
2069 /* break; */
2070
2071 case TYPE_CODE_ARRAY:
2072 {
2073 char *number;
2074 xasprintf (&number, "[%d]", var->num_children);
2075 return (number);
2076 }
2077 /* break; */
2078
2079 default:
2080 {
2081 if (var->value == NULL)
2082 {
2083 /* This can happen if we attempt to get the value of a struct
2084 member when the parent is an invalid pointer. This is an
2085 error condition, so we should tell the caller. */
2086 return NULL;
2087 }
2088 else
2089 {
2090 long dummy;
2091 struct ui_file *stb = mem_fileopen ();
2092 struct cleanup *old_chain = make_cleanup_ui_file_delete (stb);
2093 char *thevalue;
2094
2095 if (VALUE_LAZY (var->value))
2096 gdb_value_fetch_lazy (var->value);
2097 val_print (VALUE_TYPE (var->value),
2098 VALUE_CONTENTS_RAW (var->value), 0,
2099 VALUE_ADDRESS (var->value), stb,
2100 format_code[(int) var->format], 1, 0, 0);
2101 thevalue = ui_file_xstrdup (stb, &dummy);
2102 do_cleanups (old_chain);
2103 return thevalue;
2104 }
2105 }
2106 }
2107 }
2108 \f
2109
2110 /* C++ */
2111
2112 static int
2113 cplus_number_of_children (struct varobj *var)
2114 {
2115 struct type *type;
2116 int children, dont_know;
2117
2118 dont_know = 1;
2119 children = 0;
2120
2121 if (!CPLUS_FAKE_CHILD (var))
2122 {
2123 type = get_type_deref (var);
2124
2125 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2126 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2127 {
2128 int kids[3];
2129
2130 cplus_class_num_children (type, kids);
2131 if (kids[v_public] != 0)
2132 children++;
2133 if (kids[v_private] != 0)
2134 children++;
2135 if (kids[v_protected] != 0)
2136 children++;
2137
2138 /* Add any baseclasses */
2139 children += TYPE_N_BASECLASSES (type);
2140 dont_know = 0;
2141
2142 /* FIXME: save children in var */
2143 }
2144 }
2145 else
2146 {
2147 int kids[3];
2148
2149 type = get_type_deref (var->parent);
2150
2151 cplus_class_num_children (type, kids);
2152 if (strcmp (var->name, "public") == 0)
2153 children = kids[v_public];
2154 else if (strcmp (var->name, "private") == 0)
2155 children = kids[v_private];
2156 else
2157 children = kids[v_protected];
2158 dont_know = 0;
2159 }
2160
2161 if (dont_know)
2162 children = c_number_of_children (var);
2163
2164 return children;
2165 }
2166
2167 /* Compute # of public, private, and protected variables in this class.
2168 That means we need to descend into all baseclasses and find out
2169 how many are there, too. */
2170 static void
2171 cplus_class_num_children (struct type *type, int children[3])
2172 {
2173 int i;
2174
2175 children[v_public] = 0;
2176 children[v_private] = 0;
2177 children[v_protected] = 0;
2178
2179 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2180 {
2181 /* If we have a virtual table pointer, omit it. */
2182 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2183 continue;
2184
2185 if (TYPE_FIELD_PROTECTED (type, i))
2186 children[v_protected]++;
2187 else if (TYPE_FIELD_PRIVATE (type, i))
2188 children[v_private]++;
2189 else
2190 children[v_public]++;
2191 }
2192 }
2193
2194 static char *
2195 cplus_name_of_variable (struct varobj *parent)
2196 {
2197 return c_name_of_variable (parent);
2198 }
2199
2200 static char *
2201 cplus_name_of_child (struct varobj *parent, int index)
2202 {
2203 char *name;
2204 struct type *type;
2205
2206 if (CPLUS_FAKE_CHILD (parent))
2207 {
2208 /* Looking for children of public, private, or protected. */
2209 type = get_type_deref (parent->parent);
2210 }
2211 else
2212 type = get_type_deref (parent);
2213
2214 name = NULL;
2215 switch (TYPE_CODE (type))
2216 {
2217 case TYPE_CODE_STRUCT:
2218 case TYPE_CODE_UNION:
2219 if (CPLUS_FAKE_CHILD (parent))
2220 {
2221 /* The fields of the class type are ordered as they
2222 appear in the class. We are given an index for a
2223 particular access control type ("public","protected",
2224 or "private"). We must skip over fields that don't
2225 have the access control we are looking for to properly
2226 find the indexed field. */
2227 int type_index = TYPE_N_BASECLASSES (type);
2228 if (strcmp (parent->name, "private") == 0)
2229 {
2230 while (index >= 0)
2231 {
2232 if (TYPE_VPTR_BASETYPE (type) == type
2233 && type_index == TYPE_VPTR_FIELDNO (type))
2234 ; /* ignore vptr */
2235 else if (TYPE_FIELD_PRIVATE (type, type_index))
2236 --index;
2237 ++type_index;
2238 }
2239 --type_index;
2240 }
2241 else if (strcmp (parent->name, "protected") == 0)
2242 {
2243 while (index >= 0)
2244 {
2245 if (TYPE_VPTR_BASETYPE (type) == type
2246 && type_index == TYPE_VPTR_FIELDNO (type))
2247 ; /* ignore vptr */
2248 else if (TYPE_FIELD_PROTECTED (type, type_index))
2249 --index;
2250 ++type_index;
2251 }
2252 --type_index;
2253 }
2254 else
2255 {
2256 while (index >= 0)
2257 {
2258 if (TYPE_VPTR_BASETYPE (type) == type
2259 && type_index == TYPE_VPTR_FIELDNO (type))
2260 ; /* ignore vptr */
2261 else if (!TYPE_FIELD_PRIVATE (type, type_index) &&
2262 !TYPE_FIELD_PROTECTED (type, type_index))
2263 --index;
2264 ++type_index;
2265 }
2266 --type_index;
2267 }
2268
2269 name = TYPE_FIELD_NAME (type, type_index);
2270 }
2271 else if (index < TYPE_N_BASECLASSES (type))
2272 /* We are looking up the name of a base class */
2273 name = TYPE_FIELD_NAME (type, index);
2274 else
2275 {
2276 int children[3];
2277 cplus_class_num_children(type, children);
2278
2279 /* Everything beyond the baseclasses can
2280 only be "public", "private", or "protected"
2281
2282 The special "fake" children are always output by varobj in
2283 this order. So if INDEX == 2, it MUST be "protected". */
2284 index -= TYPE_N_BASECLASSES (type);
2285 switch (index)
2286 {
2287 case 0:
2288 if (children[v_public] > 0)
2289 name = "public";
2290 else if (children[v_private] > 0)
2291 name = "private";
2292 else
2293 name = "protected";
2294 break;
2295 case 1:
2296 if (children[v_public] > 0)
2297 {
2298 if (children[v_private] > 0)
2299 name = "private";
2300 else
2301 name = "protected";
2302 }
2303 else if (children[v_private] > 0)
2304 name = "protected";
2305 break;
2306 case 2:
2307 /* Must be protected */
2308 name = "protected";
2309 break;
2310 default:
2311 /* error! */
2312 break;
2313 }
2314 }
2315 break;
2316
2317 default:
2318 break;
2319 }
2320
2321 if (name == NULL)
2322 return c_name_of_child (parent, index);
2323 else
2324 {
2325 if (name != NULL)
2326 name = savestring (name, strlen (name));
2327 }
2328
2329 return name;
2330 }
2331
2332 static struct value *
2333 cplus_value_of_root (struct varobj **var_handle)
2334 {
2335 return c_value_of_root (var_handle);
2336 }
2337
2338 static struct value *
2339 cplus_value_of_child (struct varobj *parent, int index)
2340 {
2341 struct type *type;
2342 struct value *value;
2343
2344 if (CPLUS_FAKE_CHILD (parent))
2345 type = get_type_deref (parent->parent);
2346 else
2347 type = get_type_deref (parent);
2348
2349 value = NULL;
2350
2351 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2352 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2353 {
2354 if (CPLUS_FAKE_CHILD (parent))
2355 {
2356 char *name;
2357 struct value *temp = parent->parent->value;
2358
2359 if (temp == NULL)
2360 return NULL;
2361
2362 name = name_of_child (parent, index);
2363 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
2364 "cplus_structure");
2365 if (value != NULL)
2366 release_value (value);
2367
2368 xfree (name);
2369 }
2370 else if (index >= TYPE_N_BASECLASSES (type))
2371 {
2372 /* public, private, or protected */
2373 return NULL;
2374 }
2375 else
2376 {
2377 /* Baseclass */
2378 if (parent->value != NULL)
2379 {
2380 struct value *temp = NULL;
2381
2382 if (TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_PTR
2383 || TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_REF)
2384 {
2385 if (!gdb_value_ind (parent->value, &temp))
2386 return NULL;
2387 }
2388 else
2389 temp = parent->value;
2390
2391 if (temp != NULL)
2392 {
2393 value = value_cast (TYPE_FIELD_TYPE (type, index), temp);
2394 release_value (value);
2395 }
2396 else
2397 {
2398 /* We failed to evaluate the parent's value, so don't even
2399 bother trying to evaluate this child. */
2400 return NULL;
2401 }
2402 }
2403 }
2404 }
2405
2406 if (value == NULL)
2407 return c_value_of_child (parent, index);
2408
2409 return value;
2410 }
2411
2412 static struct type *
2413 cplus_type_of_child (struct varobj *parent, int index)
2414 {
2415 struct type *type, *t;
2416
2417 if (CPLUS_FAKE_CHILD (parent))
2418 {
2419 /* Looking for the type of a child of public, private, or protected. */
2420 t = get_type_deref (parent->parent);
2421 }
2422 else
2423 t = get_type_deref (parent);
2424
2425 type = NULL;
2426 switch (TYPE_CODE (t))
2427 {
2428 case TYPE_CODE_STRUCT:
2429 case TYPE_CODE_UNION:
2430 if (CPLUS_FAKE_CHILD (parent))
2431 {
2432 char *name = cplus_name_of_child (parent, index);
2433 type = lookup_struct_elt_type (t, name, 0);
2434 xfree (name);
2435 }
2436 else if (index < TYPE_N_BASECLASSES (t))
2437 type = TYPE_FIELD_TYPE (t, index);
2438 else
2439 {
2440 /* special */
2441 return NULL;
2442 }
2443 break;
2444
2445 default:
2446 break;
2447 }
2448
2449 if (type == NULL)
2450 return c_type_of_child (parent, index);
2451
2452 return type;
2453 }
2454
2455 static int
2456 cplus_variable_editable (struct varobj *var)
2457 {
2458 if (CPLUS_FAKE_CHILD (var))
2459 return 0;
2460
2461 return c_variable_editable (var);
2462 }
2463
2464 static char *
2465 cplus_value_of_variable (struct varobj *var)
2466 {
2467
2468 /* If we have one of our special types, don't print out
2469 any value. */
2470 if (CPLUS_FAKE_CHILD (var))
2471 return xstrdup ("");
2472
2473 return c_value_of_variable (var);
2474 }
2475 \f
2476 /* Java */
2477
2478 static int
2479 java_number_of_children (struct varobj *var)
2480 {
2481 return cplus_number_of_children (var);
2482 }
2483
2484 static char *
2485 java_name_of_variable (struct varobj *parent)
2486 {
2487 char *p, *name;
2488
2489 name = cplus_name_of_variable (parent);
2490 /* If the name has "-" in it, it is because we
2491 needed to escape periods in the name... */
2492 p = name;
2493
2494 while (*p != '\000')
2495 {
2496 if (*p == '-')
2497 *p = '.';
2498 p++;
2499 }
2500
2501 return name;
2502 }
2503
2504 static char *
2505 java_name_of_child (struct varobj *parent, int index)
2506 {
2507 char *name, *p;
2508
2509 name = cplus_name_of_child (parent, index);
2510 /* Escape any periods in the name... */
2511 p = name;
2512
2513 while (*p != '\000')
2514 {
2515 if (*p == '.')
2516 *p = '-';
2517 p++;
2518 }
2519
2520 return name;
2521 }
2522
2523 static struct value *
2524 java_value_of_root (struct varobj **var_handle)
2525 {
2526 return cplus_value_of_root (var_handle);
2527 }
2528
2529 static struct value *
2530 java_value_of_child (struct varobj *parent, int index)
2531 {
2532 return cplus_value_of_child (parent, index);
2533 }
2534
2535 static struct type *
2536 java_type_of_child (struct varobj *parent, int index)
2537 {
2538 return cplus_type_of_child (parent, index);
2539 }
2540
2541 static int
2542 java_variable_editable (struct varobj *var)
2543 {
2544 return cplus_variable_editable (var);
2545 }
2546
2547 static char *
2548 java_value_of_variable (struct varobj *var)
2549 {
2550 return cplus_value_of_variable (var);
2551 }
2552 \f
2553 extern void _initialize_varobj (void);
2554 void
2555 _initialize_varobj (void)
2556 {
2557 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2558
2559 varobj_table = xmalloc (sizeof_table);
2560 memset (varobj_table, 0, sizeof_table);
2561
2562 add_show_from_set (add_set_cmd ("debugvarobj", class_maintenance, var_zinteger, (char *) &varobjdebug, "Set varobj debugging.\n\
2563 When non-zero, varobj debugging is enabled.", &setlist),
2564 &showlist);
2565 }