]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
Remove cleanups from mi-cmd-var.c
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #include "python/py-ref.h"
38 #else
39 typedef int PyObject;
40 #endif
41
42 /* Non-zero if we want to see trace of varobj level stuff. */
43
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48 {
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51
52 /* String representations of gdb's format codes. */
53 const char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55
56 /* True if we want to allow Python-based pretty-printing. */
57 static int pretty_printing = 0;
58
59 void
60 varobj_enable_pretty_printing (void)
61 {
62 pretty_printing = 1;
63 }
64
65 /* Data structures */
66
67 /* Every root variable has one of these structures saved in its
68 varobj. */
69 struct varobj_root
70 {
71
72 /* The expression for this parent. */
73 expression_up exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame;
81
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id;
88
89 /* If 1, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 int floating;
93
94 /* Flag that indicates validity: set to 0 when this varobj_root refers
95 to symbols that do not exist anymore. */
96 int is_valid;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar;
104
105 /* Next root variable */
106 struct varobj_root *next;
107 };
108
109 /* Dynamic part of varobj. */
110
111 struct varobj_dynamic
112 {
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 int children_requested;
118
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor;
123
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer;
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
130 struct varobj_iter *child_iter;
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item;
138 };
139
140 /* A list of varobjs */
141
142 struct vlist
143 {
144 struct varobj *var;
145 struct vlist *next;
146 };
147
148 /* Private function prototypes */
149
150 /* Helper functions for the above subcommands. */
151
152 static int delete_variable (struct varobj *, int);
153
154 static void delete_variable_1 (int *, struct varobj *, int, int);
155
156 static int install_variable (struct varobj *);
157
158 static void uninstall_variable (struct varobj *);
159
160 static struct varobj *create_child (struct varobj *, int, std::string &);
161
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
165
166 /* Utility routines */
167
168 static struct varobj *new_variable (void);
169
170 static struct varobj *new_root_variable (void);
171
172 static void free_variable (struct varobj *var);
173
174 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
175
176 static enum varobj_display_formats variable_default_display (struct varobj *);
177
178 static int update_type_if_necessary (struct varobj *var,
179 struct value *new_value);
180
181 static int install_new_value (struct varobj *var, struct value *value,
182 int initial);
183
184 /* Language-specific routines. */
185
186 static int number_of_children (const struct varobj *);
187
188 static std::string name_of_variable (const struct varobj *);
189
190 static std::string name_of_child (struct varobj *, int);
191
192 static struct value *value_of_root (struct varobj **var_handle, int *);
193
194 static struct value *value_of_child (const struct varobj *parent, int index);
195
196 static std::string my_value_of_variable (struct varobj *var,
197 enum varobj_display_formats format);
198
199 static int is_root_p (const struct varobj *var);
200
201 static struct varobj *varobj_add_child (struct varobj *var,
202 struct varobj_item *item);
203
204 /* Private data */
205
206 /* Mappings of varobj_display_formats enums to gdb's format codes. */
207 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
208
209 /* Header of the list of root variable objects. */
210 static struct varobj_root *rootlist;
211
212 /* Prime number indicating the number of buckets in the hash table. */
213 /* A prime large enough to avoid too many collisions. */
214 #define VAROBJ_TABLE_SIZE 227
215
216 /* Pointer to the varobj hash table (built at run time). */
217 static struct vlist **varobj_table;
218
219 \f
220
221 /* API Implementation */
222 static int
223 is_root_p (const struct varobj *var)
224 {
225 return (var->root->rootvar == var);
226 }
227
228 #ifdef HAVE_PYTHON
229
230 /* See python-internal.h. */
231 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
232 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
233 {
234 }
235
236 #endif
237
238 /* Return the full FRAME which corresponds to the given CORE_ADDR
239 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
240
241 static struct frame_info *
242 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
243 {
244 struct frame_info *frame = NULL;
245
246 if (frame_addr == (CORE_ADDR) 0)
247 return NULL;
248
249 for (frame = get_current_frame ();
250 frame != NULL;
251 frame = get_prev_frame (frame))
252 {
253 /* The CORE_ADDR we get as argument was parsed from a string GDB
254 output as $fp. This output got truncated to gdbarch_addr_bit.
255 Truncate the frame base address in the same manner before
256 comparing it against our argument. */
257 CORE_ADDR frame_base = get_frame_base_address (frame);
258 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
259
260 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
262
263 if (frame_base == frame_addr)
264 return frame;
265 }
266
267 return NULL;
268 }
269
270 /* Creates a varobj (not its children). */
271
272 struct varobj *
273 varobj_create (const char *objname,
274 const char *expression, CORE_ADDR frame, enum varobj_type type)
275 {
276 struct varobj *var;
277 struct cleanup *old_chain;
278
279 /* Fill out a varobj structure for the (root) variable being constructed. */
280 var = new_root_variable ();
281 old_chain = make_cleanup_free_variable (var);
282
283 if (expression != NULL)
284 {
285 struct frame_info *fi;
286 struct frame_id old_id = null_frame_id;
287 const struct block *block;
288 const char *p;
289 struct value *value = NULL;
290 CORE_ADDR pc;
291
292 /* Parse and evaluate the expression, filling in as much of the
293 variable's data as possible. */
294
295 if (has_stack_frames ())
296 {
297 /* Allow creator to specify context of variable. */
298 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 fi = get_selected_frame (NULL);
300 else
301 /* FIXME: cagney/2002-11-23: This code should be doing a
302 lookup using the frame ID and not just the frame's
303 ``address''. This, of course, means an interface
304 change. However, with out that interface change ISAs,
305 such as the ia64 with its two stacks, won't work.
306 Similar goes for the case where there is a frameless
307 function. */
308 fi = find_frame_addr_in_frame_chain (frame);
309 }
310 else
311 fi = NULL;
312
313 /* frame = -2 means always use selected frame. */
314 if (type == USE_SELECTED_FRAME)
315 var->root->floating = 1;
316
317 pc = 0;
318 block = NULL;
319 if (fi != NULL)
320 {
321 block = get_frame_block (fi, 0);
322 pc = get_frame_pc (fi);
323 }
324
325 p = expression;
326 innermost_block = NULL;
327 /* Wrap the call to parse expression, so we can
328 return a sensible error. */
329 TRY
330 {
331 var->root->exp = parse_exp_1 (&p, pc, block, 0);
332 }
333
334 CATCH (except, RETURN_MASK_ERROR)
335 {
336 do_cleanups (old_chain);
337 return NULL;
338 }
339 END_CATCH
340
341 /* Don't allow variables to be created for types. */
342 if (var->root->exp->elts[0].opcode == OP_TYPE
343 || var->root->exp->elts[0].opcode == OP_TYPEOF
344 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
345 {
346 do_cleanups (old_chain);
347 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 " as an expression.\n");
349 return NULL;
350 }
351
352 var->format = variable_default_display (var);
353 var->root->valid_block = innermost_block;
354 var->name = expression;
355 /* For a root var, the name and the expr are the same. */
356 var->path_expr = expression;
357
358 /* When the frame is different from the current frame,
359 we must select the appropriate frame before parsing
360 the expression, otherwise the value will not be current.
361 Since select_frame is so benign, just call it for all cases. */
362 if (innermost_block)
363 {
364 /* User could specify explicit FRAME-ADDR which was not found but
365 EXPRESSION is frame specific and we would not be able to evaluate
366 it correctly next time. With VALID_BLOCK set we must also set
367 FRAME and THREAD_ID. */
368 if (fi == NULL)
369 error (_("Failed to find the specified frame"));
370
371 var->root->frame = get_frame_id (fi);
372 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
373 old_id = get_frame_id (get_selected_frame (NULL));
374 select_frame (fi);
375 }
376
377 /* We definitely need to catch errors here.
378 If evaluate_expression succeeds we got the value we wanted.
379 But if it fails, we still go on with a call to evaluate_type(). */
380 TRY
381 {
382 value = evaluate_expression (var->root->exp.get ());
383 }
384 CATCH (except, RETURN_MASK_ERROR)
385 {
386 /* Error getting the value. Try to at least get the
387 right type. */
388 struct value *type_only_value = evaluate_type (var->root->exp.get ());
389
390 var->type = value_type (type_only_value);
391 }
392 END_CATCH
393
394 if (value != NULL)
395 {
396 int real_type_found = 0;
397
398 var->type = value_actual_type (value, 0, &real_type_found);
399 if (real_type_found)
400 value = value_cast (var->type, value);
401 }
402
403 /* Set language info */
404 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
405
406 install_new_value (var, value, 1 /* Initial assignment */);
407
408 /* Set ourselves as our root. */
409 var->root->rootvar = var;
410
411 /* Reset the selected frame. */
412 if (frame_id_p (old_id))
413 select_frame (frame_find_by_id (old_id));
414 }
415
416 /* If the variable object name is null, that means this
417 is a temporary variable, so don't install it. */
418
419 if ((var != NULL) && (objname != NULL))
420 {
421 var->obj_name = objname;
422
423 /* If a varobj name is duplicated, the install will fail so
424 we must cleanup. */
425 if (!install_variable (var))
426 {
427 do_cleanups (old_chain);
428 return NULL;
429 }
430 }
431
432 discard_cleanups (old_chain);
433 return var;
434 }
435
436 /* Generates an unique name that can be used for a varobj. */
437
438 std::string
439 varobj_gen_name (void)
440 {
441 static int id = 0;
442
443 /* Generate a name for this object. */
444 id++;
445 return string_printf ("var%d", id);
446 }
447
448 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
449 error if OBJNAME cannot be found. */
450
451 struct varobj *
452 varobj_get_handle (const char *objname)
453 {
454 struct vlist *cv;
455 const char *chp;
456 unsigned int index = 0;
457 unsigned int i = 1;
458
459 for (chp = objname; *chp; chp++)
460 {
461 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
462 }
463
464 cv = *(varobj_table + index);
465 while (cv != NULL && cv->var->obj_name != objname)
466 cv = cv->next;
467
468 if (cv == NULL)
469 error (_("Variable object not found"));
470
471 return cv->var;
472 }
473
474 /* Given the handle, return the name of the object. */
475
476 const char *
477 varobj_get_objname (const struct varobj *var)
478 {
479 return var->obj_name.c_str ();
480 }
481
482 /* Given the handle, return the expression represented by the
483 object. */
484
485 std::string
486 varobj_get_expression (const struct varobj *var)
487 {
488 return name_of_variable (var);
489 }
490
491 /* See varobj.h. */
492
493 int
494 varobj_delete (struct varobj *var, int only_children)
495 {
496 return delete_variable (var, only_children);
497 }
498
499 #if HAVE_PYTHON
500
501 /* Convenience function for varobj_set_visualizer. Instantiate a
502 pretty-printer for a given value. */
503 static PyObject *
504 instantiate_pretty_printer (PyObject *constructor, struct value *value)
505 {
506 PyObject *val_obj = NULL;
507 PyObject *printer;
508
509 val_obj = value_to_value_object (value);
510 if (! val_obj)
511 return NULL;
512
513 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
514 Py_DECREF (val_obj);
515 return printer;
516 }
517
518 #endif
519
520 /* Set/Get variable object display format. */
521
522 enum varobj_display_formats
523 varobj_set_display_format (struct varobj *var,
524 enum varobj_display_formats format)
525 {
526 switch (format)
527 {
528 case FORMAT_NATURAL:
529 case FORMAT_BINARY:
530 case FORMAT_DECIMAL:
531 case FORMAT_HEXADECIMAL:
532 case FORMAT_OCTAL:
533 case FORMAT_ZHEXADECIMAL:
534 var->format = format;
535 break;
536
537 default:
538 var->format = variable_default_display (var);
539 }
540
541 if (varobj_value_is_changeable_p (var)
542 && var->value && !value_lazy (var->value))
543 {
544 var->print_value = varobj_value_get_print_value (var->value,
545 var->format, var);
546 }
547
548 return var->format;
549 }
550
551 enum varobj_display_formats
552 varobj_get_display_format (const struct varobj *var)
553 {
554 return var->format;
555 }
556
557 gdb::unique_xmalloc_ptr<char>
558 varobj_get_display_hint (const struct varobj *var)
559 {
560 gdb::unique_xmalloc_ptr<char> result;
561
562 #if HAVE_PYTHON
563 if (!gdb_python_initialized)
564 return NULL;
565
566 gdbpy_enter_varobj enter_py (var);
567
568 if (var->dynamic->pretty_printer != NULL)
569 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
570 #endif
571
572 return result;
573 }
574
575 /* Return true if the varobj has items after TO, false otherwise. */
576
577 int
578 varobj_has_more (const struct varobj *var, int to)
579 {
580 if (VEC_length (varobj_p, var->children) > to)
581 return 1;
582 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
583 && (var->dynamic->saved_item != NULL));
584 }
585
586 /* If the variable object is bound to a specific thread, that
587 is its evaluation can always be done in context of a frame
588 inside that thread, returns GDB id of the thread -- which
589 is always positive. Otherwise, returns -1. */
590 int
591 varobj_get_thread_id (const struct varobj *var)
592 {
593 if (var->root->valid_block && var->root->thread_id > 0)
594 return var->root->thread_id;
595 else
596 return -1;
597 }
598
599 void
600 varobj_set_frozen (struct varobj *var, int frozen)
601 {
602 /* When a variable is unfrozen, we don't fetch its value.
603 The 'not_fetched' flag remains set, so next -var-update
604 won't complain.
605
606 We don't fetch the value, because for structures the client
607 should do -var-update anyway. It would be bad to have different
608 client-size logic for structure and other types. */
609 var->frozen = frozen;
610 }
611
612 int
613 varobj_get_frozen (const struct varobj *var)
614 {
615 return var->frozen;
616 }
617
618 /* A helper function that restricts a range to what is actually
619 available in a VEC. This follows the usual rules for the meaning
620 of FROM and TO -- if either is negative, the entire range is
621 used. */
622
623 void
624 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
625 {
626 if (*from < 0 || *to < 0)
627 {
628 *from = 0;
629 *to = VEC_length (varobj_p, children);
630 }
631 else
632 {
633 if (*from > VEC_length (varobj_p, children))
634 *from = VEC_length (varobj_p, children);
635 if (*to > VEC_length (varobj_p, children))
636 *to = VEC_length (varobj_p, children);
637 if (*from > *to)
638 *from = *to;
639 }
640 }
641
642 /* A helper for update_dynamic_varobj_children that installs a new
643 child when needed. */
644
645 static void
646 install_dynamic_child (struct varobj *var,
647 VEC (varobj_p) **changed,
648 VEC (varobj_p) **type_changed,
649 VEC (varobj_p) **newobj,
650 VEC (varobj_p) **unchanged,
651 int *cchanged,
652 int index,
653 struct varobj_item *item)
654 {
655 if (VEC_length (varobj_p, var->children) < index + 1)
656 {
657 /* There's no child yet. */
658 struct varobj *child = varobj_add_child (var, item);
659
660 if (newobj)
661 {
662 VEC_safe_push (varobj_p, *newobj, child);
663 *cchanged = 1;
664 }
665 }
666 else
667 {
668 varobj_p existing = VEC_index (varobj_p, var->children, index);
669 int type_updated = update_type_if_necessary (existing, item->value);
670
671 if (type_updated)
672 {
673 if (type_changed)
674 VEC_safe_push (varobj_p, *type_changed, existing);
675 }
676 if (install_new_value (existing, item->value, 0))
677 {
678 if (!type_updated && changed)
679 VEC_safe_push (varobj_p, *changed, existing);
680 }
681 else if (!type_updated && unchanged)
682 VEC_safe_push (varobj_p, *unchanged, existing);
683 }
684 }
685
686 #if HAVE_PYTHON
687
688 static int
689 dynamic_varobj_has_child_method (const struct varobj *var)
690 {
691 PyObject *printer = var->dynamic->pretty_printer;
692
693 if (!gdb_python_initialized)
694 return 0;
695
696 gdbpy_enter_varobj enter_py (var);
697 return PyObject_HasAttr (printer, gdbpy_children_cst);
698 }
699 #endif
700
701 /* A factory for creating dynamic varobj's iterators. Returns an
702 iterator object suitable for iterating over VAR's children. */
703
704 static struct varobj_iter *
705 varobj_get_iterator (struct varobj *var)
706 {
707 #if HAVE_PYTHON
708 if (var->dynamic->pretty_printer)
709 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
710 #endif
711
712 gdb_assert_not_reached (_("\
713 requested an iterator from a non-dynamic varobj"));
714 }
715
716 /* Release and clear VAR's saved item, if any. */
717
718 static void
719 varobj_clear_saved_item (struct varobj_dynamic *var)
720 {
721 if (var->saved_item != NULL)
722 {
723 value_free (var->saved_item->value);
724 delete var->saved_item;
725 var->saved_item = NULL;
726 }
727 }
728
729 static int
730 update_dynamic_varobj_children (struct varobj *var,
731 VEC (varobj_p) **changed,
732 VEC (varobj_p) **type_changed,
733 VEC (varobj_p) **newobj,
734 VEC (varobj_p) **unchanged,
735 int *cchanged,
736 int update_children,
737 int from,
738 int to)
739 {
740 int i;
741
742 *cchanged = 0;
743
744 if (update_children || var->dynamic->child_iter == NULL)
745 {
746 varobj_iter_delete (var->dynamic->child_iter);
747 var->dynamic->child_iter = varobj_get_iterator (var);
748
749 varobj_clear_saved_item (var->dynamic);
750
751 i = 0;
752
753 if (var->dynamic->child_iter == NULL)
754 return 0;
755 }
756 else
757 i = VEC_length (varobj_p, var->children);
758
759 /* We ask for one extra child, so that MI can report whether there
760 are more children. */
761 for (; to < 0 || i < to + 1; ++i)
762 {
763 varobj_item *item;
764
765 /* See if there was a leftover from last time. */
766 if (var->dynamic->saved_item != NULL)
767 {
768 item = var->dynamic->saved_item;
769 var->dynamic->saved_item = NULL;
770 }
771 else
772 {
773 item = varobj_iter_next (var->dynamic->child_iter);
774 /* Release vitem->value so its lifetime is not bound to the
775 execution of a command. */
776 if (item != NULL && item->value != NULL)
777 release_value_or_incref (item->value);
778 }
779
780 if (item == NULL)
781 {
782 /* Iteration is done. Remove iterator from VAR. */
783 varobj_iter_delete (var->dynamic->child_iter);
784 var->dynamic->child_iter = NULL;
785 break;
786 }
787 /* We don't want to push the extra child on any report list. */
788 if (to < 0 || i < to)
789 {
790 int can_mention = from < 0 || i >= from;
791
792 install_dynamic_child (var, can_mention ? changed : NULL,
793 can_mention ? type_changed : NULL,
794 can_mention ? newobj : NULL,
795 can_mention ? unchanged : NULL,
796 can_mention ? cchanged : NULL, i,
797 item);
798
799 delete item;
800 }
801 else
802 {
803 var->dynamic->saved_item = item;
804
805 /* We want to truncate the child list just before this
806 element. */
807 break;
808 }
809 }
810
811 if (i < VEC_length (varobj_p, var->children))
812 {
813 int j;
814
815 *cchanged = 1;
816 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
817 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
818 VEC_truncate (varobj_p, var->children, i);
819 }
820
821 /* If there are fewer children than requested, note that the list of
822 children changed. */
823 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
824 *cchanged = 1;
825
826 var->num_children = VEC_length (varobj_p, var->children);
827
828 return 1;
829 }
830
831 int
832 varobj_get_num_children (struct varobj *var)
833 {
834 if (var->num_children == -1)
835 {
836 if (varobj_is_dynamic_p (var))
837 {
838 int dummy;
839
840 /* If we have a dynamic varobj, don't report -1 children.
841 So, try to fetch some children first. */
842 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
843 0, 0, 0);
844 }
845 else
846 var->num_children = number_of_children (var);
847 }
848
849 return var->num_children >= 0 ? var->num_children : 0;
850 }
851
852 /* Creates a list of the immediate children of a variable object;
853 the return code is the number of such children or -1 on error. */
854
855 VEC (varobj_p)*
856 varobj_list_children (struct varobj *var, int *from, int *to)
857 {
858 int i, children_changed;
859
860 var->dynamic->children_requested = 1;
861
862 if (varobj_is_dynamic_p (var))
863 {
864 /* This, in theory, can result in the number of children changing without
865 frontend noticing. But well, calling -var-list-children on the same
866 varobj twice is not something a sane frontend would do. */
867 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
868 &children_changed, 0, 0, *to);
869 varobj_restrict_range (var->children, from, to);
870 return var->children;
871 }
872
873 if (var->num_children == -1)
874 var->num_children = number_of_children (var);
875
876 /* If that failed, give up. */
877 if (var->num_children == -1)
878 return var->children;
879
880 /* If we're called when the list of children is not yet initialized,
881 allocate enough elements in it. */
882 while (VEC_length (varobj_p, var->children) < var->num_children)
883 VEC_safe_push (varobj_p, var->children, NULL);
884
885 for (i = 0; i < var->num_children; i++)
886 {
887 varobj_p existing = VEC_index (varobj_p, var->children, i);
888
889 if (existing == NULL)
890 {
891 /* Either it's the first call to varobj_list_children for
892 this variable object, and the child was never created,
893 or it was explicitly deleted by the client. */
894 std::string name = name_of_child (var, i);
895 existing = create_child (var, i, name);
896 VEC_replace (varobj_p, var->children, i, existing);
897 }
898 }
899
900 varobj_restrict_range (var->children, from, to);
901 return var->children;
902 }
903
904 static struct varobj *
905 varobj_add_child (struct varobj *var, struct varobj_item *item)
906 {
907 varobj_p v = create_child_with_value (var,
908 VEC_length (varobj_p, var->children),
909 item);
910
911 VEC_safe_push (varobj_p, var->children, v);
912 return v;
913 }
914
915 /* Obtain the type of an object Variable as a string similar to the one gdb
916 prints on the console. The caller is responsible for freeing the string.
917 */
918
919 std::string
920 varobj_get_type (struct varobj *var)
921 {
922 /* For the "fake" variables, do not return a type. (Its type is
923 NULL, too.)
924 Do not return a type for invalid variables as well. */
925 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
926 return std::string ();
927
928 return type_to_string (var->type);
929 }
930
931 /* Obtain the type of an object variable. */
932
933 struct type *
934 varobj_get_gdb_type (const struct varobj *var)
935 {
936 return var->type;
937 }
938
939 /* Is VAR a path expression parent, i.e., can it be used to construct
940 a valid path expression? */
941
942 static int
943 is_path_expr_parent (const struct varobj *var)
944 {
945 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
946 return var->root->lang_ops->is_path_expr_parent (var);
947 }
948
949 /* Is VAR a path expression parent, i.e., can it be used to construct
950 a valid path expression? By default we assume any VAR can be a path
951 parent. */
952
953 int
954 varobj_default_is_path_expr_parent (const struct varobj *var)
955 {
956 return 1;
957 }
958
959 /* Return the path expression parent for VAR. */
960
961 const struct varobj *
962 varobj_get_path_expr_parent (const struct varobj *var)
963 {
964 const struct varobj *parent = var;
965
966 while (!is_root_p (parent) && !is_path_expr_parent (parent))
967 parent = parent->parent;
968
969 return parent;
970 }
971
972 /* Return a pointer to the full rooted expression of varobj VAR.
973 If it has not been computed yet, compute it. */
974
975 const char *
976 varobj_get_path_expr (const struct varobj *var)
977 {
978 if (var->path_expr.empty ())
979 {
980 /* For root varobjs, we initialize path_expr
981 when creating varobj, so here it should be
982 child varobj. */
983 struct varobj *mutable_var = (struct varobj *) var;
984 gdb_assert (!is_root_p (var));
985
986 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
987 }
988
989 return var->path_expr.c_str ();
990 }
991
992 const struct language_defn *
993 varobj_get_language (const struct varobj *var)
994 {
995 return var->root->exp->language_defn;
996 }
997
998 int
999 varobj_get_attributes (const struct varobj *var)
1000 {
1001 int attributes = 0;
1002
1003 if (varobj_editable_p (var))
1004 /* FIXME: define masks for attributes. */
1005 attributes |= 0x00000001; /* Editable */
1006
1007 return attributes;
1008 }
1009
1010 /* Return true if VAR is a dynamic varobj. */
1011
1012 int
1013 varobj_is_dynamic_p (const struct varobj *var)
1014 {
1015 return var->dynamic->pretty_printer != NULL;
1016 }
1017
1018 std::string
1019 varobj_get_formatted_value (struct varobj *var,
1020 enum varobj_display_formats format)
1021 {
1022 return my_value_of_variable (var, format);
1023 }
1024
1025 std::string
1026 varobj_get_value (struct varobj *var)
1027 {
1028 return my_value_of_variable (var, var->format);
1029 }
1030
1031 /* Set the value of an object variable (if it is editable) to the
1032 value of the given expression. */
1033 /* Note: Invokes functions that can call error(). */
1034
1035 int
1036 varobj_set_value (struct varobj *var, const char *expression)
1037 {
1038 struct value *val = NULL; /* Initialize to keep gcc happy. */
1039 /* The argument "expression" contains the variable's new value.
1040 We need to first construct a legal expression for this -- ugh! */
1041 /* Does this cover all the bases? */
1042 struct value *value = NULL; /* Initialize to keep gcc happy. */
1043 int saved_input_radix = input_radix;
1044 const char *s = expression;
1045
1046 gdb_assert (varobj_editable_p (var));
1047
1048 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1049 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1050 TRY
1051 {
1052 value = evaluate_expression (exp.get ());
1053 }
1054
1055 CATCH (except, RETURN_MASK_ERROR)
1056 {
1057 /* We cannot proceed without a valid expression. */
1058 return 0;
1059 }
1060 END_CATCH
1061
1062 /* All types that are editable must also be changeable. */
1063 gdb_assert (varobj_value_is_changeable_p (var));
1064
1065 /* The value of a changeable variable object must not be lazy. */
1066 gdb_assert (!value_lazy (var->value));
1067
1068 /* Need to coerce the input. We want to check if the
1069 value of the variable object will be different
1070 after assignment, and the first thing value_assign
1071 does is coerce the input.
1072 For example, if we are assigning an array to a pointer variable we
1073 should compare the pointer with the array's address, not with the
1074 array's content. */
1075 value = coerce_array (value);
1076
1077 /* The new value may be lazy. value_assign, or
1078 rather value_contents, will take care of this. */
1079 TRY
1080 {
1081 val = value_assign (var->value, value);
1082 }
1083
1084 CATCH (except, RETURN_MASK_ERROR)
1085 {
1086 return 0;
1087 }
1088 END_CATCH
1089
1090 /* If the value has changed, record it, so that next -var-update can
1091 report this change. If a variable had a value of '1', we've set it
1092 to '333' and then set again to '1', when -var-update will report this
1093 variable as changed -- because the first assignment has set the
1094 'updated' flag. There's no need to optimize that, because return value
1095 of -var-update should be considered an approximation. */
1096 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1097 input_radix = saved_input_radix;
1098 return 1;
1099 }
1100
1101 #if HAVE_PYTHON
1102
1103 /* A helper function to install a constructor function and visualizer
1104 in a varobj_dynamic. */
1105
1106 static void
1107 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1108 PyObject *visualizer)
1109 {
1110 Py_XDECREF (var->constructor);
1111 var->constructor = constructor;
1112
1113 Py_XDECREF (var->pretty_printer);
1114 var->pretty_printer = visualizer;
1115
1116 varobj_iter_delete (var->child_iter);
1117 var->child_iter = NULL;
1118 }
1119
1120 /* Install the default visualizer for VAR. */
1121
1122 static void
1123 install_default_visualizer (struct varobj *var)
1124 {
1125 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1126 if (CPLUS_FAKE_CHILD (var))
1127 return;
1128
1129 if (pretty_printing)
1130 {
1131 PyObject *pretty_printer = NULL;
1132
1133 if (var->value)
1134 {
1135 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1136 if (! pretty_printer)
1137 {
1138 gdbpy_print_stack ();
1139 error (_("Cannot instantiate printer for default visualizer"));
1140 }
1141 }
1142
1143 if (pretty_printer == Py_None)
1144 {
1145 Py_DECREF (pretty_printer);
1146 pretty_printer = NULL;
1147 }
1148
1149 install_visualizer (var->dynamic, NULL, pretty_printer);
1150 }
1151 }
1152
1153 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1154 make a new object. */
1155
1156 static void
1157 construct_visualizer (struct varobj *var, PyObject *constructor)
1158 {
1159 PyObject *pretty_printer;
1160
1161 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1162 if (CPLUS_FAKE_CHILD (var))
1163 return;
1164
1165 Py_INCREF (constructor);
1166 if (constructor == Py_None)
1167 pretty_printer = NULL;
1168 else
1169 {
1170 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1171 if (! pretty_printer)
1172 {
1173 gdbpy_print_stack ();
1174 Py_DECREF (constructor);
1175 constructor = Py_None;
1176 Py_INCREF (constructor);
1177 }
1178
1179 if (pretty_printer == Py_None)
1180 {
1181 Py_DECREF (pretty_printer);
1182 pretty_printer = NULL;
1183 }
1184 }
1185
1186 install_visualizer (var->dynamic, constructor, pretty_printer);
1187 }
1188
1189 #endif /* HAVE_PYTHON */
1190
1191 /* A helper function for install_new_value. This creates and installs
1192 a visualizer for VAR, if appropriate. */
1193
1194 static void
1195 install_new_value_visualizer (struct varobj *var)
1196 {
1197 #if HAVE_PYTHON
1198 /* If the constructor is None, then we want the raw value. If VAR
1199 does not have a value, just skip this. */
1200 if (!gdb_python_initialized)
1201 return;
1202
1203 if (var->dynamic->constructor != Py_None && var->value != NULL)
1204 {
1205 gdbpy_enter_varobj enter_py (var);
1206
1207 if (var->dynamic->constructor == NULL)
1208 install_default_visualizer (var);
1209 else
1210 construct_visualizer (var, var->dynamic->constructor);
1211 }
1212 #else
1213 /* Do nothing. */
1214 #endif
1215 }
1216
1217 /* When using RTTI to determine variable type it may be changed in runtime when
1218 the variable value is changed. This function checks whether type of varobj
1219 VAR will change when a new value NEW_VALUE is assigned and if it is so
1220 updates the type of VAR. */
1221
1222 static int
1223 update_type_if_necessary (struct varobj *var, struct value *new_value)
1224 {
1225 if (new_value)
1226 {
1227 struct value_print_options opts;
1228
1229 get_user_print_options (&opts);
1230 if (opts.objectprint)
1231 {
1232 struct type *new_type = value_actual_type (new_value, 0, 0);
1233 std::string new_type_str = type_to_string (new_type);
1234 std::string curr_type_str = varobj_get_type (var);
1235
1236 /* Did the type name change? */
1237 if (curr_type_str != new_type_str)
1238 {
1239 var->type = new_type;
1240
1241 /* This information may be not valid for a new type. */
1242 varobj_delete (var, 1);
1243 VEC_free (varobj_p, var->children);
1244 var->num_children = -1;
1245 return 1;
1246 }
1247 }
1248 }
1249
1250 return 0;
1251 }
1252
1253 /* Assign a new value to a variable object. If INITIAL is non-zero,
1254 this is the first assignement after the variable object was just
1255 created, or changed type. In that case, just assign the value
1256 and return 0.
1257 Otherwise, assign the new value, and return 1 if the value is
1258 different from the current one, 0 otherwise. The comparison is
1259 done on textual representation of value. Therefore, some types
1260 need not be compared. E.g. for structures the reported value is
1261 always "{...}", so no comparison is necessary here. If the old
1262 value was NULL and new one is not, or vice versa, we always return 1.
1263
1264 The VALUE parameter should not be released -- the function will
1265 take care of releasing it when needed. */
1266 static int
1267 install_new_value (struct varobj *var, struct value *value, int initial)
1268 {
1269 int changeable;
1270 int need_to_fetch;
1271 int changed = 0;
1272 int intentionally_not_fetched = 0;
1273
1274 /* We need to know the varobj's type to decide if the value should
1275 be fetched or not. C++ fake children (public/protected/private)
1276 don't have a type. */
1277 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1278 changeable = varobj_value_is_changeable_p (var);
1279
1280 /* If the type has custom visualizer, we consider it to be always
1281 changeable. FIXME: need to make sure this behaviour will not
1282 mess up read-sensitive values. */
1283 if (var->dynamic->pretty_printer != NULL)
1284 changeable = 1;
1285
1286 need_to_fetch = changeable;
1287
1288 /* We are not interested in the address of references, and given
1289 that in C++ a reference is not rebindable, it cannot
1290 meaningfully change. So, get hold of the real value. */
1291 if (value)
1292 value = coerce_ref (value);
1293
1294 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1295 /* For unions, we need to fetch the value implicitly because
1296 of implementation of union member fetch. When gdb
1297 creates a value for a field and the value of the enclosing
1298 structure is not lazy, it immediately copies the necessary
1299 bytes from the enclosing values. If the enclosing value is
1300 lazy, the call to value_fetch_lazy on the field will read
1301 the data from memory. For unions, that means we'll read the
1302 same memory more than once, which is not desirable. So
1303 fetch now. */
1304 need_to_fetch = 1;
1305
1306 /* The new value might be lazy. If the type is changeable,
1307 that is we'll be comparing values of this type, fetch the
1308 value now. Otherwise, on the next update the old value
1309 will be lazy, which means we've lost that old value. */
1310 if (need_to_fetch && value && value_lazy (value))
1311 {
1312 const struct varobj *parent = var->parent;
1313 int frozen = var->frozen;
1314
1315 for (; !frozen && parent; parent = parent->parent)
1316 frozen |= parent->frozen;
1317
1318 if (frozen && initial)
1319 {
1320 /* For variables that are frozen, or are children of frozen
1321 variables, we don't do fetch on initial assignment.
1322 For non-initial assignemnt we do the fetch, since it means we're
1323 explicitly asked to compare the new value with the old one. */
1324 intentionally_not_fetched = 1;
1325 }
1326 else
1327 {
1328
1329 TRY
1330 {
1331 value_fetch_lazy (value);
1332 }
1333
1334 CATCH (except, RETURN_MASK_ERROR)
1335 {
1336 /* Set the value to NULL, so that for the next -var-update,
1337 we don't try to compare the new value with this value,
1338 that we couldn't even read. */
1339 value = NULL;
1340 }
1341 END_CATCH
1342 }
1343 }
1344
1345 /* Get a reference now, before possibly passing it to any Python
1346 code that might release it. */
1347 if (value != NULL)
1348 value_incref (value);
1349
1350 /* Below, we'll be comparing string rendering of old and new
1351 values. Don't get string rendering if the value is
1352 lazy -- if it is, the code above has decided that the value
1353 should not be fetched. */
1354 std::string print_value;
1355 if (value != NULL && !value_lazy (value)
1356 && var->dynamic->pretty_printer == NULL)
1357 print_value = varobj_value_get_print_value (value, var->format, var);
1358
1359 /* If the type is changeable, compare the old and the new values.
1360 If this is the initial assignment, we don't have any old value
1361 to compare with. */
1362 if (!initial && changeable)
1363 {
1364 /* If the value of the varobj was changed by -var-set-value,
1365 then the value in the varobj and in the target is the same.
1366 However, that value is different from the value that the
1367 varobj had after the previous -var-update. So need to the
1368 varobj as changed. */
1369 if (var->updated)
1370 {
1371 changed = 1;
1372 }
1373 else if (var->dynamic->pretty_printer == NULL)
1374 {
1375 /* Try to compare the values. That requires that both
1376 values are non-lazy. */
1377 if (var->not_fetched && value_lazy (var->value))
1378 {
1379 /* This is a frozen varobj and the value was never read.
1380 Presumably, UI shows some "never read" indicator.
1381 Now that we've fetched the real value, we need to report
1382 this varobj as changed so that UI can show the real
1383 value. */
1384 changed = 1;
1385 }
1386 else if (var->value == NULL && value == NULL)
1387 /* Equal. */
1388 ;
1389 else if (var->value == NULL || value == NULL)
1390 {
1391 changed = 1;
1392 }
1393 else
1394 {
1395 gdb_assert (!value_lazy (var->value));
1396 gdb_assert (!value_lazy (value));
1397
1398 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1399 if (var->print_value != print_value)
1400 changed = 1;
1401 }
1402 }
1403 }
1404
1405 if (!initial && !changeable)
1406 {
1407 /* For values that are not changeable, we don't compare the values.
1408 However, we want to notice if a value was not NULL and now is NULL,
1409 or vise versa, so that we report when top-level varobjs come in scope
1410 and leave the scope. */
1411 changed = (var->value != NULL) != (value != NULL);
1412 }
1413
1414 /* We must always keep the new value, since children depend on it. */
1415 if (var->value != NULL && var->value != value)
1416 value_free (var->value);
1417 var->value = value;
1418 if (value && value_lazy (value) && intentionally_not_fetched)
1419 var->not_fetched = 1;
1420 else
1421 var->not_fetched = 0;
1422 var->updated = 0;
1423
1424 install_new_value_visualizer (var);
1425
1426 /* If we installed a pretty-printer, re-compare the printed version
1427 to see if the variable changed. */
1428 if (var->dynamic->pretty_printer != NULL)
1429 {
1430 print_value = varobj_value_get_print_value (var->value, var->format,
1431 var);
1432 if ((var->print_value.empty () && !print_value.empty ())
1433 || (!var->print_value.empty () && print_value.empty ())
1434 || (!var->print_value.empty () && !print_value.empty ()
1435 && var->print_value != print_value))
1436 changed = 1;
1437 }
1438 var->print_value = print_value;
1439
1440 gdb_assert (!var->value || value_type (var->value));
1441
1442 return changed;
1443 }
1444
1445 /* Return the requested range for a varobj. VAR is the varobj. FROM
1446 and TO are out parameters; *FROM and *TO will be set to the
1447 selected sub-range of VAR. If no range was selected using
1448 -var-set-update-range, then both will be -1. */
1449 void
1450 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1451 {
1452 *from = var->from;
1453 *to = var->to;
1454 }
1455
1456 /* Set the selected sub-range of children of VAR to start at index
1457 FROM and end at index TO. If either FROM or TO is less than zero,
1458 this is interpreted as a request for all children. */
1459 void
1460 varobj_set_child_range (struct varobj *var, int from, int to)
1461 {
1462 var->from = from;
1463 var->to = to;
1464 }
1465
1466 void
1467 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1468 {
1469 #if HAVE_PYTHON
1470 PyObject *mainmod;
1471
1472 if (!gdb_python_initialized)
1473 return;
1474
1475 gdbpy_enter_varobj enter_py (var);
1476
1477 mainmod = PyImport_AddModule ("__main__");
1478 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1479 Py_INCREF (globals.get ());
1480
1481 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1482 globals.get (), globals.get ()));
1483
1484 if (constructor == NULL)
1485 {
1486 gdbpy_print_stack ();
1487 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1488 }
1489
1490 construct_visualizer (var, constructor.get ());
1491
1492 /* If there are any children now, wipe them. */
1493 varobj_delete (var, 1 /* children only */);
1494 var->num_children = -1;
1495 #else
1496 error (_("Python support required"));
1497 #endif
1498 }
1499
1500 /* If NEW_VALUE is the new value of the given varobj (var), return
1501 non-zero if var has mutated. In other words, if the type of
1502 the new value is different from the type of the varobj's old
1503 value.
1504
1505 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1506
1507 static int
1508 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1509 struct type *new_type)
1510 {
1511 /* If we haven't previously computed the number of children in var,
1512 it does not matter from the front-end's perspective whether
1513 the type has mutated or not. For all intents and purposes,
1514 it has not mutated. */
1515 if (var->num_children < 0)
1516 return 0;
1517
1518 if (var->root->lang_ops->value_has_mutated)
1519 {
1520 /* The varobj module, when installing new values, explicitly strips
1521 references, saying that we're not interested in those addresses.
1522 But detection of mutation happens before installing the new
1523 value, so our value may be a reference that we need to strip
1524 in order to remain consistent. */
1525 if (new_value != NULL)
1526 new_value = coerce_ref (new_value);
1527 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1528 }
1529 else
1530 return 0;
1531 }
1532
1533 /* Update the values for a variable and its children. This is a
1534 two-pronged attack. First, re-parse the value for the root's
1535 expression to see if it's changed. Then go all the way
1536 through its children, reconstructing them and noting if they've
1537 changed.
1538
1539 The EXPLICIT parameter specifies if this call is result
1540 of MI request to update this specific variable, or
1541 result of implicit -var-update *. For implicit request, we don't
1542 update frozen variables.
1543
1544 NOTE: This function may delete the caller's varobj. If it
1545 returns TYPE_CHANGED, then it has done this and VARP will be modified
1546 to point to the new varobj. */
1547
1548 VEC(varobj_update_result) *
1549 varobj_update (struct varobj **varp, int is_explicit)
1550 {
1551 int type_changed = 0;
1552 int i;
1553 struct value *newobj;
1554 VEC (varobj_update_result) *stack = NULL;
1555 VEC (varobj_update_result) *result = NULL;
1556
1557 /* Frozen means frozen -- we don't check for any change in
1558 this varobj, including its going out of scope, or
1559 changing type. One use case for frozen varobjs is
1560 retaining previously evaluated expressions, and we don't
1561 want them to be reevaluated at all. */
1562 if (!is_explicit && (*varp)->frozen)
1563 return result;
1564
1565 if (!(*varp)->root->is_valid)
1566 {
1567 varobj_update_result r = {0};
1568
1569 r.varobj = *varp;
1570 r.status = VAROBJ_INVALID;
1571 VEC_safe_push (varobj_update_result, result, &r);
1572 return result;
1573 }
1574
1575 if ((*varp)->root->rootvar == *varp)
1576 {
1577 varobj_update_result r = {0};
1578
1579 r.varobj = *varp;
1580 r.status = VAROBJ_IN_SCOPE;
1581
1582 /* Update the root variable. value_of_root can return NULL
1583 if the variable is no longer around, i.e. we stepped out of
1584 the frame in which a local existed. We are letting the
1585 value_of_root variable dispose of the varobj if the type
1586 has changed. */
1587 newobj = value_of_root (varp, &type_changed);
1588 if (update_type_if_necessary(*varp, newobj))
1589 type_changed = 1;
1590 r.varobj = *varp;
1591 r.type_changed = type_changed;
1592 if (install_new_value ((*varp), newobj, type_changed))
1593 r.changed = 1;
1594
1595 if (newobj == NULL)
1596 r.status = VAROBJ_NOT_IN_SCOPE;
1597 r.value_installed = 1;
1598
1599 if (r.status == VAROBJ_NOT_IN_SCOPE)
1600 {
1601 if (r.type_changed || r.changed)
1602 VEC_safe_push (varobj_update_result, result, &r);
1603 return result;
1604 }
1605
1606 VEC_safe_push (varobj_update_result, stack, &r);
1607 }
1608 else
1609 {
1610 varobj_update_result r = {0};
1611
1612 r.varobj = *varp;
1613 VEC_safe_push (varobj_update_result, stack, &r);
1614 }
1615
1616 /* Walk through the children, reconstructing them all. */
1617 while (!VEC_empty (varobj_update_result, stack))
1618 {
1619 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1620 struct varobj *v = r.varobj;
1621
1622 VEC_pop (varobj_update_result, stack);
1623
1624 /* Update this variable, unless it's a root, which is already
1625 updated. */
1626 if (!r.value_installed)
1627 {
1628 struct type *new_type;
1629
1630 newobj = value_of_child (v->parent, v->index);
1631 if (update_type_if_necessary(v, newobj))
1632 r.type_changed = 1;
1633 if (newobj)
1634 new_type = value_type (newobj);
1635 else
1636 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1637
1638 if (varobj_value_has_mutated (v, newobj, new_type))
1639 {
1640 /* The children are no longer valid; delete them now.
1641 Report the fact that its type changed as well. */
1642 varobj_delete (v, 1 /* only_children */);
1643 v->num_children = -1;
1644 v->to = -1;
1645 v->from = -1;
1646 v->type = new_type;
1647 r.type_changed = 1;
1648 }
1649
1650 if (install_new_value (v, newobj, r.type_changed))
1651 {
1652 r.changed = 1;
1653 v->updated = 0;
1654 }
1655 }
1656
1657 /* We probably should not get children of a dynamic varobj, but
1658 for which -var-list-children was never invoked. */
1659 if (varobj_is_dynamic_p (v))
1660 {
1661 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1662 VEC (varobj_p) *newobj = 0;
1663 int i, children_changed = 0;
1664
1665 if (v->frozen)
1666 continue;
1667
1668 if (!v->dynamic->children_requested)
1669 {
1670 int dummy;
1671
1672 /* If we initially did not have potential children, but
1673 now we do, consider the varobj as changed.
1674 Otherwise, if children were never requested, consider
1675 it as unchanged -- presumably, such varobj is not yet
1676 expanded in the UI, so we need not bother getting
1677 it. */
1678 if (!varobj_has_more (v, 0))
1679 {
1680 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1681 &dummy, 0, 0, 0);
1682 if (varobj_has_more (v, 0))
1683 r.changed = 1;
1684 }
1685
1686 if (r.changed)
1687 VEC_safe_push (varobj_update_result, result, &r);
1688
1689 continue;
1690 }
1691
1692 /* If update_dynamic_varobj_children returns 0, then we have
1693 a non-conforming pretty-printer, so we skip it. */
1694 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1695 &unchanged, &children_changed, 1,
1696 v->from, v->to))
1697 {
1698 if (children_changed || newobj)
1699 {
1700 r.children_changed = 1;
1701 r.newobj = newobj;
1702 }
1703 /* Push in reverse order so that the first child is
1704 popped from the work stack first, and so will be
1705 added to result first. This does not affect
1706 correctness, just "nicer". */
1707 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1708 {
1709 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1710 varobj_update_result r = {0};
1711
1712 /* Type may change only if value was changed. */
1713 r.varobj = tmp;
1714 r.changed = 1;
1715 r.type_changed = 1;
1716 r.value_installed = 1;
1717 VEC_safe_push (varobj_update_result, stack, &r);
1718 }
1719 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1720 {
1721 varobj_p tmp = VEC_index (varobj_p, changed, i);
1722 varobj_update_result r = {0};
1723
1724 r.varobj = tmp;
1725 r.changed = 1;
1726 r.value_installed = 1;
1727 VEC_safe_push (varobj_update_result, stack, &r);
1728 }
1729 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1730 {
1731 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1732
1733 if (!tmp->frozen)
1734 {
1735 varobj_update_result r = {0};
1736
1737 r.varobj = tmp;
1738 r.value_installed = 1;
1739 VEC_safe_push (varobj_update_result, stack, &r);
1740 }
1741 }
1742 if (r.changed || r.children_changed)
1743 VEC_safe_push (varobj_update_result, result, &r);
1744
1745 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1746 because NEW has been put into the result vector. */
1747 VEC_free (varobj_p, changed);
1748 VEC_free (varobj_p, type_changed);
1749 VEC_free (varobj_p, unchanged);
1750
1751 continue;
1752 }
1753 }
1754
1755 /* Push any children. Use reverse order so that the first
1756 child is popped from the work stack first, and so
1757 will be added to result first. This does not
1758 affect correctness, just "nicer". */
1759 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1760 {
1761 varobj_p c = VEC_index (varobj_p, v->children, i);
1762
1763 /* Child may be NULL if explicitly deleted by -var-delete. */
1764 if (c != NULL && !c->frozen)
1765 {
1766 varobj_update_result r = {0};
1767
1768 r.varobj = c;
1769 VEC_safe_push (varobj_update_result, stack, &r);
1770 }
1771 }
1772
1773 if (r.changed || r.type_changed)
1774 VEC_safe_push (varobj_update_result, result, &r);
1775 }
1776
1777 VEC_free (varobj_update_result, stack);
1778
1779 return result;
1780 }
1781 \f
1782
1783 /* Helper functions */
1784
1785 /*
1786 * Variable object construction/destruction
1787 */
1788
1789 static int
1790 delete_variable (struct varobj *var, int only_children_p)
1791 {
1792 int delcount = 0;
1793
1794 delete_variable_1 (&delcount, var, only_children_p,
1795 1 /* remove_from_parent_p */ );
1796
1797 return delcount;
1798 }
1799
1800 /* Delete the variable object VAR and its children. */
1801 /* IMPORTANT NOTE: If we delete a variable which is a child
1802 and the parent is not removed we dump core. It must be always
1803 initially called with remove_from_parent_p set. */
1804 static void
1805 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1806 int remove_from_parent_p)
1807 {
1808 int i;
1809
1810 /* Delete any children of this variable, too. */
1811 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1812 {
1813 varobj_p child = VEC_index (varobj_p, var->children, i);
1814
1815 if (!child)
1816 continue;
1817 if (!remove_from_parent_p)
1818 child->parent = NULL;
1819 delete_variable_1 (delcountp, child, 0, only_children_p);
1820 }
1821 VEC_free (varobj_p, var->children);
1822
1823 /* if we were called to delete only the children we are done here. */
1824 if (only_children_p)
1825 return;
1826
1827 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1828 /* If the name is empty, this is a temporary variable, that has not
1829 yet been installed, don't report it, it belongs to the caller... */
1830 if (!var->obj_name.empty ())
1831 {
1832 *delcountp = *delcountp + 1;
1833 }
1834
1835 /* If this variable has a parent, remove it from its parent's list. */
1836 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1837 (as indicated by remove_from_parent_p) we don't bother doing an
1838 expensive list search to find the element to remove when we are
1839 discarding the list afterwards. */
1840 if ((remove_from_parent_p) && (var->parent != NULL))
1841 {
1842 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1843 }
1844
1845 if (!var->obj_name.empty ())
1846 uninstall_variable (var);
1847
1848 /* Free memory associated with this variable. */
1849 free_variable (var);
1850 }
1851
1852 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1853 static int
1854 install_variable (struct varobj *var)
1855 {
1856 struct vlist *cv;
1857 struct vlist *newvl;
1858 const char *chp;
1859 unsigned int index = 0;
1860 unsigned int i = 1;
1861
1862 for (chp = var->obj_name.c_str (); *chp; chp++)
1863 {
1864 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1865 }
1866
1867 cv = *(varobj_table + index);
1868 while (cv != NULL && cv->var->obj_name != var->obj_name)
1869 cv = cv->next;
1870
1871 if (cv != NULL)
1872 error (_("Duplicate variable object name"));
1873
1874 /* Add varobj to hash table. */
1875 newvl = XNEW (struct vlist);
1876 newvl->next = *(varobj_table + index);
1877 newvl->var = var;
1878 *(varobj_table + index) = newvl;
1879
1880 /* If root, add varobj to root list. */
1881 if (is_root_p (var))
1882 {
1883 /* Add to list of root variables. */
1884 if (rootlist == NULL)
1885 var->root->next = NULL;
1886 else
1887 var->root->next = rootlist;
1888 rootlist = var->root;
1889 }
1890
1891 return 1; /* OK */
1892 }
1893
1894 /* Unistall the object VAR. */
1895 static void
1896 uninstall_variable (struct varobj *var)
1897 {
1898 struct vlist *cv;
1899 struct vlist *prev;
1900 struct varobj_root *cr;
1901 struct varobj_root *prer;
1902 const char *chp;
1903 unsigned int index = 0;
1904 unsigned int i = 1;
1905
1906 /* Remove varobj from hash table. */
1907 for (chp = var->obj_name.c_str (); *chp; chp++)
1908 {
1909 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1910 }
1911
1912 cv = *(varobj_table + index);
1913 prev = NULL;
1914 while (cv != NULL && cv->var->obj_name != var->obj_name)
1915 {
1916 prev = cv;
1917 cv = cv->next;
1918 }
1919
1920 if (varobjdebug)
1921 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1922
1923 if (cv == NULL)
1924 {
1925 warning
1926 ("Assertion failed: Could not find variable object \"%s\" to delete",
1927 var->obj_name.c_str ());
1928 return;
1929 }
1930
1931 if (prev == NULL)
1932 *(varobj_table + index) = cv->next;
1933 else
1934 prev->next = cv->next;
1935
1936 xfree (cv);
1937
1938 /* If root, remove varobj from root list. */
1939 if (is_root_p (var))
1940 {
1941 /* Remove from list of root variables. */
1942 if (rootlist == var->root)
1943 rootlist = var->root->next;
1944 else
1945 {
1946 prer = NULL;
1947 cr = rootlist;
1948 while ((cr != NULL) && (cr->rootvar != var))
1949 {
1950 prer = cr;
1951 cr = cr->next;
1952 }
1953 if (cr == NULL)
1954 {
1955 warning (_("Assertion failed: Could not find "
1956 "varobj \"%s\" in root list"),
1957 var->obj_name.c_str ());
1958 return;
1959 }
1960 if (prer == NULL)
1961 rootlist = NULL;
1962 else
1963 prer->next = cr->next;
1964 }
1965 }
1966
1967 }
1968
1969 /* Create and install a child of the parent of the given name.
1970
1971 The created VAROBJ takes ownership of the allocated NAME. */
1972
1973 static struct varobj *
1974 create_child (struct varobj *parent, int index, std::string &name)
1975 {
1976 struct varobj_item item;
1977
1978 std::swap (item.name, name);
1979 item.value = value_of_child (parent, index);
1980
1981 return create_child_with_value (parent, index, &item);
1982 }
1983
1984 static struct varobj *
1985 create_child_with_value (struct varobj *parent, int index,
1986 struct varobj_item *item)
1987 {
1988 struct varobj *child;
1989
1990 child = new_variable ();
1991
1992 /* NAME is allocated by caller. */
1993 std::swap (child->name, item->name);
1994 child->index = index;
1995 child->parent = parent;
1996 child->root = parent->root;
1997
1998 if (varobj_is_anonymous_child (child))
1999 child->obj_name = string_printf ("%s.%d_anonymous",
2000 parent->obj_name.c_str (), index);
2001 else
2002 child->obj_name = string_printf ("%s.%s",
2003 parent->obj_name.c_str (),
2004 child->name.c_str ());
2005
2006 install_variable (child);
2007
2008 /* Compute the type of the child. Must do this before
2009 calling install_new_value. */
2010 if (item->value != NULL)
2011 /* If the child had no evaluation errors, var->value
2012 will be non-NULL and contain a valid type. */
2013 child->type = value_actual_type (item->value, 0, NULL);
2014 else
2015 /* Otherwise, we must compute the type. */
2016 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2017 child->index);
2018 install_new_value (child, item->value, 1);
2019
2020 return child;
2021 }
2022 \f
2023
2024 /*
2025 * Miscellaneous utility functions.
2026 */
2027
2028 /* Allocate memory and initialize a new variable. */
2029 static struct varobj *
2030 new_variable (void)
2031 {
2032 struct varobj *var;
2033
2034 var = new varobj ();
2035 var->index = -1;
2036 var->type = NULL;
2037 var->value = NULL;
2038 var->num_children = -1;
2039 var->parent = NULL;
2040 var->children = NULL;
2041 var->format = FORMAT_NATURAL;
2042 var->root = NULL;
2043 var->updated = 0;
2044 var->frozen = 0;
2045 var->not_fetched = 0;
2046 var->dynamic = XNEW (struct varobj_dynamic);
2047 var->dynamic->children_requested = 0;
2048 var->from = -1;
2049 var->to = -1;
2050 var->dynamic->constructor = 0;
2051 var->dynamic->pretty_printer = 0;
2052 var->dynamic->child_iter = 0;
2053 var->dynamic->saved_item = 0;
2054
2055 return var;
2056 }
2057
2058 /* Allocate memory and initialize a new root variable. */
2059 static struct varobj *
2060 new_root_variable (void)
2061 {
2062 struct varobj *var = new_variable ();
2063
2064 var->root = new varobj_root ();
2065 var->root->lang_ops = NULL;
2066 var->root->exp = NULL;
2067 var->root->valid_block = NULL;
2068 var->root->frame = null_frame_id;
2069 var->root->floating = 0;
2070 var->root->rootvar = NULL;
2071 var->root->is_valid = 1;
2072
2073 return var;
2074 }
2075
2076 /* Free any allocated memory associated with VAR. */
2077 static void
2078 free_variable (struct varobj *var)
2079 {
2080 #if HAVE_PYTHON
2081 if (var->dynamic->pretty_printer != NULL)
2082 {
2083 gdbpy_enter_varobj enter_py (var);
2084
2085 Py_XDECREF (var->dynamic->constructor);
2086 Py_XDECREF (var->dynamic->pretty_printer);
2087 }
2088 #endif
2089
2090 varobj_iter_delete (var->dynamic->child_iter);
2091 varobj_clear_saved_item (var->dynamic);
2092 value_free (var->value);
2093
2094 if (is_root_p (var))
2095 delete var->root;
2096
2097 xfree (var->dynamic);
2098 delete var;
2099 }
2100
2101 static void
2102 do_free_variable_cleanup (void *var)
2103 {
2104 free_variable ((struct varobj *) var);
2105 }
2106
2107 static struct cleanup *
2108 make_cleanup_free_variable (struct varobj *var)
2109 {
2110 return make_cleanup (do_free_variable_cleanup, var);
2111 }
2112
2113 /* Return the type of the value that's stored in VAR,
2114 or that would have being stored there if the
2115 value were accessible.
2116
2117 This differs from VAR->type in that VAR->type is always
2118 the true type of the expession in the source language.
2119 The return value of this function is the type we're
2120 actually storing in varobj, and using for displaying
2121 the values and for comparing previous and new values.
2122
2123 For example, top-level references are always stripped. */
2124 struct type *
2125 varobj_get_value_type (const struct varobj *var)
2126 {
2127 struct type *type;
2128
2129 if (var->value)
2130 type = value_type (var->value);
2131 else
2132 type = var->type;
2133
2134 type = check_typedef (type);
2135
2136 if (TYPE_IS_REFERENCE (type))
2137 type = get_target_type (type);
2138
2139 type = check_typedef (type);
2140
2141 return type;
2142 }
2143
2144 /* What is the default display for this variable? We assume that
2145 everything is "natural". Any exceptions? */
2146 static enum varobj_display_formats
2147 variable_default_display (struct varobj *var)
2148 {
2149 return FORMAT_NATURAL;
2150 }
2151
2152 /*
2153 * Language-dependencies
2154 */
2155
2156 /* Common entry points */
2157
2158 /* Return the number of children for a given variable.
2159 The result of this function is defined by the language
2160 implementation. The number of children returned by this function
2161 is the number of children that the user will see in the variable
2162 display. */
2163 static int
2164 number_of_children (const struct varobj *var)
2165 {
2166 return (*var->root->lang_ops->number_of_children) (var);
2167 }
2168
2169 /* What is the expression for the root varobj VAR? */
2170
2171 static std::string
2172 name_of_variable (const struct varobj *var)
2173 {
2174 return (*var->root->lang_ops->name_of_variable) (var);
2175 }
2176
2177 /* What is the name of the INDEX'th child of VAR? */
2178
2179 static std::string
2180 name_of_child (struct varobj *var, int index)
2181 {
2182 return (*var->root->lang_ops->name_of_child) (var, index);
2183 }
2184
2185 /* If frame associated with VAR can be found, switch
2186 to it and return 1. Otherwise, return 0. */
2187
2188 static int
2189 check_scope (const struct varobj *var)
2190 {
2191 struct frame_info *fi;
2192 int scope;
2193
2194 fi = frame_find_by_id (var->root->frame);
2195 scope = fi != NULL;
2196
2197 if (fi)
2198 {
2199 CORE_ADDR pc = get_frame_pc (fi);
2200
2201 if (pc < BLOCK_START (var->root->valid_block) ||
2202 pc >= BLOCK_END (var->root->valid_block))
2203 scope = 0;
2204 else
2205 select_frame (fi);
2206 }
2207 return scope;
2208 }
2209
2210 /* Helper function to value_of_root. */
2211
2212 static struct value *
2213 value_of_root_1 (struct varobj **var_handle)
2214 {
2215 struct value *new_val = NULL;
2216 struct varobj *var = *var_handle;
2217 int within_scope = 0;
2218
2219 /* Only root variables can be updated... */
2220 if (!is_root_p (var))
2221 /* Not a root var. */
2222 return NULL;
2223
2224 scoped_restore_current_thread restore_thread;
2225
2226 /* Determine whether the variable is still around. */
2227 if (var->root->valid_block == NULL || var->root->floating)
2228 within_scope = 1;
2229 else if (var->root->thread_id == 0)
2230 {
2231 /* The program was single-threaded when the variable object was
2232 created. Technically, it's possible that the program became
2233 multi-threaded since then, but we don't support such
2234 scenario yet. */
2235 within_scope = check_scope (var);
2236 }
2237 else
2238 {
2239 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2240
2241 if (!ptid_equal (minus_one_ptid, ptid))
2242 {
2243 switch_to_thread (ptid);
2244 within_scope = check_scope (var);
2245 }
2246 }
2247
2248 if (within_scope)
2249 {
2250
2251 /* We need to catch errors here, because if evaluate
2252 expression fails we want to just return NULL. */
2253 TRY
2254 {
2255 new_val = evaluate_expression (var->root->exp.get ());
2256 }
2257 CATCH (except, RETURN_MASK_ERROR)
2258 {
2259 }
2260 END_CATCH
2261 }
2262
2263 return new_val;
2264 }
2265
2266 /* What is the ``struct value *'' of the root variable VAR?
2267 For floating variable object, evaluation can get us a value
2268 of different type from what is stored in varobj already. In
2269 that case:
2270 - *type_changed will be set to 1
2271 - old varobj will be freed, and new one will be
2272 created, with the same name.
2273 - *var_handle will be set to the new varobj
2274 Otherwise, *type_changed will be set to 0. */
2275 static struct value *
2276 value_of_root (struct varobj **var_handle, int *type_changed)
2277 {
2278 struct varobj *var;
2279
2280 if (var_handle == NULL)
2281 return NULL;
2282
2283 var = *var_handle;
2284
2285 /* This should really be an exception, since this should
2286 only get called with a root variable. */
2287
2288 if (!is_root_p (var))
2289 return NULL;
2290
2291 if (var->root->floating)
2292 {
2293 struct varobj *tmp_var;
2294
2295 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2296 USE_SELECTED_FRAME);
2297 if (tmp_var == NULL)
2298 {
2299 return NULL;
2300 }
2301 std::string old_type = varobj_get_type (var);
2302 std::string new_type = varobj_get_type (tmp_var);
2303 if (old_type == new_type)
2304 {
2305 /* The expression presently stored inside var->root->exp
2306 remembers the locations of local variables relatively to
2307 the frame where the expression was created (in DWARF location
2308 button, for example). Naturally, those locations are not
2309 correct in other frames, so update the expression. */
2310
2311 std::swap (var->root->exp, tmp_var->root->exp);
2312
2313 varobj_delete (tmp_var, 0);
2314 *type_changed = 0;
2315 }
2316 else
2317 {
2318 tmp_var->obj_name = var->obj_name;
2319 tmp_var->from = var->from;
2320 tmp_var->to = var->to;
2321 varobj_delete (var, 0);
2322
2323 install_variable (tmp_var);
2324 *var_handle = tmp_var;
2325 var = *var_handle;
2326 *type_changed = 1;
2327 }
2328 }
2329 else
2330 {
2331 *type_changed = 0;
2332 }
2333
2334 {
2335 struct value *value;
2336
2337 value = value_of_root_1 (var_handle);
2338 if (var->value == NULL || value == NULL)
2339 {
2340 /* For root varobj-s, a NULL value indicates a scoping issue.
2341 So, nothing to do in terms of checking for mutations. */
2342 }
2343 else if (varobj_value_has_mutated (var, value, value_type (value)))
2344 {
2345 /* The type has mutated, so the children are no longer valid.
2346 Just delete them, and tell our caller that the type has
2347 changed. */
2348 varobj_delete (var, 1 /* only_children */);
2349 var->num_children = -1;
2350 var->to = -1;
2351 var->from = -1;
2352 *type_changed = 1;
2353 }
2354 return value;
2355 }
2356 }
2357
2358 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2359 static struct value *
2360 value_of_child (const struct varobj *parent, int index)
2361 {
2362 struct value *value;
2363
2364 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2365
2366 return value;
2367 }
2368
2369 /* GDB already has a command called "value_of_variable". Sigh. */
2370 static std::string
2371 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2372 {
2373 if (var->root->is_valid)
2374 {
2375 if (var->dynamic->pretty_printer != NULL)
2376 return varobj_value_get_print_value (var->value, var->format, var);
2377 return (*var->root->lang_ops->value_of_variable) (var, format);
2378 }
2379 else
2380 return std::string ();
2381 }
2382
2383 void
2384 varobj_formatted_print_options (struct value_print_options *opts,
2385 enum varobj_display_formats format)
2386 {
2387 get_formatted_print_options (opts, format_code[(int) format]);
2388 opts->deref_ref = 0;
2389 opts->raw = 1;
2390 }
2391
2392 std::string
2393 varobj_value_get_print_value (struct value *value,
2394 enum varobj_display_formats format,
2395 const struct varobj *var)
2396 {
2397 struct value_print_options opts;
2398 struct type *type = NULL;
2399 long len = 0;
2400 gdb::unique_xmalloc_ptr<char> encoding;
2401 /* Initialize it just to avoid a GCC false warning. */
2402 CORE_ADDR str_addr = 0;
2403 int string_print = 0;
2404
2405 if (value == NULL)
2406 return std::string ();
2407
2408 string_file stb;
2409 std::string thevalue;
2410
2411 #if HAVE_PYTHON
2412 if (gdb_python_initialized)
2413 {
2414 PyObject *value_formatter = var->dynamic->pretty_printer;
2415
2416 gdbpy_enter_varobj enter_py (var);
2417
2418 if (value_formatter)
2419 {
2420 /* First check to see if we have any children at all. If so,
2421 we simply return {...}. */
2422 if (dynamic_varobj_has_child_method (var))
2423 return "{...}";
2424
2425 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2426 {
2427 struct value *replacement;
2428
2429 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2430 &replacement,
2431 &stb));
2432
2433 /* If we have string like output ... */
2434 if (output != NULL)
2435 {
2436 /* If this is a lazy string, extract it. For lazy
2437 strings we always print as a string, so set
2438 string_print. */
2439 if (gdbpy_is_lazy_string (output.get ()))
2440 {
2441 gdbpy_extract_lazy_string (output.get (), &str_addr,
2442 &type, &len, &encoding);
2443 string_print = 1;
2444 }
2445 else
2446 {
2447 /* If it is a regular (non-lazy) string, extract
2448 it and copy the contents into THEVALUE. If the
2449 hint says to print it as a string, set
2450 string_print. Otherwise just return the extracted
2451 string as a value. */
2452
2453 gdb::unique_xmalloc_ptr<char> s
2454 = python_string_to_target_string (output.get ());
2455
2456 if (s)
2457 {
2458 struct gdbarch *gdbarch;
2459
2460 gdb::unique_xmalloc_ptr<char> hint
2461 = gdbpy_get_display_hint (value_formatter);
2462 if (hint)
2463 {
2464 if (!strcmp (hint.get (), "string"))
2465 string_print = 1;
2466 }
2467
2468 thevalue = std::string (s.get ());
2469 len = thevalue.size ();
2470 gdbarch = get_type_arch (value_type (value));
2471 type = builtin_type (gdbarch)->builtin_char;
2472
2473 if (!string_print)
2474 return thevalue;
2475 }
2476 else
2477 gdbpy_print_stack ();
2478 }
2479 }
2480 /* If the printer returned a replacement value, set VALUE
2481 to REPLACEMENT. If there is not a replacement value,
2482 just use the value passed to this function. */
2483 if (replacement)
2484 value = replacement;
2485 }
2486 }
2487 }
2488 #endif
2489
2490 varobj_formatted_print_options (&opts, format);
2491
2492 /* If the THEVALUE has contents, it is a regular string. */
2493 if (!thevalue.empty ())
2494 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2495 len, encoding.get (), 0, &opts);
2496 else if (string_print)
2497 /* Otherwise, if string_print is set, and it is not a regular
2498 string, it is a lazy string. */
2499 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2500 else
2501 /* All other cases. */
2502 common_val_print (value, &stb, 0, &opts, current_language);
2503
2504 return std::move (stb.string ());
2505 }
2506
2507 int
2508 varobj_editable_p (const struct varobj *var)
2509 {
2510 struct type *type;
2511
2512 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2513 return 0;
2514
2515 type = varobj_get_value_type (var);
2516
2517 switch (TYPE_CODE (type))
2518 {
2519 case TYPE_CODE_STRUCT:
2520 case TYPE_CODE_UNION:
2521 case TYPE_CODE_ARRAY:
2522 case TYPE_CODE_FUNC:
2523 case TYPE_CODE_METHOD:
2524 return 0;
2525 break;
2526
2527 default:
2528 return 1;
2529 break;
2530 }
2531 }
2532
2533 /* Call VAR's value_is_changeable_p language-specific callback. */
2534
2535 int
2536 varobj_value_is_changeable_p (const struct varobj *var)
2537 {
2538 return var->root->lang_ops->value_is_changeable_p (var);
2539 }
2540
2541 /* Return 1 if that varobj is floating, that is is always evaluated in the
2542 selected frame, and not bound to thread/frame. Such variable objects
2543 are created using '@' as frame specifier to -var-create. */
2544 int
2545 varobj_floating_p (const struct varobj *var)
2546 {
2547 return var->root->floating;
2548 }
2549
2550 /* Implement the "value_is_changeable_p" varobj callback for most
2551 languages. */
2552
2553 int
2554 varobj_default_value_is_changeable_p (const struct varobj *var)
2555 {
2556 int r;
2557 struct type *type;
2558
2559 if (CPLUS_FAKE_CHILD (var))
2560 return 0;
2561
2562 type = varobj_get_value_type (var);
2563
2564 switch (TYPE_CODE (type))
2565 {
2566 case TYPE_CODE_STRUCT:
2567 case TYPE_CODE_UNION:
2568 case TYPE_CODE_ARRAY:
2569 r = 0;
2570 break;
2571
2572 default:
2573 r = 1;
2574 }
2575
2576 return r;
2577 }
2578
2579 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2580 with an arbitrary caller supplied DATA pointer. */
2581
2582 void
2583 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2584 {
2585 struct varobj_root *var_root, *var_root_next;
2586
2587 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2588
2589 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2590 {
2591 var_root_next = var_root->next;
2592
2593 (*func) (var_root->rootvar, data);
2594 }
2595 }
2596
2597 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2598 defined on globals. It is a helper for varobj_invalidate.
2599
2600 This function is called after changing the symbol file, in this case the
2601 pointers to "struct type" stored by the varobj are no longer valid. All
2602 varobj must be either re-evaluated, or marked as invalid here. */
2603
2604 static void
2605 varobj_invalidate_iter (struct varobj *var, void *unused)
2606 {
2607 /* global and floating var must be re-evaluated. */
2608 if (var->root->floating || var->root->valid_block == NULL)
2609 {
2610 struct varobj *tmp_var;
2611
2612 /* Try to create a varobj with same expression. If we succeed
2613 replace the old varobj, otherwise invalidate it. */
2614 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2615 USE_CURRENT_FRAME);
2616 if (tmp_var != NULL)
2617 {
2618 tmp_var->obj_name = var->obj_name;
2619 varobj_delete (var, 0);
2620 install_variable (tmp_var);
2621 }
2622 else
2623 var->root->is_valid = 0;
2624 }
2625 else /* locals must be invalidated. */
2626 var->root->is_valid = 0;
2627 }
2628
2629 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2630 are defined on globals.
2631 Invalidated varobjs will be always printed in_scope="invalid". */
2632
2633 void
2634 varobj_invalidate (void)
2635 {
2636 all_root_varobjs (varobj_invalidate_iter, NULL);
2637 }
2638
2639 void
2640 _initialize_varobj (void)
2641 {
2642 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2643
2644 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2645 &varobjdebug,
2646 _("Set varobj debugging."),
2647 _("Show varobj debugging."),
2648 _("When non-zero, varobj debugging is enabled."),
2649 NULL, show_varobjdebug,
2650 &setdebuglist, &showdebuglist);
2651 }