]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/xstormy16-tdep.c
-Wwrite-strings: The Rest
[thirdparty/binutils-gdb.git] / gdb / xstormy16-tdep.c
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "arch-utils.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "osabi.h"
37 #include "objfiles.h"
38
39 enum gdb_regnum
40 {
41 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
42 Functions will return their values in register R2-R7 as they fit.
43 Otherwise a hidden pointer to an big enough area is given as argument
44 to the function in r2. Further arguments are beginning in r3 then.
45 R13 is used as frame pointer when GCC compiles w/o optimization
46 R14 is used as "PSW", displaying the CPU status.
47 R15 is used implicitely as stack pointer. */
48 E_R0_REGNUM,
49 E_R1_REGNUM,
50 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
51 E_R3_REGNUM,
52 E_R4_REGNUM,
53 E_R5_REGNUM,
54 E_R6_REGNUM,
55 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
56 E_R8_REGNUM,
57 E_R9_REGNUM,
58 E_R10_REGNUM,
59 E_R11_REGNUM,
60 E_R12_REGNUM,
61 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
62 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
63 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
64 E_PC_REGNUM,
65 E_NUM_REGS
66 };
67
68 /* Use an invalid address value as 'not available' marker. */
69 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
70
71 struct xstormy16_frame_cache
72 {
73 /* Base address. */
74 CORE_ADDR base;
75 CORE_ADDR pc;
76 LONGEST framesize;
77 int uses_fp;
78 CORE_ADDR saved_regs[E_NUM_REGS];
79 CORE_ADDR saved_sp;
80 };
81
82 /* Size of instructions, registers, etc. */
83 enum
84 {
85 xstormy16_inst_size = 2,
86 xstormy16_reg_size = 2,
87 xstormy16_pc_size = 4
88 };
89
90 /* Size of return datatype which fits into the remaining return registers. */
91 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \
92 * xstormy16_reg_size)
93
94 /* Size of return datatype which fits into all return registers. */
95 enum
96 {
97 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
98 };
99
100 /* Function: xstormy16_register_name
101 Returns the name of the standard Xstormy16 register N. */
102
103 static const char *
104 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
105 {
106 static const char *register_names[] = {
107 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
108 "r8", "r9", "r10", "r11", "r12", "r13",
109 "psw", "sp", "pc"
110 };
111
112 if (regnum < 0 || regnum >= E_NUM_REGS)
113 internal_error (__FILE__, __LINE__,
114 _("xstormy16_register_name: illegal register number %d"),
115 regnum);
116 else
117 return register_names[regnum];
118
119 }
120
121 static struct type *
122 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
123 {
124 if (regnum == E_PC_REGNUM)
125 return builtin_type (gdbarch)->builtin_uint32;
126 else
127 return builtin_type (gdbarch)->builtin_uint16;
128 }
129
130 /* Function: xstormy16_type_is_scalar
131 Makes the decision if a given type is a scalar types. Scalar
132 types are returned in the registers r2-r7 as they fit. */
133
134 static int
135 xstormy16_type_is_scalar (struct type *t)
136 {
137 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
138 && TYPE_CODE(t) != TYPE_CODE_UNION
139 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
140 }
141
142 /* Function: xstormy16_use_struct_convention
143 Returns non-zero if the given struct type will be returned using
144 a special convention, rather than the normal function return method.
145 7sed in the contexts of the "return" command, and of
146 target function calls from the debugger. */
147
148 static int
149 xstormy16_use_struct_convention (struct type *type)
150 {
151 return !xstormy16_type_is_scalar (type)
152 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
153 }
154
155 /* Function: xstormy16_extract_return_value
156 Find a function's return value in the appropriate registers (in
157 regbuf), and copy it into valbuf. */
158
159 static void
160 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
161 gdb_byte *valbuf)
162 {
163 int len = TYPE_LENGTH (type);
164 int i, regnum = E_1ST_ARG_REGNUM;
165
166 for (i = 0; i < len; i += xstormy16_reg_size)
167 regcache_raw_read (regcache, regnum++, valbuf + i);
168 }
169
170 /* Function: xstormy16_store_return_value
171 Copy the function return value from VALBUF into the
172 proper location for a function return.
173 Called only in the context of the "return" command. */
174
175 static void
176 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
177 const gdb_byte *valbuf)
178 {
179 if (TYPE_LENGTH (type) == 1)
180 {
181 /* Add leading zeros to the value. */
182 gdb_byte buf[xstormy16_reg_size];
183 memset (buf, 0, xstormy16_reg_size);
184 memcpy (buf, valbuf, 1);
185 regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
186 }
187 else
188 {
189 int len = TYPE_LENGTH (type);
190 int i, regnum = E_1ST_ARG_REGNUM;
191
192 for (i = 0; i < len; i += xstormy16_reg_size)
193 regcache_raw_write (regcache, regnum++, valbuf + i);
194 }
195 }
196
197 static enum return_value_convention
198 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function,
199 struct type *type, struct regcache *regcache,
200 gdb_byte *readbuf, const gdb_byte *writebuf)
201 {
202 if (xstormy16_use_struct_convention (type))
203 return RETURN_VALUE_STRUCT_CONVENTION;
204 if (writebuf)
205 xstormy16_store_return_value (type, regcache, writebuf);
206 else if (readbuf)
207 xstormy16_extract_return_value (type, regcache, readbuf);
208 return RETURN_VALUE_REGISTER_CONVENTION;
209 }
210
211 static CORE_ADDR
212 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
213 {
214 if (addr & 1)
215 ++addr;
216 return addr;
217 }
218
219 /* Function: xstormy16_push_dummy_call
220 Setup the function arguments for GDB to call a function in the inferior.
221 Called only in the context of a target function call from the debugger.
222 Returns the value of the SP register after the args are pushed. */
223
224 static CORE_ADDR
225 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
226 struct value *function,
227 struct regcache *regcache,
228 CORE_ADDR bp_addr, int nargs,
229 struct value **args,
230 CORE_ADDR sp, int struct_return,
231 CORE_ADDR struct_addr)
232 {
233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
234 CORE_ADDR stack_dest = sp;
235 int argreg = E_1ST_ARG_REGNUM;
236 int i, j;
237 int typelen, slacklen;
238 const gdb_byte *val;
239 gdb_byte buf[xstormy16_pc_size];
240
241 /* If struct_return is true, then the struct return address will
242 consume one argument-passing register. */
243 if (struct_return)
244 {
245 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
246 argreg++;
247 }
248
249 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't
250 fit in the remaining registers we're switching over to the stack.
251 No argument is put on stack partially and as soon as we switched
252 over to stack no further argument is put in a register even if it
253 would fit in the remaining unused registers. */
254 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
255 {
256 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
257 if (typelen > E_MAX_RETTYPE_SIZE (argreg))
258 break;
259
260 /* Put argument into registers wordwise. */
261 val = value_contents (args[i]);
262 for (j = 0; j < typelen; j += xstormy16_reg_size)
263 {
264 ULONGEST regval;
265 int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
266
267 regval = extract_unsigned_integer (val + j, size, byte_order);
268 regcache_cooked_write_unsigned (regcache, argreg++, regval);
269 }
270 }
271
272 /* Align SP */
273 stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
274
275 /* Loop backwards through remaining arguments and push them on the stack,
276 wordaligned. */
277 for (j = nargs - 1; j >= i; j--)
278 {
279 gdb_byte *val;
280 struct cleanup *back_to;
281 const gdb_byte *bytes = value_contents (args[j]);
282
283 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
284 slacklen = typelen & 1;
285 val = (gdb_byte *) xmalloc (typelen + slacklen);
286 back_to = make_cleanup (xfree, val);
287 memcpy (val, bytes, typelen);
288 memset (val + typelen, 0, slacklen);
289
290 /* Now write this data to the stack. The stack grows upwards. */
291 write_memory (stack_dest, val, typelen + slacklen);
292 stack_dest += typelen + slacklen;
293 do_cleanups (back_to);
294 }
295
296 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
297 write_memory (stack_dest, buf, xstormy16_pc_size);
298 stack_dest += xstormy16_pc_size;
299
300 /* Update stack pointer. */
301 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
302
303 /* Return the new stack pointer minus the return address slot since
304 that's what DWARF2/GCC uses as the frame's CFA. */
305 return stack_dest - xstormy16_pc_size;
306 }
307
308 /* Function: xstormy16_scan_prologue
309 Decode the instructions within the given address range.
310 Decide when we must have reached the end of the function prologue.
311 If a frame_info pointer is provided, fill in its saved_regs etc.
312
313 Returns the address of the first instruction after the prologue. */
314
315 static CORE_ADDR
316 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
317 CORE_ADDR start_addr, CORE_ADDR end_addr,
318 struct xstormy16_frame_cache *cache,
319 struct frame_info *this_frame)
320 {
321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322 CORE_ADDR next_addr;
323 ULONGEST inst, inst2;
324 LONGEST offset;
325 int regnum;
326
327 /* Initialize framesize with size of PC put on stack by CALLF inst. */
328 cache->saved_regs[E_PC_REGNUM] = 0;
329 cache->framesize = xstormy16_pc_size;
330
331 if (start_addr >= end_addr)
332 return end_addr;
333
334 for (next_addr = start_addr;
335 next_addr < end_addr; next_addr += xstormy16_inst_size)
336 {
337 inst = read_memory_unsigned_integer (next_addr,
338 xstormy16_inst_size, byte_order);
339 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
340 xstormy16_inst_size, byte_order);
341
342 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */
343 {
344 regnum = inst & 0x000f;
345 cache->saved_regs[regnum] = cache->framesize;
346 cache->framesize += xstormy16_reg_size;
347 }
348
349 /* Optional stack allocation for args and local vars <= 4 byte. */
350 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */
351 {
352 cache->framesize += ((inst & 0x0030) >> 4) + 1;
353 }
354
355 /* optional stack allocation for args and local vars > 4 && < 16 byte */
356 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */
357 {
358 cache->framesize += (inst & 0x00f0) >> 4;
359 }
360
361 /* Optional stack allocation for args and local vars >= 16 byte. */
362 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
363 {
364 cache->framesize += inst2;
365 next_addr += xstormy16_inst_size;
366 }
367
368 else if (inst == 0x46fd) /* mov r13, r15 */
369 {
370 cache->uses_fp = 1;
371 }
372
373 /* optional copying of args in r2-r7 to r10-r13. */
374 /* Probably only in optimized case but legal action for prologue. */
375 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */
376 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
377 && (inst & 0x000f) >= 0x000a && (inst & 0x000f) <= 0x000d)
378 ;
379
380 /* Optional copying of args in r2-r7 to stack. */
381 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8)
382 (bit3 always 1, bit2-0 = reg) */
383 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */
384 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
385 {
386 regnum = inst & 0x0007;
387 /* Only 12 of 16 bits of the argument are used for the
388 signed offset. */
389 offset = (LONGEST) (inst2 & 0x0fff);
390 if (offset & 0x0800)
391 offset -= 0x1000;
392
393 cache->saved_regs[regnum] = cache->framesize + offset;
394 next_addr += xstormy16_inst_size;
395 }
396
397 else /* Not a prologue instruction. */
398 break;
399 }
400
401 return next_addr;
402 }
403
404 /* Function: xstormy16_skip_prologue
405 If the input address is in a function prologue,
406 returns the address of the end of the prologue;
407 else returns the input address.
408
409 Note: the input address is likely to be the function start,
410 since this function is mainly used for advancing a breakpoint
411 to the first line, or stepping to the first line when we have
412 stepped into a function call. */
413
414 static CORE_ADDR
415 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
416 {
417 CORE_ADDR func_addr = 0, func_end = 0;
418 const char *func_name;
419
420 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
421 {
422 struct symtab_and_line sal;
423 struct symbol *sym;
424 struct xstormy16_frame_cache cache;
425 CORE_ADDR plg_end;
426
427 memset (&cache, 0, sizeof cache);
428
429 /* Don't trust line number debug info in frameless functions. */
430 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
431 &cache, NULL);
432 if (!cache.uses_fp)
433 return plg_end;
434
435 /* Found a function. */
436 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
437 /* Don't use line number debug info for assembly source files. */
438 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
439 {
440 sal = find_pc_line (func_addr, 0);
441 if (sal.end && sal.end < func_end)
442 {
443 /* Found a line number, use it as end of prologue. */
444 return sal.end;
445 }
446 }
447 /* No useable line symbol. Use result of prologue parsing method. */
448 return plg_end;
449 }
450
451 /* No function symbol -- just return the PC. */
452
453 return (CORE_ADDR) pc;
454 }
455
456 /* Implement the stack_frame_destroyed_p gdbarch method.
457
458 The epilogue is defined here as the area at the end of a function,
459 either on the `ret' instruction itself or after an instruction which
460 destroys the function's stack frame. */
461
462 static int
463 xstormy16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 CORE_ADDR func_addr = 0, func_end = 0;
467
468 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
469 {
470 ULONGEST inst, inst2;
471 CORE_ADDR addr = func_end - xstormy16_inst_size;
472
473 /* The Xstormy16 epilogue is max. 14 bytes long. */
474 if (pc < func_end - 7 * xstormy16_inst_size)
475 return 0;
476
477 /* Check if we're on a `ret' instruction. Otherwise it's
478 too dangerous to proceed. */
479 inst = read_memory_unsigned_integer (addr,
480 xstormy16_inst_size, byte_order);
481 if (inst != 0x0003)
482 return 0;
483
484 while ((addr -= xstormy16_inst_size) >= func_addr)
485 {
486 inst = read_memory_unsigned_integer (addr,
487 xstormy16_inst_size,
488 byte_order);
489 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
490 continue;
491 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
492 break;
493 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
494 xstormy16_inst_size,
495 byte_order);
496 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */
497 {
498 addr -= xstormy16_inst_size;
499 break;
500 }
501 return 0;
502 }
503 if (pc > addr)
504 return 1;
505 }
506 return 0;
507 }
508
509 constexpr gdb_byte xstormy16_break_insn[] = { 0x06, 0x0 };
510
511 typedef BP_MANIPULATION (xstormy16_break_insn) xstormy16_breakpoint;
512
513 /* Given a pointer to a jump table entry, return the address
514 of the function it jumps to. Return 0 if not found. */
515 static CORE_ADDR
516 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
517 {
518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
519 struct obj_section *faddr_sect = find_pc_section (faddr);
520
521 if (faddr_sect)
522 {
523 LONGEST inst, inst2, addr;
524 gdb_byte buf[2 * xstormy16_inst_size];
525
526 /* Return faddr if it's not pointing into the jump table. */
527 if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
528 return faddr;
529
530 if (!target_read_memory (faddr, buf, sizeof buf))
531 {
532 inst = extract_unsigned_integer (buf,
533 xstormy16_inst_size, byte_order);
534 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
535 xstormy16_inst_size, byte_order);
536 addr = inst2 << 8 | (inst & 0xff);
537 return addr;
538 }
539 }
540 return 0;
541 }
542
543 /* Given a function's address, attempt to find (and return) the
544 address of the corresponding jump table entry. Return 0 if
545 not found. */
546 static CORE_ADDR
547 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
548 {
549 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
550 struct obj_section *faddr_sect = find_pc_section (faddr);
551
552 if (faddr_sect)
553 {
554 struct obj_section *osect;
555
556 /* Return faddr if it's already a pointer to a jump table entry. */
557 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
558 return faddr;
559
560 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
561 {
562 if (!strcmp (osect->the_bfd_section->name, ".plt"))
563 break;
564 }
565
566 if (osect < faddr_sect->objfile->sections_end)
567 {
568 CORE_ADDR addr, endaddr;
569
570 addr = obj_section_addr (osect);
571 endaddr = obj_section_endaddr (osect);
572
573 for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
574 {
575 LONGEST inst, inst2, faddr2;
576 gdb_byte buf[2 * xstormy16_inst_size];
577
578 if (target_read_memory (addr, buf, sizeof buf))
579 return 0;
580 inst = extract_unsigned_integer (buf,
581 xstormy16_inst_size,
582 byte_order);
583 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
584 xstormy16_inst_size,
585 byte_order);
586 faddr2 = inst2 << 8 | (inst & 0xff);
587 if (faddr == faddr2)
588 return addr;
589 }
590 }
591 }
592 return 0;
593 }
594
595 static CORE_ADDR
596 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
597 {
598 struct gdbarch *gdbarch = get_frame_arch (frame);
599 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
600
601 if (tmp && tmp != pc)
602 return tmp;
603 return 0;
604 }
605
606 /* Function pointers are 16 bit. The address space is 24 bit, using
607 32 bit addresses. Pointers to functions on the XStormy16 are implemented
608 by using 16 bit pointers, which are either direct pointers in case the
609 function begins below 0x10000, or indirect pointers into a jump table.
610 The next two functions convert 16 bit pointers into 24 (32) bit addresses
611 and vice versa. */
612
613 static CORE_ADDR
614 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
615 struct type *type, const gdb_byte *buf)
616 {
617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
618 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
619 CORE_ADDR addr
620 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
621
622 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
623 {
624 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
625 if (addr2)
626 addr = addr2;
627 }
628
629 return addr;
630 }
631
632 static void
633 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
634 struct type *type, gdb_byte *buf, CORE_ADDR addr)
635 {
636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
637 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
638
639 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
640 {
641 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
642 if (addr2)
643 addr = addr2;
644 }
645 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
646 }
647
648 static struct xstormy16_frame_cache *
649 xstormy16_alloc_frame_cache (void)
650 {
651 struct xstormy16_frame_cache *cache;
652 int i;
653
654 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
655
656 cache->base = 0;
657 cache->saved_sp = 0;
658 cache->pc = 0;
659 cache->uses_fp = 0;
660 cache->framesize = 0;
661 for (i = 0; i < E_NUM_REGS; ++i)
662 cache->saved_regs[i] = REG_UNAVAIL;
663
664 return cache;
665 }
666
667 static struct xstormy16_frame_cache *
668 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
669 {
670 struct gdbarch *gdbarch = get_frame_arch (this_frame);
671 struct xstormy16_frame_cache *cache;
672 CORE_ADDR current_pc;
673 int i;
674
675 if (*this_cache)
676 return (struct xstormy16_frame_cache *) *this_cache;
677
678 cache = xstormy16_alloc_frame_cache ();
679 *this_cache = cache;
680
681 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
682 if (cache->base == 0)
683 return cache;
684
685 cache->pc = get_frame_func (this_frame);
686 current_pc = get_frame_pc (this_frame);
687 if (cache->pc)
688 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
689 cache, this_frame);
690
691 if (!cache->uses_fp)
692 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
693
694 cache->saved_sp = cache->base - cache->framesize;
695
696 for (i = 0; i < E_NUM_REGS; ++i)
697 if (cache->saved_regs[i] != REG_UNAVAIL)
698 cache->saved_regs[i] += cache->saved_sp;
699
700 return cache;
701 }
702
703 static struct value *
704 xstormy16_frame_prev_register (struct frame_info *this_frame,
705 void **this_cache, int regnum)
706 {
707 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
708 this_cache);
709 gdb_assert (regnum >= 0);
710
711 if (regnum == E_SP_REGNUM && cache->saved_sp)
712 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
713
714 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
715 return frame_unwind_got_memory (this_frame, regnum,
716 cache->saved_regs[regnum]);
717
718 return frame_unwind_got_register (this_frame, regnum, regnum);
719 }
720
721 static void
722 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
723 struct frame_id *this_id)
724 {
725 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
726 this_cache);
727
728 /* This marks the outermost frame. */
729 if (cache->base == 0)
730 return;
731
732 *this_id = frame_id_build (cache->saved_sp, cache->pc);
733 }
734
735 static CORE_ADDR
736 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
737 {
738 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
739 this_cache);
740 return cache->base;
741 }
742
743 static const struct frame_unwind xstormy16_frame_unwind = {
744 NORMAL_FRAME,
745 default_frame_unwind_stop_reason,
746 xstormy16_frame_this_id,
747 xstormy16_frame_prev_register,
748 NULL,
749 default_frame_sniffer
750 };
751
752 static const struct frame_base xstormy16_frame_base = {
753 &xstormy16_frame_unwind,
754 xstormy16_frame_base_address,
755 xstormy16_frame_base_address,
756 xstormy16_frame_base_address
757 };
758
759 static CORE_ADDR
760 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
761 {
762 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
763 }
764
765 static CORE_ADDR
766 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
767 {
768 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
769 }
770
771 static struct frame_id
772 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
773 {
774 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
775 return frame_id_build (sp, get_frame_pc (this_frame));
776 }
777
778
779 /* Function: xstormy16_gdbarch_init
780 Initializer function for the xstormy16 gdbarch vector.
781 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
782
783 static struct gdbarch *
784 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
785 {
786 struct gdbarch *gdbarch;
787
788 /* find a candidate among the list of pre-declared architectures. */
789 arches = gdbarch_list_lookup_by_info (arches, &info);
790 if (arches != NULL)
791 return (arches->gdbarch);
792
793 gdbarch = gdbarch_alloc (&info, NULL);
794
795 /*
796 * Basic register fields and methods, datatype sizes and stuff.
797 */
798
799 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
800 set_gdbarch_num_pseudo_regs (gdbarch, 0);
801 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
802 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
803 set_gdbarch_register_name (gdbarch, xstormy16_register_name);
804 set_gdbarch_register_type (gdbarch, xstormy16_register_type);
805
806 set_gdbarch_char_signed (gdbarch, 0);
807 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
808 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
809 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
810 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
811
812 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
813 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
814 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
815
816 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
817 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
818 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
819
820 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
821 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
822
823 /* Stack grows up. */
824 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
825
826 /*
827 * Frame Info
828 */
829 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
830 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
831 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
832 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
833 frame_base_set_default (gdbarch, &xstormy16_frame_base);
834
835 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
836 set_gdbarch_stack_frame_destroyed_p (gdbarch,
837 xstormy16_stack_frame_destroyed_p);
838
839 /* These values and methods are used when gdb calls a target function. */
840 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
841 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
842 xstormy16_breakpoint::kind_from_pc);
843 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
844 xstormy16_breakpoint::bp_from_kind);
845 set_gdbarch_return_value (gdbarch, xstormy16_return_value);
846
847 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
848
849 set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
850
851 gdbarch_init_osabi (info, gdbarch);
852
853 dwarf2_append_unwinders (gdbarch);
854 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
855
856 return gdbarch;
857 }
858
859 /* Function: _initialize_xstormy16_tdep
860 Initializer function for the Sanyo Xstormy16a module.
861 Called by gdb at start-up. */
862
863 /* -Wmissing-prototypes */
864 extern initialize_file_ftype _initialize_xstormy16_tdep;
865
866 void
867 _initialize_xstormy16_tdep (void)
868 {
869 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
870 }