]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/ehframe.cc
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gold / ehframe.cc
1 // ehframe.cc -- handle exception frame sections for gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "symtab.h"
31 #include "reloc.h"
32 #include "ehframe.h"
33
34 namespace gold
35 {
36
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime. This file also handles discarding duplicate exception
40 // frame information.
41
42 // The exception frame header starts with four bytes:
43
44 // 0: The version number, currently 1.
45
46 // 1: The encoding of the pointer to the exception frames. This can
47 // be any DWARF unwind encoding (DW_EH_PE_*). It is normally a 4
48 // byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50 // 2: The encoding of the count of the number of FDE pointers in the
51 // lookup table. This can be any DWARF unwind encoding, and in
52 // particular can be DW_EH_PE_omit if the count is omitted. It is
53 // normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55 // 3: The encoding of the lookup table entries. Currently gcc's
56 // libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 // which means that the values are 4 byte offsets from the start of
58 // the table.
59
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame). This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
64
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory. Each entry in the table is 8 bytes.
71 // Each entry represents an FDE. The first four bytes of each entry
72 // are an offset to the starting PC for the FDE. The last four bytes
73 // of each entry are an offset to the FDE data. The offsets are from
74 // the start of the exception frame header information. The entries
75 // are in sorted order by starting PC.
76
77 const int eh_frame_hdr_size = 4;
78
79 // Construct the exception frame header.
80
81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82 const Eh_frame* eh_frame_data)
83 : Output_section_data(4),
84 eh_frame_section_(eh_frame_section),
85 eh_frame_data_(eh_frame_data),
86 fde_offsets_(),
87 any_unrecognized_eh_frame_sections_(false)
88 {
89 }
90
91 // Set the size of the exception frame header.
92
93 void
94 Eh_frame_hdr::set_final_data_size()
95 {
96 unsigned int data_size = eh_frame_hdr_size + 4;
97 if (!this->any_unrecognized_eh_frame_sections_)
98 {
99 unsigned int fde_count = this->eh_frame_data_->fde_count();
100 if (fde_count != 0)
101 data_size += 4 + 8 * fde_count;
102 this->fde_offsets_.reserve(fde_count);
103 }
104 this->set_data_size(data_size);
105 }
106
107 // Write the data to the file.
108
109 void
110 Eh_frame_hdr::do_write(Output_file* of)
111 {
112 switch (parameters->size_and_endianness())
113 {
114 #ifdef HAVE_TARGET_32_LITTLE
115 case Parameters::TARGET_32_LITTLE:
116 this->do_sized_write<32, false>(of);
117 break;
118 #endif
119 #ifdef HAVE_TARGET_32_BIG
120 case Parameters::TARGET_32_BIG:
121 this->do_sized_write<32, true>(of);
122 break;
123 #endif
124 #ifdef HAVE_TARGET_64_LITTLE
125 case Parameters::TARGET_64_LITTLE:
126 this->do_sized_write<64, false>(of);
127 break;
128 #endif
129 #ifdef HAVE_TARGET_64_BIG
130 case Parameters::TARGET_64_BIG:
131 this->do_sized_write<64, true>(of);
132 break;
133 #endif
134 default:
135 gold_unreachable();
136 }
137 }
138
139 // Write the data to the file with the right endianness.
140
141 template<int size, bool big_endian>
142 void
143 Eh_frame_hdr::do_sized_write(Output_file* of)
144 {
145 const off_t off = this->offset();
146 const off_t oview_size = this->data_size();
147 unsigned char* const oview = of->get_output_view(off, oview_size);
148
149 // Version number.
150 oview[0] = 1;
151
152 // Write out a 4 byte PC relative offset to the address of the
153 // .eh_frame section.
154 oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155 uint64_t eh_frame_address = this->eh_frame_section_->address();
156 uint64_t eh_frame_hdr_address = this->address();
157 uint64_t eh_frame_offset = (eh_frame_address -
158 (eh_frame_hdr_address + 4));
159 elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161 if (this->any_unrecognized_eh_frame_sections_
162 || this->fde_offsets_.empty())
163 {
164 // There are no FDEs, or we didn't recognize the format of the
165 // some of the .eh_frame sections, so we can't write out the
166 // sorted table.
167 oview[2] = elfcpp::DW_EH_PE_omit;
168 oview[3] = elfcpp::DW_EH_PE_omit;
169
170 gold_assert(oview_size == 8);
171 }
172 else
173 {
174 oview[2] = elfcpp::DW_EH_PE_udata4;
175 oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177 elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178 this->fde_offsets_.size());
179
180 // We have the offsets of the FDEs in the .eh_frame section. We
181 // couldn't easily get the PC values before, as they depend on
182 // relocations which are, of course, target specific. This code
183 // is run after all those relocations have been applied to the
184 // output file. Here we read the output file again to find the
185 // PC values. Then we sort the list and write it out.
186
187 Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188 this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189 &fde_addresses);
190
191 std::sort(fde_addresses.begin(), fde_addresses.end(),
192 Fde_address_compare<size>());
193
194 typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195 output_address = this->address();
196
197 unsigned char* pfde = oview + 12;
198 for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199 p != fde_addresses.end();
200 ++p)
201 {
202 elfcpp::Swap<32, big_endian>::writeval(pfde,
203 p->first - output_address);
204 elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205 p->second - output_address);
206 pfde += 8;
207 }
208
209 gold_assert(pfde - oview == oview_size);
210 }
211
212 of->write_output_view(off, oview_size, oview);
213 }
214
215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217 // FDE's encoding is FDE_ENCODING, return the output address of the
218 // FDE's PC.
219
220 template<int size, bool big_endian>
221 typename elfcpp::Elf_types<size>::Elf_Addr
222 Eh_frame_hdr::get_fde_pc(
223 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224 const unsigned char* eh_frame_contents,
225 section_offset_type fde_offset,
226 unsigned char fde_encoding)
227 {
228 // The FDE starts with a 4 byte length and a 4 byte offset to the
229 // CIE. The PC follows.
230 const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232 typename elfcpp::Elf_types<size>::Elf_Addr pc;
233 bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234 int pc_size = fde_encoding & 7;
235 if (pc_size == elfcpp::DW_EH_PE_absptr)
236 {
237 if (size == 32)
238 pc_size = elfcpp::DW_EH_PE_udata4;
239 else if (size == 64)
240 pc_size = elfcpp::DW_EH_PE_udata8;
241 else
242 gold_unreachable();
243 }
244
245 switch (pc_size)
246 {
247 case elfcpp::DW_EH_PE_udata2:
248 pc = elfcpp::Swap<16, big_endian>::readval(p);
249 if (is_signed)
250 pc = (pc ^ 0x8000) - 0x8000;
251 break;
252
253 case elfcpp::DW_EH_PE_udata4:
254 pc = elfcpp::Swap<32, big_endian>::readval(p);
255 if (size > 32 && is_signed)
256 pc = (pc ^ 0x80000000) - 0x80000000;
257 break;
258
259 case elfcpp::DW_EH_PE_udata8:
260 gold_assert(size == 64);
261 pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262 break;
263
264 default:
265 // All other cases were rejected in Eh_frame::read_cie.
266 gold_unreachable();
267 }
268
269 switch (fde_encoding & 0x70)
270 {
271 case 0:
272 break;
273
274 case elfcpp::DW_EH_PE_pcrel:
275 pc += eh_frame_address + fde_offset + 8;
276 break;
277
278 case elfcpp::DW_EH_PE_datarel:
279 pc += parameters->target().ehframe_datarel_base();
280 break;
281
282 default:
283 // If other cases arise, then we have to handle them, or we have
284 // to reject them by returning false in Eh_frame::read_cie.
285 gold_unreachable();
286 }
287
288 gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
289
290 return pc;
291 }
292
293 // Given an array of FDE offsets in the .eh_frame section, return an
294 // array of offsets from the exception frame header to the FDE's
295 // output PC and to the output address of the FDE itself. We get the
296 // FDE's PC by actually looking in the .eh_frame section we just wrote
297 // to the output file.
298
299 template<int size, bool big_endian>
300 void
301 Eh_frame_hdr::get_fde_addresses(Output_file* of,
302 const Fde_offsets* fde_offsets,
303 Fde_addresses<size>* fde_addresses)
304 {
305 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306 eh_frame_address = this->eh_frame_section_->address();
307 off_t eh_frame_offset = this->eh_frame_section_->offset();
308 off_t eh_frame_size = this->eh_frame_section_->data_size();
309 const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
310 eh_frame_size);
311
312 for (Fde_offsets::const_iterator p = fde_offsets->begin();
313 p != fde_offsets->end();
314 ++p)
315 {
316 typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317 fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
318 eh_frame_contents,
319 p->first, p->second);
320 fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
321 }
322
323 of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
324 }
325
326 // Class Fde.
327
328 bool
329 Fde::operator==(const Fde& that) const
330 {
331 if (this->object_ != that.object_
332 || this->contents_ != that.contents_)
333 return false;
334 if (this->object_ == NULL)
335 return (this->u_.from_linker.plt == that.u_.from_linker.plt
336 && this->u_.from_linker.post_map == that.u_.from_linker.post_map);
337 else
338 return (this->u_.from_object.shndx == that.u_.from_object.shndx
339 && (this->u_.from_object.input_offset
340 == that.u_.from_object.input_offset));
341 }
342
343 // Write the FDE to OVIEW starting at OFFSET. CIE_OFFSET is the
344 // offset of the CIE in OVIEW. OUTPUT_OFFSET is the offset of the
345 // Eh_frame section within the output section. FDE_ENCODING is the
346 // encoding, from the CIE. ADDRALIGN is the required alignment.
347 // ADDRESS is the virtual address of OVIEW. Record the FDE pc for
348 // EH_FRAME_HDR. Return the new offset.
349
350 template<int size, bool big_endian>
351 section_offset_type
352 Fde::write(unsigned char* oview, section_offset_type output_offset,
353 section_offset_type offset, uint64_t address, unsigned int addralign,
354 section_offset_type cie_offset, unsigned char fde_encoding,
355 Eh_frame_hdr* eh_frame_hdr)
356 {
357 gold_assert((offset & (addralign - 1)) == 0);
358
359 size_t length = this->contents_.length();
360
361 // We add 8 when getting the aligned length to account for the
362 // length word and the CIE offset.
363 size_t aligned_full_length = align_address(length + 8, addralign);
364
365 // Write the length of the FDE as a 32-bit word. The length word
366 // does not include the four bytes of the length word itself, but it
367 // does include the offset to the CIE.
368 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
369 aligned_full_length - 4);
370
371 // Write the offset to the CIE as a 32-bit word. This is the
372 // difference between the address of the offset word itself and the
373 // CIE address.
374 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
375 offset + 4 - cie_offset);
376
377 // Copy the rest of the FDE. Note that this is run before
378 // relocation processing is done on this section, so the relocations
379 // will later be applied to the FDE data.
380 memcpy(oview + offset + 8, this->contents_.data(), length);
381
382 // If this FDE is associated with a PLT, fill in the PLT's address
383 // and size.
384 if (this->object_ == NULL)
385 {
386 gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
387 uint64_t paddress;
388 off_t psize;
389 parameters->target().plt_fde_location(this->u_.from_linker.plt,
390 oview + offset + 8,
391 &paddress, &psize);
392 uint64_t poffset = paddress - (address + offset + 8);
393 int32_t spoffset = static_cast<int32_t>(poffset);
394 uint32_t upsize = static_cast<uint32_t>(psize);
395 if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
396 || static_cast<off_t>(upsize) != psize)
397 gold_warning(_("overflow in PLT unwind data; "
398 "unwinding through PLT may fail"));
399 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
400 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
401 }
402
403 if (aligned_full_length > length + 8)
404 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
405
406 // Tell the exception frame header about this FDE.
407 if (eh_frame_hdr != NULL)
408 eh_frame_hdr->record_fde(output_offset + offset, fde_encoding);
409
410 return offset + aligned_full_length;
411 }
412
413 // Class Cie.
414
415 // Destructor.
416
417 Cie::~Cie()
418 {
419 for (std::vector<Fde*>::iterator p = this->fdes_.begin();
420 p != this->fdes_.end();
421 ++p)
422 delete *p;
423 }
424
425 // Set the output offset of a CIE. Return the new output offset.
426
427 section_offset_type
428 Cie::set_output_offset(section_offset_type output_offset,
429 unsigned int addralign,
430 Output_section_data *output_data)
431 {
432 size_t length = this->contents_.length();
433
434 // Add 4 for length and 4 for zero CIE identifier tag.
435 length += 8;
436
437 if (this->object_ != NULL)
438 {
439 // Add a mapping so that relocations are applied correctly.
440 this->object_->add_merge_mapping(output_data, this->shndx_,
441 this->input_offset_, length,
442 output_offset);
443 }
444
445 length = align_address(length, addralign);
446
447 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
448 p != this->fdes_.end();
449 ++p)
450 {
451 (*p)->add_mapping(output_offset + length, output_data);
452
453 size_t fde_length = (*p)->length();
454 fde_length = align_address(fde_length, addralign);
455 length += fde_length;
456 }
457
458 return output_offset + length;
459 }
460
461 // Remove FDE. Only the last FDE using this CIE may be removed.
462
463 void
464 Cie::remove_fde(const Fde* fde)
465 {
466 gold_assert(*fde == *this->fdes_.back());
467 this->fdes_.pop_back();
468 }
469
470 // Write the CIE to OVIEW starting at OFFSET. OUTPUT_OFFSET is the
471 // offset of the Eh_frame section within the output section. Round up
472 // the bytes to ADDRALIGN. ADDRESS is the virtual address of OVIEW.
473 // EH_FRAME_HDR is the exception frame header for FDE recording.
474 // POST_FDES stashes FDEs created after mappings were done, for later
475 // writing. Return the new offset.
476
477 template<int size, bool big_endian>
478 section_offset_type
479 Cie::write(unsigned char* oview, section_offset_type output_offset,
480 section_offset_type offset, uint64_t address,
481 unsigned int addralign, Eh_frame_hdr* eh_frame_hdr,
482 Post_fdes* post_fdes)
483 {
484 gold_assert((offset & (addralign - 1)) == 0);
485
486 section_offset_type cie_offset = offset;
487
488 size_t length = this->contents_.length();
489
490 // We add 8 when getting the aligned length to account for the
491 // length word and the CIE tag.
492 size_t aligned_full_length = align_address(length + 8, addralign);
493
494 // Write the length of the CIE as a 32-bit word. The length word
495 // does not include the four bytes of the length word itself.
496 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
497 aligned_full_length - 4);
498
499 // Write the tag which marks this as a CIE: a 32-bit zero.
500 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
501
502 // Write out the CIE data.
503 memcpy(oview + offset + 8, this->contents_.data(), length);
504
505 if (aligned_full_length > length + 8)
506 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
507
508 offset += aligned_full_length;
509
510 // Write out the associated FDEs.
511 unsigned char fde_encoding = this->fde_encoding_;
512 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
513 p != this->fdes_.end();
514 ++p)
515 {
516 if ((*p)->post_map())
517 post_fdes->push_back(Post_fde(*p, cie_offset, fde_encoding));
518 else
519 offset = (*p)->write<size, big_endian>(oview, output_offset, offset,
520 address, addralign, cie_offset,
521 fde_encoding, eh_frame_hdr);
522 }
523
524 return offset;
525 }
526
527 // We track all the CIEs we see, and merge them when possible. This
528 // works because each FDE holds an offset to the relevant CIE: we
529 // rewrite the FDEs to point to the merged CIE. This is worthwhile
530 // because in a typical C++ program many FDEs in many different object
531 // files will use the same CIE.
532
533 // An equality operator for Cie.
534
535 bool
536 operator==(const Cie& cie1, const Cie& cie2)
537 {
538 return (cie1.personality_name_ == cie2.personality_name_
539 && cie1.contents_ == cie2.contents_);
540 }
541
542 // A less-than operator for Cie.
543
544 bool
545 operator<(const Cie& cie1, const Cie& cie2)
546 {
547 if (cie1.personality_name_ != cie2.personality_name_)
548 return cie1.personality_name_ < cie2.personality_name_;
549 return cie1.contents_ < cie2.contents_;
550 }
551
552 // Class Eh_frame.
553
554 Eh_frame::Eh_frame()
555 : Output_section_data(Output_data::default_alignment()),
556 eh_frame_hdr_(NULL),
557 cie_offsets_(),
558 unmergeable_cie_offsets_(),
559 mappings_are_done_(false),
560 final_data_size_(0)
561 {
562 }
563
564 // Skip an LEB128, updating *PP to point to the next character.
565 // Return false if we ran off the end of the string.
566
567 bool
568 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
569 {
570 const unsigned char* p;
571 for (p = *pp; p < pend; ++p)
572 {
573 if ((*p & 0x80) == 0)
574 {
575 *pp = p + 1;
576 return true;
577 }
578 }
579 return false;
580 }
581
582 // Add input section SHNDX in OBJECT to an exception frame section.
583 // SYMBOLS is the contents of the symbol table section (size
584 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
585 // SYMBOL_NAMES_SIZE). RELOC_SHNDX is the index of a relocation
586 // section applying to SHNDX, or 0 if none, or -1U if more than one.
587 // RELOC_TYPE is the type of the reloc section if there is one, either
588 // SHT_REL or SHT_RELA. We try to parse the input exception frame
589 // data into our data structures. If we can't do it, we return false
590 // to mean that the section should be handled as a normal input
591 // section.
592
593 template<int size, bool big_endian>
594 Eh_frame::Eh_frame_section_disposition
595 Eh_frame::add_ehframe_input_section(
596 Sized_relobj_file<size, big_endian>* object,
597 const unsigned char* symbols,
598 section_size_type symbols_size,
599 const unsigned char* symbol_names,
600 section_size_type symbol_names_size,
601 unsigned int shndx,
602 unsigned int reloc_shndx,
603 unsigned int reloc_type)
604 {
605 // Get the section contents.
606 section_size_type contents_len;
607 const unsigned char* pcontents = object->section_contents(shndx,
608 &contents_len,
609 false);
610 if (contents_len == 0)
611 return EH_EMPTY_SECTION;
612
613 // If this is the marker section for the end of the data, then
614 // return false to force it to be handled as an ordinary input
615 // section. If we don't do this, we won't correctly handle the case
616 // of unrecognized .eh_frame sections.
617 if (contents_len == 4
618 && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
619 return EH_END_MARKER_SECTION;
620
621 New_cies new_cies;
622 if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
623 symbol_names, symbol_names_size,
624 shndx, reloc_shndx,
625 reloc_type, pcontents,
626 contents_len, &new_cies))
627 {
628 if (this->eh_frame_hdr_ != NULL)
629 this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
630
631 for (New_cies::iterator p = new_cies.begin();
632 p != new_cies.end();
633 ++p)
634 delete p->first;
635
636 return EH_UNRECOGNIZED_SECTION;
637 }
638
639 // Now that we know we are using this section, record any new CIEs
640 // that we found.
641 for (New_cies::const_iterator p = new_cies.begin();
642 p != new_cies.end();
643 ++p)
644 {
645 if (p->second)
646 this->cie_offsets_.insert(p->first);
647 else
648 this->unmergeable_cie_offsets_.push_back(p->first);
649 }
650
651 return EH_OPTIMIZABLE_SECTION;
652 }
653
654 // The bulk of the implementation of add_ehframe_input_section.
655
656 template<int size, bool big_endian>
657 bool
658 Eh_frame::do_add_ehframe_input_section(
659 Sized_relobj_file<size, big_endian>* object,
660 const unsigned char* symbols,
661 section_size_type symbols_size,
662 const unsigned char* symbol_names,
663 section_size_type symbol_names_size,
664 unsigned int shndx,
665 unsigned int reloc_shndx,
666 unsigned int reloc_type,
667 const unsigned char* pcontents,
668 section_size_type contents_len,
669 New_cies* new_cies)
670 {
671 Track_relocs<size, big_endian> relocs;
672
673 const unsigned char* p = pcontents;
674 const unsigned char* pend = p + contents_len;
675
676 // Get the contents of the reloc section if any.
677 if (!relocs.initialize(object, reloc_shndx, reloc_type))
678 return false;
679
680 // Keep track of which CIEs are at which offsets.
681 Offsets_to_cie cies;
682
683 while (p < pend)
684 {
685 if (pend - p < 4)
686 return false;
687
688 // There shouldn't be any relocations here.
689 if (relocs.advance(p + 4 - pcontents) > 0)
690 return false;
691
692 unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
693 p += 4;
694 if (len == 0)
695 {
696 // We should only find a zero-length entry at the end of the
697 // section.
698 if (p < pend)
699 return false;
700 break;
701 }
702 // We don't support a 64-bit .eh_frame.
703 if (len == 0xffffffff)
704 return false;
705 if (static_cast<unsigned int>(pend - p) < len)
706 return false;
707
708 const unsigned char* const pentend = p + len;
709
710 if (pend - p < 4)
711 return false;
712 if (relocs.advance(p + 4 - pcontents) > 0)
713 return false;
714
715 unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
716 p += 4;
717
718 if (id == 0)
719 {
720 // CIE.
721 if (!this->read_cie(object, shndx, symbols, symbols_size,
722 symbol_names, symbol_names_size,
723 pcontents, p, pentend, &relocs, &cies,
724 new_cies))
725 return false;
726 }
727 else
728 {
729 // FDE.
730 if (!this->read_fde(object, shndx, symbols, symbols_size,
731 pcontents, id, p, pentend, &relocs, &cies))
732 return false;
733 }
734
735 p = pentend;
736 }
737
738 return true;
739 }
740
741 // Read a CIE. Return false if we can't parse the information.
742
743 template<int size, bool big_endian>
744 bool
745 Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
746 unsigned int shndx,
747 const unsigned char* symbols,
748 section_size_type symbols_size,
749 const unsigned char* symbol_names,
750 section_size_type symbol_names_size,
751 const unsigned char* pcontents,
752 const unsigned char* pcie,
753 const unsigned char* pcieend,
754 Track_relocs<size, big_endian>* relocs,
755 Offsets_to_cie* cies,
756 New_cies* new_cies)
757 {
758 bool mergeable = true;
759
760 // We need to find the personality routine if there is one, since we
761 // can only merge CIEs which use the same routine. We also need to
762 // find the FDE encoding if there is one, so that we can read the PC
763 // from the FDE.
764
765 const unsigned char* p = pcie;
766
767 if (pcieend - p < 1)
768 return false;
769 unsigned char version = *p++;
770 if (version != 1 && version != 3)
771 return false;
772
773 const unsigned char* paug = p;
774 const void* paugendv = memchr(p, '\0', pcieend - p);
775 const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
776 if (paugend == NULL)
777 return false;
778 p = paugend + 1;
779
780 if (paug[0] == 'e' && paug[1] == 'h')
781 {
782 // This is a CIE from gcc before version 3.0. We can't merge
783 // these. We can still read the FDEs.
784 mergeable = false;
785 paug += 2;
786 if (*paug != '\0')
787 return false;
788 if (pcieend - p < size / 8)
789 return false;
790 p += size / 8;
791 }
792
793 // Skip the code alignment.
794 if (!skip_leb128(&p, pcieend))
795 return false;
796
797 // Skip the data alignment.
798 if (!skip_leb128(&p, pcieend))
799 return false;
800
801 // Skip the return column.
802 if (version == 1)
803 {
804 if (pcieend - p < 1)
805 return false;
806 ++p;
807 }
808 else
809 {
810 if (!skip_leb128(&p, pcieend))
811 return false;
812 }
813
814 if (*paug == 'z')
815 {
816 ++paug;
817 // Skip the augmentation size.
818 if (!skip_leb128(&p, pcieend))
819 return false;
820 }
821
822 unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
823 int per_offset = -1;
824 while (*paug != '\0')
825 {
826 switch (*paug)
827 {
828 case 'L': // LSDA encoding.
829 if (pcieend - p < 1)
830 return false;
831 ++p;
832 break;
833
834 case 'R': // FDE encoding.
835 if (pcieend - p < 1)
836 return false;
837 fde_encoding = *p;
838 switch (fde_encoding & 7)
839 {
840 case elfcpp::DW_EH_PE_absptr:
841 case elfcpp::DW_EH_PE_udata2:
842 case elfcpp::DW_EH_PE_udata4:
843 case elfcpp::DW_EH_PE_udata8:
844 break;
845 default:
846 // We don't expect to see any other cases here, and
847 // we're not prepared to handle them.
848 return false;
849 }
850 ++p;
851 break;
852
853 case 'S':
854 break;
855
856 case 'P':
857 // Personality encoding.
858 {
859 if (pcieend - p < 1)
860 return false;
861 unsigned char per_encoding = *p;
862 ++p;
863
864 if ((per_encoding & 0x60) == 0x60)
865 return false;
866 unsigned int per_width;
867 switch (per_encoding & 7)
868 {
869 case elfcpp::DW_EH_PE_udata2:
870 per_width = 2;
871 break;
872 case elfcpp::DW_EH_PE_udata4:
873 per_width = 4;
874 break;
875 case elfcpp::DW_EH_PE_udata8:
876 per_width = 8;
877 break;
878 case elfcpp::DW_EH_PE_absptr:
879 per_width = size / 8;
880 break;
881 default:
882 return false;
883 }
884
885 if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
886 {
887 unsigned int len = p - pcie;
888 len += per_width - 1;
889 len &= ~ (per_width - 1);
890 if (static_cast<unsigned int>(pcieend - p) < len)
891 return false;
892 p += len;
893 }
894
895 per_offset = p - pcontents;
896
897 if (static_cast<unsigned int>(pcieend - p) < per_width)
898 return false;
899 p += per_width;
900 }
901 break;
902
903 default:
904 return false;
905 }
906
907 ++paug;
908 }
909
910 const char* personality_name = "";
911 if (per_offset != -1)
912 {
913 if (relocs->advance(per_offset) > 0)
914 return false;
915 if (relocs->next_offset() != per_offset)
916 return false;
917
918 unsigned int personality_symndx = relocs->next_symndx();
919 if (personality_symndx == -1U)
920 return false;
921
922 if (personality_symndx < object->local_symbol_count())
923 {
924 // We can only merge this CIE if the personality routine is
925 // a global symbol. We can still read the FDEs.
926 mergeable = false;
927 }
928 else
929 {
930 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
931 if (personality_symndx >= symbols_size / sym_size)
932 return false;
933 elfcpp::Sym<size, big_endian> sym(symbols
934 + (personality_symndx * sym_size));
935 unsigned int name_offset = sym.get_st_name();
936 if (name_offset >= symbol_names_size)
937 return false;
938 personality_name = (reinterpret_cast<const char*>(symbol_names)
939 + name_offset);
940 }
941
942 int r = relocs->advance(per_offset + 1);
943 gold_assert(r == 1);
944 }
945
946 if (relocs->advance(pcieend - pcontents) > 0)
947 return false;
948
949 Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
950 personality_name, pcie, pcieend - pcie);
951 Cie* cie_pointer = NULL;
952 if (mergeable)
953 {
954 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
955 if (find_cie != this->cie_offsets_.end())
956 cie_pointer = *find_cie;
957 else
958 {
959 // See if we already saw this CIE in this object file.
960 for (New_cies::const_iterator pc = new_cies->begin();
961 pc != new_cies->end();
962 ++pc)
963 {
964 if (*(pc->first) == cie)
965 {
966 cie_pointer = pc->first;
967 break;
968 }
969 }
970 }
971 }
972
973 if (cie_pointer == NULL)
974 {
975 cie_pointer = new Cie(cie);
976 new_cies->push_back(std::make_pair(cie_pointer, mergeable));
977 }
978 else
979 {
980 // We are deleting this CIE. Record that in our mapping from
981 // input sections to the output section. At this point we don't
982 // know for sure that we are doing a special mapping for this
983 // input section, but that's OK--if we don't do a special
984 // mapping, nobody will ever ask for the mapping we add here.
985 object->add_merge_mapping(this, shndx, (pcie - 8) - pcontents,
986 pcieend - (pcie - 8), -1);
987 }
988
989 // Record this CIE plus the offset in the input section.
990 cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
991
992 return true;
993 }
994
995 // Read an FDE. Return false if we can't parse the information.
996
997 template<int size, bool big_endian>
998 bool
999 Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
1000 unsigned int shndx,
1001 const unsigned char* symbols,
1002 section_size_type symbols_size,
1003 const unsigned char* pcontents,
1004 unsigned int offset,
1005 const unsigned char* pfde,
1006 const unsigned char* pfdeend,
1007 Track_relocs<size, big_endian>* relocs,
1008 Offsets_to_cie* cies)
1009 {
1010 // OFFSET is the distance between the 4 bytes before PFDE to the
1011 // start of the CIE. The offset we recorded for the CIE is 8 bytes
1012 // after the start of the CIE--after the length and the zero tag.
1013 unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
1014 Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
1015 if (pcie == cies->end())
1016 return false;
1017 Cie* cie = pcie->second;
1018
1019 int pc_size = 0;
1020 switch (cie->fde_encoding() & 7)
1021 {
1022 case elfcpp::DW_EH_PE_udata2:
1023 pc_size = 2;
1024 break;
1025 case elfcpp::DW_EH_PE_udata4:
1026 pc_size = 4;
1027 break;
1028 case elfcpp::DW_EH_PE_udata8:
1029 gold_assert(size == 64);
1030 pc_size = 8;
1031 break;
1032 case elfcpp::DW_EH_PE_absptr:
1033 pc_size = size == 32 ? 4 : 8;
1034 break;
1035 default:
1036 // All other cases were rejected in Eh_frame::read_cie.
1037 gold_unreachable();
1038 }
1039
1040 // The FDE should start with a reloc to the start of the code which
1041 // it describes.
1042 if (relocs->advance(pfde - pcontents) > 0)
1043 return false;
1044 if (relocs->next_offset() != pfde - pcontents)
1045 {
1046 // In an object produced by a relocatable link, gold may have
1047 // discarded a COMDAT group in the previous link, but not the
1048 // corresponding FDEs. In that case, gold will have discarded
1049 // the relocations, so the FDE will have a non-relocatable zero
1050 // (regardless of whether the PC encoding is absolute, pc-relative,
1051 // or data-relative) instead of a pointer to the start of the code.
1052
1053 uint64_t pc_value = 0;
1054 switch (pc_size)
1055 {
1056 case 2:
1057 pc_value = elfcpp::Swap<16, big_endian>::readval(pfde);
1058 break;
1059 case 4:
1060 pc_value = elfcpp::Swap<32, big_endian>::readval(pfde);
1061 break;
1062 case 8:
1063 pc_value = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde);
1064 break;
1065 default:
1066 gold_unreachable();
1067 }
1068
1069 if (pc_value == 0)
1070 {
1071 // This FDE applies to a discarded function. We
1072 // can discard this FDE.
1073 object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1074 pfdeend - (pfde - 8), -1);
1075 return true;
1076 }
1077
1078 // Otherwise, reject the FDE.
1079 return false;
1080 }
1081
1082 unsigned int symndx = relocs->next_symndx();
1083 if (symndx == -1U)
1084 return false;
1085
1086 // There can be another reloc in the FDE, if the CIE specifies an
1087 // LSDA (language specific data area). We currently don't care. We
1088 // will care later if we want to optimize the LSDA from an absolute
1089 // pointer to a PC relative offset when generating a shared library.
1090 relocs->advance(pfdeend - pcontents);
1091
1092 // Find the section index for code that this FDE describes.
1093 // If we have discarded the section, we can also discard the FDE.
1094 unsigned int fde_shndx;
1095 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1096 if (symndx >= symbols_size / sym_size)
1097 return false;
1098 elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1099 bool is_ordinary;
1100 fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1101 &is_ordinary);
1102 bool is_discarded = (is_ordinary
1103 && fde_shndx != elfcpp::SHN_UNDEF
1104 && fde_shndx < object->shnum()
1105 && !object->is_section_included(fde_shndx));
1106
1107 // Fetch the address range field from the FDE. The offset and size
1108 // of the field depends on the PC encoding given in the CIE, but
1109 // it is always an absolute value. If the address range is 0, this
1110 // FDE corresponds to a function that was discarded during optimization
1111 // (too late to discard the corresponding FDE).
1112 uint64_t address_range = 0;
1113 switch (pc_size)
1114 {
1115 case 2:
1116 address_range = elfcpp::Swap<16, big_endian>::readval(pfde + 2);
1117 break;
1118 case 4:
1119 address_range = elfcpp::Swap<32, big_endian>::readval(pfde + 4);
1120 break;
1121 case 8:
1122 address_range = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde + 8);
1123 break;
1124 default:
1125 gold_unreachable();
1126 }
1127
1128 if (is_discarded || address_range == 0)
1129 {
1130 // This FDE applies to a discarded function. We
1131 // can discard this FDE.
1132 object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1133 pfdeend - (pfde - 8), -1);
1134 return true;
1135 }
1136
1137 cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1138 pfde, pfdeend - pfde));
1139
1140 return true;
1141 }
1142
1143 // Add unwind information for a PLT.
1144
1145 void
1146 Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1147 size_t cie_length, const unsigned char* fde_data,
1148 size_t fde_length)
1149 {
1150 Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1151 cie_data, cie_length);
1152 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1153 Cie* pcie;
1154 if (find_cie != this->cie_offsets_.end())
1155 pcie = *find_cie;
1156 else
1157 {
1158 gold_assert(!this->mappings_are_done_);
1159 pcie = new Cie(cie);
1160 this->cie_offsets_.insert(pcie);
1161 }
1162
1163 Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
1164 pcie->add_fde(fde);
1165
1166 if (this->mappings_are_done_)
1167 this->final_data_size_ += align_address(fde_length + 8, this->addralign());
1168 }
1169
1170 // Remove unwind information for a PLT. Only the last FDE added may be removed.
1171
1172 void
1173 Eh_frame::remove_ehframe_for_plt(Output_data* plt,
1174 const unsigned char* cie_data,
1175 size_t cie_length,
1176 const unsigned char* fde_data,
1177 size_t fde_length)
1178 {
1179 Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1180 cie_data, cie_length);
1181 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1182 gold_assert (find_cie != this->cie_offsets_.end());
1183 Cie* pcie = *find_cie;
1184
1185 Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
1186 pcie->remove_fde(fde);
1187
1188 if (this->mappings_are_done_)
1189 this->final_data_size_ -= align_address(fde_length + 8, this->addralign());
1190 }
1191
1192 // Return the number of FDEs.
1193
1194 unsigned int
1195 Eh_frame::fde_count() const
1196 {
1197 unsigned int ret = 0;
1198 for (Unmergeable_cie_offsets::const_iterator p =
1199 this->unmergeable_cie_offsets_.begin();
1200 p != this->unmergeable_cie_offsets_.end();
1201 ++p)
1202 ret += (*p)->fde_count();
1203 for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1204 p != this->cie_offsets_.end();
1205 ++p)
1206 ret += (*p)->fde_count();
1207 return ret;
1208 }
1209
1210 // Set the final data size.
1211
1212 void
1213 Eh_frame::set_final_data_size()
1214 {
1215 // We can be called more than once if Layout::set_segment_offsets
1216 // finds a better mapping. We don't want to add all the mappings
1217 // again.
1218 if (this->mappings_are_done_)
1219 {
1220 this->set_data_size(this->final_data_size_);
1221 return;
1222 }
1223
1224 section_offset_type output_start = 0;
1225 if (this->is_offset_valid())
1226 output_start = this->offset() - this->output_section()->offset();
1227 section_offset_type output_offset = output_start;
1228
1229 for (Unmergeable_cie_offsets::iterator p =
1230 this->unmergeable_cie_offsets_.begin();
1231 p != this->unmergeable_cie_offsets_.end();
1232 ++p)
1233 output_offset = (*p)->set_output_offset(output_offset,
1234 this->addralign(),
1235 this);
1236
1237 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1238 p != this->cie_offsets_.end();
1239 ++p)
1240 output_offset = (*p)->set_output_offset(output_offset,
1241 this->addralign(),
1242 this);
1243
1244 this->mappings_are_done_ = true;
1245 this->final_data_size_ = output_offset - output_start;
1246
1247 gold_assert((output_offset & (this->addralign() - 1)) == 0);
1248 this->set_data_size(this->final_data_size_);
1249 }
1250
1251 // Return an output offset for an input offset.
1252
1253 bool
1254 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1255 section_offset_type offset,
1256 section_offset_type* poutput) const
1257 {
1258 return object->merge_output_offset(shndx, offset, poutput);
1259 }
1260
1261 // Write the data to the output file.
1262
1263 void
1264 Eh_frame::do_write(Output_file* of)
1265 {
1266 const off_t offset = this->offset();
1267 const off_t oview_size = this->data_size();
1268 unsigned char* const oview = of->get_output_view(offset, oview_size);
1269
1270 switch (parameters->size_and_endianness())
1271 {
1272 #ifdef HAVE_TARGET_32_LITTLE
1273 case Parameters::TARGET_32_LITTLE:
1274 this->do_sized_write<32, false>(oview);
1275 break;
1276 #endif
1277 #ifdef HAVE_TARGET_32_BIG
1278 case Parameters::TARGET_32_BIG:
1279 this->do_sized_write<32, true>(oview);
1280 break;
1281 #endif
1282 #ifdef HAVE_TARGET_64_LITTLE
1283 case Parameters::TARGET_64_LITTLE:
1284 this->do_sized_write<64, false>(oview);
1285 break;
1286 #endif
1287 #ifdef HAVE_TARGET_64_BIG
1288 case Parameters::TARGET_64_BIG:
1289 this->do_sized_write<64, true>(oview);
1290 break;
1291 #endif
1292 default:
1293 gold_unreachable();
1294 }
1295
1296 of->write_output_view(offset, oview_size, oview);
1297 }
1298
1299 // Write the data to the output file--template version.
1300
1301 template<int size, bool big_endian>
1302 void
1303 Eh_frame::do_sized_write(unsigned char* oview)
1304 {
1305 uint64_t address = this->address();
1306 unsigned int addralign = this->addralign();
1307 section_offset_type o = 0;
1308 const off_t output_offset = this->offset() - this->output_section()->offset();
1309 Post_fdes post_fdes;
1310 for (Unmergeable_cie_offsets::iterator p =
1311 this->unmergeable_cie_offsets_.begin();
1312 p != this->unmergeable_cie_offsets_.end();
1313 ++p)
1314 o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1315 addralign, this->eh_frame_hdr_,
1316 &post_fdes);
1317 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1318 p != this->cie_offsets_.end();
1319 ++p)
1320 o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1321 addralign, this->eh_frame_hdr_,
1322 &post_fdes);
1323 for (Post_fdes::iterator p = post_fdes.begin();
1324 p != post_fdes.end();
1325 ++p)
1326 o = (*p).fde->write<size, big_endian>(oview, output_offset, o, address,
1327 addralign, (*p).cie_offset,
1328 (*p).fde_encoding,
1329 this->eh_frame_hdr_);
1330 }
1331
1332 #ifdef HAVE_TARGET_32_LITTLE
1333 template
1334 Eh_frame::Eh_frame_section_disposition
1335 Eh_frame::add_ehframe_input_section<32, false>(
1336 Sized_relobj_file<32, false>* object,
1337 const unsigned char* symbols,
1338 section_size_type symbols_size,
1339 const unsigned char* symbol_names,
1340 section_size_type symbol_names_size,
1341 unsigned int shndx,
1342 unsigned int reloc_shndx,
1343 unsigned int reloc_type);
1344 #endif
1345
1346 #ifdef HAVE_TARGET_32_BIG
1347 template
1348 Eh_frame::Eh_frame_section_disposition
1349 Eh_frame::add_ehframe_input_section<32, true>(
1350 Sized_relobj_file<32, true>* object,
1351 const unsigned char* symbols,
1352 section_size_type symbols_size,
1353 const unsigned char* symbol_names,
1354 section_size_type symbol_names_size,
1355 unsigned int shndx,
1356 unsigned int reloc_shndx,
1357 unsigned int reloc_type);
1358 #endif
1359
1360 #ifdef HAVE_TARGET_64_LITTLE
1361 template
1362 Eh_frame::Eh_frame_section_disposition
1363 Eh_frame::add_ehframe_input_section<64, false>(
1364 Sized_relobj_file<64, false>* object,
1365 const unsigned char* symbols,
1366 section_size_type symbols_size,
1367 const unsigned char* symbol_names,
1368 section_size_type symbol_names_size,
1369 unsigned int shndx,
1370 unsigned int reloc_shndx,
1371 unsigned int reloc_type);
1372 #endif
1373
1374 #ifdef HAVE_TARGET_64_BIG
1375 template
1376 Eh_frame::Eh_frame_section_disposition
1377 Eh_frame::add_ehframe_input_section<64, true>(
1378 Sized_relobj_file<64, true>* object,
1379 const unsigned char* symbols,
1380 section_size_type symbols_size,
1381 const unsigned char* symbol_names,
1382 section_size_type symbol_names_size,
1383 unsigned int shndx,
1384 unsigned int reloc_shndx,
1385 unsigned int reloc_type);
1386 #endif
1387
1388 } // End namespace gold.