]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/ehframe.cc
Update copyright years
[thirdparty/binutils-gdb.git] / gold / ehframe.cc
1 // ehframe.cc -- handle exception frame sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "symtab.h"
31 #include "reloc.h"
32 #include "ehframe.h"
33
34 namespace gold
35 {
36
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime. This file also handles discarding duplicate exception
40 // frame information.
41
42 // The exception frame header starts with four bytes:
43
44 // 0: The version number, currently 1.
45
46 // 1: The encoding of the pointer to the exception frames. This can
47 // be any DWARF unwind encoding (DW_EH_PE_*). It is normally a 4
48 // byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50 // 2: The encoding of the count of the number of FDE pointers in the
51 // lookup table. This can be any DWARF unwind encoding, and in
52 // particular can be DW_EH_PE_omit if the count is omitted. It is
53 // normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55 // 3: The encoding of the lookup table entries. Currently gcc's
56 // libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 // which means that the values are 4 byte offsets from the start of
58 // the table.
59
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame). This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
64
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory. Each entry in the table is 8 bytes.
71 // Each entry represents an FDE. The first four bytes of each entry
72 // are an offset to the starting PC for the FDE. The last four bytes
73 // of each entry are an offset to the FDE data. The offsets are from
74 // the start of the exception frame header information. The entries
75 // are in sorted order by starting PC.
76
77 const int eh_frame_hdr_size = 4;
78
79 // Construct the exception frame header.
80
81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82 const Eh_frame* eh_frame_data)
83 : Output_section_data(4),
84 eh_frame_section_(eh_frame_section),
85 eh_frame_data_(eh_frame_data),
86 fde_offsets_(),
87 any_unrecognized_eh_frame_sections_(false)
88 {
89 }
90
91 // Set the size of the exception frame header.
92
93 void
94 Eh_frame_hdr::set_final_data_size()
95 {
96 unsigned int data_size = eh_frame_hdr_size + 4;
97 if (!this->any_unrecognized_eh_frame_sections_)
98 {
99 unsigned int fde_count = this->eh_frame_data_->fde_count();
100 if (fde_count != 0)
101 data_size += 4 + 8 * fde_count;
102 this->fde_offsets_.reserve(fde_count);
103 }
104 this->set_data_size(data_size);
105 }
106
107 // Write the data to the file.
108
109 void
110 Eh_frame_hdr::do_write(Output_file* of)
111 {
112 switch (parameters->size_and_endianness())
113 {
114 #ifdef HAVE_TARGET_32_LITTLE
115 case Parameters::TARGET_32_LITTLE:
116 this->do_sized_write<32, false>(of);
117 break;
118 #endif
119 #ifdef HAVE_TARGET_32_BIG
120 case Parameters::TARGET_32_BIG:
121 this->do_sized_write<32, true>(of);
122 break;
123 #endif
124 #ifdef HAVE_TARGET_64_LITTLE
125 case Parameters::TARGET_64_LITTLE:
126 this->do_sized_write<64, false>(of);
127 break;
128 #endif
129 #ifdef HAVE_TARGET_64_BIG
130 case Parameters::TARGET_64_BIG:
131 this->do_sized_write<64, true>(of);
132 break;
133 #endif
134 default:
135 gold_unreachable();
136 }
137 }
138
139 // Write the data to the file with the right endianness.
140
141 template<int size, bool big_endian>
142 void
143 Eh_frame_hdr::do_sized_write(Output_file* of)
144 {
145 const off_t off = this->offset();
146 const off_t oview_size = this->data_size();
147 unsigned char* const oview = of->get_output_view(off, oview_size);
148
149 // Version number.
150 oview[0] = 1;
151
152 // Write out a 4 byte PC relative offset to the address of the
153 // .eh_frame section.
154 oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155 uint64_t eh_frame_address = this->eh_frame_section_->address();
156 uint64_t eh_frame_hdr_address = this->address();
157 uint64_t eh_frame_offset = (eh_frame_address -
158 (eh_frame_hdr_address + 4));
159 elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161 if (this->any_unrecognized_eh_frame_sections_
162 || this->fde_offsets_.empty())
163 {
164 // There are no FDEs, or we didn't recognize the format of the
165 // some of the .eh_frame sections, so we can't write out the
166 // sorted table.
167 oview[2] = elfcpp::DW_EH_PE_omit;
168 oview[3] = elfcpp::DW_EH_PE_omit;
169
170 gold_assert(oview_size == 8);
171 }
172 else
173 {
174 oview[2] = elfcpp::DW_EH_PE_udata4;
175 oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177 elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178 this->fde_offsets_.size());
179
180 // We have the offsets of the FDEs in the .eh_frame section. We
181 // couldn't easily get the PC values before, as they depend on
182 // relocations which are, of course, target specific. This code
183 // is run after all those relocations have been applied to the
184 // output file. Here we read the output file again to find the
185 // PC values. Then we sort the list and write it out.
186
187 Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188 this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189 &fde_addresses);
190
191 std::sort(fde_addresses.begin(), fde_addresses.end(),
192 Fde_address_compare<size>());
193
194 typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195 output_address = this->address();
196
197 unsigned char* pfde = oview + 12;
198 for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199 p != fde_addresses.end();
200 ++p)
201 {
202 elfcpp::Swap<32, big_endian>::writeval(pfde,
203 p->first - output_address);
204 elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205 p->second - output_address);
206 pfde += 8;
207 }
208
209 gold_assert(pfde - oview == oview_size);
210 }
211
212 of->write_output_view(off, oview_size, oview);
213 }
214
215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217 // FDE's encoding is FDE_ENCODING, return the output address of the
218 // FDE's PC.
219
220 template<int size, bool big_endian>
221 typename elfcpp::Elf_types<size>::Elf_Addr
222 Eh_frame_hdr::get_fde_pc(
223 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224 const unsigned char* eh_frame_contents,
225 section_offset_type fde_offset,
226 unsigned char fde_encoding)
227 {
228 // The FDE starts with a 4 byte length and a 4 byte offset to the
229 // CIE. The PC follows.
230 const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232 typename elfcpp::Elf_types<size>::Elf_Addr pc;
233 bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234 int pc_size = fde_encoding & 7;
235 if (pc_size == elfcpp::DW_EH_PE_absptr)
236 {
237 if (size == 32)
238 pc_size = elfcpp::DW_EH_PE_udata4;
239 else if (size == 64)
240 pc_size = elfcpp::DW_EH_PE_udata8;
241 else
242 gold_unreachable();
243 }
244
245 switch (pc_size)
246 {
247 case elfcpp::DW_EH_PE_udata2:
248 pc = elfcpp::Swap<16, big_endian>::readval(p);
249 if (is_signed)
250 pc = (pc ^ 0x8000) - 0x8000;
251 break;
252
253 case elfcpp::DW_EH_PE_udata4:
254 pc = elfcpp::Swap<32, big_endian>::readval(p);
255 if (size > 32 && is_signed)
256 pc = (pc ^ 0x80000000) - 0x80000000;
257 break;
258
259 case elfcpp::DW_EH_PE_udata8:
260 gold_assert(size == 64);
261 pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262 break;
263
264 default:
265 // All other cases were rejected in Eh_frame::read_cie.
266 gold_unreachable();
267 }
268
269 switch (fde_encoding & 0x70)
270 {
271 case 0:
272 break;
273
274 case elfcpp::DW_EH_PE_pcrel:
275 pc += eh_frame_address + fde_offset + 8;
276 break;
277
278 case elfcpp::DW_EH_PE_datarel:
279 pc += parameters->target().ehframe_datarel_base();
280 break;
281
282 default:
283 // If other cases arise, then we have to handle them, or we have
284 // to reject them by returning false in Eh_frame::read_cie.
285 gold_unreachable();
286 }
287
288 gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
289
290 return pc;
291 }
292
293 // Given an array of FDE offsets in the .eh_frame section, return an
294 // array of offsets from the exception frame header to the FDE's
295 // output PC and to the output address of the FDE itself. We get the
296 // FDE's PC by actually looking in the .eh_frame section we just wrote
297 // to the output file.
298
299 template<int size, bool big_endian>
300 void
301 Eh_frame_hdr::get_fde_addresses(Output_file* of,
302 const Fde_offsets* fde_offsets,
303 Fde_addresses<size>* fde_addresses)
304 {
305 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306 eh_frame_address = this->eh_frame_section_->address();
307 off_t eh_frame_offset = this->eh_frame_section_->offset();
308 off_t eh_frame_size = this->eh_frame_section_->data_size();
309 const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
310 eh_frame_size);
311
312 for (Fde_offsets::const_iterator p = fde_offsets->begin();
313 p != fde_offsets->end();
314 ++p)
315 {
316 typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317 fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
318 eh_frame_contents,
319 p->first, p->second);
320 fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
321 }
322
323 of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
324 }
325
326 // Class Fde.
327
328 // Write the FDE to OVIEW starting at OFFSET. CIE_OFFSET is the
329 // offset of the CIE in OVIEW. FDE_ENCODING is the encoding, from the
330 // CIE. ADDRALIGN is the required alignment. ADDRESS is the virtual
331 // address of OVIEW. Record the FDE pc for EH_FRAME_HDR. Return the
332 // new offset.
333
334 template<int size, bool big_endian>
335 section_offset_type
336 Fde::write(unsigned char* oview, section_offset_type offset,
337 uint64_t address, unsigned int addralign,
338 section_offset_type cie_offset, unsigned char fde_encoding,
339 Eh_frame_hdr* eh_frame_hdr)
340 {
341 gold_assert((offset & (addralign - 1)) == 0);
342
343 size_t length = this->contents_.length();
344
345 // We add 8 when getting the aligned length to account for the
346 // length word and the CIE offset.
347 size_t aligned_full_length = align_address(length + 8, addralign);
348
349 // Write the length of the FDE as a 32-bit word. The length word
350 // does not include the four bytes of the length word itself, but it
351 // does include the offset to the CIE.
352 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
353 aligned_full_length - 4);
354
355 // Write the offset to the CIE as a 32-bit word. This is the
356 // difference between the address of the offset word itself and the
357 // CIE address.
358 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
359 offset + 4 - cie_offset);
360
361 // Copy the rest of the FDE. Note that this is run before
362 // relocation processing is done on this section, so the relocations
363 // will later be applied to the FDE data.
364 memcpy(oview + offset + 8, this->contents_.data(), length);
365
366 // If this FDE is associated with a PLT, fill in the PLT's address
367 // and size.
368 if (this->object_ == NULL)
369 {
370 gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
371 uint64_t paddress;
372 off_t psize;
373 parameters->target().plt_fde_location(this->u_.from_linker.plt,
374 oview + offset + 8,
375 &paddress, &psize);
376 uint64_t poffset = paddress - (address + offset + 8);
377 int32_t spoffset = static_cast<int32_t>(poffset);
378 uint32_t upsize = static_cast<uint32_t>(psize);
379 if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
380 || static_cast<off_t>(upsize) != psize)
381 gold_warning(_("overflow in PLT unwind data; "
382 "unwinding through PLT may fail"));
383 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
384 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
385 }
386
387 if (aligned_full_length > length + 8)
388 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
389
390 // Tell the exception frame header about this FDE.
391 if (eh_frame_hdr != NULL)
392 eh_frame_hdr->record_fde(offset, fde_encoding);
393
394 return offset + aligned_full_length;
395 }
396
397 // Class Cie.
398
399 // Destructor.
400
401 Cie::~Cie()
402 {
403 for (std::vector<Fde*>::iterator p = this->fdes_.begin();
404 p != this->fdes_.end();
405 ++p)
406 delete *p;
407 }
408
409 // Set the output offset of a CIE. Return the new output offset.
410
411 section_offset_type
412 Cie::set_output_offset(section_offset_type output_offset,
413 unsigned int addralign,
414 Merge_map* merge_map)
415 {
416 size_t length = this->contents_.length();
417
418 // Add 4 for length and 4 for zero CIE identifier tag.
419 length += 8;
420
421 if (this->object_ != NULL)
422 {
423 // Add a mapping so that relocations are applied correctly.
424 merge_map->add_mapping(this->object_, this->shndx_, this->input_offset_,
425 length, output_offset);
426 }
427
428 length = align_address(length, addralign);
429
430 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
431 p != this->fdes_.end();
432 ++p)
433 {
434 (*p)->add_mapping(output_offset + length, merge_map);
435
436 size_t fde_length = (*p)->length();
437 fde_length = align_address(fde_length, addralign);
438 length += fde_length;
439 }
440
441 return output_offset + length;
442 }
443
444 // Write the CIE to OVIEW starting at OFFSET. Round up the bytes to
445 // ADDRALIGN. ADDRESS is the virtual address of OVIEW.
446 // EH_FRAME_HDR is the exception frame header for FDE recording.
447 // POST_FDES stashes FDEs created after mappings were done, for later
448 // writing. Return the new offset.
449
450 template<int size, bool big_endian>
451 section_offset_type
452 Cie::write(unsigned char* oview, section_offset_type offset,
453 uint64_t address, unsigned int addralign,
454 Eh_frame_hdr* eh_frame_hdr, Post_fdes* post_fdes)
455 {
456 gold_assert((offset & (addralign - 1)) == 0);
457
458 section_offset_type cie_offset = offset;
459
460 size_t length = this->contents_.length();
461
462 // We add 8 when getting the aligned length to account for the
463 // length word and the CIE tag.
464 size_t aligned_full_length = align_address(length + 8, addralign);
465
466 // Write the length of the CIE as a 32-bit word. The length word
467 // does not include the four bytes of the length word itself.
468 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
469 aligned_full_length - 4);
470
471 // Write the tag which marks this as a CIE: a 32-bit zero.
472 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
473
474 // Write out the CIE data.
475 memcpy(oview + offset + 8, this->contents_.data(), length);
476
477 if (aligned_full_length > length + 8)
478 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
479
480 offset += aligned_full_length;
481
482 // Write out the associated FDEs.
483 unsigned char fde_encoding = this->fde_encoding_;
484 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
485 p != this->fdes_.end();
486 ++p)
487 {
488 if ((*p)->post_map())
489 post_fdes->push_back(Post_fde(*p, cie_offset, fde_encoding));
490 else
491 offset = (*p)->write<size, big_endian>(oview, offset, address,
492 addralign, cie_offset,
493 fde_encoding, eh_frame_hdr);
494 }
495
496 return offset;
497 }
498
499 // We track all the CIEs we see, and merge them when possible. This
500 // works because each FDE holds an offset to the relevant CIE: we
501 // rewrite the FDEs to point to the merged CIE. This is worthwhile
502 // because in a typical C++ program many FDEs in many different object
503 // files will use the same CIE.
504
505 // An equality operator for Cie.
506
507 bool
508 operator==(const Cie& cie1, const Cie& cie2)
509 {
510 return (cie1.personality_name_ == cie2.personality_name_
511 && cie1.contents_ == cie2.contents_);
512 }
513
514 // A less-than operator for Cie.
515
516 bool
517 operator<(const Cie& cie1, const Cie& cie2)
518 {
519 if (cie1.personality_name_ != cie2.personality_name_)
520 return cie1.personality_name_ < cie2.personality_name_;
521 return cie1.contents_ < cie2.contents_;
522 }
523
524 // Class Eh_frame.
525
526 Eh_frame::Eh_frame()
527 : Output_section_data(Output_data::default_alignment()),
528 eh_frame_hdr_(NULL),
529 cie_offsets_(),
530 unmergeable_cie_offsets_(),
531 merge_map_(),
532 mappings_are_done_(false),
533 final_data_size_(0)
534 {
535 }
536
537 // Skip an LEB128, updating *PP to point to the next character.
538 // Return false if we ran off the end of the string.
539
540 bool
541 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
542 {
543 const unsigned char* p;
544 for (p = *pp; p < pend; ++p)
545 {
546 if ((*p & 0x80) == 0)
547 {
548 *pp = p + 1;
549 return true;
550 }
551 }
552 return false;
553 }
554
555 // Add input section SHNDX in OBJECT to an exception frame section.
556 // SYMBOLS is the contents of the symbol table section (size
557 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
558 // SYMBOL_NAMES_SIZE). RELOC_SHNDX is the index of a relocation
559 // section applying to SHNDX, or 0 if none, or -1U if more than one.
560 // RELOC_TYPE is the type of the reloc section if there is one, either
561 // SHT_REL or SHT_RELA. We try to parse the input exception frame
562 // data into our data structures. If we can't do it, we return false
563 // to mean that the section should be handled as a normal input
564 // section.
565
566 template<int size, bool big_endian>
567 bool
568 Eh_frame::add_ehframe_input_section(
569 Sized_relobj_file<size, big_endian>* object,
570 const unsigned char* symbols,
571 section_size_type symbols_size,
572 const unsigned char* symbol_names,
573 section_size_type symbol_names_size,
574 unsigned int shndx,
575 unsigned int reloc_shndx,
576 unsigned int reloc_type)
577 {
578 // Get the section contents.
579 section_size_type contents_len;
580 const unsigned char* pcontents = object->section_contents(shndx,
581 &contents_len,
582 false);
583 if (contents_len == 0)
584 return false;
585
586 // If this is the marker section for the end of the data, then
587 // return false to force it to be handled as an ordinary input
588 // section. If we don't do this, we won't correctly handle the case
589 // of unrecognized .eh_frame sections.
590 if (contents_len == 4
591 && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
592 return false;
593
594 New_cies new_cies;
595 if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
596 symbol_names, symbol_names_size,
597 shndx, reloc_shndx,
598 reloc_type, pcontents,
599 contents_len, &new_cies))
600 {
601 if (this->eh_frame_hdr_ != NULL)
602 this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
603
604 for (New_cies::iterator p = new_cies.begin();
605 p != new_cies.end();
606 ++p)
607 delete p->first;
608
609 return false;
610 }
611
612 // Now that we know we are using this section, record any new CIEs
613 // that we found.
614 for (New_cies::const_iterator p = new_cies.begin();
615 p != new_cies.end();
616 ++p)
617 {
618 if (p->second)
619 this->cie_offsets_.insert(p->first);
620 else
621 this->unmergeable_cie_offsets_.push_back(p->first);
622 }
623
624 return true;
625 }
626
627 // The bulk of the implementation of add_ehframe_input_section.
628
629 template<int size, bool big_endian>
630 bool
631 Eh_frame::do_add_ehframe_input_section(
632 Sized_relobj_file<size, big_endian>* object,
633 const unsigned char* symbols,
634 section_size_type symbols_size,
635 const unsigned char* symbol_names,
636 section_size_type symbol_names_size,
637 unsigned int shndx,
638 unsigned int reloc_shndx,
639 unsigned int reloc_type,
640 const unsigned char* pcontents,
641 section_size_type contents_len,
642 New_cies* new_cies)
643 {
644 Track_relocs<size, big_endian> relocs;
645
646 const unsigned char* p = pcontents;
647 const unsigned char* pend = p + contents_len;
648
649 // Get the contents of the reloc section if any.
650 if (!relocs.initialize(object, reloc_shndx, reloc_type))
651 return false;
652
653 // Keep track of which CIEs are at which offsets.
654 Offsets_to_cie cies;
655
656 while (p < pend)
657 {
658 if (pend - p < 4)
659 return false;
660
661 // There shouldn't be any relocations here.
662 if (relocs.advance(p + 4 - pcontents) > 0)
663 return false;
664
665 unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
666 p += 4;
667 if (len == 0)
668 {
669 // We should only find a zero-length entry at the end of the
670 // section.
671 if (p < pend)
672 return false;
673 break;
674 }
675 // We don't support a 64-bit .eh_frame.
676 if (len == 0xffffffff)
677 return false;
678 if (static_cast<unsigned int>(pend - p) < len)
679 return false;
680
681 const unsigned char* const pentend = p + len;
682
683 if (pend - p < 4)
684 return false;
685 if (relocs.advance(p + 4 - pcontents) > 0)
686 return false;
687
688 unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
689 p += 4;
690
691 if (id == 0)
692 {
693 // CIE.
694 if (!this->read_cie(object, shndx, symbols, symbols_size,
695 symbol_names, symbol_names_size,
696 pcontents, p, pentend, &relocs, &cies,
697 new_cies))
698 return false;
699 }
700 else
701 {
702 // FDE.
703 if (!this->read_fde(object, shndx, symbols, symbols_size,
704 pcontents, id, p, pentend, &relocs, &cies))
705 return false;
706 }
707
708 p = pentend;
709 }
710
711 return true;
712 }
713
714 // Read a CIE. Return false if we can't parse the information.
715
716 template<int size, bool big_endian>
717 bool
718 Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
719 unsigned int shndx,
720 const unsigned char* symbols,
721 section_size_type symbols_size,
722 const unsigned char* symbol_names,
723 section_size_type symbol_names_size,
724 const unsigned char* pcontents,
725 const unsigned char* pcie,
726 const unsigned char* pcieend,
727 Track_relocs<size, big_endian>* relocs,
728 Offsets_to_cie* cies,
729 New_cies* new_cies)
730 {
731 bool mergeable = true;
732
733 // We need to find the personality routine if there is one, since we
734 // can only merge CIEs which use the same routine. We also need to
735 // find the FDE encoding if there is one, so that we can read the PC
736 // from the FDE.
737
738 const unsigned char* p = pcie;
739
740 if (pcieend - p < 1)
741 return false;
742 unsigned char version = *p++;
743 if (version != 1 && version != 3)
744 return false;
745
746 const unsigned char* paug = p;
747 const void* paugendv = memchr(p, '\0', pcieend - p);
748 const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
749 if (paugend == NULL)
750 return false;
751 p = paugend + 1;
752
753 if (paug[0] == 'e' && paug[1] == 'h')
754 {
755 // This is a CIE from gcc before version 3.0. We can't merge
756 // these. We can still read the FDEs.
757 mergeable = false;
758 paug += 2;
759 if (*paug != '\0')
760 return false;
761 if (pcieend - p < size / 8)
762 return false;
763 p += size / 8;
764 }
765
766 // Skip the code alignment.
767 if (!skip_leb128(&p, pcieend))
768 return false;
769
770 // Skip the data alignment.
771 if (!skip_leb128(&p, pcieend))
772 return false;
773
774 // Skip the return column.
775 if (version == 1)
776 {
777 if (pcieend - p < 1)
778 return false;
779 ++p;
780 }
781 else
782 {
783 if (!skip_leb128(&p, pcieend))
784 return false;
785 }
786
787 if (*paug == 'z')
788 {
789 ++paug;
790 // Skip the augmentation size.
791 if (!skip_leb128(&p, pcieend))
792 return false;
793 }
794
795 unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
796 int per_offset = -1;
797 while (*paug != '\0')
798 {
799 switch (*paug)
800 {
801 case 'L': // LSDA encoding.
802 if (pcieend - p < 1)
803 return false;
804 ++p;
805 break;
806
807 case 'R': // FDE encoding.
808 if (pcieend - p < 1)
809 return false;
810 fde_encoding = *p;
811 switch (fde_encoding & 7)
812 {
813 case elfcpp::DW_EH_PE_absptr:
814 case elfcpp::DW_EH_PE_udata2:
815 case elfcpp::DW_EH_PE_udata4:
816 case elfcpp::DW_EH_PE_udata8:
817 break;
818 default:
819 // We don't expect to see any other cases here, and
820 // we're not prepared to handle them.
821 return false;
822 }
823 ++p;
824 break;
825
826 case 'S':
827 break;
828
829 case 'P':
830 // Personality encoding.
831 {
832 if (pcieend - p < 1)
833 return false;
834 unsigned char per_encoding = *p;
835 ++p;
836
837 if ((per_encoding & 0x60) == 0x60)
838 return false;
839 unsigned int per_width;
840 switch (per_encoding & 7)
841 {
842 case elfcpp::DW_EH_PE_udata2:
843 per_width = 2;
844 break;
845 case elfcpp::DW_EH_PE_udata4:
846 per_width = 4;
847 break;
848 case elfcpp::DW_EH_PE_udata8:
849 per_width = 8;
850 break;
851 case elfcpp::DW_EH_PE_absptr:
852 per_width = size / 8;
853 break;
854 default:
855 return false;
856 }
857
858 if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
859 {
860 unsigned int len = p - pcie;
861 len += per_width - 1;
862 len &= ~ (per_width - 1);
863 if (static_cast<unsigned int>(pcieend - p) < len)
864 return false;
865 p += len;
866 }
867
868 per_offset = p - pcontents;
869
870 if (static_cast<unsigned int>(pcieend - p) < per_width)
871 return false;
872 p += per_width;
873 }
874 break;
875
876 default:
877 return false;
878 }
879
880 ++paug;
881 }
882
883 const char* personality_name = "";
884 if (per_offset != -1)
885 {
886 if (relocs->advance(per_offset) > 0)
887 return false;
888 if (relocs->next_offset() != per_offset)
889 return false;
890
891 unsigned int personality_symndx = relocs->next_symndx();
892 if (personality_symndx == -1U)
893 return false;
894
895 if (personality_symndx < object->local_symbol_count())
896 {
897 // We can only merge this CIE if the personality routine is
898 // a global symbol. We can still read the FDEs.
899 mergeable = false;
900 }
901 else
902 {
903 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
904 if (personality_symndx >= symbols_size / sym_size)
905 return false;
906 elfcpp::Sym<size, big_endian> sym(symbols
907 + (personality_symndx * sym_size));
908 unsigned int name_offset = sym.get_st_name();
909 if (name_offset >= symbol_names_size)
910 return false;
911 personality_name = (reinterpret_cast<const char*>(symbol_names)
912 + name_offset);
913 }
914
915 int r = relocs->advance(per_offset + 1);
916 gold_assert(r == 1);
917 }
918
919 if (relocs->advance(pcieend - pcontents) > 0)
920 return false;
921
922 Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
923 personality_name, pcie, pcieend - pcie);
924 Cie* cie_pointer = NULL;
925 if (mergeable)
926 {
927 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
928 if (find_cie != this->cie_offsets_.end())
929 cie_pointer = *find_cie;
930 else
931 {
932 // See if we already saw this CIE in this object file.
933 for (New_cies::const_iterator pc = new_cies->begin();
934 pc != new_cies->end();
935 ++pc)
936 {
937 if (*(pc->first) == cie)
938 {
939 cie_pointer = pc->first;
940 break;
941 }
942 }
943 }
944 }
945
946 if (cie_pointer == NULL)
947 {
948 cie_pointer = new Cie(cie);
949 new_cies->push_back(std::make_pair(cie_pointer, mergeable));
950 }
951 else
952 {
953 // We are deleting this CIE. Record that in our mapping from
954 // input sections to the output section. At this point we don't
955 // know for sure that we are doing a special mapping for this
956 // input section, but that's OK--if we don't do a special
957 // mapping, nobody will ever ask for the mapping we add here.
958 this->merge_map_.add_mapping(object, shndx, (pcie - 8) - pcontents,
959 pcieend - (pcie - 8), -1);
960 }
961
962 // Record this CIE plus the offset in the input section.
963 cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
964
965 return true;
966 }
967
968 // Read an FDE. Return false if we can't parse the information.
969
970 template<int size, bool big_endian>
971 bool
972 Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
973 unsigned int shndx,
974 const unsigned char* symbols,
975 section_size_type symbols_size,
976 const unsigned char* pcontents,
977 unsigned int offset,
978 const unsigned char* pfde,
979 const unsigned char* pfdeend,
980 Track_relocs<size, big_endian>* relocs,
981 Offsets_to_cie* cies)
982 {
983 // OFFSET is the distance between the 4 bytes before PFDE to the
984 // start of the CIE. The offset we recorded for the CIE is 8 bytes
985 // after the start of the CIE--after the length and the zero tag.
986 unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
987 Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
988 if (pcie == cies->end())
989 return false;
990 Cie* cie = pcie->second;
991
992 // The FDE should start with a reloc to the start of the code which
993 // it describes.
994 if (relocs->advance(pfde - pcontents) > 0)
995 return false;
996
997 if (relocs->next_offset() != pfde - pcontents)
998 return false;
999
1000 unsigned int symndx = relocs->next_symndx();
1001 if (symndx == -1U)
1002 return false;
1003
1004 // There can be another reloc in the FDE, if the CIE specifies an
1005 // LSDA (language specific data area). We currently don't care. We
1006 // will care later if we want to optimize the LSDA from an absolute
1007 // pointer to a PC relative offset when generating a shared library.
1008 relocs->advance(pfdeend - pcontents);
1009
1010 unsigned int fde_shndx;
1011 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1012 if (symndx >= symbols_size / sym_size)
1013 return false;
1014 elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1015 bool is_ordinary;
1016 fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1017 &is_ordinary);
1018
1019 if (is_ordinary
1020 && fde_shndx != elfcpp::SHN_UNDEF
1021 && fde_shndx < object->shnum()
1022 && !object->is_section_included(fde_shndx))
1023 {
1024 // This FDE applies to a section which we are discarding. We
1025 // can discard this FDE.
1026 this->merge_map_.add_mapping(object, shndx, (pfde - 8) - pcontents,
1027 pfdeend - (pfde - 8), -1);
1028 return true;
1029 }
1030
1031 cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1032 pfde, pfdeend - pfde));
1033
1034 return true;
1035 }
1036
1037 // Add unwind information for a PLT.
1038
1039 void
1040 Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1041 size_t cie_length, const unsigned char* fde_data,
1042 size_t fde_length)
1043 {
1044 Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1045 cie_data, cie_length);
1046 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1047 Cie* pcie;
1048 if (find_cie != this->cie_offsets_.end())
1049 pcie = *find_cie;
1050 else
1051 {
1052 gold_assert(!this->mappings_are_done_);
1053 pcie = new Cie(cie);
1054 this->cie_offsets_.insert(pcie);
1055 }
1056
1057 Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
1058 pcie->add_fde(fde);
1059
1060 if (this->mappings_are_done_)
1061 this->final_data_size_ += align_address(fde_length + 8, this->addralign());
1062 }
1063
1064 // Return the number of FDEs.
1065
1066 unsigned int
1067 Eh_frame::fde_count() const
1068 {
1069 unsigned int ret = 0;
1070 for (Unmergeable_cie_offsets::const_iterator p =
1071 this->unmergeable_cie_offsets_.begin();
1072 p != this->unmergeable_cie_offsets_.end();
1073 ++p)
1074 ret += (*p)->fde_count();
1075 for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1076 p != this->cie_offsets_.end();
1077 ++p)
1078 ret += (*p)->fde_count();
1079 return ret;
1080 }
1081
1082 // Set the final data size.
1083
1084 void
1085 Eh_frame::set_final_data_size()
1086 {
1087 // We can be called more than once if Layout::set_segment_offsets
1088 // finds a better mapping. We don't want to add all the mappings
1089 // again.
1090 if (this->mappings_are_done_)
1091 {
1092 this->set_data_size(this->final_data_size_);
1093 return;
1094 }
1095
1096 section_offset_type output_offset = 0;
1097
1098 for (Unmergeable_cie_offsets::iterator p =
1099 this->unmergeable_cie_offsets_.begin();
1100 p != this->unmergeable_cie_offsets_.end();
1101 ++p)
1102 output_offset = (*p)->set_output_offset(output_offset,
1103 this->addralign(),
1104 &this->merge_map_);
1105
1106 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1107 p != this->cie_offsets_.end();
1108 ++p)
1109 output_offset = (*p)->set_output_offset(output_offset,
1110 this->addralign(),
1111 &this->merge_map_);
1112
1113 this->mappings_are_done_ = true;
1114 this->final_data_size_ = output_offset;
1115
1116 gold_assert((output_offset & (this->addralign() - 1)) == 0);
1117 this->set_data_size(output_offset);
1118 }
1119
1120 // Return an output offset for an input offset.
1121
1122 bool
1123 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1124 section_offset_type offset,
1125 section_offset_type* poutput) const
1126 {
1127 return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
1128 }
1129
1130 // Return whether this is the merge section for an input section.
1131
1132 bool
1133 Eh_frame::do_is_merge_section_for(const Relobj* object,
1134 unsigned int shndx) const
1135 {
1136 return this->merge_map_.is_merge_section_for(object, shndx);
1137 }
1138
1139 // Write the data to the output file.
1140
1141 void
1142 Eh_frame::do_write(Output_file* of)
1143 {
1144 const off_t offset = this->offset();
1145 const off_t oview_size = this->data_size();
1146 unsigned char* const oview = of->get_output_view(offset, oview_size);
1147
1148 switch (parameters->size_and_endianness())
1149 {
1150 #ifdef HAVE_TARGET_32_LITTLE
1151 case Parameters::TARGET_32_LITTLE:
1152 this->do_sized_write<32, false>(oview);
1153 break;
1154 #endif
1155 #ifdef HAVE_TARGET_32_BIG
1156 case Parameters::TARGET_32_BIG:
1157 this->do_sized_write<32, true>(oview);
1158 break;
1159 #endif
1160 #ifdef HAVE_TARGET_64_LITTLE
1161 case Parameters::TARGET_64_LITTLE:
1162 this->do_sized_write<64, false>(oview);
1163 break;
1164 #endif
1165 #ifdef HAVE_TARGET_64_BIG
1166 case Parameters::TARGET_64_BIG:
1167 this->do_sized_write<64, true>(oview);
1168 break;
1169 #endif
1170 default:
1171 gold_unreachable();
1172 }
1173
1174 of->write_output_view(offset, oview_size, oview);
1175 }
1176
1177 // Write the data to the output file--template version.
1178
1179 template<int size, bool big_endian>
1180 void
1181 Eh_frame::do_sized_write(unsigned char* oview)
1182 {
1183 uint64_t address = this->address();
1184 unsigned int addralign = this->addralign();
1185 section_offset_type o = 0;
1186 Post_fdes post_fdes;
1187 for (Unmergeable_cie_offsets::iterator p =
1188 this->unmergeable_cie_offsets_.begin();
1189 p != this->unmergeable_cie_offsets_.end();
1190 ++p)
1191 o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1192 this->eh_frame_hdr_, &post_fdes);
1193 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1194 p != this->cie_offsets_.end();
1195 ++p)
1196 o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1197 this->eh_frame_hdr_, &post_fdes);
1198 for (Post_fdes::iterator p = post_fdes.begin();
1199 p != post_fdes.end();
1200 ++p)
1201 o = (*p).fde->write<size, big_endian>(oview, o, address, addralign,
1202 (*p).cie_offset,
1203 (*p).fde_encoding,
1204 this->eh_frame_hdr_);
1205 }
1206
1207 #ifdef HAVE_TARGET_32_LITTLE
1208 template
1209 bool
1210 Eh_frame::add_ehframe_input_section<32, false>(
1211 Sized_relobj_file<32, false>* object,
1212 const unsigned char* symbols,
1213 section_size_type symbols_size,
1214 const unsigned char* symbol_names,
1215 section_size_type symbol_names_size,
1216 unsigned int shndx,
1217 unsigned int reloc_shndx,
1218 unsigned int reloc_type);
1219 #endif
1220
1221 #ifdef HAVE_TARGET_32_BIG
1222 template
1223 bool
1224 Eh_frame::add_ehframe_input_section<32, true>(
1225 Sized_relobj_file<32, true>* object,
1226 const unsigned char* symbols,
1227 section_size_type symbols_size,
1228 const unsigned char* symbol_names,
1229 section_size_type symbol_names_size,
1230 unsigned int shndx,
1231 unsigned int reloc_shndx,
1232 unsigned int reloc_type);
1233 #endif
1234
1235 #ifdef HAVE_TARGET_64_LITTLE
1236 template
1237 bool
1238 Eh_frame::add_ehframe_input_section<64, false>(
1239 Sized_relobj_file<64, false>* object,
1240 const unsigned char* symbols,
1241 section_size_type symbols_size,
1242 const unsigned char* symbol_names,
1243 section_size_type symbol_names_size,
1244 unsigned int shndx,
1245 unsigned int reloc_shndx,
1246 unsigned int reloc_type);
1247 #endif
1248
1249 #ifdef HAVE_TARGET_64_BIG
1250 template
1251 bool
1252 Eh_frame::add_ehframe_input_section<64, true>(
1253 Sized_relobj_file<64, true>* object,
1254 const unsigned char* symbols,
1255 section_size_type symbols_size,
1256 const unsigned char* symbol_names,
1257 section_size_type symbol_names_size,
1258 unsigned int shndx,
1259 unsigned int reloc_shndx,
1260 unsigned int reloc_type);
1261 #endif
1262
1263 } // End namespace gold.