]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/i386.cc
Remove extraneous newlines.
[thirdparty/binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 // http://people.redhat.com/drepper/tls.pdf
50 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54 public:
55 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57 Target_i386()
58 : Sized_target<32, false>(&i386_info),
59 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60 copy_relocs_(NULL), dynbss_(NULL)
61 { }
62
63 // Scan the relocations to look for symbol adjustments.
64 void
65 scan_relocs(const General_options& options,
66 Symbol_table* symtab,
67 Layout* layout,
68 Sized_relobj<32, false>* object,
69 unsigned int data_shndx,
70 unsigned int sh_type,
71 const unsigned char* prelocs,
72 size_t reloc_count,
73 size_t local_symbol_count,
74 const unsigned char* plocal_symbols,
75 Symbol** global_symbols);
76
77 // Finalize the sections.
78 void
79 do_finalize_sections(Layout*);
80
81 // Return the value to use for a dynamic which requires special
82 // treatment.
83 uint64_t
84 do_dynsym_value(const Symbol*) const;
85
86 // Relocate a section.
87 void
88 relocate_section(const Relocate_info<32, false>*,
89 unsigned int sh_type,
90 const unsigned char* prelocs,
91 size_t reloc_count,
92 unsigned char* view,
93 elfcpp::Elf_types<32>::Elf_Addr view_address,
94 off_t view_size);
95
96 // Return a string used to fill a code section with nops.
97 std::string
98 do_code_fill(off_t length);
99
100 private:
101 // The class which scans relocations.
102 struct Scan
103 {
104 inline void
105 local(const General_options& options, Symbol_table* symtab,
106 Layout* layout, Target_i386* target,
107 Sized_relobj<32, false>* object,
108 unsigned int data_shndx,
109 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
110 const elfcpp::Sym<32, false>& lsym);
111
112 inline void
113 global(const General_options& options, Symbol_table* symtab,
114 Layout* layout, Target_i386* target,
115 Sized_relobj<32, false>* object,
116 unsigned int data_shndx,
117 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
118 Symbol* gsym);
119
120 static void
121 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
122
123 static void
124 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
125 Symbol*);
126 };
127
128 // The class which implements relocation.
129 class Relocate
130 {
131 public:
132 Relocate()
133 : skip_call_tls_get_addr_(false),
134 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
135 { }
136
137 ~Relocate()
138 {
139 if (this->skip_call_tls_get_addr_)
140 {
141 // FIXME: This needs to specify the location somehow.
142 gold_error(_("missing expected TLS relocation"));
143 }
144 }
145
146 // Do a relocation. Return false if the caller should not issue
147 // any warnings about this relocation.
148 inline bool
149 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
150 const elfcpp::Rel<32, false>&,
151 unsigned int r_type, const Sized_symbol<32>*,
152 const Symbol_value<32>*,
153 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
154 off_t);
155
156 private:
157 // Do a TLS relocation.
158 inline void
159 relocate_tls(const Relocate_info<32, false>*, size_t relnum,
160 const elfcpp::Rel<32, false>&,
161 unsigned int r_type, const Sized_symbol<32>*,
162 const Symbol_value<32>*,
163 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
164
165 // Do a TLS Initial-Exec to Local-Exec transition.
166 static inline void
167 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
168 Output_segment* tls_segment,
169 const elfcpp::Rel<32, false>&, unsigned int r_type,
170 elfcpp::Elf_types<32>::Elf_Addr value,
171 unsigned char* view,
172 off_t view_size);
173
174 // Do a TLS General-Dynamic to Local-Exec transition.
175 inline void
176 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
177 Output_segment* tls_segment,
178 const elfcpp::Rel<32, false>&, unsigned int r_type,
179 elfcpp::Elf_types<32>::Elf_Addr value,
180 unsigned char* view,
181 off_t view_size);
182
183 // Do a TLS Local-Dynamic to Local-Exec transition.
184 inline void
185 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
186 Output_segment* tls_segment,
187 const elfcpp::Rel<32, false>&, unsigned int r_type,
188 elfcpp::Elf_types<32>::Elf_Addr value,
189 unsigned char* view,
190 off_t view_size);
191
192 // We need to keep track of which type of local dynamic relocation
193 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
194 enum Local_dynamic_type
195 {
196 LOCAL_DYNAMIC_NONE,
197 LOCAL_DYNAMIC_SUN,
198 LOCAL_DYNAMIC_GNU
199 };
200
201 // This is set if we should skip the next reloc, which should be a
202 // PLT32 reloc against ___tls_get_addr.
203 bool skip_call_tls_get_addr_;
204 // The type of local dynamic relocation we have seen in the section
205 // being relocated, if any.
206 Local_dynamic_type local_dynamic_type_;
207 };
208
209 // Adjust TLS relocation type based on the options and whether this
210 // is a local symbol.
211 static tls::Tls_optimization
212 optimize_tls_reloc(bool is_final, int r_type);
213
214 // Get the GOT section, creating it if necessary.
215 Output_data_got<32, false>*
216 got_section(Symbol_table*, Layout*);
217
218 // Create a PLT entry for a global symbol.
219 void
220 make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222 // Get the PLT section.
223 const Output_data_plt_i386*
224 plt_section() const
225 {
226 gold_assert(this->plt_ != NULL);
227 return this->plt_;
228 }
229
230 // Get the dynamic reloc section, creating it if necessary.
231 Reloc_section*
232 rel_dyn_section(Layout*);
233
234 // Copy a relocation against a global symbol.
235 void
236 copy_reloc(const General_options*, Symbol_table*, Layout*,
237 Sized_relobj<32, false>*, unsigned int,
238 Symbol*, const elfcpp::Rel<32, false>&);
239
240 // Information about this specific target which we pass to the
241 // general Target structure.
242 static const Target::Target_info i386_info;
243
244 // The GOT section.
245 Output_data_got<32, false>* got_;
246 // The PLT section.
247 Output_data_plt_i386* plt_;
248 // The GOT PLT section.
249 Output_data_space* got_plt_;
250 // The dynamic reloc section.
251 Reloc_section* rel_dyn_;
252 // Relocs saved to avoid a COPY reloc.
253 Copy_relocs<32, false>* copy_relocs_;
254 // Space for variables copied with a COPY reloc.
255 Output_data_space* dynbss_;
256 };
257
258 const Target::Target_info Target_i386::i386_info =
259 {
260 32, // size
261 false, // is_big_endian
262 elfcpp::EM_386, // machine_code
263 false, // has_make_symbol
264 false, // has_resolve
265 true, // has_code_fill
266 "/usr/lib/libc.so.1", // dynamic_linker
267 0x08048000, // text_segment_address
268 0x1000, // abi_pagesize
269 0x1000 // common_pagesize
270 };
271
272 // Get the GOT section, creating it if necessary.
273
274 Output_data_got<32, false>*
275 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
276 {
277 if (this->got_ == NULL)
278 {
279 gold_assert(symtab != NULL && layout != NULL);
280
281 this->got_ = new Output_data_got<32, false>();
282
283 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
284 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
285 this->got_);
286
287 // The old GNU linker creates a .got.plt section. We just
288 // create another set of data in the .got section. Note that we
289 // always create a PLT if we create a GOT, although the PLT
290 // might be empty.
291 this->got_plt_ = new Output_data_space(4);
292 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
293 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
294 this->got_plt_);
295
296 // The first three entries are reserved.
297 this->got_plt_->set_space_size(3 * 4);
298
299 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
300 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
301 this->got_plt_,
302 0, 0, elfcpp::STT_OBJECT,
303 elfcpp::STB_LOCAL,
304 elfcpp::STV_HIDDEN, 0,
305 false, false);
306 }
307
308 return this->got_;
309 }
310
311 // Get the dynamic reloc section, creating it if necessary.
312
313 Target_i386::Reloc_section*
314 Target_i386::rel_dyn_section(Layout* layout)
315 {
316 if (this->rel_dyn_ == NULL)
317 {
318 gold_assert(layout != NULL);
319 this->rel_dyn_ = new Reloc_section();
320 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
321 elfcpp::SHF_ALLOC, this->rel_dyn_);
322 }
323 return this->rel_dyn_;
324 }
325
326 // A class to handle the PLT data.
327
328 class Output_data_plt_i386 : public Output_section_data
329 {
330 public:
331 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
332
333 Output_data_plt_i386(Layout*, Output_data_space*);
334
335 // Add an entry to the PLT.
336 void
337 add_entry(Symbol* gsym);
338
339 // Return the .rel.plt section data.
340 const Reloc_section*
341 rel_plt() const
342 { return this->rel_; }
343
344 protected:
345 void
346 do_adjust_output_section(Output_section* os);
347
348 private:
349 // The size of an entry in the PLT.
350 static const int plt_entry_size = 16;
351
352 // The first entry in the PLT for an executable.
353 static unsigned char exec_first_plt_entry[plt_entry_size];
354
355 // The first entry in the PLT for a shared object.
356 static unsigned char dyn_first_plt_entry[plt_entry_size];
357
358 // Other entries in the PLT for an executable.
359 static unsigned char exec_plt_entry[plt_entry_size];
360
361 // Other entries in the PLT for a shared object.
362 static unsigned char dyn_plt_entry[plt_entry_size];
363
364 // Set the final size.
365 void
366 do_set_address(uint64_t, off_t)
367 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
368
369 // Write out the PLT data.
370 void
371 do_write(Output_file*);
372
373 // The reloc section.
374 Reloc_section* rel_;
375 // The .got.plt section.
376 Output_data_space* got_plt_;
377 // The number of PLT entries.
378 unsigned int count_;
379 };
380
381 // Create the PLT section. The ordinary .got section is an argument,
382 // since we need to refer to the start. We also create our own .got
383 // section just for PLT entries.
384
385 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
386 Output_data_space* got_plt)
387 : Output_section_data(4), got_plt_(got_plt), count_(0)
388 {
389 this->rel_ = new Reloc_section();
390 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
391 elfcpp::SHF_ALLOC, this->rel_);
392 }
393
394 void
395 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
396 {
397 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
398 // linker, and so do we.
399 os->set_entsize(4);
400 }
401
402 // Add an entry to the PLT.
403
404 void
405 Output_data_plt_i386::add_entry(Symbol* gsym)
406 {
407 gold_assert(!gsym->has_plt_offset());
408
409 // Note that when setting the PLT offset we skip the initial
410 // reserved PLT entry.
411 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
412
413 ++this->count_;
414
415 off_t got_offset = this->got_plt_->data_size();
416
417 // Every PLT entry needs a GOT entry which points back to the PLT
418 // entry (this will be changed by the dynamic linker, normally
419 // lazily when the function is called).
420 this->got_plt_->set_space_size(got_offset + 4);
421
422 // Every PLT entry needs a reloc.
423 gsym->set_needs_dynsym_entry();
424 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
425 got_offset);
426
427 // Note that we don't need to save the symbol. The contents of the
428 // PLT are independent of which symbols are used. The symbols only
429 // appear in the relocations.
430 }
431
432 // The first entry in the PLT for an executable.
433
434 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
435 {
436 0xff, 0x35, // pushl contents of memory address
437 0, 0, 0, 0, // replaced with address of .got + 4
438 0xff, 0x25, // jmp indirect
439 0, 0, 0, 0, // replaced with address of .got + 8
440 0, 0, 0, 0 // unused
441 };
442
443 // The first entry in the PLT for a shared object.
444
445 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
446 {
447 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
448 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
449 0, 0, 0, 0 // unused
450 };
451
452 // Subsequent entries in the PLT for an executable.
453
454 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
455 {
456 0xff, 0x25, // jmp indirect
457 0, 0, 0, 0, // replaced with address of symbol in .got
458 0x68, // pushl immediate
459 0, 0, 0, 0, // replaced with offset into relocation table
460 0xe9, // jmp relative
461 0, 0, 0, 0 // replaced with offset to start of .plt
462 };
463
464 // Subsequent entries in the PLT for a shared object.
465
466 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
467 {
468 0xff, 0xa3, // jmp *offset(%ebx)
469 0, 0, 0, 0, // replaced with offset of symbol in .got
470 0x68, // pushl immediate
471 0, 0, 0, 0, // replaced with offset into relocation table
472 0xe9, // jmp relative
473 0, 0, 0, 0 // replaced with offset to start of .plt
474 };
475
476 // Write out the PLT. This uses the hand-coded instructions above,
477 // and adjusts them as needed. This is all specified by the i386 ELF
478 // Processor Supplement.
479
480 void
481 Output_data_plt_i386::do_write(Output_file* of)
482 {
483 const off_t offset = this->offset();
484 const off_t oview_size = this->data_size();
485 unsigned char* const oview = of->get_output_view(offset, oview_size);
486
487 const off_t got_file_offset = this->got_plt_->offset();
488 const off_t got_size = this->got_plt_->data_size();
489 unsigned char* const got_view = of->get_output_view(got_file_offset,
490 got_size);
491
492 unsigned char* pov = oview;
493
494 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
495 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
496
497 if (parameters->output_is_shared())
498 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
499 else
500 {
501 memcpy(pov, exec_first_plt_entry, plt_entry_size);
502 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
503 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
504 }
505 pov += plt_entry_size;
506
507 unsigned char* got_pov = got_view;
508
509 memset(got_pov, 0, 12);
510 got_pov += 12;
511
512 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
513
514 unsigned int plt_offset = plt_entry_size;
515 unsigned int plt_rel_offset = 0;
516 unsigned int got_offset = 12;
517 const unsigned int count = this->count_;
518 for (unsigned int i = 0;
519 i < count;
520 ++i,
521 pov += plt_entry_size,
522 got_pov += 4,
523 plt_offset += plt_entry_size,
524 plt_rel_offset += rel_size,
525 got_offset += 4)
526 {
527 // Set and adjust the PLT entry itself.
528
529 if (parameters->output_is_shared())
530 {
531 memcpy(pov, dyn_plt_entry, plt_entry_size);
532 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
533 }
534 else
535 {
536 memcpy(pov, exec_plt_entry, plt_entry_size);
537 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
538 (got_address
539 + got_offset));
540 }
541
542 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
543 elfcpp::Swap<32, false>::writeval(pov + 12,
544 - (plt_offset + plt_entry_size));
545
546 // Set the entry in the GOT.
547 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
548 }
549
550 gold_assert(pov - oview == oview_size);
551 gold_assert(got_pov - got_view == got_size);
552
553 of->write_output_view(offset, oview_size, oview);
554 of->write_output_view(got_file_offset, got_size, got_view);
555 }
556
557 // Create a PLT entry for a global symbol.
558
559 void
560 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
561 {
562 if (gsym->has_plt_offset())
563 return;
564
565 if (this->plt_ == NULL)
566 {
567 // Create the GOT sections first.
568 this->got_section(symtab, layout);
569
570 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
571 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
572 (elfcpp::SHF_ALLOC
573 | elfcpp::SHF_EXECINSTR),
574 this->plt_);
575 }
576
577 this->plt_->add_entry(gsym);
578 }
579
580 // Handle a relocation against a non-function symbol defined in a
581 // dynamic object. The traditional way to handle this is to generate
582 // a COPY relocation to copy the variable at runtime from the shared
583 // object into the executable's data segment. However, this is
584 // undesirable in general, as if the size of the object changes in the
585 // dynamic object, the executable will no longer work correctly. If
586 // this relocation is in a writable section, then we can create a
587 // dynamic reloc and the dynamic linker will resolve it to the correct
588 // address at runtime. However, we do not want do that if the
589 // relocation is in a read-only section, as it would prevent the
590 // readonly segment from being shared. And if we have to eventually
591 // generate a COPY reloc, then any dynamic relocations will be
592 // useless. So this means that if this is a writable section, we need
593 // to save the relocation until we see whether we have to create a
594 // COPY relocation for this symbol for any other relocation.
595
596 void
597 Target_i386::copy_reloc(const General_options* options,
598 Symbol_table* symtab,
599 Layout* layout,
600 Sized_relobj<32, false>* object,
601 unsigned int data_shndx, Symbol* gsym,
602 const elfcpp::Rel<32, false>& rel)
603 {
604 Sized_symbol<32>* ssym;
605 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
606 SELECT_SIZE(32));
607
608 if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
609 data_shndx, ssym))
610 {
611 // So far we do not need a COPY reloc. Save this relocation.
612 // If it turns out that we never need a COPY reloc for this
613 // symbol, then we will emit the relocation.
614 if (this->copy_relocs_ == NULL)
615 this->copy_relocs_ = new Copy_relocs<32, false>();
616 this->copy_relocs_->save(ssym, object, data_shndx, rel);
617 }
618 else
619 {
620 // Allocate space for this symbol in the .bss section.
621
622 elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
623
624 // There is no defined way to determine the required alignment
625 // of the symbol. We pick the alignment based on the size. We
626 // set an arbitrary maximum of 256.
627 unsigned int align;
628 for (align = 1; align < 512; align <<= 1)
629 if ((symsize & align) != 0)
630 break;
631
632 if (this->dynbss_ == NULL)
633 {
634 this->dynbss_ = new Output_data_space(align);
635 layout->add_output_section_data(".bss",
636 elfcpp::SHT_NOBITS,
637 (elfcpp::SHF_ALLOC
638 | elfcpp::SHF_WRITE),
639 this->dynbss_);
640 }
641
642 Output_data_space* dynbss = this->dynbss_;
643
644 if (align > dynbss->addralign())
645 dynbss->set_space_alignment(align);
646
647 off_t dynbss_size = dynbss->data_size();
648 dynbss_size = align_address(dynbss_size, align);
649 off_t offset = dynbss_size;
650 dynbss->set_space_size(dynbss_size + symsize);
651
652 // Define the symbol in the .dynbss section.
653 symtab->define_in_output_data(this, ssym->name(), ssym->version(),
654 dynbss, offset, symsize, ssym->type(),
655 ssym->binding(), ssym->visibility(),
656 ssym->nonvis(), false, false);
657
658 // Add the COPY reloc.
659 ssym->set_needs_dynsym_entry();
660 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
661 rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
662 }
663 }
664
665 // Optimize the TLS relocation type based on what we know about the
666 // symbol. IS_FINAL is true if the final address of this symbol is
667 // known at link time.
668
669 tls::Tls_optimization
670 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
671 {
672 // If we are generating a shared library, then we can't do anything
673 // in the linker.
674 if (parameters->output_is_shared())
675 return tls::TLSOPT_NONE;
676
677 switch (r_type)
678 {
679 case elfcpp::R_386_TLS_GD:
680 case elfcpp::R_386_TLS_GOTDESC:
681 case elfcpp::R_386_TLS_DESC_CALL:
682 // These are General-Dynamic which permits fully general TLS
683 // access. Since we know that we are generating an executable,
684 // we can convert this to Initial-Exec. If we also know that
685 // this is a local symbol, we can further switch to Local-Exec.
686 if (is_final)
687 return tls::TLSOPT_TO_LE;
688 return tls::TLSOPT_TO_IE;
689
690 case elfcpp::R_386_TLS_LDM:
691 // This is Local-Dynamic, which refers to a local symbol in the
692 // dynamic TLS block. Since we know that we generating an
693 // executable, we can switch to Local-Exec.
694 return tls::TLSOPT_TO_LE;
695
696 case elfcpp::R_386_TLS_LDO_32:
697 // Another type of Local-Dynamic relocation.
698 return tls::TLSOPT_TO_LE;
699
700 case elfcpp::R_386_TLS_IE:
701 case elfcpp::R_386_TLS_GOTIE:
702 case elfcpp::R_386_TLS_IE_32:
703 // These are Initial-Exec relocs which get the thread offset
704 // from the GOT. If we know that we are linking against the
705 // local symbol, we can switch to Local-Exec, which links the
706 // thread offset into the instruction.
707 if (is_final)
708 return tls::TLSOPT_TO_LE;
709 return tls::TLSOPT_NONE;
710
711 case elfcpp::R_386_TLS_LE:
712 case elfcpp::R_386_TLS_LE_32:
713 // When we already have Local-Exec, there is nothing further we
714 // can do.
715 return tls::TLSOPT_NONE;
716
717 default:
718 gold_unreachable();
719 }
720 }
721
722 // Report an unsupported relocation against a local symbol.
723
724 void
725 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
726 unsigned int r_type)
727 {
728 gold_error(_("%s: unsupported reloc %u against local symbol"),
729 object->name().c_str(), r_type);
730 }
731
732 // Scan a relocation for a local symbol.
733
734 inline void
735 Target_i386::Scan::local(const General_options&,
736 Symbol_table* symtab,
737 Layout* layout,
738 Target_i386* target,
739 Sized_relobj<32, false>* object,
740 unsigned int,
741 const elfcpp::Rel<32, false>&,
742 unsigned int r_type,
743 const elfcpp::Sym<32, false>&)
744 {
745 switch (r_type)
746 {
747 case elfcpp::R_386_NONE:
748 case elfcpp::R_386_GNU_VTINHERIT:
749 case elfcpp::R_386_GNU_VTENTRY:
750 break;
751
752 case elfcpp::R_386_32:
753 case elfcpp::R_386_16:
754 case elfcpp::R_386_8:
755 // FIXME: If we are generating a shared object we need to copy
756 // this relocation into the object.
757 gold_assert(!parameters->output_is_shared());
758 break;
759
760 case elfcpp::R_386_PC32:
761 case elfcpp::R_386_PC16:
762 case elfcpp::R_386_PC8:
763 break;
764
765 case elfcpp::R_386_GOTOFF:
766 case elfcpp::R_386_GOTPC:
767 // We need a GOT section.
768 target->got_section(symtab, layout);
769 break;
770
771 // These are relocations which should only be seen by the
772 // dynamic linker, and should never be seen here.
773 case elfcpp::R_386_COPY:
774 case elfcpp::R_386_GLOB_DAT:
775 case elfcpp::R_386_JUMP_SLOT:
776 case elfcpp::R_386_RELATIVE:
777 case elfcpp::R_386_TLS_TPOFF:
778 case elfcpp::R_386_TLS_DTPMOD32:
779 case elfcpp::R_386_TLS_DTPOFF32:
780 case elfcpp::R_386_TLS_TPOFF32:
781 case elfcpp::R_386_TLS_DESC:
782 gold_error(_("%s: unexpected reloc %u in object file"),
783 object->name().c_str(), r_type);
784 break;
785
786 // These are initial TLS relocs, which are expected when
787 // linking.
788 case elfcpp::R_386_TLS_IE:
789 case elfcpp::R_386_TLS_GOTIE:
790 case elfcpp::R_386_TLS_LE:
791 case elfcpp::R_386_TLS_GD:
792 case elfcpp::R_386_TLS_LDM:
793 case elfcpp::R_386_TLS_LDO_32:
794 case elfcpp::R_386_TLS_IE_32:
795 case elfcpp::R_386_TLS_LE_32:
796 case elfcpp::R_386_TLS_GOTDESC:
797 case elfcpp::R_386_TLS_DESC_CALL:
798 {
799 bool output_is_shared = parameters->output_is_shared();
800 const tls::Tls_optimization optimized_type
801 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
802 switch (r_type)
803 {
804 case elfcpp::R_386_TLS_LE:
805 case elfcpp::R_386_TLS_LE_32:
806 // FIXME: If generating a shared object, we need to copy
807 // this relocation into the object.
808 gold_assert(!output_is_shared);
809 break;
810
811 case elfcpp::R_386_TLS_IE:
812 case elfcpp::R_386_TLS_IE_32:
813 case elfcpp::R_386_TLS_GOTIE:
814 // FIXME: If not relaxing to LE, we need to generate a
815 // TPOFF or TPOFF32 reloc.
816 if (optimized_type != tls::TLSOPT_TO_LE)
817 unsupported_reloc_local(object, r_type);
818 break;
819
820 case elfcpp::R_386_TLS_LDM:
821 // FIXME: If not relaxing to LE, we need to generate a
822 // DTPMOD32 reloc.
823 if (optimized_type != tls::TLSOPT_TO_LE)
824 unsupported_reloc_local(object, r_type);
825 break;
826
827 case elfcpp::R_386_TLS_LDO_32:
828 break;
829
830 case elfcpp::R_386_TLS_GD:
831 case elfcpp::R_386_TLS_GOTDESC:
832 case elfcpp::R_386_TLS_DESC_CALL:
833 // FIXME: If not relaxing to LE, we need to generate
834 // DTPMOD32 and DTPOFF32 relocs.
835 if (optimized_type != tls::TLSOPT_TO_LE)
836 unsupported_reloc_local(object, r_type);
837 break;
838
839 default:
840 gold_unreachable();
841 }
842 }
843 break;
844
845 case elfcpp::R_386_GOT32:
846 case elfcpp::R_386_PLT32:
847 case elfcpp::R_386_32PLT:
848 case elfcpp::R_386_TLS_GD_32:
849 case elfcpp::R_386_TLS_GD_PUSH:
850 case elfcpp::R_386_TLS_GD_CALL:
851 case elfcpp::R_386_TLS_GD_POP:
852 case elfcpp::R_386_TLS_LDM_32:
853 case elfcpp::R_386_TLS_LDM_PUSH:
854 case elfcpp::R_386_TLS_LDM_CALL:
855 case elfcpp::R_386_TLS_LDM_POP:
856 case elfcpp::R_386_USED_BY_INTEL_200:
857 default:
858 unsupported_reloc_local(object, r_type);
859 break;
860 }
861 }
862
863 // Report an unsupported relocation against a global symbol.
864
865 void
866 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
867 unsigned int r_type,
868 Symbol* gsym)
869 {
870 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
871 object->name().c_str(), r_type, gsym->name());
872 }
873
874 // Scan a relocation for a global symbol.
875
876 inline void
877 Target_i386::Scan::global(const General_options& options,
878 Symbol_table* symtab,
879 Layout* layout,
880 Target_i386* target,
881 Sized_relobj<32, false>* object,
882 unsigned int data_shndx,
883 const elfcpp::Rel<32, false>& reloc,
884 unsigned int r_type,
885 Symbol* gsym)
886 {
887 switch (r_type)
888 {
889 case elfcpp::R_386_NONE:
890 case elfcpp::R_386_GNU_VTINHERIT:
891 case elfcpp::R_386_GNU_VTENTRY:
892 break;
893
894 case elfcpp::R_386_32:
895 case elfcpp::R_386_PC32:
896 case elfcpp::R_386_16:
897 case elfcpp::R_386_PC16:
898 case elfcpp::R_386_8:
899 case elfcpp::R_386_PC8:
900 // FIXME: If we are generating a shared object we may need to
901 // copy this relocation into the object. If this symbol is
902 // defined in a shared object, we may need to copy this
903 // relocation in order to avoid a COPY relocation.
904 gold_assert(!parameters->output_is_shared());
905
906 if (gsym->is_from_dynobj())
907 {
908 // This symbol is defined in a dynamic object. If it is a
909 // function, we make a PLT entry. Otherwise we need to
910 // either generate a COPY reloc or copy this reloc.
911 if (gsym->type() == elfcpp::STT_FUNC)
912 {
913 target->make_plt_entry(symtab, layout, gsym);
914
915 // If this is not a PC relative reference, then we may
916 // be taking the address of the function. In that case
917 // we need to set the entry in the dynamic symbol table
918 // to the address of the PLT entry.
919 if (r_type != elfcpp::R_386_PC32
920 && r_type != elfcpp::R_386_PC16
921 && r_type != elfcpp::R_386_PC8)
922 gsym->set_needs_dynsym_value();
923 }
924 else
925 target->copy_reloc(&options, symtab, layout, object, data_shndx,
926 gsym, reloc);
927 }
928
929 break;
930
931 case elfcpp::R_386_GOT32:
932 {
933 // The symbol requires a GOT entry.
934 Output_data_got<32, false>* got = target->got_section(symtab, layout);
935 if (got->add_global(gsym))
936 {
937 // If this symbol is not fully resolved, we need to add a
938 // dynamic relocation for it.
939 if (!gsym->final_value_is_known())
940 {
941 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
942 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
943 gsym->got_offset());
944 }
945 }
946 }
947 break;
948
949 case elfcpp::R_386_PLT32:
950 // If the symbol is fully resolved, this is just a PC32 reloc.
951 // Otherwise we need a PLT entry.
952 if (gsym->final_value_is_known())
953 break;
954 target->make_plt_entry(symtab, layout, gsym);
955 break;
956
957 case elfcpp::R_386_GOTOFF:
958 case elfcpp::R_386_GOTPC:
959 // We need a GOT section.
960 target->got_section(symtab, layout);
961 break;
962
963 // These are relocations which should only be seen by the
964 // dynamic linker, and should never be seen here.
965 case elfcpp::R_386_COPY:
966 case elfcpp::R_386_GLOB_DAT:
967 case elfcpp::R_386_JUMP_SLOT:
968 case elfcpp::R_386_RELATIVE:
969 case elfcpp::R_386_TLS_TPOFF:
970 case elfcpp::R_386_TLS_DTPMOD32:
971 case elfcpp::R_386_TLS_DTPOFF32:
972 case elfcpp::R_386_TLS_TPOFF32:
973 case elfcpp::R_386_TLS_DESC:
974 gold_error(_("%s: unexpected reloc %u in object file"),
975 object->name().c_str(), r_type);
976 break;
977
978 // These are initial tls relocs, which are expected when
979 // linking.
980 case elfcpp::R_386_TLS_IE:
981 case elfcpp::R_386_TLS_GOTIE:
982 case elfcpp::R_386_TLS_LE:
983 case elfcpp::R_386_TLS_GD:
984 case elfcpp::R_386_TLS_LDM:
985 case elfcpp::R_386_TLS_LDO_32:
986 case elfcpp::R_386_TLS_IE_32:
987 case elfcpp::R_386_TLS_LE_32:
988 case elfcpp::R_386_TLS_GOTDESC:
989 case elfcpp::R_386_TLS_DESC_CALL:
990 {
991 const bool is_final = gsym->final_value_is_known();
992 const tls::Tls_optimization optimized_type
993 = Target_i386::optimize_tls_reloc(is_final, r_type);
994 switch (r_type)
995 {
996 case elfcpp::R_386_TLS_LE:
997 case elfcpp::R_386_TLS_LE_32:
998 // FIXME: If generating a shared object, we need to copy
999 // this relocation into the object.
1000 gold_assert(!parameters->output_is_shared());
1001 break;
1002
1003 case elfcpp::R_386_TLS_IE:
1004 case elfcpp::R_386_TLS_IE_32:
1005 case elfcpp::R_386_TLS_GOTIE:
1006 // FIXME: If not relaxing to LE, we need to generate a
1007 // TPOFF or TPOFF32 reloc.
1008 if (optimized_type != tls::TLSOPT_TO_LE)
1009 unsupported_reloc_global(object, r_type, gsym);
1010 break;
1011
1012 case elfcpp::R_386_TLS_LDM:
1013 // FIXME: If not relaxing to LE, we need to generate a
1014 // DTPMOD32 reloc.
1015 if (optimized_type != tls::TLSOPT_TO_LE)
1016 unsupported_reloc_global(object, r_type, gsym);
1017 break;
1018
1019 case elfcpp::R_386_TLS_LDO_32:
1020 break;
1021
1022 case elfcpp::R_386_TLS_GD:
1023 case elfcpp::R_386_TLS_GOTDESC:
1024 case elfcpp::R_386_TLS_DESC_CALL:
1025 // FIXME: If not relaxing to LE, we need to generate
1026 // DTPMOD32 and DTPOFF32 relocs.
1027 if (optimized_type != tls::TLSOPT_TO_LE)
1028 unsupported_reloc_global(object, r_type, gsym);
1029 break;
1030
1031 default:
1032 gold_unreachable();
1033 }
1034 }
1035 break;
1036
1037 case elfcpp::R_386_32PLT:
1038 case elfcpp::R_386_TLS_GD_32:
1039 case elfcpp::R_386_TLS_GD_PUSH:
1040 case elfcpp::R_386_TLS_GD_CALL:
1041 case elfcpp::R_386_TLS_GD_POP:
1042 case elfcpp::R_386_TLS_LDM_32:
1043 case elfcpp::R_386_TLS_LDM_PUSH:
1044 case elfcpp::R_386_TLS_LDM_CALL:
1045 case elfcpp::R_386_TLS_LDM_POP:
1046 case elfcpp::R_386_USED_BY_INTEL_200:
1047 default:
1048 unsupported_reloc_global(object, r_type, gsym);
1049 break;
1050 }
1051 }
1052
1053 // Scan relocations for a section.
1054
1055 void
1056 Target_i386::scan_relocs(const General_options& options,
1057 Symbol_table* symtab,
1058 Layout* layout,
1059 Sized_relobj<32, false>* object,
1060 unsigned int data_shndx,
1061 unsigned int sh_type,
1062 const unsigned char* prelocs,
1063 size_t reloc_count,
1064 size_t local_symbol_count,
1065 const unsigned char* plocal_symbols,
1066 Symbol** global_symbols)
1067 {
1068 if (sh_type == elfcpp::SHT_RELA)
1069 {
1070 gold_error(_("%s: unsupported RELA reloc section"),
1071 object->name().c_str());
1072 return;
1073 }
1074
1075 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1076 Target_i386::Scan>(
1077 options,
1078 symtab,
1079 layout,
1080 this,
1081 object,
1082 data_shndx,
1083 prelocs,
1084 reloc_count,
1085 local_symbol_count,
1086 plocal_symbols,
1087 global_symbols);
1088 }
1089
1090 // Finalize the sections.
1091
1092 void
1093 Target_i386::do_finalize_sections(Layout* layout)
1094 {
1095 // Fill in some more dynamic tags.
1096 Output_data_dynamic* const odyn = layout->dynamic_data();
1097 if (odyn != NULL)
1098 {
1099 if (this->got_plt_ != NULL)
1100 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1101
1102 if (this->plt_ != NULL)
1103 {
1104 const Output_data* od = this->plt_->rel_plt();
1105 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1106 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1107 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1108 }
1109
1110 if (this->rel_dyn_ != NULL)
1111 {
1112 const Output_data* od = this->rel_dyn_;
1113 odyn->add_section_address(elfcpp::DT_REL, od);
1114 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1115 odyn->add_constant(elfcpp::DT_RELENT,
1116 elfcpp::Elf_sizes<32>::rel_size);
1117 }
1118
1119 if (!parameters->output_is_shared())
1120 {
1121 // The value of the DT_DEBUG tag is filled in by the dynamic
1122 // linker at run time, and used by the debugger.
1123 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1124 }
1125 }
1126
1127 // Emit any relocs we saved in an attempt to avoid generating COPY
1128 // relocs.
1129 if (this->copy_relocs_ == NULL)
1130 return;
1131 if (this->copy_relocs_->any_to_emit())
1132 {
1133 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1134 this->copy_relocs_->emit(rel_dyn);
1135 }
1136 delete this->copy_relocs_;
1137 this->copy_relocs_ = NULL;
1138 }
1139
1140 // Perform a relocation.
1141
1142 inline bool
1143 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1144 Target_i386* target,
1145 size_t relnum,
1146 const elfcpp::Rel<32, false>& rel,
1147 unsigned int r_type,
1148 const Sized_symbol<32>* gsym,
1149 const Symbol_value<32>* psymval,
1150 unsigned char* view,
1151 elfcpp::Elf_types<32>::Elf_Addr address,
1152 off_t view_size)
1153 {
1154 if (this->skip_call_tls_get_addr_)
1155 {
1156 if (r_type != elfcpp::R_386_PLT32
1157 || gsym == NULL
1158 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1159 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1160 _("missing expected TLS relocation"));
1161 else
1162 {
1163 this->skip_call_tls_get_addr_ = false;
1164 return false;
1165 }
1166 }
1167
1168 // Pick the value to use for symbols defined in shared objects.
1169 Symbol_value<32> symval;
1170 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1171 {
1172 symval.set_output_value(target->plt_section()->address()
1173 + gsym->plt_offset());
1174 psymval = &symval;
1175 }
1176
1177 const Sized_relobj<32, false>* object = relinfo->object;
1178
1179 switch (r_type)
1180 {
1181 case elfcpp::R_386_NONE:
1182 case elfcpp::R_386_GNU_VTINHERIT:
1183 case elfcpp::R_386_GNU_VTENTRY:
1184 break;
1185
1186 case elfcpp::R_386_32:
1187 Relocate_functions<32, false>::rel32(view, object, psymval);
1188 break;
1189
1190 case elfcpp::R_386_PC32:
1191 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1192 break;
1193
1194 case elfcpp::R_386_16:
1195 Relocate_functions<32, false>::rel16(view, object, psymval);
1196 break;
1197
1198 case elfcpp::R_386_PC16:
1199 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1200 break;
1201
1202 case elfcpp::R_386_8:
1203 Relocate_functions<32, false>::rel8(view, object, psymval);
1204 break;
1205
1206 case elfcpp::R_386_PC8:
1207 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1208 break;
1209
1210 case elfcpp::R_386_PLT32:
1211 gold_assert(gsym->has_plt_offset()
1212 || gsym->final_value_is_known());
1213 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1214 break;
1215
1216 case elfcpp::R_386_GOT32:
1217 // Local GOT offsets not yet supported.
1218 gold_assert(gsym);
1219 gold_assert(gsym->has_got_offset());
1220 Relocate_functions<32, false>::rel32(view, gsym->got_offset());
1221 break;
1222
1223 case elfcpp::R_386_GOTOFF:
1224 {
1225 elfcpp::Elf_types<32>::Elf_Addr value;
1226 value = (psymval->value(object, 0)
1227 - target->got_section(NULL, NULL)->address());
1228 Relocate_functions<32, false>::rel32(view, value);
1229 }
1230 break;
1231
1232 case elfcpp::R_386_GOTPC:
1233 {
1234 elfcpp::Elf_types<32>::Elf_Addr value;
1235 value = target->got_section(NULL, NULL)->address();
1236 Relocate_functions<32, false>::pcrel32(view, value, address);
1237 }
1238 break;
1239
1240 case elfcpp::R_386_COPY:
1241 case elfcpp::R_386_GLOB_DAT:
1242 case elfcpp::R_386_JUMP_SLOT:
1243 case elfcpp::R_386_RELATIVE:
1244 // These are outstanding tls relocs, which are unexpected when
1245 // linking.
1246 case elfcpp::R_386_TLS_TPOFF:
1247 case elfcpp::R_386_TLS_DTPMOD32:
1248 case elfcpp::R_386_TLS_DTPOFF32:
1249 case elfcpp::R_386_TLS_TPOFF32:
1250 case elfcpp::R_386_TLS_DESC:
1251 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1252 _("unexpected reloc %u in object file"),
1253 r_type);
1254 break;
1255
1256 // These are initial tls relocs, which are expected when
1257 // linking.
1258 case elfcpp::R_386_TLS_IE:
1259 case elfcpp::R_386_TLS_GOTIE:
1260 case elfcpp::R_386_TLS_LE:
1261 case elfcpp::R_386_TLS_GD:
1262 case elfcpp::R_386_TLS_LDM:
1263 case elfcpp::R_386_TLS_LDO_32:
1264 case elfcpp::R_386_TLS_IE_32:
1265 case elfcpp::R_386_TLS_LE_32:
1266 case elfcpp::R_386_TLS_GOTDESC:
1267 case elfcpp::R_386_TLS_DESC_CALL:
1268 this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1269 address, view_size);
1270 break;
1271
1272 case elfcpp::R_386_32PLT:
1273 case elfcpp::R_386_TLS_GD_32:
1274 case elfcpp::R_386_TLS_GD_PUSH:
1275 case elfcpp::R_386_TLS_GD_CALL:
1276 case elfcpp::R_386_TLS_GD_POP:
1277 case elfcpp::R_386_TLS_LDM_32:
1278 case elfcpp::R_386_TLS_LDM_PUSH:
1279 case elfcpp::R_386_TLS_LDM_CALL:
1280 case elfcpp::R_386_TLS_LDM_POP:
1281 case elfcpp::R_386_USED_BY_INTEL_200:
1282 default:
1283 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1284 _("unsupported reloc %u"),
1285 r_type);
1286 break;
1287 }
1288
1289 return true;
1290 }
1291
1292 // Perform a TLS relocation.
1293
1294 inline void
1295 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1296 size_t relnum,
1297 const elfcpp::Rel<32, false>& rel,
1298 unsigned int r_type,
1299 const Sized_symbol<32>* gsym,
1300 const Symbol_value<32>* psymval,
1301 unsigned char* view,
1302 elfcpp::Elf_types<32>::Elf_Addr,
1303 off_t view_size)
1304 {
1305 Output_segment* tls_segment = relinfo->layout->tls_segment();
1306 if (tls_segment == NULL)
1307 {
1308 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1309 _("TLS reloc but no TLS segment"));
1310 return;
1311 }
1312
1313 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1314
1315 const bool is_final = (gsym == NULL
1316 ? !parameters->output_is_shared()
1317 : gsym->final_value_is_known());
1318 const tls::Tls_optimization optimized_type
1319 = Target_i386::optimize_tls_reloc(is_final, r_type);
1320 switch (r_type)
1321 {
1322 case elfcpp::R_386_TLS_LE_32:
1323 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1324 Relocate_functions<32, false>::rel32(view, value);
1325 break;
1326
1327 case elfcpp::R_386_TLS_LE:
1328 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1329 Relocate_functions<32, false>::rel32(view, value);
1330 break;
1331
1332 case elfcpp::R_386_TLS_IE:
1333 case elfcpp::R_386_TLS_GOTIE:
1334 case elfcpp::R_386_TLS_IE_32:
1335 if (optimized_type == tls::TLSOPT_TO_LE)
1336 {
1337 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1338 rel, r_type, value, view,
1339 view_size);
1340 break;
1341 }
1342 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1343 _("unsupported reloc %u"),
1344 r_type);
1345 break;
1346
1347 case elfcpp::R_386_TLS_GD:
1348 if (optimized_type == tls::TLSOPT_TO_LE)
1349 {
1350 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1351 rel, r_type, value, view,
1352 view_size);
1353 break;
1354 }
1355 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1356 _("unsupported reloc %u"),
1357 r_type);
1358 break;
1359
1360 case elfcpp::R_386_TLS_LDM:
1361 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1362 {
1363 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1364 _("both SUN and GNU model "
1365 "TLS relocations"));
1366 break;
1367 }
1368 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1369 if (optimized_type == tls::TLSOPT_TO_LE)
1370 {
1371 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1372 value, view, view_size);
1373 break;
1374 }
1375 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1376 _("unsupported reloc %u"),
1377 r_type);
1378 break;
1379
1380 case elfcpp::R_386_TLS_LDO_32:
1381 // This reloc can appear in debugging sections, in which case we
1382 // won't see the TLS_LDM reloc. The local_dynamic_type field
1383 // tells us this.
1384 if (optimized_type != tls::TLSOPT_TO_LE
1385 || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1386 value = value - tls_segment->vaddr();
1387 else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1388 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1389 else
1390 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1391 Relocate_functions<32, false>::rel32(view, value);
1392 break;
1393
1394 case elfcpp::R_386_TLS_GOTDESC:
1395 case elfcpp::R_386_TLS_DESC_CALL:
1396 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1397 _("unsupported reloc %u"),
1398 r_type);
1399 break;
1400 }
1401 }
1402
1403 // Do a relocation in which we convert a TLS Initial-Exec to a
1404 // Local-Exec.
1405
1406 inline void
1407 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1408 size_t relnum,
1409 Output_segment* tls_segment,
1410 const elfcpp::Rel<32, false>& rel,
1411 unsigned int r_type,
1412 elfcpp::Elf_types<32>::Elf_Addr value,
1413 unsigned char* view,
1414 off_t view_size)
1415 {
1416 // We have to actually change the instructions, which means that we
1417 // need to examine the opcodes to figure out which instruction we
1418 // are looking at.
1419 if (r_type == elfcpp::R_386_TLS_IE)
1420 {
1421 // movl %gs:XX,%eax ==> movl $YY,%eax
1422 // movl %gs:XX,%reg ==> movl $YY,%reg
1423 // addl %gs:XX,%reg ==> addl $YY,%reg
1424 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
1425 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1426
1427 unsigned char op1 = view[-1];
1428 if (op1 == 0xa1)
1429 {
1430 // movl XX,%eax ==> movl $YY,%eax
1431 view[-1] = 0xb8;
1432 }
1433 else
1434 {
1435 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1436
1437 unsigned char op2 = view[-2];
1438 if (op2 == 0x8b)
1439 {
1440 // movl XX,%reg ==> movl $YY,%reg
1441 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1442 (op1 & 0xc7) == 0x05);
1443 view[-2] = 0xc7;
1444 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1445 }
1446 else if (op2 == 0x03)
1447 {
1448 // addl XX,%reg ==> addl $YY,%reg
1449 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1450 (op1 & 0xc7) == 0x05);
1451 view[-2] = 0x81;
1452 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1453 }
1454 else
1455 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1456 }
1457 }
1458 else
1459 {
1460 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1461 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1462 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1463 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1464 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1465
1466 unsigned char op1 = view[-1];
1467 unsigned char op2 = view[-2];
1468 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1469 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1470 if (op2 == 0x8b)
1471 {
1472 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1473 view[-2] = 0xc7;
1474 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1475 }
1476 else if (op2 == 0x2b)
1477 {
1478 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1479 view[-2] = 0x81;
1480 view[-1] = 0xe8 | ((op1 >> 3) & 7);
1481 }
1482 else if (op2 == 0x03)
1483 {
1484 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1485 view[-2] = 0x81;
1486 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1487 }
1488 else
1489 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1490 }
1491
1492 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1493 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1494 value = - value;
1495
1496 Relocate_functions<32, false>::rel32(view, value);
1497 }
1498
1499 // Do a relocation in which we convert a TLS General-Dynamic to a
1500 // Local-Exec.
1501
1502 inline void
1503 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1504 size_t relnum,
1505 Output_segment* tls_segment,
1506 const elfcpp::Rel<32, false>& rel,
1507 unsigned int,
1508 elfcpp::Elf_types<32>::Elf_Addr value,
1509 unsigned char* view,
1510 off_t view_size)
1511 {
1512 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1513 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1514 // leal foo(%reg),%eax; call ___tls_get_addr
1515 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1516
1517 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1518 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1519
1520 unsigned char op1 = view[-1];
1521 unsigned char op2 = view[-2];
1522
1523 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1524 op2 == 0x8d || op2 == 0x04);
1525 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1526
1527 int roff = 5;
1528
1529 if (op2 == 0x04)
1530 {
1531 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1532 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1533 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1534 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1535 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1536 }
1537 else
1538 {
1539 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1540 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1541 if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1542 && view[9] == 0x90)
1543 {
1544 // There is a trailing nop. Use the size byte subl.
1545 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1546 roff = 6;
1547 }
1548 else
1549 {
1550 // Use the five byte subl.
1551 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1552 }
1553 }
1554
1555 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1556 Relocate_functions<32, false>::rel32(view + roff, value);
1557
1558 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1559 // We can skip it.
1560 this->skip_call_tls_get_addr_ = true;
1561 }
1562
1563 // Do a relocation in which we convert a TLS Local-Dynamic to a
1564 // Local-Exec.
1565
1566 inline void
1567 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1568 size_t relnum,
1569 Output_segment*,
1570 const elfcpp::Rel<32, false>& rel,
1571 unsigned int,
1572 elfcpp::Elf_types<32>::Elf_Addr,
1573 unsigned char* view,
1574 off_t view_size)
1575 {
1576 // leal foo(%reg), %eax; call ___tls_get_addr
1577 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1578
1579 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1580 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1581
1582 // FIXME: Does this test really always pass?
1583 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1584 view[-2] == 0x8d && view[-1] == 0x83);
1585
1586 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1587
1588 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1589
1590 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1591 // We can skip it.
1592 this->skip_call_tls_get_addr_ = true;
1593 }
1594
1595 // Relocate section data.
1596
1597 void
1598 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1599 unsigned int sh_type,
1600 const unsigned char* prelocs,
1601 size_t reloc_count,
1602 unsigned char* view,
1603 elfcpp::Elf_types<32>::Elf_Addr address,
1604 off_t view_size)
1605 {
1606 gold_assert(sh_type == elfcpp::SHT_REL);
1607
1608 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1609 Target_i386::Relocate>(
1610 relinfo,
1611 this,
1612 prelocs,
1613 reloc_count,
1614 view,
1615 address,
1616 view_size);
1617 }
1618
1619 // Return the value to use for a dynamic which requires special
1620 // treatment. This is how we support equality comparisons of function
1621 // pointers across shared library boundaries, as described in the
1622 // processor specific ABI supplement.
1623
1624 uint64_t
1625 Target_i386::do_dynsym_value(const Symbol* gsym) const
1626 {
1627 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1628 return this->plt_section()->address() + gsym->plt_offset();
1629 }
1630
1631 // Return a string used to fill a code section with nops to take up
1632 // the specified length.
1633
1634 std::string
1635 Target_i386::do_code_fill(off_t length)
1636 {
1637 if (length >= 16)
1638 {
1639 // Build a jmp instruction to skip over the bytes.
1640 unsigned char jmp[5];
1641 jmp[0] = 0xe9;
1642 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1643 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1644 + std::string(length - 5, '\0'));
1645 }
1646
1647 // Nop sequences of various lengths.
1648 const char nop1[1] = { 0x90 }; // nop
1649 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1650 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1651 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1652 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1653 0x00 }; // leal 0(%esi,1),%esi
1654 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1655 0x00, 0x00 };
1656 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1657 0x00, 0x00, 0x00 };
1658 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1659 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1660 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1661 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1662 0x00 };
1663 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1664 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1665 0x00, 0x00 };
1666 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1667 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1668 0x00, 0x00, 0x00 };
1669 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1670 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1671 0x00, 0x00, 0x00, 0x00 };
1672 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1673 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1674 0x27, 0x00, 0x00, 0x00,
1675 0x00 };
1676 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1677 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1678 0xbc, 0x27, 0x00, 0x00,
1679 0x00, 0x00 };
1680 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1681 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1682 0x90, 0x90, 0x90, 0x90,
1683 0x90, 0x90, 0x90 };
1684
1685 const char* nops[16] = {
1686 NULL,
1687 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1688 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1689 };
1690
1691 return std::string(nops[length], length);
1692 }
1693
1694 // The selector for i386 object files.
1695
1696 class Target_selector_i386 : public Target_selector
1697 {
1698 public:
1699 Target_selector_i386()
1700 : Target_selector(elfcpp::EM_386, 32, false)
1701 { }
1702
1703 Target*
1704 recognize(int machine, int osabi, int abiversion);
1705
1706 private:
1707 Target_i386* target_;
1708 };
1709
1710 // Recognize an i386 object file when we already know that the machine
1711 // number is EM_386.
1712
1713 Target*
1714 Target_selector_i386::recognize(int, int, int)
1715 {
1716 if (this->target_ == NULL)
1717 this->target_ = new Target_i386();
1718 return this->target_;
1719 }
1720
1721 Target_selector_i386 target_selector_i386;
1722
1723 } // End anonymous namespace.