]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
Add licensing text to every source file.
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "layout.h"
35
36 namespace gold
37 {
38
39 // Layout_task_runner methods.
40
41 // Lay out the sections. This is called after all the input objects
42 // have been read.
43
44 void
45 Layout_task_runner::run(Workqueue* workqueue)
46 {
47 off_t file_size = this->layout_->finalize(this->input_objects_,
48 this->symtab_);
49
50 // Now we know the final size of the output file and we know where
51 // each piece of information goes.
52 Output_file* of = new Output_file(this->options_,
53 this->input_objects_->target());
54 of->open(file_size);
55
56 // Queue up the final set of tasks.
57 gold::queue_final_tasks(this->options_, this->input_objects_,
58 this->symtab_, this->layout_, workqueue, of);
59 }
60
61 // Layout methods.
62
63 Layout::Layout(const General_options& options)
64 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
65 section_name_map_(), segment_list_(), section_list_(),
66 unattached_section_list_(), special_output_list_(),
67 tls_segment_(NULL), symtab_section_(NULL),
68 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL)
69 {
70 // Make space for more than enough segments for a typical file.
71 // This is just for efficiency--it's OK if we wind up needing more.
72 this->segment_list_.reserve(12);
73
74 // We expect three unattached Output_data objects: the file header,
75 // the segment headers, and the section headers.
76 this->special_output_list_.reserve(3);
77 }
78
79 // Hash a key we use to look up an output section mapping.
80
81 size_t
82 Layout::Hash_key::operator()(const Layout::Key& k) const
83 {
84 return k.first + k.second.first + k.second.second;
85 }
86
87 // Whether to include this section in the link.
88
89 template<int size, bool big_endian>
90 bool
91 Layout::include_section(Object*, const char*,
92 const elfcpp::Shdr<size, big_endian>& shdr)
93 {
94 // Some section types are never linked. Some are only linked when
95 // doing a relocateable link.
96 switch (shdr.get_sh_type())
97 {
98 case elfcpp::SHT_NULL:
99 case elfcpp::SHT_SYMTAB:
100 case elfcpp::SHT_DYNSYM:
101 case elfcpp::SHT_STRTAB:
102 case elfcpp::SHT_HASH:
103 case elfcpp::SHT_DYNAMIC:
104 case elfcpp::SHT_SYMTAB_SHNDX:
105 return false;
106
107 case elfcpp::SHT_RELA:
108 case elfcpp::SHT_REL:
109 case elfcpp::SHT_GROUP:
110 return parameters->output_is_object();
111
112 default:
113 // FIXME: Handle stripping debug sections here.
114 return true;
115 }
116 }
117
118 // Return an output section named NAME, or NULL if there is none.
119
120 Output_section*
121 Layout::find_output_section(const char* name) const
122 {
123 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
124 p != this->section_name_map_.end();
125 ++p)
126 if (strcmp(p->second->name(), name) == 0)
127 return p->second;
128 return NULL;
129 }
130
131 // Return an output segment of type TYPE, with segment flags SET set
132 // and segment flags CLEAR clear. Return NULL if there is none.
133
134 Output_segment*
135 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
136 elfcpp::Elf_Word clear) const
137 {
138 for (Segment_list::const_iterator p = this->segment_list_.begin();
139 p != this->segment_list_.end();
140 ++p)
141 if (static_cast<elfcpp::PT>((*p)->type()) == type
142 && ((*p)->flags() & set) == set
143 && ((*p)->flags() & clear) == 0)
144 return *p;
145 return NULL;
146 }
147
148 // Return the output section to use for section NAME with type TYPE
149 // and section flags FLAGS.
150
151 Output_section*
152 Layout::get_output_section(const char* name, Stringpool::Key name_key,
153 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
154 {
155 // We should ignore some flags.
156 flags &= ~ (elfcpp::SHF_INFO_LINK
157 | elfcpp::SHF_LINK_ORDER
158 | elfcpp::SHF_GROUP
159 | elfcpp::SHF_MERGE
160 | elfcpp::SHF_STRINGS);
161
162 const Key key(name_key, std::make_pair(type, flags));
163 const std::pair<Key, Output_section*> v(key, NULL);
164 std::pair<Section_name_map::iterator, bool> ins(
165 this->section_name_map_.insert(v));
166
167 if (!ins.second)
168 return ins.first->second;
169 else
170 {
171 // This is the first time we've seen this name/type/flags
172 // combination.
173 Output_section* os = this->make_output_section(name, type, flags);
174 ins.first->second = os;
175 return os;
176 }
177 }
178
179 // Return the output section to use for input section SHNDX, with name
180 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
181 // offset of this input section without the output section.
182
183 template<int size, bool big_endian>
184 Output_section*
185 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
186 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
187 {
188 if (!this->include_section(object, name, shdr))
189 return NULL;
190
191 // If we are not doing a relocateable link, choose the name to use
192 // for the output section.
193 size_t len = strlen(name);
194 if (!parameters->output_is_object())
195 name = Layout::output_section_name(name, &len);
196
197 // FIXME: Handle SHF_OS_NONCONFORMING here.
198
199 // Canonicalize the section name.
200 Stringpool::Key name_key;
201 name = this->namepool_.add(name, len, &name_key);
202
203 // Find the output section. The output section is selected based on
204 // the section name, type, and flags.
205 Output_section* os = this->get_output_section(name, name_key,
206 shdr.get_sh_type(),
207 shdr.get_sh_flags());
208
209 // FIXME: Handle SHF_LINK_ORDER somewhere.
210
211 *off = os->add_input_section(object, shndx, name, shdr);
212
213 return os;
214 }
215
216 // Add POSD to an output section using NAME, TYPE, and FLAGS.
217
218 void
219 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
220 elfcpp::Elf_Xword flags,
221 Output_section_data* posd)
222 {
223 // Canonicalize the name.
224 Stringpool::Key name_key;
225 name = this->namepool_.add(name, &name_key);
226
227 Output_section* os = this->get_output_section(name, name_key, type, flags);
228 os->add_output_section_data(posd);
229 }
230
231 // Map section flags to segment flags.
232
233 elfcpp::Elf_Word
234 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
235 {
236 elfcpp::Elf_Word ret = elfcpp::PF_R;
237 if ((flags & elfcpp::SHF_WRITE) != 0)
238 ret |= elfcpp::PF_W;
239 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
240 ret |= elfcpp::PF_X;
241 return ret;
242 }
243
244 // Make a new Output_section, and attach it to segments as
245 // appropriate.
246
247 Output_section*
248 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
249 elfcpp::Elf_Xword flags)
250 {
251 Output_section* os = new Output_section(name, type, flags);
252 this->section_list_.push_back(os);
253
254 if ((flags & elfcpp::SHF_ALLOC) == 0)
255 this->unattached_section_list_.push_back(os);
256 else
257 {
258 // This output section goes into a PT_LOAD segment.
259
260 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
261
262 // The only thing we really care about for PT_LOAD segments is
263 // whether or not they are writable, so that is how we search
264 // for them. People who need segments sorted on some other
265 // basis will have to wait until we implement a mechanism for
266 // them to describe the segments they want.
267
268 Segment_list::const_iterator p;
269 for (p = this->segment_list_.begin();
270 p != this->segment_list_.end();
271 ++p)
272 {
273 if ((*p)->type() == elfcpp::PT_LOAD
274 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
275 {
276 (*p)->add_output_section(os, seg_flags);
277 break;
278 }
279 }
280
281 if (p == this->segment_list_.end())
282 {
283 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
284 seg_flags);
285 this->segment_list_.push_back(oseg);
286 oseg->add_output_section(os, seg_flags);
287 }
288
289 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
290 // segment.
291 if (type == elfcpp::SHT_NOTE)
292 {
293 // See if we already have an equivalent PT_NOTE segment.
294 for (p = this->segment_list_.begin();
295 p != segment_list_.end();
296 ++p)
297 {
298 if ((*p)->type() == elfcpp::PT_NOTE
299 && (((*p)->flags() & elfcpp::PF_W)
300 == (seg_flags & elfcpp::PF_W)))
301 {
302 (*p)->add_output_section(os, seg_flags);
303 break;
304 }
305 }
306
307 if (p == this->segment_list_.end())
308 {
309 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
310 seg_flags);
311 this->segment_list_.push_back(oseg);
312 oseg->add_output_section(os, seg_flags);
313 }
314 }
315
316 // If we see a loadable SHF_TLS section, we create a PT_TLS
317 // segment. There can only be one such segment.
318 if ((flags & elfcpp::SHF_TLS) != 0)
319 {
320 if (this->tls_segment_ == NULL)
321 {
322 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
323 seg_flags);
324 this->segment_list_.push_back(this->tls_segment_);
325 }
326 this->tls_segment_->add_output_section(os, seg_flags);
327 }
328 }
329
330 return os;
331 }
332
333 // Create the dynamic sections which are needed before we read the
334 // relocs.
335
336 void
337 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
338 Symbol_table* symtab)
339 {
340 if (!input_objects->any_dynamic())
341 return;
342
343 const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
344 this->dynamic_section_ = this->make_output_section(dynamic_name,
345 elfcpp::SHT_DYNAMIC,
346 (elfcpp::SHF_ALLOC
347 | elfcpp::SHF_WRITE));
348
349 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
350 this->dynamic_section_, 0, 0,
351 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
352 elfcpp::STV_HIDDEN, 0, false, false);
353
354 this->dynamic_data_ = new Output_data_dynamic(input_objects->target(),
355 &this->dynpool_);
356
357 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
358 }
359
360 // For each output section whose name can be represented as C symbol,
361 // define __start and __stop symbols for the section. This is a GNU
362 // extension.
363
364 void
365 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
366 {
367 for (Section_list::const_iterator p = this->section_list_.begin();
368 p != this->section_list_.end();
369 ++p)
370 {
371 const char* const name = (*p)->name();
372 if (name[strspn(name,
373 ("0123456789"
374 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
375 "abcdefghijklmnopqrstuvwxyz"
376 "_"))]
377 == '\0')
378 {
379 const std::string name_string(name);
380 const std::string start_name("__start_" + name_string);
381 const std::string stop_name("__stop_" + name_string);
382
383 symtab->define_in_output_data(target,
384 start_name.c_str(),
385 NULL, // version
386 *p,
387 0, // value
388 0, // symsize
389 elfcpp::STT_NOTYPE,
390 elfcpp::STB_GLOBAL,
391 elfcpp::STV_DEFAULT,
392 0, // nonvis
393 false, // offset_is_from_end
394 false); // only_if_ref
395
396 symtab->define_in_output_data(target,
397 stop_name.c_str(),
398 NULL, // version
399 *p,
400 0, // value
401 0, // symsize
402 elfcpp::STT_NOTYPE,
403 elfcpp::STB_GLOBAL,
404 elfcpp::STV_DEFAULT,
405 0, // nonvis
406 true, // offset_is_from_end
407 false); // only_if_ref
408 }
409 }
410 }
411
412 // Find the first read-only PT_LOAD segment, creating one if
413 // necessary.
414
415 Output_segment*
416 Layout::find_first_load_seg()
417 {
418 for (Segment_list::const_iterator p = this->segment_list_.begin();
419 p != this->segment_list_.end();
420 ++p)
421 {
422 if ((*p)->type() == elfcpp::PT_LOAD
423 && ((*p)->flags() & elfcpp::PF_R) != 0
424 && ((*p)->flags() & elfcpp::PF_W) == 0)
425 return *p;
426 }
427
428 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
429 this->segment_list_.push_back(load_seg);
430 return load_seg;
431 }
432
433 // Finalize the layout. When this is called, we have created all the
434 // output sections and all the output segments which are based on
435 // input sections. We have several things to do, and we have to do
436 // them in the right order, so that we get the right results correctly
437 // and efficiently.
438
439 // 1) Finalize the list of output segments and create the segment
440 // table header.
441
442 // 2) Finalize the dynamic symbol table and associated sections.
443
444 // 3) Determine the final file offset of all the output segments.
445
446 // 4) Determine the final file offset of all the SHF_ALLOC output
447 // sections.
448
449 // 5) Create the symbol table sections and the section name table
450 // section.
451
452 // 6) Finalize the symbol table: set symbol values to their final
453 // value and make a final determination of which symbols are going
454 // into the output symbol table.
455
456 // 7) Create the section table header.
457
458 // 8) Determine the final file offset of all the output sections which
459 // are not SHF_ALLOC, including the section table header.
460
461 // 9) Finalize the ELF file header.
462
463 // This function returns the size of the output file.
464
465 off_t
466 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
467 {
468 Target* const target = input_objects->target();
469 const int size = target->get_size();
470
471 target->finalize_sections(this);
472
473 Output_segment* phdr_seg = NULL;
474 if (input_objects->any_dynamic())
475 {
476 // There was a dynamic object in the link. We need to create
477 // some information for the dynamic linker.
478
479 // Create the PT_PHDR segment which will hold the program
480 // headers.
481 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
482 this->segment_list_.push_back(phdr_seg);
483
484 // Create the dynamic symbol table, including the hash table.
485 Output_section* dynstr;
486 std::vector<Symbol*> dynamic_symbols;
487 unsigned int local_dynamic_count;
488 Versions versions;
489 this->create_dynamic_symtab(target, symtab, &dynstr,
490 &local_dynamic_count, &dynamic_symbols,
491 &versions);
492
493 // Create the .interp section to hold the name of the
494 // interpreter, and put it in a PT_INTERP segment.
495 this->create_interp(target);
496
497 // Finish the .dynamic section to hold the dynamic data, and put
498 // it in a PT_DYNAMIC segment.
499 this->finish_dynamic_section(input_objects, symtab);
500
501 // We should have added everything we need to the dynamic string
502 // table.
503 this->dynpool_.set_string_offsets();
504
505 // Create the version sections. We can't do this until the
506 // dynamic string table is complete.
507 this->create_version_sections(target, &versions, local_dynamic_count,
508 dynamic_symbols, dynstr);
509 }
510
511 // FIXME: Handle PT_GNU_STACK.
512
513 Output_segment* load_seg = this->find_first_load_seg();
514
515 // Lay out the segment headers.
516 bool big_endian = target->is_big_endian();
517 Output_segment_headers* segment_headers;
518 segment_headers = new Output_segment_headers(size, big_endian,
519 this->segment_list_);
520 load_seg->add_initial_output_data(segment_headers);
521 this->special_output_list_.push_back(segment_headers);
522 if (phdr_seg != NULL)
523 phdr_seg->add_initial_output_data(segment_headers);
524
525 // Lay out the file header.
526 Output_file_header* file_header;
527 file_header = new Output_file_header(size,
528 big_endian,
529 target,
530 symtab,
531 segment_headers);
532 load_seg->add_initial_output_data(file_header);
533 this->special_output_list_.push_back(file_header);
534
535 // We set the output section indexes in set_segment_offsets and
536 // set_section_offsets.
537 unsigned int shndx = 1;
538
539 // Set the file offsets of all the segments, and all the sections
540 // they contain.
541 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
542
543 // Create the symbol table sections.
544 this->create_symtab_sections(size, input_objects, symtab, &off);
545
546 // Create the .shstrtab section.
547 Output_section* shstrtab_section = this->create_shstrtab();
548
549 // Set the file offsets of all the sections not associated with
550 // segments.
551 off = this->set_section_offsets(off, &shndx);
552
553 // Create the section table header.
554 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
555
556 file_header->set_section_info(oshdrs, shstrtab_section);
557
558 // Now we know exactly where everything goes in the output file.
559 Output_data::layout_complete();
560
561 return off;
562 }
563
564 // Return whether SEG1 should be before SEG2 in the output file. This
565 // is based entirely on the segment type and flags. When this is
566 // called the segment addresses has normally not yet been set.
567
568 bool
569 Layout::segment_precedes(const Output_segment* seg1,
570 const Output_segment* seg2)
571 {
572 elfcpp::Elf_Word type1 = seg1->type();
573 elfcpp::Elf_Word type2 = seg2->type();
574
575 // The single PT_PHDR segment is required to precede any loadable
576 // segment. We simply make it always first.
577 if (type1 == elfcpp::PT_PHDR)
578 {
579 gold_assert(type2 != elfcpp::PT_PHDR);
580 return true;
581 }
582 if (type2 == elfcpp::PT_PHDR)
583 return false;
584
585 // The single PT_INTERP segment is required to precede any loadable
586 // segment. We simply make it always second.
587 if (type1 == elfcpp::PT_INTERP)
588 {
589 gold_assert(type2 != elfcpp::PT_INTERP);
590 return true;
591 }
592 if (type2 == elfcpp::PT_INTERP)
593 return false;
594
595 // We then put PT_LOAD segments before any other segments.
596 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
597 return true;
598 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
599 return false;
600
601 // We put the PT_TLS segment last, because that is where the dynamic
602 // linker expects to find it (this is just for efficiency; other
603 // positions would also work correctly).
604 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
605 return false;
606 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
607 return true;
608
609 const elfcpp::Elf_Word flags1 = seg1->flags();
610 const elfcpp::Elf_Word flags2 = seg2->flags();
611
612 // The order of non-PT_LOAD segments is unimportant. We simply sort
613 // by the numeric segment type and flags values. There should not
614 // be more than one segment with the same type and flags.
615 if (type1 != elfcpp::PT_LOAD)
616 {
617 if (type1 != type2)
618 return type1 < type2;
619 gold_assert(flags1 != flags2);
620 return flags1 < flags2;
621 }
622
623 // We sort PT_LOAD segments based on the flags. Readonly segments
624 // come before writable segments. Then executable segments come
625 // before non-executable segments. Then the unlikely case of a
626 // non-readable segment comes before the normal case of a readable
627 // segment. If there are multiple segments with the same type and
628 // flags, we require that the address be set, and we sort by
629 // virtual address and then physical address.
630 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
631 return (flags1 & elfcpp::PF_W) == 0;
632 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
633 return (flags1 & elfcpp::PF_X) != 0;
634 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
635 return (flags1 & elfcpp::PF_R) == 0;
636
637 uint64_t vaddr1 = seg1->vaddr();
638 uint64_t vaddr2 = seg2->vaddr();
639 if (vaddr1 != vaddr2)
640 return vaddr1 < vaddr2;
641
642 uint64_t paddr1 = seg1->paddr();
643 uint64_t paddr2 = seg2->paddr();
644 gold_assert(paddr1 != paddr2);
645 return paddr1 < paddr2;
646 }
647
648 // Set the file offsets of all the segments, and all the sections they
649 // contain. They have all been created. LOAD_SEG must be be laid out
650 // first. Return the offset of the data to follow.
651
652 off_t
653 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
654 unsigned int *pshndx)
655 {
656 // Sort them into the final order.
657 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
658 Layout::Compare_segments());
659
660 // Find the PT_LOAD segments, and set their addresses and offsets
661 // and their section's addresses and offsets.
662 uint64_t addr = target->text_segment_address();
663 off_t off = 0;
664 bool was_readonly = false;
665 for (Segment_list::iterator p = this->segment_list_.begin();
666 p != this->segment_list_.end();
667 ++p)
668 {
669 if ((*p)->type() == elfcpp::PT_LOAD)
670 {
671 if (load_seg != NULL && load_seg != *p)
672 gold_unreachable();
673 load_seg = NULL;
674
675 // If the last segment was readonly, and this one is not,
676 // then skip the address forward one page, maintaining the
677 // same position within the page. This lets us store both
678 // segments overlapping on a single page in the file, but
679 // the loader will put them on different pages in memory.
680
681 uint64_t orig_addr = addr;
682 uint64_t orig_off = off;
683
684 uint64_t aligned_addr = addr;
685 uint64_t abi_pagesize = target->abi_pagesize();
686
687 // FIXME: This should depend on the -n and -N options.
688 (*p)->set_minimum_addralign(target->common_pagesize());
689
690 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
691 {
692 uint64_t align = (*p)->addralign();
693
694 addr = align_address(addr, align);
695 aligned_addr = addr;
696 if ((addr & (abi_pagesize - 1)) != 0)
697 addr = addr + abi_pagesize;
698 }
699
700 unsigned int shndx_hold = *pshndx;
701 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
702 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
703
704 // Now that we know the size of this segment, we may be able
705 // to save a page in memory, at the cost of wasting some
706 // file space, by instead aligning to the start of a new
707 // page. Here we use the real machine page size rather than
708 // the ABI mandated page size.
709
710 if (aligned_addr != addr)
711 {
712 uint64_t common_pagesize = target->common_pagesize();
713 uint64_t first_off = (common_pagesize
714 - (aligned_addr
715 & (common_pagesize - 1)));
716 uint64_t last_off = new_addr & (common_pagesize - 1);
717 if (first_off > 0
718 && last_off > 0
719 && ((aligned_addr & ~ (common_pagesize - 1))
720 != (new_addr & ~ (common_pagesize - 1)))
721 && first_off + last_off <= common_pagesize)
722 {
723 *pshndx = shndx_hold;
724 addr = align_address(aligned_addr, common_pagesize);
725 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
726 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
727 }
728 }
729
730 addr = new_addr;
731
732 if (((*p)->flags() & elfcpp::PF_W) == 0)
733 was_readonly = true;
734 }
735 }
736
737 // Handle the non-PT_LOAD segments, setting their offsets from their
738 // section's offsets.
739 for (Segment_list::iterator p = this->segment_list_.begin();
740 p != this->segment_list_.end();
741 ++p)
742 {
743 if ((*p)->type() != elfcpp::PT_LOAD)
744 (*p)->set_offset();
745 }
746
747 return off;
748 }
749
750 // Set the file offset of all the sections not associated with a
751 // segment.
752
753 off_t
754 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
755 {
756 for (Section_list::iterator p = this->unattached_section_list_.begin();
757 p != this->unattached_section_list_.end();
758 ++p)
759 {
760 (*p)->set_out_shndx(*pshndx);
761 ++*pshndx;
762 if ((*p)->offset() != -1)
763 continue;
764 off = align_address(off, (*p)->addralign());
765 (*p)->set_address(0, off);
766 off += (*p)->data_size();
767 }
768 return off;
769 }
770
771 // Create the symbol table sections. Here we also set the final
772 // values of the symbols. At this point all the loadable sections are
773 // fully laid out.
774
775 void
776 Layout::create_symtab_sections(int size, const Input_objects* input_objects,
777 Symbol_table* symtab,
778 off_t* poff)
779 {
780 int symsize;
781 unsigned int align;
782 if (size == 32)
783 {
784 symsize = elfcpp::Elf_sizes<32>::sym_size;
785 align = 4;
786 }
787 else if (size == 64)
788 {
789 symsize = elfcpp::Elf_sizes<64>::sym_size;
790 align = 8;
791 }
792 else
793 gold_unreachable();
794
795 off_t off = *poff;
796 off = align_address(off, align);
797 off_t startoff = off;
798
799 // Save space for the dummy symbol at the start of the section. We
800 // never bother to write this out--it will just be left as zero.
801 off += symsize;
802 unsigned int local_symbol_index = 1;
803
804 // Add STT_SECTION symbols for each Output section which needs one.
805 for (Section_list::iterator p = this->section_list_.begin();
806 p != this->section_list_.end();
807 ++p)
808 {
809 if (!(*p)->needs_symtab_index())
810 (*p)->set_symtab_index(-1U);
811 else
812 {
813 (*p)->set_symtab_index(local_symbol_index);
814 ++local_symbol_index;
815 off += symsize;
816 }
817 }
818
819 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
820 p != input_objects->relobj_end();
821 ++p)
822 {
823 Task_lock_obj<Object> tlo(**p);
824 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
825 off,
826 &this->sympool_);
827 off += (index - local_symbol_index) * symsize;
828 local_symbol_index = index;
829 }
830
831 unsigned int local_symcount = local_symbol_index;
832 gold_assert(local_symcount * symsize == off - startoff);
833
834 off_t dynoff;
835 size_t dyn_global_index;
836 size_t dyncount;
837 if (this->dynsym_section_ == NULL)
838 {
839 dynoff = 0;
840 dyn_global_index = 0;
841 dyncount = 0;
842 }
843 else
844 {
845 dyn_global_index = this->dynsym_section_->info();
846 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
847 dynoff = this->dynsym_section_->offset() + locsize;
848 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
849 gold_assert(dyncount * symsize
850 == this->dynsym_section_->data_size() - locsize);
851 }
852
853 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
854 dyncount, &this->sympool_);
855
856 this->sympool_.set_string_offsets();
857
858 const char* symtab_name = this->namepool_.add(".symtab", NULL);
859 Output_section* osymtab = this->make_output_section(symtab_name,
860 elfcpp::SHT_SYMTAB,
861 0);
862 this->symtab_section_ = osymtab;
863
864 Output_section_data* pos = new Output_data_space(off - startoff,
865 align);
866 osymtab->add_output_section_data(pos);
867
868 const char* strtab_name = this->namepool_.add(".strtab", NULL);
869 Output_section* ostrtab = this->make_output_section(strtab_name,
870 elfcpp::SHT_STRTAB,
871 0);
872
873 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
874 ostrtab->add_output_section_data(pstr);
875
876 osymtab->set_address(0, startoff);
877 osymtab->set_link_section(ostrtab);
878 osymtab->set_info(local_symcount);
879 osymtab->set_entsize(symsize);
880
881 *poff = off;
882 }
883
884 // Create the .shstrtab section, which holds the names of the
885 // sections. At the time this is called, we have created all the
886 // output sections except .shstrtab itself.
887
888 Output_section*
889 Layout::create_shstrtab()
890 {
891 // FIXME: We don't need to create a .shstrtab section if we are
892 // stripping everything.
893
894 const char* name = this->namepool_.add(".shstrtab", NULL);
895
896 this->namepool_.set_string_offsets();
897
898 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
899
900 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
901 os->add_output_section_data(posd);
902
903 return os;
904 }
905
906 // Create the section headers. SIZE is 32 or 64. OFF is the file
907 // offset.
908
909 Output_section_headers*
910 Layout::create_shdrs(int size, bool big_endian, off_t* poff)
911 {
912 Output_section_headers* oshdrs;
913 oshdrs = new Output_section_headers(size, big_endian, this,
914 &this->segment_list_,
915 &this->unattached_section_list_,
916 &this->namepool_);
917 off_t off = align_address(*poff, oshdrs->addralign());
918 oshdrs->set_address(0, off);
919 off += oshdrs->data_size();
920 *poff = off;
921 this->special_output_list_.push_back(oshdrs);
922 return oshdrs;
923 }
924
925 // Create the dynamic symbol table.
926
927 void
928 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
929 Output_section **pdynstr,
930 unsigned int* plocal_dynamic_count,
931 std::vector<Symbol*>* pdynamic_symbols,
932 Versions* pversions)
933 {
934 // Count all the symbols in the dynamic symbol table, and set the
935 // dynamic symbol indexes.
936
937 // Skip symbol 0, which is always all zeroes.
938 unsigned int index = 1;
939
940 // Add STT_SECTION symbols for each Output section which needs one.
941 for (Section_list::iterator p = this->section_list_.begin();
942 p != this->section_list_.end();
943 ++p)
944 {
945 if (!(*p)->needs_dynsym_index())
946 (*p)->set_dynsym_index(-1U);
947 else
948 {
949 (*p)->set_dynsym_index(index);
950 ++index;
951 }
952 }
953
954 // FIXME: Some targets apparently require local symbols in the
955 // dynamic symbol table. Here is where we will have to count them,
956 // and set the dynamic symbol indexes, and add the names to
957 // this->dynpool_.
958
959 unsigned int local_symcount = index;
960 *plocal_dynamic_count = local_symcount;
961
962 // FIXME: We have to tell set_dynsym_indexes whether the
963 // -E/--export-dynamic option was used.
964 index = symtab->set_dynsym_indexes(&this->options_, target, index,
965 pdynamic_symbols, &this->dynpool_,
966 pversions);
967
968 int symsize;
969 unsigned int align;
970 const int size = target->get_size();
971 if (size == 32)
972 {
973 symsize = elfcpp::Elf_sizes<32>::sym_size;
974 align = 4;
975 }
976 else if (size == 64)
977 {
978 symsize = elfcpp::Elf_sizes<64>::sym_size;
979 align = 8;
980 }
981 else
982 gold_unreachable();
983
984 // Create the dynamic symbol table section.
985
986 const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
987 Output_section* dynsym = this->make_output_section(dynsym_name,
988 elfcpp::SHT_DYNSYM,
989 elfcpp::SHF_ALLOC);
990
991 Output_section_data* odata = new Output_data_space(index * symsize,
992 align);
993 dynsym->add_output_section_data(odata);
994
995 dynsym->set_info(local_symcount);
996 dynsym->set_entsize(symsize);
997 dynsym->set_addralign(align);
998
999 this->dynsym_section_ = dynsym;
1000
1001 Output_data_dynamic* const odyn = this->dynamic_data_;
1002 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1003 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1004
1005 // Create the dynamic string table section.
1006
1007 const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
1008 Output_section* dynstr = this->make_output_section(dynstr_name,
1009 elfcpp::SHT_STRTAB,
1010 elfcpp::SHF_ALLOC);
1011
1012 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1013 dynstr->add_output_section_data(strdata);
1014
1015 dynsym->set_link_section(dynstr);
1016 this->dynamic_section_->set_link_section(dynstr);
1017
1018 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1019 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1020
1021 *pdynstr = dynstr;
1022
1023 // Create the hash tables.
1024
1025 // FIXME: We need an option to create a GNU hash table.
1026
1027 unsigned char* phash;
1028 unsigned int hashlen;
1029 Dynobj::create_elf_hash_table(target, *pdynamic_symbols, local_symcount,
1030 &phash, &hashlen);
1031
1032 const char* hash_name = this->namepool_.add(".hash", NULL);
1033 Output_section* hashsec = this->make_output_section(hash_name,
1034 elfcpp::SHT_HASH,
1035 elfcpp::SHF_ALLOC);
1036
1037 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1038 hashlen,
1039 align);
1040 hashsec->add_output_section_data(hashdata);
1041
1042 hashsec->set_link_section(dynsym);
1043 hashsec->set_entsize(4);
1044
1045 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1046 }
1047
1048 // Create the version sections.
1049
1050 void
1051 Layout::create_version_sections(const Target* target, const Versions* versions,
1052 unsigned int local_symcount,
1053 const std::vector<Symbol*>& dynamic_symbols,
1054 const Output_section* dynstr)
1055 {
1056 if (!versions->any_defs() && !versions->any_needs())
1057 return;
1058
1059 if (target->get_size() == 32)
1060 {
1061 if (target->is_big_endian())
1062 {
1063 #ifdef HAVE_TARGET_32_BIG
1064 this->sized_create_version_sections
1065 SELECT_SIZE_ENDIAN_NAME(32, true)(
1066 versions, local_symcount, dynamic_symbols, dynstr
1067 SELECT_SIZE_ENDIAN(32, true));
1068 #else
1069 gold_unreachable();
1070 #endif
1071 }
1072 else
1073 {
1074 #ifdef HAVE_TARGET_32_LITTLE
1075 this->sized_create_version_sections
1076 SELECT_SIZE_ENDIAN_NAME(32, false)(
1077 versions, local_symcount, dynamic_symbols, dynstr
1078 SELECT_SIZE_ENDIAN(32, false));
1079 #else
1080 gold_unreachable();
1081 #endif
1082 }
1083 }
1084 else if (target->get_size() == 64)
1085 {
1086 if (target->is_big_endian())
1087 {
1088 #ifdef HAVE_TARGET_64_BIG
1089 this->sized_create_version_sections
1090 SELECT_SIZE_ENDIAN_NAME(64, true)(
1091 versions, local_symcount, dynamic_symbols, dynstr
1092 SELECT_SIZE_ENDIAN(64, true));
1093 #else
1094 gold_unreachable();
1095 #endif
1096 }
1097 else
1098 {
1099 #ifdef HAVE_TARGET_64_LITTLE
1100 this->sized_create_version_sections
1101 SELECT_SIZE_ENDIAN_NAME(64, false)(
1102 versions, local_symcount, dynamic_symbols, dynstr
1103 SELECT_SIZE_ENDIAN(64, false));
1104 #else
1105 gold_unreachable();
1106 #endif
1107 }
1108 }
1109 else
1110 gold_unreachable();
1111 }
1112
1113 // Create the version sections, sized version.
1114
1115 template<int size, bool big_endian>
1116 void
1117 Layout::sized_create_version_sections(
1118 const Versions* versions,
1119 unsigned int local_symcount,
1120 const std::vector<Symbol*>& dynamic_symbols,
1121 const Output_section* dynstr
1122 ACCEPT_SIZE_ENDIAN)
1123 {
1124 const char* vname = this->namepool_.add(".gnu.version", NULL);
1125 Output_section* vsec = this->make_output_section(vname,
1126 elfcpp::SHT_GNU_versym,
1127 elfcpp::SHF_ALLOC);
1128
1129 unsigned char* vbuf;
1130 unsigned int vsize;
1131 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1132 &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1133 SELECT_SIZE_ENDIAN(size, big_endian));
1134
1135 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1136
1137 vsec->add_output_section_data(vdata);
1138 vsec->set_entsize(2);
1139 vsec->set_link_section(this->dynsym_section_);
1140
1141 Output_data_dynamic* const odyn = this->dynamic_data_;
1142 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1143
1144 if (versions->any_defs())
1145 {
1146 const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1147 Output_section *vdsec;
1148 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1149 elfcpp::SHF_ALLOC);
1150
1151 unsigned char* vdbuf;
1152 unsigned int vdsize;
1153 unsigned int vdentries;
1154 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1155 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1156 SELECT_SIZE_ENDIAN(size, big_endian));
1157
1158 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1159 vdsize,
1160 4);
1161
1162 vdsec->add_output_section_data(vddata);
1163 vdsec->set_link_section(dynstr);
1164 vdsec->set_info(vdentries);
1165
1166 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1167 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1168 }
1169
1170 if (versions->any_needs())
1171 {
1172 const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1173 Output_section* vnsec;
1174 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1175 elfcpp::SHF_ALLOC);
1176
1177 unsigned char* vnbuf;
1178 unsigned int vnsize;
1179 unsigned int vnentries;
1180 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1181 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1182 SELECT_SIZE_ENDIAN(size, big_endian));
1183
1184 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1185 vnsize,
1186 4);
1187
1188 vnsec->add_output_section_data(vndata);
1189 vnsec->set_link_section(dynstr);
1190 vnsec->set_info(vnentries);
1191
1192 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1193 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1194 }
1195 }
1196
1197 // Create the .interp section and PT_INTERP segment.
1198
1199 void
1200 Layout::create_interp(const Target* target)
1201 {
1202 const char* interp = this->options_.dynamic_linker();
1203 if (interp == NULL)
1204 {
1205 interp = target->dynamic_linker();
1206 gold_assert(interp != NULL);
1207 }
1208
1209 size_t len = strlen(interp) + 1;
1210
1211 Output_section_data* odata = new Output_data_const(interp, len, 1);
1212
1213 const char* interp_name = this->namepool_.add(".interp", NULL);
1214 Output_section* osec = this->make_output_section(interp_name,
1215 elfcpp::SHT_PROGBITS,
1216 elfcpp::SHF_ALLOC);
1217 osec->add_output_section_data(odata);
1218
1219 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1220 this->segment_list_.push_back(oseg);
1221 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1222 }
1223
1224 // Finish the .dynamic section and PT_DYNAMIC segment.
1225
1226 void
1227 Layout::finish_dynamic_section(const Input_objects* input_objects,
1228 const Symbol_table* symtab)
1229 {
1230 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1231 elfcpp::PF_R | elfcpp::PF_W);
1232 this->segment_list_.push_back(oseg);
1233 oseg->add_initial_output_section(this->dynamic_section_,
1234 elfcpp::PF_R | elfcpp::PF_W);
1235
1236 Output_data_dynamic* const odyn = this->dynamic_data_;
1237
1238 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1239 p != input_objects->dynobj_end();
1240 ++p)
1241 {
1242 // FIXME: Handle --as-needed.
1243 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1244 }
1245
1246 // FIXME: Support --init and --fini.
1247 Symbol* sym = symtab->lookup("_init");
1248 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1249 odyn->add_symbol(elfcpp::DT_INIT, sym);
1250
1251 sym = symtab->lookup("_fini");
1252 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1253 odyn->add_symbol(elfcpp::DT_FINI, sym);
1254
1255 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1256
1257 // Add a DT_RPATH entry if needed.
1258 const General_options::Dir_list& rpath(this->options_.rpath());
1259 if (!rpath.empty())
1260 {
1261 std::string rpath_val;
1262 for (General_options::Dir_list::const_iterator p = rpath.begin();
1263 p != rpath.end();
1264 ++p)
1265 {
1266 if (rpath_val.empty())
1267 rpath_val = *p;
1268 else
1269 {
1270 // Eliminate duplicates.
1271 General_options::Dir_list::const_iterator q;
1272 for (q = rpath.begin(); q != p; ++q)
1273 if (strcmp(*q, *p) == 0)
1274 break;
1275 if (q == p)
1276 {
1277 rpath_val += ':';
1278 rpath_val += *p;
1279 }
1280 }
1281 }
1282
1283 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1284 }
1285 }
1286
1287 // The mapping of .gnu.linkonce section names to real section names.
1288
1289 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1290 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1291 {
1292 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1293 MAPPING_INIT("t", ".text"),
1294 MAPPING_INIT("r", ".rodata"),
1295 MAPPING_INIT("d", ".data"),
1296 MAPPING_INIT("b", ".bss"),
1297 MAPPING_INIT("s", ".sdata"),
1298 MAPPING_INIT("sb", ".sbss"),
1299 MAPPING_INIT("s2", ".sdata2"),
1300 MAPPING_INIT("sb2", ".sbss2"),
1301 MAPPING_INIT("wi", ".debug_info"),
1302 MAPPING_INIT("td", ".tdata"),
1303 MAPPING_INIT("tb", ".tbss"),
1304 MAPPING_INIT("lr", ".lrodata"),
1305 MAPPING_INIT("l", ".ldata"),
1306 MAPPING_INIT("lb", ".lbss"),
1307 };
1308 #undef MAPPING_INIT
1309
1310 const int Layout::linkonce_mapping_count =
1311 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1312
1313 // Return the name of the output section to use for a .gnu.linkonce
1314 // section. This is based on the default ELF linker script of the old
1315 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1316 // to ".text". Set *PLEN to the length of the name. *PLEN is
1317 // initialized to the length of NAME.
1318
1319 const char*
1320 Layout::linkonce_output_name(const char* name, size_t *plen)
1321 {
1322 const char* s = name + sizeof(".gnu.linkonce") - 1;
1323 if (*s != '.')
1324 return name;
1325 ++s;
1326 const Linkonce_mapping* plm = linkonce_mapping;
1327 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1328 {
1329 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1330 {
1331 *plen = plm->tolen;
1332 return plm->to;
1333 }
1334 }
1335 return name;
1336 }
1337
1338 // Choose the output section name to use given an input section name.
1339 // Set *PLEN to the length of the name. *PLEN is initialized to the
1340 // length of NAME.
1341
1342 const char*
1343 Layout::output_section_name(const char* name, size_t* plen)
1344 {
1345 if (Layout::is_linkonce(name))
1346 {
1347 // .gnu.linkonce sections are laid out as though they were named
1348 // for the sections are placed into.
1349 return Layout::linkonce_output_name(name, plen);
1350 }
1351
1352 // If the section name has no '.', or only an initial '.', we use
1353 // the name unchanged (i.e., ".text" is unchanged).
1354
1355 // Otherwise, if the section name does not include ".rel", we drop
1356 // the last '.' and everything that follows (i.e., ".text.XXX"
1357 // becomes ".text").
1358
1359 // Otherwise, if the section name has zero or one '.' after the
1360 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1361 // unchanged).
1362
1363 // Otherwise, we drop the last '.' and everything that follows
1364 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1365
1366 const char* s = name;
1367 if (*s == '.')
1368 ++s;
1369 const char* sdot = strchr(s, '.');
1370 if (sdot == NULL)
1371 return name;
1372
1373 const char* srel = strstr(s, ".rel");
1374 if (srel == NULL)
1375 {
1376 *plen = sdot - name;
1377 return name;
1378 }
1379
1380 sdot = strchr(srel + 1, '.');
1381 if (sdot == NULL)
1382 return name;
1383 sdot = strchr(sdot + 1, '.');
1384 if (sdot == NULL)
1385 return name;
1386
1387 *plen = sdot - name;
1388 return name;
1389 }
1390
1391 // Record the signature of a comdat section, and return whether to
1392 // include it in the link. If GROUP is true, this is a regular
1393 // section group. If GROUP is false, this is a group signature
1394 // derived from the name of a linkonce section. We want linkonce
1395 // signatures and group signatures to block each other, but we don't
1396 // want a linkonce signature to block another linkonce signature.
1397
1398 bool
1399 Layout::add_comdat(const char* signature, bool group)
1400 {
1401 std::string sig(signature);
1402 std::pair<Signatures::iterator, bool> ins(
1403 this->signatures_.insert(std::make_pair(sig, group)));
1404
1405 if (ins.second)
1406 {
1407 // This is the first time we've seen this signature.
1408 return true;
1409 }
1410
1411 if (ins.first->second)
1412 {
1413 // We've already seen a real section group with this signature.
1414 return false;
1415 }
1416 else if (group)
1417 {
1418 // This is a real section group, and we've already seen a
1419 // linkonce section with tihs signature. Record that we've seen
1420 // a section group, and don't include this section group.
1421 ins.first->second = true;
1422 return false;
1423 }
1424 else
1425 {
1426 // We've already seen a linkonce section and this is a linkonce
1427 // section. These don't block each other--this may be the same
1428 // symbol name with different section types.
1429 return true;
1430 }
1431 }
1432
1433 // Write out data not associated with a section or the symbol table.
1434
1435 void
1436 Layout::write_data(const Symbol_table* symtab, const Target* target,
1437 Output_file* of) const
1438 {
1439 const Output_section* symtab_section = this->symtab_section_;
1440 for (Section_list::const_iterator p = this->section_list_.begin();
1441 p != this->section_list_.end();
1442 ++p)
1443 {
1444 if ((*p)->needs_symtab_index())
1445 {
1446 gold_assert(symtab_section != NULL);
1447 unsigned int index = (*p)->symtab_index();
1448 gold_assert(index > 0 && index != -1U);
1449 off_t off = (symtab_section->offset()
1450 + index * symtab_section->entsize());
1451 symtab->write_section_symbol(target, *p, of, off);
1452 }
1453 }
1454
1455 const Output_section* dynsym_section = this->dynsym_section_;
1456 for (Section_list::const_iterator p = this->section_list_.begin();
1457 p != this->section_list_.end();
1458 ++p)
1459 {
1460 if ((*p)->needs_dynsym_index())
1461 {
1462 gold_assert(dynsym_section != NULL);
1463 unsigned int index = (*p)->dynsym_index();
1464 gold_assert(index > 0 && index != -1U);
1465 off_t off = (dynsym_section->offset()
1466 + index * dynsym_section->entsize());
1467 symtab->write_section_symbol(target, *p, of, off);
1468 }
1469 }
1470
1471 // Write out the Output_sections. Most won't have anything to
1472 // write, since most of the data will come from input sections which
1473 // are handled elsewhere. But some Output_sections do have
1474 // Output_data.
1475 for (Section_list::const_iterator p = this->section_list_.begin();
1476 p != this->section_list_.end();
1477 ++p)
1478 (*p)->write(of);
1479
1480 // Write out the Output_data which are not in an Output_section.
1481 for (Data_list::const_iterator p = this->special_output_list_.begin();
1482 p != this->special_output_list_.end();
1483 ++p)
1484 (*p)->write(of);
1485 }
1486
1487 // Write_data_task methods.
1488
1489 // We can always run this task.
1490
1491 Task::Is_runnable_type
1492 Write_data_task::is_runnable(Workqueue*)
1493 {
1494 return IS_RUNNABLE;
1495 }
1496
1497 // We need to unlock FINAL_BLOCKER when finished.
1498
1499 Task_locker*
1500 Write_data_task::locks(Workqueue* workqueue)
1501 {
1502 return new Task_locker_block(*this->final_blocker_, workqueue);
1503 }
1504
1505 // Run the task--write out the data.
1506
1507 void
1508 Write_data_task::run(Workqueue*)
1509 {
1510 this->layout_->write_data(this->symtab_, this->target_, this->of_);
1511 }
1512
1513 // Write_symbols_task methods.
1514
1515 // We can always run this task.
1516
1517 Task::Is_runnable_type
1518 Write_symbols_task::is_runnable(Workqueue*)
1519 {
1520 return IS_RUNNABLE;
1521 }
1522
1523 // We need to unlock FINAL_BLOCKER when finished.
1524
1525 Task_locker*
1526 Write_symbols_task::locks(Workqueue* workqueue)
1527 {
1528 return new Task_locker_block(*this->final_blocker_, workqueue);
1529 }
1530
1531 // Run the task--write out the symbols.
1532
1533 void
1534 Write_symbols_task::run(Workqueue*)
1535 {
1536 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1537 this->of_);
1538 }
1539
1540 // Close_task_runner methods.
1541
1542 // Run the task--close the file.
1543
1544 void
1545 Close_task_runner::run(Workqueue*)
1546 {
1547 this->of_->close();
1548 }
1549
1550 // Instantiate the templates we need. We could use the configure
1551 // script to restrict this to only the ones for implemented targets.
1552
1553 #ifdef HAVE_TARGET_32_LITTLE
1554 template
1555 Output_section*
1556 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1557 const elfcpp::Shdr<32, false>& shdr, off_t*);
1558 #endif
1559
1560 #ifdef HAVE_TARGET_32_BIG
1561 template
1562 Output_section*
1563 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1564 const elfcpp::Shdr<32, true>& shdr, off_t*);
1565 #endif
1566
1567 #ifdef HAVE_TARGET_64_LITTLE
1568 template
1569 Output_section*
1570 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1571 const elfcpp::Shdr<64, false>& shdr, off_t*);
1572 #endif
1573
1574 #ifdef HAVE_TARGET_64_BIG
1575 template
1576 Output_section*
1577 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1578 const elfcpp::Shdr<64, true>& shdr, off_t*);
1579 #endif
1580
1581
1582 } // End namespace gold.