]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
Do not use linker script to place static relocation sections.
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "gdb_scripts",
525 "info",
526 "types",
527 "line",
528 "loc",
529 "macinfo",
530 "macro",
531 // "pubnames", // not used by gdb as of 7.4
532 // "pubtypes", // not used by gdb as of 7.4
533 // "gnu_pubnames", // Fission extension
534 // "gnu_pubtypes", // Fission extension
535 "ranges",
536 "str",
537 "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544 "abbrev",
545 // "addr", // Fission extension
546 // "aranges", // not used by gdb as of 7.4
547 // "frame",
548 // "gdb_scripts",
549 "info",
550 // "types",
551 "line",
552 // "loc",
553 // "macinfo",
554 // "macro",
555 // "pubnames", // not used by gdb as of 7.4
556 // "pubtypes", // not used by gdb as of 7.4
557 // "gnu_pubnames", // Fission extension
558 // "gnu_pubtypes", // Fission extension
559 // "ranges",
560 "str",
561 "str_offsets", // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569 "aranges",
570 "pubnames",
571 "gnu_pubnames",
572 "pubtypes",
573 "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583 // We can do this faster: binary search or a hashtable. But why bother?
584 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585 if (strcmp(suffix, gdb_sections[i]) == 0)
586 return true;
587 return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595 // We can do this faster: binary search or a hashtable. But why bother?
596 for (size_t i = 0;
597 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598 ++i)
599 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600 return true;
601 return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610 // We can do this faster: binary search or a hashtable. But why bother?
611 for (size_t i = 0;
612 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613 ++i)
614 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615 return true;
616 return false;
617 }
618
619 // Sometimes we compress sections. This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections. This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631 return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files. Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640 return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646 gold_assert(secname[0] == '.' && secname[1] == 'z');
647 std::string ret(".");
648 ret.append(secname, 2, std::string::npos);
649 return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657 const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659 if (!parameters->options().relocatable()
660 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661 return false;
662
663 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667 return parameters->target().should_include_section(sh_type);
668
669 switch (sh_type)
670 {
671 case elfcpp::SHT_NULL:
672 case elfcpp::SHT_SYMTAB:
673 case elfcpp::SHT_DYNSYM:
674 case elfcpp::SHT_HASH:
675 case elfcpp::SHT_DYNAMIC:
676 case elfcpp::SHT_SYMTAB_SHNDX:
677 return false;
678
679 case elfcpp::SHT_STRTAB:
680 // Discard the sections which have special meanings in the ELF
681 // ABI. Keep others (e.g., .stabstr). We could also do this by
682 // checking the sh_link fields of the appropriate sections.
683 return (strcmp(name, ".dynstr") != 0
684 && strcmp(name, ".strtab") != 0
685 && strcmp(name, ".shstrtab") != 0);
686
687 case elfcpp::SHT_RELA:
688 case elfcpp::SHT_REL:
689 case elfcpp::SHT_GROUP:
690 // If we are emitting relocations these should be handled
691 // elsewhere.
692 gold_assert(!parameters->options().relocatable());
693 return false;
694
695 case elfcpp::SHT_PROGBITS:
696 if (parameters->options().strip_debug()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 if (is_debug_info_section(name))
700 return false;
701 }
702 if (parameters->options().strip_debug_non_line()
703 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704 {
705 // Debugging sections can only be recognized by name.
706 if (is_prefix_of(".debug_", name)
707 && !is_lines_only_debug_section(name + 7))
708 return false;
709 if (is_prefix_of(".zdebug_", name)
710 && !is_lines_only_debug_section(name + 8))
711 return false;
712 }
713 if (parameters->options().strip_debug_gdb()
714 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715 {
716 // Debugging sections can only be recognized by name.
717 if (is_prefix_of(".debug_", name)
718 && !is_gdb_debug_section(name + 7))
719 return false;
720 if (is_prefix_of(".zdebug_", name)
721 && !is_gdb_debug_section(name + 8))
722 return false;
723 }
724 if (parameters->options().gdb_index()
725 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726 {
727 // When building .gdb_index, we can strip .debug_pubnames,
728 // .debug_pubtypes, and .debug_aranges sections.
729 if (is_prefix_of(".debug_", name)
730 && is_gdb_fast_lookup_section(name + 7))
731 return false;
732 if (is_prefix_of(".zdebug_", name)
733 && is_gdb_fast_lookup_section(name + 8))
734 return false;
735 }
736 if (parameters->options().strip_lto_sections()
737 && !parameters->options().relocatable()
738 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739 {
740 // Ignore LTO sections containing intermediate code.
741 if (is_prefix_of(".gnu.lto_", name))
742 return false;
743 }
744 // The GNU linker strips .gnu_debuglink sections, so we do too.
745 // This is a feature used to keep debugging information in
746 // separate files.
747 if (strcmp(name, ".gnu_debuglink") == 0)
748 return false;
749 return true;
750
751 default:
752 return true;
753 }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761 for (Section_list::const_iterator p = this->section_list_.begin();
762 p != this->section_list_.end();
763 ++p)
764 if (strcmp((*p)->name(), name) == 0)
765 return *p;
766 return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear. Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774 elfcpp::Elf_Word clear) const
775 {
776 for (Segment_list::const_iterator p = this->segment_list_.begin();
777 p != this->segment_list_.end();
778 ++p)
779 if (static_cast<elfcpp::PT>((*p)->type()) == type
780 && ((*p)->flags() & set) == set
781 && ((*p)->flags() & clear) == 0)
782 return *p;
783 return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section. This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors. Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run. This set just keeps track of
794 // these sections which need to be reversed. It is only changed by
795 // Layout::layout. It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807 != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS. NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key. ORDER is where this should appear
813 // in the output sections. IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818 Output_section_order order, bool is_relro)
819 {
820 elfcpp::Elf_Word lookup_type = type;
821
822 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
824 // .init_array, .fini_array, and .preinit_array sections by name
825 // whatever their type in the input file. We do this because the
826 // types are not always right in the input files.
827 if (lookup_type == elfcpp::SHT_INIT_ARRAY
828 || lookup_type == elfcpp::SHT_FINI_ARRAY
829 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830 lookup_type = elfcpp::SHT_PROGBITS;
831
832 elfcpp::Elf_Xword lookup_flags = flags;
833
834 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835 // read-write with read-only sections. Some other ELF linkers do
836 // not do this. FIXME: Perhaps there should be an option
837 // controlling this.
838 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841 const std::pair<Key, Output_section*> v(key, NULL);
842 std::pair<Section_name_map::iterator, bool> ins(
843 this->section_name_map_.insert(v));
844
845 if (!ins.second)
846 return ins.first->second;
847 else
848 {
849 // This is the first time we've seen this name/type/flags
850 // combination. For compatibility with the GNU linker, we
851 // combine sections with contents and zero flags with sections
852 // with non-zero flags. This is a workaround for cases where
853 // assembler code forgets to set section flags. FIXME: Perhaps
854 // there should be an option to control this.
855 Output_section* os = NULL;
856
857 if (lookup_type == elfcpp::SHT_PROGBITS)
858 {
859 if (flags == 0)
860 {
861 Output_section* same_name = this->find_output_section(name);
862 if (same_name != NULL
863 && (same_name->type() == elfcpp::SHT_PROGBITS
864 || same_name->type() == elfcpp::SHT_INIT_ARRAY
865 || same_name->type() == elfcpp::SHT_FINI_ARRAY
866 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868 os = same_name;
869 }
870 else if ((flags & elfcpp::SHF_TLS) == 0)
871 {
872 elfcpp::Elf_Xword zero_flags = 0;
873 const Key zero_key(name_key, std::make_pair(lookup_type,
874 zero_flags));
875 Section_name_map::iterator p =
876 this->section_name_map_.find(zero_key);
877 if (p != this->section_name_map_.end())
878 os = p->second;
879 }
880 }
881
882 if (os == NULL)
883 os = this->make_output_section(name, type, flags, order, is_relro);
884
885 ins.first->second = os;
886 return os;
887 }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896 if (! this->script_options_->saw_sections_clause())
897 return false;
898
899 Script_sections* ss = this->script_options_->script_sections();
900 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901 Output_section** output_section_slot;
902 Script_sections::Section_type script_section_type;
903 bool keep;
904
905 name = ss->output_section_name(file_name, name, &output_section_slot,
906 &script_section_type, &keep);
907 return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916 // Some flags in the input section should not be automatically
917 // copied to the output section.
918 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919 | elfcpp::SHF_GROUP
920 | elfcpp::SHF_COMPRESSED
921 | elfcpp::SHF_MERGE
922 | elfcpp::SHF_STRINGS);
923
924 // We only clear the SHF_LINK_ORDER flag in for
925 // a non-relocatable link.
926 if (!parameters->options().relocatable())
927 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929 return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
934 // linker created section. IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file. ORDER is where this section should appear in the output
937 // sections. IS_RELRO is true for a relro section. This will return
938 // NULL if the input section should be discarded.
939
940 Output_section*
941 Layout::choose_output_section(const Relobj* relobj, const char* name,
942 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
943 bool is_input_section, Output_section_order order,
944 bool is_relro, bool is_reloc)
945 {
946 // We should not see any input sections after we have attached
947 // sections to segments.
948 gold_assert(!is_input_section || !this->sections_are_attached_);
949
950 flags = this->get_output_section_flags(flags);
951
952 if (this->script_options_->saw_sections_clause() && !is_reloc)
953 {
954 // We are using a SECTIONS clause, so the output section is
955 // chosen based only on the name.
956
957 Script_sections* ss = this->script_options_->script_sections();
958 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
959 Output_section** output_section_slot;
960 Script_sections::Section_type script_section_type;
961 const char* orig_name = name;
962 bool keep;
963 name = ss->output_section_name(file_name, name, &output_section_slot,
964 &script_section_type, &keep);
965
966 if (name == NULL)
967 {
968 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
969 "because it is not allowed by the "
970 "SECTIONS clause of the linker script"),
971 orig_name);
972 // The SECTIONS clause says to discard this input section.
973 return NULL;
974 }
975
976 // We can only handle script section types ST_NONE and ST_NOLOAD.
977 switch (script_section_type)
978 {
979 case Script_sections::ST_NONE:
980 break;
981 case Script_sections::ST_NOLOAD:
982 flags &= elfcpp::SHF_ALLOC;
983 break;
984 default:
985 gold_unreachable();
986 }
987
988 // If this is an orphan section--one not mentioned in the linker
989 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
990 // default processing below.
991
992 if (output_section_slot != NULL)
993 {
994 if (*output_section_slot != NULL)
995 {
996 (*output_section_slot)->update_flags_for_input_section(flags);
997 return *output_section_slot;
998 }
999
1000 // We don't put sections found in the linker script into
1001 // SECTION_NAME_MAP_. That keeps us from getting confused
1002 // if an orphan section is mapped to a section with the same
1003 // name as one in the linker script.
1004
1005 name = this->namepool_.add(name, false, NULL);
1006
1007 Output_section* os = this->make_output_section(name, type, flags,
1008 order, is_relro);
1009
1010 os->set_found_in_sections_clause();
1011
1012 // Special handling for NOLOAD sections.
1013 if (script_section_type == Script_sections::ST_NOLOAD)
1014 {
1015 os->set_is_noload();
1016
1017 // The constructor of Output_section sets addresses of non-ALLOC
1018 // sections to 0 by default. We don't want that for NOLOAD
1019 // sections even if they have no SHF_ALLOC flag.
1020 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1021 && os->is_address_valid())
1022 {
1023 gold_assert(os->address() == 0
1024 && !os->is_offset_valid()
1025 && !os->is_data_size_valid());
1026 os->reset_address_and_file_offset();
1027 }
1028 }
1029
1030 *output_section_slot = os;
1031 return os;
1032 }
1033 }
1034
1035 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1036
1037 size_t len = strlen(name);
1038 std::string uncompressed_name;
1039
1040 // Compressed debug sections should be mapped to the corresponding
1041 // uncompressed section.
1042 if (is_compressed_debug_section(name))
1043 {
1044 uncompressed_name =
1045 corresponding_uncompressed_section_name(std::string(name, len));
1046 name = uncompressed_name.c_str();
1047 len = uncompressed_name.length();
1048 }
1049
1050 // Turn NAME from the name of the input section into the name of the
1051 // output section.
1052 if (is_input_section
1053 && !this->script_options_->saw_sections_clause()
1054 && !parameters->options().relocatable())
1055 {
1056 const char *orig_name = name;
1057 name = parameters->target().output_section_name(relobj, name, &len);
1058 if (name == NULL)
1059 name = Layout::output_section_name(relobj, orig_name, &len);
1060 }
1061
1062 Stringpool::Key name_key;
1063 name = this->namepool_.add_with_length(name, len, true, &name_key);
1064
1065 // Find or make the output section. The output section is selected
1066 // based on the section name, type, and flags.
1067 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1068 }
1069
1070 // For incremental links, record the initial fixed layout of a section
1071 // from the base file, and return a pointer to the Output_section.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::init_fixed_output_section(const char* name,
1076 elfcpp::Shdr<size, big_endian>& shdr)
1077 {
1078 unsigned int sh_type = shdr.get_sh_type();
1079
1080 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1081 // PRE_INIT_ARRAY, and NOTE sections.
1082 // All others will be created from scratch and reallocated.
1083 if (!can_incremental_update(sh_type))
1084 return NULL;
1085
1086 // If we're generating a .gdb_index section, we need to regenerate
1087 // it from scratch.
1088 if (parameters->options().gdb_index()
1089 && sh_type == elfcpp::SHT_PROGBITS
1090 && strcmp(name, ".gdb_index") == 0)
1091 return NULL;
1092
1093 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1094 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1095 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1096 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1097 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1098 shdr.get_sh_addralign();
1099
1100 // Make the output section.
1101 Stringpool::Key name_key;
1102 name = this->namepool_.add(name, true, &name_key);
1103 Output_section* os = this->get_output_section(name, name_key, sh_type,
1104 sh_flags, ORDER_INVALID, false);
1105 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1106 if (sh_type != elfcpp::SHT_NOBITS)
1107 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1108 return os;
1109 }
1110
1111 // Return the index by which an input section should be ordered. This
1112 // is used to sort some .text sections, for compatibility with GNU ld.
1113
1114 int
1115 Layout::special_ordering_of_input_section(const char* name)
1116 {
1117 // The GNU linker has some special handling for some sections that
1118 // wind up in the .text section. Sections that start with these
1119 // prefixes must appear first, and must appear in the order listed
1120 // here.
1121 static const char* const text_section_sort[] =
1122 {
1123 ".text.unlikely",
1124 ".text.exit",
1125 ".text.startup",
1126 ".text.hot"
1127 };
1128
1129 for (size_t i = 0;
1130 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1131 i++)
1132 if (is_prefix_of(text_section_sort[i], name))
1133 return i;
1134
1135 return -1;
1136 }
1137
1138 // Return the output section to use for input section SHNDX, with name
1139 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1140 // index of a relocation section which applies to this section, or 0
1141 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1142 // relocation section if there is one. Set *OFF to the offset of this
1143 // input section without the output section. Return NULL if the
1144 // section should be discarded. Set *OFF to -1 if the section
1145 // contents should not be written directly to the output file, but
1146 // will instead receive special handling.
1147
1148 template<int size, bool big_endian>
1149 Output_section*
1150 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1151 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1152 unsigned int reloc_shndx, unsigned int, off_t* off)
1153 {
1154 *off = 0;
1155
1156 if (!this->include_section(object, name, shdr))
1157 return NULL;
1158
1159 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1160
1161 // In a relocatable link a grouped section must not be combined with
1162 // any other sections.
1163 Output_section* os;
1164 if (parameters->options().relocatable()
1165 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1166 {
1167 // Some flags in the input section should not be automatically
1168 // copied to the output section.
1169 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1170 & ~ elfcpp::SHF_COMPRESSED);
1171 name = this->namepool_.add(name, true, NULL);
1172 os = this->make_output_section(name, sh_type, flags,
1173 ORDER_INVALID, false);
1174 }
1175 else
1176 {
1177 // Plugins can choose to place one or more subsets of sections in
1178 // unique segments and this is done by mapping these section subsets
1179 // to unique output sections. Check if this section needs to be
1180 // remapped to a unique output section.
1181 Section_segment_map::iterator it
1182 = this->section_segment_map_.find(Const_section_id(object, shndx));
1183 if (it == this->section_segment_map_.end())
1184 {
1185 os = this->choose_output_section(object, name, sh_type,
1186 shdr.get_sh_flags(), true,
1187 ORDER_INVALID, false, false);
1188 }
1189 else
1190 {
1191 // We know the name of the output section, directly call
1192 // get_output_section here by-passing choose_output_section.
1193 elfcpp::Elf_Xword flags
1194 = this->get_output_section_flags(shdr.get_sh_flags());
1195
1196 const char* os_name = it->second->name;
1197 Stringpool::Key name_key;
1198 os_name = this->namepool_.add(os_name, true, &name_key);
1199 os = this->get_output_section(os_name, name_key, sh_type, flags,
1200 ORDER_INVALID, false);
1201 if (!os->is_unique_segment())
1202 {
1203 os->set_is_unique_segment();
1204 os->set_extra_segment_flags(it->second->flags);
1205 os->set_segment_alignment(it->second->align);
1206 }
1207 }
1208 if (os == NULL)
1209 return NULL;
1210 }
1211
1212 // By default the GNU linker sorts input sections whose names match
1213 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1214 // sections are sorted by name. This is used to implement
1215 // constructor priority ordering. We are compatible. When we put
1216 // .ctor sections in .init_array and .dtor sections in .fini_array,
1217 // we must also sort plain .ctor and .dtor sections.
1218 if (!this->script_options_->saw_sections_clause()
1219 && !parameters->options().relocatable()
1220 && (is_prefix_of(".ctors.", name)
1221 || is_prefix_of(".dtors.", name)
1222 || is_prefix_of(".init_array.", name)
1223 || is_prefix_of(".fini_array.", name)
1224 || (parameters->options().ctors_in_init_array()
1225 && (strcmp(name, ".ctors") == 0
1226 || strcmp(name, ".dtors") == 0))))
1227 os->set_must_sort_attached_input_sections();
1228
1229 // By default the GNU linker sorts some special text sections ahead
1230 // of others. We are compatible.
1231 if (parameters->options().text_reorder()
1232 && !this->script_options_->saw_sections_clause()
1233 && !this->is_section_ordering_specified()
1234 && !parameters->options().relocatable()
1235 && Layout::special_ordering_of_input_section(name) >= 0)
1236 os->set_must_sort_attached_input_sections();
1237
1238 // If this is a .ctors or .ctors.* section being mapped to a
1239 // .init_array section, or a .dtors or .dtors.* section being mapped
1240 // to a .fini_array section, we will need to reverse the words if
1241 // there is more than one. Record this section for later. See
1242 // ctors_sections_in_init_array above.
1243 if (!this->script_options_->saw_sections_clause()
1244 && !parameters->options().relocatable()
1245 && shdr.get_sh_size() > size / 8
1246 && (((strcmp(name, ".ctors") == 0
1247 || is_prefix_of(".ctors.", name))
1248 && strcmp(os->name(), ".init_array") == 0)
1249 || ((strcmp(name, ".dtors") == 0
1250 || is_prefix_of(".dtors.", name))
1251 && strcmp(os->name(), ".fini_array") == 0)))
1252 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1253
1254 // FIXME: Handle SHF_LINK_ORDER somewhere.
1255
1256 elfcpp::Elf_Xword orig_flags = os->flags();
1257
1258 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1259 this->script_options_->saw_sections_clause());
1260
1261 // If the flags changed, we may have to change the order.
1262 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1263 {
1264 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1265 elfcpp::Elf_Xword new_flags =
1266 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1267 if (orig_flags != new_flags)
1268 os->set_order(this->default_section_order(os, false));
1269 }
1270
1271 this->have_added_input_section_ = true;
1272
1273 return os;
1274 }
1275
1276 // Maps section SECN to SEGMENT s.
1277 void
1278 Layout::insert_section_segment_map(Const_section_id secn,
1279 Unique_segment_info *s)
1280 {
1281 gold_assert(this->unique_segment_for_sections_specified_);
1282 this->section_segment_map_[secn] = s;
1283 }
1284
1285 // Handle a relocation section when doing a relocatable link.
1286
1287 template<int size, bool big_endian>
1288 Output_section*
1289 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1290 unsigned int,
1291 const elfcpp::Shdr<size, big_endian>& shdr,
1292 Output_section* data_section,
1293 Relocatable_relocs* rr)
1294 {
1295 gold_assert(parameters->options().relocatable()
1296 || parameters->options().emit_relocs());
1297
1298 int sh_type = shdr.get_sh_type();
1299
1300 std::string name;
1301 if (sh_type == elfcpp::SHT_REL)
1302 name = ".rel";
1303 else if (sh_type == elfcpp::SHT_RELA)
1304 name = ".rela";
1305 else
1306 gold_unreachable();
1307 name += data_section->name();
1308
1309 // In a relocatable link relocs for a grouped section must not be
1310 // combined with other reloc sections.
1311 Output_section* os;
1312 if (!parameters->options().relocatable()
1313 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1314 os = this->choose_output_section(object, name.c_str(), sh_type,
1315 shdr.get_sh_flags(), false,
1316 ORDER_INVALID, false, true);
1317 else
1318 {
1319 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1320 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1321 ORDER_INVALID, false);
1322 }
1323
1324 os->set_should_link_to_symtab();
1325 os->set_info_section(data_section);
1326
1327 Output_section_data* posd;
1328 if (sh_type == elfcpp::SHT_REL)
1329 {
1330 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1331 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1332 size,
1333 big_endian>(rr);
1334 }
1335 else if (sh_type == elfcpp::SHT_RELA)
1336 {
1337 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1338 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1339 size,
1340 big_endian>(rr);
1341 }
1342 else
1343 gold_unreachable();
1344
1345 os->add_output_section_data(posd);
1346 rr->set_output_data(posd);
1347
1348 return os;
1349 }
1350
1351 // Handle a group section when doing a relocatable link.
1352
1353 template<int size, bool big_endian>
1354 void
1355 Layout::layout_group(Symbol_table* symtab,
1356 Sized_relobj_file<size, big_endian>* object,
1357 unsigned int,
1358 const char* group_section_name,
1359 const char* signature,
1360 const elfcpp::Shdr<size, big_endian>& shdr,
1361 elfcpp::Elf_Word flags,
1362 std::vector<unsigned int>* shndxes)
1363 {
1364 gold_assert(parameters->options().relocatable());
1365 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1366 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1367 Output_section* os = this->make_output_section(group_section_name,
1368 elfcpp::SHT_GROUP,
1369 shdr.get_sh_flags(),
1370 ORDER_INVALID, false);
1371
1372 // We need to find a symbol with the signature in the symbol table.
1373 // If we don't find one now, we need to look again later.
1374 Symbol* sym = symtab->lookup(signature, NULL);
1375 if (sym != NULL)
1376 os->set_info_symndx(sym);
1377 else
1378 {
1379 // Reserve some space to minimize reallocations.
1380 if (this->group_signatures_.empty())
1381 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1382
1383 // We will wind up using a symbol whose name is the signature.
1384 // So just put the signature in the symbol name pool to save it.
1385 signature = symtab->canonicalize_name(signature);
1386 this->group_signatures_.push_back(Group_signature(os, signature));
1387 }
1388
1389 os->set_should_link_to_symtab();
1390 os->set_entsize(4);
1391
1392 section_size_type entry_count =
1393 convert_to_section_size_type(shdr.get_sh_size() / 4);
1394 Output_section_data* posd =
1395 new Output_data_group<size, big_endian>(object, entry_count, flags,
1396 shndxes);
1397 os->add_output_section_data(posd);
1398 }
1399
1400 // Special GNU handling of sections name .eh_frame. They will
1401 // normally hold exception frame data as defined by the C++ ABI
1402 // (http://codesourcery.com/cxx-abi/).
1403
1404 template<int size, bool big_endian>
1405 Output_section*
1406 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1407 const unsigned char* symbols,
1408 off_t symbols_size,
1409 const unsigned char* symbol_names,
1410 off_t symbol_names_size,
1411 unsigned int shndx,
1412 const elfcpp::Shdr<size, big_endian>& shdr,
1413 unsigned int reloc_shndx, unsigned int reloc_type,
1414 off_t* off)
1415 {
1416 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1417 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1418 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1419
1420 Output_section* os = this->make_eh_frame_section(object);
1421 if (os == NULL)
1422 return NULL;
1423
1424 gold_assert(this->eh_frame_section_ == os);
1425
1426 elfcpp::Elf_Xword orig_flags = os->flags();
1427
1428 Eh_frame::Eh_frame_section_disposition disp =
1429 Eh_frame::EH_UNRECOGNIZED_SECTION;
1430 if (!parameters->incremental())
1431 {
1432 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1433 symbols,
1434 symbols_size,
1435 symbol_names,
1436 symbol_names_size,
1437 shndx,
1438 reloc_shndx,
1439 reloc_type);
1440 }
1441
1442 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1443 {
1444 os->update_flags_for_input_section(shdr.get_sh_flags());
1445
1446 // A writable .eh_frame section is a RELRO section.
1447 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1448 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1449 {
1450 os->set_is_relro();
1451 os->set_order(ORDER_RELRO);
1452 }
1453
1454 *off = -1;
1455 return os;
1456 }
1457
1458 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1459 {
1460 // We found the end marker section, so now we can add the set of
1461 // optimized sections to the output section. We need to postpone
1462 // adding this until we've found a section we can optimize so that
1463 // the .eh_frame section in crtbeginT.o winds up at the start of
1464 // the output section.
1465 os->add_output_section_data(this->eh_frame_data_);
1466 this->added_eh_frame_data_ = true;
1467 }
1468
1469 // We couldn't handle this .eh_frame section for some reason.
1470 // Add it as a normal section.
1471 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1472 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1473 reloc_shndx, saw_sections_clause);
1474 this->have_added_input_section_ = true;
1475
1476 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 os->set_order(this->default_section_order(os, false));
1479
1480 return os;
1481 }
1482
1483 void
1484 Layout::finalize_eh_frame_section()
1485 {
1486 // If we never found an end marker section, we need to add the
1487 // optimized eh sections to the output section now.
1488 if (!parameters->incremental()
1489 && this->eh_frame_section_ != NULL
1490 && !this->added_eh_frame_data_)
1491 {
1492 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1493 this->added_eh_frame_data_ = true;
1494 }
1495 }
1496
1497 // Create and return the magic .eh_frame section. Create
1498 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1499 // input .eh_frame section; it may be NULL.
1500
1501 Output_section*
1502 Layout::make_eh_frame_section(const Relobj* object)
1503 {
1504 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1505 // SHT_PROGBITS.
1506 Output_section* os = this->choose_output_section(object, ".eh_frame",
1507 elfcpp::SHT_PROGBITS,
1508 elfcpp::SHF_ALLOC, false,
1509 ORDER_EHFRAME, false, false);
1510 if (os == NULL)
1511 return NULL;
1512
1513 if (this->eh_frame_section_ == NULL)
1514 {
1515 this->eh_frame_section_ = os;
1516 this->eh_frame_data_ = new Eh_frame();
1517
1518 // For incremental linking, we do not optimize .eh_frame sections
1519 // or create a .eh_frame_hdr section.
1520 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1521 {
1522 Output_section* hdr_os =
1523 this->choose_output_section(NULL, ".eh_frame_hdr",
1524 elfcpp::SHT_PROGBITS,
1525 elfcpp::SHF_ALLOC, false,
1526 ORDER_EHFRAME, false, false);
1527
1528 if (hdr_os != NULL)
1529 {
1530 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1531 this->eh_frame_data_);
1532 hdr_os->add_output_section_data(hdr_posd);
1533
1534 hdr_os->set_after_input_sections();
1535
1536 if (!this->script_options_->saw_phdrs_clause())
1537 {
1538 Output_segment* hdr_oseg;
1539 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1540 elfcpp::PF_R);
1541 hdr_oseg->add_output_section_to_nonload(hdr_os,
1542 elfcpp::PF_R);
1543 }
1544
1545 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1546 }
1547 }
1548 }
1549
1550 return os;
1551 }
1552
1553 // Add an exception frame for a PLT. This is called from target code.
1554
1555 void
1556 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1557 size_t cie_length, const unsigned char* fde_data,
1558 size_t fde_length)
1559 {
1560 if (parameters->incremental())
1561 {
1562 // FIXME: Maybe this could work some day....
1563 return;
1564 }
1565 Output_section* os = this->make_eh_frame_section(NULL);
1566 if (os == NULL)
1567 return;
1568 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1569 fde_data, fde_length);
1570 if (!this->added_eh_frame_data_)
1571 {
1572 os->add_output_section_data(this->eh_frame_data_);
1573 this->added_eh_frame_data_ = true;
1574 }
1575 }
1576
1577 // Scan a .debug_info or .debug_types section, and add summary
1578 // information to the .gdb_index section.
1579
1580 template<int size, bool big_endian>
1581 void
1582 Layout::add_to_gdb_index(bool is_type_unit,
1583 Sized_relobj<size, big_endian>* object,
1584 const unsigned char* symbols,
1585 off_t symbols_size,
1586 unsigned int shndx,
1587 unsigned int reloc_shndx,
1588 unsigned int reloc_type)
1589 {
1590 if (this->gdb_index_data_ == NULL)
1591 {
1592 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1593 elfcpp::SHT_PROGBITS, 0,
1594 false, ORDER_INVALID,
1595 false, false);
1596 if (os == NULL)
1597 return;
1598
1599 this->gdb_index_data_ = new Gdb_index(os);
1600 os->add_output_section_data(this->gdb_index_data_);
1601 os->set_after_input_sections();
1602 }
1603
1604 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1605 symbols_size, shndx, reloc_shndx,
1606 reloc_type);
1607 }
1608
1609 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1610 // the output section.
1611
1612 Output_section*
1613 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1614 elfcpp::Elf_Xword flags,
1615 Output_section_data* posd,
1616 Output_section_order order, bool is_relro)
1617 {
1618 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1619 false, order, is_relro,
1620 false);
1621 if (os != NULL)
1622 os->add_output_section_data(posd);
1623 return os;
1624 }
1625
1626 // Map section flags to segment flags.
1627
1628 elfcpp::Elf_Word
1629 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1630 {
1631 elfcpp::Elf_Word ret = elfcpp::PF_R;
1632 if ((flags & elfcpp::SHF_WRITE) != 0)
1633 ret |= elfcpp::PF_W;
1634 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1635 ret |= elfcpp::PF_X;
1636 return ret;
1637 }
1638
1639 // Make a new Output_section, and attach it to segments as
1640 // appropriate. ORDER is the order in which this section should
1641 // appear in the output segment. IS_RELRO is true if this is a relro
1642 // (read-only after relocations) section.
1643
1644 Output_section*
1645 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1646 elfcpp::Elf_Xword flags,
1647 Output_section_order order, bool is_relro)
1648 {
1649 Output_section* os;
1650 if ((flags & elfcpp::SHF_ALLOC) == 0
1651 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1652 && is_compressible_debug_section(name))
1653 os = new Output_compressed_section(&parameters->options(), name, type,
1654 flags);
1655 else if ((flags & elfcpp::SHF_ALLOC) == 0
1656 && parameters->options().strip_debug_non_line()
1657 && strcmp(".debug_abbrev", name) == 0)
1658 {
1659 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1660 name, type, flags);
1661 if (this->debug_info_)
1662 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1663 }
1664 else if ((flags & elfcpp::SHF_ALLOC) == 0
1665 && parameters->options().strip_debug_non_line()
1666 && strcmp(".debug_info", name) == 0)
1667 {
1668 os = this->debug_info_ = new Output_reduced_debug_info_section(
1669 name, type, flags);
1670 if (this->debug_abbrev_)
1671 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1672 }
1673 else
1674 {
1675 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1676 // not have correct section types. Force them here.
1677 if (type == elfcpp::SHT_PROGBITS)
1678 {
1679 if (is_prefix_of(".init_array", name))
1680 type = elfcpp::SHT_INIT_ARRAY;
1681 else if (is_prefix_of(".preinit_array", name))
1682 type = elfcpp::SHT_PREINIT_ARRAY;
1683 else if (is_prefix_of(".fini_array", name))
1684 type = elfcpp::SHT_FINI_ARRAY;
1685 }
1686
1687 // FIXME: const_cast is ugly.
1688 Target* target = const_cast<Target*>(&parameters->target());
1689 os = target->make_output_section(name, type, flags);
1690 }
1691
1692 // With -z relro, we have to recognize the special sections by name.
1693 // There is no other way.
1694 bool is_relro_local = false;
1695 if (!this->script_options_->saw_sections_clause()
1696 && parameters->options().relro()
1697 && (flags & elfcpp::SHF_ALLOC) != 0
1698 && (flags & elfcpp::SHF_WRITE) != 0)
1699 {
1700 if (type == elfcpp::SHT_PROGBITS)
1701 {
1702 if ((flags & elfcpp::SHF_TLS) != 0)
1703 is_relro = true;
1704 else if (strcmp(name, ".data.rel.ro") == 0)
1705 is_relro = true;
1706 else if (strcmp(name, ".data.rel.ro.local") == 0)
1707 {
1708 is_relro = true;
1709 is_relro_local = true;
1710 }
1711 else if (strcmp(name, ".ctors") == 0
1712 || strcmp(name, ".dtors") == 0
1713 || strcmp(name, ".jcr") == 0)
1714 is_relro = true;
1715 }
1716 else if (type == elfcpp::SHT_INIT_ARRAY
1717 || type == elfcpp::SHT_FINI_ARRAY
1718 || type == elfcpp::SHT_PREINIT_ARRAY)
1719 is_relro = true;
1720 }
1721
1722 if (is_relro)
1723 os->set_is_relro();
1724
1725 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1726 order = this->default_section_order(os, is_relro_local);
1727
1728 os->set_order(order);
1729
1730 parameters->target().new_output_section(os);
1731
1732 this->section_list_.push_back(os);
1733
1734 // The GNU linker by default sorts some sections by priority, so we
1735 // do the same. We need to know that this might happen before we
1736 // attach any input sections.
1737 if (!this->script_options_->saw_sections_clause()
1738 && !parameters->options().relocatable()
1739 && (strcmp(name, ".init_array") == 0
1740 || strcmp(name, ".fini_array") == 0
1741 || (!parameters->options().ctors_in_init_array()
1742 && (strcmp(name, ".ctors") == 0
1743 || strcmp(name, ".dtors") == 0))))
1744 os->set_may_sort_attached_input_sections();
1745
1746 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1747 // sections before other .text sections. We are compatible. We
1748 // need to know that this might happen before we attach any input
1749 // sections.
1750 if (parameters->options().text_reorder()
1751 && !this->script_options_->saw_sections_clause()
1752 && !this->is_section_ordering_specified()
1753 && !parameters->options().relocatable()
1754 && strcmp(name, ".text") == 0)
1755 os->set_may_sort_attached_input_sections();
1756
1757 // GNU linker sorts section by name with --sort-section=name.
1758 if (strcmp(parameters->options().sort_section(), "name") == 0)
1759 os->set_must_sort_attached_input_sections();
1760
1761 // Check for .stab*str sections, as .stab* sections need to link to
1762 // them.
1763 if (type == elfcpp::SHT_STRTAB
1764 && !this->have_stabstr_section_
1765 && strncmp(name, ".stab", 5) == 0
1766 && strcmp(name + strlen(name) - 3, "str") == 0)
1767 this->have_stabstr_section_ = true;
1768
1769 // During a full incremental link, we add patch space to most
1770 // PROGBITS and NOBITS sections. Flag those that may be
1771 // arbitrarily padded.
1772 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1773 && order != ORDER_INTERP
1774 && order != ORDER_INIT
1775 && order != ORDER_PLT
1776 && order != ORDER_FINI
1777 && order != ORDER_RELRO_LAST
1778 && order != ORDER_NON_RELRO_FIRST
1779 && strcmp(name, ".eh_frame") != 0
1780 && strcmp(name, ".ctors") != 0
1781 && strcmp(name, ".dtors") != 0
1782 && strcmp(name, ".jcr") != 0)
1783 {
1784 os->set_is_patch_space_allowed();
1785
1786 // Certain sections require "holes" to be filled with
1787 // specific fill patterns. These fill patterns may have
1788 // a minimum size, so we must prevent allocations from the
1789 // free list that leave a hole smaller than the minimum.
1790 if (strcmp(name, ".debug_info") == 0)
1791 os->set_free_space_fill(new Output_fill_debug_info(false));
1792 else if (strcmp(name, ".debug_types") == 0)
1793 os->set_free_space_fill(new Output_fill_debug_info(true));
1794 else if (strcmp(name, ".debug_line") == 0)
1795 os->set_free_space_fill(new Output_fill_debug_line());
1796 }
1797
1798 // If we have already attached the sections to segments, then we
1799 // need to attach this one now. This happens for sections created
1800 // directly by the linker.
1801 if (this->sections_are_attached_)
1802 this->attach_section_to_segment(&parameters->target(), os);
1803
1804 return os;
1805 }
1806
1807 // Return the default order in which a section should be placed in an
1808 // output segment. This function captures a lot of the ideas in
1809 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1810 // linker created section is normally set when the section is created;
1811 // this function is used for input sections.
1812
1813 Output_section_order
1814 Layout::default_section_order(Output_section* os, bool is_relro_local)
1815 {
1816 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1817 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1818 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1819 bool is_bss = false;
1820
1821 switch (os->type())
1822 {
1823 default:
1824 case elfcpp::SHT_PROGBITS:
1825 break;
1826 case elfcpp::SHT_NOBITS:
1827 is_bss = true;
1828 break;
1829 case elfcpp::SHT_RELA:
1830 case elfcpp::SHT_REL:
1831 if (!is_write)
1832 return ORDER_DYNAMIC_RELOCS;
1833 break;
1834 case elfcpp::SHT_HASH:
1835 case elfcpp::SHT_DYNAMIC:
1836 case elfcpp::SHT_SHLIB:
1837 case elfcpp::SHT_DYNSYM:
1838 case elfcpp::SHT_GNU_HASH:
1839 case elfcpp::SHT_GNU_verdef:
1840 case elfcpp::SHT_GNU_verneed:
1841 case elfcpp::SHT_GNU_versym:
1842 if (!is_write)
1843 return ORDER_DYNAMIC_LINKER;
1844 break;
1845 case elfcpp::SHT_NOTE:
1846 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1847 }
1848
1849 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1850 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1851
1852 if (!is_bss && !is_write)
1853 {
1854 if (is_execinstr)
1855 {
1856 if (strcmp(os->name(), ".init") == 0)
1857 return ORDER_INIT;
1858 else if (strcmp(os->name(), ".fini") == 0)
1859 return ORDER_FINI;
1860 }
1861 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1862 }
1863
1864 if (os->is_relro())
1865 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1866
1867 if (os->is_small_section())
1868 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1869 if (os->is_large_section())
1870 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1871
1872 return is_bss ? ORDER_BSS : ORDER_DATA;
1873 }
1874
1875 // Attach output sections to segments. This is called after we have
1876 // seen all the input sections.
1877
1878 void
1879 Layout::attach_sections_to_segments(const Target* target)
1880 {
1881 for (Section_list::iterator p = this->section_list_.begin();
1882 p != this->section_list_.end();
1883 ++p)
1884 this->attach_section_to_segment(target, *p);
1885
1886 this->sections_are_attached_ = true;
1887 }
1888
1889 // Attach an output section to a segment.
1890
1891 void
1892 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1893 {
1894 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1895 this->unattached_section_list_.push_back(os);
1896 else
1897 this->attach_allocated_section_to_segment(target, os);
1898 }
1899
1900 // Attach an allocated output section to a segment.
1901
1902 void
1903 Layout::attach_allocated_section_to_segment(const Target* target,
1904 Output_section* os)
1905 {
1906 elfcpp::Elf_Xword flags = os->flags();
1907 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1908
1909 if (parameters->options().relocatable())
1910 return;
1911
1912 // If we have a SECTIONS clause, we can't handle the attachment to
1913 // segments until after we've seen all the sections.
1914 if (this->script_options_->saw_sections_clause())
1915 return;
1916
1917 gold_assert(!this->script_options_->saw_phdrs_clause());
1918
1919 // This output section goes into a PT_LOAD segment.
1920
1921 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1922
1923 // If this output section's segment has extra flags that need to be set,
1924 // coming from a linker plugin, do that.
1925 seg_flags |= os->extra_segment_flags();
1926
1927 // Check for --section-start.
1928 uint64_t addr;
1929 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1930
1931 // In general the only thing we really care about for PT_LOAD
1932 // segments is whether or not they are writable or executable,
1933 // so that is how we search for them.
1934 // Large data sections also go into their own PT_LOAD segment.
1935 // People who need segments sorted on some other basis will
1936 // have to use a linker script.
1937
1938 Segment_list::const_iterator p;
1939 if (!os->is_unique_segment())
1940 {
1941 for (p = this->segment_list_.begin();
1942 p != this->segment_list_.end();
1943 ++p)
1944 {
1945 if ((*p)->type() != elfcpp::PT_LOAD)
1946 continue;
1947 if ((*p)->is_unique_segment())
1948 continue;
1949 if (!parameters->options().omagic()
1950 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1951 continue;
1952 if ((target->isolate_execinstr() || parameters->options().rosegment())
1953 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1954 continue;
1955 // If -Tbss was specified, we need to separate the data and BSS
1956 // segments.
1957 if (parameters->options().user_set_Tbss())
1958 {
1959 if ((os->type() == elfcpp::SHT_NOBITS)
1960 == (*p)->has_any_data_sections())
1961 continue;
1962 }
1963 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1964 continue;
1965
1966 if (is_address_set)
1967 {
1968 if ((*p)->are_addresses_set())
1969 continue;
1970
1971 (*p)->add_initial_output_data(os);
1972 (*p)->update_flags_for_output_section(seg_flags);
1973 (*p)->set_addresses(addr, addr);
1974 break;
1975 }
1976
1977 (*p)->add_output_section_to_load(this, os, seg_flags);
1978 break;
1979 }
1980 }
1981
1982 if (p == this->segment_list_.end()
1983 || os->is_unique_segment())
1984 {
1985 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1986 seg_flags);
1987 if (os->is_large_data_section())
1988 oseg->set_is_large_data_segment();
1989 oseg->add_output_section_to_load(this, os, seg_flags);
1990 if (is_address_set)
1991 oseg->set_addresses(addr, addr);
1992 // Check if segment should be marked unique. For segments marked
1993 // unique by linker plugins, set the new alignment if specified.
1994 if (os->is_unique_segment())
1995 {
1996 oseg->set_is_unique_segment();
1997 if (os->segment_alignment() != 0)
1998 oseg->set_minimum_p_align(os->segment_alignment());
1999 }
2000 }
2001
2002 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2003 // segment.
2004 if (os->type() == elfcpp::SHT_NOTE)
2005 {
2006 // See if we already have an equivalent PT_NOTE segment.
2007 for (p = this->segment_list_.begin();
2008 p != segment_list_.end();
2009 ++p)
2010 {
2011 if ((*p)->type() == elfcpp::PT_NOTE
2012 && (((*p)->flags() & elfcpp::PF_W)
2013 == (seg_flags & elfcpp::PF_W)))
2014 {
2015 (*p)->add_output_section_to_nonload(os, seg_flags);
2016 break;
2017 }
2018 }
2019
2020 if (p == this->segment_list_.end())
2021 {
2022 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2023 seg_flags);
2024 oseg->add_output_section_to_nonload(os, seg_flags);
2025 }
2026 }
2027
2028 // If we see a loadable SHF_TLS section, we create a PT_TLS
2029 // segment. There can only be one such segment.
2030 if ((flags & elfcpp::SHF_TLS) != 0)
2031 {
2032 if (this->tls_segment_ == NULL)
2033 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2034 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2035 }
2036
2037 // If -z relro is in effect, and we see a relro section, we create a
2038 // PT_GNU_RELRO segment. There can only be one such segment.
2039 if (os->is_relro() && parameters->options().relro())
2040 {
2041 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2042 if (this->relro_segment_ == NULL)
2043 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2044 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2045 }
2046
2047 // If we see a section named .interp, put it into a PT_INTERP
2048 // segment. This seems broken to me, but this is what GNU ld does,
2049 // and glibc expects it.
2050 if (strcmp(os->name(), ".interp") == 0
2051 && !this->script_options_->saw_phdrs_clause())
2052 {
2053 if (this->interp_segment_ == NULL)
2054 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2055 else
2056 gold_warning(_("multiple '.interp' sections in input files "
2057 "may cause confusing PT_INTERP segment"));
2058 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2059 }
2060 }
2061
2062 // Make an output section for a script.
2063
2064 Output_section*
2065 Layout::make_output_section_for_script(
2066 const char* name,
2067 Script_sections::Section_type section_type)
2068 {
2069 name = this->namepool_.add(name, false, NULL);
2070 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2071 if (section_type == Script_sections::ST_NOLOAD)
2072 sh_flags = 0;
2073 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2074 sh_flags, ORDER_INVALID,
2075 false);
2076 os->set_found_in_sections_clause();
2077 if (section_type == Script_sections::ST_NOLOAD)
2078 os->set_is_noload();
2079 return os;
2080 }
2081
2082 // Return the number of segments we expect to see.
2083
2084 size_t
2085 Layout::expected_segment_count() const
2086 {
2087 size_t ret = this->segment_list_.size();
2088
2089 // If we didn't see a SECTIONS clause in a linker script, we should
2090 // already have the complete list of segments. Otherwise we ask the
2091 // SECTIONS clause how many segments it expects, and add in the ones
2092 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2093
2094 if (!this->script_options_->saw_sections_clause())
2095 return ret;
2096 else
2097 {
2098 const Script_sections* ss = this->script_options_->script_sections();
2099 return ret + ss->expected_segment_count(this);
2100 }
2101 }
2102
2103 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2104 // is whether we saw a .note.GNU-stack section in the object file.
2105 // GNU_STACK_FLAGS is the section flags. The flags give the
2106 // protection required for stack memory. We record this in an
2107 // executable as a PT_GNU_STACK segment. If an object file does not
2108 // have a .note.GNU-stack segment, we must assume that it is an old
2109 // object. On some targets that will force an executable stack.
2110
2111 void
2112 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2113 const Object* obj)
2114 {
2115 if (!seen_gnu_stack)
2116 {
2117 this->input_without_gnu_stack_note_ = true;
2118 if (parameters->options().warn_execstack()
2119 && parameters->target().is_default_stack_executable())
2120 gold_warning(_("%s: missing .note.GNU-stack section"
2121 " implies executable stack"),
2122 obj->name().c_str());
2123 }
2124 else
2125 {
2126 this->input_with_gnu_stack_note_ = true;
2127 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2128 {
2129 this->input_requires_executable_stack_ = true;
2130 if (parameters->options().warn_execstack())
2131 gold_warning(_("%s: requires executable stack"),
2132 obj->name().c_str());
2133 }
2134 }
2135 }
2136
2137 // Create automatic note sections.
2138
2139 void
2140 Layout::create_notes()
2141 {
2142 this->create_gold_note();
2143 this->create_stack_segment();
2144 this->create_build_id();
2145 }
2146
2147 // Create the dynamic sections which are needed before we read the
2148 // relocs.
2149
2150 void
2151 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2152 {
2153 if (parameters->doing_static_link())
2154 return;
2155
2156 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2157 elfcpp::SHT_DYNAMIC,
2158 (elfcpp::SHF_ALLOC
2159 | elfcpp::SHF_WRITE),
2160 false, ORDER_RELRO,
2161 true, false);
2162
2163 // A linker script may discard .dynamic, so check for NULL.
2164 if (this->dynamic_section_ != NULL)
2165 {
2166 this->dynamic_symbol_ =
2167 symtab->define_in_output_data("_DYNAMIC", NULL,
2168 Symbol_table::PREDEFINED,
2169 this->dynamic_section_, 0, 0,
2170 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2171 elfcpp::STV_HIDDEN, 0, false, false);
2172
2173 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2174
2175 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2176 }
2177 }
2178
2179 // For each output section whose name can be represented as C symbol,
2180 // define __start and __stop symbols for the section. This is a GNU
2181 // extension.
2182
2183 void
2184 Layout::define_section_symbols(Symbol_table* symtab)
2185 {
2186 for (Section_list::const_iterator p = this->section_list_.begin();
2187 p != this->section_list_.end();
2188 ++p)
2189 {
2190 const char* const name = (*p)->name();
2191 if (is_cident(name))
2192 {
2193 const std::string name_string(name);
2194 const std::string start_name(cident_section_start_prefix
2195 + name_string);
2196 const std::string stop_name(cident_section_stop_prefix
2197 + name_string);
2198
2199 symtab->define_in_output_data(start_name.c_str(),
2200 NULL, // version
2201 Symbol_table::PREDEFINED,
2202 *p,
2203 0, // value
2204 0, // symsize
2205 elfcpp::STT_NOTYPE,
2206 elfcpp::STB_GLOBAL,
2207 elfcpp::STV_DEFAULT,
2208 0, // nonvis
2209 false, // offset_is_from_end
2210 true); // only_if_ref
2211
2212 symtab->define_in_output_data(stop_name.c_str(),
2213 NULL, // version
2214 Symbol_table::PREDEFINED,
2215 *p,
2216 0, // value
2217 0, // symsize
2218 elfcpp::STT_NOTYPE,
2219 elfcpp::STB_GLOBAL,
2220 elfcpp::STV_DEFAULT,
2221 0, // nonvis
2222 true, // offset_is_from_end
2223 true); // only_if_ref
2224 }
2225 }
2226 }
2227
2228 // Define symbols for group signatures.
2229
2230 void
2231 Layout::define_group_signatures(Symbol_table* symtab)
2232 {
2233 for (Group_signatures::iterator p = this->group_signatures_.begin();
2234 p != this->group_signatures_.end();
2235 ++p)
2236 {
2237 Symbol* sym = symtab->lookup(p->signature, NULL);
2238 if (sym != NULL)
2239 p->section->set_info_symndx(sym);
2240 else
2241 {
2242 // Force the name of the group section to the group
2243 // signature, and use the group's section symbol as the
2244 // signature symbol.
2245 if (strcmp(p->section->name(), p->signature) != 0)
2246 {
2247 const char* name = this->namepool_.add(p->signature,
2248 true, NULL);
2249 p->section->set_name(name);
2250 }
2251 p->section->set_needs_symtab_index();
2252 p->section->set_info_section_symndx(p->section);
2253 }
2254 }
2255
2256 this->group_signatures_.clear();
2257 }
2258
2259 // Find the first read-only PT_LOAD segment, creating one if
2260 // necessary.
2261
2262 Output_segment*
2263 Layout::find_first_load_seg(const Target* target)
2264 {
2265 Output_segment* best = NULL;
2266 for (Segment_list::const_iterator p = this->segment_list_.begin();
2267 p != this->segment_list_.end();
2268 ++p)
2269 {
2270 if ((*p)->type() == elfcpp::PT_LOAD
2271 && ((*p)->flags() & elfcpp::PF_R) != 0
2272 && (parameters->options().omagic()
2273 || ((*p)->flags() & elfcpp::PF_W) == 0)
2274 && (!target->isolate_execinstr()
2275 || ((*p)->flags() & elfcpp::PF_X) == 0))
2276 {
2277 if (best == NULL || this->segment_precedes(*p, best))
2278 best = *p;
2279 }
2280 }
2281 if (best != NULL)
2282 return best;
2283
2284 gold_assert(!this->script_options_->saw_phdrs_clause());
2285
2286 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2287 elfcpp::PF_R);
2288 return load_seg;
2289 }
2290
2291 // Save states of all current output segments. Store saved states
2292 // in SEGMENT_STATES.
2293
2294 void
2295 Layout::save_segments(Segment_states* segment_states)
2296 {
2297 for (Segment_list::const_iterator p = this->segment_list_.begin();
2298 p != this->segment_list_.end();
2299 ++p)
2300 {
2301 Output_segment* segment = *p;
2302 // Shallow copy.
2303 Output_segment* copy = new Output_segment(*segment);
2304 (*segment_states)[segment] = copy;
2305 }
2306 }
2307
2308 // Restore states of output segments and delete any segment not found in
2309 // SEGMENT_STATES.
2310
2311 void
2312 Layout::restore_segments(const Segment_states* segment_states)
2313 {
2314 // Go through the segment list and remove any segment added in the
2315 // relaxation loop.
2316 this->tls_segment_ = NULL;
2317 this->relro_segment_ = NULL;
2318 Segment_list::iterator list_iter = this->segment_list_.begin();
2319 while (list_iter != this->segment_list_.end())
2320 {
2321 Output_segment* segment = *list_iter;
2322 Segment_states::const_iterator states_iter =
2323 segment_states->find(segment);
2324 if (states_iter != segment_states->end())
2325 {
2326 const Output_segment* copy = states_iter->second;
2327 // Shallow copy to restore states.
2328 *segment = *copy;
2329
2330 // Also fix up TLS and RELRO segment pointers as appropriate.
2331 if (segment->type() == elfcpp::PT_TLS)
2332 this->tls_segment_ = segment;
2333 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2334 this->relro_segment_ = segment;
2335
2336 ++list_iter;
2337 }
2338 else
2339 {
2340 list_iter = this->segment_list_.erase(list_iter);
2341 // This is a segment created during section layout. It should be
2342 // safe to remove it since we should have removed all pointers to it.
2343 delete segment;
2344 }
2345 }
2346 }
2347
2348 // Clean up after relaxation so that sections can be laid out again.
2349
2350 void
2351 Layout::clean_up_after_relaxation()
2352 {
2353 // Restore the segments to point state just prior to the relaxation loop.
2354 Script_sections* script_section = this->script_options_->script_sections();
2355 script_section->release_segments();
2356 this->restore_segments(this->segment_states_);
2357
2358 // Reset section addresses and file offsets
2359 for (Section_list::iterator p = this->section_list_.begin();
2360 p != this->section_list_.end();
2361 ++p)
2362 {
2363 (*p)->restore_states();
2364
2365 // If an input section changes size because of relaxation,
2366 // we need to adjust the section offsets of all input sections.
2367 // after such a section.
2368 if ((*p)->section_offsets_need_adjustment())
2369 (*p)->adjust_section_offsets();
2370
2371 (*p)->reset_address_and_file_offset();
2372 }
2373
2374 // Reset special output object address and file offsets.
2375 for (Data_list::iterator p = this->special_output_list_.begin();
2376 p != this->special_output_list_.end();
2377 ++p)
2378 (*p)->reset_address_and_file_offset();
2379
2380 // A linker script may have created some output section data objects.
2381 // They are useless now.
2382 for (Output_section_data_list::const_iterator p =
2383 this->script_output_section_data_list_.begin();
2384 p != this->script_output_section_data_list_.end();
2385 ++p)
2386 delete *p;
2387 this->script_output_section_data_list_.clear();
2388
2389 // Special-case fill output objects are recreated each time through
2390 // the relaxation loop.
2391 this->reset_relax_output();
2392 }
2393
2394 void
2395 Layout::reset_relax_output()
2396 {
2397 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2398 p != this->relax_output_list_.end();
2399 ++p)
2400 delete *p;
2401 this->relax_output_list_.clear();
2402 }
2403
2404 // Prepare for relaxation.
2405
2406 void
2407 Layout::prepare_for_relaxation()
2408 {
2409 // Create an relaxation debug check if in debugging mode.
2410 if (is_debugging_enabled(DEBUG_RELAXATION))
2411 this->relaxation_debug_check_ = new Relaxation_debug_check();
2412
2413 // Save segment states.
2414 this->segment_states_ = new Segment_states();
2415 this->save_segments(this->segment_states_);
2416
2417 for(Section_list::const_iterator p = this->section_list_.begin();
2418 p != this->section_list_.end();
2419 ++p)
2420 (*p)->save_states();
2421
2422 if (is_debugging_enabled(DEBUG_RELAXATION))
2423 this->relaxation_debug_check_->check_output_data_for_reset_values(
2424 this->section_list_, this->special_output_list_,
2425 this->relax_output_list_);
2426
2427 // Also enable recording of output section data from scripts.
2428 this->record_output_section_data_from_script_ = true;
2429 }
2430
2431 // If the user set the address of the text segment, that may not be
2432 // compatible with putting the segment headers and file headers into
2433 // that segment. For isolate_execinstr() targets, it's the rodata
2434 // segment rather than text where we might put the headers.
2435 static inline bool
2436 load_seg_unusable_for_headers(const Target* target)
2437 {
2438 const General_options& options = parameters->options();
2439 if (target->isolate_execinstr())
2440 return (options.user_set_Trodata_segment()
2441 && options.Trodata_segment() % target->abi_pagesize() != 0);
2442 else
2443 return (options.user_set_Ttext()
2444 && options.Ttext() % target->abi_pagesize() != 0);
2445 }
2446
2447 // Relaxation loop body: If target has no relaxation, this runs only once
2448 // Otherwise, the target relaxation hook is called at the end of
2449 // each iteration. If the hook returns true, it means re-layout of
2450 // section is required.
2451 //
2452 // The number of segments created by a linking script without a PHDRS
2453 // clause may be affected by section sizes and alignments. There is
2454 // a remote chance that relaxation causes different number of PT_LOAD
2455 // segments are created and sections are attached to different segments.
2456 // Therefore, we always throw away all segments created during section
2457 // layout. In order to be able to restart the section layout, we keep
2458 // a copy of the segment list right before the relaxation loop and use
2459 // that to restore the segments.
2460 //
2461 // PASS is the current relaxation pass number.
2462 // SYMTAB is a symbol table.
2463 // PLOAD_SEG is the address of a pointer for the load segment.
2464 // PHDR_SEG is a pointer to the PHDR segment.
2465 // SEGMENT_HEADERS points to the output segment header.
2466 // FILE_HEADER points to the output file header.
2467 // PSHNDX is the address to store the output section index.
2468
2469 off_t inline
2470 Layout::relaxation_loop_body(
2471 int pass,
2472 Target* target,
2473 Symbol_table* symtab,
2474 Output_segment** pload_seg,
2475 Output_segment* phdr_seg,
2476 Output_segment_headers* segment_headers,
2477 Output_file_header* file_header,
2478 unsigned int* pshndx)
2479 {
2480 // If this is not the first iteration, we need to clean up after
2481 // relaxation so that we can lay out the sections again.
2482 if (pass != 0)
2483 this->clean_up_after_relaxation();
2484
2485 // If there is a SECTIONS clause, put all the input sections into
2486 // the required order.
2487 Output_segment* load_seg;
2488 if (this->script_options_->saw_sections_clause())
2489 load_seg = this->set_section_addresses_from_script(symtab);
2490 else if (parameters->options().relocatable())
2491 load_seg = NULL;
2492 else
2493 load_seg = this->find_first_load_seg(target);
2494
2495 if (parameters->options().oformat_enum()
2496 != General_options::OBJECT_FORMAT_ELF)
2497 load_seg = NULL;
2498
2499 if (load_seg_unusable_for_headers(target))
2500 {
2501 load_seg = NULL;
2502 phdr_seg = NULL;
2503 }
2504
2505 gold_assert(phdr_seg == NULL
2506 || load_seg != NULL
2507 || this->script_options_->saw_sections_clause());
2508
2509 // If the address of the load segment we found has been set by
2510 // --section-start rather than by a script, then adjust the VMA and
2511 // LMA downward if possible to include the file and section headers.
2512 uint64_t header_gap = 0;
2513 if (load_seg != NULL
2514 && load_seg->are_addresses_set()
2515 && !this->script_options_->saw_sections_clause()
2516 && !parameters->options().relocatable())
2517 {
2518 file_header->finalize_data_size();
2519 segment_headers->finalize_data_size();
2520 size_t sizeof_headers = (file_header->data_size()
2521 + segment_headers->data_size());
2522 const uint64_t abi_pagesize = target->abi_pagesize();
2523 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2524 hdr_paddr &= ~(abi_pagesize - 1);
2525 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2526 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2527 load_seg = NULL;
2528 else
2529 {
2530 load_seg->set_addresses(load_seg->vaddr() - subtract,
2531 load_seg->paddr() - subtract);
2532 header_gap = subtract - sizeof_headers;
2533 }
2534 }
2535
2536 // Lay out the segment headers.
2537 if (!parameters->options().relocatable())
2538 {
2539 gold_assert(segment_headers != NULL);
2540 if (header_gap != 0 && load_seg != NULL)
2541 {
2542 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2543 load_seg->add_initial_output_data(z);
2544 }
2545 if (load_seg != NULL)
2546 load_seg->add_initial_output_data(segment_headers);
2547 if (phdr_seg != NULL)
2548 phdr_seg->add_initial_output_data(segment_headers);
2549 }
2550
2551 // Lay out the file header.
2552 if (load_seg != NULL)
2553 load_seg->add_initial_output_data(file_header);
2554
2555 if (this->script_options_->saw_phdrs_clause()
2556 && !parameters->options().relocatable())
2557 {
2558 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2559 // clause in a linker script.
2560 Script_sections* ss = this->script_options_->script_sections();
2561 ss->put_headers_in_phdrs(file_header, segment_headers);
2562 }
2563
2564 // We set the output section indexes in set_segment_offsets and
2565 // set_section_indexes.
2566 *pshndx = 1;
2567
2568 // Set the file offsets of all the segments, and all the sections
2569 // they contain.
2570 off_t off;
2571 if (!parameters->options().relocatable())
2572 off = this->set_segment_offsets(target, load_seg, pshndx);
2573 else
2574 off = this->set_relocatable_section_offsets(file_header, pshndx);
2575
2576 // Verify that the dummy relaxation does not change anything.
2577 if (is_debugging_enabled(DEBUG_RELAXATION))
2578 {
2579 if (pass == 0)
2580 this->relaxation_debug_check_->read_sections(this->section_list_);
2581 else
2582 this->relaxation_debug_check_->verify_sections(this->section_list_);
2583 }
2584
2585 *pload_seg = load_seg;
2586 return off;
2587 }
2588
2589 // Search the list of patterns and find the position of the given section
2590 // name in the output section. If the section name matches a glob
2591 // pattern and a non-glob name, then the non-glob position takes
2592 // precedence. Return 0 if no match is found.
2593
2594 unsigned int
2595 Layout::find_section_order_index(const std::string& section_name)
2596 {
2597 Unordered_map<std::string, unsigned int>::iterator map_it;
2598 map_it = this->input_section_position_.find(section_name);
2599 if (map_it != this->input_section_position_.end())
2600 return map_it->second;
2601
2602 // Absolute match failed. Linear search the glob patterns.
2603 std::vector<std::string>::iterator it;
2604 for (it = this->input_section_glob_.begin();
2605 it != this->input_section_glob_.end();
2606 ++it)
2607 {
2608 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2609 {
2610 map_it = this->input_section_position_.find(*it);
2611 gold_assert(map_it != this->input_section_position_.end());
2612 return map_it->second;
2613 }
2614 }
2615 return 0;
2616 }
2617
2618 // Read the sequence of input sections from the file specified with
2619 // option --section-ordering-file.
2620
2621 void
2622 Layout::read_layout_from_file()
2623 {
2624 const char* filename = parameters->options().section_ordering_file();
2625 std::ifstream in;
2626 std::string line;
2627
2628 in.open(filename);
2629 if (!in)
2630 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2631 filename, strerror(errno));
2632
2633 std::getline(in, line); // this chops off the trailing \n, if any
2634 unsigned int position = 1;
2635 this->set_section_ordering_specified();
2636
2637 while (in)
2638 {
2639 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2640 line.resize(line.length() - 1);
2641 // Ignore comments, beginning with '#'
2642 if (line[0] == '#')
2643 {
2644 std::getline(in, line);
2645 continue;
2646 }
2647 this->input_section_position_[line] = position;
2648 // Store all glob patterns in a vector.
2649 if (is_wildcard_string(line.c_str()))
2650 this->input_section_glob_.push_back(line);
2651 position++;
2652 std::getline(in, line);
2653 }
2654 }
2655
2656 // Finalize the layout. When this is called, we have created all the
2657 // output sections and all the output segments which are based on
2658 // input sections. We have several things to do, and we have to do
2659 // them in the right order, so that we get the right results correctly
2660 // and efficiently.
2661
2662 // 1) Finalize the list of output segments and create the segment
2663 // table header.
2664
2665 // 2) Finalize the dynamic symbol table and associated sections.
2666
2667 // 3) Determine the final file offset of all the output segments.
2668
2669 // 4) Determine the final file offset of all the SHF_ALLOC output
2670 // sections.
2671
2672 // 5) Create the symbol table sections and the section name table
2673 // section.
2674
2675 // 6) Finalize the symbol table: set symbol values to their final
2676 // value and make a final determination of which symbols are going
2677 // into the output symbol table.
2678
2679 // 7) Create the section table header.
2680
2681 // 8) Determine the final file offset of all the output sections which
2682 // are not SHF_ALLOC, including the section table header.
2683
2684 // 9) Finalize the ELF file header.
2685
2686 // This function returns the size of the output file.
2687
2688 off_t
2689 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2690 Target* target, const Task* task)
2691 {
2692 target->finalize_sections(this, input_objects, symtab);
2693
2694 this->count_local_symbols(task, input_objects);
2695
2696 this->link_stabs_sections();
2697
2698 Output_segment* phdr_seg = NULL;
2699 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2700 {
2701 // There was a dynamic object in the link. We need to create
2702 // some information for the dynamic linker.
2703
2704 // Create the PT_PHDR segment which will hold the program
2705 // headers.
2706 if (!this->script_options_->saw_phdrs_clause())
2707 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2708
2709 // Create the dynamic symbol table, including the hash table.
2710 Output_section* dynstr;
2711 std::vector<Symbol*> dynamic_symbols;
2712 unsigned int local_dynamic_count;
2713 Versions versions(*this->script_options()->version_script_info(),
2714 &this->dynpool_);
2715 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2716 &local_dynamic_count, &dynamic_symbols,
2717 &versions);
2718
2719 // Create the .interp section to hold the name of the
2720 // interpreter, and put it in a PT_INTERP segment. Don't do it
2721 // if we saw a .interp section in an input file.
2722 if ((!parameters->options().shared()
2723 || parameters->options().dynamic_linker() != NULL)
2724 && this->interp_segment_ == NULL)
2725 this->create_interp(target);
2726
2727 // Finish the .dynamic section to hold the dynamic data, and put
2728 // it in a PT_DYNAMIC segment.
2729 this->finish_dynamic_section(input_objects, symtab);
2730
2731 // We should have added everything we need to the dynamic string
2732 // table.
2733 this->dynpool_.set_string_offsets();
2734
2735 // Create the version sections. We can't do this until the
2736 // dynamic string table is complete.
2737 this->create_version_sections(&versions, symtab, local_dynamic_count,
2738 dynamic_symbols, dynstr);
2739
2740 // Set the size of the _DYNAMIC symbol. We can't do this until
2741 // after we call create_version_sections.
2742 this->set_dynamic_symbol_size(symtab);
2743 }
2744
2745 // Create segment headers.
2746 Output_segment_headers* segment_headers =
2747 (parameters->options().relocatable()
2748 ? NULL
2749 : new Output_segment_headers(this->segment_list_));
2750
2751 // Lay out the file header.
2752 Output_file_header* file_header = new Output_file_header(target, symtab,
2753 segment_headers);
2754
2755 this->special_output_list_.push_back(file_header);
2756 if (segment_headers != NULL)
2757 this->special_output_list_.push_back(segment_headers);
2758
2759 // Find approriate places for orphan output sections if we are using
2760 // a linker script.
2761 if (this->script_options_->saw_sections_clause())
2762 this->place_orphan_sections_in_script();
2763
2764 Output_segment* load_seg;
2765 off_t off;
2766 unsigned int shndx;
2767 int pass = 0;
2768
2769 // Take a snapshot of the section layout as needed.
2770 if (target->may_relax())
2771 this->prepare_for_relaxation();
2772
2773 // Run the relaxation loop to lay out sections.
2774 do
2775 {
2776 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2777 phdr_seg, segment_headers, file_header,
2778 &shndx);
2779 pass++;
2780 }
2781 while (target->may_relax()
2782 && target->relax(pass, input_objects, symtab, this, task));
2783
2784 // If there is a load segment that contains the file and program headers,
2785 // provide a symbol __ehdr_start pointing there.
2786 // A program can use this to examine itself robustly.
2787 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2788 if (ehdr_start != NULL && ehdr_start->is_predefined())
2789 {
2790 if (load_seg != NULL)
2791 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2792 else
2793 ehdr_start->set_undefined();
2794 }
2795
2796 // Set the file offsets of all the non-data sections we've seen so
2797 // far which don't have to wait for the input sections. We need
2798 // this in order to finalize local symbols in non-allocated
2799 // sections.
2800 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2801
2802 // Set the section indexes of all unallocated sections seen so far,
2803 // in case any of them are somehow referenced by a symbol.
2804 shndx = this->set_section_indexes(shndx);
2805
2806 // Create the symbol table sections.
2807 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2808 if (!parameters->doing_static_link())
2809 this->assign_local_dynsym_offsets(input_objects);
2810
2811 // Process any symbol assignments from a linker script. This must
2812 // be called after the symbol table has been finalized.
2813 this->script_options_->finalize_symbols(symtab, this);
2814
2815 // Create the incremental inputs sections.
2816 if (this->incremental_inputs_)
2817 {
2818 this->incremental_inputs_->finalize();
2819 this->create_incremental_info_sections(symtab);
2820 }
2821
2822 // Create the .shstrtab section.
2823 Output_section* shstrtab_section = this->create_shstrtab();
2824
2825 // Set the file offsets of the rest of the non-data sections which
2826 // don't have to wait for the input sections.
2827 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2828
2829 // Now that all sections have been created, set the section indexes
2830 // for any sections which haven't been done yet.
2831 shndx = this->set_section_indexes(shndx);
2832
2833 // Create the section table header.
2834 this->create_shdrs(shstrtab_section, &off);
2835
2836 // If there are no sections which require postprocessing, we can
2837 // handle the section names now, and avoid a resize later.
2838 if (!this->any_postprocessing_sections_)
2839 {
2840 off = this->set_section_offsets(off,
2841 POSTPROCESSING_SECTIONS_PASS);
2842 off =
2843 this->set_section_offsets(off,
2844 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2845 }
2846
2847 file_header->set_section_info(this->section_headers_, shstrtab_section);
2848
2849 // Now we know exactly where everything goes in the output file
2850 // (except for non-allocated sections which require postprocessing).
2851 Output_data::layout_complete();
2852
2853 this->output_file_size_ = off;
2854
2855 return off;
2856 }
2857
2858 // Create a note header following the format defined in the ELF ABI.
2859 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2860 // of the section to create, DESCSZ is the size of the descriptor.
2861 // ALLOCATE is true if the section should be allocated in memory.
2862 // This returns the new note section. It sets *TRAILING_PADDING to
2863 // the number of trailing zero bytes required.
2864
2865 Output_section*
2866 Layout::create_note(const char* name, int note_type,
2867 const char* section_name, size_t descsz,
2868 bool allocate, size_t* trailing_padding)
2869 {
2870 // Authorities all agree that the values in a .note field should
2871 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2872 // they differ on what the alignment is for 64-bit binaries.
2873 // The GABI says unambiguously they take 8-byte alignment:
2874 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2875 // Other documentation says alignment should always be 4 bytes:
2876 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2877 // GNU ld and GNU readelf both support the latter (at least as of
2878 // version 2.16.91), and glibc always generates the latter for
2879 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2880 // here.
2881 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2882 const int size = parameters->target().get_size();
2883 #else
2884 const int size = 32;
2885 #endif
2886
2887 // The contents of the .note section.
2888 size_t namesz = strlen(name) + 1;
2889 size_t aligned_namesz = align_address(namesz, size / 8);
2890 size_t aligned_descsz = align_address(descsz, size / 8);
2891
2892 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2893
2894 unsigned char* buffer = new unsigned char[notehdrsz];
2895 memset(buffer, 0, notehdrsz);
2896
2897 bool is_big_endian = parameters->target().is_big_endian();
2898
2899 if (size == 32)
2900 {
2901 if (!is_big_endian)
2902 {
2903 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2904 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2905 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2906 }
2907 else
2908 {
2909 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2910 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2911 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2912 }
2913 }
2914 else if (size == 64)
2915 {
2916 if (!is_big_endian)
2917 {
2918 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2919 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2920 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2921 }
2922 else
2923 {
2924 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2925 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2926 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2927 }
2928 }
2929 else
2930 gold_unreachable();
2931
2932 memcpy(buffer + 3 * (size / 8), name, namesz);
2933
2934 elfcpp::Elf_Xword flags = 0;
2935 Output_section_order order = ORDER_INVALID;
2936 if (allocate)
2937 {
2938 flags = elfcpp::SHF_ALLOC;
2939 order = ORDER_RO_NOTE;
2940 }
2941 Output_section* os = this->choose_output_section(NULL, section_name,
2942 elfcpp::SHT_NOTE,
2943 flags, false, order, false,
2944 false);
2945 if (os == NULL)
2946 return NULL;
2947
2948 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2949 size / 8,
2950 "** note header");
2951 os->add_output_section_data(posd);
2952
2953 *trailing_padding = aligned_descsz - descsz;
2954
2955 return os;
2956 }
2957
2958 // For an executable or shared library, create a note to record the
2959 // version of gold used to create the binary.
2960
2961 void
2962 Layout::create_gold_note()
2963 {
2964 if (parameters->options().relocatable()
2965 || parameters->incremental_update())
2966 return;
2967
2968 std::string desc = std::string("gold ") + gold::get_version_string();
2969
2970 size_t trailing_padding;
2971 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2972 ".note.gnu.gold-version", desc.size(),
2973 false, &trailing_padding);
2974 if (os == NULL)
2975 return;
2976
2977 Output_section_data* posd = new Output_data_const(desc, 4);
2978 os->add_output_section_data(posd);
2979
2980 if (trailing_padding > 0)
2981 {
2982 posd = new Output_data_zero_fill(trailing_padding, 0);
2983 os->add_output_section_data(posd);
2984 }
2985 }
2986
2987 // Record whether the stack should be executable. This can be set
2988 // from the command line using the -z execstack or -z noexecstack
2989 // options. Otherwise, if any input file has a .note.GNU-stack
2990 // section with the SHF_EXECINSTR flag set, the stack should be
2991 // executable. Otherwise, if at least one input file a
2992 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2993 // section, we use the target default for whether the stack should be
2994 // executable. If -z stack-size was used to set a p_memsz value for
2995 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
2996 // don't generate a stack note. When generating a object file, we
2997 // create a .note.GNU-stack section with the appropriate marking.
2998 // When generating an executable or shared library, we create a
2999 // PT_GNU_STACK segment.
3000
3001 void
3002 Layout::create_stack_segment()
3003 {
3004 bool is_stack_executable;
3005 if (parameters->options().is_execstack_set())
3006 {
3007 is_stack_executable = parameters->options().is_stack_executable();
3008 if (!is_stack_executable
3009 && this->input_requires_executable_stack_
3010 && parameters->options().warn_execstack())
3011 gold_warning(_("one or more inputs require executable stack, "
3012 "but -z noexecstack was given"));
3013 }
3014 else if (!this->input_with_gnu_stack_note_
3015 && (!parameters->options().user_set_stack_size()
3016 || parameters->options().relocatable()))
3017 return;
3018 else
3019 {
3020 if (this->input_requires_executable_stack_)
3021 is_stack_executable = true;
3022 else if (this->input_without_gnu_stack_note_)
3023 is_stack_executable =
3024 parameters->target().is_default_stack_executable();
3025 else
3026 is_stack_executable = false;
3027 }
3028
3029 if (parameters->options().relocatable())
3030 {
3031 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3032 elfcpp::Elf_Xword flags = 0;
3033 if (is_stack_executable)
3034 flags |= elfcpp::SHF_EXECINSTR;
3035 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3036 ORDER_INVALID, false);
3037 }
3038 else
3039 {
3040 if (this->script_options_->saw_phdrs_clause())
3041 return;
3042 int flags = elfcpp::PF_R | elfcpp::PF_W;
3043 if (is_stack_executable)
3044 flags |= elfcpp::PF_X;
3045 Output_segment* seg =
3046 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3047 seg->set_size(parameters->options().stack_size());
3048 // BFD lets targets override this default alignment, but the only
3049 // targets that do so are ones that Gold does not support so far.
3050 seg->set_minimum_p_align(16);
3051 }
3052 }
3053
3054 // If --build-id was used, set up the build ID note.
3055
3056 void
3057 Layout::create_build_id()
3058 {
3059 if (!parameters->options().user_set_build_id())
3060 return;
3061
3062 const char* style = parameters->options().build_id();
3063 if (strcmp(style, "none") == 0)
3064 return;
3065
3066 // Set DESCSZ to the size of the note descriptor. When possible,
3067 // set DESC to the note descriptor contents.
3068 size_t descsz;
3069 std::string desc;
3070 if (strcmp(style, "md5") == 0)
3071 descsz = 128 / 8;
3072 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3073 descsz = 160 / 8;
3074 else if (strcmp(style, "uuid") == 0)
3075 {
3076 #ifndef __MINGW32__
3077 const size_t uuidsz = 128 / 8;
3078
3079 char buffer[uuidsz];
3080 memset(buffer, 0, uuidsz);
3081
3082 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3083 if (descriptor < 0)
3084 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3085 strerror(errno));
3086 else
3087 {
3088 ssize_t got = ::read(descriptor, buffer, uuidsz);
3089 release_descriptor(descriptor, true);
3090 if (got < 0)
3091 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3092 else if (static_cast<size_t>(got) != uuidsz)
3093 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3094 uuidsz, got);
3095 }
3096
3097 desc.assign(buffer, uuidsz);
3098 descsz = uuidsz;
3099 #else // __MINGW32__
3100 UUID uuid;
3101 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3102
3103 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3104 if (!rpc_library)
3105 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3106 else
3107 {
3108 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3109 GetProcAddress(rpc_library, "UuidCreate"));
3110 if (!uuid_create)
3111 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3112 else if (uuid_create(&uuid) != RPC_S_OK)
3113 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3114 FreeLibrary(rpc_library);
3115 }
3116 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3117 descsz = sizeof(UUID);
3118 #endif // __MINGW32__
3119 }
3120 else if (strncmp(style, "0x", 2) == 0)
3121 {
3122 hex_init();
3123 const char* p = style + 2;
3124 while (*p != '\0')
3125 {
3126 if (hex_p(p[0]) && hex_p(p[1]))
3127 {
3128 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3129 desc += c;
3130 p += 2;
3131 }
3132 else if (*p == '-' || *p == ':')
3133 ++p;
3134 else
3135 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3136 style);
3137 }
3138 descsz = desc.size();
3139 }
3140 else
3141 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3142
3143 // Create the note.
3144 size_t trailing_padding;
3145 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3146 ".note.gnu.build-id", descsz, true,
3147 &trailing_padding);
3148 if (os == NULL)
3149 return;
3150
3151 if (!desc.empty())
3152 {
3153 // We know the value already, so we fill it in now.
3154 gold_assert(desc.size() == descsz);
3155
3156 Output_section_data* posd = new Output_data_const(desc, 4);
3157 os->add_output_section_data(posd);
3158
3159 if (trailing_padding != 0)
3160 {
3161 posd = new Output_data_zero_fill(trailing_padding, 0);
3162 os->add_output_section_data(posd);
3163 }
3164 }
3165 else
3166 {
3167 // We need to compute a checksum after we have completed the
3168 // link.
3169 gold_assert(trailing_padding == 0);
3170 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3171 os->add_output_section_data(this->build_id_note_);
3172 }
3173 }
3174
3175 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3176 // field of the former should point to the latter. I'm not sure who
3177 // started this, but the GNU linker does it, and some tools depend
3178 // upon it.
3179
3180 void
3181 Layout::link_stabs_sections()
3182 {
3183 if (!this->have_stabstr_section_)
3184 return;
3185
3186 for (Section_list::iterator p = this->section_list_.begin();
3187 p != this->section_list_.end();
3188 ++p)
3189 {
3190 if ((*p)->type() != elfcpp::SHT_STRTAB)
3191 continue;
3192
3193 const char* name = (*p)->name();
3194 if (strncmp(name, ".stab", 5) != 0)
3195 continue;
3196
3197 size_t len = strlen(name);
3198 if (strcmp(name + len - 3, "str") != 0)
3199 continue;
3200
3201 std::string stab_name(name, len - 3);
3202 Output_section* stab_sec;
3203 stab_sec = this->find_output_section(stab_name.c_str());
3204 if (stab_sec != NULL)
3205 stab_sec->set_link_section(*p);
3206 }
3207 }
3208
3209 // Create .gnu_incremental_inputs and related sections needed
3210 // for the next run of incremental linking to check what has changed.
3211
3212 void
3213 Layout::create_incremental_info_sections(Symbol_table* symtab)
3214 {
3215 Incremental_inputs* incr = this->incremental_inputs_;
3216
3217 gold_assert(incr != NULL);
3218
3219 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3220 incr->create_data_sections(symtab);
3221
3222 // Add the .gnu_incremental_inputs section.
3223 const char* incremental_inputs_name =
3224 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3225 Output_section* incremental_inputs_os =
3226 this->make_output_section(incremental_inputs_name,
3227 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3228 ORDER_INVALID, false);
3229 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3230
3231 // Add the .gnu_incremental_symtab section.
3232 const char* incremental_symtab_name =
3233 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3234 Output_section* incremental_symtab_os =
3235 this->make_output_section(incremental_symtab_name,
3236 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3237 ORDER_INVALID, false);
3238 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3239 incremental_symtab_os->set_entsize(4);
3240
3241 // Add the .gnu_incremental_relocs section.
3242 const char* incremental_relocs_name =
3243 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3244 Output_section* incremental_relocs_os =
3245 this->make_output_section(incremental_relocs_name,
3246 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3247 ORDER_INVALID, false);
3248 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3249 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3250
3251 // Add the .gnu_incremental_got_plt section.
3252 const char* incremental_got_plt_name =
3253 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3254 Output_section* incremental_got_plt_os =
3255 this->make_output_section(incremental_got_plt_name,
3256 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3257 ORDER_INVALID, false);
3258 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3259
3260 // Add the .gnu_incremental_strtab section.
3261 const char* incremental_strtab_name =
3262 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3263 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3264 elfcpp::SHT_STRTAB, 0,
3265 ORDER_INVALID, false);
3266 Output_data_strtab* strtab_data =
3267 new Output_data_strtab(incr->get_stringpool());
3268 incremental_strtab_os->add_output_section_data(strtab_data);
3269
3270 incremental_inputs_os->set_after_input_sections();
3271 incremental_symtab_os->set_after_input_sections();
3272 incremental_relocs_os->set_after_input_sections();
3273 incremental_got_plt_os->set_after_input_sections();
3274
3275 incremental_inputs_os->set_link_section(incremental_strtab_os);
3276 incremental_symtab_os->set_link_section(incremental_inputs_os);
3277 incremental_relocs_os->set_link_section(incremental_inputs_os);
3278 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3279 }
3280
3281 // Return whether SEG1 should be before SEG2 in the output file. This
3282 // is based entirely on the segment type and flags. When this is
3283 // called the segment addresses have normally not yet been set.
3284
3285 bool
3286 Layout::segment_precedes(const Output_segment* seg1,
3287 const Output_segment* seg2)
3288 {
3289 elfcpp::Elf_Word type1 = seg1->type();
3290 elfcpp::Elf_Word type2 = seg2->type();
3291
3292 // The single PT_PHDR segment is required to precede any loadable
3293 // segment. We simply make it always first.
3294 if (type1 == elfcpp::PT_PHDR)
3295 {
3296 gold_assert(type2 != elfcpp::PT_PHDR);
3297 return true;
3298 }
3299 if (type2 == elfcpp::PT_PHDR)
3300 return false;
3301
3302 // The single PT_INTERP segment is required to precede any loadable
3303 // segment. We simply make it always second.
3304 if (type1 == elfcpp::PT_INTERP)
3305 {
3306 gold_assert(type2 != elfcpp::PT_INTERP);
3307 return true;
3308 }
3309 if (type2 == elfcpp::PT_INTERP)
3310 return false;
3311
3312 // We then put PT_LOAD segments before any other segments.
3313 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3314 return true;
3315 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3316 return false;
3317
3318 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3319 // segment, because that is where the dynamic linker expects to find
3320 // it (this is just for efficiency; other positions would also work
3321 // correctly).
3322 if (type1 == elfcpp::PT_TLS
3323 && type2 != elfcpp::PT_TLS
3324 && type2 != elfcpp::PT_GNU_RELRO)
3325 return false;
3326 if (type2 == elfcpp::PT_TLS
3327 && type1 != elfcpp::PT_TLS
3328 && type1 != elfcpp::PT_GNU_RELRO)
3329 return true;
3330
3331 // We put the PT_GNU_RELRO segment last, because that is where the
3332 // dynamic linker expects to find it (as with PT_TLS, this is just
3333 // for efficiency).
3334 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3335 return false;
3336 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3337 return true;
3338
3339 const elfcpp::Elf_Word flags1 = seg1->flags();
3340 const elfcpp::Elf_Word flags2 = seg2->flags();
3341
3342 // The order of non-PT_LOAD segments is unimportant. We simply sort
3343 // by the numeric segment type and flags values. There should not
3344 // be more than one segment with the same type and flags, except
3345 // when a linker script specifies such.
3346 if (type1 != elfcpp::PT_LOAD)
3347 {
3348 if (type1 != type2)
3349 return type1 < type2;
3350 gold_assert(flags1 != flags2
3351 || this->script_options_->saw_phdrs_clause());
3352 return flags1 < flags2;
3353 }
3354
3355 // If the addresses are set already, sort by load address.
3356 if (seg1->are_addresses_set())
3357 {
3358 if (!seg2->are_addresses_set())
3359 return true;
3360
3361 unsigned int section_count1 = seg1->output_section_count();
3362 unsigned int section_count2 = seg2->output_section_count();
3363 if (section_count1 == 0 && section_count2 > 0)
3364 return true;
3365 if (section_count1 > 0 && section_count2 == 0)
3366 return false;
3367
3368 uint64_t paddr1 = (seg1->are_addresses_set()
3369 ? seg1->paddr()
3370 : seg1->first_section_load_address());
3371 uint64_t paddr2 = (seg2->are_addresses_set()
3372 ? seg2->paddr()
3373 : seg2->first_section_load_address());
3374
3375 if (paddr1 != paddr2)
3376 return paddr1 < paddr2;
3377 }
3378 else if (seg2->are_addresses_set())
3379 return false;
3380
3381 // A segment which holds large data comes after a segment which does
3382 // not hold large data.
3383 if (seg1->is_large_data_segment())
3384 {
3385 if (!seg2->is_large_data_segment())
3386 return false;
3387 }
3388 else if (seg2->is_large_data_segment())
3389 return true;
3390
3391 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3392 // segments come before writable segments. Then writable segments
3393 // with data come before writable segments without data. Then
3394 // executable segments come before non-executable segments. Then
3395 // the unlikely case of a non-readable segment comes before the
3396 // normal case of a readable segment. If there are multiple
3397 // segments with the same type and flags, we require that the
3398 // address be set, and we sort by virtual address and then physical
3399 // address.
3400 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3401 return (flags1 & elfcpp::PF_W) == 0;
3402 if ((flags1 & elfcpp::PF_W) != 0
3403 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3404 return seg1->has_any_data_sections();
3405 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3406 return (flags1 & elfcpp::PF_X) != 0;
3407 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3408 return (flags1 & elfcpp::PF_R) == 0;
3409
3410 // We shouldn't get here--we shouldn't create segments which we
3411 // can't distinguish. Unless of course we are using a weird linker
3412 // script or overlapping --section-start options. We could also get
3413 // here if plugins want unique segments for subsets of sections.
3414 gold_assert(this->script_options_->saw_phdrs_clause()
3415 || parameters->options().any_section_start()
3416 || this->is_unique_segment_for_sections_specified());
3417 return false;
3418 }
3419
3420 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3421
3422 static off_t
3423 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3424 {
3425 uint64_t unsigned_off = off;
3426 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3427 | (addr & (abi_pagesize - 1)));
3428 if (aligned_off < unsigned_off)
3429 aligned_off += abi_pagesize;
3430 return aligned_off;
3431 }
3432
3433 // On targets where the text segment contains only executable code,
3434 // a non-executable segment is never the text segment.
3435
3436 static inline bool
3437 is_text_segment(const Target* target, const Output_segment* seg)
3438 {
3439 elfcpp::Elf_Xword flags = seg->flags();
3440 if ((flags & elfcpp::PF_W) != 0)
3441 return false;
3442 if ((flags & elfcpp::PF_X) == 0)
3443 return !target->isolate_execinstr();
3444 return true;
3445 }
3446
3447 // Set the file offsets of all the segments, and all the sections they
3448 // contain. They have all been created. LOAD_SEG must be be laid out
3449 // first. Return the offset of the data to follow.
3450
3451 off_t
3452 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3453 unsigned int* pshndx)
3454 {
3455 // Sort them into the final order. We use a stable sort so that we
3456 // don't randomize the order of indistinguishable segments created
3457 // by linker scripts.
3458 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3459 Layout::Compare_segments(this));
3460
3461 // Find the PT_LOAD segments, and set their addresses and offsets
3462 // and their section's addresses and offsets.
3463 uint64_t start_addr;
3464 if (parameters->options().user_set_Ttext())
3465 start_addr = parameters->options().Ttext();
3466 else if (parameters->options().output_is_position_independent())
3467 start_addr = 0;
3468 else
3469 start_addr = target->default_text_segment_address();
3470
3471 uint64_t addr = start_addr;
3472 off_t off = 0;
3473
3474 // If LOAD_SEG is NULL, then the file header and segment headers
3475 // will not be loadable. But they still need to be at offset 0 in
3476 // the file. Set their offsets now.
3477 if (load_seg == NULL)
3478 {
3479 for (Data_list::iterator p = this->special_output_list_.begin();
3480 p != this->special_output_list_.end();
3481 ++p)
3482 {
3483 off = align_address(off, (*p)->addralign());
3484 (*p)->set_address_and_file_offset(0, off);
3485 off += (*p)->data_size();
3486 }
3487 }
3488
3489 unsigned int increase_relro = this->increase_relro_;
3490 if (this->script_options_->saw_sections_clause())
3491 increase_relro = 0;
3492
3493 const bool check_sections = parameters->options().check_sections();
3494 Output_segment* last_load_segment = NULL;
3495
3496 unsigned int shndx_begin = *pshndx;
3497 unsigned int shndx_load_seg = *pshndx;
3498
3499 for (Segment_list::iterator p = this->segment_list_.begin();
3500 p != this->segment_list_.end();
3501 ++p)
3502 {
3503 if ((*p)->type() == elfcpp::PT_LOAD)
3504 {
3505 if (target->isolate_execinstr())
3506 {
3507 // When we hit the segment that should contain the
3508 // file headers, reset the file offset so we place
3509 // it and subsequent segments appropriately.
3510 // We'll fix up the preceding segments below.
3511 if (load_seg == *p)
3512 {
3513 if (off == 0)
3514 load_seg = NULL;
3515 else
3516 {
3517 off = 0;
3518 shndx_load_seg = *pshndx;
3519 }
3520 }
3521 }
3522 else
3523 {
3524 // Verify that the file headers fall into the first segment.
3525 if (load_seg != NULL && load_seg != *p)
3526 gold_unreachable();
3527 load_seg = NULL;
3528 }
3529
3530 bool are_addresses_set = (*p)->are_addresses_set();
3531 if (are_addresses_set)
3532 {
3533 // When it comes to setting file offsets, we care about
3534 // the physical address.
3535 addr = (*p)->paddr();
3536 }
3537 else if (parameters->options().user_set_Ttext()
3538 && (parameters->options().omagic()
3539 || is_text_segment(target, *p)))
3540 {
3541 are_addresses_set = true;
3542 }
3543 else if (parameters->options().user_set_Trodata_segment()
3544 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3545 {
3546 addr = parameters->options().Trodata_segment();
3547 are_addresses_set = true;
3548 }
3549 else if (parameters->options().user_set_Tdata()
3550 && ((*p)->flags() & elfcpp::PF_W) != 0
3551 && (!parameters->options().user_set_Tbss()
3552 || (*p)->has_any_data_sections()))
3553 {
3554 addr = parameters->options().Tdata();
3555 are_addresses_set = true;
3556 }
3557 else if (parameters->options().user_set_Tbss()
3558 && ((*p)->flags() & elfcpp::PF_W) != 0
3559 && !(*p)->has_any_data_sections())
3560 {
3561 addr = parameters->options().Tbss();
3562 are_addresses_set = true;
3563 }
3564
3565 uint64_t orig_addr = addr;
3566 uint64_t orig_off = off;
3567
3568 uint64_t aligned_addr = 0;
3569 uint64_t abi_pagesize = target->abi_pagesize();
3570 uint64_t common_pagesize = target->common_pagesize();
3571
3572 if (!parameters->options().nmagic()
3573 && !parameters->options().omagic())
3574 (*p)->set_minimum_p_align(abi_pagesize);
3575
3576 if (!are_addresses_set)
3577 {
3578 // Skip the address forward one page, maintaining the same
3579 // position within the page. This lets us store both segments
3580 // overlapping on a single page in the file, but the loader will
3581 // put them on different pages in memory. We will revisit this
3582 // decision once we know the size of the segment.
3583
3584 uint64_t max_align = (*p)->maximum_alignment();
3585 if (max_align > abi_pagesize)
3586 addr = align_address(addr, max_align);
3587 aligned_addr = addr;
3588
3589 if (load_seg == *p)
3590 {
3591 // This is the segment that will contain the file
3592 // headers, so its offset will have to be exactly zero.
3593 gold_assert(orig_off == 0);
3594
3595 // If the target wants a fixed minimum distance from the
3596 // text segment to the read-only segment, move up now.
3597 uint64_t min_addr =
3598 start_addr + (parameters->options().user_set_rosegment_gap()
3599 ? parameters->options().rosegment_gap()
3600 : target->rosegment_gap());
3601 if (addr < min_addr)
3602 addr = min_addr;
3603
3604 // But this is not the first segment! To make its
3605 // address congruent with its offset, that address better
3606 // be aligned to the ABI-mandated page size.
3607 addr = align_address(addr, abi_pagesize);
3608 aligned_addr = addr;
3609 }
3610 else
3611 {
3612 if ((addr & (abi_pagesize - 1)) != 0)
3613 addr = addr + abi_pagesize;
3614
3615 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3616 }
3617 }
3618
3619 if (!parameters->options().nmagic()
3620 && !parameters->options().omagic())
3621 {
3622 // Here we are also taking care of the case when
3623 // the maximum segment alignment is larger than the page size.
3624 off = align_file_offset(off, addr,
3625 std::max(abi_pagesize,
3626 (*p)->maximum_alignment()));
3627 }
3628 else
3629 {
3630 // This is -N or -n with a section script which prevents
3631 // us from using a load segment. We need to ensure that
3632 // the file offset is aligned to the alignment of the
3633 // segment. This is because the linker script
3634 // implicitly assumed a zero offset. If we don't align
3635 // here, then the alignment of the sections in the
3636 // linker script may not match the alignment of the
3637 // sections in the set_section_addresses call below,
3638 // causing an error about dot moving backward.
3639 off = align_address(off, (*p)->maximum_alignment());
3640 }
3641
3642 unsigned int shndx_hold = *pshndx;
3643 bool has_relro = false;
3644 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3645 false, addr,
3646 &increase_relro,
3647 &has_relro,
3648 &off, pshndx);
3649
3650 // Now that we know the size of this segment, we may be able
3651 // to save a page in memory, at the cost of wasting some
3652 // file space, by instead aligning to the start of a new
3653 // page. Here we use the real machine page size rather than
3654 // the ABI mandated page size. If the segment has been
3655 // aligned so that the relro data ends at a page boundary,
3656 // we do not try to realign it.
3657
3658 if (!are_addresses_set
3659 && !has_relro
3660 && aligned_addr != addr
3661 && !parameters->incremental())
3662 {
3663 uint64_t first_off = (common_pagesize
3664 - (aligned_addr
3665 & (common_pagesize - 1)));
3666 uint64_t last_off = new_addr & (common_pagesize - 1);
3667 if (first_off > 0
3668 && last_off > 0
3669 && ((aligned_addr & ~ (common_pagesize - 1))
3670 != (new_addr & ~ (common_pagesize - 1)))
3671 && first_off + last_off <= common_pagesize)
3672 {
3673 *pshndx = shndx_hold;
3674 addr = align_address(aligned_addr, common_pagesize);
3675 addr = align_address(addr, (*p)->maximum_alignment());
3676 if ((addr & (abi_pagesize - 1)) != 0)
3677 addr = addr + abi_pagesize;
3678 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3679 off = align_file_offset(off, addr, abi_pagesize);
3680
3681 increase_relro = this->increase_relro_;
3682 if (this->script_options_->saw_sections_clause())
3683 increase_relro = 0;
3684 has_relro = false;
3685
3686 new_addr = (*p)->set_section_addresses(target, this,
3687 true, addr,
3688 &increase_relro,
3689 &has_relro,
3690 &off, pshndx);
3691 }
3692 }
3693
3694 addr = new_addr;
3695
3696 // Implement --check-sections. We know that the segments
3697 // are sorted by LMA.
3698 if (check_sections && last_load_segment != NULL)
3699 {
3700 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3701 if (last_load_segment->paddr() + last_load_segment->memsz()
3702 > (*p)->paddr())
3703 {
3704 unsigned long long lb1 = last_load_segment->paddr();
3705 unsigned long long le1 = lb1 + last_load_segment->memsz();
3706 unsigned long long lb2 = (*p)->paddr();
3707 unsigned long long le2 = lb2 + (*p)->memsz();
3708 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3709 "[0x%llx -> 0x%llx]"),
3710 lb1, le1, lb2, le2);
3711 }
3712 }
3713 last_load_segment = *p;
3714 }
3715 }
3716
3717 if (load_seg != NULL && target->isolate_execinstr())
3718 {
3719 // Process the early segments again, setting their file offsets
3720 // so they land after the segments starting at LOAD_SEG.
3721 off = align_file_offset(off, 0, target->abi_pagesize());
3722
3723 this->reset_relax_output();
3724
3725 for (Segment_list::iterator p = this->segment_list_.begin();
3726 *p != load_seg;
3727 ++p)
3728 {
3729 if ((*p)->type() == elfcpp::PT_LOAD)
3730 {
3731 // We repeat the whole job of assigning addresses and
3732 // offsets, but we really only want to change the offsets and
3733 // must ensure that the addresses all come out the same as
3734 // they did the first time through.
3735 bool has_relro = false;
3736 const uint64_t old_addr = (*p)->vaddr();
3737 const uint64_t old_end = old_addr + (*p)->memsz();
3738 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3739 true, old_addr,
3740 &increase_relro,
3741 &has_relro,
3742 &off,
3743 &shndx_begin);
3744 gold_assert(new_addr == old_end);
3745 }
3746 }
3747
3748 gold_assert(shndx_begin == shndx_load_seg);
3749 }
3750
3751 // Handle the non-PT_LOAD segments, setting their offsets from their
3752 // section's offsets.
3753 for (Segment_list::iterator p = this->segment_list_.begin();
3754 p != this->segment_list_.end();
3755 ++p)
3756 {
3757 // PT_GNU_STACK was set up correctly when it was created.
3758 if ((*p)->type() != elfcpp::PT_LOAD
3759 && (*p)->type() != elfcpp::PT_GNU_STACK)
3760 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3761 ? increase_relro
3762 : 0);
3763 }
3764
3765 // Set the TLS offsets for each section in the PT_TLS segment.
3766 if (this->tls_segment_ != NULL)
3767 this->tls_segment_->set_tls_offsets();
3768
3769 return off;
3770 }
3771
3772 // Set the offsets of all the allocated sections when doing a
3773 // relocatable link. This does the same jobs as set_segment_offsets,
3774 // only for a relocatable link.
3775
3776 off_t
3777 Layout::set_relocatable_section_offsets(Output_data* file_header,
3778 unsigned int* pshndx)
3779 {
3780 off_t off = 0;
3781
3782 file_header->set_address_and_file_offset(0, 0);
3783 off += file_header->data_size();
3784
3785 for (Section_list::iterator p = this->section_list_.begin();
3786 p != this->section_list_.end();
3787 ++p)
3788 {
3789 // We skip unallocated sections here, except that group sections
3790 // have to come first.
3791 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3792 && (*p)->type() != elfcpp::SHT_GROUP)
3793 continue;
3794
3795 off = align_address(off, (*p)->addralign());
3796
3797 // The linker script might have set the address.
3798 if (!(*p)->is_address_valid())
3799 (*p)->set_address(0);
3800 (*p)->set_file_offset(off);
3801 (*p)->finalize_data_size();
3802 if ((*p)->type() != elfcpp::SHT_NOBITS)
3803 off += (*p)->data_size();
3804
3805 (*p)->set_out_shndx(*pshndx);
3806 ++*pshndx;
3807 }
3808
3809 return off;
3810 }
3811
3812 // Set the file offset of all the sections not associated with a
3813 // segment.
3814
3815 off_t
3816 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3817 {
3818 off_t startoff = off;
3819 off_t maxoff = off;
3820
3821 for (Section_list::iterator p = this->unattached_section_list_.begin();
3822 p != this->unattached_section_list_.end();
3823 ++p)
3824 {
3825 // The symtab section is handled in create_symtab_sections.
3826 if (*p == this->symtab_section_)
3827 continue;
3828
3829 // If we've already set the data size, don't set it again.
3830 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3831 continue;
3832
3833 if (pass == BEFORE_INPUT_SECTIONS_PASS
3834 && (*p)->requires_postprocessing())
3835 {
3836 (*p)->create_postprocessing_buffer();
3837 this->any_postprocessing_sections_ = true;
3838 }
3839
3840 if (pass == BEFORE_INPUT_SECTIONS_PASS
3841 && (*p)->after_input_sections())
3842 continue;
3843 else if (pass == POSTPROCESSING_SECTIONS_PASS
3844 && (!(*p)->after_input_sections()
3845 || (*p)->type() == elfcpp::SHT_STRTAB))
3846 continue;
3847 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3848 && (!(*p)->after_input_sections()
3849 || (*p)->type() != elfcpp::SHT_STRTAB))
3850 continue;
3851
3852 if (!parameters->incremental_update())
3853 {
3854 off = align_address(off, (*p)->addralign());
3855 (*p)->set_file_offset(off);
3856 (*p)->finalize_data_size();
3857 }
3858 else
3859 {
3860 // Incremental update: allocate file space from free list.
3861 (*p)->pre_finalize_data_size();
3862 off_t current_size = (*p)->current_data_size();
3863 off = this->allocate(current_size, (*p)->addralign(), startoff);
3864 if (off == -1)
3865 {
3866 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3867 this->free_list_.dump();
3868 gold_assert((*p)->output_section() != NULL);
3869 gold_fallback(_("out of patch space for section %s; "
3870 "relink with --incremental-full"),
3871 (*p)->output_section()->name());
3872 }
3873 (*p)->set_file_offset(off);
3874 (*p)->finalize_data_size();
3875 if ((*p)->data_size() > current_size)
3876 {
3877 gold_assert((*p)->output_section() != NULL);
3878 gold_fallback(_("%s: section changed size; "
3879 "relink with --incremental-full"),
3880 (*p)->output_section()->name());
3881 }
3882 gold_debug(DEBUG_INCREMENTAL,
3883 "set_section_offsets: %08lx %08lx %s",
3884 static_cast<long>(off),
3885 static_cast<long>((*p)->data_size()),
3886 ((*p)->output_section() != NULL
3887 ? (*p)->output_section()->name() : "(special)"));
3888 }
3889
3890 off += (*p)->data_size();
3891 if (off > maxoff)
3892 maxoff = off;
3893
3894 // At this point the name must be set.
3895 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3896 this->namepool_.add((*p)->name(), false, NULL);
3897 }
3898 return maxoff;
3899 }
3900
3901 // Set the section indexes of all the sections not associated with a
3902 // segment.
3903
3904 unsigned int
3905 Layout::set_section_indexes(unsigned int shndx)
3906 {
3907 for (Section_list::iterator p = this->unattached_section_list_.begin();
3908 p != this->unattached_section_list_.end();
3909 ++p)
3910 {
3911 if (!(*p)->has_out_shndx())
3912 {
3913 (*p)->set_out_shndx(shndx);
3914 ++shndx;
3915 }
3916 }
3917 return shndx;
3918 }
3919
3920 // Set the section addresses according to the linker script. This is
3921 // only called when we see a SECTIONS clause. This returns the
3922 // program segment which should hold the file header and segment
3923 // headers, if any. It will return NULL if they should not be in a
3924 // segment.
3925
3926 Output_segment*
3927 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3928 {
3929 Script_sections* ss = this->script_options_->script_sections();
3930 gold_assert(ss->saw_sections_clause());
3931 return this->script_options_->set_section_addresses(symtab, this);
3932 }
3933
3934 // Place the orphan sections in the linker script.
3935
3936 void
3937 Layout::place_orphan_sections_in_script()
3938 {
3939 Script_sections* ss = this->script_options_->script_sections();
3940 gold_assert(ss->saw_sections_clause());
3941
3942 // Place each orphaned output section in the script.
3943 for (Section_list::iterator p = this->section_list_.begin();
3944 p != this->section_list_.end();
3945 ++p)
3946 {
3947 if (!(*p)->found_in_sections_clause())
3948 ss->place_orphan(*p);
3949 }
3950 }
3951
3952 // Count the local symbols in the regular symbol table and the dynamic
3953 // symbol table, and build the respective string pools.
3954
3955 void
3956 Layout::count_local_symbols(const Task* task,
3957 const Input_objects* input_objects)
3958 {
3959 // First, figure out an upper bound on the number of symbols we'll
3960 // be inserting into each pool. This helps us create the pools with
3961 // the right size, to avoid unnecessary hashtable resizing.
3962 unsigned int symbol_count = 0;
3963 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3964 p != input_objects->relobj_end();
3965 ++p)
3966 symbol_count += (*p)->local_symbol_count();
3967
3968 // Go from "upper bound" to "estimate." We overcount for two
3969 // reasons: we double-count symbols that occur in more than one
3970 // object file, and we count symbols that are dropped from the
3971 // output. Add it all together and assume we overcount by 100%.
3972 symbol_count /= 2;
3973
3974 // We assume all symbols will go into both the sympool and dynpool.
3975 this->sympool_.reserve(symbol_count);
3976 this->dynpool_.reserve(symbol_count);
3977
3978 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3979 p != input_objects->relobj_end();
3980 ++p)
3981 {
3982 Task_lock_obj<Object> tlo(task, *p);
3983 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3984 }
3985 }
3986
3987 // Create the symbol table sections. Here we also set the final
3988 // values of the symbols. At this point all the loadable sections are
3989 // fully laid out. SHNUM is the number of sections so far.
3990
3991 void
3992 Layout::create_symtab_sections(const Input_objects* input_objects,
3993 Symbol_table* symtab,
3994 unsigned int shnum,
3995 off_t* poff)
3996 {
3997 int symsize;
3998 unsigned int align;
3999 if (parameters->target().get_size() == 32)
4000 {
4001 symsize = elfcpp::Elf_sizes<32>::sym_size;
4002 align = 4;
4003 }
4004 else if (parameters->target().get_size() == 64)
4005 {
4006 symsize = elfcpp::Elf_sizes<64>::sym_size;
4007 align = 8;
4008 }
4009 else
4010 gold_unreachable();
4011
4012 // Compute file offsets relative to the start of the symtab section.
4013 off_t off = 0;
4014
4015 // Save space for the dummy symbol at the start of the section. We
4016 // never bother to write this out--it will just be left as zero.
4017 off += symsize;
4018 unsigned int local_symbol_index = 1;
4019
4020 // Add STT_SECTION symbols for each Output section which needs one.
4021 for (Section_list::iterator p = this->section_list_.begin();
4022 p != this->section_list_.end();
4023 ++p)
4024 {
4025 if (!(*p)->needs_symtab_index())
4026 (*p)->set_symtab_index(-1U);
4027 else
4028 {
4029 (*p)->set_symtab_index(local_symbol_index);
4030 ++local_symbol_index;
4031 off += symsize;
4032 }
4033 }
4034
4035 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4036 p != input_objects->relobj_end();
4037 ++p)
4038 {
4039 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4040 off, symtab);
4041 off += (index - local_symbol_index) * symsize;
4042 local_symbol_index = index;
4043 }
4044
4045 unsigned int local_symcount = local_symbol_index;
4046 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4047
4048 off_t dynoff;
4049 size_t dyn_global_index;
4050 size_t dyncount;
4051 if (this->dynsym_section_ == NULL)
4052 {
4053 dynoff = 0;
4054 dyn_global_index = 0;
4055 dyncount = 0;
4056 }
4057 else
4058 {
4059 dyn_global_index = this->dynsym_section_->info();
4060 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4061 dynoff = this->dynsym_section_->offset() + locsize;
4062 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4063 gold_assert(static_cast<off_t>(dyncount * symsize)
4064 == this->dynsym_section_->data_size() - locsize);
4065 }
4066
4067 off_t global_off = off;
4068 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4069 &this->sympool_, &local_symcount);
4070
4071 if (!parameters->options().strip_all())
4072 {
4073 this->sympool_.set_string_offsets();
4074
4075 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4076 Output_section* osymtab = this->make_output_section(symtab_name,
4077 elfcpp::SHT_SYMTAB,
4078 0, ORDER_INVALID,
4079 false);
4080 this->symtab_section_ = osymtab;
4081
4082 Output_section_data* pos = new Output_data_fixed_space(off, align,
4083 "** symtab");
4084 osymtab->add_output_section_data(pos);
4085
4086 // We generate a .symtab_shndx section if we have more than
4087 // SHN_LORESERVE sections. Technically it is possible that we
4088 // don't need one, because it is possible that there are no
4089 // symbols in any of sections with indexes larger than
4090 // SHN_LORESERVE. That is probably unusual, though, and it is
4091 // easier to always create one than to compute section indexes
4092 // twice (once here, once when writing out the symbols).
4093 if (shnum >= elfcpp::SHN_LORESERVE)
4094 {
4095 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4096 false, NULL);
4097 Output_section* osymtab_xindex =
4098 this->make_output_section(symtab_xindex_name,
4099 elfcpp::SHT_SYMTAB_SHNDX, 0,
4100 ORDER_INVALID, false);
4101
4102 size_t symcount = off / symsize;
4103 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4104
4105 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4106
4107 osymtab_xindex->set_link_section(osymtab);
4108 osymtab_xindex->set_addralign(4);
4109 osymtab_xindex->set_entsize(4);
4110
4111 osymtab_xindex->set_after_input_sections();
4112
4113 // This tells the driver code to wait until the symbol table
4114 // has written out before writing out the postprocessing
4115 // sections, including the .symtab_shndx section.
4116 this->any_postprocessing_sections_ = true;
4117 }
4118
4119 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4120 Output_section* ostrtab = this->make_output_section(strtab_name,
4121 elfcpp::SHT_STRTAB,
4122 0, ORDER_INVALID,
4123 false);
4124
4125 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4126 ostrtab->add_output_section_data(pstr);
4127
4128 off_t symtab_off;
4129 if (!parameters->incremental_update())
4130 symtab_off = align_address(*poff, align);
4131 else
4132 {
4133 symtab_off = this->allocate(off, align, *poff);
4134 if (off == -1)
4135 gold_fallback(_("out of patch space for symbol table; "
4136 "relink with --incremental-full"));
4137 gold_debug(DEBUG_INCREMENTAL,
4138 "create_symtab_sections: %08lx %08lx .symtab",
4139 static_cast<long>(symtab_off),
4140 static_cast<long>(off));
4141 }
4142
4143 symtab->set_file_offset(symtab_off + global_off);
4144 osymtab->set_file_offset(symtab_off);
4145 osymtab->finalize_data_size();
4146 osymtab->set_link_section(ostrtab);
4147 osymtab->set_info(local_symcount);
4148 osymtab->set_entsize(symsize);
4149
4150 if (symtab_off + off > *poff)
4151 *poff = symtab_off + off;
4152 }
4153 }
4154
4155 // Create the .shstrtab section, which holds the names of the
4156 // sections. At the time this is called, we have created all the
4157 // output sections except .shstrtab itself.
4158
4159 Output_section*
4160 Layout::create_shstrtab()
4161 {
4162 // FIXME: We don't need to create a .shstrtab section if we are
4163 // stripping everything.
4164
4165 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4166
4167 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4168 ORDER_INVALID, false);
4169
4170 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4171 {
4172 // We can't write out this section until we've set all the
4173 // section names, and we don't set the names of compressed
4174 // output sections until relocations are complete. FIXME: With
4175 // the current names we use, this is unnecessary.
4176 os->set_after_input_sections();
4177 }
4178
4179 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4180 os->add_output_section_data(posd);
4181
4182 return os;
4183 }
4184
4185 // Create the section headers. SIZE is 32 or 64. OFF is the file
4186 // offset.
4187
4188 void
4189 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4190 {
4191 Output_section_headers* oshdrs;
4192 oshdrs = new Output_section_headers(this,
4193 &this->segment_list_,
4194 &this->section_list_,
4195 &this->unattached_section_list_,
4196 &this->namepool_,
4197 shstrtab_section);
4198 off_t off;
4199 if (!parameters->incremental_update())
4200 off = align_address(*poff, oshdrs->addralign());
4201 else
4202 {
4203 oshdrs->pre_finalize_data_size();
4204 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4205 if (off == -1)
4206 gold_fallback(_("out of patch space for section header table; "
4207 "relink with --incremental-full"));
4208 gold_debug(DEBUG_INCREMENTAL,
4209 "create_shdrs: %08lx %08lx (section header table)",
4210 static_cast<long>(off),
4211 static_cast<long>(off + oshdrs->data_size()));
4212 }
4213 oshdrs->set_address_and_file_offset(0, off);
4214 off += oshdrs->data_size();
4215 if (off > *poff)
4216 *poff = off;
4217 this->section_headers_ = oshdrs;
4218 }
4219
4220 // Count the allocated sections.
4221
4222 size_t
4223 Layout::allocated_output_section_count() const
4224 {
4225 size_t section_count = 0;
4226 for (Segment_list::const_iterator p = this->segment_list_.begin();
4227 p != this->segment_list_.end();
4228 ++p)
4229 section_count += (*p)->output_section_count();
4230 return section_count;
4231 }
4232
4233 // Create the dynamic symbol table.
4234
4235 void
4236 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4237 Symbol_table* symtab,
4238 Output_section** pdynstr,
4239 unsigned int* plocal_dynamic_count,
4240 std::vector<Symbol*>* pdynamic_symbols,
4241 Versions* pversions)
4242 {
4243 // Count all the symbols in the dynamic symbol table, and set the
4244 // dynamic symbol indexes.
4245
4246 // Skip symbol 0, which is always all zeroes.
4247 unsigned int index = 1;
4248
4249 // Add STT_SECTION symbols for each Output section which needs one.
4250 for (Section_list::iterator p = this->section_list_.begin();
4251 p != this->section_list_.end();
4252 ++p)
4253 {
4254 if (!(*p)->needs_dynsym_index())
4255 (*p)->set_dynsym_index(-1U);
4256 else
4257 {
4258 (*p)->set_dynsym_index(index);
4259 ++index;
4260 }
4261 }
4262
4263 // Count the local symbols that need to go in the dynamic symbol table,
4264 // and set the dynamic symbol indexes.
4265 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4266 p != input_objects->relobj_end();
4267 ++p)
4268 {
4269 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4270 index = new_index;
4271 }
4272
4273 unsigned int local_symcount = index;
4274 *plocal_dynamic_count = local_symcount;
4275
4276 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4277 &this->dynpool_, pversions);
4278
4279 int symsize;
4280 unsigned int align;
4281 const int size = parameters->target().get_size();
4282 if (size == 32)
4283 {
4284 symsize = elfcpp::Elf_sizes<32>::sym_size;
4285 align = 4;
4286 }
4287 else if (size == 64)
4288 {
4289 symsize = elfcpp::Elf_sizes<64>::sym_size;
4290 align = 8;
4291 }
4292 else
4293 gold_unreachable();
4294
4295 // Create the dynamic symbol table section.
4296
4297 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4298 elfcpp::SHT_DYNSYM,
4299 elfcpp::SHF_ALLOC,
4300 false,
4301 ORDER_DYNAMIC_LINKER,
4302 false, false);
4303
4304 // Check for NULL as a linker script may discard .dynsym.
4305 if (dynsym != NULL)
4306 {
4307 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4308 align,
4309 "** dynsym");
4310 dynsym->add_output_section_data(odata);
4311
4312 dynsym->set_info(local_symcount);
4313 dynsym->set_entsize(symsize);
4314 dynsym->set_addralign(align);
4315
4316 this->dynsym_section_ = dynsym;
4317 }
4318
4319 Output_data_dynamic* const odyn = this->dynamic_data_;
4320 if (odyn != NULL)
4321 {
4322 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4323 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4324 }
4325
4326 // If there are more than SHN_LORESERVE allocated sections, we
4327 // create a .dynsym_shndx section. It is possible that we don't
4328 // need one, because it is possible that there are no dynamic
4329 // symbols in any of the sections with indexes larger than
4330 // SHN_LORESERVE. This is probably unusual, though, and at this
4331 // time we don't know the actual section indexes so it is
4332 // inconvenient to check.
4333 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4334 {
4335 Output_section* dynsym_xindex =
4336 this->choose_output_section(NULL, ".dynsym_shndx",
4337 elfcpp::SHT_SYMTAB_SHNDX,
4338 elfcpp::SHF_ALLOC,
4339 false, ORDER_DYNAMIC_LINKER, false, false);
4340
4341 if (dynsym_xindex != NULL)
4342 {
4343 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4344
4345 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4346
4347 dynsym_xindex->set_link_section(dynsym);
4348 dynsym_xindex->set_addralign(4);
4349 dynsym_xindex->set_entsize(4);
4350
4351 dynsym_xindex->set_after_input_sections();
4352
4353 // This tells the driver code to wait until the symbol table
4354 // has written out before writing out the postprocessing
4355 // sections, including the .dynsym_shndx section.
4356 this->any_postprocessing_sections_ = true;
4357 }
4358 }
4359
4360 // Create the dynamic string table section.
4361
4362 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4363 elfcpp::SHT_STRTAB,
4364 elfcpp::SHF_ALLOC,
4365 false,
4366 ORDER_DYNAMIC_LINKER,
4367 false, false);
4368 *pdynstr = dynstr;
4369 if (dynstr != NULL)
4370 {
4371 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4372 dynstr->add_output_section_data(strdata);
4373
4374 if (dynsym != NULL)
4375 dynsym->set_link_section(dynstr);
4376 if (this->dynamic_section_ != NULL)
4377 this->dynamic_section_->set_link_section(dynstr);
4378
4379 if (odyn != NULL)
4380 {
4381 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4382 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4383 }
4384 }
4385
4386 // Create the hash tables. The Gnu-style hash table must be
4387 // built first, because it changes the order of the symbols
4388 // in the dynamic symbol table.
4389
4390 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4391 || strcmp(parameters->options().hash_style(), "both") == 0)
4392 {
4393 unsigned char* phash;
4394 unsigned int hashlen;
4395 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4396 &phash, &hashlen);
4397
4398 Output_section* hashsec =
4399 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4400 elfcpp::SHF_ALLOC, false,
4401 ORDER_DYNAMIC_LINKER, false, false);
4402
4403 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4404 hashlen,
4405 align,
4406 "** hash");
4407 if (hashsec != NULL && hashdata != NULL)
4408 hashsec->add_output_section_data(hashdata);
4409
4410 if (hashsec != NULL)
4411 {
4412 if (dynsym != NULL)
4413 hashsec->set_link_section(dynsym);
4414
4415 // For a 64-bit target, the entries in .gnu.hash do not have
4416 // a uniform size, so we only set the entry size for a
4417 // 32-bit target.
4418 if (parameters->target().get_size() == 32)
4419 hashsec->set_entsize(4);
4420
4421 if (odyn != NULL)
4422 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4423 }
4424 }
4425
4426 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4427 || strcmp(parameters->options().hash_style(), "both") == 0)
4428 {
4429 unsigned char* phash;
4430 unsigned int hashlen;
4431 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4432 &phash, &hashlen);
4433
4434 Output_section* hashsec =
4435 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4436 elfcpp::SHF_ALLOC, false,
4437 ORDER_DYNAMIC_LINKER, false, false);
4438
4439 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4440 hashlen,
4441 align,
4442 "** hash");
4443 if (hashsec != NULL && hashdata != NULL)
4444 hashsec->add_output_section_data(hashdata);
4445
4446 if (hashsec != NULL)
4447 {
4448 if (dynsym != NULL)
4449 hashsec->set_link_section(dynsym);
4450 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4451 }
4452
4453 if (odyn != NULL)
4454 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4455 }
4456 }
4457
4458 // Assign offsets to each local portion of the dynamic symbol table.
4459
4460 void
4461 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4462 {
4463 Output_section* dynsym = this->dynsym_section_;
4464 if (dynsym == NULL)
4465 return;
4466
4467 off_t off = dynsym->offset();
4468
4469 // Skip the dummy symbol at the start of the section.
4470 off += dynsym->entsize();
4471
4472 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4473 p != input_objects->relobj_end();
4474 ++p)
4475 {
4476 unsigned int count = (*p)->set_local_dynsym_offset(off);
4477 off += count * dynsym->entsize();
4478 }
4479 }
4480
4481 // Create the version sections.
4482
4483 void
4484 Layout::create_version_sections(const Versions* versions,
4485 const Symbol_table* symtab,
4486 unsigned int local_symcount,
4487 const std::vector<Symbol*>& dynamic_symbols,
4488 const Output_section* dynstr)
4489 {
4490 if (!versions->any_defs() && !versions->any_needs())
4491 return;
4492
4493 switch (parameters->size_and_endianness())
4494 {
4495 #ifdef HAVE_TARGET_32_LITTLE
4496 case Parameters::TARGET_32_LITTLE:
4497 this->sized_create_version_sections<32, false>(versions, symtab,
4498 local_symcount,
4499 dynamic_symbols, dynstr);
4500 break;
4501 #endif
4502 #ifdef HAVE_TARGET_32_BIG
4503 case Parameters::TARGET_32_BIG:
4504 this->sized_create_version_sections<32, true>(versions, symtab,
4505 local_symcount,
4506 dynamic_symbols, dynstr);
4507 break;
4508 #endif
4509 #ifdef HAVE_TARGET_64_LITTLE
4510 case Parameters::TARGET_64_LITTLE:
4511 this->sized_create_version_sections<64, false>(versions, symtab,
4512 local_symcount,
4513 dynamic_symbols, dynstr);
4514 break;
4515 #endif
4516 #ifdef HAVE_TARGET_64_BIG
4517 case Parameters::TARGET_64_BIG:
4518 this->sized_create_version_sections<64, true>(versions, symtab,
4519 local_symcount,
4520 dynamic_symbols, dynstr);
4521 break;
4522 #endif
4523 default:
4524 gold_unreachable();
4525 }
4526 }
4527
4528 // Create the version sections, sized version.
4529
4530 template<int size, bool big_endian>
4531 void
4532 Layout::sized_create_version_sections(
4533 const Versions* versions,
4534 const Symbol_table* symtab,
4535 unsigned int local_symcount,
4536 const std::vector<Symbol*>& dynamic_symbols,
4537 const Output_section* dynstr)
4538 {
4539 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4540 elfcpp::SHT_GNU_versym,
4541 elfcpp::SHF_ALLOC,
4542 false,
4543 ORDER_DYNAMIC_LINKER,
4544 false, false);
4545
4546 // Check for NULL since a linker script may discard this section.
4547 if (vsec != NULL)
4548 {
4549 unsigned char* vbuf;
4550 unsigned int vsize;
4551 versions->symbol_section_contents<size, big_endian>(symtab,
4552 &this->dynpool_,
4553 local_symcount,
4554 dynamic_symbols,
4555 &vbuf, &vsize);
4556
4557 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4558 "** versions");
4559
4560 vsec->add_output_section_data(vdata);
4561 vsec->set_entsize(2);
4562 vsec->set_link_section(this->dynsym_section_);
4563 }
4564
4565 Output_data_dynamic* const odyn = this->dynamic_data_;
4566 if (odyn != NULL && vsec != NULL)
4567 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4568
4569 if (versions->any_defs())
4570 {
4571 Output_section* vdsec;
4572 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4573 elfcpp::SHT_GNU_verdef,
4574 elfcpp::SHF_ALLOC,
4575 false, ORDER_DYNAMIC_LINKER, false,
4576 false);
4577
4578 if (vdsec != NULL)
4579 {
4580 unsigned char* vdbuf;
4581 unsigned int vdsize;
4582 unsigned int vdentries;
4583 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4584 &vdbuf, &vdsize,
4585 &vdentries);
4586
4587 Output_section_data* vddata =
4588 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4589
4590 vdsec->add_output_section_data(vddata);
4591 vdsec->set_link_section(dynstr);
4592 vdsec->set_info(vdentries);
4593
4594 if (odyn != NULL)
4595 {
4596 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4597 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4598 }
4599 }
4600 }
4601
4602 if (versions->any_needs())
4603 {
4604 Output_section* vnsec;
4605 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4606 elfcpp::SHT_GNU_verneed,
4607 elfcpp::SHF_ALLOC,
4608 false, ORDER_DYNAMIC_LINKER, false,
4609 false);
4610
4611 if (vnsec != NULL)
4612 {
4613 unsigned char* vnbuf;
4614 unsigned int vnsize;
4615 unsigned int vnentries;
4616 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4617 &vnbuf, &vnsize,
4618 &vnentries);
4619
4620 Output_section_data* vndata =
4621 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4622
4623 vnsec->add_output_section_data(vndata);
4624 vnsec->set_link_section(dynstr);
4625 vnsec->set_info(vnentries);
4626
4627 if (odyn != NULL)
4628 {
4629 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4630 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4631 }
4632 }
4633 }
4634 }
4635
4636 // Create the .interp section and PT_INTERP segment.
4637
4638 void
4639 Layout::create_interp(const Target* target)
4640 {
4641 gold_assert(this->interp_segment_ == NULL);
4642
4643 const char* interp = parameters->options().dynamic_linker();
4644 if (interp == NULL)
4645 {
4646 interp = target->dynamic_linker();
4647 gold_assert(interp != NULL);
4648 }
4649
4650 size_t len = strlen(interp) + 1;
4651
4652 Output_section_data* odata = new Output_data_const(interp, len, 1);
4653
4654 Output_section* osec = this->choose_output_section(NULL, ".interp",
4655 elfcpp::SHT_PROGBITS,
4656 elfcpp::SHF_ALLOC,
4657 false, ORDER_INTERP,
4658 false, false);
4659 if (osec != NULL)
4660 osec->add_output_section_data(odata);
4661 }
4662
4663 // Add dynamic tags for the PLT and the dynamic relocs. This is
4664 // called by the target-specific code. This does nothing if not doing
4665 // a dynamic link.
4666
4667 // USE_REL is true for REL relocs rather than RELA relocs.
4668
4669 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4670
4671 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4672 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4673 // some targets have multiple reloc sections in PLT_REL.
4674
4675 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4676 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4677 // section.
4678
4679 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4680 // executable.
4681
4682 void
4683 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4684 const Output_data* plt_rel,
4685 const Output_data_reloc_generic* dyn_rel,
4686 bool add_debug, bool dynrel_includes_plt)
4687 {
4688 Output_data_dynamic* odyn = this->dynamic_data_;
4689 if (odyn == NULL)
4690 return;
4691
4692 if (plt_got != NULL && plt_got->output_section() != NULL)
4693 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4694
4695 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4696 {
4697 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4698 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4699 odyn->add_constant(elfcpp::DT_PLTREL,
4700 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4701 }
4702
4703 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4704 || (dynrel_includes_plt
4705 && plt_rel != NULL
4706 && plt_rel->output_section() != NULL))
4707 {
4708 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4709 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4710 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4711 (have_dyn_rel
4712 ? dyn_rel->output_section()
4713 : plt_rel->output_section()));
4714 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4715 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4716 odyn->add_section_size(size_tag,
4717 dyn_rel->output_section(),
4718 plt_rel->output_section());
4719 else if (have_dyn_rel)
4720 odyn->add_section_size(size_tag, dyn_rel->output_section());
4721 else
4722 odyn->add_section_size(size_tag, plt_rel->output_section());
4723 const int size = parameters->target().get_size();
4724 elfcpp::DT rel_tag;
4725 int rel_size;
4726 if (use_rel)
4727 {
4728 rel_tag = elfcpp::DT_RELENT;
4729 if (size == 32)
4730 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4731 else if (size == 64)
4732 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4733 else
4734 gold_unreachable();
4735 }
4736 else
4737 {
4738 rel_tag = elfcpp::DT_RELAENT;
4739 if (size == 32)
4740 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4741 else if (size == 64)
4742 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4743 else
4744 gold_unreachable();
4745 }
4746 odyn->add_constant(rel_tag, rel_size);
4747
4748 if (parameters->options().combreloc() && have_dyn_rel)
4749 {
4750 size_t c = dyn_rel->relative_reloc_count();
4751 if (c > 0)
4752 odyn->add_constant((use_rel
4753 ? elfcpp::DT_RELCOUNT
4754 : elfcpp::DT_RELACOUNT),
4755 c);
4756 }
4757 }
4758
4759 if (add_debug && !parameters->options().shared())
4760 {
4761 // The value of the DT_DEBUG tag is filled in by the dynamic
4762 // linker at run time, and used by the debugger.
4763 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4764 }
4765 }
4766
4767 void
4768 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4769 {
4770 Output_data_dynamic* odyn = this->dynamic_data_;
4771 if (odyn == NULL)
4772 return;
4773 odyn->add_constant(tag, val);
4774 }
4775
4776 // Finish the .dynamic section and PT_DYNAMIC segment.
4777
4778 void
4779 Layout::finish_dynamic_section(const Input_objects* input_objects,
4780 const Symbol_table* symtab)
4781 {
4782 if (!this->script_options_->saw_phdrs_clause()
4783 && this->dynamic_section_ != NULL)
4784 {
4785 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4786 (elfcpp::PF_R
4787 | elfcpp::PF_W));
4788 oseg->add_output_section_to_nonload(this->dynamic_section_,
4789 elfcpp::PF_R | elfcpp::PF_W);
4790 }
4791
4792 Output_data_dynamic* const odyn = this->dynamic_data_;
4793 if (odyn == NULL)
4794 return;
4795
4796 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4797 p != input_objects->dynobj_end();
4798 ++p)
4799 {
4800 if (!(*p)->is_needed() && (*p)->as_needed())
4801 {
4802 // This dynamic object was linked with --as-needed, but it
4803 // is not needed.
4804 continue;
4805 }
4806
4807 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4808 }
4809
4810 if (parameters->options().shared())
4811 {
4812 const char* soname = parameters->options().soname();
4813 if (soname != NULL)
4814 odyn->add_string(elfcpp::DT_SONAME, soname);
4815 }
4816
4817 Symbol* sym = symtab->lookup(parameters->options().init());
4818 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4819 odyn->add_symbol(elfcpp::DT_INIT, sym);
4820
4821 sym = symtab->lookup(parameters->options().fini());
4822 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4823 odyn->add_symbol(elfcpp::DT_FINI, sym);
4824
4825 // Look for .init_array, .preinit_array and .fini_array by checking
4826 // section types.
4827 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4828 p != this->section_list_.end();
4829 ++p)
4830 switch((*p)->type())
4831 {
4832 case elfcpp::SHT_FINI_ARRAY:
4833 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4834 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4835 break;
4836 case elfcpp::SHT_INIT_ARRAY:
4837 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4838 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4839 break;
4840 case elfcpp::SHT_PREINIT_ARRAY:
4841 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4842 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4843 break;
4844 default:
4845 break;
4846 }
4847
4848 // Add a DT_RPATH entry if needed.
4849 const General_options::Dir_list& rpath(parameters->options().rpath());
4850 if (!rpath.empty())
4851 {
4852 std::string rpath_val;
4853 for (General_options::Dir_list::const_iterator p = rpath.begin();
4854 p != rpath.end();
4855 ++p)
4856 {
4857 if (rpath_val.empty())
4858 rpath_val = p->name();
4859 else
4860 {
4861 // Eliminate duplicates.
4862 General_options::Dir_list::const_iterator q;
4863 for (q = rpath.begin(); q != p; ++q)
4864 if (q->name() == p->name())
4865 break;
4866 if (q == p)
4867 {
4868 rpath_val += ':';
4869 rpath_val += p->name();
4870 }
4871 }
4872 }
4873
4874 if (!parameters->options().enable_new_dtags())
4875 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4876 else
4877 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4878 }
4879
4880 // Look for text segments that have dynamic relocations.
4881 bool have_textrel = false;
4882 if (!this->script_options_->saw_sections_clause())
4883 {
4884 for (Segment_list::const_iterator p = this->segment_list_.begin();
4885 p != this->segment_list_.end();
4886 ++p)
4887 {
4888 if ((*p)->type() == elfcpp::PT_LOAD
4889 && ((*p)->flags() & elfcpp::PF_W) == 0
4890 && (*p)->has_dynamic_reloc())
4891 {
4892 have_textrel = true;
4893 break;
4894 }
4895 }
4896 }
4897 else
4898 {
4899 // We don't know the section -> segment mapping, so we are
4900 // conservative and just look for readonly sections with
4901 // relocations. If those sections wind up in writable segments,
4902 // then we have created an unnecessary DT_TEXTREL entry.
4903 for (Section_list::const_iterator p = this->section_list_.begin();
4904 p != this->section_list_.end();
4905 ++p)
4906 {
4907 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4908 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4909 && (*p)->has_dynamic_reloc())
4910 {
4911 have_textrel = true;
4912 break;
4913 }
4914 }
4915 }
4916
4917 if (parameters->options().filter() != NULL)
4918 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4919 if (parameters->options().any_auxiliary())
4920 {
4921 for (options::String_set::const_iterator p =
4922 parameters->options().auxiliary_begin();
4923 p != parameters->options().auxiliary_end();
4924 ++p)
4925 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4926 }
4927
4928 // Add a DT_FLAGS entry if necessary.
4929 unsigned int flags = 0;
4930 if (have_textrel)
4931 {
4932 // Add a DT_TEXTREL for compatibility with older loaders.
4933 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4934 flags |= elfcpp::DF_TEXTREL;
4935
4936 if (parameters->options().text())
4937 gold_error(_("read-only segment has dynamic relocations"));
4938 else if (parameters->options().warn_shared_textrel()
4939 && parameters->options().shared())
4940 gold_warning(_("shared library text segment is not shareable"));
4941 }
4942 if (parameters->options().shared() && this->has_static_tls())
4943 flags |= elfcpp::DF_STATIC_TLS;
4944 if (parameters->options().origin())
4945 flags |= elfcpp::DF_ORIGIN;
4946 if (parameters->options().Bsymbolic()
4947 && !parameters->options().have_dynamic_list())
4948 {
4949 flags |= elfcpp::DF_SYMBOLIC;
4950 // Add DT_SYMBOLIC for compatibility with older loaders.
4951 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4952 }
4953 if (parameters->options().now())
4954 flags |= elfcpp::DF_BIND_NOW;
4955 if (flags != 0)
4956 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4957
4958 flags = 0;
4959 if (parameters->options().global())
4960 flags |= elfcpp::DF_1_GLOBAL;
4961 if (parameters->options().initfirst())
4962 flags |= elfcpp::DF_1_INITFIRST;
4963 if (parameters->options().interpose())
4964 flags |= elfcpp::DF_1_INTERPOSE;
4965 if (parameters->options().loadfltr())
4966 flags |= elfcpp::DF_1_LOADFLTR;
4967 if (parameters->options().nodefaultlib())
4968 flags |= elfcpp::DF_1_NODEFLIB;
4969 if (parameters->options().nodelete())
4970 flags |= elfcpp::DF_1_NODELETE;
4971 if (parameters->options().nodlopen())
4972 flags |= elfcpp::DF_1_NOOPEN;
4973 if (parameters->options().nodump())
4974 flags |= elfcpp::DF_1_NODUMP;
4975 if (!parameters->options().shared())
4976 flags &= ~(elfcpp::DF_1_INITFIRST
4977 | elfcpp::DF_1_NODELETE
4978 | elfcpp::DF_1_NOOPEN);
4979 if (parameters->options().origin())
4980 flags |= elfcpp::DF_1_ORIGIN;
4981 if (parameters->options().now())
4982 flags |= elfcpp::DF_1_NOW;
4983 if (parameters->options().Bgroup())
4984 flags |= elfcpp::DF_1_GROUP;
4985 if (flags != 0)
4986 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4987 }
4988
4989 // Set the size of the _DYNAMIC symbol table to be the size of the
4990 // dynamic data.
4991
4992 void
4993 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4994 {
4995 Output_data_dynamic* const odyn = this->dynamic_data_;
4996 if (odyn == NULL)
4997 return;
4998 odyn->finalize_data_size();
4999 if (this->dynamic_symbol_ == NULL)
5000 return;
5001 off_t data_size = odyn->data_size();
5002 const int size = parameters->target().get_size();
5003 if (size == 32)
5004 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5005 else if (size == 64)
5006 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5007 else
5008 gold_unreachable();
5009 }
5010
5011 // The mapping of input section name prefixes to output section names.
5012 // In some cases one prefix is itself a prefix of another prefix; in
5013 // such a case the longer prefix must come first. These prefixes are
5014 // based on the GNU linker default ELF linker script.
5015
5016 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5017 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5018 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5019 {
5020 MAPPING_INIT(".text.", ".text"),
5021 MAPPING_INIT(".rodata.", ".rodata"),
5022 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5023 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5024 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5025 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5026 MAPPING_INIT(".data.", ".data"),
5027 MAPPING_INIT(".bss.", ".bss"),
5028 MAPPING_INIT(".tdata.", ".tdata"),
5029 MAPPING_INIT(".tbss.", ".tbss"),
5030 MAPPING_INIT(".init_array.", ".init_array"),
5031 MAPPING_INIT(".fini_array.", ".fini_array"),
5032 MAPPING_INIT(".sdata.", ".sdata"),
5033 MAPPING_INIT(".sbss.", ".sbss"),
5034 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5035 // differently depending on whether it is creating a shared library.
5036 MAPPING_INIT(".sdata2.", ".sdata"),
5037 MAPPING_INIT(".sbss2.", ".sbss"),
5038 MAPPING_INIT(".lrodata.", ".lrodata"),
5039 MAPPING_INIT(".ldata.", ".ldata"),
5040 MAPPING_INIT(".lbss.", ".lbss"),
5041 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5042 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5043 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5044 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5045 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5046 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5047 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5048 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5049 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5050 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5051 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5052 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5053 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5054 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5055 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5056 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5057 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5058 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5059 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5060 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5061 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5062 };
5063 #undef MAPPING_INIT
5064 #undef MAPPING_INIT_EXACT
5065
5066 const int Layout::section_name_mapping_count =
5067 (sizeof(Layout::section_name_mapping)
5068 / sizeof(Layout::section_name_mapping[0]));
5069
5070 // Choose the output section name to use given an input section name.
5071 // Set *PLEN to the length of the name. *PLEN is initialized to the
5072 // length of NAME.
5073
5074 const char*
5075 Layout::output_section_name(const Relobj* relobj, const char* name,
5076 size_t* plen)
5077 {
5078 // gcc 4.3 generates the following sorts of section names when it
5079 // needs a section name specific to a function:
5080 // .text.FN
5081 // .rodata.FN
5082 // .sdata2.FN
5083 // .data.FN
5084 // .data.rel.FN
5085 // .data.rel.local.FN
5086 // .data.rel.ro.FN
5087 // .data.rel.ro.local.FN
5088 // .sdata.FN
5089 // .bss.FN
5090 // .sbss.FN
5091 // .tdata.FN
5092 // .tbss.FN
5093
5094 // The GNU linker maps all of those to the part before the .FN,
5095 // except that .data.rel.local.FN is mapped to .data, and
5096 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5097 // beginning with .data.rel.ro.local are grouped together.
5098
5099 // For an anonymous namespace, the string FN can contain a '.'.
5100
5101 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5102 // GNU linker maps to .rodata.
5103
5104 // The .data.rel.ro sections are used with -z relro. The sections
5105 // are recognized by name. We use the same names that the GNU
5106 // linker does for these sections.
5107
5108 // It is hard to handle this in a principled way, so we don't even
5109 // try. We use a table of mappings. If the input section name is
5110 // not found in the table, we simply use it as the output section
5111 // name.
5112
5113 const Section_name_mapping* psnm = section_name_mapping;
5114 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5115 {
5116 if (psnm->fromlen > 0)
5117 {
5118 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5119 {
5120 *plen = psnm->tolen;
5121 return psnm->to;
5122 }
5123 }
5124 else
5125 {
5126 if (strcmp(name, psnm->from) == 0)
5127 {
5128 *plen = psnm->tolen;
5129 return psnm->to;
5130 }
5131 }
5132 }
5133
5134 // As an additional complication, .ctors sections are output in
5135 // either .ctors or .init_array sections, and .dtors sections are
5136 // output in either .dtors or .fini_array sections.
5137 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5138 {
5139 if (parameters->options().ctors_in_init_array())
5140 {
5141 *plen = 11;
5142 return name[1] == 'c' ? ".init_array" : ".fini_array";
5143 }
5144 else
5145 {
5146 *plen = 6;
5147 return name[1] == 'c' ? ".ctors" : ".dtors";
5148 }
5149 }
5150 if (parameters->options().ctors_in_init_array()
5151 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5152 {
5153 // To make .init_array/.fini_array work with gcc we must exclude
5154 // .ctors and .dtors sections from the crtbegin and crtend
5155 // files.
5156 if (relobj == NULL
5157 || (!Layout::match_file_name(relobj, "crtbegin")
5158 && !Layout::match_file_name(relobj, "crtend")))
5159 {
5160 *plen = 11;
5161 return name[1] == 'c' ? ".init_array" : ".fini_array";
5162 }
5163 }
5164
5165 return name;
5166 }
5167
5168 // Return true if RELOBJ is an input file whose base name matches
5169 // FILE_NAME. The base name must have an extension of ".o", and must
5170 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5171 // to match crtbegin.o as well as crtbeginS.o without getting confused
5172 // by other possibilities. Overall matching the file name this way is
5173 // a dreadful hack, but the GNU linker does it in order to better
5174 // support gcc, and we need to be compatible.
5175
5176 bool
5177 Layout::match_file_name(const Relobj* relobj, const char* match)
5178 {
5179 const std::string& file_name(relobj->name());
5180 const char* base_name = lbasename(file_name.c_str());
5181 size_t match_len = strlen(match);
5182 if (strncmp(base_name, match, match_len) != 0)
5183 return false;
5184 size_t base_len = strlen(base_name);
5185 if (base_len != match_len + 2 && base_len != match_len + 3)
5186 return false;
5187 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5188 }
5189
5190 // Check if a comdat group or .gnu.linkonce section with the given
5191 // NAME is selected for the link. If there is already a section,
5192 // *KEPT_SECTION is set to point to the existing section and the
5193 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5194 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5195 // *KEPT_SECTION is set to the internal copy and the function returns
5196 // true.
5197
5198 bool
5199 Layout::find_or_add_kept_section(const std::string& name,
5200 Relobj* object,
5201 unsigned int shndx,
5202 bool is_comdat,
5203 bool is_group_name,
5204 Kept_section** kept_section)
5205 {
5206 // It's normal to see a couple of entries here, for the x86 thunk
5207 // sections. If we see more than a few, we're linking a C++
5208 // program, and we resize to get more space to minimize rehashing.
5209 if (this->signatures_.size() > 4
5210 && !this->resized_signatures_)
5211 {
5212 reserve_unordered_map(&this->signatures_,
5213 this->number_of_input_files_ * 64);
5214 this->resized_signatures_ = true;
5215 }
5216
5217 Kept_section candidate;
5218 std::pair<Signatures::iterator, bool> ins =
5219 this->signatures_.insert(std::make_pair(name, candidate));
5220
5221 if (kept_section != NULL)
5222 *kept_section = &ins.first->second;
5223 if (ins.second)
5224 {
5225 // This is the first time we've seen this signature.
5226 ins.first->second.set_object(object);
5227 ins.first->second.set_shndx(shndx);
5228 if (is_comdat)
5229 ins.first->second.set_is_comdat();
5230 if (is_group_name)
5231 ins.first->second.set_is_group_name();
5232 return true;
5233 }
5234
5235 // We have already seen this signature.
5236
5237 if (ins.first->second.is_group_name())
5238 {
5239 // We've already seen a real section group with this signature.
5240 // If the kept group is from a plugin object, and we're in the
5241 // replacement phase, accept the new one as a replacement.
5242 if (ins.first->second.object() == NULL
5243 && parameters->options().plugins()->in_replacement_phase())
5244 {
5245 ins.first->second.set_object(object);
5246 ins.first->second.set_shndx(shndx);
5247 return true;
5248 }
5249 return false;
5250 }
5251 else if (is_group_name)
5252 {
5253 // This is a real section group, and we've already seen a
5254 // linkonce section with this signature. Record that we've seen
5255 // a section group, and don't include this section group.
5256 ins.first->second.set_is_group_name();
5257 return false;
5258 }
5259 else
5260 {
5261 // We've already seen a linkonce section and this is a linkonce
5262 // section. These don't block each other--this may be the same
5263 // symbol name with different section types.
5264 return true;
5265 }
5266 }
5267
5268 // Store the allocated sections into the section list.
5269
5270 void
5271 Layout::get_allocated_sections(Section_list* section_list) const
5272 {
5273 for (Section_list::const_iterator p = this->section_list_.begin();
5274 p != this->section_list_.end();
5275 ++p)
5276 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5277 section_list->push_back(*p);
5278 }
5279
5280 // Store the executable sections into the section list.
5281
5282 void
5283 Layout::get_executable_sections(Section_list* section_list) const
5284 {
5285 for (Section_list::const_iterator p = this->section_list_.begin();
5286 p != this->section_list_.end();
5287 ++p)
5288 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5289 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5290 section_list->push_back(*p);
5291 }
5292
5293 // Create an output segment.
5294
5295 Output_segment*
5296 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5297 {
5298 gold_assert(!parameters->options().relocatable());
5299 Output_segment* oseg = new Output_segment(type, flags);
5300 this->segment_list_.push_back(oseg);
5301
5302 if (type == elfcpp::PT_TLS)
5303 this->tls_segment_ = oseg;
5304 else if (type == elfcpp::PT_GNU_RELRO)
5305 this->relro_segment_ = oseg;
5306 else if (type == elfcpp::PT_INTERP)
5307 this->interp_segment_ = oseg;
5308
5309 return oseg;
5310 }
5311
5312 // Return the file offset of the normal symbol table.
5313
5314 off_t
5315 Layout::symtab_section_offset() const
5316 {
5317 if (this->symtab_section_ != NULL)
5318 return this->symtab_section_->offset();
5319 return 0;
5320 }
5321
5322 // Return the section index of the normal symbol table. It may have
5323 // been stripped by the -s/--strip-all option.
5324
5325 unsigned int
5326 Layout::symtab_section_shndx() const
5327 {
5328 if (this->symtab_section_ != NULL)
5329 return this->symtab_section_->out_shndx();
5330 return 0;
5331 }
5332
5333 // Write out the Output_sections. Most won't have anything to write,
5334 // since most of the data will come from input sections which are
5335 // handled elsewhere. But some Output_sections do have Output_data.
5336
5337 void
5338 Layout::write_output_sections(Output_file* of) const
5339 {
5340 for (Section_list::const_iterator p = this->section_list_.begin();
5341 p != this->section_list_.end();
5342 ++p)
5343 {
5344 if (!(*p)->after_input_sections())
5345 (*p)->write(of);
5346 }
5347 }
5348
5349 // Write out data not associated with a section or the symbol table.
5350
5351 void
5352 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5353 {
5354 if (!parameters->options().strip_all())
5355 {
5356 const Output_section* symtab_section = this->symtab_section_;
5357 for (Section_list::const_iterator p = this->section_list_.begin();
5358 p != this->section_list_.end();
5359 ++p)
5360 {
5361 if ((*p)->needs_symtab_index())
5362 {
5363 gold_assert(symtab_section != NULL);
5364 unsigned int index = (*p)->symtab_index();
5365 gold_assert(index > 0 && index != -1U);
5366 off_t off = (symtab_section->offset()
5367 + index * symtab_section->entsize());
5368 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5369 }
5370 }
5371 }
5372
5373 const Output_section* dynsym_section = this->dynsym_section_;
5374 for (Section_list::const_iterator p = this->section_list_.begin();
5375 p != this->section_list_.end();
5376 ++p)
5377 {
5378 if ((*p)->needs_dynsym_index())
5379 {
5380 gold_assert(dynsym_section != NULL);
5381 unsigned int index = (*p)->dynsym_index();
5382 gold_assert(index > 0 && index != -1U);
5383 off_t off = (dynsym_section->offset()
5384 + index * dynsym_section->entsize());
5385 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5386 }
5387 }
5388
5389 // Write out the Output_data which are not in an Output_section.
5390 for (Data_list::const_iterator p = this->special_output_list_.begin();
5391 p != this->special_output_list_.end();
5392 ++p)
5393 (*p)->write(of);
5394
5395 // Write out the Output_data which are not in an Output_section
5396 // and are regenerated in each iteration of relaxation.
5397 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5398 p != this->relax_output_list_.end();
5399 ++p)
5400 (*p)->write(of);
5401 }
5402
5403 // Write out the Output_sections which can only be written after the
5404 // input sections are complete.
5405
5406 void
5407 Layout::write_sections_after_input_sections(Output_file* of)
5408 {
5409 // Determine the final section offsets, and thus the final output
5410 // file size. Note we finalize the .shstrab last, to allow the
5411 // after_input_section sections to modify their section-names before
5412 // writing.
5413 if (this->any_postprocessing_sections_)
5414 {
5415 off_t off = this->output_file_size_;
5416 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5417
5418 // Now that we've finalized the names, we can finalize the shstrab.
5419 off =
5420 this->set_section_offsets(off,
5421 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5422
5423 if (off > this->output_file_size_)
5424 {
5425 of->resize(off);
5426 this->output_file_size_ = off;
5427 }
5428 }
5429
5430 for (Section_list::const_iterator p = this->section_list_.begin();
5431 p != this->section_list_.end();
5432 ++p)
5433 {
5434 if ((*p)->after_input_sections())
5435 (*p)->write(of);
5436 }
5437
5438 this->section_headers_->write(of);
5439 }
5440
5441 // If a tree-style build ID was requested, the parallel part of that computation
5442 // is already done, and the final hash-of-hashes is computed here. For other
5443 // types of build IDs, all the work is done here.
5444
5445 void
5446 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5447 size_t size_of_hashes) const
5448 {
5449 if (this->build_id_note_ == NULL)
5450 return;
5451
5452 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5453 this->build_id_note_->data_size());
5454
5455 if (array_of_hashes == NULL)
5456 {
5457 const size_t output_file_size = this->output_file_size();
5458 const unsigned char* iv = of->get_input_view(0, output_file_size);
5459 const char* style = parameters->options().build_id();
5460
5461 // If we get here with style == "tree" then the output must be
5462 // too small for chunking, and we use SHA-1 in that case.
5463 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5464 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5465 else if (strcmp(style, "md5") == 0)
5466 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5467 else
5468 gold_unreachable();
5469
5470 of->free_input_view(0, output_file_size, iv);
5471 }
5472 else
5473 {
5474 // Non-overlapping substrings of the output file have been hashed.
5475 // Compute SHA-1 hash of the hashes.
5476 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5477 size_of_hashes, ov);
5478 delete[] array_of_hashes;
5479 }
5480
5481 of->write_output_view(this->build_id_note_->offset(),
5482 this->build_id_note_->data_size(),
5483 ov);
5484 }
5485
5486 // Write out a binary file. This is called after the link is
5487 // complete. IN is the temporary output file we used to generate the
5488 // ELF code. We simply walk through the segments, read them from
5489 // their file offset in IN, and write them to their load address in
5490 // the output file. FIXME: with a bit more work, we could support
5491 // S-records and/or Intel hex format here.
5492
5493 void
5494 Layout::write_binary(Output_file* in) const
5495 {
5496 gold_assert(parameters->options().oformat_enum()
5497 == General_options::OBJECT_FORMAT_BINARY);
5498
5499 // Get the size of the binary file.
5500 uint64_t max_load_address = 0;
5501 for (Segment_list::const_iterator p = this->segment_list_.begin();
5502 p != this->segment_list_.end();
5503 ++p)
5504 {
5505 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5506 {
5507 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5508 if (max_paddr > max_load_address)
5509 max_load_address = max_paddr;
5510 }
5511 }
5512
5513 Output_file out(parameters->options().output_file_name());
5514 out.open(max_load_address);
5515
5516 for (Segment_list::const_iterator p = this->segment_list_.begin();
5517 p != this->segment_list_.end();
5518 ++p)
5519 {
5520 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5521 {
5522 const unsigned char* vin = in->get_input_view((*p)->offset(),
5523 (*p)->filesz());
5524 unsigned char* vout = out.get_output_view((*p)->paddr(),
5525 (*p)->filesz());
5526 memcpy(vout, vin, (*p)->filesz());
5527 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5528 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5529 }
5530 }
5531
5532 out.close();
5533 }
5534
5535 // Print the output sections to the map file.
5536
5537 void
5538 Layout::print_to_mapfile(Mapfile* mapfile) const
5539 {
5540 for (Segment_list::const_iterator p = this->segment_list_.begin();
5541 p != this->segment_list_.end();
5542 ++p)
5543 (*p)->print_sections_to_mapfile(mapfile);
5544 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5545 p != this->unattached_section_list_.end();
5546 ++p)
5547 (*p)->print_to_mapfile(mapfile);
5548 }
5549
5550 // Print statistical information to stderr. This is used for --stats.
5551
5552 void
5553 Layout::print_stats() const
5554 {
5555 this->namepool_.print_stats("section name pool");
5556 this->sympool_.print_stats("output symbol name pool");
5557 this->dynpool_.print_stats("dynamic name pool");
5558
5559 for (Section_list::const_iterator p = this->section_list_.begin();
5560 p != this->section_list_.end();
5561 ++p)
5562 (*p)->print_merge_stats();
5563 }
5564
5565 // Write_sections_task methods.
5566
5567 // We can always run this task.
5568
5569 Task_token*
5570 Write_sections_task::is_runnable()
5571 {
5572 return NULL;
5573 }
5574
5575 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5576 // when finished.
5577
5578 void
5579 Write_sections_task::locks(Task_locker* tl)
5580 {
5581 tl->add(this, this->output_sections_blocker_);
5582 if (this->input_sections_blocker_ != NULL)
5583 tl->add(this, this->input_sections_blocker_);
5584 tl->add(this, this->final_blocker_);
5585 }
5586
5587 // Run the task--write out the data.
5588
5589 void
5590 Write_sections_task::run(Workqueue*)
5591 {
5592 this->layout_->write_output_sections(this->of_);
5593 }
5594
5595 // Write_data_task methods.
5596
5597 // We can always run this task.
5598
5599 Task_token*
5600 Write_data_task::is_runnable()
5601 {
5602 return NULL;
5603 }
5604
5605 // We need to unlock FINAL_BLOCKER when finished.
5606
5607 void
5608 Write_data_task::locks(Task_locker* tl)
5609 {
5610 tl->add(this, this->final_blocker_);
5611 }
5612
5613 // Run the task--write out the data.
5614
5615 void
5616 Write_data_task::run(Workqueue*)
5617 {
5618 this->layout_->write_data(this->symtab_, this->of_);
5619 }
5620
5621 // Write_symbols_task methods.
5622
5623 // We can always run this task.
5624
5625 Task_token*
5626 Write_symbols_task::is_runnable()
5627 {
5628 return NULL;
5629 }
5630
5631 // We need to unlock FINAL_BLOCKER when finished.
5632
5633 void
5634 Write_symbols_task::locks(Task_locker* tl)
5635 {
5636 tl->add(this, this->final_blocker_);
5637 }
5638
5639 // Run the task--write out the symbols.
5640
5641 void
5642 Write_symbols_task::run(Workqueue*)
5643 {
5644 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5645 this->layout_->symtab_xindex(),
5646 this->layout_->dynsym_xindex(), this->of_);
5647 }
5648
5649 // Write_after_input_sections_task methods.
5650
5651 // We can only run this task after the input sections have completed.
5652
5653 Task_token*
5654 Write_after_input_sections_task::is_runnable()
5655 {
5656 if (this->input_sections_blocker_->is_blocked())
5657 return this->input_sections_blocker_;
5658 return NULL;
5659 }
5660
5661 // We need to unlock FINAL_BLOCKER when finished.
5662
5663 void
5664 Write_after_input_sections_task::locks(Task_locker* tl)
5665 {
5666 tl->add(this, this->final_blocker_);
5667 }
5668
5669 // Run the task.
5670
5671 void
5672 Write_after_input_sections_task::run(Workqueue*)
5673 {
5674 this->layout_->write_sections_after_input_sections(this->of_);
5675 }
5676
5677 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5678 // or as a "tree" where each chunk of the string is hashed and then those
5679 // hashes are put into a (much smaller) string which is hashed with sha1.
5680 // We compute a checksum over the entire file because that is simplest.
5681
5682 void
5683 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5684 {
5685 Task_token* post_hash_tasks_blocker = new Task_token(true);
5686 const Layout* layout = this->layout_;
5687 Output_file* of = this->of_;
5688 const size_t filesize = (layout->output_file_size() <= 0 ? 0
5689 : static_cast<size_t>(layout->output_file_size()));
5690 unsigned char* array_of_hashes = NULL;
5691 size_t size_of_hashes = 0;
5692
5693 if (strcmp(this->options_->build_id(), "tree") == 0
5694 && this->options_->build_id_chunk_size_for_treehash() > 0
5695 && filesize > 0
5696 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5697 {
5698 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5699 const size_t chunk_size =
5700 this->options_->build_id_chunk_size_for_treehash();
5701 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5702 post_hash_tasks_blocker->add_blockers(num_hashes);
5703 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5704 array_of_hashes = new unsigned char[size_of_hashes];
5705 unsigned char *dst = array_of_hashes;
5706 for (size_t i = 0, src_offset = 0; i < num_hashes;
5707 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5708 {
5709 size_t size = std::min(chunk_size, filesize - src_offset);
5710 workqueue->queue(new Hash_task(of,
5711 src_offset,
5712 size,
5713 dst,
5714 post_hash_tasks_blocker));
5715 }
5716 }
5717
5718 // Queue the final task to write the build id and close the output file.
5719 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5720 layout,
5721 of,
5722 array_of_hashes,
5723 size_of_hashes),
5724 post_hash_tasks_blocker,
5725 "Task_function Close_task_runner"));
5726 }
5727
5728 // Close_task_runner methods.
5729
5730 // Finish up the build ID computation, if necessary, and write a binary file,
5731 // if necessary. Then close the output file.
5732
5733 void
5734 Close_task_runner::run(Workqueue*, const Task*)
5735 {
5736 // At this point the multi-threaded part of the build ID computation,
5737 // if any, is done. See Build_id_task_runner.
5738 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5739 this->size_of_hashes_);
5740
5741 // If we've been asked to create a binary file, we do so here.
5742 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5743 this->layout_->write_binary(this->of_);
5744
5745 this->of_->close();
5746 }
5747
5748 // Instantiate the templates we need. We could use the configure
5749 // script to restrict this to only the ones for implemented targets.
5750
5751 #ifdef HAVE_TARGET_32_LITTLE
5752 template
5753 Output_section*
5754 Layout::init_fixed_output_section<32, false>(
5755 const char* name,
5756 elfcpp::Shdr<32, false>& shdr);
5757 #endif
5758
5759 #ifdef HAVE_TARGET_32_BIG
5760 template
5761 Output_section*
5762 Layout::init_fixed_output_section<32, true>(
5763 const char* name,
5764 elfcpp::Shdr<32, true>& shdr);
5765 #endif
5766
5767 #ifdef HAVE_TARGET_64_LITTLE
5768 template
5769 Output_section*
5770 Layout::init_fixed_output_section<64, false>(
5771 const char* name,
5772 elfcpp::Shdr<64, false>& shdr);
5773 #endif
5774
5775 #ifdef HAVE_TARGET_64_BIG
5776 template
5777 Output_section*
5778 Layout::init_fixed_output_section<64, true>(
5779 const char* name,
5780 elfcpp::Shdr<64, true>& shdr);
5781 #endif
5782
5783 #ifdef HAVE_TARGET_32_LITTLE
5784 template
5785 Output_section*
5786 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5787 unsigned int shndx,
5788 const char* name,
5789 const elfcpp::Shdr<32, false>& shdr,
5790 unsigned int, unsigned int, off_t*);
5791 #endif
5792
5793 #ifdef HAVE_TARGET_32_BIG
5794 template
5795 Output_section*
5796 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5797 unsigned int shndx,
5798 const char* name,
5799 const elfcpp::Shdr<32, true>& shdr,
5800 unsigned int, unsigned int, off_t*);
5801 #endif
5802
5803 #ifdef HAVE_TARGET_64_LITTLE
5804 template
5805 Output_section*
5806 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5807 unsigned int shndx,
5808 const char* name,
5809 const elfcpp::Shdr<64, false>& shdr,
5810 unsigned int, unsigned int, off_t*);
5811 #endif
5812
5813 #ifdef HAVE_TARGET_64_BIG
5814 template
5815 Output_section*
5816 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5817 unsigned int shndx,
5818 const char* name,
5819 const elfcpp::Shdr<64, true>& shdr,
5820 unsigned int, unsigned int, off_t*);
5821 #endif
5822
5823 #ifdef HAVE_TARGET_32_LITTLE
5824 template
5825 Output_section*
5826 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5827 unsigned int reloc_shndx,
5828 const elfcpp::Shdr<32, false>& shdr,
5829 Output_section* data_section,
5830 Relocatable_relocs* rr);
5831 #endif
5832
5833 #ifdef HAVE_TARGET_32_BIG
5834 template
5835 Output_section*
5836 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5837 unsigned int reloc_shndx,
5838 const elfcpp::Shdr<32, true>& shdr,
5839 Output_section* data_section,
5840 Relocatable_relocs* rr);
5841 #endif
5842
5843 #ifdef HAVE_TARGET_64_LITTLE
5844 template
5845 Output_section*
5846 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5847 unsigned int reloc_shndx,
5848 const elfcpp::Shdr<64, false>& shdr,
5849 Output_section* data_section,
5850 Relocatable_relocs* rr);
5851 #endif
5852
5853 #ifdef HAVE_TARGET_64_BIG
5854 template
5855 Output_section*
5856 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5857 unsigned int reloc_shndx,
5858 const elfcpp::Shdr<64, true>& shdr,
5859 Output_section* data_section,
5860 Relocatable_relocs* rr);
5861 #endif
5862
5863 #ifdef HAVE_TARGET_32_LITTLE
5864 template
5865 void
5866 Layout::layout_group<32, false>(Symbol_table* symtab,
5867 Sized_relobj_file<32, false>* object,
5868 unsigned int,
5869 const char* group_section_name,
5870 const char* signature,
5871 const elfcpp::Shdr<32, false>& shdr,
5872 elfcpp::Elf_Word flags,
5873 std::vector<unsigned int>* shndxes);
5874 #endif
5875
5876 #ifdef HAVE_TARGET_32_BIG
5877 template
5878 void
5879 Layout::layout_group<32, true>(Symbol_table* symtab,
5880 Sized_relobj_file<32, true>* object,
5881 unsigned int,
5882 const char* group_section_name,
5883 const char* signature,
5884 const elfcpp::Shdr<32, true>& shdr,
5885 elfcpp::Elf_Word flags,
5886 std::vector<unsigned int>* shndxes);
5887 #endif
5888
5889 #ifdef HAVE_TARGET_64_LITTLE
5890 template
5891 void
5892 Layout::layout_group<64, false>(Symbol_table* symtab,
5893 Sized_relobj_file<64, false>* object,
5894 unsigned int,
5895 const char* group_section_name,
5896 const char* signature,
5897 const elfcpp::Shdr<64, false>& shdr,
5898 elfcpp::Elf_Word flags,
5899 std::vector<unsigned int>* shndxes);
5900 #endif
5901
5902 #ifdef HAVE_TARGET_64_BIG
5903 template
5904 void
5905 Layout::layout_group<64, true>(Symbol_table* symtab,
5906 Sized_relobj_file<64, true>* object,
5907 unsigned int,
5908 const char* group_section_name,
5909 const char* signature,
5910 const elfcpp::Shdr<64, true>& shdr,
5911 elfcpp::Elf_Word flags,
5912 std::vector<unsigned int>* shndxes);
5913 #endif
5914
5915 #ifdef HAVE_TARGET_32_LITTLE
5916 template
5917 Output_section*
5918 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5919 const unsigned char* symbols,
5920 off_t symbols_size,
5921 const unsigned char* symbol_names,
5922 off_t symbol_names_size,
5923 unsigned int shndx,
5924 const elfcpp::Shdr<32, false>& shdr,
5925 unsigned int reloc_shndx,
5926 unsigned int reloc_type,
5927 off_t* off);
5928 #endif
5929
5930 #ifdef HAVE_TARGET_32_BIG
5931 template
5932 Output_section*
5933 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5934 const unsigned char* symbols,
5935 off_t symbols_size,
5936 const unsigned char* symbol_names,
5937 off_t symbol_names_size,
5938 unsigned int shndx,
5939 const elfcpp::Shdr<32, true>& shdr,
5940 unsigned int reloc_shndx,
5941 unsigned int reloc_type,
5942 off_t* off);
5943 #endif
5944
5945 #ifdef HAVE_TARGET_64_LITTLE
5946 template
5947 Output_section*
5948 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5949 const unsigned char* symbols,
5950 off_t symbols_size,
5951 const unsigned char* symbol_names,
5952 off_t symbol_names_size,
5953 unsigned int shndx,
5954 const elfcpp::Shdr<64, false>& shdr,
5955 unsigned int reloc_shndx,
5956 unsigned int reloc_type,
5957 off_t* off);
5958 #endif
5959
5960 #ifdef HAVE_TARGET_64_BIG
5961 template
5962 Output_section*
5963 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5964 const unsigned char* symbols,
5965 off_t symbols_size,
5966 const unsigned char* symbol_names,
5967 off_t symbol_names_size,
5968 unsigned int shndx,
5969 const elfcpp::Shdr<64, true>& shdr,
5970 unsigned int reloc_shndx,
5971 unsigned int reloc_type,
5972 off_t* off);
5973 #endif
5974
5975 #ifdef HAVE_TARGET_32_LITTLE
5976 template
5977 void
5978 Layout::add_to_gdb_index(bool is_type_unit,
5979 Sized_relobj<32, false>* object,
5980 const unsigned char* symbols,
5981 off_t symbols_size,
5982 unsigned int shndx,
5983 unsigned int reloc_shndx,
5984 unsigned int reloc_type);
5985 #endif
5986
5987 #ifdef HAVE_TARGET_32_BIG
5988 template
5989 void
5990 Layout::add_to_gdb_index(bool is_type_unit,
5991 Sized_relobj<32, true>* object,
5992 const unsigned char* symbols,
5993 off_t symbols_size,
5994 unsigned int shndx,
5995 unsigned int reloc_shndx,
5996 unsigned int reloc_type);
5997 #endif
5998
5999 #ifdef HAVE_TARGET_64_LITTLE
6000 template
6001 void
6002 Layout::add_to_gdb_index(bool is_type_unit,
6003 Sized_relobj<64, false>* object,
6004 const unsigned char* symbols,
6005 off_t symbols_size,
6006 unsigned int shndx,
6007 unsigned int reloc_shndx,
6008 unsigned int reloc_type);
6009 #endif
6010
6011 #ifdef HAVE_TARGET_64_BIG
6012 template
6013 void
6014 Layout::add_to_gdb_index(bool is_type_unit,
6015 Sized_relobj<64, true>* object,
6016 const unsigned char* symbols,
6017 off_t symbols_size,
6018 unsigned int shndx,
6019 unsigned int reloc_shndx,
6020 unsigned int reloc_type);
6021 #endif
6022
6023 } // End namespace gold.