]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
gold/
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // A Hash_task computes the MD5 checksum of an array of char.
240 // It has a blocker on either side (i.e., the task cannot run until
241 // the first is unblocked, and it unblocks the second after running).
242
243 class Hash_task : public Task
244 {
245 public:
246 Hash_task(const unsigned char* src,
247 size_t size,
248 unsigned char* dst,
249 Task_token* build_id_blocker,
250 Task_token* final_blocker)
251 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
252 final_blocker_(final_blocker)
253 { }
254
255 void
256 run(Workqueue*)
257 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
258
259 Task_token*
260 is_runnable();
261
262 // Unblock FINAL_BLOCKER_ when done.
263 void
264 locks(Task_locker* tl)
265 { tl->add(this, this->final_blocker_); }
266
267 std::string
268 get_name() const
269 { return "Hash_task"; }
270
271 private:
272 const unsigned char* const src_;
273 const size_t size_;
274 unsigned char* const dst_;
275 Task_token* const build_id_blocker_;
276 Task_token* const final_blocker_;
277 };
278
279 Task_token*
280 Hash_task::is_runnable()
281 {
282 if (this->build_id_blocker_->is_blocked())
283 return this->build_id_blocker_;
284 return NULL;
285 }
286
287 // Layout::Relaxation_debug_check methods.
288
289 // Check that sections and special data are in reset states.
290 // We do not save states for Output_sections and special Output_data.
291 // So we check that they have not assigned any addresses or offsets.
292 // clean_up_after_relaxation simply resets their addresses and offsets.
293 void
294 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
295 const Layout::Section_list& sections,
296 const Layout::Data_list& special_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307 }
308
309 // Save information of SECTIONS for checking later.
310
311 void
312 Layout::Relaxation_debug_check::read_sections(
313 const Layout::Section_list& sections)
314 {
315 for(Layout::Section_list::const_iterator p = sections.begin();
316 p != sections.end();
317 ++p)
318 {
319 Output_section* os = *p;
320 Section_info info;
321 info.output_section = os;
322 info.address = os->is_address_valid() ? os->address() : 0;
323 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
324 info.offset = os->is_offset_valid()? os->offset() : -1 ;
325 this->section_infos_.push_back(info);
326 }
327 }
328
329 // Verify SECTIONS using previously recorded information.
330
331 void
332 Layout::Relaxation_debug_check::verify_sections(
333 const Layout::Section_list& sections)
334 {
335 size_t i = 0;
336 for(Layout::Section_list::const_iterator p = sections.begin();
337 p != sections.end();
338 ++p, ++i)
339 {
340 Output_section* os = *p;
341 uint64_t address = os->is_address_valid() ? os->address() : 0;
342 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
343 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
344
345 if (i >= this->section_infos_.size())
346 {
347 gold_fatal("Section_info of %s missing.\n", os->name());
348 }
349 const Section_info& info = this->section_infos_[i];
350 if (os != info.output_section)
351 gold_fatal("Section order changed. Expecting %s but see %s\n",
352 info.output_section->name(), os->name());
353 if (address != info.address
354 || data_size != info.data_size
355 || offset != info.offset)
356 gold_fatal("Section %s changed.\n", os->name());
357 }
358 }
359
360 // Layout_task_runner methods.
361
362 // Lay out the sections. This is called after all the input objects
363 // have been read.
364
365 void
366 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
367 {
368 // See if any of the input definitions violate the One Definition Rule.
369 // TODO: if this is too slow, do this as a task, rather than inline.
370 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
371
372 Layout* layout = this->layout_;
373 off_t file_size = layout->finalize(this->input_objects_,
374 this->symtab_,
375 this->target_,
376 task);
377
378 // Now we know the final size of the output file and we know where
379 // each piece of information goes.
380
381 if (this->mapfile_ != NULL)
382 {
383 this->mapfile_->print_discarded_sections(this->input_objects_);
384 layout->print_to_mapfile(this->mapfile_);
385 }
386
387 Output_file* of;
388 if (layout->incremental_base() == NULL)
389 {
390 of = new Output_file(parameters->options().output_file_name());
391 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
392 of->set_is_temporary();
393 of->open(file_size);
394 }
395 else
396 {
397 of = layout->incremental_base()->output_file();
398
399 // Apply the incremental relocations for symbols whose values
400 // have changed. We do this before we resize the file and start
401 // writing anything else to it, so that we can read the old
402 // incremental information from the file before (possibly)
403 // overwriting it.
404 if (parameters->incremental_update())
405 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
406 this->layout_,
407 of);
408
409 of->resize(file_size);
410 }
411
412 // Queue up the final set of tasks.
413 gold::queue_final_tasks(this->options_, this->input_objects_,
414 this->symtab_, layout, workqueue, of);
415 }
416
417 // Layout methods.
418
419 Layout::Layout(int number_of_input_files, Script_options* script_options)
420 : number_of_input_files_(number_of_input_files),
421 script_options_(script_options),
422 namepool_(),
423 sympool_(),
424 dynpool_(),
425 signatures_(),
426 section_name_map_(),
427 segment_list_(),
428 section_list_(),
429 unattached_section_list_(),
430 special_output_list_(),
431 section_headers_(NULL),
432 tls_segment_(NULL),
433 relro_segment_(NULL),
434 interp_segment_(NULL),
435 increase_relro_(0),
436 symtab_section_(NULL),
437 symtab_xindex_(NULL),
438 dynsym_section_(NULL),
439 dynsym_xindex_(NULL),
440 dynamic_section_(NULL),
441 dynamic_symbol_(NULL),
442 dynamic_data_(NULL),
443 eh_frame_section_(NULL),
444 eh_frame_data_(NULL),
445 added_eh_frame_data_(false),
446 eh_frame_hdr_section_(NULL),
447 gdb_index_data_(NULL),
448 build_id_note_(NULL),
449 array_of_hashes_(NULL),
450 size_of_array_of_hashes_(0),
451 input_view_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "info",
525 "types",
526 "line",
527 "loc",
528 "macinfo",
529 "macro",
530 // "pubnames", // not used by gdb as of 7.4
531 // "pubtypes", // not used by gdb as of 7.4
532 "ranges",
533 "str",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540 "abbrev",
541 // "addr", // Fission extension
542 // "aranges", // not used by gdb as of 7.4
543 // "frame",
544 "info",
545 // "types",
546 "line",
547 // "loc",
548 // "macinfo",
549 // "macro",
550 // "pubnames", // not used by gdb as of 7.4
551 // "pubtypes", // not used by gdb as of 7.4
552 // "ranges",
553 "str",
554 };
555
556 // These sections are the DWARF fast-lookup tables, and are not needed
557 // when building a .gdb_index section.
558
559 static const char* gdb_fast_lookup_sections[] =
560 {
561 "aranges",
562 "pubnames",
563 "pubtypes",
564 };
565
566 // Returns whether the given debug section is in the list of
567 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
568 // portion of the name following ".debug_" or ".zdebug_".
569
570 static inline bool
571 is_gdb_debug_section(const char* suffix)
572 {
573 // We can do this faster: binary search or a hashtable. But why bother?
574 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
575 if (strcmp(suffix, gdb_sections[i]) == 0)
576 return true;
577 return false;
578 }
579
580 // Returns whether the given section is needed for lines-only debugging.
581
582 static inline bool
583 is_lines_only_debug_section(const char* suffix)
584 {
585 // We can do this faster: binary search or a hashtable. But why bother?
586 for (size_t i = 0;
587 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
588 ++i)
589 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
590 return true;
591 return false;
592 }
593
594 // Returns whether the given section is a fast-lookup section that
595 // will not be needed when building a .gdb_index section.
596
597 static inline bool
598 is_gdb_fast_lookup_section(const char* suffix)
599 {
600 // We can do this faster: binary search or a hashtable. But why bother?
601 for (size_t i = 0;
602 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
603 ++i)
604 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
605 return true;
606 return false;
607 }
608
609 // Sometimes we compress sections. This is typically done for
610 // sections that are not part of normal program execution (such as
611 // .debug_* sections), and where the readers of these sections know
612 // how to deal with compressed sections. This routine doesn't say for
613 // certain whether we'll compress -- it depends on commandline options
614 // as well -- just whether this section is a candidate for compression.
615 // (The Output_compressed_section class decides whether to compress
616 // a given section, and picks the name of the compressed section.)
617
618 static bool
619 is_compressible_debug_section(const char* secname)
620 {
621 return (is_prefix_of(".debug", secname));
622 }
623
624 // We may see compressed debug sections in input files. Return TRUE
625 // if this is the name of a compressed debug section.
626
627 bool
628 is_compressed_debug_section(const char* secname)
629 {
630 return (is_prefix_of(".zdebug", secname));
631 }
632
633 // Whether to include this section in the link.
634
635 template<int size, bool big_endian>
636 bool
637 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
638 const elfcpp::Shdr<size, big_endian>& shdr)
639 {
640 if (!parameters->options().relocatable()
641 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
642 return false;
643
644 switch (shdr.get_sh_type())
645 {
646 case elfcpp::SHT_NULL:
647 case elfcpp::SHT_SYMTAB:
648 case elfcpp::SHT_DYNSYM:
649 case elfcpp::SHT_HASH:
650 case elfcpp::SHT_DYNAMIC:
651 case elfcpp::SHT_SYMTAB_SHNDX:
652 return false;
653
654 case elfcpp::SHT_STRTAB:
655 // Discard the sections which have special meanings in the ELF
656 // ABI. Keep others (e.g., .stabstr). We could also do this by
657 // checking the sh_link fields of the appropriate sections.
658 return (strcmp(name, ".dynstr") != 0
659 && strcmp(name, ".strtab") != 0
660 && strcmp(name, ".shstrtab") != 0);
661
662 case elfcpp::SHT_RELA:
663 case elfcpp::SHT_REL:
664 case elfcpp::SHT_GROUP:
665 // If we are emitting relocations these should be handled
666 // elsewhere.
667 gold_assert(!parameters->options().relocatable());
668 return false;
669
670 case elfcpp::SHT_PROGBITS:
671 if (parameters->options().strip_debug()
672 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
673 {
674 if (is_debug_info_section(name))
675 return false;
676 }
677 if (parameters->options().strip_debug_non_line()
678 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
679 {
680 // Debugging sections can only be recognized by name.
681 if (is_prefix_of(".debug_", name)
682 && !is_lines_only_debug_section(name + 7))
683 return false;
684 if (is_prefix_of(".zdebug_", name)
685 && !is_lines_only_debug_section(name + 8))
686 return false;
687 }
688 if (parameters->options().strip_debug_gdb()
689 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
690 {
691 // Debugging sections can only be recognized by name.
692 if (is_prefix_of(".debug_", name)
693 && !is_gdb_debug_section(name + 7))
694 return false;
695 if (is_prefix_of(".zdebug_", name)
696 && !is_gdb_debug_section(name + 8))
697 return false;
698 }
699 if (parameters->options().gdb_index()
700 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701 {
702 // When building .gdb_index, we can strip .debug_pubnames,
703 // .debug_pubtypes, and .debug_aranges sections.
704 if (is_prefix_of(".debug_", name)
705 && is_gdb_fast_lookup_section(name + 7))
706 return false;
707 if (is_prefix_of(".zdebug_", name)
708 && is_gdb_fast_lookup_section(name + 8))
709 return false;
710 }
711 if (parameters->options().strip_lto_sections()
712 && !parameters->options().relocatable()
713 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
714 {
715 // Ignore LTO sections containing intermediate code.
716 if (is_prefix_of(".gnu.lto_", name))
717 return false;
718 }
719 // The GNU linker strips .gnu_debuglink sections, so we do too.
720 // This is a feature used to keep debugging information in
721 // separate files.
722 if (strcmp(name, ".gnu_debuglink") == 0)
723 return false;
724 return true;
725
726 default:
727 return true;
728 }
729 }
730
731 // Return an output section named NAME, or NULL if there is none.
732
733 Output_section*
734 Layout::find_output_section(const char* name) const
735 {
736 for (Section_list::const_iterator p = this->section_list_.begin();
737 p != this->section_list_.end();
738 ++p)
739 if (strcmp((*p)->name(), name) == 0)
740 return *p;
741 return NULL;
742 }
743
744 // Return an output segment of type TYPE, with segment flags SET set
745 // and segment flags CLEAR clear. Return NULL if there is none.
746
747 Output_segment*
748 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
749 elfcpp::Elf_Word clear) const
750 {
751 for (Segment_list::const_iterator p = this->segment_list_.begin();
752 p != this->segment_list_.end();
753 ++p)
754 if (static_cast<elfcpp::PT>((*p)->type()) == type
755 && ((*p)->flags() & set) == set
756 && ((*p)->flags() & clear) == 0)
757 return *p;
758 return NULL;
759 }
760
761 // When we put a .ctors or .dtors section with more than one word into
762 // a .init_array or .fini_array section, we need to reverse the words
763 // in the .ctors/.dtors section. This is because .init_array executes
764 // constructors front to back, where .ctors executes them back to
765 // front, and vice-versa for .fini_array/.dtors. Although we do want
766 // to remap .ctors/.dtors into .init_array/.fini_array because it can
767 // be more efficient, we don't want to change the order in which
768 // constructors/destructors are run. This set just keeps track of
769 // these sections which need to be reversed. It is only changed by
770 // Layout::layout. It should be a private member of Layout, but that
771 // would require layout.h to #include object.h to get the definition
772 // of Section_id.
773 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
774
775 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
776 // .init_array/.fini_array section.
777
778 bool
779 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
780 {
781 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
782 != ctors_sections_in_init_array.end());
783 }
784
785 // Return the output section to use for section NAME with type TYPE
786 // and section flags FLAGS. NAME must be canonicalized in the string
787 // pool, and NAME_KEY is the key. ORDER is where this should appear
788 // in the output sections. IS_RELRO is true for a relro section.
789
790 Output_section*
791 Layout::get_output_section(const char* name, Stringpool::Key name_key,
792 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
793 Output_section_order order, bool is_relro)
794 {
795 elfcpp::Elf_Word lookup_type = type;
796
797 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
798 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
799 // .init_array, .fini_array, and .preinit_array sections by name
800 // whatever their type in the input file. We do this because the
801 // types are not always right in the input files.
802 if (lookup_type == elfcpp::SHT_INIT_ARRAY
803 || lookup_type == elfcpp::SHT_FINI_ARRAY
804 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
805 lookup_type = elfcpp::SHT_PROGBITS;
806
807 elfcpp::Elf_Xword lookup_flags = flags;
808
809 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
810 // read-write with read-only sections. Some other ELF linkers do
811 // not do this. FIXME: Perhaps there should be an option
812 // controlling this.
813 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
814
815 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
816 const std::pair<Key, Output_section*> v(key, NULL);
817 std::pair<Section_name_map::iterator, bool> ins(
818 this->section_name_map_.insert(v));
819
820 if (!ins.second)
821 return ins.first->second;
822 else
823 {
824 // This is the first time we've seen this name/type/flags
825 // combination. For compatibility with the GNU linker, we
826 // combine sections with contents and zero flags with sections
827 // with non-zero flags. This is a workaround for cases where
828 // assembler code forgets to set section flags. FIXME: Perhaps
829 // there should be an option to control this.
830 Output_section* os = NULL;
831
832 if (lookup_type == elfcpp::SHT_PROGBITS)
833 {
834 if (flags == 0)
835 {
836 Output_section* same_name = this->find_output_section(name);
837 if (same_name != NULL
838 && (same_name->type() == elfcpp::SHT_PROGBITS
839 || same_name->type() == elfcpp::SHT_INIT_ARRAY
840 || same_name->type() == elfcpp::SHT_FINI_ARRAY
841 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
842 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
843 os = same_name;
844 }
845 else if ((flags & elfcpp::SHF_TLS) == 0)
846 {
847 elfcpp::Elf_Xword zero_flags = 0;
848 const Key zero_key(name_key, std::make_pair(lookup_type,
849 zero_flags));
850 Section_name_map::iterator p =
851 this->section_name_map_.find(zero_key);
852 if (p != this->section_name_map_.end())
853 os = p->second;
854 }
855 }
856
857 if (os == NULL)
858 os = this->make_output_section(name, type, flags, order, is_relro);
859
860 ins.first->second = os;
861 return os;
862 }
863 }
864
865 // Returns TRUE iff NAME (an input section from RELOBJ) will
866 // be mapped to an output section that should be KEPT.
867
868 bool
869 Layout::keep_input_section(const Relobj* relobj, const char* name)
870 {
871 if (! this->script_options_->saw_sections_clause())
872 return false;
873
874 Script_sections* ss = this->script_options_->script_sections();
875 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
876 Output_section** output_section_slot;
877 Script_sections::Section_type script_section_type;
878 bool keep;
879
880 name = ss->output_section_name(file_name, name, &output_section_slot,
881 &script_section_type, &keep);
882 return name != NULL && keep;
883 }
884
885 // Clear the input section flags that should not be copied to the
886 // output section.
887
888 elfcpp::Elf_Xword
889 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
890 {
891 // Some flags in the input section should not be automatically
892 // copied to the output section.
893 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
894 | elfcpp::SHF_GROUP
895 | elfcpp::SHF_MERGE
896 | elfcpp::SHF_STRINGS);
897
898 // We only clear the SHF_LINK_ORDER flag in for
899 // a non-relocatable link.
900 if (!parameters->options().relocatable())
901 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
902
903 return input_section_flags;
904 }
905
906 // Pick the output section to use for section NAME, in input file
907 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
908 // linker created section. IS_INPUT_SECTION is true if we are
909 // choosing an output section for an input section found in a input
910 // file. ORDER is where this section should appear in the output
911 // sections. IS_RELRO is true for a relro section. This will return
912 // NULL if the input section should be discarded.
913
914 Output_section*
915 Layout::choose_output_section(const Relobj* relobj, const char* name,
916 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
917 bool is_input_section, Output_section_order order,
918 bool is_relro)
919 {
920 // We should not see any input sections after we have attached
921 // sections to segments.
922 gold_assert(!is_input_section || !this->sections_are_attached_);
923
924 flags = this->get_output_section_flags(flags);
925
926 if (this->script_options_->saw_sections_clause())
927 {
928 // We are using a SECTIONS clause, so the output section is
929 // chosen based only on the name.
930
931 Script_sections* ss = this->script_options_->script_sections();
932 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
933 Output_section** output_section_slot;
934 Script_sections::Section_type script_section_type;
935 const char* orig_name = name;
936 bool keep;
937 name = ss->output_section_name(file_name, name, &output_section_slot,
938 &script_section_type, &keep);
939
940 if (name == NULL)
941 {
942 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
943 "because it is not allowed by the "
944 "SECTIONS clause of the linker script"),
945 orig_name);
946 // The SECTIONS clause says to discard this input section.
947 return NULL;
948 }
949
950 // We can only handle script section types ST_NONE and ST_NOLOAD.
951 switch (script_section_type)
952 {
953 case Script_sections::ST_NONE:
954 break;
955 case Script_sections::ST_NOLOAD:
956 flags &= elfcpp::SHF_ALLOC;
957 break;
958 default:
959 gold_unreachable();
960 }
961
962 // If this is an orphan section--one not mentioned in the linker
963 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
964 // default processing below.
965
966 if (output_section_slot != NULL)
967 {
968 if (*output_section_slot != NULL)
969 {
970 (*output_section_slot)->update_flags_for_input_section(flags);
971 return *output_section_slot;
972 }
973
974 // We don't put sections found in the linker script into
975 // SECTION_NAME_MAP_. That keeps us from getting confused
976 // if an orphan section is mapped to a section with the same
977 // name as one in the linker script.
978
979 name = this->namepool_.add(name, false, NULL);
980
981 Output_section* os = this->make_output_section(name, type, flags,
982 order, is_relro);
983
984 os->set_found_in_sections_clause();
985
986 // Special handling for NOLOAD sections.
987 if (script_section_type == Script_sections::ST_NOLOAD)
988 {
989 os->set_is_noload();
990
991 // The constructor of Output_section sets addresses of non-ALLOC
992 // sections to 0 by default. We don't want that for NOLOAD
993 // sections even if they have no SHF_ALLOC flag.
994 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
995 && os->is_address_valid())
996 {
997 gold_assert(os->address() == 0
998 && !os->is_offset_valid()
999 && !os->is_data_size_valid());
1000 os->reset_address_and_file_offset();
1001 }
1002 }
1003
1004 *output_section_slot = os;
1005 return os;
1006 }
1007 }
1008
1009 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1010
1011 size_t len = strlen(name);
1012 char* uncompressed_name = NULL;
1013
1014 // Compressed debug sections should be mapped to the corresponding
1015 // uncompressed section.
1016 if (is_compressed_debug_section(name))
1017 {
1018 uncompressed_name = new char[len];
1019 uncompressed_name[0] = '.';
1020 gold_assert(name[0] == '.' && name[1] == 'z');
1021 strncpy(&uncompressed_name[1], &name[2], len - 2);
1022 uncompressed_name[len - 1] = '\0';
1023 len -= 1;
1024 name = uncompressed_name;
1025 }
1026
1027 // Turn NAME from the name of the input section into the name of the
1028 // output section.
1029 if (is_input_section
1030 && !this->script_options_->saw_sections_clause()
1031 && !parameters->options().relocatable())
1032 {
1033 const char *orig_name = name;
1034 name = parameters->target().output_section_name(relobj, name, &len);
1035 if (name == NULL)
1036 name = Layout::output_section_name(relobj, orig_name, &len);
1037 }
1038
1039 Stringpool::Key name_key;
1040 name = this->namepool_.add_with_length(name, len, true, &name_key);
1041
1042 if (uncompressed_name != NULL)
1043 delete[] uncompressed_name;
1044
1045 // Find or make the output section. The output section is selected
1046 // based on the section name, type, and flags.
1047 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1048 }
1049
1050 // For incremental links, record the initial fixed layout of a section
1051 // from the base file, and return a pointer to the Output_section.
1052
1053 template<int size, bool big_endian>
1054 Output_section*
1055 Layout::init_fixed_output_section(const char* name,
1056 elfcpp::Shdr<size, big_endian>& shdr)
1057 {
1058 unsigned int sh_type = shdr.get_sh_type();
1059
1060 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1061 // PRE_INIT_ARRAY, and NOTE sections.
1062 // All others will be created from scratch and reallocated.
1063 if (!can_incremental_update(sh_type))
1064 return NULL;
1065
1066 // If we're generating a .gdb_index section, we need to regenerate
1067 // it from scratch.
1068 if (parameters->options().gdb_index()
1069 && sh_type == elfcpp::SHT_PROGBITS
1070 && strcmp(name, ".gdb_index") == 0)
1071 return NULL;
1072
1073 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1074 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1075 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1076 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1077 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1078 shdr.get_sh_addralign();
1079
1080 // Make the output section.
1081 Stringpool::Key name_key;
1082 name = this->namepool_.add(name, true, &name_key);
1083 Output_section* os = this->get_output_section(name, name_key, sh_type,
1084 sh_flags, ORDER_INVALID, false);
1085 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1086 if (sh_type != elfcpp::SHT_NOBITS)
1087 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1088 return os;
1089 }
1090
1091 // Return the index by which an input section should be ordered. This
1092 // is used to sort some .text sections, for compatibility with GNU ld.
1093
1094 int
1095 Layout::special_ordering_of_input_section(const char* name)
1096 {
1097 // The GNU linker has some special handling for some sections that
1098 // wind up in the .text section. Sections that start with these
1099 // prefixes must appear first, and must appear in the order listed
1100 // here.
1101 static const char* const text_section_sort[] =
1102 {
1103 ".text.unlikely",
1104 ".text.exit",
1105 ".text.startup",
1106 ".text.hot"
1107 };
1108
1109 for (size_t i = 0;
1110 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1111 i++)
1112 if (is_prefix_of(text_section_sort[i], name))
1113 return i;
1114
1115 return -1;
1116 }
1117
1118 // Return the output section to use for input section SHNDX, with name
1119 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1120 // index of a relocation section which applies to this section, or 0
1121 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1122 // relocation section if there is one. Set *OFF to the offset of this
1123 // input section without the output section. Return NULL if the
1124 // section should be discarded. Set *OFF to -1 if the section
1125 // contents should not be written directly to the output file, but
1126 // will instead receive special handling.
1127
1128 template<int size, bool big_endian>
1129 Output_section*
1130 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1131 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1132 unsigned int reloc_shndx, unsigned int, off_t* off)
1133 {
1134 *off = 0;
1135
1136 if (!this->include_section(object, name, shdr))
1137 return NULL;
1138
1139 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1140
1141 // In a relocatable link a grouped section must not be combined with
1142 // any other sections.
1143 Output_section* os;
1144 if (parameters->options().relocatable()
1145 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1146 {
1147 name = this->namepool_.add(name, true, NULL);
1148 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1149 ORDER_INVALID, false);
1150 }
1151 else
1152 {
1153 // Plugins can choose to place one or more subsets of sections in
1154 // unique segments and this is done by mapping these section subsets
1155 // to unique output sections. Check if this section needs to be
1156 // remapped to a unique output section.
1157 Section_segment_map::iterator it
1158 = this->section_segment_map_.find(Const_section_id(object, shndx));
1159 if (it == this->section_segment_map_.end())
1160 {
1161 os = this->choose_output_section(object, name, sh_type,
1162 shdr.get_sh_flags(), true,
1163 ORDER_INVALID, false);
1164 }
1165 else
1166 {
1167 // We know the name of the output section, directly call
1168 // get_output_section here by-passing choose_output_section.
1169 elfcpp::Elf_Xword flags
1170 = this->get_output_section_flags(shdr.get_sh_flags());
1171
1172 const char* os_name = it->second->name;
1173 Stringpool::Key name_key;
1174 os_name = this->namepool_.add(os_name, true, &name_key);
1175 os = this->get_output_section(os_name, name_key, sh_type, flags,
1176 ORDER_INVALID, false);
1177 if (!os->is_unique_segment())
1178 {
1179 os->set_is_unique_segment();
1180 os->set_extra_segment_flags(it->second->flags);
1181 os->set_segment_alignment(it->second->align);
1182 }
1183 }
1184 if (os == NULL)
1185 return NULL;
1186 }
1187
1188 // By default the GNU linker sorts input sections whose names match
1189 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1190 // sections are sorted by name. This is used to implement
1191 // constructor priority ordering. We are compatible. When we put
1192 // .ctor sections in .init_array and .dtor sections in .fini_array,
1193 // we must also sort plain .ctor and .dtor sections.
1194 if (!this->script_options_->saw_sections_clause()
1195 && !parameters->options().relocatable()
1196 && (is_prefix_of(".ctors.", name)
1197 || is_prefix_of(".dtors.", name)
1198 || is_prefix_of(".init_array.", name)
1199 || is_prefix_of(".fini_array.", name)
1200 || (parameters->options().ctors_in_init_array()
1201 && (strcmp(name, ".ctors") == 0
1202 || strcmp(name, ".dtors") == 0))))
1203 os->set_must_sort_attached_input_sections();
1204
1205 // By default the GNU linker sorts some special text sections ahead
1206 // of others. We are compatible.
1207 if (parameters->options().text_reorder()
1208 && !this->script_options_->saw_sections_clause()
1209 && !this->is_section_ordering_specified()
1210 && !parameters->options().relocatable()
1211 && Layout::special_ordering_of_input_section(name) >= 0)
1212 os->set_must_sort_attached_input_sections();
1213
1214 // If this is a .ctors or .ctors.* section being mapped to a
1215 // .init_array section, or a .dtors or .dtors.* section being mapped
1216 // to a .fini_array section, we will need to reverse the words if
1217 // there is more than one. Record this section for later. See
1218 // ctors_sections_in_init_array above.
1219 if (!this->script_options_->saw_sections_clause()
1220 && !parameters->options().relocatable()
1221 && shdr.get_sh_size() > size / 8
1222 && (((strcmp(name, ".ctors") == 0
1223 || is_prefix_of(".ctors.", name))
1224 && strcmp(os->name(), ".init_array") == 0)
1225 || ((strcmp(name, ".dtors") == 0
1226 || is_prefix_of(".dtors.", name))
1227 && strcmp(os->name(), ".fini_array") == 0)))
1228 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1229
1230 // FIXME: Handle SHF_LINK_ORDER somewhere.
1231
1232 elfcpp::Elf_Xword orig_flags = os->flags();
1233
1234 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1235 this->script_options_->saw_sections_clause());
1236
1237 // If the flags changed, we may have to change the order.
1238 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1239 {
1240 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1241 elfcpp::Elf_Xword new_flags =
1242 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1243 if (orig_flags != new_flags)
1244 os->set_order(this->default_section_order(os, false));
1245 }
1246
1247 this->have_added_input_section_ = true;
1248
1249 return os;
1250 }
1251
1252 // Maps section SECN to SEGMENT s.
1253 void
1254 Layout::insert_section_segment_map(Const_section_id secn,
1255 Unique_segment_info *s)
1256 {
1257 gold_assert(this->unique_segment_for_sections_specified_);
1258 this->section_segment_map_[secn] = s;
1259 }
1260
1261 // Handle a relocation section when doing a relocatable link.
1262
1263 template<int size, bool big_endian>
1264 Output_section*
1265 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1266 unsigned int,
1267 const elfcpp::Shdr<size, big_endian>& shdr,
1268 Output_section* data_section,
1269 Relocatable_relocs* rr)
1270 {
1271 gold_assert(parameters->options().relocatable()
1272 || parameters->options().emit_relocs());
1273
1274 int sh_type = shdr.get_sh_type();
1275
1276 std::string name;
1277 if (sh_type == elfcpp::SHT_REL)
1278 name = ".rel";
1279 else if (sh_type == elfcpp::SHT_RELA)
1280 name = ".rela";
1281 else
1282 gold_unreachable();
1283 name += data_section->name();
1284
1285 // In a relocatable link relocs for a grouped section must not be
1286 // combined with other reloc sections.
1287 Output_section* os;
1288 if (!parameters->options().relocatable()
1289 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1290 os = this->choose_output_section(object, name.c_str(), sh_type,
1291 shdr.get_sh_flags(), false,
1292 ORDER_INVALID, false);
1293 else
1294 {
1295 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1296 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1297 ORDER_INVALID, false);
1298 }
1299
1300 os->set_should_link_to_symtab();
1301 os->set_info_section(data_section);
1302
1303 Output_section_data* posd;
1304 if (sh_type == elfcpp::SHT_REL)
1305 {
1306 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1307 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1308 size,
1309 big_endian>(rr);
1310 }
1311 else if (sh_type == elfcpp::SHT_RELA)
1312 {
1313 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1314 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1315 size,
1316 big_endian>(rr);
1317 }
1318 else
1319 gold_unreachable();
1320
1321 os->add_output_section_data(posd);
1322 rr->set_output_data(posd);
1323
1324 return os;
1325 }
1326
1327 // Handle a group section when doing a relocatable link.
1328
1329 template<int size, bool big_endian>
1330 void
1331 Layout::layout_group(Symbol_table* symtab,
1332 Sized_relobj_file<size, big_endian>* object,
1333 unsigned int,
1334 const char* group_section_name,
1335 const char* signature,
1336 const elfcpp::Shdr<size, big_endian>& shdr,
1337 elfcpp::Elf_Word flags,
1338 std::vector<unsigned int>* shndxes)
1339 {
1340 gold_assert(parameters->options().relocatable());
1341 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1342 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1343 Output_section* os = this->make_output_section(group_section_name,
1344 elfcpp::SHT_GROUP,
1345 shdr.get_sh_flags(),
1346 ORDER_INVALID, false);
1347
1348 // We need to find a symbol with the signature in the symbol table.
1349 // If we don't find one now, we need to look again later.
1350 Symbol* sym = symtab->lookup(signature, NULL);
1351 if (sym != NULL)
1352 os->set_info_symndx(sym);
1353 else
1354 {
1355 // Reserve some space to minimize reallocations.
1356 if (this->group_signatures_.empty())
1357 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1358
1359 // We will wind up using a symbol whose name is the signature.
1360 // So just put the signature in the symbol name pool to save it.
1361 signature = symtab->canonicalize_name(signature);
1362 this->group_signatures_.push_back(Group_signature(os, signature));
1363 }
1364
1365 os->set_should_link_to_symtab();
1366 os->set_entsize(4);
1367
1368 section_size_type entry_count =
1369 convert_to_section_size_type(shdr.get_sh_size() / 4);
1370 Output_section_data* posd =
1371 new Output_data_group<size, big_endian>(object, entry_count, flags,
1372 shndxes);
1373 os->add_output_section_data(posd);
1374 }
1375
1376 // Special GNU handling of sections name .eh_frame. They will
1377 // normally hold exception frame data as defined by the C++ ABI
1378 // (http://codesourcery.com/cxx-abi/).
1379
1380 template<int size, bool big_endian>
1381 Output_section*
1382 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1383 const unsigned char* symbols,
1384 off_t symbols_size,
1385 const unsigned char* symbol_names,
1386 off_t symbol_names_size,
1387 unsigned int shndx,
1388 const elfcpp::Shdr<size, big_endian>& shdr,
1389 unsigned int reloc_shndx, unsigned int reloc_type,
1390 off_t* off)
1391 {
1392 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1393 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1394 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1395
1396 Output_section* os = this->make_eh_frame_section(object);
1397 if (os == NULL)
1398 return NULL;
1399
1400 gold_assert(this->eh_frame_section_ == os);
1401
1402 elfcpp::Elf_Xword orig_flags = os->flags();
1403
1404 if (!parameters->incremental()
1405 && this->eh_frame_data_->add_ehframe_input_section(object,
1406 symbols,
1407 symbols_size,
1408 symbol_names,
1409 symbol_names_size,
1410 shndx,
1411 reloc_shndx,
1412 reloc_type))
1413 {
1414 os->update_flags_for_input_section(shdr.get_sh_flags());
1415
1416 // A writable .eh_frame section is a RELRO section.
1417 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1418 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1419 {
1420 os->set_is_relro();
1421 os->set_order(ORDER_RELRO);
1422 }
1423
1424 // We found a .eh_frame section we are going to optimize, so now
1425 // we can add the set of optimized sections to the output
1426 // section. We need to postpone adding this until we've found a
1427 // section we can optimize so that the .eh_frame section in
1428 // crtbegin.o winds up at the start of the output section.
1429 if (!this->added_eh_frame_data_)
1430 {
1431 os->add_output_section_data(this->eh_frame_data_);
1432 this->added_eh_frame_data_ = true;
1433 }
1434 *off = -1;
1435 }
1436 else
1437 {
1438 // We couldn't handle this .eh_frame section for some reason.
1439 // Add it as a normal section.
1440 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1441 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1442 reloc_shndx, saw_sections_clause);
1443 this->have_added_input_section_ = true;
1444
1445 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1446 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1447 os->set_order(this->default_section_order(os, false));
1448 }
1449
1450 return os;
1451 }
1452
1453 // Create and return the magic .eh_frame section. Create
1454 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1455 // input .eh_frame section; it may be NULL.
1456
1457 Output_section*
1458 Layout::make_eh_frame_section(const Relobj* object)
1459 {
1460 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1461 // SHT_PROGBITS.
1462 Output_section* os = this->choose_output_section(object, ".eh_frame",
1463 elfcpp::SHT_PROGBITS,
1464 elfcpp::SHF_ALLOC, false,
1465 ORDER_EHFRAME, false);
1466 if (os == NULL)
1467 return NULL;
1468
1469 if (this->eh_frame_section_ == NULL)
1470 {
1471 this->eh_frame_section_ = os;
1472 this->eh_frame_data_ = new Eh_frame();
1473
1474 // For incremental linking, we do not optimize .eh_frame sections
1475 // or create a .eh_frame_hdr section.
1476 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1477 {
1478 Output_section* hdr_os =
1479 this->choose_output_section(NULL, ".eh_frame_hdr",
1480 elfcpp::SHT_PROGBITS,
1481 elfcpp::SHF_ALLOC, false,
1482 ORDER_EHFRAME, false);
1483
1484 if (hdr_os != NULL)
1485 {
1486 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1487 this->eh_frame_data_);
1488 hdr_os->add_output_section_data(hdr_posd);
1489
1490 hdr_os->set_after_input_sections();
1491
1492 if (!this->script_options_->saw_phdrs_clause())
1493 {
1494 Output_segment* hdr_oseg;
1495 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1496 elfcpp::PF_R);
1497 hdr_oseg->add_output_section_to_nonload(hdr_os,
1498 elfcpp::PF_R);
1499 }
1500
1501 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1502 }
1503 }
1504 }
1505
1506 return os;
1507 }
1508
1509 // Add an exception frame for a PLT. This is called from target code.
1510
1511 void
1512 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1513 size_t cie_length, const unsigned char* fde_data,
1514 size_t fde_length)
1515 {
1516 if (parameters->incremental())
1517 {
1518 // FIXME: Maybe this could work some day....
1519 return;
1520 }
1521 Output_section* os = this->make_eh_frame_section(NULL);
1522 if (os == NULL)
1523 return;
1524 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1525 fde_data, fde_length);
1526 if (!this->added_eh_frame_data_)
1527 {
1528 os->add_output_section_data(this->eh_frame_data_);
1529 this->added_eh_frame_data_ = true;
1530 }
1531 }
1532
1533 // Scan a .debug_info or .debug_types section, and add summary
1534 // information to the .gdb_index section.
1535
1536 template<int size, bool big_endian>
1537 void
1538 Layout::add_to_gdb_index(bool is_type_unit,
1539 Sized_relobj<size, big_endian>* object,
1540 const unsigned char* symbols,
1541 off_t symbols_size,
1542 unsigned int shndx,
1543 unsigned int reloc_shndx,
1544 unsigned int reloc_type)
1545 {
1546 if (this->gdb_index_data_ == NULL)
1547 {
1548 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1549 elfcpp::SHT_PROGBITS, 0,
1550 false, ORDER_INVALID,
1551 false);
1552 if (os == NULL)
1553 return;
1554
1555 this->gdb_index_data_ = new Gdb_index(os);
1556 os->add_output_section_data(this->gdb_index_data_);
1557 os->set_after_input_sections();
1558 }
1559
1560 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1561 symbols_size, shndx, reloc_shndx,
1562 reloc_type);
1563 }
1564
1565 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1566 // the output section.
1567
1568 Output_section*
1569 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1570 elfcpp::Elf_Xword flags,
1571 Output_section_data* posd,
1572 Output_section_order order, bool is_relro)
1573 {
1574 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1575 false, order, is_relro);
1576 if (os != NULL)
1577 os->add_output_section_data(posd);
1578 return os;
1579 }
1580
1581 // Map section flags to segment flags.
1582
1583 elfcpp::Elf_Word
1584 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1585 {
1586 elfcpp::Elf_Word ret = elfcpp::PF_R;
1587 if ((flags & elfcpp::SHF_WRITE) != 0)
1588 ret |= elfcpp::PF_W;
1589 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1590 ret |= elfcpp::PF_X;
1591 return ret;
1592 }
1593
1594 // Make a new Output_section, and attach it to segments as
1595 // appropriate. ORDER is the order in which this section should
1596 // appear in the output segment. IS_RELRO is true if this is a relro
1597 // (read-only after relocations) section.
1598
1599 Output_section*
1600 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1601 elfcpp::Elf_Xword flags,
1602 Output_section_order order, bool is_relro)
1603 {
1604 Output_section* os;
1605 if ((flags & elfcpp::SHF_ALLOC) == 0
1606 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1607 && is_compressible_debug_section(name))
1608 os = new Output_compressed_section(&parameters->options(), name, type,
1609 flags);
1610 else if ((flags & elfcpp::SHF_ALLOC) == 0
1611 && parameters->options().strip_debug_non_line()
1612 && strcmp(".debug_abbrev", name) == 0)
1613 {
1614 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1615 name, type, flags);
1616 if (this->debug_info_)
1617 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1618 }
1619 else if ((flags & elfcpp::SHF_ALLOC) == 0
1620 && parameters->options().strip_debug_non_line()
1621 && strcmp(".debug_info", name) == 0)
1622 {
1623 os = this->debug_info_ = new Output_reduced_debug_info_section(
1624 name, type, flags);
1625 if (this->debug_abbrev_)
1626 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1627 }
1628 else
1629 {
1630 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1631 // not have correct section types. Force them here.
1632 if (type == elfcpp::SHT_PROGBITS)
1633 {
1634 if (is_prefix_of(".init_array", name))
1635 type = elfcpp::SHT_INIT_ARRAY;
1636 else if (is_prefix_of(".preinit_array", name))
1637 type = elfcpp::SHT_PREINIT_ARRAY;
1638 else if (is_prefix_of(".fini_array", name))
1639 type = elfcpp::SHT_FINI_ARRAY;
1640 }
1641
1642 // FIXME: const_cast is ugly.
1643 Target* target = const_cast<Target*>(&parameters->target());
1644 os = target->make_output_section(name, type, flags);
1645 }
1646
1647 // With -z relro, we have to recognize the special sections by name.
1648 // There is no other way.
1649 bool is_relro_local = false;
1650 if (!this->script_options_->saw_sections_clause()
1651 && parameters->options().relro()
1652 && (flags & elfcpp::SHF_ALLOC) != 0
1653 && (flags & elfcpp::SHF_WRITE) != 0)
1654 {
1655 if (type == elfcpp::SHT_PROGBITS)
1656 {
1657 if ((flags & elfcpp::SHF_TLS) != 0)
1658 is_relro = true;
1659 else if (strcmp(name, ".data.rel.ro") == 0)
1660 is_relro = true;
1661 else if (strcmp(name, ".data.rel.ro.local") == 0)
1662 {
1663 is_relro = true;
1664 is_relro_local = true;
1665 }
1666 else if (strcmp(name, ".ctors") == 0
1667 || strcmp(name, ".dtors") == 0
1668 || strcmp(name, ".jcr") == 0)
1669 is_relro = true;
1670 }
1671 else if (type == elfcpp::SHT_INIT_ARRAY
1672 || type == elfcpp::SHT_FINI_ARRAY
1673 || type == elfcpp::SHT_PREINIT_ARRAY)
1674 is_relro = true;
1675 }
1676
1677 if (is_relro)
1678 os->set_is_relro();
1679
1680 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1681 order = this->default_section_order(os, is_relro_local);
1682
1683 os->set_order(order);
1684
1685 parameters->target().new_output_section(os);
1686
1687 this->section_list_.push_back(os);
1688
1689 // The GNU linker by default sorts some sections by priority, so we
1690 // do the same. We need to know that this might happen before we
1691 // attach any input sections.
1692 if (!this->script_options_->saw_sections_clause()
1693 && !parameters->options().relocatable()
1694 && (strcmp(name, ".init_array") == 0
1695 || strcmp(name, ".fini_array") == 0
1696 || (!parameters->options().ctors_in_init_array()
1697 && (strcmp(name, ".ctors") == 0
1698 || strcmp(name, ".dtors") == 0))))
1699 os->set_may_sort_attached_input_sections();
1700
1701 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1702 // sections before other .text sections. We are compatible. We
1703 // need to know that this might happen before we attach any input
1704 // sections.
1705 if (parameters->options().text_reorder()
1706 && !this->script_options_->saw_sections_clause()
1707 && !this->is_section_ordering_specified()
1708 && !parameters->options().relocatable()
1709 && strcmp(name, ".text") == 0)
1710 os->set_may_sort_attached_input_sections();
1711
1712 // Check for .stab*str sections, as .stab* sections need to link to
1713 // them.
1714 if (type == elfcpp::SHT_STRTAB
1715 && !this->have_stabstr_section_
1716 && strncmp(name, ".stab", 5) == 0
1717 && strcmp(name + strlen(name) - 3, "str") == 0)
1718 this->have_stabstr_section_ = true;
1719
1720 // During a full incremental link, we add patch space to most
1721 // PROGBITS and NOBITS sections. Flag those that may be
1722 // arbitrarily padded.
1723 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1724 && order != ORDER_INTERP
1725 && order != ORDER_INIT
1726 && order != ORDER_PLT
1727 && order != ORDER_FINI
1728 && order != ORDER_RELRO_LAST
1729 && order != ORDER_NON_RELRO_FIRST
1730 && strcmp(name, ".eh_frame") != 0
1731 && strcmp(name, ".ctors") != 0
1732 && strcmp(name, ".dtors") != 0
1733 && strcmp(name, ".jcr") != 0)
1734 {
1735 os->set_is_patch_space_allowed();
1736
1737 // Certain sections require "holes" to be filled with
1738 // specific fill patterns. These fill patterns may have
1739 // a minimum size, so we must prevent allocations from the
1740 // free list that leave a hole smaller than the minimum.
1741 if (strcmp(name, ".debug_info") == 0)
1742 os->set_free_space_fill(new Output_fill_debug_info(false));
1743 else if (strcmp(name, ".debug_types") == 0)
1744 os->set_free_space_fill(new Output_fill_debug_info(true));
1745 else if (strcmp(name, ".debug_line") == 0)
1746 os->set_free_space_fill(new Output_fill_debug_line());
1747 }
1748
1749 // If we have already attached the sections to segments, then we
1750 // need to attach this one now. This happens for sections created
1751 // directly by the linker.
1752 if (this->sections_are_attached_)
1753 this->attach_section_to_segment(&parameters->target(), os);
1754
1755 return os;
1756 }
1757
1758 // Return the default order in which a section should be placed in an
1759 // output segment. This function captures a lot of the ideas in
1760 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1761 // linker created section is normally set when the section is created;
1762 // this function is used for input sections.
1763
1764 Output_section_order
1765 Layout::default_section_order(Output_section* os, bool is_relro_local)
1766 {
1767 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1768 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1769 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1770 bool is_bss = false;
1771
1772 switch (os->type())
1773 {
1774 default:
1775 case elfcpp::SHT_PROGBITS:
1776 break;
1777 case elfcpp::SHT_NOBITS:
1778 is_bss = true;
1779 break;
1780 case elfcpp::SHT_RELA:
1781 case elfcpp::SHT_REL:
1782 if (!is_write)
1783 return ORDER_DYNAMIC_RELOCS;
1784 break;
1785 case elfcpp::SHT_HASH:
1786 case elfcpp::SHT_DYNAMIC:
1787 case elfcpp::SHT_SHLIB:
1788 case elfcpp::SHT_DYNSYM:
1789 case elfcpp::SHT_GNU_HASH:
1790 case elfcpp::SHT_GNU_verdef:
1791 case elfcpp::SHT_GNU_verneed:
1792 case elfcpp::SHT_GNU_versym:
1793 if (!is_write)
1794 return ORDER_DYNAMIC_LINKER;
1795 break;
1796 case elfcpp::SHT_NOTE:
1797 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1798 }
1799
1800 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1801 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1802
1803 if (!is_bss && !is_write)
1804 {
1805 if (is_execinstr)
1806 {
1807 if (strcmp(os->name(), ".init") == 0)
1808 return ORDER_INIT;
1809 else if (strcmp(os->name(), ".fini") == 0)
1810 return ORDER_FINI;
1811 }
1812 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1813 }
1814
1815 if (os->is_relro())
1816 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1817
1818 if (os->is_small_section())
1819 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1820 if (os->is_large_section())
1821 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1822
1823 return is_bss ? ORDER_BSS : ORDER_DATA;
1824 }
1825
1826 // Attach output sections to segments. This is called after we have
1827 // seen all the input sections.
1828
1829 void
1830 Layout::attach_sections_to_segments(const Target* target)
1831 {
1832 for (Section_list::iterator p = this->section_list_.begin();
1833 p != this->section_list_.end();
1834 ++p)
1835 this->attach_section_to_segment(target, *p);
1836
1837 this->sections_are_attached_ = true;
1838 }
1839
1840 // Attach an output section to a segment.
1841
1842 void
1843 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1844 {
1845 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1846 this->unattached_section_list_.push_back(os);
1847 else
1848 this->attach_allocated_section_to_segment(target, os);
1849 }
1850
1851 // Attach an allocated output section to a segment.
1852
1853 void
1854 Layout::attach_allocated_section_to_segment(const Target* target,
1855 Output_section* os)
1856 {
1857 elfcpp::Elf_Xword flags = os->flags();
1858 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1859
1860 if (parameters->options().relocatable())
1861 return;
1862
1863 // If we have a SECTIONS clause, we can't handle the attachment to
1864 // segments until after we've seen all the sections.
1865 if (this->script_options_->saw_sections_clause())
1866 return;
1867
1868 gold_assert(!this->script_options_->saw_phdrs_clause());
1869
1870 // This output section goes into a PT_LOAD segment.
1871
1872 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1873
1874 // If this output section's segment has extra flags that need to be set,
1875 // coming from a linker plugin, do that.
1876 seg_flags |= os->extra_segment_flags();
1877
1878 // Check for --section-start.
1879 uint64_t addr;
1880 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1881
1882 // In general the only thing we really care about for PT_LOAD
1883 // segments is whether or not they are writable or executable,
1884 // so that is how we search for them.
1885 // Large data sections also go into their own PT_LOAD segment.
1886 // People who need segments sorted on some other basis will
1887 // have to use a linker script.
1888
1889 Segment_list::const_iterator p;
1890 if (!os->is_unique_segment())
1891 {
1892 for (p = this->segment_list_.begin();
1893 p != this->segment_list_.end();
1894 ++p)
1895 {
1896 if ((*p)->type() != elfcpp::PT_LOAD)
1897 continue;
1898 if ((*p)->is_unique_segment())
1899 continue;
1900 if (!parameters->options().omagic()
1901 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1902 continue;
1903 if ((target->isolate_execinstr() || parameters->options().rosegment())
1904 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1905 continue;
1906 // If -Tbss was specified, we need to separate the data and BSS
1907 // segments.
1908 if (parameters->options().user_set_Tbss())
1909 {
1910 if ((os->type() == elfcpp::SHT_NOBITS)
1911 == (*p)->has_any_data_sections())
1912 continue;
1913 }
1914 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1915 continue;
1916
1917 if (is_address_set)
1918 {
1919 if ((*p)->are_addresses_set())
1920 continue;
1921
1922 (*p)->add_initial_output_data(os);
1923 (*p)->update_flags_for_output_section(seg_flags);
1924 (*p)->set_addresses(addr, addr);
1925 break;
1926 }
1927
1928 (*p)->add_output_section_to_load(this, os, seg_flags);
1929 break;
1930 }
1931 }
1932
1933 if (p == this->segment_list_.end()
1934 || os->is_unique_segment())
1935 {
1936 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1937 seg_flags);
1938 if (os->is_large_data_section())
1939 oseg->set_is_large_data_segment();
1940 oseg->add_output_section_to_load(this, os, seg_flags);
1941 if (is_address_set)
1942 oseg->set_addresses(addr, addr);
1943 // Check if segment should be marked unique. For segments marked
1944 // unique by linker plugins, set the new alignment if specified.
1945 if (os->is_unique_segment())
1946 {
1947 oseg->set_is_unique_segment();
1948 if (os->segment_alignment() != 0)
1949 oseg->set_minimum_p_align(os->segment_alignment());
1950 }
1951 }
1952
1953 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1954 // segment.
1955 if (os->type() == elfcpp::SHT_NOTE)
1956 {
1957 // See if we already have an equivalent PT_NOTE segment.
1958 for (p = this->segment_list_.begin();
1959 p != segment_list_.end();
1960 ++p)
1961 {
1962 if ((*p)->type() == elfcpp::PT_NOTE
1963 && (((*p)->flags() & elfcpp::PF_W)
1964 == (seg_flags & elfcpp::PF_W)))
1965 {
1966 (*p)->add_output_section_to_nonload(os, seg_flags);
1967 break;
1968 }
1969 }
1970
1971 if (p == this->segment_list_.end())
1972 {
1973 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1974 seg_flags);
1975 oseg->add_output_section_to_nonload(os, seg_flags);
1976 }
1977 }
1978
1979 // If we see a loadable SHF_TLS section, we create a PT_TLS
1980 // segment. There can only be one such segment.
1981 if ((flags & elfcpp::SHF_TLS) != 0)
1982 {
1983 if (this->tls_segment_ == NULL)
1984 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1985 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1986 }
1987
1988 // If -z relro is in effect, and we see a relro section, we create a
1989 // PT_GNU_RELRO segment. There can only be one such segment.
1990 if (os->is_relro() && parameters->options().relro())
1991 {
1992 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1993 if (this->relro_segment_ == NULL)
1994 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1995 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1996 }
1997
1998 // If we see a section named .interp, put it into a PT_INTERP
1999 // segment. This seems broken to me, but this is what GNU ld does,
2000 // and glibc expects it.
2001 if (strcmp(os->name(), ".interp") == 0
2002 && !this->script_options_->saw_phdrs_clause())
2003 {
2004 if (this->interp_segment_ == NULL)
2005 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2006 else
2007 gold_warning(_("multiple '.interp' sections in input files "
2008 "may cause confusing PT_INTERP segment"));
2009 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2010 }
2011 }
2012
2013 // Make an output section for a script.
2014
2015 Output_section*
2016 Layout::make_output_section_for_script(
2017 const char* name,
2018 Script_sections::Section_type section_type)
2019 {
2020 name = this->namepool_.add(name, false, NULL);
2021 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2022 if (section_type == Script_sections::ST_NOLOAD)
2023 sh_flags = 0;
2024 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2025 sh_flags, ORDER_INVALID,
2026 false);
2027 os->set_found_in_sections_clause();
2028 if (section_type == Script_sections::ST_NOLOAD)
2029 os->set_is_noload();
2030 return os;
2031 }
2032
2033 // Return the number of segments we expect to see.
2034
2035 size_t
2036 Layout::expected_segment_count() const
2037 {
2038 size_t ret = this->segment_list_.size();
2039
2040 // If we didn't see a SECTIONS clause in a linker script, we should
2041 // already have the complete list of segments. Otherwise we ask the
2042 // SECTIONS clause how many segments it expects, and add in the ones
2043 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2044
2045 if (!this->script_options_->saw_sections_clause())
2046 return ret;
2047 else
2048 {
2049 const Script_sections* ss = this->script_options_->script_sections();
2050 return ret + ss->expected_segment_count(this);
2051 }
2052 }
2053
2054 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2055 // is whether we saw a .note.GNU-stack section in the object file.
2056 // GNU_STACK_FLAGS is the section flags. The flags give the
2057 // protection required for stack memory. We record this in an
2058 // executable as a PT_GNU_STACK segment. If an object file does not
2059 // have a .note.GNU-stack segment, we must assume that it is an old
2060 // object. On some targets that will force an executable stack.
2061
2062 void
2063 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2064 const Object* obj)
2065 {
2066 if (!seen_gnu_stack)
2067 {
2068 this->input_without_gnu_stack_note_ = true;
2069 if (parameters->options().warn_execstack()
2070 && parameters->target().is_default_stack_executable())
2071 gold_warning(_("%s: missing .note.GNU-stack section"
2072 " implies executable stack"),
2073 obj->name().c_str());
2074 }
2075 else
2076 {
2077 this->input_with_gnu_stack_note_ = true;
2078 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2079 {
2080 this->input_requires_executable_stack_ = true;
2081 if (parameters->options().warn_execstack()
2082 || parameters->options().is_stack_executable())
2083 gold_warning(_("%s: requires executable stack"),
2084 obj->name().c_str());
2085 }
2086 }
2087 }
2088
2089 // Create automatic note sections.
2090
2091 void
2092 Layout::create_notes()
2093 {
2094 this->create_gold_note();
2095 this->create_executable_stack_info();
2096 this->create_build_id();
2097 }
2098
2099 // Create the dynamic sections which are needed before we read the
2100 // relocs.
2101
2102 void
2103 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2104 {
2105 if (parameters->doing_static_link())
2106 return;
2107
2108 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2109 elfcpp::SHT_DYNAMIC,
2110 (elfcpp::SHF_ALLOC
2111 | elfcpp::SHF_WRITE),
2112 false, ORDER_RELRO,
2113 true);
2114
2115 // A linker script may discard .dynamic, so check for NULL.
2116 if (this->dynamic_section_ != NULL)
2117 {
2118 this->dynamic_symbol_ =
2119 symtab->define_in_output_data("_DYNAMIC", NULL,
2120 Symbol_table::PREDEFINED,
2121 this->dynamic_section_, 0, 0,
2122 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2123 elfcpp::STV_HIDDEN, 0, false, false);
2124
2125 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2126
2127 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2128 }
2129 }
2130
2131 // For each output section whose name can be represented as C symbol,
2132 // define __start and __stop symbols for the section. This is a GNU
2133 // extension.
2134
2135 void
2136 Layout::define_section_symbols(Symbol_table* symtab)
2137 {
2138 for (Section_list::const_iterator p = this->section_list_.begin();
2139 p != this->section_list_.end();
2140 ++p)
2141 {
2142 const char* const name = (*p)->name();
2143 if (is_cident(name))
2144 {
2145 const std::string name_string(name);
2146 const std::string start_name(cident_section_start_prefix
2147 + name_string);
2148 const std::string stop_name(cident_section_stop_prefix
2149 + name_string);
2150
2151 symtab->define_in_output_data(start_name.c_str(),
2152 NULL, // version
2153 Symbol_table::PREDEFINED,
2154 *p,
2155 0, // value
2156 0, // symsize
2157 elfcpp::STT_NOTYPE,
2158 elfcpp::STB_GLOBAL,
2159 elfcpp::STV_DEFAULT,
2160 0, // nonvis
2161 false, // offset_is_from_end
2162 true); // only_if_ref
2163
2164 symtab->define_in_output_data(stop_name.c_str(),
2165 NULL, // version
2166 Symbol_table::PREDEFINED,
2167 *p,
2168 0, // value
2169 0, // symsize
2170 elfcpp::STT_NOTYPE,
2171 elfcpp::STB_GLOBAL,
2172 elfcpp::STV_DEFAULT,
2173 0, // nonvis
2174 true, // offset_is_from_end
2175 true); // only_if_ref
2176 }
2177 }
2178 }
2179
2180 // Define symbols for group signatures.
2181
2182 void
2183 Layout::define_group_signatures(Symbol_table* symtab)
2184 {
2185 for (Group_signatures::iterator p = this->group_signatures_.begin();
2186 p != this->group_signatures_.end();
2187 ++p)
2188 {
2189 Symbol* sym = symtab->lookup(p->signature, NULL);
2190 if (sym != NULL)
2191 p->section->set_info_symndx(sym);
2192 else
2193 {
2194 // Force the name of the group section to the group
2195 // signature, and use the group's section symbol as the
2196 // signature symbol.
2197 if (strcmp(p->section->name(), p->signature) != 0)
2198 {
2199 const char* name = this->namepool_.add(p->signature,
2200 true, NULL);
2201 p->section->set_name(name);
2202 }
2203 p->section->set_needs_symtab_index();
2204 p->section->set_info_section_symndx(p->section);
2205 }
2206 }
2207
2208 this->group_signatures_.clear();
2209 }
2210
2211 // Find the first read-only PT_LOAD segment, creating one if
2212 // necessary.
2213
2214 Output_segment*
2215 Layout::find_first_load_seg(const Target* target)
2216 {
2217 Output_segment* best = NULL;
2218 for (Segment_list::const_iterator p = this->segment_list_.begin();
2219 p != this->segment_list_.end();
2220 ++p)
2221 {
2222 if ((*p)->type() == elfcpp::PT_LOAD
2223 && ((*p)->flags() & elfcpp::PF_R) != 0
2224 && (parameters->options().omagic()
2225 || ((*p)->flags() & elfcpp::PF_W) == 0)
2226 && (!target->isolate_execinstr()
2227 || ((*p)->flags() & elfcpp::PF_X) == 0))
2228 {
2229 if (best == NULL || this->segment_precedes(*p, best))
2230 best = *p;
2231 }
2232 }
2233 if (best != NULL)
2234 return best;
2235
2236 gold_assert(!this->script_options_->saw_phdrs_clause());
2237
2238 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2239 elfcpp::PF_R);
2240 return load_seg;
2241 }
2242
2243 // Save states of all current output segments. Store saved states
2244 // in SEGMENT_STATES.
2245
2246 void
2247 Layout::save_segments(Segment_states* segment_states)
2248 {
2249 for (Segment_list::const_iterator p = this->segment_list_.begin();
2250 p != this->segment_list_.end();
2251 ++p)
2252 {
2253 Output_segment* segment = *p;
2254 // Shallow copy.
2255 Output_segment* copy = new Output_segment(*segment);
2256 (*segment_states)[segment] = copy;
2257 }
2258 }
2259
2260 // Restore states of output segments and delete any segment not found in
2261 // SEGMENT_STATES.
2262
2263 void
2264 Layout::restore_segments(const Segment_states* segment_states)
2265 {
2266 // Go through the segment list and remove any segment added in the
2267 // relaxation loop.
2268 this->tls_segment_ = NULL;
2269 this->relro_segment_ = NULL;
2270 Segment_list::iterator list_iter = this->segment_list_.begin();
2271 while (list_iter != this->segment_list_.end())
2272 {
2273 Output_segment* segment = *list_iter;
2274 Segment_states::const_iterator states_iter =
2275 segment_states->find(segment);
2276 if (states_iter != segment_states->end())
2277 {
2278 const Output_segment* copy = states_iter->second;
2279 // Shallow copy to restore states.
2280 *segment = *copy;
2281
2282 // Also fix up TLS and RELRO segment pointers as appropriate.
2283 if (segment->type() == elfcpp::PT_TLS)
2284 this->tls_segment_ = segment;
2285 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2286 this->relro_segment_ = segment;
2287
2288 ++list_iter;
2289 }
2290 else
2291 {
2292 list_iter = this->segment_list_.erase(list_iter);
2293 // This is a segment created during section layout. It should be
2294 // safe to remove it since we should have removed all pointers to it.
2295 delete segment;
2296 }
2297 }
2298 }
2299
2300 // Clean up after relaxation so that sections can be laid out again.
2301
2302 void
2303 Layout::clean_up_after_relaxation()
2304 {
2305 // Restore the segments to point state just prior to the relaxation loop.
2306 Script_sections* script_section = this->script_options_->script_sections();
2307 script_section->release_segments();
2308 this->restore_segments(this->segment_states_);
2309
2310 // Reset section addresses and file offsets
2311 for (Section_list::iterator p = this->section_list_.begin();
2312 p != this->section_list_.end();
2313 ++p)
2314 {
2315 (*p)->restore_states();
2316
2317 // If an input section changes size because of relaxation,
2318 // we need to adjust the section offsets of all input sections.
2319 // after such a section.
2320 if ((*p)->section_offsets_need_adjustment())
2321 (*p)->adjust_section_offsets();
2322
2323 (*p)->reset_address_and_file_offset();
2324 }
2325
2326 // Reset special output object address and file offsets.
2327 for (Data_list::iterator p = this->special_output_list_.begin();
2328 p != this->special_output_list_.end();
2329 ++p)
2330 (*p)->reset_address_and_file_offset();
2331
2332 // A linker script may have created some output section data objects.
2333 // They are useless now.
2334 for (Output_section_data_list::const_iterator p =
2335 this->script_output_section_data_list_.begin();
2336 p != this->script_output_section_data_list_.end();
2337 ++p)
2338 delete *p;
2339 this->script_output_section_data_list_.clear();
2340 }
2341
2342 // Prepare for relaxation.
2343
2344 void
2345 Layout::prepare_for_relaxation()
2346 {
2347 // Create an relaxation debug check if in debugging mode.
2348 if (is_debugging_enabled(DEBUG_RELAXATION))
2349 this->relaxation_debug_check_ = new Relaxation_debug_check();
2350
2351 // Save segment states.
2352 this->segment_states_ = new Segment_states();
2353 this->save_segments(this->segment_states_);
2354
2355 for(Section_list::const_iterator p = this->section_list_.begin();
2356 p != this->section_list_.end();
2357 ++p)
2358 (*p)->save_states();
2359
2360 if (is_debugging_enabled(DEBUG_RELAXATION))
2361 this->relaxation_debug_check_->check_output_data_for_reset_values(
2362 this->section_list_, this->special_output_list_);
2363
2364 // Also enable recording of output section data from scripts.
2365 this->record_output_section_data_from_script_ = true;
2366 }
2367
2368 // Relaxation loop body: If target has no relaxation, this runs only once
2369 // Otherwise, the target relaxation hook is called at the end of
2370 // each iteration. If the hook returns true, it means re-layout of
2371 // section is required.
2372 //
2373 // The number of segments created by a linking script without a PHDRS
2374 // clause may be affected by section sizes and alignments. There is
2375 // a remote chance that relaxation causes different number of PT_LOAD
2376 // segments are created and sections are attached to different segments.
2377 // Therefore, we always throw away all segments created during section
2378 // layout. In order to be able to restart the section layout, we keep
2379 // a copy of the segment list right before the relaxation loop and use
2380 // that to restore the segments.
2381 //
2382 // PASS is the current relaxation pass number.
2383 // SYMTAB is a symbol table.
2384 // PLOAD_SEG is the address of a pointer for the load segment.
2385 // PHDR_SEG is a pointer to the PHDR segment.
2386 // SEGMENT_HEADERS points to the output segment header.
2387 // FILE_HEADER points to the output file header.
2388 // PSHNDX is the address to store the output section index.
2389
2390 off_t inline
2391 Layout::relaxation_loop_body(
2392 int pass,
2393 Target* target,
2394 Symbol_table* symtab,
2395 Output_segment** pload_seg,
2396 Output_segment* phdr_seg,
2397 Output_segment_headers* segment_headers,
2398 Output_file_header* file_header,
2399 unsigned int* pshndx)
2400 {
2401 // If this is not the first iteration, we need to clean up after
2402 // relaxation so that we can lay out the sections again.
2403 if (pass != 0)
2404 this->clean_up_after_relaxation();
2405
2406 // If there is a SECTIONS clause, put all the input sections into
2407 // the required order.
2408 Output_segment* load_seg;
2409 if (this->script_options_->saw_sections_clause())
2410 load_seg = this->set_section_addresses_from_script(symtab);
2411 else if (parameters->options().relocatable())
2412 load_seg = NULL;
2413 else
2414 load_seg = this->find_first_load_seg(target);
2415
2416 if (parameters->options().oformat_enum()
2417 != General_options::OBJECT_FORMAT_ELF)
2418 load_seg = NULL;
2419
2420 // If the user set the address of the text segment, that may not be
2421 // compatible with putting the segment headers and file headers into
2422 // that segment.
2423 if (parameters->options().user_set_Ttext()
2424 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2425 {
2426 load_seg = NULL;
2427 phdr_seg = NULL;
2428 }
2429
2430 gold_assert(phdr_seg == NULL
2431 || load_seg != NULL
2432 || this->script_options_->saw_sections_clause());
2433
2434 // If the address of the load segment we found has been set by
2435 // --section-start rather than by a script, then adjust the VMA and
2436 // LMA downward if possible to include the file and section headers.
2437 uint64_t header_gap = 0;
2438 if (load_seg != NULL
2439 && load_seg->are_addresses_set()
2440 && !this->script_options_->saw_sections_clause()
2441 && !parameters->options().relocatable())
2442 {
2443 file_header->finalize_data_size();
2444 segment_headers->finalize_data_size();
2445 size_t sizeof_headers = (file_header->data_size()
2446 + segment_headers->data_size());
2447 const uint64_t abi_pagesize = target->abi_pagesize();
2448 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2449 hdr_paddr &= ~(abi_pagesize - 1);
2450 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2451 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2452 load_seg = NULL;
2453 else
2454 {
2455 load_seg->set_addresses(load_seg->vaddr() - subtract,
2456 load_seg->paddr() - subtract);
2457 header_gap = subtract - sizeof_headers;
2458 }
2459 }
2460
2461 // Lay out the segment headers.
2462 if (!parameters->options().relocatable())
2463 {
2464 gold_assert(segment_headers != NULL);
2465 if (header_gap != 0 && load_seg != NULL)
2466 {
2467 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2468 load_seg->add_initial_output_data(z);
2469 }
2470 if (load_seg != NULL)
2471 load_seg->add_initial_output_data(segment_headers);
2472 if (phdr_seg != NULL)
2473 phdr_seg->add_initial_output_data(segment_headers);
2474 }
2475
2476 // Lay out the file header.
2477 if (load_seg != NULL)
2478 load_seg->add_initial_output_data(file_header);
2479
2480 if (this->script_options_->saw_phdrs_clause()
2481 && !parameters->options().relocatable())
2482 {
2483 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2484 // clause in a linker script.
2485 Script_sections* ss = this->script_options_->script_sections();
2486 ss->put_headers_in_phdrs(file_header, segment_headers);
2487 }
2488
2489 // We set the output section indexes in set_segment_offsets and
2490 // set_section_indexes.
2491 *pshndx = 1;
2492
2493 // Set the file offsets of all the segments, and all the sections
2494 // they contain.
2495 off_t off;
2496 if (!parameters->options().relocatable())
2497 off = this->set_segment_offsets(target, load_seg, pshndx);
2498 else
2499 off = this->set_relocatable_section_offsets(file_header, pshndx);
2500
2501 // Verify that the dummy relaxation does not change anything.
2502 if (is_debugging_enabled(DEBUG_RELAXATION))
2503 {
2504 if (pass == 0)
2505 this->relaxation_debug_check_->read_sections(this->section_list_);
2506 else
2507 this->relaxation_debug_check_->verify_sections(this->section_list_);
2508 }
2509
2510 *pload_seg = load_seg;
2511 return off;
2512 }
2513
2514 // Search the list of patterns and find the postion of the given section
2515 // name in the output section. If the section name matches a glob
2516 // pattern and a non-glob name, then the non-glob position takes
2517 // precedence. Return 0 if no match is found.
2518
2519 unsigned int
2520 Layout::find_section_order_index(const std::string& section_name)
2521 {
2522 Unordered_map<std::string, unsigned int>::iterator map_it;
2523 map_it = this->input_section_position_.find(section_name);
2524 if (map_it != this->input_section_position_.end())
2525 return map_it->second;
2526
2527 // Absolute match failed. Linear search the glob patterns.
2528 std::vector<std::string>::iterator it;
2529 for (it = this->input_section_glob_.begin();
2530 it != this->input_section_glob_.end();
2531 ++it)
2532 {
2533 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2534 {
2535 map_it = this->input_section_position_.find(*it);
2536 gold_assert(map_it != this->input_section_position_.end());
2537 return map_it->second;
2538 }
2539 }
2540 return 0;
2541 }
2542
2543 // Read the sequence of input sections from the file specified with
2544 // option --section-ordering-file.
2545
2546 void
2547 Layout::read_layout_from_file()
2548 {
2549 const char* filename = parameters->options().section_ordering_file();
2550 std::ifstream in;
2551 std::string line;
2552
2553 in.open(filename);
2554 if (!in)
2555 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2556 filename, strerror(errno));
2557
2558 std::getline(in, line); // this chops off the trailing \n, if any
2559 unsigned int position = 1;
2560 this->set_section_ordering_specified();
2561
2562 while (in)
2563 {
2564 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2565 line.resize(line.length() - 1);
2566 // Ignore comments, beginning with '#'
2567 if (line[0] == '#')
2568 {
2569 std::getline(in, line);
2570 continue;
2571 }
2572 this->input_section_position_[line] = position;
2573 // Store all glob patterns in a vector.
2574 if (is_wildcard_string(line.c_str()))
2575 this->input_section_glob_.push_back(line);
2576 position++;
2577 std::getline(in, line);
2578 }
2579 }
2580
2581 // Finalize the layout. When this is called, we have created all the
2582 // output sections and all the output segments which are based on
2583 // input sections. We have several things to do, and we have to do
2584 // them in the right order, so that we get the right results correctly
2585 // and efficiently.
2586
2587 // 1) Finalize the list of output segments and create the segment
2588 // table header.
2589
2590 // 2) Finalize the dynamic symbol table and associated sections.
2591
2592 // 3) Determine the final file offset of all the output segments.
2593
2594 // 4) Determine the final file offset of all the SHF_ALLOC output
2595 // sections.
2596
2597 // 5) Create the symbol table sections and the section name table
2598 // section.
2599
2600 // 6) Finalize the symbol table: set symbol values to their final
2601 // value and make a final determination of which symbols are going
2602 // into the output symbol table.
2603
2604 // 7) Create the section table header.
2605
2606 // 8) Determine the final file offset of all the output sections which
2607 // are not SHF_ALLOC, including the section table header.
2608
2609 // 9) Finalize the ELF file header.
2610
2611 // This function returns the size of the output file.
2612
2613 off_t
2614 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2615 Target* target, const Task* task)
2616 {
2617 target->finalize_sections(this, input_objects, symtab);
2618
2619 this->count_local_symbols(task, input_objects);
2620
2621 this->link_stabs_sections();
2622
2623 Output_segment* phdr_seg = NULL;
2624 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2625 {
2626 // There was a dynamic object in the link. We need to create
2627 // some information for the dynamic linker.
2628
2629 // Create the PT_PHDR segment which will hold the program
2630 // headers.
2631 if (!this->script_options_->saw_phdrs_clause())
2632 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2633
2634 // Create the dynamic symbol table, including the hash table.
2635 Output_section* dynstr;
2636 std::vector<Symbol*> dynamic_symbols;
2637 unsigned int local_dynamic_count;
2638 Versions versions(*this->script_options()->version_script_info(),
2639 &this->dynpool_);
2640 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2641 &local_dynamic_count, &dynamic_symbols,
2642 &versions);
2643
2644 // Create the .interp section to hold the name of the
2645 // interpreter, and put it in a PT_INTERP segment. Don't do it
2646 // if we saw a .interp section in an input file.
2647 if ((!parameters->options().shared()
2648 || parameters->options().dynamic_linker() != NULL)
2649 && this->interp_segment_ == NULL)
2650 this->create_interp(target);
2651
2652 // Finish the .dynamic section to hold the dynamic data, and put
2653 // it in a PT_DYNAMIC segment.
2654 this->finish_dynamic_section(input_objects, symtab);
2655
2656 // We should have added everything we need to the dynamic string
2657 // table.
2658 this->dynpool_.set_string_offsets();
2659
2660 // Create the version sections. We can't do this until the
2661 // dynamic string table is complete.
2662 this->create_version_sections(&versions, symtab, local_dynamic_count,
2663 dynamic_symbols, dynstr);
2664
2665 // Set the size of the _DYNAMIC symbol. We can't do this until
2666 // after we call create_version_sections.
2667 this->set_dynamic_symbol_size(symtab);
2668 }
2669
2670 // Create segment headers.
2671 Output_segment_headers* segment_headers =
2672 (parameters->options().relocatable()
2673 ? NULL
2674 : new Output_segment_headers(this->segment_list_));
2675
2676 // Lay out the file header.
2677 Output_file_header* file_header = new Output_file_header(target, symtab,
2678 segment_headers);
2679
2680 this->special_output_list_.push_back(file_header);
2681 if (segment_headers != NULL)
2682 this->special_output_list_.push_back(segment_headers);
2683
2684 // Find approriate places for orphan output sections if we are using
2685 // a linker script.
2686 if (this->script_options_->saw_sections_clause())
2687 this->place_orphan_sections_in_script();
2688
2689 Output_segment* load_seg;
2690 off_t off;
2691 unsigned int shndx;
2692 int pass = 0;
2693
2694 // Take a snapshot of the section layout as needed.
2695 if (target->may_relax())
2696 this->prepare_for_relaxation();
2697
2698 // Run the relaxation loop to lay out sections.
2699 do
2700 {
2701 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2702 phdr_seg, segment_headers, file_header,
2703 &shndx);
2704 pass++;
2705 }
2706 while (target->may_relax()
2707 && target->relax(pass, input_objects, symtab, this, task));
2708
2709 // If there is a load segment that contains the file and program headers,
2710 // provide a symbol __ehdr_start pointing there.
2711 // A program can use this to examine itself robustly.
2712 if (load_seg != NULL)
2713 symtab->define_in_output_segment("__ehdr_start", NULL,
2714 Symbol_table::PREDEFINED, load_seg, 0, 0,
2715 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2716 elfcpp::STV_HIDDEN, 0,
2717 Symbol::SEGMENT_START, true);
2718
2719 // Set the file offsets of all the non-data sections we've seen so
2720 // far which don't have to wait for the input sections. We need
2721 // this in order to finalize local symbols in non-allocated
2722 // sections.
2723 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2724
2725 // Set the section indexes of all unallocated sections seen so far,
2726 // in case any of them are somehow referenced by a symbol.
2727 shndx = this->set_section_indexes(shndx);
2728
2729 // Create the symbol table sections.
2730 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2731 if (!parameters->doing_static_link())
2732 this->assign_local_dynsym_offsets(input_objects);
2733
2734 // Process any symbol assignments from a linker script. This must
2735 // be called after the symbol table has been finalized.
2736 this->script_options_->finalize_symbols(symtab, this);
2737
2738 // Create the incremental inputs sections.
2739 if (this->incremental_inputs_)
2740 {
2741 this->incremental_inputs_->finalize();
2742 this->create_incremental_info_sections(symtab);
2743 }
2744
2745 // Create the .shstrtab section.
2746 Output_section* shstrtab_section = this->create_shstrtab();
2747
2748 // Set the file offsets of the rest of the non-data sections which
2749 // don't have to wait for the input sections.
2750 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2751
2752 // Now that all sections have been created, set the section indexes
2753 // for any sections which haven't been done yet.
2754 shndx = this->set_section_indexes(shndx);
2755
2756 // Create the section table header.
2757 this->create_shdrs(shstrtab_section, &off);
2758
2759 // If there are no sections which require postprocessing, we can
2760 // handle the section names now, and avoid a resize later.
2761 if (!this->any_postprocessing_sections_)
2762 {
2763 off = this->set_section_offsets(off,
2764 POSTPROCESSING_SECTIONS_PASS);
2765 off =
2766 this->set_section_offsets(off,
2767 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2768 }
2769
2770 file_header->set_section_info(this->section_headers_, shstrtab_section);
2771
2772 // Now we know exactly where everything goes in the output file
2773 // (except for non-allocated sections which require postprocessing).
2774 Output_data::layout_complete();
2775
2776 this->output_file_size_ = off;
2777
2778 return off;
2779 }
2780
2781 // Create a note header following the format defined in the ELF ABI.
2782 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2783 // of the section to create, DESCSZ is the size of the descriptor.
2784 // ALLOCATE is true if the section should be allocated in memory.
2785 // This returns the new note section. It sets *TRAILING_PADDING to
2786 // the number of trailing zero bytes required.
2787
2788 Output_section*
2789 Layout::create_note(const char* name, int note_type,
2790 const char* section_name, size_t descsz,
2791 bool allocate, size_t* trailing_padding)
2792 {
2793 // Authorities all agree that the values in a .note field should
2794 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2795 // they differ on what the alignment is for 64-bit binaries.
2796 // The GABI says unambiguously they take 8-byte alignment:
2797 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2798 // Other documentation says alignment should always be 4 bytes:
2799 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2800 // GNU ld and GNU readelf both support the latter (at least as of
2801 // version 2.16.91), and glibc always generates the latter for
2802 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2803 // here.
2804 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2805 const int size = parameters->target().get_size();
2806 #else
2807 const int size = 32;
2808 #endif
2809
2810 // The contents of the .note section.
2811 size_t namesz = strlen(name) + 1;
2812 size_t aligned_namesz = align_address(namesz, size / 8);
2813 size_t aligned_descsz = align_address(descsz, size / 8);
2814
2815 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2816
2817 unsigned char* buffer = new unsigned char[notehdrsz];
2818 memset(buffer, 0, notehdrsz);
2819
2820 bool is_big_endian = parameters->target().is_big_endian();
2821
2822 if (size == 32)
2823 {
2824 if (!is_big_endian)
2825 {
2826 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2827 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2828 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2829 }
2830 else
2831 {
2832 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2833 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2834 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2835 }
2836 }
2837 else if (size == 64)
2838 {
2839 if (!is_big_endian)
2840 {
2841 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2842 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2843 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2844 }
2845 else
2846 {
2847 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2848 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2849 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2850 }
2851 }
2852 else
2853 gold_unreachable();
2854
2855 memcpy(buffer + 3 * (size / 8), name, namesz);
2856
2857 elfcpp::Elf_Xword flags = 0;
2858 Output_section_order order = ORDER_INVALID;
2859 if (allocate)
2860 {
2861 flags = elfcpp::SHF_ALLOC;
2862 order = ORDER_RO_NOTE;
2863 }
2864 Output_section* os = this->choose_output_section(NULL, section_name,
2865 elfcpp::SHT_NOTE,
2866 flags, false, order, false);
2867 if (os == NULL)
2868 return NULL;
2869
2870 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2871 size / 8,
2872 "** note header");
2873 os->add_output_section_data(posd);
2874
2875 *trailing_padding = aligned_descsz - descsz;
2876
2877 return os;
2878 }
2879
2880 // For an executable or shared library, create a note to record the
2881 // version of gold used to create the binary.
2882
2883 void
2884 Layout::create_gold_note()
2885 {
2886 if (parameters->options().relocatable()
2887 || parameters->incremental_update())
2888 return;
2889
2890 std::string desc = std::string("gold ") + gold::get_version_string();
2891
2892 size_t trailing_padding;
2893 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2894 ".note.gnu.gold-version", desc.size(),
2895 false, &trailing_padding);
2896 if (os == NULL)
2897 return;
2898
2899 Output_section_data* posd = new Output_data_const(desc, 4);
2900 os->add_output_section_data(posd);
2901
2902 if (trailing_padding > 0)
2903 {
2904 posd = new Output_data_zero_fill(trailing_padding, 0);
2905 os->add_output_section_data(posd);
2906 }
2907 }
2908
2909 // Record whether the stack should be executable. This can be set
2910 // from the command line using the -z execstack or -z noexecstack
2911 // options. Otherwise, if any input file has a .note.GNU-stack
2912 // section with the SHF_EXECINSTR flag set, the stack should be
2913 // executable. Otherwise, if at least one input file a
2914 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2915 // section, we use the target default for whether the stack should be
2916 // executable. Otherwise, we don't generate a stack note. When
2917 // generating a object file, we create a .note.GNU-stack section with
2918 // the appropriate marking. When generating an executable or shared
2919 // library, we create a PT_GNU_STACK segment.
2920
2921 void
2922 Layout::create_executable_stack_info()
2923 {
2924 bool is_stack_executable;
2925 if (parameters->options().is_execstack_set())
2926 is_stack_executable = parameters->options().is_stack_executable();
2927 else if (!this->input_with_gnu_stack_note_)
2928 return;
2929 else
2930 {
2931 if (this->input_requires_executable_stack_)
2932 is_stack_executable = true;
2933 else if (this->input_without_gnu_stack_note_)
2934 is_stack_executable =
2935 parameters->target().is_default_stack_executable();
2936 else
2937 is_stack_executable = false;
2938 }
2939
2940 if (parameters->options().relocatable())
2941 {
2942 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2943 elfcpp::Elf_Xword flags = 0;
2944 if (is_stack_executable)
2945 flags |= elfcpp::SHF_EXECINSTR;
2946 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2947 ORDER_INVALID, false);
2948 }
2949 else
2950 {
2951 if (this->script_options_->saw_phdrs_clause())
2952 return;
2953 int flags = elfcpp::PF_R | elfcpp::PF_W;
2954 if (is_stack_executable)
2955 flags |= elfcpp::PF_X;
2956 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2957 }
2958 }
2959
2960 // If --build-id was used, set up the build ID note.
2961
2962 void
2963 Layout::create_build_id()
2964 {
2965 if (!parameters->options().user_set_build_id())
2966 return;
2967
2968 const char* style = parameters->options().build_id();
2969 if (strcmp(style, "none") == 0)
2970 return;
2971
2972 // Set DESCSZ to the size of the note descriptor. When possible,
2973 // set DESC to the note descriptor contents.
2974 size_t descsz;
2975 std::string desc;
2976 if (strcmp(style, "md5") == 0)
2977 descsz = 128 / 8;
2978 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
2979 descsz = 160 / 8;
2980 else if (strcmp(style, "uuid") == 0)
2981 {
2982 const size_t uuidsz = 128 / 8;
2983
2984 char buffer[uuidsz];
2985 memset(buffer, 0, uuidsz);
2986
2987 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2988 if (descriptor < 0)
2989 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2990 strerror(errno));
2991 else
2992 {
2993 ssize_t got = ::read(descriptor, buffer, uuidsz);
2994 release_descriptor(descriptor, true);
2995 if (got < 0)
2996 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2997 else if (static_cast<size_t>(got) != uuidsz)
2998 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2999 uuidsz, got);
3000 }
3001
3002 desc.assign(buffer, uuidsz);
3003 descsz = uuidsz;
3004 }
3005 else if (strncmp(style, "0x", 2) == 0)
3006 {
3007 hex_init();
3008 const char* p = style + 2;
3009 while (*p != '\0')
3010 {
3011 if (hex_p(p[0]) && hex_p(p[1]))
3012 {
3013 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3014 desc += c;
3015 p += 2;
3016 }
3017 else if (*p == '-' || *p == ':')
3018 ++p;
3019 else
3020 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3021 style);
3022 }
3023 descsz = desc.size();
3024 }
3025 else
3026 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3027
3028 // Create the note.
3029 size_t trailing_padding;
3030 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3031 ".note.gnu.build-id", descsz, true,
3032 &trailing_padding);
3033 if (os == NULL)
3034 return;
3035
3036 if (!desc.empty())
3037 {
3038 // We know the value already, so we fill it in now.
3039 gold_assert(desc.size() == descsz);
3040
3041 Output_section_data* posd = new Output_data_const(desc, 4);
3042 os->add_output_section_data(posd);
3043
3044 if (trailing_padding != 0)
3045 {
3046 posd = new Output_data_zero_fill(trailing_padding, 0);
3047 os->add_output_section_data(posd);
3048 }
3049 }
3050 else
3051 {
3052 // We need to compute a checksum after we have completed the
3053 // link.
3054 gold_assert(trailing_padding == 0);
3055 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3056 os->add_output_section_data(this->build_id_note_);
3057 }
3058 }
3059
3060 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3061 // field of the former should point to the latter. I'm not sure who
3062 // started this, but the GNU linker does it, and some tools depend
3063 // upon it.
3064
3065 void
3066 Layout::link_stabs_sections()
3067 {
3068 if (!this->have_stabstr_section_)
3069 return;
3070
3071 for (Section_list::iterator p = this->section_list_.begin();
3072 p != this->section_list_.end();
3073 ++p)
3074 {
3075 if ((*p)->type() != elfcpp::SHT_STRTAB)
3076 continue;
3077
3078 const char* name = (*p)->name();
3079 if (strncmp(name, ".stab", 5) != 0)
3080 continue;
3081
3082 size_t len = strlen(name);
3083 if (strcmp(name + len - 3, "str") != 0)
3084 continue;
3085
3086 std::string stab_name(name, len - 3);
3087 Output_section* stab_sec;
3088 stab_sec = this->find_output_section(stab_name.c_str());
3089 if (stab_sec != NULL)
3090 stab_sec->set_link_section(*p);
3091 }
3092 }
3093
3094 // Create .gnu_incremental_inputs and related sections needed
3095 // for the next run of incremental linking to check what has changed.
3096
3097 void
3098 Layout::create_incremental_info_sections(Symbol_table* symtab)
3099 {
3100 Incremental_inputs* incr = this->incremental_inputs_;
3101
3102 gold_assert(incr != NULL);
3103
3104 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3105 incr->create_data_sections(symtab);
3106
3107 // Add the .gnu_incremental_inputs section.
3108 const char* incremental_inputs_name =
3109 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3110 Output_section* incremental_inputs_os =
3111 this->make_output_section(incremental_inputs_name,
3112 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3113 ORDER_INVALID, false);
3114 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3115
3116 // Add the .gnu_incremental_symtab section.
3117 const char* incremental_symtab_name =
3118 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3119 Output_section* incremental_symtab_os =
3120 this->make_output_section(incremental_symtab_name,
3121 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3122 ORDER_INVALID, false);
3123 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3124 incremental_symtab_os->set_entsize(4);
3125
3126 // Add the .gnu_incremental_relocs section.
3127 const char* incremental_relocs_name =
3128 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3129 Output_section* incremental_relocs_os =
3130 this->make_output_section(incremental_relocs_name,
3131 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3132 ORDER_INVALID, false);
3133 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3134 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3135
3136 // Add the .gnu_incremental_got_plt section.
3137 const char* incremental_got_plt_name =
3138 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3139 Output_section* incremental_got_plt_os =
3140 this->make_output_section(incremental_got_plt_name,
3141 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3142 ORDER_INVALID, false);
3143 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3144
3145 // Add the .gnu_incremental_strtab section.
3146 const char* incremental_strtab_name =
3147 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3148 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3149 elfcpp::SHT_STRTAB, 0,
3150 ORDER_INVALID, false);
3151 Output_data_strtab* strtab_data =
3152 new Output_data_strtab(incr->get_stringpool());
3153 incremental_strtab_os->add_output_section_data(strtab_data);
3154
3155 incremental_inputs_os->set_after_input_sections();
3156 incremental_symtab_os->set_after_input_sections();
3157 incremental_relocs_os->set_after_input_sections();
3158 incremental_got_plt_os->set_after_input_sections();
3159
3160 incremental_inputs_os->set_link_section(incremental_strtab_os);
3161 incremental_symtab_os->set_link_section(incremental_inputs_os);
3162 incremental_relocs_os->set_link_section(incremental_inputs_os);
3163 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3164 }
3165
3166 // Return whether SEG1 should be before SEG2 in the output file. This
3167 // is based entirely on the segment type and flags. When this is
3168 // called the segment addresses have normally not yet been set.
3169
3170 bool
3171 Layout::segment_precedes(const Output_segment* seg1,
3172 const Output_segment* seg2)
3173 {
3174 elfcpp::Elf_Word type1 = seg1->type();
3175 elfcpp::Elf_Word type2 = seg2->type();
3176
3177 // The single PT_PHDR segment is required to precede any loadable
3178 // segment. We simply make it always first.
3179 if (type1 == elfcpp::PT_PHDR)
3180 {
3181 gold_assert(type2 != elfcpp::PT_PHDR);
3182 return true;
3183 }
3184 if (type2 == elfcpp::PT_PHDR)
3185 return false;
3186
3187 // The single PT_INTERP segment is required to precede any loadable
3188 // segment. We simply make it always second.
3189 if (type1 == elfcpp::PT_INTERP)
3190 {
3191 gold_assert(type2 != elfcpp::PT_INTERP);
3192 return true;
3193 }
3194 if (type2 == elfcpp::PT_INTERP)
3195 return false;
3196
3197 // We then put PT_LOAD segments before any other segments.
3198 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3199 return true;
3200 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3201 return false;
3202
3203 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3204 // segment, because that is where the dynamic linker expects to find
3205 // it (this is just for efficiency; other positions would also work
3206 // correctly).
3207 if (type1 == elfcpp::PT_TLS
3208 && type2 != elfcpp::PT_TLS
3209 && type2 != elfcpp::PT_GNU_RELRO)
3210 return false;
3211 if (type2 == elfcpp::PT_TLS
3212 && type1 != elfcpp::PT_TLS
3213 && type1 != elfcpp::PT_GNU_RELRO)
3214 return true;
3215
3216 // We put the PT_GNU_RELRO segment last, because that is where the
3217 // dynamic linker expects to find it (as with PT_TLS, this is just
3218 // for efficiency).
3219 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3220 return false;
3221 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3222 return true;
3223
3224 const elfcpp::Elf_Word flags1 = seg1->flags();
3225 const elfcpp::Elf_Word flags2 = seg2->flags();
3226
3227 // The order of non-PT_LOAD segments is unimportant. We simply sort
3228 // by the numeric segment type and flags values. There should not
3229 // be more than one segment with the same type and flags, except
3230 // when a linker script specifies such.
3231 if (type1 != elfcpp::PT_LOAD)
3232 {
3233 if (type1 != type2)
3234 return type1 < type2;
3235 gold_assert(flags1 != flags2
3236 || this->script_options_->saw_phdrs_clause());
3237 return flags1 < flags2;
3238 }
3239
3240 // If the addresses are set already, sort by load address.
3241 if (seg1->are_addresses_set())
3242 {
3243 if (!seg2->are_addresses_set())
3244 return true;
3245
3246 unsigned int section_count1 = seg1->output_section_count();
3247 unsigned int section_count2 = seg2->output_section_count();
3248 if (section_count1 == 0 && section_count2 > 0)
3249 return true;
3250 if (section_count1 > 0 && section_count2 == 0)
3251 return false;
3252
3253 uint64_t paddr1 = (seg1->are_addresses_set()
3254 ? seg1->paddr()
3255 : seg1->first_section_load_address());
3256 uint64_t paddr2 = (seg2->are_addresses_set()
3257 ? seg2->paddr()
3258 : seg2->first_section_load_address());
3259
3260 if (paddr1 != paddr2)
3261 return paddr1 < paddr2;
3262 }
3263 else if (seg2->are_addresses_set())
3264 return false;
3265
3266 // A segment which holds large data comes after a segment which does
3267 // not hold large data.
3268 if (seg1->is_large_data_segment())
3269 {
3270 if (!seg2->is_large_data_segment())
3271 return false;
3272 }
3273 else if (seg2->is_large_data_segment())
3274 return true;
3275
3276 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3277 // segments come before writable segments. Then writable segments
3278 // with data come before writable segments without data. Then
3279 // executable segments come before non-executable segments. Then
3280 // the unlikely case of a non-readable segment comes before the
3281 // normal case of a readable segment. If there are multiple
3282 // segments with the same type and flags, we require that the
3283 // address be set, and we sort by virtual address and then physical
3284 // address.
3285 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3286 return (flags1 & elfcpp::PF_W) == 0;
3287 if ((flags1 & elfcpp::PF_W) != 0
3288 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3289 return seg1->has_any_data_sections();
3290 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3291 return (flags1 & elfcpp::PF_X) != 0;
3292 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3293 return (flags1 & elfcpp::PF_R) == 0;
3294
3295 // We shouldn't get here--we shouldn't create segments which we
3296 // can't distinguish. Unless of course we are using a weird linker
3297 // script or overlapping --section-start options. We could also get
3298 // here if plugins want unique segments for subsets of sections.
3299 gold_assert(this->script_options_->saw_phdrs_clause()
3300 || parameters->options().any_section_start()
3301 || this->is_unique_segment_for_sections_specified());
3302 return false;
3303 }
3304
3305 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3306
3307 static off_t
3308 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3309 {
3310 uint64_t unsigned_off = off;
3311 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3312 | (addr & (abi_pagesize - 1)));
3313 if (aligned_off < unsigned_off)
3314 aligned_off += abi_pagesize;
3315 return aligned_off;
3316 }
3317
3318 // Set the file offsets of all the segments, and all the sections they
3319 // contain. They have all been created. LOAD_SEG must be be laid out
3320 // first. Return the offset of the data to follow.
3321
3322 off_t
3323 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3324 unsigned int* pshndx)
3325 {
3326 // Sort them into the final order. We use a stable sort so that we
3327 // don't randomize the order of indistinguishable segments created
3328 // by linker scripts.
3329 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3330 Layout::Compare_segments(this));
3331
3332 // Find the PT_LOAD segments, and set their addresses and offsets
3333 // and their section's addresses and offsets.
3334 uint64_t start_addr;
3335 if (parameters->options().user_set_Ttext())
3336 start_addr = parameters->options().Ttext();
3337 else if (parameters->options().output_is_position_independent())
3338 start_addr = 0;
3339 else
3340 start_addr = target->default_text_segment_address();
3341
3342 uint64_t addr = start_addr;
3343 off_t off = 0;
3344
3345 // If LOAD_SEG is NULL, then the file header and segment headers
3346 // will not be loadable. But they still need to be at offset 0 in
3347 // the file. Set their offsets now.
3348 if (load_seg == NULL)
3349 {
3350 for (Data_list::iterator p = this->special_output_list_.begin();
3351 p != this->special_output_list_.end();
3352 ++p)
3353 {
3354 off = align_address(off, (*p)->addralign());
3355 (*p)->set_address_and_file_offset(0, off);
3356 off += (*p)->data_size();
3357 }
3358 }
3359
3360 unsigned int increase_relro = this->increase_relro_;
3361 if (this->script_options_->saw_sections_clause())
3362 increase_relro = 0;
3363
3364 const bool check_sections = parameters->options().check_sections();
3365 Output_segment* last_load_segment = NULL;
3366
3367 unsigned int shndx_begin = *pshndx;
3368 unsigned int shndx_load_seg = *pshndx;
3369
3370 for (Segment_list::iterator p = this->segment_list_.begin();
3371 p != this->segment_list_.end();
3372 ++p)
3373 {
3374 if ((*p)->type() == elfcpp::PT_LOAD)
3375 {
3376 if (target->isolate_execinstr())
3377 {
3378 // When we hit the segment that should contain the
3379 // file headers, reset the file offset so we place
3380 // it and subsequent segments appropriately.
3381 // We'll fix up the preceding segments below.
3382 if (load_seg == *p)
3383 {
3384 if (off == 0)
3385 load_seg = NULL;
3386 else
3387 {
3388 off = 0;
3389 shndx_load_seg = *pshndx;
3390 }
3391 }
3392 }
3393 else
3394 {
3395 // Verify that the file headers fall into the first segment.
3396 if (load_seg != NULL && load_seg != *p)
3397 gold_unreachable();
3398 load_seg = NULL;
3399 }
3400
3401 bool are_addresses_set = (*p)->are_addresses_set();
3402 if (are_addresses_set)
3403 {
3404 // When it comes to setting file offsets, we care about
3405 // the physical address.
3406 addr = (*p)->paddr();
3407 }
3408 else if (parameters->options().user_set_Ttext()
3409 && (parameters->options().omagic()
3410 || ((*p)->flags() & elfcpp::PF_W) == 0))
3411 {
3412 are_addresses_set = true;
3413 }
3414 else if (parameters->options().user_set_Tdata()
3415 && ((*p)->flags() & elfcpp::PF_W) != 0
3416 && (!parameters->options().user_set_Tbss()
3417 || (*p)->has_any_data_sections()))
3418 {
3419 addr = parameters->options().Tdata();
3420 are_addresses_set = true;
3421 }
3422 else if (parameters->options().user_set_Tbss()
3423 && ((*p)->flags() & elfcpp::PF_W) != 0
3424 && !(*p)->has_any_data_sections())
3425 {
3426 addr = parameters->options().Tbss();
3427 are_addresses_set = true;
3428 }
3429
3430 uint64_t orig_addr = addr;
3431 uint64_t orig_off = off;
3432
3433 uint64_t aligned_addr = 0;
3434 uint64_t abi_pagesize = target->abi_pagesize();
3435 uint64_t common_pagesize = target->common_pagesize();
3436
3437 if (!parameters->options().nmagic()
3438 && !parameters->options().omagic())
3439 (*p)->set_minimum_p_align(abi_pagesize);
3440
3441 if (!are_addresses_set)
3442 {
3443 // Skip the address forward one page, maintaining the same
3444 // position within the page. This lets us store both segments
3445 // overlapping on a single page in the file, but the loader will
3446 // put them on different pages in memory. We will revisit this
3447 // decision once we know the size of the segment.
3448
3449 addr = align_address(addr, (*p)->maximum_alignment());
3450 aligned_addr = addr;
3451
3452 if (load_seg == *p)
3453 {
3454 // This is the segment that will contain the file
3455 // headers, so its offset will have to be exactly zero.
3456 gold_assert(orig_off == 0);
3457
3458 // If the target wants a fixed minimum distance from the
3459 // text segment to the read-only segment, move up now.
3460 uint64_t min_addr = start_addr + target->rosegment_gap();
3461 if (addr < min_addr)
3462 addr = min_addr;
3463
3464 // But this is not the first segment! To make its
3465 // address congruent with its offset, that address better
3466 // be aligned to the ABI-mandated page size.
3467 addr = align_address(addr, abi_pagesize);
3468 aligned_addr = addr;
3469 }
3470 else
3471 {
3472 if ((addr & (abi_pagesize - 1)) != 0)
3473 addr = addr + abi_pagesize;
3474
3475 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3476 }
3477 }
3478
3479 if (!parameters->options().nmagic()
3480 && !parameters->options().omagic())
3481 off = align_file_offset(off, addr, abi_pagesize);
3482 else
3483 {
3484 // This is -N or -n with a section script which prevents
3485 // us from using a load segment. We need to ensure that
3486 // the file offset is aligned to the alignment of the
3487 // segment. This is because the linker script
3488 // implicitly assumed a zero offset. If we don't align
3489 // here, then the alignment of the sections in the
3490 // linker script may not match the alignment of the
3491 // sections in the set_section_addresses call below,
3492 // causing an error about dot moving backward.
3493 off = align_address(off, (*p)->maximum_alignment());
3494 }
3495
3496 unsigned int shndx_hold = *pshndx;
3497 bool has_relro = false;
3498 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3499 &increase_relro,
3500 &has_relro,
3501 &off, pshndx);
3502
3503 // Now that we know the size of this segment, we may be able
3504 // to save a page in memory, at the cost of wasting some
3505 // file space, by instead aligning to the start of a new
3506 // page. Here we use the real machine page size rather than
3507 // the ABI mandated page size. If the segment has been
3508 // aligned so that the relro data ends at a page boundary,
3509 // we do not try to realign it.
3510
3511 if (!are_addresses_set
3512 && !has_relro
3513 && aligned_addr != addr
3514 && !parameters->incremental())
3515 {
3516 uint64_t first_off = (common_pagesize
3517 - (aligned_addr
3518 & (common_pagesize - 1)));
3519 uint64_t last_off = new_addr & (common_pagesize - 1);
3520 if (first_off > 0
3521 && last_off > 0
3522 && ((aligned_addr & ~ (common_pagesize - 1))
3523 != (new_addr & ~ (common_pagesize - 1)))
3524 && first_off + last_off <= common_pagesize)
3525 {
3526 *pshndx = shndx_hold;
3527 addr = align_address(aligned_addr, common_pagesize);
3528 addr = align_address(addr, (*p)->maximum_alignment());
3529 if ((addr & (abi_pagesize - 1)) != 0)
3530 addr = addr + abi_pagesize;
3531 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3532 off = align_file_offset(off, addr, abi_pagesize);
3533
3534 increase_relro = this->increase_relro_;
3535 if (this->script_options_->saw_sections_clause())
3536 increase_relro = 0;
3537 has_relro = false;
3538
3539 new_addr = (*p)->set_section_addresses(this, true, addr,
3540 &increase_relro,
3541 &has_relro,
3542 &off, pshndx);
3543 }
3544 }
3545
3546 addr = new_addr;
3547
3548 // Implement --check-sections. We know that the segments
3549 // are sorted by LMA.
3550 if (check_sections && last_load_segment != NULL)
3551 {
3552 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3553 if (last_load_segment->paddr() + last_load_segment->memsz()
3554 > (*p)->paddr())
3555 {
3556 unsigned long long lb1 = last_load_segment->paddr();
3557 unsigned long long le1 = lb1 + last_load_segment->memsz();
3558 unsigned long long lb2 = (*p)->paddr();
3559 unsigned long long le2 = lb2 + (*p)->memsz();
3560 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3561 "[0x%llx -> 0x%llx]"),
3562 lb1, le1, lb2, le2);
3563 }
3564 }
3565 last_load_segment = *p;
3566 }
3567 }
3568
3569 if (load_seg != NULL && target->isolate_execinstr())
3570 {
3571 // Process the early segments again, setting their file offsets
3572 // so they land after the segments starting at LOAD_SEG.
3573 off = align_file_offset(off, 0, target->abi_pagesize());
3574
3575 for (Segment_list::iterator p = this->segment_list_.begin();
3576 *p != load_seg;
3577 ++p)
3578 {
3579 if ((*p)->type() == elfcpp::PT_LOAD)
3580 {
3581 // We repeat the whole job of assigning addresses and
3582 // offsets, but we really only want to change the offsets and
3583 // must ensure that the addresses all come out the same as
3584 // they did the first time through.
3585 bool has_relro = false;
3586 const uint64_t old_addr = (*p)->vaddr();
3587 const uint64_t old_end = old_addr + (*p)->memsz();
3588 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3589 old_addr,
3590 &increase_relro,
3591 &has_relro,
3592 &off,
3593 &shndx_begin);
3594 gold_assert(new_addr == old_end);
3595 }
3596 }
3597
3598 gold_assert(shndx_begin == shndx_load_seg);
3599 }
3600
3601 // Handle the non-PT_LOAD segments, setting their offsets from their
3602 // section's offsets.
3603 for (Segment_list::iterator p = this->segment_list_.begin();
3604 p != this->segment_list_.end();
3605 ++p)
3606 {
3607 if ((*p)->type() != elfcpp::PT_LOAD)
3608 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3609 ? increase_relro
3610 : 0);
3611 }
3612
3613 // Set the TLS offsets for each section in the PT_TLS segment.
3614 if (this->tls_segment_ != NULL)
3615 this->tls_segment_->set_tls_offsets();
3616
3617 return off;
3618 }
3619
3620 // Set the offsets of all the allocated sections when doing a
3621 // relocatable link. This does the same jobs as set_segment_offsets,
3622 // only for a relocatable link.
3623
3624 off_t
3625 Layout::set_relocatable_section_offsets(Output_data* file_header,
3626 unsigned int* pshndx)
3627 {
3628 off_t off = 0;
3629
3630 file_header->set_address_and_file_offset(0, 0);
3631 off += file_header->data_size();
3632
3633 for (Section_list::iterator p = this->section_list_.begin();
3634 p != this->section_list_.end();
3635 ++p)
3636 {
3637 // We skip unallocated sections here, except that group sections
3638 // have to come first.
3639 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3640 && (*p)->type() != elfcpp::SHT_GROUP)
3641 continue;
3642
3643 off = align_address(off, (*p)->addralign());
3644
3645 // The linker script might have set the address.
3646 if (!(*p)->is_address_valid())
3647 (*p)->set_address(0);
3648 (*p)->set_file_offset(off);
3649 (*p)->finalize_data_size();
3650 if ((*p)->type() != elfcpp::SHT_NOBITS)
3651 off += (*p)->data_size();
3652
3653 (*p)->set_out_shndx(*pshndx);
3654 ++*pshndx;
3655 }
3656
3657 return off;
3658 }
3659
3660 // Set the file offset of all the sections not associated with a
3661 // segment.
3662
3663 off_t
3664 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3665 {
3666 off_t startoff = off;
3667 off_t maxoff = off;
3668
3669 for (Section_list::iterator p = this->unattached_section_list_.begin();
3670 p != this->unattached_section_list_.end();
3671 ++p)
3672 {
3673 // The symtab section is handled in create_symtab_sections.
3674 if (*p == this->symtab_section_)
3675 continue;
3676
3677 // If we've already set the data size, don't set it again.
3678 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3679 continue;
3680
3681 if (pass == BEFORE_INPUT_SECTIONS_PASS
3682 && (*p)->requires_postprocessing())
3683 {
3684 (*p)->create_postprocessing_buffer();
3685 this->any_postprocessing_sections_ = true;
3686 }
3687
3688 if (pass == BEFORE_INPUT_SECTIONS_PASS
3689 && (*p)->after_input_sections())
3690 continue;
3691 else if (pass == POSTPROCESSING_SECTIONS_PASS
3692 && (!(*p)->after_input_sections()
3693 || (*p)->type() == elfcpp::SHT_STRTAB))
3694 continue;
3695 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3696 && (!(*p)->after_input_sections()
3697 || (*p)->type() != elfcpp::SHT_STRTAB))
3698 continue;
3699
3700 if (!parameters->incremental_update())
3701 {
3702 off = align_address(off, (*p)->addralign());
3703 (*p)->set_file_offset(off);
3704 (*p)->finalize_data_size();
3705 }
3706 else
3707 {
3708 // Incremental update: allocate file space from free list.
3709 (*p)->pre_finalize_data_size();
3710 off_t current_size = (*p)->current_data_size();
3711 off = this->allocate(current_size, (*p)->addralign(), startoff);
3712 if (off == -1)
3713 {
3714 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3715 this->free_list_.dump();
3716 gold_assert((*p)->output_section() != NULL);
3717 gold_fallback(_("out of patch space for section %s; "
3718 "relink with --incremental-full"),
3719 (*p)->output_section()->name());
3720 }
3721 (*p)->set_file_offset(off);
3722 (*p)->finalize_data_size();
3723 if ((*p)->data_size() > current_size)
3724 {
3725 gold_assert((*p)->output_section() != NULL);
3726 gold_fallback(_("%s: section changed size; "
3727 "relink with --incremental-full"),
3728 (*p)->output_section()->name());
3729 }
3730 gold_debug(DEBUG_INCREMENTAL,
3731 "set_section_offsets: %08lx %08lx %s",
3732 static_cast<long>(off),
3733 static_cast<long>((*p)->data_size()),
3734 ((*p)->output_section() != NULL
3735 ? (*p)->output_section()->name() : "(special)"));
3736 }
3737
3738 off += (*p)->data_size();
3739 if (off > maxoff)
3740 maxoff = off;
3741
3742 // At this point the name must be set.
3743 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3744 this->namepool_.add((*p)->name(), false, NULL);
3745 }
3746 return maxoff;
3747 }
3748
3749 // Set the section indexes of all the sections not associated with a
3750 // segment.
3751
3752 unsigned int
3753 Layout::set_section_indexes(unsigned int shndx)
3754 {
3755 for (Section_list::iterator p = this->unattached_section_list_.begin();
3756 p != this->unattached_section_list_.end();
3757 ++p)
3758 {
3759 if (!(*p)->has_out_shndx())
3760 {
3761 (*p)->set_out_shndx(shndx);
3762 ++shndx;
3763 }
3764 }
3765 return shndx;
3766 }
3767
3768 // Set the section addresses according to the linker script. This is
3769 // only called when we see a SECTIONS clause. This returns the
3770 // program segment which should hold the file header and segment
3771 // headers, if any. It will return NULL if they should not be in a
3772 // segment.
3773
3774 Output_segment*
3775 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3776 {
3777 Script_sections* ss = this->script_options_->script_sections();
3778 gold_assert(ss->saw_sections_clause());
3779 return this->script_options_->set_section_addresses(symtab, this);
3780 }
3781
3782 // Place the orphan sections in the linker script.
3783
3784 void
3785 Layout::place_orphan_sections_in_script()
3786 {
3787 Script_sections* ss = this->script_options_->script_sections();
3788 gold_assert(ss->saw_sections_clause());
3789
3790 // Place each orphaned output section in the script.
3791 for (Section_list::iterator p = this->section_list_.begin();
3792 p != this->section_list_.end();
3793 ++p)
3794 {
3795 if (!(*p)->found_in_sections_clause())
3796 ss->place_orphan(*p);
3797 }
3798 }
3799
3800 // Count the local symbols in the regular symbol table and the dynamic
3801 // symbol table, and build the respective string pools.
3802
3803 void
3804 Layout::count_local_symbols(const Task* task,
3805 const Input_objects* input_objects)
3806 {
3807 // First, figure out an upper bound on the number of symbols we'll
3808 // be inserting into each pool. This helps us create the pools with
3809 // the right size, to avoid unnecessary hashtable resizing.
3810 unsigned int symbol_count = 0;
3811 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3812 p != input_objects->relobj_end();
3813 ++p)
3814 symbol_count += (*p)->local_symbol_count();
3815
3816 // Go from "upper bound" to "estimate." We overcount for two
3817 // reasons: we double-count symbols that occur in more than one
3818 // object file, and we count symbols that are dropped from the
3819 // output. Add it all together and assume we overcount by 100%.
3820 symbol_count /= 2;
3821
3822 // We assume all symbols will go into both the sympool and dynpool.
3823 this->sympool_.reserve(symbol_count);
3824 this->dynpool_.reserve(symbol_count);
3825
3826 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3827 p != input_objects->relobj_end();
3828 ++p)
3829 {
3830 Task_lock_obj<Object> tlo(task, *p);
3831 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3832 }
3833 }
3834
3835 // Create the symbol table sections. Here we also set the final
3836 // values of the symbols. At this point all the loadable sections are
3837 // fully laid out. SHNUM is the number of sections so far.
3838
3839 void
3840 Layout::create_symtab_sections(const Input_objects* input_objects,
3841 Symbol_table* symtab,
3842 unsigned int shnum,
3843 off_t* poff)
3844 {
3845 int symsize;
3846 unsigned int align;
3847 if (parameters->target().get_size() == 32)
3848 {
3849 symsize = elfcpp::Elf_sizes<32>::sym_size;
3850 align = 4;
3851 }
3852 else if (parameters->target().get_size() == 64)
3853 {
3854 symsize = elfcpp::Elf_sizes<64>::sym_size;
3855 align = 8;
3856 }
3857 else
3858 gold_unreachable();
3859
3860 // Compute file offsets relative to the start of the symtab section.
3861 off_t off = 0;
3862
3863 // Save space for the dummy symbol at the start of the section. We
3864 // never bother to write this out--it will just be left as zero.
3865 off += symsize;
3866 unsigned int local_symbol_index = 1;
3867
3868 // Add STT_SECTION symbols for each Output section which needs one.
3869 for (Section_list::iterator p = this->section_list_.begin();
3870 p != this->section_list_.end();
3871 ++p)
3872 {
3873 if (!(*p)->needs_symtab_index())
3874 (*p)->set_symtab_index(-1U);
3875 else
3876 {
3877 (*p)->set_symtab_index(local_symbol_index);
3878 ++local_symbol_index;
3879 off += symsize;
3880 }
3881 }
3882
3883 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3884 p != input_objects->relobj_end();
3885 ++p)
3886 {
3887 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3888 off, symtab);
3889 off += (index - local_symbol_index) * symsize;
3890 local_symbol_index = index;
3891 }
3892
3893 unsigned int local_symcount = local_symbol_index;
3894 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3895
3896 off_t dynoff;
3897 size_t dyn_global_index;
3898 size_t dyncount;
3899 if (this->dynsym_section_ == NULL)
3900 {
3901 dynoff = 0;
3902 dyn_global_index = 0;
3903 dyncount = 0;
3904 }
3905 else
3906 {
3907 dyn_global_index = this->dynsym_section_->info();
3908 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3909 dynoff = this->dynsym_section_->offset() + locsize;
3910 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3911 gold_assert(static_cast<off_t>(dyncount * symsize)
3912 == this->dynsym_section_->data_size() - locsize);
3913 }
3914
3915 off_t global_off = off;
3916 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3917 &this->sympool_, &local_symcount);
3918
3919 if (!parameters->options().strip_all())
3920 {
3921 this->sympool_.set_string_offsets();
3922
3923 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3924 Output_section* osymtab = this->make_output_section(symtab_name,
3925 elfcpp::SHT_SYMTAB,
3926 0, ORDER_INVALID,
3927 false);
3928 this->symtab_section_ = osymtab;
3929
3930 Output_section_data* pos = new Output_data_fixed_space(off, align,
3931 "** symtab");
3932 osymtab->add_output_section_data(pos);
3933
3934 // We generate a .symtab_shndx section if we have more than
3935 // SHN_LORESERVE sections. Technically it is possible that we
3936 // don't need one, because it is possible that there are no
3937 // symbols in any of sections with indexes larger than
3938 // SHN_LORESERVE. That is probably unusual, though, and it is
3939 // easier to always create one than to compute section indexes
3940 // twice (once here, once when writing out the symbols).
3941 if (shnum >= elfcpp::SHN_LORESERVE)
3942 {
3943 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3944 false, NULL);
3945 Output_section* osymtab_xindex =
3946 this->make_output_section(symtab_xindex_name,
3947 elfcpp::SHT_SYMTAB_SHNDX, 0,
3948 ORDER_INVALID, false);
3949
3950 size_t symcount = off / symsize;
3951 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3952
3953 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3954
3955 osymtab_xindex->set_link_section(osymtab);
3956 osymtab_xindex->set_addralign(4);
3957 osymtab_xindex->set_entsize(4);
3958
3959 osymtab_xindex->set_after_input_sections();
3960
3961 // This tells the driver code to wait until the symbol table
3962 // has written out before writing out the postprocessing
3963 // sections, including the .symtab_shndx section.
3964 this->any_postprocessing_sections_ = true;
3965 }
3966
3967 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3968 Output_section* ostrtab = this->make_output_section(strtab_name,
3969 elfcpp::SHT_STRTAB,
3970 0, ORDER_INVALID,
3971 false);
3972
3973 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3974 ostrtab->add_output_section_data(pstr);
3975
3976 off_t symtab_off;
3977 if (!parameters->incremental_update())
3978 symtab_off = align_address(*poff, align);
3979 else
3980 {
3981 symtab_off = this->allocate(off, align, *poff);
3982 if (off == -1)
3983 gold_fallback(_("out of patch space for symbol table; "
3984 "relink with --incremental-full"));
3985 gold_debug(DEBUG_INCREMENTAL,
3986 "create_symtab_sections: %08lx %08lx .symtab",
3987 static_cast<long>(symtab_off),
3988 static_cast<long>(off));
3989 }
3990
3991 symtab->set_file_offset(symtab_off + global_off);
3992 osymtab->set_file_offset(symtab_off);
3993 osymtab->finalize_data_size();
3994 osymtab->set_link_section(ostrtab);
3995 osymtab->set_info(local_symcount);
3996 osymtab->set_entsize(symsize);
3997
3998 if (symtab_off + off > *poff)
3999 *poff = symtab_off + off;
4000 }
4001 }
4002
4003 // Create the .shstrtab section, which holds the names of the
4004 // sections. At the time this is called, we have created all the
4005 // output sections except .shstrtab itself.
4006
4007 Output_section*
4008 Layout::create_shstrtab()
4009 {
4010 // FIXME: We don't need to create a .shstrtab section if we are
4011 // stripping everything.
4012
4013 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4014
4015 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4016 ORDER_INVALID, false);
4017
4018 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4019 {
4020 // We can't write out this section until we've set all the
4021 // section names, and we don't set the names of compressed
4022 // output sections until relocations are complete. FIXME: With
4023 // the current names we use, this is unnecessary.
4024 os->set_after_input_sections();
4025 }
4026
4027 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4028 os->add_output_section_data(posd);
4029
4030 return os;
4031 }
4032
4033 // Create the section headers. SIZE is 32 or 64. OFF is the file
4034 // offset.
4035
4036 void
4037 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4038 {
4039 Output_section_headers* oshdrs;
4040 oshdrs = new Output_section_headers(this,
4041 &this->segment_list_,
4042 &this->section_list_,
4043 &this->unattached_section_list_,
4044 &this->namepool_,
4045 shstrtab_section);
4046 off_t off;
4047 if (!parameters->incremental_update())
4048 off = align_address(*poff, oshdrs->addralign());
4049 else
4050 {
4051 oshdrs->pre_finalize_data_size();
4052 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4053 if (off == -1)
4054 gold_fallback(_("out of patch space for section header table; "
4055 "relink with --incremental-full"));
4056 gold_debug(DEBUG_INCREMENTAL,
4057 "create_shdrs: %08lx %08lx (section header table)",
4058 static_cast<long>(off),
4059 static_cast<long>(off + oshdrs->data_size()));
4060 }
4061 oshdrs->set_address_and_file_offset(0, off);
4062 off += oshdrs->data_size();
4063 if (off > *poff)
4064 *poff = off;
4065 this->section_headers_ = oshdrs;
4066 }
4067
4068 // Count the allocated sections.
4069
4070 size_t
4071 Layout::allocated_output_section_count() const
4072 {
4073 size_t section_count = 0;
4074 for (Segment_list::const_iterator p = this->segment_list_.begin();
4075 p != this->segment_list_.end();
4076 ++p)
4077 section_count += (*p)->output_section_count();
4078 return section_count;
4079 }
4080
4081 // Create the dynamic symbol table.
4082
4083 void
4084 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4085 Symbol_table* symtab,
4086 Output_section** pdynstr,
4087 unsigned int* plocal_dynamic_count,
4088 std::vector<Symbol*>* pdynamic_symbols,
4089 Versions* pversions)
4090 {
4091 // Count all the symbols in the dynamic symbol table, and set the
4092 // dynamic symbol indexes.
4093
4094 // Skip symbol 0, which is always all zeroes.
4095 unsigned int index = 1;
4096
4097 // Add STT_SECTION symbols for each Output section which needs one.
4098 for (Section_list::iterator p = this->section_list_.begin();
4099 p != this->section_list_.end();
4100 ++p)
4101 {
4102 if (!(*p)->needs_dynsym_index())
4103 (*p)->set_dynsym_index(-1U);
4104 else
4105 {
4106 (*p)->set_dynsym_index(index);
4107 ++index;
4108 }
4109 }
4110
4111 // Count the local symbols that need to go in the dynamic symbol table,
4112 // and set the dynamic symbol indexes.
4113 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4114 p != input_objects->relobj_end();
4115 ++p)
4116 {
4117 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4118 index = new_index;
4119 }
4120
4121 unsigned int local_symcount = index;
4122 *plocal_dynamic_count = local_symcount;
4123
4124 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4125 &this->dynpool_, pversions);
4126
4127 int symsize;
4128 unsigned int align;
4129 const int size = parameters->target().get_size();
4130 if (size == 32)
4131 {
4132 symsize = elfcpp::Elf_sizes<32>::sym_size;
4133 align = 4;
4134 }
4135 else if (size == 64)
4136 {
4137 symsize = elfcpp::Elf_sizes<64>::sym_size;
4138 align = 8;
4139 }
4140 else
4141 gold_unreachable();
4142
4143 // Create the dynamic symbol table section.
4144
4145 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4146 elfcpp::SHT_DYNSYM,
4147 elfcpp::SHF_ALLOC,
4148 false,
4149 ORDER_DYNAMIC_LINKER,
4150 false);
4151
4152 // Check for NULL as a linker script may discard .dynsym.
4153 if (dynsym != NULL)
4154 {
4155 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4156 align,
4157 "** dynsym");
4158 dynsym->add_output_section_data(odata);
4159
4160 dynsym->set_info(local_symcount);
4161 dynsym->set_entsize(symsize);
4162 dynsym->set_addralign(align);
4163
4164 this->dynsym_section_ = dynsym;
4165 }
4166
4167 Output_data_dynamic* const odyn = this->dynamic_data_;
4168 if (odyn != NULL)
4169 {
4170 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4171 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4172 }
4173
4174 // If there are more than SHN_LORESERVE allocated sections, we
4175 // create a .dynsym_shndx section. It is possible that we don't
4176 // need one, because it is possible that there are no dynamic
4177 // symbols in any of the sections with indexes larger than
4178 // SHN_LORESERVE. This is probably unusual, though, and at this
4179 // time we don't know the actual section indexes so it is
4180 // inconvenient to check.
4181 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4182 {
4183 Output_section* dynsym_xindex =
4184 this->choose_output_section(NULL, ".dynsym_shndx",
4185 elfcpp::SHT_SYMTAB_SHNDX,
4186 elfcpp::SHF_ALLOC,
4187 false, ORDER_DYNAMIC_LINKER, false);
4188
4189 if (dynsym_xindex != NULL)
4190 {
4191 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4192
4193 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4194
4195 dynsym_xindex->set_link_section(dynsym);
4196 dynsym_xindex->set_addralign(4);
4197 dynsym_xindex->set_entsize(4);
4198
4199 dynsym_xindex->set_after_input_sections();
4200
4201 // This tells the driver code to wait until the symbol table
4202 // has written out before writing out the postprocessing
4203 // sections, including the .dynsym_shndx section.
4204 this->any_postprocessing_sections_ = true;
4205 }
4206 }
4207
4208 // Create the dynamic string table section.
4209
4210 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4211 elfcpp::SHT_STRTAB,
4212 elfcpp::SHF_ALLOC,
4213 false,
4214 ORDER_DYNAMIC_LINKER,
4215 false);
4216 *pdynstr = dynstr;
4217 if (dynstr != NULL)
4218 {
4219 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4220 dynstr->add_output_section_data(strdata);
4221
4222 if (dynsym != NULL)
4223 dynsym->set_link_section(dynstr);
4224 if (this->dynamic_section_ != NULL)
4225 this->dynamic_section_->set_link_section(dynstr);
4226
4227 if (odyn != NULL)
4228 {
4229 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4230 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4231 }
4232 }
4233
4234 // Create the hash tables.
4235
4236 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4237 || strcmp(parameters->options().hash_style(), "both") == 0)
4238 {
4239 unsigned char* phash;
4240 unsigned int hashlen;
4241 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4242 &phash, &hashlen);
4243
4244 Output_section* hashsec =
4245 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4246 elfcpp::SHF_ALLOC, false,
4247 ORDER_DYNAMIC_LINKER, false);
4248
4249 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4250 hashlen,
4251 align,
4252 "** hash");
4253 if (hashsec != NULL && hashdata != NULL)
4254 hashsec->add_output_section_data(hashdata);
4255
4256 if (hashsec != NULL)
4257 {
4258 if (dynsym != NULL)
4259 hashsec->set_link_section(dynsym);
4260 hashsec->set_entsize(4);
4261 }
4262
4263 if (odyn != NULL)
4264 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4265 }
4266
4267 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4268 || strcmp(parameters->options().hash_style(), "both") == 0)
4269 {
4270 unsigned char* phash;
4271 unsigned int hashlen;
4272 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4273 &phash, &hashlen);
4274
4275 Output_section* hashsec =
4276 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4277 elfcpp::SHF_ALLOC, false,
4278 ORDER_DYNAMIC_LINKER, false);
4279
4280 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4281 hashlen,
4282 align,
4283 "** hash");
4284 if (hashsec != NULL && hashdata != NULL)
4285 hashsec->add_output_section_data(hashdata);
4286
4287 if (hashsec != NULL)
4288 {
4289 if (dynsym != NULL)
4290 hashsec->set_link_section(dynsym);
4291
4292 // For a 64-bit target, the entries in .gnu.hash do not have
4293 // a uniform size, so we only set the entry size for a
4294 // 32-bit target.
4295 if (parameters->target().get_size() == 32)
4296 hashsec->set_entsize(4);
4297
4298 if (odyn != NULL)
4299 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4300 }
4301 }
4302 }
4303
4304 // Assign offsets to each local portion of the dynamic symbol table.
4305
4306 void
4307 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4308 {
4309 Output_section* dynsym = this->dynsym_section_;
4310 if (dynsym == NULL)
4311 return;
4312
4313 off_t off = dynsym->offset();
4314
4315 // Skip the dummy symbol at the start of the section.
4316 off += dynsym->entsize();
4317
4318 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4319 p != input_objects->relobj_end();
4320 ++p)
4321 {
4322 unsigned int count = (*p)->set_local_dynsym_offset(off);
4323 off += count * dynsym->entsize();
4324 }
4325 }
4326
4327 // Create the version sections.
4328
4329 void
4330 Layout::create_version_sections(const Versions* versions,
4331 const Symbol_table* symtab,
4332 unsigned int local_symcount,
4333 const std::vector<Symbol*>& dynamic_symbols,
4334 const Output_section* dynstr)
4335 {
4336 if (!versions->any_defs() && !versions->any_needs())
4337 return;
4338
4339 switch (parameters->size_and_endianness())
4340 {
4341 #ifdef HAVE_TARGET_32_LITTLE
4342 case Parameters::TARGET_32_LITTLE:
4343 this->sized_create_version_sections<32, false>(versions, symtab,
4344 local_symcount,
4345 dynamic_symbols, dynstr);
4346 break;
4347 #endif
4348 #ifdef HAVE_TARGET_32_BIG
4349 case Parameters::TARGET_32_BIG:
4350 this->sized_create_version_sections<32, true>(versions, symtab,
4351 local_symcount,
4352 dynamic_symbols, dynstr);
4353 break;
4354 #endif
4355 #ifdef HAVE_TARGET_64_LITTLE
4356 case Parameters::TARGET_64_LITTLE:
4357 this->sized_create_version_sections<64, false>(versions, symtab,
4358 local_symcount,
4359 dynamic_symbols, dynstr);
4360 break;
4361 #endif
4362 #ifdef HAVE_TARGET_64_BIG
4363 case Parameters::TARGET_64_BIG:
4364 this->sized_create_version_sections<64, true>(versions, symtab,
4365 local_symcount,
4366 dynamic_symbols, dynstr);
4367 break;
4368 #endif
4369 default:
4370 gold_unreachable();
4371 }
4372 }
4373
4374 // Create the version sections, sized version.
4375
4376 template<int size, bool big_endian>
4377 void
4378 Layout::sized_create_version_sections(
4379 const Versions* versions,
4380 const Symbol_table* symtab,
4381 unsigned int local_symcount,
4382 const std::vector<Symbol*>& dynamic_symbols,
4383 const Output_section* dynstr)
4384 {
4385 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4386 elfcpp::SHT_GNU_versym,
4387 elfcpp::SHF_ALLOC,
4388 false,
4389 ORDER_DYNAMIC_LINKER,
4390 false);
4391
4392 // Check for NULL since a linker script may discard this section.
4393 if (vsec != NULL)
4394 {
4395 unsigned char* vbuf;
4396 unsigned int vsize;
4397 versions->symbol_section_contents<size, big_endian>(symtab,
4398 &this->dynpool_,
4399 local_symcount,
4400 dynamic_symbols,
4401 &vbuf, &vsize);
4402
4403 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4404 "** versions");
4405
4406 vsec->add_output_section_data(vdata);
4407 vsec->set_entsize(2);
4408 vsec->set_link_section(this->dynsym_section_);
4409 }
4410
4411 Output_data_dynamic* const odyn = this->dynamic_data_;
4412 if (odyn != NULL && vsec != NULL)
4413 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4414
4415 if (versions->any_defs())
4416 {
4417 Output_section* vdsec;
4418 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4419 elfcpp::SHT_GNU_verdef,
4420 elfcpp::SHF_ALLOC,
4421 false, ORDER_DYNAMIC_LINKER, false);
4422
4423 if (vdsec != NULL)
4424 {
4425 unsigned char* vdbuf;
4426 unsigned int vdsize;
4427 unsigned int vdentries;
4428 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4429 &vdbuf, &vdsize,
4430 &vdentries);
4431
4432 Output_section_data* vddata =
4433 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4434
4435 vdsec->add_output_section_data(vddata);
4436 vdsec->set_link_section(dynstr);
4437 vdsec->set_info(vdentries);
4438
4439 if (odyn != NULL)
4440 {
4441 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4442 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4443 }
4444 }
4445 }
4446
4447 if (versions->any_needs())
4448 {
4449 Output_section* vnsec;
4450 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4451 elfcpp::SHT_GNU_verneed,
4452 elfcpp::SHF_ALLOC,
4453 false, ORDER_DYNAMIC_LINKER, false);
4454
4455 if (vnsec != NULL)
4456 {
4457 unsigned char* vnbuf;
4458 unsigned int vnsize;
4459 unsigned int vnentries;
4460 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4461 &vnbuf, &vnsize,
4462 &vnentries);
4463
4464 Output_section_data* vndata =
4465 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4466
4467 vnsec->add_output_section_data(vndata);
4468 vnsec->set_link_section(dynstr);
4469 vnsec->set_info(vnentries);
4470
4471 if (odyn != NULL)
4472 {
4473 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4474 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4475 }
4476 }
4477 }
4478 }
4479
4480 // Create the .interp section and PT_INTERP segment.
4481
4482 void
4483 Layout::create_interp(const Target* target)
4484 {
4485 gold_assert(this->interp_segment_ == NULL);
4486
4487 const char* interp = parameters->options().dynamic_linker();
4488 if (interp == NULL)
4489 {
4490 interp = target->dynamic_linker();
4491 gold_assert(interp != NULL);
4492 }
4493
4494 size_t len = strlen(interp) + 1;
4495
4496 Output_section_data* odata = new Output_data_const(interp, len, 1);
4497
4498 Output_section* osec = this->choose_output_section(NULL, ".interp",
4499 elfcpp::SHT_PROGBITS,
4500 elfcpp::SHF_ALLOC,
4501 false, ORDER_INTERP,
4502 false);
4503 if (osec != NULL)
4504 osec->add_output_section_data(odata);
4505 }
4506
4507 // Add dynamic tags for the PLT and the dynamic relocs. This is
4508 // called by the target-specific code. This does nothing if not doing
4509 // a dynamic link.
4510
4511 // USE_REL is true for REL relocs rather than RELA relocs.
4512
4513 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4514
4515 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4516 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4517 // some targets have multiple reloc sections in PLT_REL.
4518
4519 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4520 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4521 // section.
4522
4523 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4524 // executable.
4525
4526 void
4527 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4528 const Output_data* plt_rel,
4529 const Output_data_reloc_generic* dyn_rel,
4530 bool add_debug, bool dynrel_includes_plt)
4531 {
4532 Output_data_dynamic* odyn = this->dynamic_data_;
4533 if (odyn == NULL)
4534 return;
4535
4536 if (plt_got != NULL && plt_got->output_section() != NULL)
4537 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4538
4539 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4540 {
4541 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4542 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4543 odyn->add_constant(elfcpp::DT_PLTREL,
4544 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4545 }
4546
4547 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4548 || (dynrel_includes_plt
4549 && plt_rel != NULL
4550 && plt_rel->output_section() != NULL))
4551 {
4552 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4553 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4554 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4555 (have_dyn_rel
4556 ? dyn_rel->output_section()
4557 : plt_rel->output_section()));
4558 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4559 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4560 odyn->add_section_size(size_tag,
4561 dyn_rel->output_section(),
4562 plt_rel->output_section());
4563 else if (have_dyn_rel)
4564 odyn->add_section_size(size_tag, dyn_rel->output_section());
4565 else
4566 odyn->add_section_size(size_tag, plt_rel->output_section());
4567 const int size = parameters->target().get_size();
4568 elfcpp::DT rel_tag;
4569 int rel_size;
4570 if (use_rel)
4571 {
4572 rel_tag = elfcpp::DT_RELENT;
4573 if (size == 32)
4574 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4575 else if (size == 64)
4576 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4577 else
4578 gold_unreachable();
4579 }
4580 else
4581 {
4582 rel_tag = elfcpp::DT_RELAENT;
4583 if (size == 32)
4584 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4585 else if (size == 64)
4586 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4587 else
4588 gold_unreachable();
4589 }
4590 odyn->add_constant(rel_tag, rel_size);
4591
4592 if (parameters->options().combreloc() && have_dyn_rel)
4593 {
4594 size_t c = dyn_rel->relative_reloc_count();
4595 if (c > 0)
4596 odyn->add_constant((use_rel
4597 ? elfcpp::DT_RELCOUNT
4598 : elfcpp::DT_RELACOUNT),
4599 c);
4600 }
4601 }
4602
4603 if (add_debug && !parameters->options().shared())
4604 {
4605 // The value of the DT_DEBUG tag is filled in by the dynamic
4606 // linker at run time, and used by the debugger.
4607 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4608 }
4609 }
4610
4611 // Finish the .dynamic section and PT_DYNAMIC segment.
4612
4613 void
4614 Layout::finish_dynamic_section(const Input_objects* input_objects,
4615 const Symbol_table* symtab)
4616 {
4617 if (!this->script_options_->saw_phdrs_clause()
4618 && this->dynamic_section_ != NULL)
4619 {
4620 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4621 (elfcpp::PF_R
4622 | elfcpp::PF_W));
4623 oseg->add_output_section_to_nonload(this->dynamic_section_,
4624 elfcpp::PF_R | elfcpp::PF_W);
4625 }
4626
4627 Output_data_dynamic* const odyn = this->dynamic_data_;
4628 if (odyn == NULL)
4629 return;
4630
4631 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4632 p != input_objects->dynobj_end();
4633 ++p)
4634 {
4635 if (!(*p)->is_needed() && (*p)->as_needed())
4636 {
4637 // This dynamic object was linked with --as-needed, but it
4638 // is not needed.
4639 continue;
4640 }
4641
4642 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4643 }
4644
4645 if (parameters->options().shared())
4646 {
4647 const char* soname = parameters->options().soname();
4648 if (soname != NULL)
4649 odyn->add_string(elfcpp::DT_SONAME, soname);
4650 }
4651
4652 Symbol* sym = symtab->lookup(parameters->options().init());
4653 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4654 odyn->add_symbol(elfcpp::DT_INIT, sym);
4655
4656 sym = symtab->lookup(parameters->options().fini());
4657 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4658 odyn->add_symbol(elfcpp::DT_FINI, sym);
4659
4660 // Look for .init_array, .preinit_array and .fini_array by checking
4661 // section types.
4662 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4663 p != this->section_list_.end();
4664 ++p)
4665 switch((*p)->type())
4666 {
4667 case elfcpp::SHT_FINI_ARRAY:
4668 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4669 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4670 break;
4671 case elfcpp::SHT_INIT_ARRAY:
4672 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4673 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4674 break;
4675 case elfcpp::SHT_PREINIT_ARRAY:
4676 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4677 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4678 break;
4679 default:
4680 break;
4681 }
4682
4683 // Add a DT_RPATH entry if needed.
4684 const General_options::Dir_list& rpath(parameters->options().rpath());
4685 if (!rpath.empty())
4686 {
4687 std::string rpath_val;
4688 for (General_options::Dir_list::const_iterator p = rpath.begin();
4689 p != rpath.end();
4690 ++p)
4691 {
4692 if (rpath_val.empty())
4693 rpath_val = p->name();
4694 else
4695 {
4696 // Eliminate duplicates.
4697 General_options::Dir_list::const_iterator q;
4698 for (q = rpath.begin(); q != p; ++q)
4699 if (q->name() == p->name())
4700 break;
4701 if (q == p)
4702 {
4703 rpath_val += ':';
4704 rpath_val += p->name();
4705 }
4706 }
4707 }
4708
4709 if (!parameters->options().enable_new_dtags())
4710 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4711 else
4712 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4713 }
4714
4715 // Look for text segments that have dynamic relocations.
4716 bool have_textrel = false;
4717 if (!this->script_options_->saw_sections_clause())
4718 {
4719 for (Segment_list::const_iterator p = this->segment_list_.begin();
4720 p != this->segment_list_.end();
4721 ++p)
4722 {
4723 if ((*p)->type() == elfcpp::PT_LOAD
4724 && ((*p)->flags() & elfcpp::PF_W) == 0
4725 && (*p)->has_dynamic_reloc())
4726 {
4727 have_textrel = true;
4728 break;
4729 }
4730 }
4731 }
4732 else
4733 {
4734 // We don't know the section -> segment mapping, so we are
4735 // conservative and just look for readonly sections with
4736 // relocations. If those sections wind up in writable segments,
4737 // then we have created an unnecessary DT_TEXTREL entry.
4738 for (Section_list::const_iterator p = this->section_list_.begin();
4739 p != this->section_list_.end();
4740 ++p)
4741 {
4742 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4743 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4744 && (*p)->has_dynamic_reloc())
4745 {
4746 have_textrel = true;
4747 break;
4748 }
4749 }
4750 }
4751
4752 if (parameters->options().filter() != NULL)
4753 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4754 if (parameters->options().any_auxiliary())
4755 {
4756 for (options::String_set::const_iterator p =
4757 parameters->options().auxiliary_begin();
4758 p != parameters->options().auxiliary_end();
4759 ++p)
4760 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4761 }
4762
4763 // Add a DT_FLAGS entry if necessary.
4764 unsigned int flags = 0;
4765 if (have_textrel)
4766 {
4767 // Add a DT_TEXTREL for compatibility with older loaders.
4768 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4769 flags |= elfcpp::DF_TEXTREL;
4770
4771 if (parameters->options().text())
4772 gold_error(_("read-only segment has dynamic relocations"));
4773 else if (parameters->options().warn_shared_textrel()
4774 && parameters->options().shared())
4775 gold_warning(_("shared library text segment is not shareable"));
4776 }
4777 if (parameters->options().shared() && this->has_static_tls())
4778 flags |= elfcpp::DF_STATIC_TLS;
4779 if (parameters->options().origin())
4780 flags |= elfcpp::DF_ORIGIN;
4781 if (parameters->options().Bsymbolic())
4782 {
4783 flags |= elfcpp::DF_SYMBOLIC;
4784 // Add DT_SYMBOLIC for compatibility with older loaders.
4785 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4786 }
4787 if (parameters->options().now())
4788 flags |= elfcpp::DF_BIND_NOW;
4789 if (flags != 0)
4790 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4791
4792 flags = 0;
4793 if (parameters->options().initfirst())
4794 flags |= elfcpp::DF_1_INITFIRST;
4795 if (parameters->options().interpose())
4796 flags |= elfcpp::DF_1_INTERPOSE;
4797 if (parameters->options().loadfltr())
4798 flags |= elfcpp::DF_1_LOADFLTR;
4799 if (parameters->options().nodefaultlib())
4800 flags |= elfcpp::DF_1_NODEFLIB;
4801 if (parameters->options().nodelete())
4802 flags |= elfcpp::DF_1_NODELETE;
4803 if (parameters->options().nodlopen())
4804 flags |= elfcpp::DF_1_NOOPEN;
4805 if (parameters->options().nodump())
4806 flags |= elfcpp::DF_1_NODUMP;
4807 if (!parameters->options().shared())
4808 flags &= ~(elfcpp::DF_1_INITFIRST
4809 | elfcpp::DF_1_NODELETE
4810 | elfcpp::DF_1_NOOPEN);
4811 if (parameters->options().origin())
4812 flags |= elfcpp::DF_1_ORIGIN;
4813 if (parameters->options().now())
4814 flags |= elfcpp::DF_1_NOW;
4815 if (parameters->options().Bgroup())
4816 flags |= elfcpp::DF_1_GROUP;
4817 if (flags != 0)
4818 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4819 }
4820
4821 // Set the size of the _DYNAMIC symbol table to be the size of the
4822 // dynamic data.
4823
4824 void
4825 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4826 {
4827 Output_data_dynamic* const odyn = this->dynamic_data_;
4828 if (odyn == NULL)
4829 return;
4830 odyn->finalize_data_size();
4831 if (this->dynamic_symbol_ == NULL)
4832 return;
4833 off_t data_size = odyn->data_size();
4834 const int size = parameters->target().get_size();
4835 if (size == 32)
4836 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4837 else if (size == 64)
4838 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4839 else
4840 gold_unreachable();
4841 }
4842
4843 // The mapping of input section name prefixes to output section names.
4844 // In some cases one prefix is itself a prefix of another prefix; in
4845 // such a case the longer prefix must come first. These prefixes are
4846 // based on the GNU linker default ELF linker script.
4847
4848 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4849 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4850 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4851 {
4852 MAPPING_INIT(".text.", ".text"),
4853 MAPPING_INIT(".rodata.", ".rodata"),
4854 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4855 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4856 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4857 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4858 MAPPING_INIT(".data.", ".data"),
4859 MAPPING_INIT(".bss.", ".bss"),
4860 MAPPING_INIT(".tdata.", ".tdata"),
4861 MAPPING_INIT(".tbss.", ".tbss"),
4862 MAPPING_INIT(".init_array.", ".init_array"),
4863 MAPPING_INIT(".fini_array.", ".fini_array"),
4864 MAPPING_INIT(".sdata.", ".sdata"),
4865 MAPPING_INIT(".sbss.", ".sbss"),
4866 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4867 // differently depending on whether it is creating a shared library.
4868 MAPPING_INIT(".sdata2.", ".sdata"),
4869 MAPPING_INIT(".sbss2.", ".sbss"),
4870 MAPPING_INIT(".lrodata.", ".lrodata"),
4871 MAPPING_INIT(".ldata.", ".ldata"),
4872 MAPPING_INIT(".lbss.", ".lbss"),
4873 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4874 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4875 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4876 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4877 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4878 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4879 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4880 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4881 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4882 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4883 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4884 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4885 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4886 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4887 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4888 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4889 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4890 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4891 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4892 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4893 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4894 };
4895 #undef MAPPING_INIT
4896 #undef MAPPING_INIT_EXACT
4897
4898 const int Layout::section_name_mapping_count =
4899 (sizeof(Layout::section_name_mapping)
4900 / sizeof(Layout::section_name_mapping[0]));
4901
4902 // Choose the output section name to use given an input section name.
4903 // Set *PLEN to the length of the name. *PLEN is initialized to the
4904 // length of NAME.
4905
4906 const char*
4907 Layout::output_section_name(const Relobj* relobj, const char* name,
4908 size_t* plen)
4909 {
4910 // gcc 4.3 generates the following sorts of section names when it
4911 // needs a section name specific to a function:
4912 // .text.FN
4913 // .rodata.FN
4914 // .sdata2.FN
4915 // .data.FN
4916 // .data.rel.FN
4917 // .data.rel.local.FN
4918 // .data.rel.ro.FN
4919 // .data.rel.ro.local.FN
4920 // .sdata.FN
4921 // .bss.FN
4922 // .sbss.FN
4923 // .tdata.FN
4924 // .tbss.FN
4925
4926 // The GNU linker maps all of those to the part before the .FN,
4927 // except that .data.rel.local.FN is mapped to .data, and
4928 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4929 // beginning with .data.rel.ro.local are grouped together.
4930
4931 // For an anonymous namespace, the string FN can contain a '.'.
4932
4933 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4934 // GNU linker maps to .rodata.
4935
4936 // The .data.rel.ro sections are used with -z relro. The sections
4937 // are recognized by name. We use the same names that the GNU
4938 // linker does for these sections.
4939
4940 // It is hard to handle this in a principled way, so we don't even
4941 // try. We use a table of mappings. If the input section name is
4942 // not found in the table, we simply use it as the output section
4943 // name.
4944
4945 const Section_name_mapping* psnm = section_name_mapping;
4946 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4947 {
4948 if (psnm->fromlen > 0)
4949 {
4950 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4951 {
4952 *plen = psnm->tolen;
4953 return psnm->to;
4954 }
4955 }
4956 else
4957 {
4958 if (strcmp(name, psnm->from) == 0)
4959 {
4960 *plen = psnm->tolen;
4961 return psnm->to;
4962 }
4963 }
4964 }
4965
4966 // As an additional complication, .ctors sections are output in
4967 // either .ctors or .init_array sections, and .dtors sections are
4968 // output in either .dtors or .fini_array sections.
4969 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4970 {
4971 if (parameters->options().ctors_in_init_array())
4972 {
4973 *plen = 11;
4974 return name[1] == 'c' ? ".init_array" : ".fini_array";
4975 }
4976 else
4977 {
4978 *plen = 6;
4979 return name[1] == 'c' ? ".ctors" : ".dtors";
4980 }
4981 }
4982 if (parameters->options().ctors_in_init_array()
4983 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4984 {
4985 // To make .init_array/.fini_array work with gcc we must exclude
4986 // .ctors and .dtors sections from the crtbegin and crtend
4987 // files.
4988 if (relobj == NULL
4989 || (!Layout::match_file_name(relobj, "crtbegin")
4990 && !Layout::match_file_name(relobj, "crtend")))
4991 {
4992 *plen = 11;
4993 return name[1] == 'c' ? ".init_array" : ".fini_array";
4994 }
4995 }
4996
4997 return name;
4998 }
4999
5000 // Return true if RELOBJ is an input file whose base name matches
5001 // FILE_NAME. The base name must have an extension of ".o", and must
5002 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5003 // to match crtbegin.o as well as crtbeginS.o without getting confused
5004 // by other possibilities. Overall matching the file name this way is
5005 // a dreadful hack, but the GNU linker does it in order to better
5006 // support gcc, and we need to be compatible.
5007
5008 bool
5009 Layout::match_file_name(const Relobj* relobj, const char* match)
5010 {
5011 const std::string& file_name(relobj->name());
5012 const char* base_name = lbasename(file_name.c_str());
5013 size_t match_len = strlen(match);
5014 if (strncmp(base_name, match, match_len) != 0)
5015 return false;
5016 size_t base_len = strlen(base_name);
5017 if (base_len != match_len + 2 && base_len != match_len + 3)
5018 return false;
5019 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5020 }
5021
5022 // Check if a comdat group or .gnu.linkonce section with the given
5023 // NAME is selected for the link. If there is already a section,
5024 // *KEPT_SECTION is set to point to the existing section and the
5025 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5026 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5027 // *KEPT_SECTION is set to the internal copy and the function returns
5028 // true.
5029
5030 bool
5031 Layout::find_or_add_kept_section(const std::string& name,
5032 Relobj* object,
5033 unsigned int shndx,
5034 bool is_comdat,
5035 bool is_group_name,
5036 Kept_section** kept_section)
5037 {
5038 // It's normal to see a couple of entries here, for the x86 thunk
5039 // sections. If we see more than a few, we're linking a C++
5040 // program, and we resize to get more space to minimize rehashing.
5041 if (this->signatures_.size() > 4
5042 && !this->resized_signatures_)
5043 {
5044 reserve_unordered_map(&this->signatures_,
5045 this->number_of_input_files_ * 64);
5046 this->resized_signatures_ = true;
5047 }
5048
5049 Kept_section candidate;
5050 std::pair<Signatures::iterator, bool> ins =
5051 this->signatures_.insert(std::make_pair(name, candidate));
5052
5053 if (kept_section != NULL)
5054 *kept_section = &ins.first->second;
5055 if (ins.second)
5056 {
5057 // This is the first time we've seen this signature.
5058 ins.first->second.set_object(object);
5059 ins.first->second.set_shndx(shndx);
5060 if (is_comdat)
5061 ins.first->second.set_is_comdat();
5062 if (is_group_name)
5063 ins.first->second.set_is_group_name();
5064 return true;
5065 }
5066
5067 // We have already seen this signature.
5068
5069 if (ins.first->second.is_group_name())
5070 {
5071 // We've already seen a real section group with this signature.
5072 // If the kept group is from a plugin object, and we're in the
5073 // replacement phase, accept the new one as a replacement.
5074 if (ins.first->second.object() == NULL
5075 && parameters->options().plugins()->in_replacement_phase())
5076 {
5077 ins.first->second.set_object(object);
5078 ins.first->second.set_shndx(shndx);
5079 return true;
5080 }
5081 return false;
5082 }
5083 else if (is_group_name)
5084 {
5085 // This is a real section group, and we've already seen a
5086 // linkonce section with this signature. Record that we've seen
5087 // a section group, and don't include this section group.
5088 ins.first->second.set_is_group_name();
5089 return false;
5090 }
5091 else
5092 {
5093 // We've already seen a linkonce section and this is a linkonce
5094 // section. These don't block each other--this may be the same
5095 // symbol name with different section types.
5096 return true;
5097 }
5098 }
5099
5100 // Store the allocated sections into the section list.
5101
5102 void
5103 Layout::get_allocated_sections(Section_list* section_list) const
5104 {
5105 for (Section_list::const_iterator p = this->section_list_.begin();
5106 p != this->section_list_.end();
5107 ++p)
5108 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5109 section_list->push_back(*p);
5110 }
5111
5112 // Store the executable sections into the section list.
5113
5114 void
5115 Layout::get_executable_sections(Section_list* section_list) const
5116 {
5117 for (Section_list::const_iterator p = this->section_list_.begin();
5118 p != this->section_list_.end();
5119 ++p)
5120 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5121 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5122 section_list->push_back(*p);
5123 }
5124
5125 // Create an output segment.
5126
5127 Output_segment*
5128 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5129 {
5130 gold_assert(!parameters->options().relocatable());
5131 Output_segment* oseg = new Output_segment(type, flags);
5132 this->segment_list_.push_back(oseg);
5133
5134 if (type == elfcpp::PT_TLS)
5135 this->tls_segment_ = oseg;
5136 else if (type == elfcpp::PT_GNU_RELRO)
5137 this->relro_segment_ = oseg;
5138 else if (type == elfcpp::PT_INTERP)
5139 this->interp_segment_ = oseg;
5140
5141 return oseg;
5142 }
5143
5144 // Return the file offset of the normal symbol table.
5145
5146 off_t
5147 Layout::symtab_section_offset() const
5148 {
5149 if (this->symtab_section_ != NULL)
5150 return this->symtab_section_->offset();
5151 return 0;
5152 }
5153
5154 // Return the section index of the normal symbol table. It may have
5155 // been stripped by the -s/--strip-all option.
5156
5157 unsigned int
5158 Layout::symtab_section_shndx() const
5159 {
5160 if (this->symtab_section_ != NULL)
5161 return this->symtab_section_->out_shndx();
5162 return 0;
5163 }
5164
5165 // Write out the Output_sections. Most won't have anything to write,
5166 // since most of the data will come from input sections which are
5167 // handled elsewhere. But some Output_sections do have Output_data.
5168
5169 void
5170 Layout::write_output_sections(Output_file* of) const
5171 {
5172 for (Section_list::const_iterator p = this->section_list_.begin();
5173 p != this->section_list_.end();
5174 ++p)
5175 {
5176 if (!(*p)->after_input_sections())
5177 (*p)->write(of);
5178 }
5179 }
5180
5181 // Write out data not associated with a section or the symbol table.
5182
5183 void
5184 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5185 {
5186 if (!parameters->options().strip_all())
5187 {
5188 const Output_section* symtab_section = this->symtab_section_;
5189 for (Section_list::const_iterator p = this->section_list_.begin();
5190 p != this->section_list_.end();
5191 ++p)
5192 {
5193 if ((*p)->needs_symtab_index())
5194 {
5195 gold_assert(symtab_section != NULL);
5196 unsigned int index = (*p)->symtab_index();
5197 gold_assert(index > 0 && index != -1U);
5198 off_t off = (symtab_section->offset()
5199 + index * symtab_section->entsize());
5200 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5201 }
5202 }
5203 }
5204
5205 const Output_section* dynsym_section = this->dynsym_section_;
5206 for (Section_list::const_iterator p = this->section_list_.begin();
5207 p != this->section_list_.end();
5208 ++p)
5209 {
5210 if ((*p)->needs_dynsym_index())
5211 {
5212 gold_assert(dynsym_section != NULL);
5213 unsigned int index = (*p)->dynsym_index();
5214 gold_assert(index > 0 && index != -1U);
5215 off_t off = (dynsym_section->offset()
5216 + index * dynsym_section->entsize());
5217 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5218 }
5219 }
5220
5221 // Write out the Output_data which are not in an Output_section.
5222 for (Data_list::const_iterator p = this->special_output_list_.begin();
5223 p != this->special_output_list_.end();
5224 ++p)
5225 (*p)->write(of);
5226 }
5227
5228 // Write out the Output_sections which can only be written after the
5229 // input sections are complete.
5230
5231 void
5232 Layout::write_sections_after_input_sections(Output_file* of)
5233 {
5234 // Determine the final section offsets, and thus the final output
5235 // file size. Note we finalize the .shstrab last, to allow the
5236 // after_input_section sections to modify their section-names before
5237 // writing.
5238 if (this->any_postprocessing_sections_)
5239 {
5240 off_t off = this->output_file_size_;
5241 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5242
5243 // Now that we've finalized the names, we can finalize the shstrab.
5244 off =
5245 this->set_section_offsets(off,
5246 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5247
5248 if (off > this->output_file_size_)
5249 {
5250 of->resize(off);
5251 this->output_file_size_ = off;
5252 }
5253 }
5254
5255 for (Section_list::const_iterator p = this->section_list_.begin();
5256 p != this->section_list_.end();
5257 ++p)
5258 {
5259 if ((*p)->after_input_sections())
5260 (*p)->write(of);
5261 }
5262
5263 this->section_headers_->write(of);
5264 }
5265
5266 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5267 // or as a "tree" where each chunk of the string is hashed and then those
5268 // hashes are put into a (much smaller) string which is hashed with sha1.
5269 // We compute a checksum over the entire file because that is simplest.
5270
5271 Task_token*
5272 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5273 Output_file* of)
5274 {
5275 const size_t filesize = (this->output_file_size() <= 0 ? 0
5276 : static_cast<size_t>(this->output_file_size()));
5277 if (this->build_id_note_ != NULL
5278 && strcmp(parameters->options().build_id(), "tree") == 0
5279 && parameters->options().build_id_chunk_size_for_treehash() > 0
5280 && filesize > 0
5281 && (filesize >=
5282 parameters->options().build_id_min_file_size_for_treehash()))
5283 {
5284 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5285 const size_t chunk_size =
5286 parameters->options().build_id_chunk_size_for_treehash();
5287 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5288 Task_token* post_hash_tasks_blocker = new Task_token(true);
5289 post_hash_tasks_blocker->add_blockers(num_hashes);
5290 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5291 const unsigned char* src = of->get_input_view(0, filesize);
5292 this->input_view_ = src;
5293 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5294 this->array_of_hashes_ = dst;
5295 for (size_t i = 0, src_offset = 0; i < num_hashes;
5296 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5297 {
5298 size_t size = std::min(chunk_size, filesize - src_offset);
5299 workqueue->queue(new Hash_task(src + src_offset,
5300 size,
5301 dst,
5302 build_id_blocker,
5303 post_hash_tasks_blocker));
5304 }
5305 return post_hash_tasks_blocker;
5306 }
5307 return build_id_blocker;
5308 }
5309
5310 // If a tree-style build ID was requested, the parallel part of that computation
5311 // is already done, and the final hash-of-hashes is computed here. For other
5312 // types of build IDs, all the work is done here.
5313
5314 void
5315 Layout::write_build_id(Output_file* of) const
5316 {
5317 if (this->build_id_note_ == NULL)
5318 return;
5319
5320 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5321 this->build_id_note_->data_size());
5322
5323 if (this->array_of_hashes_ == NULL)
5324 {
5325 const size_t output_file_size = this->output_file_size();
5326 const unsigned char* iv = of->get_input_view(0, output_file_size);
5327 const char* style = parameters->options().build_id();
5328
5329 // If we get here with style == "tree" then the output must be
5330 // too small for chunking, and we use SHA-1 in that case.
5331 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5332 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5333 else if (strcmp(style, "md5") == 0)
5334 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5335 else
5336 gold_unreachable();
5337
5338 of->free_input_view(0, output_file_size, iv);
5339 }
5340 else
5341 {
5342 // Non-overlapping substrings of the output file have been hashed.
5343 // Compute SHA-1 hash of the hashes.
5344 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5345 this->size_of_array_of_hashes_, ov);
5346 delete[] this->array_of_hashes_;
5347 of->free_input_view(0, this->output_file_size(), this->input_view_);
5348 }
5349
5350 of->write_output_view(this->build_id_note_->offset(),
5351 this->build_id_note_->data_size(),
5352 ov);
5353 }
5354
5355 // Write out a binary file. This is called after the link is
5356 // complete. IN is the temporary output file we used to generate the
5357 // ELF code. We simply walk through the segments, read them from
5358 // their file offset in IN, and write them to their load address in
5359 // the output file. FIXME: with a bit more work, we could support
5360 // S-records and/or Intel hex format here.
5361
5362 void
5363 Layout::write_binary(Output_file* in) const
5364 {
5365 gold_assert(parameters->options().oformat_enum()
5366 == General_options::OBJECT_FORMAT_BINARY);
5367
5368 // Get the size of the binary file.
5369 uint64_t max_load_address = 0;
5370 for (Segment_list::const_iterator p = this->segment_list_.begin();
5371 p != this->segment_list_.end();
5372 ++p)
5373 {
5374 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5375 {
5376 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5377 if (max_paddr > max_load_address)
5378 max_load_address = max_paddr;
5379 }
5380 }
5381
5382 Output_file out(parameters->options().output_file_name());
5383 out.open(max_load_address);
5384
5385 for (Segment_list::const_iterator p = this->segment_list_.begin();
5386 p != this->segment_list_.end();
5387 ++p)
5388 {
5389 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5390 {
5391 const unsigned char* vin = in->get_input_view((*p)->offset(),
5392 (*p)->filesz());
5393 unsigned char* vout = out.get_output_view((*p)->paddr(),
5394 (*p)->filesz());
5395 memcpy(vout, vin, (*p)->filesz());
5396 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5397 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5398 }
5399 }
5400
5401 out.close();
5402 }
5403
5404 // Print the output sections to the map file.
5405
5406 void
5407 Layout::print_to_mapfile(Mapfile* mapfile) const
5408 {
5409 for (Segment_list::const_iterator p = this->segment_list_.begin();
5410 p != this->segment_list_.end();
5411 ++p)
5412 (*p)->print_sections_to_mapfile(mapfile);
5413 }
5414
5415 // Print statistical information to stderr. This is used for --stats.
5416
5417 void
5418 Layout::print_stats() const
5419 {
5420 this->namepool_.print_stats("section name pool");
5421 this->sympool_.print_stats("output symbol name pool");
5422 this->dynpool_.print_stats("dynamic name pool");
5423
5424 for (Section_list::const_iterator p = this->section_list_.begin();
5425 p != this->section_list_.end();
5426 ++p)
5427 (*p)->print_merge_stats();
5428 }
5429
5430 // Write_sections_task methods.
5431
5432 // We can always run this task.
5433
5434 Task_token*
5435 Write_sections_task::is_runnable()
5436 {
5437 return NULL;
5438 }
5439
5440 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5441 // when finished.
5442
5443 void
5444 Write_sections_task::locks(Task_locker* tl)
5445 {
5446 tl->add(this, this->output_sections_blocker_);
5447 tl->add(this, this->final_blocker_);
5448 }
5449
5450 // Run the task--write out the data.
5451
5452 void
5453 Write_sections_task::run(Workqueue*)
5454 {
5455 this->layout_->write_output_sections(this->of_);
5456 }
5457
5458 // Write_data_task methods.
5459
5460 // We can always run this task.
5461
5462 Task_token*
5463 Write_data_task::is_runnable()
5464 {
5465 return NULL;
5466 }
5467
5468 // We need to unlock FINAL_BLOCKER when finished.
5469
5470 void
5471 Write_data_task::locks(Task_locker* tl)
5472 {
5473 tl->add(this, this->final_blocker_);
5474 }
5475
5476 // Run the task--write out the data.
5477
5478 void
5479 Write_data_task::run(Workqueue*)
5480 {
5481 this->layout_->write_data(this->symtab_, this->of_);
5482 }
5483
5484 // Write_symbols_task methods.
5485
5486 // We can always run this task.
5487
5488 Task_token*
5489 Write_symbols_task::is_runnable()
5490 {
5491 return NULL;
5492 }
5493
5494 // We need to unlock FINAL_BLOCKER when finished.
5495
5496 void
5497 Write_symbols_task::locks(Task_locker* tl)
5498 {
5499 tl->add(this, this->final_blocker_);
5500 }
5501
5502 // Run the task--write out the symbols.
5503
5504 void
5505 Write_symbols_task::run(Workqueue*)
5506 {
5507 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5508 this->layout_->symtab_xindex(),
5509 this->layout_->dynsym_xindex(), this->of_);
5510 }
5511
5512 // Write_after_input_sections_task methods.
5513
5514 // We can only run this task after the input sections have completed.
5515
5516 Task_token*
5517 Write_after_input_sections_task::is_runnable()
5518 {
5519 if (this->input_sections_blocker_->is_blocked())
5520 return this->input_sections_blocker_;
5521 return NULL;
5522 }
5523
5524 // We need to unlock FINAL_BLOCKER when finished.
5525
5526 void
5527 Write_after_input_sections_task::locks(Task_locker* tl)
5528 {
5529 tl->add(this, this->final_blocker_);
5530 }
5531
5532 // Run the task.
5533
5534 void
5535 Write_after_input_sections_task::run(Workqueue*)
5536 {
5537 this->layout_->write_sections_after_input_sections(this->of_);
5538 }
5539
5540 // Close_task_runner methods.
5541
5542 // Finish up the build ID computation, if necessary, and write a binary file,
5543 // if necessary. Then close the output file.
5544
5545 void
5546 Close_task_runner::run(Workqueue*, const Task*)
5547 {
5548 // At this point the multi-threaded part of the build ID computation,
5549 // if any, is done. See queue_build_id_tasks().
5550 this->layout_->write_build_id(this->of_);
5551
5552 // If we've been asked to create a binary file, we do so here.
5553 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5554 this->layout_->write_binary(this->of_);
5555
5556 this->of_->close();
5557 }
5558
5559 // Instantiate the templates we need. We could use the configure
5560 // script to restrict this to only the ones for implemented targets.
5561
5562 #ifdef HAVE_TARGET_32_LITTLE
5563 template
5564 Output_section*
5565 Layout::init_fixed_output_section<32, false>(
5566 const char* name,
5567 elfcpp::Shdr<32, false>& shdr);
5568 #endif
5569
5570 #ifdef HAVE_TARGET_32_BIG
5571 template
5572 Output_section*
5573 Layout::init_fixed_output_section<32, true>(
5574 const char* name,
5575 elfcpp::Shdr<32, true>& shdr);
5576 #endif
5577
5578 #ifdef HAVE_TARGET_64_LITTLE
5579 template
5580 Output_section*
5581 Layout::init_fixed_output_section<64, false>(
5582 const char* name,
5583 elfcpp::Shdr<64, false>& shdr);
5584 #endif
5585
5586 #ifdef HAVE_TARGET_64_BIG
5587 template
5588 Output_section*
5589 Layout::init_fixed_output_section<64, true>(
5590 const char* name,
5591 elfcpp::Shdr<64, true>& shdr);
5592 #endif
5593
5594 #ifdef HAVE_TARGET_32_LITTLE
5595 template
5596 Output_section*
5597 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5598 unsigned int shndx,
5599 const char* name,
5600 const elfcpp::Shdr<32, false>& shdr,
5601 unsigned int, unsigned int, off_t*);
5602 #endif
5603
5604 #ifdef HAVE_TARGET_32_BIG
5605 template
5606 Output_section*
5607 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5608 unsigned int shndx,
5609 const char* name,
5610 const elfcpp::Shdr<32, true>& shdr,
5611 unsigned int, unsigned int, off_t*);
5612 #endif
5613
5614 #ifdef HAVE_TARGET_64_LITTLE
5615 template
5616 Output_section*
5617 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5618 unsigned int shndx,
5619 const char* name,
5620 const elfcpp::Shdr<64, false>& shdr,
5621 unsigned int, unsigned int, off_t*);
5622 #endif
5623
5624 #ifdef HAVE_TARGET_64_BIG
5625 template
5626 Output_section*
5627 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5628 unsigned int shndx,
5629 const char* name,
5630 const elfcpp::Shdr<64, true>& shdr,
5631 unsigned int, unsigned int, off_t*);
5632 #endif
5633
5634 #ifdef HAVE_TARGET_32_LITTLE
5635 template
5636 Output_section*
5637 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5638 unsigned int reloc_shndx,
5639 const elfcpp::Shdr<32, false>& shdr,
5640 Output_section* data_section,
5641 Relocatable_relocs* rr);
5642 #endif
5643
5644 #ifdef HAVE_TARGET_32_BIG
5645 template
5646 Output_section*
5647 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5648 unsigned int reloc_shndx,
5649 const elfcpp::Shdr<32, true>& shdr,
5650 Output_section* data_section,
5651 Relocatable_relocs* rr);
5652 #endif
5653
5654 #ifdef HAVE_TARGET_64_LITTLE
5655 template
5656 Output_section*
5657 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5658 unsigned int reloc_shndx,
5659 const elfcpp::Shdr<64, false>& shdr,
5660 Output_section* data_section,
5661 Relocatable_relocs* rr);
5662 #endif
5663
5664 #ifdef HAVE_TARGET_64_BIG
5665 template
5666 Output_section*
5667 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5668 unsigned int reloc_shndx,
5669 const elfcpp::Shdr<64, true>& shdr,
5670 Output_section* data_section,
5671 Relocatable_relocs* rr);
5672 #endif
5673
5674 #ifdef HAVE_TARGET_32_LITTLE
5675 template
5676 void
5677 Layout::layout_group<32, false>(Symbol_table* symtab,
5678 Sized_relobj_file<32, false>* object,
5679 unsigned int,
5680 const char* group_section_name,
5681 const char* signature,
5682 const elfcpp::Shdr<32, false>& shdr,
5683 elfcpp::Elf_Word flags,
5684 std::vector<unsigned int>* shndxes);
5685 #endif
5686
5687 #ifdef HAVE_TARGET_32_BIG
5688 template
5689 void
5690 Layout::layout_group<32, true>(Symbol_table* symtab,
5691 Sized_relobj_file<32, true>* object,
5692 unsigned int,
5693 const char* group_section_name,
5694 const char* signature,
5695 const elfcpp::Shdr<32, true>& shdr,
5696 elfcpp::Elf_Word flags,
5697 std::vector<unsigned int>* shndxes);
5698 #endif
5699
5700 #ifdef HAVE_TARGET_64_LITTLE
5701 template
5702 void
5703 Layout::layout_group<64, false>(Symbol_table* symtab,
5704 Sized_relobj_file<64, false>* object,
5705 unsigned int,
5706 const char* group_section_name,
5707 const char* signature,
5708 const elfcpp::Shdr<64, false>& shdr,
5709 elfcpp::Elf_Word flags,
5710 std::vector<unsigned int>* shndxes);
5711 #endif
5712
5713 #ifdef HAVE_TARGET_64_BIG
5714 template
5715 void
5716 Layout::layout_group<64, true>(Symbol_table* symtab,
5717 Sized_relobj_file<64, true>* object,
5718 unsigned int,
5719 const char* group_section_name,
5720 const char* signature,
5721 const elfcpp::Shdr<64, true>& shdr,
5722 elfcpp::Elf_Word flags,
5723 std::vector<unsigned int>* shndxes);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_32_LITTLE
5727 template
5728 Output_section*
5729 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5730 const unsigned char* symbols,
5731 off_t symbols_size,
5732 const unsigned char* symbol_names,
5733 off_t symbol_names_size,
5734 unsigned int shndx,
5735 const elfcpp::Shdr<32, false>& shdr,
5736 unsigned int reloc_shndx,
5737 unsigned int reloc_type,
5738 off_t* off);
5739 #endif
5740
5741 #ifdef HAVE_TARGET_32_BIG
5742 template
5743 Output_section*
5744 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5745 const unsigned char* symbols,
5746 off_t symbols_size,
5747 const unsigned char* symbol_names,
5748 off_t symbol_names_size,
5749 unsigned int shndx,
5750 const elfcpp::Shdr<32, true>& shdr,
5751 unsigned int reloc_shndx,
5752 unsigned int reloc_type,
5753 off_t* off);
5754 #endif
5755
5756 #ifdef HAVE_TARGET_64_LITTLE
5757 template
5758 Output_section*
5759 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5760 const unsigned char* symbols,
5761 off_t symbols_size,
5762 const unsigned char* symbol_names,
5763 off_t symbol_names_size,
5764 unsigned int shndx,
5765 const elfcpp::Shdr<64, false>& shdr,
5766 unsigned int reloc_shndx,
5767 unsigned int reloc_type,
5768 off_t* off);
5769 #endif
5770
5771 #ifdef HAVE_TARGET_64_BIG
5772 template
5773 Output_section*
5774 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5775 const unsigned char* symbols,
5776 off_t symbols_size,
5777 const unsigned char* symbol_names,
5778 off_t symbol_names_size,
5779 unsigned int shndx,
5780 const elfcpp::Shdr<64, true>& shdr,
5781 unsigned int reloc_shndx,
5782 unsigned int reloc_type,
5783 off_t* off);
5784 #endif
5785
5786 #ifdef HAVE_TARGET_32_LITTLE
5787 template
5788 void
5789 Layout::add_to_gdb_index(bool is_type_unit,
5790 Sized_relobj<32, false>* object,
5791 const unsigned char* symbols,
5792 off_t symbols_size,
5793 unsigned int shndx,
5794 unsigned int reloc_shndx,
5795 unsigned int reloc_type);
5796 #endif
5797
5798 #ifdef HAVE_TARGET_32_BIG
5799 template
5800 void
5801 Layout::add_to_gdb_index(bool is_type_unit,
5802 Sized_relobj<32, true>* object,
5803 const unsigned char* symbols,
5804 off_t symbols_size,
5805 unsigned int shndx,
5806 unsigned int reloc_shndx,
5807 unsigned int reloc_type);
5808 #endif
5809
5810 #ifdef HAVE_TARGET_64_LITTLE
5811 template
5812 void
5813 Layout::add_to_gdb_index(bool is_type_unit,
5814 Sized_relobj<64, false>* object,
5815 const unsigned char* symbols,
5816 off_t symbols_size,
5817 unsigned int shndx,
5818 unsigned int reloc_shndx,
5819 unsigned int reloc_type);
5820 #endif
5821
5822 #ifdef HAVE_TARGET_64_BIG
5823 template
5824 void
5825 Layout::add_to_gdb_index(bool is_type_unit,
5826 Sized_relobj<64, true>* object,
5827 const unsigned char* symbols,
5828 off_t symbols_size,
5829 unsigned int shndx,
5830 unsigned int reloc_shndx,
5831 unsigned int reloc_type);
5832 #endif
5833
5834 } // End namespace gold.