]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/merge.cc
Remove is_merge_section_for.
[thirdparty/binutils-gdb.git] / gold / merge.cc
1 // merge.cc -- handle section merging for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <algorithm>
27
28 #include "merge.h"
29 #include "compressed_output.h"
30
31 namespace gold
32 {
33
34 // Class Object_merge_map.
35
36 // Destructor.
37
38 Object_merge_map::~Object_merge_map()
39 {
40 for (Section_merge_maps::iterator p = this->section_merge_maps_.begin();
41 p != this->section_merge_maps_.end();
42 ++p)
43 delete p->second;
44 }
45
46 // Get the Input_merge_map to use for an input section, or NULL.
47
48 const Object_merge_map::Input_merge_map*
49 Object_merge_map::get_input_merge_map(unsigned int shndx) const
50 {
51 gold_assert(shndx != -1U);
52 if (shndx == this->first_shnum_)
53 return &this->first_map_;
54 if (shndx == this->second_shnum_)
55 return &this->second_map_;
56 Section_merge_maps::const_iterator p = this->section_merge_maps_.find(shndx);
57 if (p != this->section_merge_maps_.end())
58 return p->second;
59 return NULL;
60 }
61
62 // Get or create the Input_merge_map to use for an input section.
63
64 Object_merge_map::Input_merge_map*
65 Object_merge_map::get_or_make_input_merge_map(
66 const Output_section_data* output_data, unsigned int shndx) {
67 Input_merge_map* map = this->get_input_merge_map(shndx);
68 if (map != NULL)
69 {
70 // For a given input section in a given object, every mapping
71 // must be done with the same Merge_map.
72 gold_assert(map->output_data == output_data);
73 return map;
74 }
75
76 // We need to create a new entry.
77 if (this->first_shnum_ == -1U)
78 {
79 this->first_shnum_ = shndx;
80 this->first_map_.output_data = output_data;
81 return &this->first_map_;
82 }
83 if (this->second_shnum_ == -1U)
84 {
85 this->second_shnum_ = shndx;
86 this->second_map_.output_data = output_data;
87 return &this->second_map_;
88 }
89
90 Input_merge_map* new_map = new Input_merge_map;
91 new_map->output_data = output_data;
92 this->section_merge_maps_[shndx] = new_map;
93 return new_map;
94 }
95
96 // Add a mapping.
97
98 void
99 Object_merge_map::add_mapping(const Output_section_data* output_data,
100 unsigned int shndx,
101 section_offset_type input_offset,
102 section_size_type length,
103 section_offset_type output_offset)
104 {
105 Input_merge_map* map = this->get_or_make_input_merge_map(output_data, shndx);
106
107 // Try to merge the new entry in the last one we saw.
108 if (!map->entries.empty())
109 {
110 Input_merge_entry& entry(map->entries.back());
111
112 // Use section_size_type to avoid signed/unsigned warnings.
113 section_size_type input_offset_u = input_offset;
114 section_size_type output_offset_u = output_offset;
115
116 // If this entry is not in order, we need to sort the vector
117 // before looking anything up.
118 if (input_offset_u < entry.input_offset + entry.length)
119 {
120 gold_assert(input_offset < entry.input_offset);
121 gold_assert(input_offset_u + length
122 <= static_cast<section_size_type>(entry.input_offset));
123 map->sorted = false;
124 }
125 else if (entry.input_offset + entry.length == input_offset_u
126 && (output_offset == -1
127 ? entry.output_offset == -1
128 : entry.output_offset + entry.length == output_offset_u))
129 {
130 entry.length += length;
131 return;
132 }
133 }
134
135 Input_merge_entry entry;
136 entry.input_offset = input_offset;
137 entry.length = length;
138 entry.output_offset = output_offset;
139 map->entries.push_back(entry);
140 }
141
142 // Get the output offset for an input address.
143
144 bool
145 Object_merge_map::get_output_offset(unsigned int shndx,
146 section_offset_type input_offset,
147 section_offset_type* output_offset)
148 {
149 Input_merge_map* map = this->get_input_merge_map(shndx);
150 if (map == NULL)
151 return false;
152
153 if (!map->sorted)
154 {
155 std::sort(map->entries.begin(), map->entries.end(),
156 Input_merge_compare());
157 map->sorted = true;
158 }
159
160 Input_merge_entry entry;
161 entry.input_offset = input_offset;
162 std::vector<Input_merge_entry>::const_iterator p =
163 std::upper_bound(map->entries.begin(), map->entries.end(),
164 entry, Input_merge_compare());
165 if (p == map->entries.begin())
166 return false;
167 --p;
168 gold_assert(p->input_offset <= input_offset);
169
170 if (input_offset - p->input_offset
171 >= static_cast<section_offset_type>(p->length))
172 return false;
173
174 *output_offset = p->output_offset;
175 if (*output_offset != -1)
176 *output_offset += (input_offset - p->input_offset);
177 return true;
178 }
179
180 // Return whether this is the merge map for section SHNDX.
181
182 const Output_section_data*
183 Object_merge_map::find_merge_section(unsigned int shndx) const {
184 const Object_merge_map::Input_merge_map* map =
185 this->get_input_merge_map(shndx);
186 if (map == NULL)
187 return NULL;
188 return map->output_data;
189 }
190
191 // Initialize a mapping from input offsets to output addresses.
192
193 template<int size>
194 void
195 Object_merge_map::initialize_input_to_output_map(
196 unsigned int shndx,
197 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
198 Unordered_map<section_offset_type,
199 typename elfcpp::Elf_types<size>::Elf_Addr>* initialize_map)
200 {
201 Input_merge_map* map = this->get_input_merge_map(shndx);
202 gold_assert(map != NULL);
203
204 gold_assert(initialize_map->empty());
205 // We know how many entries we are going to add.
206 // reserve_unordered_map takes an expected count of buckets, not a
207 // count of elements, so double it to try to reduce collisions.
208 reserve_unordered_map(initialize_map, map->entries.size() * 2);
209
210 for (Input_merge_map::Entries::const_iterator p = map->entries.begin();
211 p != map->entries.end();
212 ++p)
213 {
214 section_offset_type output_offset = p->output_offset;
215 if (output_offset != -1)
216 output_offset += starting_address;
217 else
218 {
219 // If we see a relocation against an address we have chosen
220 // to discard, we relocate to zero. FIXME: We could also
221 // issue a warning in this case; that would require
222 // reporting this somehow and checking it in the routines in
223 // reloc.h.
224 output_offset = 0;
225 }
226 initialize_map->insert(std::make_pair(p->input_offset, output_offset));
227 }
228 }
229
230 // Class Output_merge_base.
231
232 // Return the output offset for an input offset. The input address is
233 // at offset OFFSET in section SHNDX in OBJECT. If we know the
234 // offset, set *POUTPUT and return true. Otherwise return false.
235
236 bool
237 Output_merge_base::do_output_offset(const Relobj* object,
238 unsigned int shndx,
239 section_offset_type offset,
240 section_offset_type* poutput) const
241 {
242 return object->merge_output_offset(shndx, offset, poutput);
243 }
244
245 // Record a merged input section for script processing.
246
247 void
248 Output_merge_base::record_input_section(Relobj* relobj, unsigned int shndx)
249 {
250 gold_assert(this->keeps_input_sections_ && relobj != NULL);
251 // If this is the first input section, record it. We need do this because
252 // this->input_sections_ is unordered.
253 if (this->first_relobj_ == NULL)
254 {
255 this->first_relobj_ = relobj;
256 this->first_shndx_ = shndx;
257 }
258
259 std::pair<Input_sections::iterator, bool> result =
260 this->input_sections_.insert(Section_id(relobj, shndx));
261 // We should insert a merge section once only.
262 gold_assert(result.second);
263 }
264
265 // Class Output_merge_data.
266
267 // Compute the hash code for a fixed-size constant.
268
269 size_t
270 Output_merge_data::Merge_data_hash::operator()(Merge_data_key k) const
271 {
272 const unsigned char* p = this->pomd_->constant(k);
273 section_size_type entsize =
274 convert_to_section_size_type(this->pomd_->entsize());
275
276 // Fowler/Noll/Vo (FNV) hash (type FNV-1a).
277 if (sizeof(size_t) == 8)
278 {
279 size_t result = static_cast<size_t>(14695981039346656037ULL);
280 for (section_size_type i = 0; i < entsize; ++i)
281 {
282 result &= (size_t) *p++;
283 result *= 1099511628211ULL;
284 }
285 return result;
286 }
287 else
288 {
289 size_t result = 2166136261UL;
290 for (section_size_type i = 0; i < entsize; ++i)
291 {
292 result ^= (size_t) *p++;
293 result *= 16777619UL;
294 }
295 return result;
296 }
297 }
298
299 // Return whether one hash table key equals another.
300
301 bool
302 Output_merge_data::Merge_data_eq::operator()(Merge_data_key k1,
303 Merge_data_key k2) const
304 {
305 const unsigned char* p1 = this->pomd_->constant(k1);
306 const unsigned char* p2 = this->pomd_->constant(k2);
307 return memcmp(p1, p2, this->pomd_->entsize()) == 0;
308 }
309
310 // Add a constant to the end of the section contents.
311
312 void
313 Output_merge_data::add_constant(const unsigned char* p)
314 {
315 section_size_type entsize = convert_to_section_size_type(this->entsize());
316 section_size_type addralign =
317 convert_to_section_size_type(this->addralign());
318 section_size_type addsize = std::max(entsize, addralign);
319 if (this->len_ + addsize > this->alc_)
320 {
321 if (this->alc_ == 0)
322 this->alc_ = 128 * addsize;
323 else
324 this->alc_ *= 2;
325 this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->alc_));
326 if (this->p_ == NULL)
327 gold_nomem();
328 }
329
330 memcpy(this->p_ + this->len_, p, entsize);
331 if (addsize > entsize)
332 memset(this->p_ + this->len_ + entsize, 0, addsize - entsize);
333 this->len_ += addsize;
334 }
335
336 // Add the input section SHNDX in OBJECT to a merged output section
337 // which holds fixed length constants. Return whether we were able to
338 // handle the section; if not, it will be linked as usual without
339 // constant merging.
340
341 bool
342 Output_merge_data::do_add_input_section(Relobj* object, unsigned int shndx)
343 {
344 section_size_type len;
345 bool is_new;
346 const unsigned char* p = object->decompressed_section_contents(shndx, &len,
347 &is_new);
348
349 section_size_type entsize = convert_to_section_size_type(this->entsize());
350
351 if (len % entsize != 0)
352 {
353 if (is_new)
354 delete[] p;
355 return false;
356 }
357
358 this->input_count_ += len / entsize;
359
360 for (section_size_type i = 0; i < len; i += entsize, p += entsize)
361 {
362 // Add the constant to the section contents. If we find that it
363 // is already in the hash table, we will remove it again.
364 Merge_data_key k = this->len_;
365 this->add_constant(p);
366
367 std::pair<Merge_data_hashtable::iterator, bool> ins =
368 this->hashtable_.insert(k);
369
370 if (!ins.second)
371 {
372 // Key was already present. Remove the copy we just added.
373 this->len_ -= entsize;
374 k = *ins.first;
375 }
376
377 // Record the offset of this constant in the output section.
378 object->add_merge_mapping(this, shndx, i, entsize, k);
379 }
380
381 // For script processing, we keep the input sections.
382 if (this->keeps_input_sections())
383 record_input_section(object, shndx);
384
385 if (is_new)
386 delete[] p;
387
388 return true;
389 }
390
391 // Set the final data size in a merged output section with fixed size
392 // constants.
393
394 void
395 Output_merge_data::set_final_data_size()
396 {
397 // Release the memory we don't need.
398 this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->len_));
399 // An Output_merge_data object may be empty and realloc is allowed
400 // to return a NULL pointer in this case. An Output_merge_data is empty
401 // if all its input sections have sizes that are not multiples of entsize.
402 gold_assert(this->p_ != NULL || this->len_ == 0);
403 this->set_data_size(this->len_);
404 }
405
406 // Write the data of a merged output section with fixed size constants
407 // to the file.
408
409 void
410 Output_merge_data::do_write(Output_file* of)
411 {
412 of->write(this->offset(), this->p_, this->len_);
413 }
414
415 // Write the data to a buffer.
416
417 void
418 Output_merge_data::do_write_to_buffer(unsigned char* buffer)
419 {
420 memcpy(buffer, this->p_, this->len_);
421 }
422
423 // Print merge stats to stderr.
424
425 void
426 Output_merge_data::do_print_merge_stats(const char* section_name)
427 {
428 fprintf(stderr,
429 _("%s: %s merged constants size: %lu; input: %zu; output: %zu\n"),
430 program_name, section_name,
431 static_cast<unsigned long>(this->entsize()),
432 this->input_count_, this->hashtable_.size());
433 }
434
435 // Class Output_merge_string.
436
437 // Add an input section to a merged string section.
438
439 template<typename Char_type>
440 bool
441 Output_merge_string<Char_type>::do_add_input_section(Relobj* object,
442 unsigned int shndx)
443 {
444 section_size_type sec_len;
445 bool is_new;
446 const unsigned char* pdata = object->decompressed_section_contents(shndx,
447 &sec_len,
448 &is_new);
449
450 const Char_type* p = reinterpret_cast<const Char_type*>(pdata);
451 const Char_type* pend = p + sec_len / sizeof(Char_type);
452 const Char_type* pend0 = pend;
453
454 if (sec_len % sizeof(Char_type) != 0)
455 {
456 object->error(_("mergeable string section length not multiple of "
457 "character size"));
458 if (is_new)
459 delete[] pdata;
460 return false;
461 }
462
463 if (pend[-1] != 0)
464 {
465 gold_warning(_("%s: last entry in mergeable string section '%s' "
466 "not null terminated"),
467 object->name().c_str(),
468 object->section_name(shndx).c_str());
469 // Find the end of the last NULL-terminated string in the buffer.
470 while (pend0 > p && pend0[-1] != 0)
471 --pend0;
472 }
473
474 Merged_strings_list* merged_strings_list =
475 new Merged_strings_list(object, shndx);
476 this->merged_strings_lists_.push_back(merged_strings_list);
477 Merged_strings& merged_strings = merged_strings_list->merged_strings;
478
479 // Count the number of non-null strings in the section and size the list.
480 size_t count = 0;
481 const Char_type* pt = p;
482 while (pt < pend0)
483 {
484 size_t len = string_length(pt);
485 if (len != 0)
486 ++count;
487 pt += len + 1;
488 }
489 if (pend0 < pend)
490 ++count;
491 merged_strings.reserve(count + 1);
492
493 // The index I is in bytes, not characters.
494 section_size_type i = 0;
495
496 // We assume here that the beginning of the section is correctly
497 // aligned, so each string within the section must retain the same
498 // modulo.
499 uintptr_t init_align_modulo = (reinterpret_cast<uintptr_t>(pdata)
500 & (this->addralign() - 1));
501 bool has_misaligned_strings = false;
502
503 while (p < pend)
504 {
505 size_t len = p < pend0 ? string_length(p) : pend - p;
506
507 // Within merge input section each string must be aligned.
508 if (len != 0
509 && ((reinterpret_cast<uintptr_t>(p) & (this->addralign() - 1))
510 != init_align_modulo))
511 has_misaligned_strings = true;
512
513 Stringpool::Key key;
514 this->stringpool_.add_with_length(p, len, true, &key);
515
516 merged_strings.push_back(Merged_string(i, key));
517 p += len + 1;
518 i += (len + 1) * sizeof(Char_type);
519 }
520
521 // Record the last offset in the input section so that we can
522 // compute the length of the last string.
523 merged_strings.push_back(Merged_string(i, 0));
524
525 this->input_count_ += count;
526 this->input_size_ += i;
527
528 if (has_misaligned_strings)
529 gold_warning(_("%s: section %s contains incorrectly aligned strings;"
530 " the alignment of those strings won't be preserved"),
531 object->name().c_str(),
532 object->section_name(shndx).c_str());
533
534 // For script processing, we keep the input sections.
535 if (this->keeps_input_sections())
536 record_input_section(object, shndx);
537
538 if (is_new)
539 delete[] pdata;
540
541 return true;
542 }
543
544 // Finalize the mappings from the input sections to the output
545 // section, and return the final data size.
546
547 template<typename Char_type>
548 section_size_type
549 Output_merge_string<Char_type>::finalize_merged_data()
550 {
551 this->stringpool_.set_string_offsets();
552
553 for (typename Merged_strings_lists::const_iterator l =
554 this->merged_strings_lists_.begin();
555 l != this->merged_strings_lists_.end();
556 ++l)
557 {
558 section_offset_type last_input_offset = 0;
559 section_offset_type last_output_offset = 0;
560 for (typename Merged_strings::const_iterator p =
561 (*l)->merged_strings.begin();
562 p != (*l)->merged_strings.end();
563 ++p)
564 {
565 section_size_type length = p->offset - last_input_offset;
566 if (length > 0)
567 (*l)->object->add_merge_mapping(this, (*l)->shndx,
568 last_input_offset, length, last_output_offset);
569 last_input_offset = p->offset;
570 if (p->stringpool_key != 0)
571 last_output_offset =
572 this->stringpool_.get_offset_from_key(p->stringpool_key);
573 }
574 delete *l;
575 }
576
577 // Save some memory. This also ensures that this function will work
578 // if called twice, as may happen if Layout::set_segment_offsets
579 // finds a better alignment.
580 this->merged_strings_lists_.clear();
581
582 return this->stringpool_.get_strtab_size();
583 }
584
585 template<typename Char_type>
586 void
587 Output_merge_string<Char_type>::set_final_data_size()
588 {
589 const off_t final_data_size = this->finalize_merged_data();
590 this->set_data_size(final_data_size);
591 }
592
593 // Write out a merged string section.
594
595 template<typename Char_type>
596 void
597 Output_merge_string<Char_type>::do_write(Output_file* of)
598 {
599 this->stringpool_.write(of, this->offset());
600 }
601
602 // Write a merged string section to a buffer.
603
604 template<typename Char_type>
605 void
606 Output_merge_string<Char_type>::do_write_to_buffer(unsigned char* buffer)
607 {
608 this->stringpool_.write_to_buffer(buffer, this->data_size());
609 }
610
611 // Return the name of the types of string to use with
612 // do_print_merge_stats.
613
614 template<typename Char_type>
615 const char*
616 Output_merge_string<Char_type>::string_name()
617 {
618 gold_unreachable();
619 return NULL;
620 }
621
622 template<>
623 const char*
624 Output_merge_string<char>::string_name()
625 {
626 return "strings";
627 }
628
629 template<>
630 const char*
631 Output_merge_string<uint16_t>::string_name()
632 {
633 return "16-bit strings";
634 }
635
636 template<>
637 const char*
638 Output_merge_string<uint32_t>::string_name()
639 {
640 return "32-bit strings";
641 }
642
643 // Print merge stats to stderr.
644
645 template<typename Char_type>
646 void
647 Output_merge_string<Char_type>::do_print_merge_stats(const char* section_name)
648 {
649 char buf[200];
650 snprintf(buf, sizeof buf, "%s merged %s", section_name, this->string_name());
651 fprintf(stderr, _("%s: %s input bytes: %zu\n"),
652 program_name, buf, this->input_size_);
653 fprintf(stderr, _("%s: %s input strings: %zu\n"),
654 program_name, buf, this->input_count_);
655 this->stringpool_.print_stats(buf);
656 }
657
658 // Instantiate the templates we need.
659
660 template
661 class Output_merge_string<char>;
662
663 template
664 class Output_merge_string<uint16_t>;
665
666 template
667 class Output_merge_string<uint32_t>;
668
669 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
670 template
671 void
672 Object_merge_map::initialize_input_to_output_map<32>(
673 unsigned int shndx,
674 elfcpp::Elf_types<32>::Elf_Addr starting_address,
675 Unordered_map<section_offset_type, elfcpp::Elf_types<32>::Elf_Addr>*);
676 #endif
677
678 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
679 template
680 void
681 Object_merge_map::initialize_input_to_output_map<64>(
682 unsigned int shndx,
683 elfcpp::Elf_types<64>::Elf_Addr starting_address,
684 Unordered_map<section_offset_type, elfcpp::Elf_types<64>::Elf_Addr>*);
685 #endif
686
687 } // End namespace gold.