1 // object.cc -- support for an object file for linking in gold
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
49 // Struct Read_symbols_data.
51 // Destroy any remaining File_view objects and buffers of decompressed
54 Read_symbols_data::~Read_symbols_data()
56 if (this->section_headers
!= NULL
)
57 delete this->section_headers
;
58 if (this->section_names
!= NULL
)
59 delete this->section_names
;
60 if (this->symbols
!= NULL
)
62 if (this->symbol_names
!= NULL
)
63 delete this->symbol_names
;
64 if (this->versym
!= NULL
)
66 if (this->verdef
!= NULL
)
68 if (this->verneed
!= NULL
)
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
78 template<int size
, bool big_endian
>
80 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
82 if (!this->symtab_xindex_
.empty())
85 gold_assert(symtab_shndx
!= 0);
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i
= object
->shnum();
93 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
96 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
101 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
108 template<int size
, bool big_endian
>
110 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
111 const unsigned char* pshdrs
)
113 section_size_type bytecount
;
114 const unsigned char* contents
;
116 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
119 const unsigned char* p
= (pshdrs
121 * elfcpp::Elf_sizes
<size
>::shdr_size
));
122 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
123 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
124 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
127 gold_assert(this->symtab_xindex_
.empty());
128 this->symtab_xindex_
.reserve(bytecount
/ 4);
129 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
131 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
141 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
143 if (symndx
>= this->symtab_xindex_
.size())
145 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
147 return elfcpp::SHN_UNDEF
;
149 unsigned int shndx
= this->symtab_xindex_
[symndx
];
150 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
152 object
->error(_("extended index for symbol %u out of range: %u"),
154 return elfcpp::SHN_UNDEF
;
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
166 Object::error(const char* format
, ...) const
169 va_start(args
, format
);
171 if (vasprintf(&buf
, format
, args
) < 0)
174 gold_error(_("%s: %s"), this->name().c_str(), buf
);
178 // Return a view of the contents of a section.
181 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
183 { return this->do_section_contents(shndx
, plen
, cache
); }
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
188 template<int size
, bool big_endian
>
190 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
191 Read_symbols_data
* sd
)
193 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
195 // Read the section headers.
196 const off_t shoff
= elf_file
->shoff();
197 const unsigned int shnum
= this->shnum();
198 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
201 // Read the section names.
202 const unsigned char* pshdrs
= sd
->section_headers
->data();
203 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
204 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
206 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames
.get_sh_type()));
210 sd
->section_names_size
=
211 convert_to_section_size_type(shdrnames
.get_sh_size());
212 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
213 sd
->section_names_size
, false,
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
222 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
223 Symbol_table
* symtab
)
225 const char warn_prefix
[] = ".gnu.warning.";
226 const int warn_prefix_len
= sizeof warn_prefix
- 1;
227 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
235 section_size_type len
;
236 const unsigned char* contents
= this->section_contents(shndx
, &len
,
240 const char* warning
= name
+ warn_prefix_len
;
241 contents
= reinterpret_cast<const unsigned char*>(warning
);
242 len
= strlen(warning
);
244 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
245 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
255 Object::handle_split_stack_section(const char* name
)
257 if (strcmp(name
, ".note.GNU-split-stack") == 0)
259 this->uses_split_stack_
= true;
262 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
264 this->has_no_split_stack_
= true;
274 Relobj::initialize_input_to_output_map(unsigned int shndx
,
275 typename
elfcpp::Elf_types
<size
>::Elf_Addr starting_address
,
276 Unordered_map
<section_offset_type
,
277 typename
elfcpp::Elf_types
<size
>::Elf_Addr
>* output_addresses
) const {
278 Object_merge_map
*map
= this->object_merge_map_
;
279 map
->initialize_input_to_output_map
<size
>(shndx
, starting_address
,
284 Relobj::add_merge_mapping(Output_section_data
*output_data
,
285 unsigned int shndx
, section_offset_type offset
,
286 section_size_type length
,
287 section_offset_type output_offset
) {
288 Object_merge_map
* object_merge_map
= this->get_or_create_merge_map();
289 object_merge_map
->add_mapping(output_data
, shndx
, offset
, length
, output_offset
);
293 Relobj::merge_output_offset(unsigned int shndx
, section_offset_type offset
,
294 section_offset_type
*poutput
) const {
295 Object_merge_map
* object_merge_map
= this->object_merge_map_
;
296 if (object_merge_map
== NULL
)
298 return object_merge_map
->get_output_offset(shndx
, offset
, poutput
);
301 const Output_section_data
*
302 Relobj::find_merge_section(unsigned int shndx
) const {
303 Object_merge_map
* object_merge_map
= this->object_merge_map_
;
304 if (object_merge_map
== NULL
)
306 return object_merge_map
->find_merge_section(shndx
);
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
314 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
315 unsigned int section_header_size
)
317 gc_sd
->section_headers_data
=
318 new unsigned char[(section_header_size
)];
319 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
320 section_header_size
);
321 gc_sd
->section_names_data
=
322 new unsigned char[sd
->section_names_size
];
323 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
324 sd
->section_names_size
);
325 gc_sd
->section_names_size
= sd
->section_names_size
;
326 if (sd
->symbols
!= NULL
)
328 gc_sd
->symbols_data
=
329 new unsigned char[sd
->symbols_size
];
330 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
335 gc_sd
->symbols_data
= NULL
;
337 gc_sd
->symbols_size
= sd
->symbols_size
;
338 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
339 if (sd
->symbol_names
!= NULL
)
341 gc_sd
->symbol_names_data
=
342 new unsigned char[sd
->symbol_names_size
];
343 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
344 sd
->symbol_names_size
);
348 gc_sd
->symbol_names_data
= NULL
;
350 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
358 Relobj::is_section_name_included(const char* name
)
360 if (is_prefix_of(".ctors", name
)
361 || is_prefix_of(".dtors", name
)
362 || is_prefix_of(".note", name
)
363 || is_prefix_of(".init", name
)
364 || is_prefix_of(".fini", name
)
365 || is_prefix_of(".gcc_except_table", name
)
366 || is_prefix_of(".jcr", name
)
367 || is_prefix_of(".preinit_array", name
)
368 || (is_prefix_of(".text", name
)
369 && strstr(name
, "personality"))
370 || (is_prefix_of(".data", name
)
371 && strstr(name
, "personality"))
372 || (is_prefix_of(".sdata", name
)
373 && strstr(name
, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name
)
375 && strstr(name
, "personality"))
376 || (is_prefix_of(".rodata", name
)
377 && strstr(name
, "nptl_version")))
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
390 Relobj::finalize_incremental_relocs(Layout
* layout
, bool clear_counts
)
392 unsigned int nsyms
= this->get_global_symbols()->size();
393 this->reloc_bases_
= new unsigned int[nsyms
];
395 gold_assert(this->reloc_bases_
!= NULL
);
396 gold_assert(layout
->incremental_inputs() != NULL
);
398 unsigned int rindex
= layout
->incremental_inputs()->get_reloc_count();
399 for (unsigned int i
= 0; i
< nsyms
; ++i
)
401 this->reloc_bases_
[i
] = rindex
;
402 rindex
+= this->reloc_counts_
[i
];
404 this->reloc_counts_
[i
] = 0;
406 layout
->incremental_inputs()->set_reloc_count(rindex
);
410 Relobj::get_or_create_merge_map()
412 if (!this->object_merge_map_
)
413 this->object_merge_map_
= new Object_merge_map();
414 return this->object_merge_map_
;
417 // Class Sized_relobj.
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
422 template<int size
, bool big_endian
>
424 Sized_relobj
<size
, big_endian
>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor
* v
) const
427 unsigned int nsyms
= this->local_symbol_count();
428 for (unsigned int i
= 0; i
< nsyms
; i
++)
430 Local_got_entry_key
key(i
, 0);
431 Local_got_offsets::const_iterator p
= this->local_got_offsets_
.find(key
);
432 if (p
!= this->local_got_offsets_
.end())
434 const Got_offset_list
* got_offsets
= p
->second
;
435 got_offsets
->for_all_got_offsets(v
);
440 // Get the address of an output section.
442 template<int size
, bool big_endian
>
444 Sized_relobj
<size
, big_endian
>::do_output_section_address(
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx
);
452 const Output_section
* os
= this->do_output_section(shndx
);
453 gold_assert(os
!= NULL
);
454 return os
->address();
457 // Class Sized_relobj_file.
459 template<int size
, bool big_endian
>
460 Sized_relobj_file
<size
, big_endian
>::Sized_relobj_file(
461 const std::string
& name
,
462 Input_file
* input_file
,
464 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
465 : Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
),
466 elf_file_(this, ehdr
),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
481 deferred_layout_relocs_(),
484 this->e_type_
= ehdr
.get_e_type();
487 template<int size
, bool big_endian
>
488 Sized_relobj_file
<size
, big_endian
>::~Sized_relobj_file()
492 // Set up an object file based on the file header. This sets up the
493 // section information.
495 template<int size
, bool big_endian
>
497 Sized_relobj_file
<size
, big_endian
>::do_setup()
499 const unsigned int shnum
= this->elf_file_
.shnum();
500 this->set_shnum(shnum
);
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
508 template<int size
, bool big_endian
>
510 Sized_relobj_file
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
512 const unsigned int shnum
= this->shnum();
513 this->symtab_shndx_
= 0;
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
519 unsigned int i
= shnum
;
520 unsigned int xindex_shndx
= 0;
521 unsigned int xindex_link
= 0;
525 p
-= This::shdr_size
;
526 typename
This::Shdr
shdr(p
);
527 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
529 this->symtab_shndx_
= i
;
530 if (xindex_shndx
> 0 && xindex_link
== i
)
533 new Xindex(this->elf_file_
.large_shndx_offset());
534 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
537 this->set_xindex(xindex
);
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
545 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
548 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
554 // Return the Xindex structure to use for object with lots of
557 template<int size
, bool big_endian
>
559 Sized_relobj_file
<size
, big_endian
>::do_initialize_xindex()
561 gold_assert(this->symtab_shndx_
!= -1U);
562 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
563 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
570 template<int size
, bool big_endian
>
572 Sized_relobj_file
<size
, big_endian
>::check_eh_frame_flags(
573 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
575 elfcpp::Elf_Word sh_type
= shdr
->get_sh_type();
576 return ((sh_type
== elfcpp::SHT_PROGBITS
577 || sh_type
== parameters
->target().unwind_section_type())
578 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
581 // Find the section header with the given name.
583 template<int size
, bool big_endian
>
586 const unsigned char* pshdrs
,
589 section_size_type names_size
,
590 const unsigned char* hdr
) const
592 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
593 const unsigned int shnum
= this->shnum();
594 const unsigned char* hdr_end
= pshdrs
+ shdr_size
* shnum
;
601 // We found HDR last time we were called, continue looking.
602 typename
elfcpp::Shdr
<size
, big_endian
> shdr(hdr
);
603 sh_name
= shdr
.get_sh_name();
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
614 size_t len
= strlen(name
) + 1;
615 const char *p
= sh_name
? names
+ sh_name
+ len
: names
;
616 p
= reinterpret_cast<const char*>(memmem(p
, names_size
- (p
- names
),
627 while (hdr
< hdr_end
)
629 typename
elfcpp::Shdr
<size
, big_endian
> shdr(hdr
);
630 if (shdr
.get_sh_name() == sh_name
)
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
643 template<int size
, bool big_endian
>
645 Sized_relobj_file
<size
, big_endian
>::find_eh_frame(
646 const unsigned char* pshdrs
,
648 section_size_type names_size
) const
650 const unsigned char* s
= NULL
;
654 s
= this->template find_shdr
<size
, big_endian
>(pshdrs
, ".eh_frame",
655 names
, names_size
, s
);
659 typename
This::Shdr
shdr(s
);
660 if (this->check_eh_frame_flags(&shdr
))
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
671 need_decompressed_section(const char* name
)
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
679 if (parameters
->options().threads())
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters
->incremental() || parameters
->options().gdb_index())
685 && strcmp(name
, "str") == 0)
688 // We will need these other sections when building a gdb index.
689 if (parameters
->options().gdb_index()
690 && (strcmp(name
, "info") == 0
691 || strcmp(name
, "types") == 0
692 || strcmp(name
, "pubnames") == 0
693 || strcmp(name
, "pubtypes") == 0
694 || strcmp(name
, "ranges") == 0
695 || strcmp(name
, "abbrev") == 0))
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters
->incremental()
705 && parameters
->options().gdb_index()
706 && strcmp(name
, "str") == 0)
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
715 template<int size
, bool big_endian
>
716 Compressed_section_map
*
717 build_compressed_section_map(
718 const unsigned char* pshdrs
,
721 section_size_type names_size
,
723 bool decompress_if_needed
)
725 Compressed_section_map
* uncompressed_map
= new Compressed_section_map();
726 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
727 const unsigned char* p
= pshdrs
+ shdr_size
;
729 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
731 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
732 if (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
735 if (shdr
.get_sh_name() >= names_size
)
737 obj
->error(_("bad section name offset for section %u: %lu"),
738 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
742 const char* name
= names
+ shdr
.get_sh_name();
743 bool is_compressed
= ((shdr
.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED
) != 0);
745 bool is_zcompressed
= (!is_compressed
746 && is_compressed_debug_section(name
));
748 if (is_zcompressed
|| is_compressed
)
750 section_size_type len
;
751 const unsigned char* contents
=
752 obj
->section_contents(i
, &len
, false);
753 uint64_t uncompressed_size
;
756 // Skip over the ".zdebug" prefix.
758 uncompressed_size
= get_uncompressed_size(contents
, len
);
762 // Skip over the ".debug" prefix.
764 elfcpp::Chdr
<size
, big_endian
> chdr(contents
);
765 uncompressed_size
= chdr
.get_ch_size();
767 Compressed_section_info info
;
768 info
.size
= convert_to_section_size_type(uncompressed_size
);
769 info
.flag
= shdr
.get_sh_flags();
770 info
.contents
= NULL
;
771 if (uncompressed_size
!= -1ULL)
773 unsigned char* uncompressed_data
= NULL
;
774 if (decompress_if_needed
&& need_decompressed_section(name
))
776 uncompressed_data
= new unsigned char[uncompressed_size
];
777 if (decompress_input_section(contents
, len
,
781 shdr
.get_sh_flags()))
782 info
.contents
= uncompressed_data
;
784 delete[] uncompressed_data
;
786 (*uncompressed_map
)[i
] = info
;
791 return uncompressed_map
;
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
797 template<int size
, bool big_endian
>
799 Sized_relobj_file
<size
, big_endian
>::do_find_special_sections(
800 Read_symbols_data
* sd
)
802 const unsigned char* const pshdrs
= sd
->section_headers
->data();
803 const unsigned char* namesu
= sd
->section_names
->data();
804 const char* names
= reinterpret_cast<const char*>(namesu
);
806 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
807 this->has_eh_frame_
= true;
809 Compressed_section_map
* compressed_sections
=
810 build_compressed_section_map
<size
, big_endian
>(
811 pshdrs
, this->shnum(), names
, sd
->section_names_size
, this, true);
812 if (compressed_sections
!= NULL
)
813 this->set_compressed_sections(compressed_sections
);
815 return (this->has_eh_frame_
816 || (!parameters
->options().relocatable()
817 && parameters
->options().gdb_index()
818 && (memmem(names
, sd
->section_names_size
, "debug_info", 11) != NULL
819 || memmem(names
, sd
->section_names_size
,
820 "debug_types", 12) != NULL
)));
823 // Read the sections and symbols from an object file.
825 template<int size
, bool big_endian
>
827 Sized_relobj_file
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
829 this->base_read_symbols(sd
);
832 // Read the sections and symbols from an object file. This is common
833 // code for all target-specific overrides of do_read_symbols().
835 template<int size
, bool big_endian
>
837 Sized_relobj_file
<size
, big_endian
>::base_read_symbols(Read_symbols_data
* sd
)
839 this->read_section_data(&this->elf_file_
, sd
);
841 const unsigned char* const pshdrs
= sd
->section_headers
->data();
843 this->find_symtab(pshdrs
);
845 bool need_local_symbols
= this->do_find_special_sections(sd
);
848 sd
->symbols_size
= 0;
849 sd
->external_symbols_offset
= 0;
850 sd
->symbol_names
= NULL
;
851 sd
->symbol_names_size
= 0;
853 if (this->symtab_shndx_
== 0)
855 // No symbol table. Weird but legal.
859 // Get the symbol table section header.
860 typename
This::Shdr
symtabshdr(pshdrs
861 + this->symtab_shndx_
* This::shdr_size
);
862 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
864 // If this object has a .eh_frame section, or if building a .gdb_index
865 // section and there is debug info, we need all the symbols.
866 // Otherwise we only need the external symbols. While it would be
867 // simpler to just always read all the symbols, I've seen object
868 // files with well over 2000 local symbols, which for a 64-bit
869 // object file format is over 5 pages that we don't need to read
872 const int sym_size
= This::sym_size
;
873 const unsigned int loccount
= symtabshdr
.get_sh_info();
874 this->local_symbol_count_
= loccount
;
875 this->local_values_
.resize(loccount
);
876 section_offset_type locsize
= loccount
* sym_size
;
877 off_t dataoff
= symtabshdr
.get_sh_offset();
878 section_size_type datasize
=
879 convert_to_section_size_type(symtabshdr
.get_sh_size());
880 off_t extoff
= dataoff
+ locsize
;
881 section_size_type extsize
= datasize
- locsize
;
883 off_t readoff
= need_local_symbols
? dataoff
: extoff
;
884 section_size_type readsize
= need_local_symbols
? datasize
: extsize
;
888 // No external symbols. Also weird but also legal.
892 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
894 // Read the section header for the symbol names.
895 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
896 if (strtab_shndx
>= this->shnum())
898 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
901 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
902 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
904 this->error(_("symbol table name section has wrong type: %u"),
905 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
909 // Read the symbol names.
910 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
911 strtabshdr
.get_sh_size(),
914 sd
->symbols
= fvsymtab
;
915 sd
->symbols_size
= readsize
;
916 sd
->external_symbols_offset
= need_local_symbols
? locsize
: 0;
917 sd
->symbol_names
= fvstrtab
;
918 sd
->symbol_names_size
=
919 convert_to_section_size_type(strtabshdr
.get_sh_size());
922 // Return the section index of symbol SYM. Set *VALUE to its value in
923 // the object file. Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
929 template<int size
, bool big_endian
>
931 Sized_relobj_file
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
935 section_size_type symbols_size
;
936 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
940 const size_t count
= symbols_size
/ This::sym_size
;
941 gold_assert(sym
< count
);
943 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
944 *value
= elfsym
.get_st_value();
946 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
949 // Return whether to include a section group in the link. LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header. If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
955 template<int size
, bool big_endian
>
957 Sized_relobj_file
<size
, big_endian
>::include_section_group(
958 Symbol_table
* symtab
,
962 const unsigned char* shdrs
,
963 const char* section_names
,
964 section_size_type section_names_size
,
965 std::vector
<bool>* omit
)
967 // Read the section contents.
968 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
969 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
970 shdr
.get_sh_size(), true, false);
971 const elfcpp::Elf_Word
* pword
=
972 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
974 // The first word contains flags. We only care about COMDAT section
975 // groups. Other section groups are always included in the link
976 // just like ordinary sections.
977 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
979 // Look up the group signature, which is the name of a symbol. ELF
980 // uses a symbol name because some group signatures are long, and
981 // the name is generally already in the symbol table, so it makes
982 // sense to put the long string just once in .strtab rather than in
983 // both .strtab and .shstrtab.
985 // Get the appropriate symbol table header (this will normally be
986 // the single SHT_SYMTAB section, but in principle it need not be).
987 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
988 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
990 // Read the symbol table entry.
991 unsigned int symndx
= shdr
.get_sh_info();
992 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
994 this->error(_("section group %u info %u out of range"),
998 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
999 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
1001 elfcpp::Sym
<size
, big_endian
> sym(psym
);
1003 // Read the symbol table names.
1004 section_size_type symnamelen
;
1005 const unsigned char* psymnamesu
;
1006 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
1008 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
1010 // Get the section group signature.
1011 if (sym
.get_st_name() >= symnamelen
)
1013 this->error(_("symbol %u name offset %u out of range"),
1014 symndx
, sym
.get_st_name());
1018 std::string
signature(psymnames
+ sym
.get_st_name());
1020 // It seems that some versions of gas will create a section group
1021 // associated with a section symbol, and then fail to give a name to
1022 // the section symbol. In such a case, use the name of the section.
1023 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
1026 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
1029 if (!is_ordinary
|| sym_shndx
>= this->shnum())
1031 this->error(_("symbol %u invalid section index %u"),
1035 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
1036 if (member_shdr
.get_sh_name() < section_names_size
)
1037 signature
= section_names
+ member_shdr
.get_sh_name();
1040 // Record this section group in the layout, and see whether we've already
1041 // seen one with the same signature.
1044 Kept_section
* kept_section
= NULL
;
1046 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
1048 include_group
= true;
1053 include_group
= layout
->find_or_add_kept_section(signature
,
1055 true, &kept_section
);
1059 if (is_comdat
&& include_group
)
1061 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1062 if (incremental_inputs
!= NULL
)
1063 incremental_inputs
->report_comdat_group(this, signature
.c_str());
1066 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
1068 std::vector
<unsigned int> shndxes
;
1069 bool relocate_group
= include_group
&& parameters
->options().relocatable();
1071 shndxes
.reserve(count
- 1);
1073 for (size_t i
= 1; i
< count
; ++i
)
1075 elfcpp::Elf_Word shndx
=
1076 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
1079 shndxes
.push_back(shndx
);
1081 if (shndx
>= this->shnum())
1083 this->error(_("section %u in section group %u out of range"),
1088 // Check for an earlier section number, since we're going to get
1089 // it wrong--we may have already decided to include the section.
1091 this->error(_("invalid section group %u refers to earlier section %u"),
1094 // Get the name of the member section.
1095 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
1096 if (member_shdr
.get_sh_name() >= section_names_size
)
1098 // This is an error, but it will be diagnosed eventually
1099 // in do_layout, so we don't need to do anything here but
1103 std::string
mname(section_names
+ member_shdr
.get_sh_name());
1108 kept_section
->add_comdat_section(mname
, shndx
,
1109 member_shdr
.get_sh_size());
1113 (*omit
)[shndx
] = true;
1115 // Store a mapping from this section to the Kept_section
1116 // information for the group. This mapping is used for
1117 // relocation processing and diagnostics.
1118 // If the kept section is a linkonce section, we don't
1119 // bother with it unless the comdat group contains just
1120 // a single section, making it easy to match up.
1122 && (kept_section
->is_comdat() || count
== 2))
1123 this->set_kept_comdat_section(shndx
, true, symndx
,
1124 member_shdr
.get_sh_size(),
1130 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
1131 shdr
, flags
, &shndxes
);
1133 return include_group
;
1136 // Whether to include a linkonce section in the link. NAME is the
1137 // name of the section and SHDR is the section header.
1139 // Linkonce sections are a GNU extension implemented in the original
1140 // GNU linker before section groups were defined. The semantics are
1141 // that we only include one linkonce section with a given name. The
1142 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1143 // where T is the type of section and SYMNAME is the name of a symbol.
1144 // In an attempt to make linkonce sections interact well with section
1145 // groups, we try to identify SYMNAME and use it like a section group
1146 // signature. We want to block section groups with that signature,
1147 // but not other linkonce sections with that signature. We also use
1148 // the full name of the linkonce section as a normal section group
1151 template<int size
, bool big_endian
>
1153 Sized_relobj_file
<size
, big_endian
>::include_linkonce_section(
1157 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
1159 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
1160 // In general the symbol name we want will be the string following
1161 // the last '.'. However, we have to handle the case of
1162 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1163 // some versions of gcc. So we use a heuristic: if the name starts
1164 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1165 // we look for the last '.'. We can't always simply skip
1166 // ".gnu.linkonce.X", because we have to deal with cases like
1167 // ".gnu.linkonce.d.rel.ro.local".
1168 const char* const linkonce_t
= ".gnu.linkonce.t.";
1169 const char* symname
;
1170 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
1171 symname
= name
+ strlen(linkonce_t
);
1173 symname
= strrchr(name
, '.') + 1;
1174 std::string
sig1(symname
);
1175 std::string
sig2(name
);
1176 Kept_section
* kept1
;
1177 Kept_section
* kept2
;
1178 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
1180 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
1185 // We are not including this section because we already saw the
1186 // name of the section as a signature. This normally implies
1187 // that the kept section is another linkonce section. If it is
1188 // the same size, record it as the section which corresponds to
1190 if (kept2
->object() != NULL
&& !kept2
->is_comdat())
1191 this->set_kept_comdat_section(index
, false, 0, sh_size
, kept2
);
1195 // The section is being discarded on the basis of its symbol
1196 // name. This means that the corresponding kept section was
1197 // part of a comdat group, and it will be difficult to identify
1198 // the specific section within that group that corresponds to
1199 // this linkonce section. We'll handle the simple case where
1200 // the group has only one member section. Otherwise, it's not
1201 // worth the effort.
1202 if (kept1
->object() != NULL
&& kept1
->is_comdat())
1203 this->set_kept_comdat_section(index
, false, 0, sh_size
, kept1
);
1207 kept1
->set_linkonce_size(sh_size
);
1208 kept2
->set_linkonce_size(sh_size
);
1211 return include1
&& include2
;
1214 // Layout an input section.
1216 template<int size
, bool big_endian
>
1218 Sized_relobj_file
<size
, big_endian
>::layout_section(
1222 const typename
This::Shdr
& shdr
,
1223 unsigned int sh_type
,
1224 unsigned int reloc_shndx
,
1225 unsigned int reloc_type
)
1228 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
, sh_type
,
1229 reloc_shndx
, reloc_type
, &offset
);
1231 this->output_sections()[shndx
] = os
;
1233 this->section_offsets()[shndx
] = invalid_address
;
1235 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1237 // If this section requires special handling, and if there are
1238 // relocs that apply to it, then we must do the special handling
1239 // before we apply the relocs.
1240 if (offset
== -1 && reloc_shndx
!= 0)
1241 this->set_relocs_must_follow_section_writes();
1244 // Layout an input .eh_frame section.
1246 template<int size
, bool big_endian
>
1248 Sized_relobj_file
<size
, big_endian
>::layout_eh_frame_section(
1250 const unsigned char* symbols_data
,
1251 section_size_type symbols_size
,
1252 const unsigned char* symbol_names_data
,
1253 section_size_type symbol_names_size
,
1255 const typename
This::Shdr
& shdr
,
1256 unsigned int reloc_shndx
,
1257 unsigned int reloc_type
)
1259 gold_assert(this->has_eh_frame_
);
1262 Output_section
* os
= layout
->layout_eh_frame(this,
1272 this->output_sections()[shndx
] = os
;
1273 if (os
== NULL
|| offset
== -1)
1274 this->section_offsets()[shndx
] = invalid_address
;
1276 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1278 // If this section requires special handling, and if there are
1279 // relocs that aply to it, then we must do the special handling
1280 // before we apply the relocs.
1281 if (os
!= NULL
&& offset
== -1 && reloc_shndx
!= 0)
1282 this->set_relocs_must_follow_section_writes();
1285 // Layout an input .note.gnu.property section.
1287 // This note section has an *extremely* non-standard layout.
1288 // The gABI spec says that ELF-64 files should have 8-byte fields and
1289 // 8-byte alignment in the note section, but the Gnu tools generally
1290 // use 4-byte fields and 4-byte alignment (see the comment for
1291 // Layout::create_note). This section uses 4-byte fields (i.e.,
1292 // namesz, descsz, and type are always 4 bytes), the name field is
1293 // padded to a multiple of 4 bytes, but the desc field is padded
1294 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1295 // The individual properties within the desc field always use
1296 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1297 // a multiple of 4 or 8 bytes, depending on the ELF class.
1299 template<int size
, bool big_endian
>
1301 Sized_relobj_file
<size
, big_endian
>::layout_gnu_property_section(
1305 section_size_type contents_len
;
1306 const unsigned char* pcontents
= this->section_contents(shndx
,
1309 const unsigned char* pcontents_end
= pcontents
+ contents_len
;
1311 // Loop over all the notes in this section.
1312 while (pcontents
< pcontents_end
)
1314 if (pcontents
+ 16 > pcontents_end
)
1316 gold_warning(_("%s: corrupt .note.gnu.property section "
1317 "(note too short)"),
1318 this->name().c_str());
1322 size_t namesz
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
);
1323 size_t descsz
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
+ 4);
1324 unsigned int ntype
= elfcpp::Swap
<32, big_endian
>::readval(pcontents
+ 8);
1325 const unsigned char* pname
= pcontents
+ 12;
1327 if (namesz
!= 4 || strcmp(reinterpret_cast<const char*>(pname
), "GNU") != 0)
1329 gold_warning(_("%s: corrupt .note.gnu.property section "
1330 "(name is not 'GNU')"),
1331 this->name().c_str());
1335 if (ntype
!= elfcpp::NT_GNU_PROPERTY_TYPE_0
)
1337 gold_warning(_("%s: unsupported note type %d "
1338 "in .note.gnu.property section"),
1339 this->name().c_str(), ntype
);
1343 size_t aligned_namesz
= align_address(namesz
, 4);
1344 const unsigned char* pdesc
= pname
+ aligned_namesz
;
1346 if (pdesc
+ descsz
> pcontents
+ contents_len
)
1348 gold_warning(_("%s: corrupt .note.gnu.property section"),
1349 this->name().c_str());
1353 const unsigned char* pprop
= pdesc
;
1355 // Loop over the program properties in this note.
1356 while (pprop
< pdesc
+ descsz
)
1358 if (pprop
+ 8 > pdesc
+ descsz
)
1360 gold_warning(_("%s: corrupt .note.gnu.property section"),
1361 this->name().c_str());
1364 unsigned int pr_type
= elfcpp::Swap
<32, big_endian
>::readval(pprop
);
1365 size_t pr_datasz
= elfcpp::Swap
<32, big_endian
>::readval(pprop
+ 4);
1367 if (pprop
+ pr_datasz
> pdesc
+ descsz
)
1369 gold_warning(_("%s: corrupt .note.gnu.property section"),
1370 this->name().c_str());
1373 layout
->layout_gnu_property(ntype
, pr_type
, pr_datasz
, pprop
, this);
1374 pprop
+= align_address(pr_datasz
, size
/ 8);
1377 pcontents
= pdesc
+ align_address(descsz
, size
/ 8);
1381 // Lay out the input sections. We walk through the sections and check
1382 // whether they should be included in the link. If they should, we
1383 // pass them to the Layout object, which will return an output section
1385 // This function is called twice sometimes, two passes, when mapping
1386 // of input sections to output sections must be delayed.
1387 // This is true for the following :
1388 // * Garbage collection (--gc-sections): Some input sections will be
1389 // discarded and hence the assignment must wait until the second pass.
1390 // In the first pass, it is for setting up some sections as roots to
1391 // a work-list for --gc-sections and to do comdat processing.
1392 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1393 // will be folded and hence the assignment must wait.
1394 // * Using plugins to map some sections to unique segments: Mapping
1395 // some sections to unique segments requires mapping them to unique
1396 // output sections too. This can be done via plugins now and this
1397 // information is not available in the first pass.
1399 template<int size
, bool big_endian
>
1401 Sized_relobj_file
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
1403 Read_symbols_data
* sd
)
1405 const unsigned int unwind_section_type
=
1406 parameters
->target().unwind_section_type();
1407 const unsigned int shnum
= this->shnum();
1409 /* Should this function be called twice? */
1410 bool is_two_pass
= (parameters
->options().gc_sections()
1411 || parameters
->options().icf_enabled()
1412 || layout
->is_unique_segment_for_sections_specified());
1414 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1415 a two-pass approach is not needed. */
1416 bool is_pass_one
= false;
1417 bool is_pass_two
= false;
1419 Symbols_data
* gc_sd
= NULL
;
1421 /* Check if do_layout needs to be two-pass. If so, find out which pass
1422 should happen. In the first pass, the data in sd is saved to be used
1423 later in the second pass. */
1426 gc_sd
= this->get_symbols_data();
1429 gold_assert(sd
!= NULL
);
1434 if (parameters
->options().gc_sections())
1435 gold_assert(symtab
->gc()->is_worklist_ready());
1436 if (parameters
->options().icf_enabled())
1437 gold_assert(symtab
->icf()->is_icf_ready());
1447 // During garbage collection save the symbols data to use it when
1448 // re-entering this function.
1449 gc_sd
= new Symbols_data
;
1450 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
1451 this->set_symbols_data(gc_sd
);
1454 const unsigned char* section_headers_data
= NULL
;
1455 section_size_type section_names_size
;
1456 const unsigned char* symbols_data
= NULL
;
1457 section_size_type symbols_size
;
1458 const unsigned char* symbol_names_data
= NULL
;
1459 section_size_type symbol_names_size
;
1463 section_headers_data
= gc_sd
->section_headers_data
;
1464 section_names_size
= gc_sd
->section_names_size
;
1465 symbols_data
= gc_sd
->symbols_data
;
1466 symbols_size
= gc_sd
->symbols_size
;
1467 symbol_names_data
= gc_sd
->symbol_names_data
;
1468 symbol_names_size
= gc_sd
->symbol_names_size
;
1472 section_headers_data
= sd
->section_headers
->data();
1473 section_names_size
= sd
->section_names_size
;
1474 if (sd
->symbols
!= NULL
)
1475 symbols_data
= sd
->symbols
->data();
1476 symbols_size
= sd
->symbols_size
;
1477 if (sd
->symbol_names
!= NULL
)
1478 symbol_names_data
= sd
->symbol_names
->data();
1479 symbol_names_size
= sd
->symbol_names_size
;
1482 // Get the section headers.
1483 const unsigned char* shdrs
= section_headers_data
;
1484 const unsigned char* pshdrs
;
1486 // Get the section names.
1487 const unsigned char* pnamesu
= (is_two_pass
1488 ? gc_sd
->section_names_data
1489 : sd
->section_names
->data());
1491 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1493 // If any input files have been claimed by plugins, we need to defer
1494 // actual layout until the replacement files have arrived.
1495 const bool should_defer_layout
=
1496 (parameters
->options().has_plugins()
1497 && parameters
->options().plugins()->should_defer_layout());
1498 unsigned int num_sections_to_defer
= 0;
1500 // For each section, record the index of the reloc section if any.
1501 // Use 0 to mean that there is no reloc section, -1U to mean that
1502 // there is more than one.
1503 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1504 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1505 // Skip the first, dummy, section.
1506 pshdrs
= shdrs
+ This::shdr_size
;
1507 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1509 typename
This::Shdr
shdr(pshdrs
);
1511 // Count the number of sections whose layout will be deferred.
1512 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1513 ++num_sections_to_defer
;
1515 unsigned int sh_type
= shdr
.get_sh_type();
1516 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1518 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1519 if (target_shndx
== 0 || target_shndx
>= shnum
)
1521 this->error(_("relocation section %u has bad info %u"),
1526 if (reloc_shndx
[target_shndx
] != 0)
1527 reloc_shndx
[target_shndx
] = -1U;
1530 reloc_shndx
[target_shndx
] = i
;
1531 reloc_type
[target_shndx
] = sh_type
;
1536 Output_sections
& out_sections(this->output_sections());
1537 std::vector
<Address
>& out_section_offsets(this->section_offsets());
1541 out_sections
.resize(shnum
);
1542 out_section_offsets
.resize(shnum
);
1545 // If we are only linking for symbols, then there is nothing else to
1547 if (this->input_file()->just_symbols())
1551 delete sd
->section_headers
;
1552 sd
->section_headers
= NULL
;
1553 delete sd
->section_names
;
1554 sd
->section_names
= NULL
;
1559 if (num_sections_to_defer
> 0)
1561 parameters
->options().plugins()->add_deferred_layout_object(this);
1562 this->deferred_layout_
.reserve(num_sections_to_defer
);
1563 this->is_deferred_layout_
= true;
1566 // Whether we've seen a .note.GNU-stack section.
1567 bool seen_gnu_stack
= false;
1568 // The flags of a .note.GNU-stack section.
1569 uint64_t gnu_stack_flags
= 0;
1571 // Keep track of which sections to omit.
1572 std::vector
<bool> omit(shnum
, false);
1574 // Keep track of reloc sections when emitting relocations.
1575 const bool relocatable
= parameters
->options().relocatable();
1576 const bool emit_relocs
= (relocatable
1577 || parameters
->options().emit_relocs());
1578 std::vector
<unsigned int> reloc_sections
;
1580 // Keep track of .eh_frame sections.
1581 std::vector
<unsigned int> eh_frame_sections
;
1583 // Keep track of .debug_info and .debug_types sections.
1584 std::vector
<unsigned int> debug_info_sections
;
1585 std::vector
<unsigned int> debug_types_sections
;
1587 // Skip the first, dummy, section.
1588 pshdrs
= shdrs
+ This::shdr_size
;
1589 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1591 typename
This::Shdr
shdr(pshdrs
);
1592 const unsigned int sh_name
= shdr
.get_sh_name();
1593 unsigned int sh_type
= shdr
.get_sh_type();
1595 if (sh_name
>= section_names_size
)
1597 this->error(_("bad section name offset for section %u: %lu"),
1598 i
, static_cast<unsigned long>(sh_name
));
1602 const char* name
= pnames
+ sh_name
;
1606 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1608 if (!relocatable
&& !parameters
->options().shared())
1612 // The .note.GNU-stack section is special. It gives the
1613 // protection flags that this object file requires for the stack
1615 if (strcmp(name
, ".note.GNU-stack") == 0)
1617 seen_gnu_stack
= true;
1618 gnu_stack_flags
|= shdr
.get_sh_flags();
1622 // The .note.GNU-split-stack section is also special. It
1623 // indicates that the object was compiled with
1625 if (this->handle_split_stack_section(name
))
1627 if (!relocatable
&& !parameters
->options().shared())
1631 // Skip attributes section.
1632 if (parameters
->target().is_attributes_section(name
))
1637 // Handle .note.gnu.property sections.
1638 if (sh_type
== elfcpp::SHT_NOTE
1639 && strcmp(name
, ".note.gnu.property") == 0)
1641 this->layout_gnu_property_section(layout
, i
);
1645 bool discard
= omit
[i
];
1648 if (sh_type
== elfcpp::SHT_GROUP
)
1650 if (!this->include_section_group(symtab
, layout
, i
, name
,
1656 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1657 && Layout::is_linkonce(name
))
1659 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1664 // Add the section to the incremental inputs layout.
1665 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1666 if (incremental_inputs
!= NULL
1668 && can_incremental_update(sh_type
))
1670 off_t sh_size
= shdr
.get_sh_size();
1671 section_size_type uncompressed_size
;
1672 if (this->section_is_compressed(i
, &uncompressed_size
))
1673 sh_size
= uncompressed_size
;
1674 incremental_inputs
->report_input_section(this, i
, name
, sh_size
);
1679 // Do not include this section in the link.
1680 out_sections
[i
] = NULL
;
1681 out_section_offsets
[i
] = invalid_address
;
1686 if (is_pass_one
&& parameters
->options().gc_sections())
1688 if (this->is_section_name_included(name
)
1689 || layout
->keep_input_section (this, name
)
1690 || sh_type
== elfcpp::SHT_INIT_ARRAY
1691 || sh_type
== elfcpp::SHT_FINI_ARRAY
)
1693 symtab
->gc()->worklist().push_back(Section_id(this, i
));
1695 // If the section name XXX can be represented as a C identifier
1696 // it cannot be discarded if there are references to
1697 // __start_XXX and __stop_XXX symbols. These need to be
1698 // specially handled.
1699 if (is_cident(name
))
1701 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1705 // When doing a relocatable link we are going to copy input
1706 // reloc sections into the output. We only want to copy the
1707 // ones associated with sections which are not being discarded.
1708 // However, we don't know that yet for all sections. So save
1709 // reloc sections and process them later. Garbage collection is
1710 // not triggered when relocatable code is desired.
1712 && (sh_type
== elfcpp::SHT_REL
1713 || sh_type
== elfcpp::SHT_RELA
))
1715 reloc_sections
.push_back(i
);
1719 if (relocatable
&& sh_type
== elfcpp::SHT_GROUP
)
1722 // The .eh_frame section is special. It holds exception frame
1723 // information that we need to read in order to generate the
1724 // exception frame header. We process these after all the other
1725 // sections so that the exception frame reader can reliably
1726 // determine which sections are being discarded, and discard the
1727 // corresponding information.
1728 if (this->check_eh_frame_flags(&shdr
)
1729 && strcmp(name
, ".eh_frame") == 0)
1731 // If the target has a special unwind section type, let's
1732 // canonicalize it here.
1733 sh_type
= unwind_section_type
;
1738 if (this->is_deferred_layout())
1739 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1741 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1742 out_section_offsets
[i
] = invalid_address
;
1744 else if (this->is_deferred_layout())
1746 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1747 out_section_offsets
[i
] = invalid_address
;
1748 this->deferred_layout_
.push_back(
1749 Deferred_layout(i
, name
, sh_type
, pshdrs
,
1750 reloc_shndx
[i
], reloc_type
[i
]));
1753 eh_frame_sections
.push_back(i
);
1758 if (is_pass_two
&& parameters
->options().gc_sections())
1760 // This is executed during the second pass of garbage
1761 // collection. do_layout has been called before and some
1762 // sections have been already discarded. Simply ignore
1763 // such sections this time around.
1764 if (out_sections
[i
] == NULL
)
1766 gold_assert(out_section_offsets
[i
] == invalid_address
);
1769 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1770 && symtab
->gc()->is_section_garbage(this, i
))
1772 if (parameters
->options().print_gc_sections())
1773 gold_info(_("%s: removing unused section from '%s'"
1775 program_name
, this->section_name(i
).c_str(),
1776 this->name().c_str());
1777 out_sections
[i
] = NULL
;
1778 out_section_offsets
[i
] = invalid_address
;
1783 if (is_pass_two
&& parameters
->options().icf_enabled())
1785 if (out_sections
[i
] == NULL
)
1787 gold_assert(out_section_offsets
[i
] == invalid_address
);
1790 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1791 && symtab
->icf()->is_section_folded(this, i
))
1793 if (parameters
->options().print_icf_sections())
1796 symtab
->icf()->get_folded_section(this, i
);
1797 Relobj
* folded_obj
=
1798 reinterpret_cast<Relobj
*>(folded
.first
);
1799 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1800 "into '%s' in file '%s'"),
1801 program_name
, this->section_name(i
).c_str(),
1802 this->name().c_str(),
1803 folded_obj
->section_name(folded
.second
).c_str(),
1804 folded_obj
->name().c_str());
1806 out_sections
[i
] = NULL
;
1807 out_section_offsets
[i
] = invalid_address
;
1812 // Defer layout here if input files are claimed by plugins. When gc
1813 // is turned on this function is called twice; we only want to do this
1814 // on the first pass.
1816 && this->is_deferred_layout()
1817 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1819 this->deferred_layout_
.push_back(Deferred_layout(i
, name
, sh_type
,
1823 // Put dummy values here; real values will be supplied by
1824 // do_layout_deferred_sections.
1825 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1826 out_section_offsets
[i
] = invalid_address
;
1830 // During gc_pass_two if a section that was previously deferred is
1831 // found, do not layout the section as layout_deferred_sections will
1832 // do it later from gold.cc.
1834 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1839 // This is during garbage collection. The out_sections are
1840 // assigned in the second call to this function.
1841 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1842 out_section_offsets
[i
] = invalid_address
;
1846 // When garbage collection is switched on the actual layout
1847 // only happens in the second call.
1848 this->layout_section(layout
, i
, name
, shdr
, sh_type
, reloc_shndx
[i
],
1851 // When generating a .gdb_index section, we do additional
1852 // processing of .debug_info and .debug_types sections after all
1853 // the other sections for the same reason as above.
1855 && parameters
->options().gdb_index()
1856 && !(shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1858 if (strcmp(name
, ".debug_info") == 0
1859 || strcmp(name
, ".zdebug_info") == 0)
1860 debug_info_sections
.push_back(i
);
1861 else if (strcmp(name
, ".debug_types") == 0
1862 || strcmp(name
, ".zdebug_types") == 0)
1863 debug_types_sections
.push_back(i
);
1870 layout
->merge_gnu_properties(this);
1871 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
, this);
1874 // Handle the .eh_frame sections after the other sections.
1875 gold_assert(!is_pass_one
|| eh_frame_sections
.empty());
1876 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1877 p
!= eh_frame_sections
.end();
1880 unsigned int i
= *p
;
1881 const unsigned char* pshdr
;
1882 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1883 typename
This::Shdr
shdr(pshdr
);
1885 this->layout_eh_frame_section(layout
,
1896 // When doing a relocatable link handle the reloc sections at the
1897 // end. Garbage collection and Identical Code Folding is not
1898 // turned on for relocatable code.
1900 this->size_relocatable_relocs();
1902 gold_assert(!is_two_pass
|| reloc_sections
.empty());
1904 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1905 p
!= reloc_sections
.end();
1908 unsigned int i
= *p
;
1909 const unsigned char* pshdr
;
1910 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1911 typename
This::Shdr
shdr(pshdr
);
1913 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1914 if (data_shndx
>= shnum
)
1916 // We already warned about this above.
1920 Output_section
* data_section
= out_sections
[data_shndx
];
1921 if (data_section
== reinterpret_cast<Output_section
*>(2))
1925 // The layout for the data section was deferred, so we need
1926 // to defer the relocation section, too.
1927 const char* name
= pnames
+ shdr
.get_sh_name();
1928 this->deferred_layout_relocs_
.push_back(
1929 Deferred_layout(i
, name
, shdr
.get_sh_type(), pshdr
, 0,
1931 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1932 out_section_offsets
[i
] = invalid_address
;
1935 if (data_section
== NULL
)
1937 out_sections
[i
] = NULL
;
1938 out_section_offsets
[i
] = invalid_address
;
1942 Relocatable_relocs
* rr
= new Relocatable_relocs();
1943 this->set_relocatable_relocs(i
, rr
);
1945 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1947 out_sections
[i
] = os
;
1948 out_section_offsets
[i
] = invalid_address
;
1951 // When building a .gdb_index section, scan the .debug_info and
1952 // .debug_types sections.
1953 gold_assert(!is_pass_one
1954 || (debug_info_sections
.empty() && debug_types_sections
.empty()));
1955 for (std::vector
<unsigned int>::const_iterator p
1956 = debug_info_sections
.begin();
1957 p
!= debug_info_sections
.end();
1960 unsigned int i
= *p
;
1961 layout
->add_to_gdb_index(false, this, symbols_data
, symbols_size
,
1962 i
, reloc_shndx
[i
], reloc_type
[i
]);
1964 for (std::vector
<unsigned int>::const_iterator p
1965 = debug_types_sections
.begin();
1966 p
!= debug_types_sections
.end();
1969 unsigned int i
= *p
;
1970 layout
->add_to_gdb_index(true, this, symbols_data
, symbols_size
,
1971 i
, reloc_shndx
[i
], reloc_type
[i
]);
1976 delete[] gc_sd
->section_headers_data
;
1977 delete[] gc_sd
->section_names_data
;
1978 delete[] gc_sd
->symbols_data
;
1979 delete[] gc_sd
->symbol_names_data
;
1980 this->set_symbols_data(NULL
);
1984 delete sd
->section_headers
;
1985 sd
->section_headers
= NULL
;
1986 delete sd
->section_names
;
1987 sd
->section_names
= NULL
;
1991 // Layout sections whose layout was deferred while waiting for
1992 // input files from a plugin.
1994 template<int size
, bool big_endian
>
1996 Sized_relobj_file
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1998 typename
std::vector
<Deferred_layout
>::iterator deferred
;
2000 for (deferred
= this->deferred_layout_
.begin();
2001 deferred
!= this->deferred_layout_
.end();
2004 typename
This::Shdr
shdr(deferred
->shdr_data_
);
2006 if (!parameters
->options().relocatable()
2007 && deferred
->name_
== ".eh_frame"
2008 && this->check_eh_frame_flags(&shdr
))
2010 // Checking is_section_included is not reliable for
2011 // .eh_frame sections, because they do not have an output
2012 // section. This is not a problem normally because we call
2013 // layout_eh_frame_section unconditionally, but when
2014 // deferring sections that is not true. We don't want to
2015 // keep all .eh_frame sections because that will cause us to
2016 // keep all sections that they refer to, which is the wrong
2017 // way around. Instead, the eh_frame code will discard
2018 // .eh_frame sections that refer to discarded sections.
2020 // Reading the symbols again here may be slow.
2021 Read_symbols_data sd
;
2022 this->base_read_symbols(&sd
);
2023 this->layout_eh_frame_section(layout
,
2026 sd
.symbol_names
->data(),
2027 sd
.symbol_names_size
,
2030 deferred
->reloc_shndx_
,
2031 deferred
->reloc_type_
);
2035 // If the section is not included, it is because the garbage collector
2036 // decided it is not needed. Avoid reverting that decision.
2037 if (!this->is_section_included(deferred
->shndx_
))
2040 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
2041 shdr
, shdr
.get_sh_type(), deferred
->reloc_shndx_
,
2042 deferred
->reloc_type_
);
2045 this->deferred_layout_
.clear();
2047 // Now handle the deferred relocation sections.
2049 Output_sections
& out_sections(this->output_sections());
2050 std::vector
<Address
>& out_section_offsets(this->section_offsets());
2052 for (deferred
= this->deferred_layout_relocs_
.begin();
2053 deferred
!= this->deferred_layout_relocs_
.end();
2056 unsigned int shndx
= deferred
->shndx_
;
2057 typename
This::Shdr
shdr(deferred
->shdr_data_
);
2058 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
2060 Output_section
* data_section
= out_sections
[data_shndx
];
2061 if (data_section
== NULL
)
2063 out_sections
[shndx
] = NULL
;
2064 out_section_offsets
[shndx
] = invalid_address
;
2068 Relocatable_relocs
* rr
= new Relocatable_relocs();
2069 this->set_relocatable_relocs(shndx
, rr
);
2071 Output_section
* os
= layout
->layout_reloc(this, shndx
, shdr
,
2073 out_sections
[shndx
] = os
;
2074 out_section_offsets
[shndx
] = invalid_address
;
2078 // Add the symbols to the symbol table.
2080 template<int size
, bool big_endian
>
2082 Sized_relobj_file
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
2083 Read_symbols_data
* sd
,
2086 if (sd
->symbols
== NULL
)
2088 gold_assert(sd
->symbol_names
== NULL
);
2092 const int sym_size
= This::sym_size
;
2093 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2095 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
2097 this->error(_("size of symbols is not multiple of symbol size"));
2101 this->symbols_
.resize(symcount
);
2103 const char* sym_names
=
2104 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2105 symtab
->add_from_relobj(this,
2106 sd
->symbols
->data() + sd
->external_symbols_offset
,
2107 symcount
, this->local_symbol_count_
,
2108 sym_names
, sd
->symbol_names_size
,
2110 &this->defined_count_
);
2114 delete sd
->symbol_names
;
2115 sd
->symbol_names
= NULL
;
2118 // Find out if this object, that is a member of a lib group, should be included
2119 // in the link. We check every symbol defined by this object. If the symbol
2120 // table has a strong undefined reference to that symbol, we have to include
2123 template<int size
, bool big_endian
>
2124 Archive::Should_include
2125 Sized_relobj_file
<size
, big_endian
>::do_should_include_member(
2126 Symbol_table
* symtab
,
2128 Read_symbols_data
* sd
,
2131 char* tmpbuf
= NULL
;
2132 size_t tmpbuflen
= 0;
2133 const char* sym_names
=
2134 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2135 const unsigned char* syms
=
2136 sd
->symbols
->data() + sd
->external_symbols_offset
;
2137 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2138 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2141 const unsigned char* p
= syms
;
2143 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
2145 elfcpp::Sym
<size
, big_endian
> sym(p
);
2146 unsigned int st_shndx
= sym
.get_st_shndx();
2147 if (st_shndx
== elfcpp::SHN_UNDEF
)
2150 unsigned int st_name
= sym
.get_st_name();
2151 const char* name
= sym_names
+ st_name
;
2153 Archive::Should_include t
= Archive::should_include_member(symtab
,
2159 if (t
== Archive::SHOULD_INCLUDE_YES
)
2168 return Archive::SHOULD_INCLUDE_UNKNOWN
;
2171 // Iterate over global defined symbols, calling a visitor class V for each.
2173 template<int size
, bool big_endian
>
2175 Sized_relobj_file
<size
, big_endian
>::do_for_all_global_symbols(
2176 Read_symbols_data
* sd
,
2177 Library_base::Symbol_visitor_base
* v
)
2179 const char* sym_names
=
2180 reinterpret_cast<const char*>(sd
->symbol_names
->data());
2181 const unsigned char* syms
=
2182 sd
->symbols
->data() + sd
->external_symbols_offset
;
2183 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2184 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
2186 const unsigned char* p
= syms
;
2188 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
2190 elfcpp::Sym
<size
, big_endian
> sym(p
);
2191 if (sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
2192 v
->visit(sym_names
+ sym
.get_st_name());
2196 // Return whether the local symbol SYMNDX has a PLT offset.
2198 template<int size
, bool big_endian
>
2200 Sized_relobj_file
<size
, big_endian
>::local_has_plt_offset(
2201 unsigned int symndx
) const
2203 typename
Local_plt_offsets::const_iterator p
=
2204 this->local_plt_offsets_
.find(symndx
);
2205 return p
!= this->local_plt_offsets_
.end();
2208 // Get the PLT offset of a local symbol.
2210 template<int size
, bool big_endian
>
2212 Sized_relobj_file
<size
, big_endian
>::do_local_plt_offset(
2213 unsigned int symndx
) const
2215 typename
Local_plt_offsets::const_iterator p
=
2216 this->local_plt_offsets_
.find(symndx
);
2217 gold_assert(p
!= this->local_plt_offsets_
.end());
2221 // Set the PLT offset of a local symbol.
2223 template<int size
, bool big_endian
>
2225 Sized_relobj_file
<size
, big_endian
>::set_local_plt_offset(
2226 unsigned int symndx
, unsigned int plt_offset
)
2228 std::pair
<typename
Local_plt_offsets::iterator
, bool> ins
=
2229 this->local_plt_offsets_
.insert(std::make_pair(symndx
, plt_offset
));
2230 gold_assert(ins
.second
);
2233 // First pass over the local symbols. Here we add their names to
2234 // *POOL and *DYNPOOL, and we store the symbol value in
2235 // THIS->LOCAL_VALUES_. This function is always called from a
2236 // singleton thread. This is followed by a call to
2237 // finalize_local_symbols.
2239 template<int size
, bool big_endian
>
2241 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
2242 Stringpool
* dynpool
)
2244 gold_assert(this->symtab_shndx_
!= -1U);
2245 if (this->symtab_shndx_
== 0)
2247 // This object has no symbols. Weird but legal.
2251 // Read the symbol table section header.
2252 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2253 typename
This::Shdr
symtabshdr(this,
2254 this->elf_file_
.section_header(symtab_shndx
));
2255 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2257 // Read the local symbols.
2258 const int sym_size
= This::sym_size
;
2259 const unsigned int loccount
= this->local_symbol_count_
;
2260 gold_assert(loccount
== symtabshdr
.get_sh_info());
2261 off_t locsize
= loccount
* sym_size
;
2262 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2263 locsize
, true, true);
2265 // Read the symbol names.
2266 const unsigned int strtab_shndx
=
2267 this->adjust_shndx(symtabshdr
.get_sh_link());
2268 section_size_type strtab_size
;
2269 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2272 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2274 // Loop over the local symbols.
2276 const Output_sections
& out_sections(this->output_sections());
2277 std::vector
<Address
>& out_section_offsets(this->section_offsets());
2278 unsigned int shnum
= this->shnum();
2279 unsigned int count
= 0;
2280 unsigned int dyncount
= 0;
2281 // Skip the first, dummy, symbol.
2283 bool strip_all
= parameters
->options().strip_all();
2284 bool discard_all
= parameters
->options().discard_all();
2285 bool discard_locals
= parameters
->options().discard_locals();
2286 bool discard_sec_merge
= parameters
->options().discard_sec_merge();
2287 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2289 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
2291 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2294 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2296 lv
.set_input_shndx(shndx
, is_ordinary
);
2298 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
2299 lv
.set_is_section_symbol();
2300 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
2301 lv
.set_is_tls_symbol();
2302 else if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
2303 lv
.set_is_ifunc_symbol();
2305 // Save the input symbol value for use in do_finalize_local_symbols().
2306 lv
.set_input_value(sym
.get_st_value());
2308 // Decide whether this symbol should go into the output file.
2312 && (out_sections
[shndx
] == NULL
2313 || (out_sections
[shndx
]->order() == ORDER_EHFRAME
2314 && out_section_offsets
[shndx
] == invalid_address
)))
2316 // This is either a discarded section or an optimized .eh_frame
2318 lv
.set_no_output_symtab_entry();
2319 gold_assert(!lv
.needs_output_dynsym_entry());
2323 if (sym
.get_st_type() == elfcpp::STT_SECTION
2324 || !this->adjust_local_symbol(&lv
))
2326 lv
.set_no_output_symtab_entry();
2327 gold_assert(!lv
.needs_output_dynsym_entry());
2331 if (sym
.get_st_name() >= strtab_size
)
2333 this->error(_("local symbol %u section name out of range: %u >= %u"),
2334 i
, sym
.get_st_name(),
2335 static_cast<unsigned int>(strtab_size
));
2336 lv
.set_no_output_symtab_entry();
2340 const char* name
= pnames
+ sym
.get_st_name();
2342 // If needed, add the symbol to the dynamic symbol table string pool.
2343 if (lv
.needs_output_dynsym_entry())
2345 dynpool
->add(name
, true, NULL
);
2350 || (discard_all
&& lv
.may_be_discarded_from_output_symtab()))
2352 lv
.set_no_output_symtab_entry();
2356 // By default, discard temporary local symbols in merge sections.
2357 // If --discard-locals option is used, discard all temporary local
2358 // symbols. These symbols start with system-specific local label
2359 // prefixes, typically .L for ELF system. We want to be compatible
2360 // with GNU ld so here we essentially use the same check in
2361 // bfd_is_local_label(). The code is different because we already
2364 // - the symbol is local and thus cannot have global or weak binding.
2365 // - the symbol is not a section symbol.
2366 // - the symbol has a name.
2368 // We do not discard a symbol if it needs a dynamic symbol entry.
2370 || (discard_sec_merge
2372 && out_section_offsets
[shndx
] == invalid_address
))
2373 && sym
.get_st_type() != elfcpp::STT_FILE
2374 && !lv
.needs_output_dynsym_entry()
2375 && lv
.may_be_discarded_from_output_symtab()
2376 && parameters
->target().is_local_label_name(name
))
2378 lv
.set_no_output_symtab_entry();
2382 // Discard the local symbol if -retain_symbols_file is specified
2383 // and the local symbol is not in that file.
2384 if (!parameters
->options().should_retain_symbol(name
))
2386 lv
.set_no_output_symtab_entry();
2390 // Add the symbol to the symbol table string pool.
2391 pool
->add(name
, true, NULL
);
2395 this->output_local_symbol_count_
= count
;
2396 this->output_local_dynsym_count_
= dyncount
;
2399 // Compute the final value of a local symbol.
2401 template<int size
, bool big_endian
>
2402 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2403 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value_internal(
2405 const Symbol_value
<size
>* lv_in
,
2406 Symbol_value
<size
>* lv_out
,
2408 const Output_sections
& out_sections
,
2409 const std::vector
<Address
>& out_offsets
,
2410 const Symbol_table
* symtab
)
2412 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2413 // we may have a memory leak.
2414 gold_assert(lv_out
->has_output_value());
2417 unsigned int shndx
= lv_in
->input_shndx(&is_ordinary
);
2419 // Set the output symbol value.
2423 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
2424 lv_out
->set_output_value(lv_in
->input_value());
2427 this->error(_("unknown section index %u for local symbol %u"),
2429 lv_out
->set_output_value(0);
2430 return This::CFLV_ERROR
;
2435 if (shndx
>= this->shnum())
2437 this->error(_("local symbol %u section index %u out of range"),
2439 lv_out
->set_output_value(0);
2440 return This::CFLV_ERROR
;
2443 Output_section
* os
= out_sections
[shndx
];
2444 Address secoffset
= out_offsets
[shndx
];
2445 if (symtab
->is_section_folded(this, shndx
))
2447 gold_assert(os
== NULL
&& secoffset
== invalid_address
);
2448 // Get the os of the section it is folded onto.
2449 Section_id folded
= symtab
->icf()->get_folded_section(this,
2451 gold_assert(folded
.first
!= NULL
);
2452 Sized_relobj_file
<size
, big_endian
>* folded_obj
= reinterpret_cast
2453 <Sized_relobj_file
<size
, big_endian
>*>(folded
.first
);
2454 os
= folded_obj
->output_section(folded
.second
);
2455 gold_assert(os
!= NULL
);
2456 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
2458 // This could be a relaxed input section.
2459 if (secoffset
== invalid_address
)
2461 const Output_relaxed_input_section
* relaxed_section
=
2462 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
2463 gold_assert(relaxed_section
!= NULL
);
2464 secoffset
= relaxed_section
->address() - os
->address();
2470 // This local symbol belongs to a section we are discarding.
2471 // In some cases when applying relocations later, we will
2472 // attempt to match it to the corresponding kept section,
2473 // so we leave the input value unchanged here.
2474 return This::CFLV_DISCARDED
;
2476 else if (secoffset
== invalid_address
)
2480 // This is a SHF_MERGE section or one which otherwise
2481 // requires special handling.
2482 if (os
->order() == ORDER_EHFRAME
)
2484 // This local symbol belongs to a discarded or optimized
2485 // .eh_frame section. Just treat it like the case in which
2486 // os == NULL above.
2487 gold_assert(this->has_eh_frame_
);
2488 return This::CFLV_DISCARDED
;
2490 else if (!lv_in
->is_section_symbol())
2492 // This is not a section symbol. We can determine
2493 // the final value now.
2495 os
->output_address(this, shndx
, lv_in
->input_value());
2497 value
-= os
->address();
2498 lv_out
->set_output_value(value
);
2500 else if (!os
->find_starting_output_address(this, shndx
, &start
))
2502 // This is a section symbol, but apparently not one in a
2503 // merged section. First check to see if this is a relaxed
2504 // input section. If so, use its address. Otherwise just
2505 // use the start of the output section. This happens with
2506 // relocatable links when the input object has section
2507 // symbols for arbitrary non-merge sections.
2508 const Output_section_data
* posd
=
2509 os
->find_relaxed_input_section(this, shndx
);
2512 uint64_t value
= posd
->address();
2514 value
-= os
->address();
2515 lv_out
->set_output_value(value
);
2518 lv_out
->set_output_value(os
->address());
2522 // We have to consider the addend to determine the
2523 // value to use in a relocation. START is the start
2524 // of this input section. If we are doing a relocatable
2525 // link, use offset from start output section instead of
2527 Address adjusted_start
=
2528 relocatable
? start
- os
->address() : start
;
2529 Merged_symbol_value
<size
>* msv
=
2530 new Merged_symbol_value
<size
>(lv_in
->input_value(),
2532 lv_out
->set_merged_symbol_value(msv
);
2535 else if (lv_in
->is_tls_symbol()
2536 || (lv_in
->is_section_symbol()
2537 && (os
->flags() & elfcpp::SHF_TLS
)))
2538 lv_out
->set_output_value(os
->tls_offset()
2540 + lv_in
->input_value());
2542 lv_out
->set_output_value((relocatable
? 0 : os
->address())
2544 + lv_in
->input_value());
2546 return This::CFLV_OK
;
2549 // Compute final local symbol value. R_SYM is the index of a local
2550 // symbol in symbol table. LV points to a symbol value, which is
2551 // expected to hold the input value and to be over-written by the
2552 // final value. SYMTAB points to a symbol table. Some targets may want
2553 // to know would-be-finalized local symbol values in relaxation.
2554 // Hence we provide this method. Since this method updates *LV, a
2555 // callee should make a copy of the original local symbol value and
2556 // use the copy instead of modifying an object's local symbols before
2557 // everything is finalized. The caller should also free up any allocated
2558 // memory in the return value in *LV.
2559 template<int size
, bool big_endian
>
2560 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2561 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value(
2563 const Symbol_value
<size
>* lv_in
,
2564 Symbol_value
<size
>* lv_out
,
2565 const Symbol_table
* symtab
)
2567 // This is just a wrapper of compute_final_local_value_internal.
2568 const bool relocatable
= parameters
->options().relocatable();
2569 const Output_sections
& out_sections(this->output_sections());
2570 const std::vector
<Address
>& out_offsets(this->section_offsets());
2571 return this->compute_final_local_value_internal(r_sym
, lv_in
, lv_out
,
2572 relocatable
, out_sections
,
2573 out_offsets
, symtab
);
2576 // Finalize the local symbols. Here we set the final value in
2577 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2578 // This function is always called from a singleton thread. The actual
2579 // output of the local symbols will occur in a separate task.
2581 template<int size
, bool big_endian
>
2583 Sized_relobj_file
<size
, big_endian
>::do_finalize_local_symbols(
2586 Symbol_table
* symtab
)
2588 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2590 const unsigned int loccount
= this->local_symbol_count_
;
2591 this->local_symbol_offset_
= off
;
2593 const bool relocatable
= parameters
->options().relocatable();
2594 const Output_sections
& out_sections(this->output_sections());
2595 const std::vector
<Address
>& out_offsets(this->section_offsets());
2597 for (unsigned int i
= 1; i
< loccount
; ++i
)
2599 Symbol_value
<size
>* lv
= &this->local_values_
[i
];
2601 Compute_final_local_value_status cflv_status
=
2602 this->compute_final_local_value_internal(i
, lv
, lv
, relocatable
,
2603 out_sections
, out_offsets
,
2605 switch (cflv_status
)
2608 if (!lv
->is_output_symtab_index_set())
2610 lv
->set_output_symtab_index(index
);
2614 case CFLV_DISCARDED
:
2625 // Set the output dynamic symbol table indexes for the local variables.
2627 template<int size
, bool big_endian
>
2629 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_indexes(
2632 const unsigned int loccount
= this->local_symbol_count_
;
2633 for (unsigned int i
= 1; i
< loccount
; ++i
)
2635 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2636 if (lv
.needs_output_dynsym_entry())
2638 lv
.set_output_dynsym_index(index
);
2645 // Set the offset where local dynamic symbol information will be stored.
2646 // Returns the count of local symbols contributed to the symbol table by
2649 template<int size
, bool big_endian
>
2651 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
2653 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2654 this->local_dynsym_offset_
= off
;
2655 return this->output_local_dynsym_count_
;
2658 // If Symbols_data is not NULL get the section flags from here otherwise
2659 // get it from the file.
2661 template<int size
, bool big_endian
>
2663 Sized_relobj_file
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
2665 Symbols_data
* sd
= this->get_symbols_data();
2668 const unsigned char* pshdrs
= sd
->section_headers_data
2669 + This::shdr_size
* shndx
;
2670 typename
This::Shdr
shdr(pshdrs
);
2671 return shdr
.get_sh_flags();
2673 // If sd is NULL, read the section header from the file.
2674 return this->elf_file_
.section_flags(shndx
);
2677 // Get the section's ent size from Symbols_data. Called by get_section_contents
2680 template<int size
, bool big_endian
>
2682 Sized_relobj_file
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
2684 Symbols_data
* sd
= this->get_symbols_data();
2685 gold_assert(sd
!= NULL
);
2687 const unsigned char* pshdrs
= sd
->section_headers_data
2688 + This::shdr_size
* shndx
;
2689 typename
This::Shdr
shdr(pshdrs
);
2690 return shdr
.get_sh_entsize();
2693 // Write out the local symbols.
2695 template<int size
, bool big_endian
>
2697 Sized_relobj_file
<size
, big_endian
>::write_local_symbols(
2699 const Stringpool
* sympool
,
2700 const Stringpool
* dynpool
,
2701 Output_symtab_xindex
* symtab_xindex
,
2702 Output_symtab_xindex
* dynsym_xindex
,
2705 const bool strip_all
= parameters
->options().strip_all();
2708 if (this->output_local_dynsym_count_
== 0)
2710 this->output_local_symbol_count_
= 0;
2713 gold_assert(this->symtab_shndx_
!= -1U);
2714 if (this->symtab_shndx_
== 0)
2716 // This object has no symbols. Weird but legal.
2720 // Read the symbol table section header.
2721 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2722 typename
This::Shdr
symtabshdr(this,
2723 this->elf_file_
.section_header(symtab_shndx
));
2724 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2725 const unsigned int loccount
= this->local_symbol_count_
;
2726 gold_assert(loccount
== symtabshdr
.get_sh_info());
2728 // Read the local symbols.
2729 const int sym_size
= This::sym_size
;
2730 off_t locsize
= loccount
* sym_size
;
2731 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2732 locsize
, true, false);
2734 // Read the symbol names.
2735 const unsigned int strtab_shndx
=
2736 this->adjust_shndx(symtabshdr
.get_sh_link());
2737 section_size_type strtab_size
;
2738 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2741 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2743 // Get views into the output file for the portions of the symbol table
2744 // and the dynamic symbol table that we will be writing.
2745 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
2746 unsigned char* oview
= NULL
;
2747 if (output_size
> 0)
2748 oview
= of
->get_output_view(symtab_off
+ this->local_symbol_offset_
,
2751 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
2752 unsigned char* dyn_oview
= NULL
;
2753 if (dyn_output_size
> 0)
2754 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
2757 const Output_sections
& out_sections(this->output_sections());
2759 gold_assert(this->local_values_
.size() == loccount
);
2761 unsigned char* ov
= oview
;
2762 unsigned char* dyn_ov
= dyn_oview
;
2764 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2766 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2768 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2771 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2775 gold_assert(st_shndx
< out_sections
.size());
2776 if (out_sections
[st_shndx
] == NULL
)
2778 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2779 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2781 if (lv
.has_output_symtab_entry())
2782 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2783 if (lv
.has_output_dynsym_entry())
2784 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2785 st_shndx
= elfcpp::SHN_XINDEX
;
2789 // Write the symbol to the output symbol table.
2790 if (lv
.has_output_symtab_entry())
2792 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2794 gold_assert(isym
.get_st_name() < strtab_size
);
2795 const char* name
= pnames
+ isym
.get_st_name();
2796 osym
.put_st_name(sympool
->get_offset(name
));
2797 osym
.put_st_value(lv
.value(this, 0));
2798 osym
.put_st_size(isym
.get_st_size());
2799 osym
.put_st_info(isym
.get_st_info());
2800 osym
.put_st_other(isym
.get_st_other());
2801 osym
.put_st_shndx(st_shndx
);
2806 // Write the symbol to the output dynamic symbol table.
2807 if (lv
.has_output_dynsym_entry())
2809 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2810 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2812 gold_assert(isym
.get_st_name() < strtab_size
);
2813 const char* name
= pnames
+ isym
.get_st_name();
2814 osym
.put_st_name(dynpool
->get_offset(name
));
2815 osym
.put_st_value(lv
.value(this, 0));
2816 osym
.put_st_size(isym
.get_st_size());
2817 osym
.put_st_info(isym
.get_st_info());
2818 osym
.put_st_other(isym
.get_st_other());
2819 osym
.put_st_shndx(st_shndx
);
2826 if (output_size
> 0)
2828 gold_assert(ov
- oview
== output_size
);
2829 of
->write_output_view(symtab_off
+ this->local_symbol_offset_
,
2830 output_size
, oview
);
2833 if (dyn_output_size
> 0)
2835 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2836 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2841 // Set *INFO to symbolic information about the offset OFFSET in the
2842 // section SHNDX. Return true if we found something, false if we
2845 template<int size
, bool big_endian
>
2847 Sized_relobj_file
<size
, big_endian
>::get_symbol_location_info(
2850 Symbol_location_info
* info
)
2852 if (this->symtab_shndx_
== 0)
2855 section_size_type symbols_size
;
2856 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2860 unsigned int symbol_names_shndx
=
2861 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2862 section_size_type names_size
;
2863 const unsigned char* symbol_names_u
=
2864 this->section_contents(symbol_names_shndx
, &names_size
, false);
2865 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2867 const int sym_size
= This::sym_size
;
2868 const size_t count
= symbols_size
/ sym_size
;
2870 const unsigned char* p
= symbols
;
2871 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2873 elfcpp::Sym
<size
, big_endian
> sym(p
);
2875 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2877 if (sym
.get_st_name() >= names_size
)
2878 info
->source_file
= "(invalid)";
2880 info
->source_file
= symbol_names
+ sym
.get_st_name();
2885 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2888 && st_shndx
== shndx
2889 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2890 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2893 info
->enclosing_symbol_type
= sym
.get_st_type();
2894 if (sym
.get_st_name() > names_size
)
2895 info
->enclosing_symbol_name
= "(invalid)";
2898 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2899 if (parameters
->options().do_demangle())
2901 char* demangled_name
= cplus_demangle(
2902 info
->enclosing_symbol_name
.c_str(),
2903 DMGL_ANSI
| DMGL_PARAMS
);
2904 if (demangled_name
!= NULL
)
2906 info
->enclosing_symbol_name
.assign(demangled_name
);
2907 free(demangled_name
);
2918 // Look for a kept section corresponding to the given discarded section,
2919 // and return its output address. This is used only for relocations in
2920 // debugging sections. If we can't find the kept section, return 0.
2922 template<int size
, bool big_endian
>
2923 typename Sized_relobj_file
<size
, big_endian
>::Address
2924 Sized_relobj_file
<size
, big_endian
>::map_to_kept_section(
2926 std::string
& section_name
,
2929 Kept_section
* kept_section
;
2932 unsigned int symndx
;
2935 if (this->get_kept_comdat_section(shndx
, &is_comdat
, &symndx
, &sh_size
,
2938 Relobj
* kept_object
= kept_section
->object();
2939 unsigned int kept_shndx
= 0;
2940 if (!kept_section
->is_comdat())
2942 // The kept section is a linkonce section.
2943 if (sh_size
== kept_section
->linkonce_size())
2950 // Find the corresponding kept section.
2951 // Since we're using this mapping for relocation processing,
2952 // we don't want to match sections unless they have the same
2954 uint64_t kept_size
= 0;
2955 if (kept_section
->find_comdat_section(section_name
, &kept_shndx
,
2958 if (sh_size
== kept_size
)
2964 uint64_t kept_size
= 0;
2965 if (kept_section
->find_single_comdat_section(&kept_shndx
,
2967 && sh_size
== kept_size
)
2974 Sized_relobj_file
<size
, big_endian
>* kept_relobj
=
2975 static_cast<Sized_relobj_file
<size
, big_endian
>*>(kept_object
);
2976 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2977 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2978 if (os
!= NULL
&& offset
!= invalid_address
)
2981 return os
->address() + offset
;
2989 // Look for a kept section corresponding to the given discarded section,
2990 // and return its object file.
2992 template<int size
, bool big_endian
>
2994 Sized_relobj_file
<size
, big_endian
>::find_kept_section_object(
2995 unsigned int shndx
, unsigned int *symndx_p
) const
2997 Kept_section
* kept_section
;
3000 if (this->get_kept_comdat_section(shndx
, &is_comdat
, symndx_p
, &sh_size
,
3002 return kept_section
->object();
3006 // Return the name of symbol SYMNDX.
3008 template<int size
, bool big_endian
>
3010 Sized_relobj_file
<size
, big_endian
>::get_symbol_name(unsigned int symndx
)
3012 if (this->symtab_shndx_
== 0)
3015 section_size_type symbols_size
;
3016 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
3020 unsigned int symbol_names_shndx
=
3021 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
3022 section_size_type names_size
;
3023 const unsigned char* symbol_names_u
=
3024 this->section_contents(symbol_names_shndx
, &names_size
, false);
3025 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
3027 const unsigned char* p
= symbols
+ symndx
* This::sym_size
;
3029 if (p
>= symbols
+ symbols_size
)
3032 elfcpp::Sym
<size
, big_endian
> sym(p
);
3034 return symbol_names
+ sym
.get_st_name();
3037 // Get symbol counts.
3039 template<int size
, bool big_endian
>
3041 Sized_relobj_file
<size
, big_endian
>::do_get_global_symbol_counts(
3042 const Symbol_table
*,
3046 *defined
= this->defined_count_
;
3048 for (typename
Symbols::const_iterator p
= this->symbols_
.begin();
3049 p
!= this->symbols_
.end();
3052 && (*p
)->source() == Symbol::FROM_OBJECT
3053 && (*p
)->object() == this
3054 && (*p
)->is_defined())
3059 // Return a view of the decompressed contents of a section. Set *PLEN
3060 // to the size. Set *IS_NEW to true if the contents need to be freed
3063 const unsigned char*
3064 Object::decompressed_section_contents(
3066 section_size_type
* plen
,
3069 section_size_type buffer_size
;
3070 const unsigned char* buffer
= this->do_section_contents(shndx
, &buffer_size
,
3073 if (this->compressed_sections_
== NULL
)
3075 *plen
= buffer_size
;
3080 Compressed_section_map::const_iterator p
=
3081 this->compressed_sections_
->find(shndx
);
3082 if (p
== this->compressed_sections_
->end())
3084 *plen
= buffer_size
;
3089 section_size_type uncompressed_size
= p
->second
.size
;
3090 if (p
->second
.contents
!= NULL
)
3092 *plen
= uncompressed_size
;
3094 return p
->second
.contents
;
3097 unsigned char* uncompressed_data
= new unsigned char[uncompressed_size
];
3098 if (!decompress_input_section(buffer
,
3105 this->error(_("could not decompress section %s"),
3106 this->do_section_name(shndx
).c_str());
3108 // We could cache the results in p->second.contents and store
3109 // false in *IS_NEW, but build_compressed_section_map() would
3110 // have done so if it had expected it to be profitable. If
3111 // we reach this point, we expect to need the contents only
3112 // once in this pass.
3113 *plen
= uncompressed_size
;
3115 return uncompressed_data
;
3118 // Discard any buffers of uncompressed sections. This is done
3119 // at the end of the Add_symbols task.
3122 Object::discard_decompressed_sections()
3124 if (this->compressed_sections_
== NULL
)
3127 for (Compressed_section_map::iterator p
= this->compressed_sections_
->begin();
3128 p
!= this->compressed_sections_
->end();
3131 if (p
->second
.contents
!= NULL
)
3133 delete[] p
->second
.contents
;
3134 p
->second
.contents
= NULL
;
3139 // Input_objects methods.
3141 // Add a regular relocatable object to the list. Return false if this
3142 // object should be ignored.
3145 Input_objects::add_object(Object
* obj
)
3147 // Print the filename if the -t/--trace option is selected.
3148 if (parameters
->options().trace())
3149 gold_info("%s", obj
->name().c_str());
3151 if (!obj
->is_dynamic())
3152 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
3155 // See if this is a duplicate SONAME.
3156 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
3157 const char* soname
= dynobj
->soname();
3159 Unordered_map
<std::string
, Object
*>::value_type
val(soname
, obj
);
3160 std::pair
<Unordered_map
<std::string
, Object
*>::iterator
, bool> ins
=
3161 this->sonames_
.insert(val
);
3164 // We have already seen a dynamic object with this soname.
3165 // If any instances of this object on the command line have
3166 // the --no-as-needed flag, make sure the one we keep is
3168 if (!obj
->as_needed())
3170 gold_assert(ins
.first
->second
!= NULL
);
3171 ins
.first
->second
->clear_as_needed();
3176 this->dynobj_list_
.push_back(dynobj
);
3179 // Add this object to the cross-referencer if requested.
3180 if (parameters
->options().user_set_print_symbol_counts()
3181 || parameters
->options().cref())
3183 if (this->cref_
== NULL
)
3184 this->cref_
= new Cref();
3185 this->cref_
->add_object(obj
);
3191 // For each dynamic object, record whether we've seen all of its
3192 // explicit dependencies.
3195 Input_objects::check_dynamic_dependencies() const
3197 bool issued_copy_dt_needed_error
= false;
3198 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
3199 p
!= this->dynobj_list_
.end();
3202 const Dynobj::Needed
& needed((*p
)->needed());
3203 bool found_all
= true;
3204 Dynobj::Needed::const_iterator pneeded
;
3205 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
3207 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
3213 (*p
)->set_has_unknown_needed_entries(!found_all
);
3215 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3216 // that gold does not support. However, they cause no trouble
3217 // unless there is a DT_NEEDED entry that we don't know about;
3218 // warn only in that case.
3220 && !issued_copy_dt_needed_error
3221 && (parameters
->options().copy_dt_needed_entries()
3222 || parameters
->options().add_needed()))
3224 const char* optname
;
3225 if (parameters
->options().copy_dt_needed_entries())
3226 optname
= "--copy-dt-needed-entries";
3228 optname
= "--add-needed";
3229 gold_error(_("%s is not supported but is required for %s in %s"),
3230 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
3231 issued_copy_dt_needed_error
= true;
3236 // Start processing an archive.
3239 Input_objects::archive_start(Archive
* archive
)
3241 if (parameters
->options().user_set_print_symbol_counts()
3242 || parameters
->options().cref())
3244 if (this->cref_
== NULL
)
3245 this->cref_
= new Cref();
3246 this->cref_
->add_archive_start(archive
);
3250 // Stop processing an archive.
3253 Input_objects::archive_stop(Archive
* archive
)
3255 if (parameters
->options().user_set_print_symbol_counts()
3256 || parameters
->options().cref())
3257 this->cref_
->add_archive_stop(archive
);
3260 // Print symbol counts
3263 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
3265 if (parameters
->options().user_set_print_symbol_counts()
3266 && this->cref_
!= NULL
)
3267 this->cref_
->print_symbol_counts(symtab
);
3270 // Print a cross reference table.
3273 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
3275 if (parameters
->options().cref() && this->cref_
!= NULL
)
3276 this->cref_
->print_cref(symtab
, f
);
3279 // Relocate_info methods.
3281 // Return a string describing the location of a relocation when file
3282 // and lineno information is not available. This is only used in
3285 template<int size
, bool big_endian
>
3287 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
3289 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
3290 std::string ret
= line_info
.addr2line(this->data_shndx
, offset
, NULL
);
3294 ret
= this->object
->name();
3296 Symbol_location_info info
;
3297 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
3299 if (!info
.source_file
.empty())
3302 ret
+= info
.source_file
;
3305 if (info
.enclosing_symbol_type
== elfcpp::STT_FUNC
)
3306 ret
+= _("function ");
3307 ret
+= info
.enclosing_symbol_name
;
3312 ret
+= this->object
->section_name(this->data_shndx
);
3314 snprintf(buf
, sizeof buf
, "+0x%lx)", static_cast<long>(offset
));
3319 } // End namespace gold.
3324 using namespace gold
;
3326 // Read an ELF file with the header and return the appropriate
3327 // instance of Object.
3329 template<int size
, bool big_endian
>
3331 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
3332 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
3333 bool* punconfigured
)
3335 Target
* target
= select_target(input_file
, offset
,
3336 ehdr
.get_e_machine(), size
, big_endian
,
3337 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
3338 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
3340 gold_fatal(_("%s: unsupported ELF machine number %d"),
3341 name
.c_str(), ehdr
.get_e_machine());
3343 if (!parameters
->target_valid())
3344 set_parameters_target(target
);
3345 else if (target
!= ¶meters
->target())
3347 if (punconfigured
!= NULL
)
3348 *punconfigured
= true;
3350 gold_error(_("%s: incompatible target"), name
.c_str());
3354 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
3358 } // End anonymous namespace.
3363 // Return whether INPUT_FILE is an ELF object.
3366 is_elf_object(Input_file
* input_file
, off_t offset
,
3367 const unsigned char** start
, int* read_size
)
3369 off_t filesize
= input_file
->file().filesize();
3370 int want
= elfcpp::Elf_recognizer::max_header_size
;
3371 if (filesize
- offset
< want
)
3372 want
= filesize
- offset
;
3374 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
3379 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
3382 // Read an ELF file and return the appropriate instance of Object.
3385 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
3386 const unsigned char* p
, section_offset_type bytes
,
3387 bool* punconfigured
)
3389 if (punconfigured
!= NULL
)
3390 *punconfigured
= false;
3393 bool big_endian
= false;
3395 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
3396 &big_endian
, &error
))
3398 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
3406 #ifdef HAVE_TARGET_32_BIG
3407 elfcpp::Ehdr
<32, true> ehdr(p
);
3408 return make_elf_sized_object
<32, true>(name
, input_file
,
3409 offset
, ehdr
, punconfigured
);
3411 if (punconfigured
!= NULL
)
3412 *punconfigured
= true;
3414 gold_error(_("%s: not configured to support "
3415 "32-bit big-endian object"),
3422 #ifdef HAVE_TARGET_32_LITTLE
3423 elfcpp::Ehdr
<32, false> ehdr(p
);
3424 return make_elf_sized_object
<32, false>(name
, input_file
,
3425 offset
, ehdr
, punconfigured
);
3427 if (punconfigured
!= NULL
)
3428 *punconfigured
= true;
3430 gold_error(_("%s: not configured to support "
3431 "32-bit little-endian object"),
3437 else if (size
== 64)
3441 #ifdef HAVE_TARGET_64_BIG
3442 elfcpp::Ehdr
<64, true> ehdr(p
);
3443 return make_elf_sized_object
<64, true>(name
, input_file
,
3444 offset
, ehdr
, punconfigured
);
3446 if (punconfigured
!= NULL
)
3447 *punconfigured
= true;
3449 gold_error(_("%s: not configured to support "
3450 "64-bit big-endian object"),
3457 #ifdef HAVE_TARGET_64_LITTLE
3458 elfcpp::Ehdr
<64, false> ehdr(p
);
3459 return make_elf_sized_object
<64, false>(name
, input_file
,
3460 offset
, ehdr
, punconfigured
);
3462 if (punconfigured
!= NULL
)
3463 *punconfigured
= true;
3465 gold_error(_("%s: not configured to support "
3466 "64-bit little-endian object"),
3476 // Instantiate the templates we need.
3478 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3481 Relobj::initialize_input_to_output_map
<64>(unsigned int shndx
,
3482 elfcpp::Elf_types
<64>::Elf_Addr starting_address
,
3483 Unordered_map
<section_offset_type
,
3484 elfcpp::Elf_types
<64>::Elf_Addr
>* output_addresses
) const;
3487 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3490 Relobj::initialize_input_to_output_map
<32>(unsigned int shndx
,
3491 elfcpp::Elf_types
<32>::Elf_Addr starting_address
,
3492 Unordered_map
<section_offset_type
,
3493 elfcpp::Elf_types
<32>::Elf_Addr
>* output_addresses
) const;
3496 #ifdef HAVE_TARGET_32_LITTLE
3499 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
3500 Read_symbols_data
*);
3502 const unsigned char*
3503 Object::find_shdr
<32,false>(const unsigned char*, const char*, const char*,
3504 section_size_type
, const unsigned char*) const;
3507 #ifdef HAVE_TARGET_32_BIG
3510 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
3511 Read_symbols_data
*);
3513 const unsigned char*
3514 Object::find_shdr
<32,true>(const unsigned char*, const char*, const char*,
3515 section_size_type
, const unsigned char*) const;
3518 #ifdef HAVE_TARGET_64_LITTLE
3521 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
3522 Read_symbols_data
*);
3524 const unsigned char*
3525 Object::find_shdr
<64,false>(const unsigned char*, const char*, const char*,
3526 section_size_type
, const unsigned char*) const;
3529 #ifdef HAVE_TARGET_64_BIG
3532 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
3533 Read_symbols_data
*);
3535 const unsigned char*
3536 Object::find_shdr
<64,true>(const unsigned char*, const char*, const char*,
3537 section_size_type
, const unsigned char*) const;
3540 #ifdef HAVE_TARGET_32_LITTLE
3542 class Sized_relobj
<32, false>;
3545 class Sized_relobj_file
<32, false>;
3548 #ifdef HAVE_TARGET_32_BIG
3550 class Sized_relobj
<32, true>;
3553 class Sized_relobj_file
<32, true>;
3556 #ifdef HAVE_TARGET_64_LITTLE
3558 class Sized_relobj
<64, false>;
3561 class Sized_relobj_file
<64, false>;
3564 #ifdef HAVE_TARGET_64_BIG
3566 class Sized_relobj
<64, true>;
3569 class Sized_relobj_file
<64, true>;
3572 #ifdef HAVE_TARGET_32_LITTLE
3574 struct Relocate_info
<32, false>;
3577 #ifdef HAVE_TARGET_32_BIG
3579 struct Relocate_info
<32, true>;
3582 #ifdef HAVE_TARGET_64_LITTLE
3584 struct Relocate_info
<64, false>;
3587 #ifdef HAVE_TARGET_64_BIG
3589 struct Relocate_info
<64, true>;
3592 #ifdef HAVE_TARGET_32_LITTLE
3595 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
3599 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
3600 const unsigned char*);
3603 #ifdef HAVE_TARGET_32_BIG
3606 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
3610 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
3611 const unsigned char*);
3614 #ifdef HAVE_TARGET_64_LITTLE
3617 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
3621 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
3622 const unsigned char*);
3625 #ifdef HAVE_TARGET_64_BIG
3628 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
3632 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
3633 const unsigned char*);
3636 #ifdef HAVE_TARGET_32_LITTLE
3638 Compressed_section_map
*
3639 build_compressed_section_map
<32, false>(const unsigned char*, unsigned int,
3640 const char*, section_size_type
,
3644 #ifdef HAVE_TARGET_32_BIG
3646 Compressed_section_map
*
3647 build_compressed_section_map
<32, true>(const unsigned char*, unsigned int,
3648 const char*, section_size_type
,
3652 #ifdef HAVE_TARGET_64_LITTLE
3654 Compressed_section_map
*
3655 build_compressed_section_map
<64, false>(const unsigned char*, unsigned int,
3656 const char*, section_size_type
,
3660 #ifdef HAVE_TARGET_64_BIG
3662 Compressed_section_map
*
3663 build_compressed_section_map
<64, true>(const unsigned char*, unsigned int,
3664 const char*, section_size_type
,
3668 } // End namespace gold.