1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
48 // Struct Read_symbols_data.
50 // Destroy any remaining File_view objects.
52 Read_symbols_data::~Read_symbols_data()
54 if (this->section_headers
!= NULL
)
55 delete this->section_headers
;
56 if (this->section_names
!= NULL
)
57 delete this->section_names
;
58 if (this->symbols
!= NULL
)
60 if (this->symbol_names
!= NULL
)
61 delete this->symbol_names
;
62 if (this->versym
!= NULL
)
64 if (this->verdef
!= NULL
)
66 if (this->verneed
!= NULL
)
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
76 template<int size
, bool big_endian
>
78 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
80 if (!this->symtab_xindex_
.empty())
83 gold_assert(symtab_shndx
!= 0);
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i
= object
->shnum();
91 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
94 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
99 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 template<int size
, bool big_endian
>
108 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
109 const unsigned char* pshdrs
)
111 section_size_type bytecount
;
112 const unsigned char* contents
;
114 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
117 const unsigned char* p
= (pshdrs
119 * elfcpp::Elf_sizes
<size
>::shdr_size
));
120 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
121 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
122 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
125 gold_assert(this->symtab_xindex_
.empty());
126 this->symtab_xindex_
.reserve(bytecount
/ 4);
127 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
129 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
139 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
141 if (symndx
>= this->symtab_xindex_
.size())
143 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 return elfcpp::SHN_UNDEF
;
147 unsigned int shndx
= this->symtab_xindex_
[symndx
];
148 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
150 object
->error(_("extended index for symbol %u out of range: %u"),
152 return elfcpp::SHN_UNDEF
;
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
164 Object::error(const char* format
, ...) const
167 va_start(args
, format
);
169 if (vasprintf(&buf
, format
, args
) < 0)
172 gold_error(_("%s: %s"), this->name().c_str(), buf
);
176 // Return a view of the contents of a section.
179 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
182 Location
loc(this->do_section_contents(shndx
));
183 *plen
= convert_to_section_size_type(loc
.data_size
);
186 static const unsigned char empty
[1] = { '\0' };
189 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
195 template<int size
, bool big_endian
>
197 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
198 Read_symbols_data
* sd
)
200 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
202 // Read the section headers.
203 const off_t shoff
= elf_file
->shoff();
204 const unsigned int shnum
= this->shnum();
205 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
208 // Read the section names.
209 const unsigned char* pshdrs
= sd
->section_headers
->data();
210 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
211 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
213 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames
.get_sh_type()));
217 sd
->section_names_size
=
218 convert_to_section_size_type(shdrnames
.get_sh_size());
219 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
220 sd
->section_names_size
, false,
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
229 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
230 Symbol_table
* symtab
)
232 const char warn_prefix
[] = ".gnu.warning.";
233 const int warn_prefix_len
= sizeof warn_prefix
- 1;
234 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
242 section_size_type len
;
243 const unsigned char* contents
= this->section_contents(shndx
, &len
,
247 const char* warning
= name
+ warn_prefix_len
;
248 contents
= reinterpret_cast<const unsigned char*>(warning
);
249 len
= strlen(warning
);
251 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
252 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
262 Object::handle_split_stack_section(const char* name
)
264 if (strcmp(name
, ".note.GNU-split-stack") == 0)
266 this->uses_split_stack_
= true;
269 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
271 this->has_no_split_stack_
= true;
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
284 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
285 unsigned int section_header_size
)
287 gc_sd
->section_headers_data
=
288 new unsigned char[(section_header_size
)];
289 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
290 section_header_size
);
291 gc_sd
->section_names_data
=
292 new unsigned char[sd
->section_names_size
];
293 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
294 sd
->section_names_size
);
295 gc_sd
->section_names_size
= sd
->section_names_size
;
296 if (sd
->symbols
!= NULL
)
298 gc_sd
->symbols_data
=
299 new unsigned char[sd
->symbols_size
];
300 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
305 gc_sd
->symbols_data
= NULL
;
307 gc_sd
->symbols_size
= sd
->symbols_size
;
308 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
309 if (sd
->symbol_names
!= NULL
)
311 gc_sd
->symbol_names_data
=
312 new unsigned char[sd
->symbol_names_size
];
313 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
314 sd
->symbol_names_size
);
318 gc_sd
->symbol_names_data
= NULL
;
320 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
328 Relobj::is_section_name_included(const char* name
)
330 if (is_prefix_of(".ctors", name
)
331 || is_prefix_of(".dtors", name
)
332 || is_prefix_of(".note", name
)
333 || is_prefix_of(".init", name
)
334 || is_prefix_of(".fini", name
)
335 || is_prefix_of(".gcc_except_table", name
)
336 || is_prefix_of(".jcr", name
)
337 || is_prefix_of(".preinit_array", name
)
338 || (is_prefix_of(".text", name
)
339 && strstr(name
, "personality"))
340 || (is_prefix_of(".data", name
)
341 && strstr(name
, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name
)
343 && strstr(name
, "personality")))
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
356 Relobj::finalize_incremental_relocs(Layout
* layout
, bool clear_counts
)
358 unsigned int nsyms
= this->get_global_symbols()->size();
359 this->reloc_bases_
= new unsigned int[nsyms
];
361 gold_assert(this->reloc_bases_
!= NULL
);
362 gold_assert(layout
->incremental_inputs() != NULL
);
364 unsigned int rindex
= layout
->incremental_inputs()->get_reloc_count();
365 for (unsigned int i
= 0; i
< nsyms
; ++i
)
367 this->reloc_bases_
[i
] = rindex
;
368 rindex
+= this->reloc_counts_
[i
];
370 this->reloc_counts_
[i
] = 0;
372 layout
->incremental_inputs()->set_reloc_count(rindex
);
375 // Class Sized_relobj.
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
380 template<int size
, bool big_endian
>
382 Sized_relobj
<size
, big_endian
>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor
* v
) const
385 unsigned int nsyms
= this->local_symbol_count();
386 for (unsigned int i
= 0; i
< nsyms
; i
++)
388 Local_got_offsets::const_iterator p
= this->local_got_offsets_
.find(i
);
389 if (p
!= this->local_got_offsets_
.end())
391 const Got_offset_list
* got_offsets
= p
->second
;
392 got_offsets
->for_all_got_offsets(v
);
397 // Class Sized_relobj_file.
399 template<int size
, bool big_endian
>
400 Sized_relobj_file
<size
, big_endian
>::Sized_relobj_file(
401 const std::string
& name
,
402 Input_file
* input_file
,
404 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
405 : Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
),
406 elf_file_(this, ehdr
),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
421 deferred_layout_relocs_(),
422 compressed_sections_()
424 this->e_type_
= ehdr
.get_e_type();
427 template<int size
, bool big_endian
>
428 Sized_relobj_file
<size
, big_endian
>::~Sized_relobj_file()
432 // Set up an object file based on the file header. This sets up the
433 // section information.
435 template<int size
, bool big_endian
>
437 Sized_relobj_file
<size
, big_endian
>::do_setup()
439 const unsigned int shnum
= this->elf_file_
.shnum();
440 this->set_shnum(shnum
);
443 // Find the SHT_SYMTAB section, given the section headers. The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section. Until somebody figures out how that could
446 // work, we assume there is only one.
448 template<int size
, bool big_endian
>
450 Sized_relobj_file
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
452 const unsigned int shnum
= this->shnum();
453 this->symtab_shndx_
= 0;
456 // Look through the sections in reverse order, since gas tends
457 // to put the symbol table at the end.
458 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
459 unsigned int i
= shnum
;
460 unsigned int xindex_shndx
= 0;
461 unsigned int xindex_link
= 0;
465 p
-= This::shdr_size
;
466 typename
This::Shdr
shdr(p
);
467 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
469 this->symtab_shndx_
= i
;
470 if (xindex_shndx
> 0 && xindex_link
== i
)
473 new Xindex(this->elf_file_
.large_shndx_offset());
474 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
477 this->set_xindex(xindex
);
482 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483 // one. This will work if it follows the SHT_SYMTAB
485 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
488 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
494 // Return the Xindex structure to use for object with lots of
497 template<int size
, bool big_endian
>
499 Sized_relobj_file
<size
, big_endian
>::do_initialize_xindex()
501 gold_assert(this->symtab_shndx_
!= -1U);
502 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
503 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
510 template<int size
, bool big_endian
>
512 Sized_relobj_file
<size
, big_endian
>::check_eh_frame_flags(
513 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
515 elfcpp::Elf_Word sh_type
= shdr
->get_sh_type();
516 return ((sh_type
== elfcpp::SHT_PROGBITS
517 || sh_type
== elfcpp::SHT_X86_64_UNWIND
)
518 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
524 template<int size
, bool big_endian
>
526 Sized_relobj_file
<size
, big_endian
>::find_eh_frame(
527 const unsigned char* pshdrs
,
529 section_size_type names_size
) const
531 const unsigned int shnum
= this->shnum();
532 const unsigned char* p
= pshdrs
+ This::shdr_size
;
533 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
535 typename
This::Shdr
shdr(p
);
536 if (this->check_eh_frame_flags(&shdr
))
538 if (shdr
.get_sh_name() >= names_size
)
540 this->error(_("bad section name offset for section %u: %lu"),
541 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
545 const char* name
= names
+ shdr
.get_sh_name();
546 if (strcmp(name
, ".eh_frame") == 0)
553 // Return TRUE if this is a section whose contents will be needed in the
557 need_decompressed_section(const char* name
)
559 // We will need .zdebug_str if this is not an incremental link
560 // (i.e., we are processing string merge sections).
561 if (!parameters
->incremental() && strcmp(name
, ".zdebug_str") == 0)
567 // Build a table for any compressed debug sections, mapping each section index
568 // to the uncompressed size and (if needed) the decompressed contents.
570 template<int size
, bool big_endian
>
571 Compressed_section_map
*
572 build_compressed_section_map(
573 const unsigned char* pshdrs
,
576 section_size_type names_size
,
577 Sized_relobj_file
<size
, big_endian
>* obj
)
579 Compressed_section_map
* uncompressed_map
= new Compressed_section_map();
580 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
581 const unsigned char* p
= pshdrs
+ shdr_size
;
583 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
585 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
586 if (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
587 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
589 if (shdr
.get_sh_name() >= names_size
)
591 obj
->error(_("bad section name offset for section %u: %lu"),
592 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
596 const char* name
= names
+ shdr
.get_sh_name();
597 if (is_compressed_debug_section(name
))
599 section_size_type len
;
600 const unsigned char* contents
=
601 obj
->section_contents(i
, &len
, false);
602 uint64_t uncompressed_size
= get_uncompressed_size(contents
, len
);
603 if (uncompressed_size
!= -1ULL)
605 Compressed_section_info info
;
606 info
.size
= convert_to_section_size_type(uncompressed_size
);
607 info
.contents
= NULL
;
609 #ifdef ENABLE_THREADS
610 // If we're multi-threaded, it will help to decompress
611 // any sections that will be needed during the Add_symbols
612 // task, so that several decompressions can run in
614 if (parameters
->options().threads())
616 unsigned char* uncompressed_data
= NULL
;
617 if (need_decompressed_section(name
))
619 uncompressed_data
= new unsigned char[uncompressed_size
];
620 if (decompress_input_section(contents
, len
,
623 info
.contents
= uncompressed_data
;
625 delete[] uncompressed_data
;
630 (*uncompressed_map
)[i
] = info
;
635 return uncompressed_map
;
638 // Read the sections and symbols from an object file.
640 template<int size
, bool big_endian
>
642 Sized_relobj_file
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
644 this->read_section_data(&this->elf_file_
, sd
);
646 const unsigned char* const pshdrs
= sd
->section_headers
->data();
648 this->find_symtab(pshdrs
);
650 const unsigned char* namesu
= sd
->section_names
->data();
651 const char* names
= reinterpret_cast<const char*>(namesu
);
652 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
654 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
655 this->has_eh_frame_
= true;
657 if (memmem(names
, sd
->section_names_size
, ".zdebug_", 8) != NULL
)
658 this->compressed_sections_
=
659 build_compressed_section_map(pshdrs
, this->shnum(), names
,
660 sd
->section_names_size
, this);
663 sd
->symbols_size
= 0;
664 sd
->external_symbols_offset
= 0;
665 sd
->symbol_names
= NULL
;
666 sd
->symbol_names_size
= 0;
668 if (this->symtab_shndx_
== 0)
670 // No symbol table. Weird but legal.
674 // Get the symbol table section header.
675 typename
This::Shdr
symtabshdr(pshdrs
676 + this->symtab_shndx_
* This::shdr_size
);
677 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
679 // If this object has a .eh_frame section, we need all the symbols.
680 // Otherwise we only need the external symbols. While it would be
681 // simpler to just always read all the symbols, I've seen object
682 // files with well over 2000 local symbols, which for a 64-bit
683 // object file format is over 5 pages that we don't need to read
686 const int sym_size
= This::sym_size
;
687 const unsigned int loccount
= symtabshdr
.get_sh_info();
688 this->local_symbol_count_
= loccount
;
689 this->local_values_
.resize(loccount
);
690 section_offset_type locsize
= loccount
* sym_size
;
691 off_t dataoff
= symtabshdr
.get_sh_offset();
692 section_size_type datasize
=
693 convert_to_section_size_type(symtabshdr
.get_sh_size());
694 off_t extoff
= dataoff
+ locsize
;
695 section_size_type extsize
= datasize
- locsize
;
697 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
698 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
702 // No external symbols. Also weird but also legal.
706 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
708 // Read the section header for the symbol names.
709 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
710 if (strtab_shndx
>= this->shnum())
712 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
715 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
716 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
718 this->error(_("symbol table name section has wrong type: %u"),
719 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
723 // Read the symbol names.
724 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
725 strtabshdr
.get_sh_size(),
728 sd
->symbols
= fvsymtab
;
729 sd
->symbols_size
= readsize
;
730 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
731 sd
->symbol_names
= fvstrtab
;
732 sd
->symbol_names_size
=
733 convert_to_section_size_type(strtabshdr
.get_sh_size());
736 // Return the section index of symbol SYM. Set *VALUE to its value in
737 // the object file. Set *IS_ORDINARY if this is an ordinary section
738 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
739 // Note that for a symbol which is not defined in this object file,
740 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
741 // the final value of the symbol in the link.
743 template<int size
, bool big_endian
>
745 Sized_relobj_file
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
749 section_size_type symbols_size
;
750 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
754 const size_t count
= symbols_size
/ This::sym_size
;
755 gold_assert(sym
< count
);
757 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
758 *value
= elfsym
.get_st_value();
760 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
763 // Return whether to include a section group in the link. LAYOUT is
764 // used to keep track of which section groups we have already seen.
765 // INDEX is the index of the section group and SHDR is the section
766 // header. If we do not want to include this group, we set bits in
767 // OMIT for each section which should be discarded.
769 template<int size
, bool big_endian
>
771 Sized_relobj_file
<size
, big_endian
>::include_section_group(
772 Symbol_table
* symtab
,
776 const unsigned char* shdrs
,
777 const char* section_names
,
778 section_size_type section_names_size
,
779 std::vector
<bool>* omit
)
781 // Read the section contents.
782 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
783 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
784 shdr
.get_sh_size(), true, false);
785 const elfcpp::Elf_Word
* pword
=
786 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
788 // The first word contains flags. We only care about COMDAT section
789 // groups. Other section groups are always included in the link
790 // just like ordinary sections.
791 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
793 // Look up the group signature, which is the name of a symbol. ELF
794 // uses a symbol name because some group signatures are long, and
795 // the name is generally already in the symbol table, so it makes
796 // sense to put the long string just once in .strtab rather than in
797 // both .strtab and .shstrtab.
799 // Get the appropriate symbol table header (this will normally be
800 // the single SHT_SYMTAB section, but in principle it need not be).
801 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
802 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
804 // Read the symbol table entry.
805 unsigned int symndx
= shdr
.get_sh_info();
806 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
808 this->error(_("section group %u info %u out of range"),
812 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
813 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
815 elfcpp::Sym
<size
, big_endian
> sym(psym
);
817 // Read the symbol table names.
818 section_size_type symnamelen
;
819 const unsigned char* psymnamesu
;
820 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
822 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
824 // Get the section group signature.
825 if (sym
.get_st_name() >= symnamelen
)
827 this->error(_("symbol %u name offset %u out of range"),
828 symndx
, sym
.get_st_name());
832 std::string
signature(psymnames
+ sym
.get_st_name());
834 // It seems that some versions of gas will create a section group
835 // associated with a section symbol, and then fail to give a name to
836 // the section symbol. In such a case, use the name of the section.
837 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
840 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
843 if (!is_ordinary
|| sym_shndx
>= this->shnum())
845 this->error(_("symbol %u invalid section index %u"),
849 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
850 if (member_shdr
.get_sh_name() < section_names_size
)
851 signature
= section_names
+ member_shdr
.get_sh_name();
854 // Record this section group in the layout, and see whether we've already
855 // seen one with the same signature.
858 Kept_section
* kept_section
= NULL
;
860 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
862 include_group
= true;
867 include_group
= layout
->find_or_add_kept_section(signature
,
869 true, &kept_section
);
873 if (is_comdat
&& include_group
)
875 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
876 if (incremental_inputs
!= NULL
)
877 incremental_inputs
->report_comdat_group(this, signature
.c_str());
880 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
882 std::vector
<unsigned int> shndxes
;
883 bool relocate_group
= include_group
&& parameters
->options().relocatable();
885 shndxes
.reserve(count
- 1);
887 for (size_t i
= 1; i
< count
; ++i
)
889 elfcpp::Elf_Word shndx
=
890 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
893 shndxes
.push_back(shndx
);
895 if (shndx
>= this->shnum())
897 this->error(_("section %u in section group %u out of range"),
902 // Check for an earlier section number, since we're going to get
903 // it wrong--we may have already decided to include the section.
905 this->error(_("invalid section group %u refers to earlier section %u"),
908 // Get the name of the member section.
909 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
910 if (member_shdr
.get_sh_name() >= section_names_size
)
912 // This is an error, but it will be diagnosed eventually
913 // in do_layout, so we don't need to do anything here but
917 std::string
mname(section_names
+ member_shdr
.get_sh_name());
922 kept_section
->add_comdat_section(mname
, shndx
,
923 member_shdr
.get_sh_size());
927 (*omit
)[shndx
] = true;
931 Relobj
* kept_object
= kept_section
->object();
932 if (kept_section
->is_comdat())
934 // Find the corresponding kept section, and store
935 // that info in the discarded section table.
936 unsigned int kept_shndx
;
938 if (kept_section
->find_comdat_section(mname
, &kept_shndx
,
941 // We don't keep a mapping for this section if
942 // it has a different size. The mapping is only
943 // used for relocation processing, and we don't
944 // want to treat the sections as similar if the
945 // sizes are different. Checking the section
946 // size is the approach used by the GNU linker.
947 if (kept_size
== member_shdr
.get_sh_size())
948 this->set_kept_comdat_section(shndx
, kept_object
,
954 // The existing section is a linkonce section. Add
955 // a mapping if there is exactly one section in the
956 // group (which is true when COUNT == 2) and if it
959 && (kept_section
->linkonce_size()
960 == member_shdr
.get_sh_size()))
961 this->set_kept_comdat_section(shndx
, kept_object
,
962 kept_section
->shndx());
969 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
970 shdr
, flags
, &shndxes
);
972 return include_group
;
975 // Whether to include a linkonce section in the link. NAME is the
976 // name of the section and SHDR is the section header.
978 // Linkonce sections are a GNU extension implemented in the original
979 // GNU linker before section groups were defined. The semantics are
980 // that we only include one linkonce section with a given name. The
981 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
982 // where T is the type of section and SYMNAME is the name of a symbol.
983 // In an attempt to make linkonce sections interact well with section
984 // groups, we try to identify SYMNAME and use it like a section group
985 // signature. We want to block section groups with that signature,
986 // but not other linkonce sections with that signature. We also use
987 // the full name of the linkonce section as a normal section group
990 template<int size
, bool big_endian
>
992 Sized_relobj_file
<size
, big_endian
>::include_linkonce_section(
996 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
998 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
999 // In general the symbol name we want will be the string following
1000 // the last '.'. However, we have to handle the case of
1001 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1002 // some versions of gcc. So we use a heuristic: if the name starts
1003 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1004 // we look for the last '.'. We can't always simply skip
1005 // ".gnu.linkonce.X", because we have to deal with cases like
1006 // ".gnu.linkonce.d.rel.ro.local".
1007 const char* const linkonce_t
= ".gnu.linkonce.t.";
1008 const char* symname
;
1009 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
1010 symname
= name
+ strlen(linkonce_t
);
1012 symname
= strrchr(name
, '.') + 1;
1013 std::string
sig1(symname
);
1014 std::string
sig2(name
);
1015 Kept_section
* kept1
;
1016 Kept_section
* kept2
;
1017 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
1019 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
1024 // We are not including this section because we already saw the
1025 // name of the section as a signature. This normally implies
1026 // that the kept section is another linkonce section. If it is
1027 // the same size, record it as the section which corresponds to
1029 if (kept2
->object() != NULL
1030 && !kept2
->is_comdat()
1031 && kept2
->linkonce_size() == sh_size
)
1032 this->set_kept_comdat_section(index
, kept2
->object(), kept2
->shndx());
1036 // The section is being discarded on the basis of its symbol
1037 // name. This means that the corresponding kept section was
1038 // part of a comdat group, and it will be difficult to identify
1039 // the specific section within that group that corresponds to
1040 // this linkonce section. We'll handle the simple case where
1041 // the group has only one member section. Otherwise, it's not
1042 // worth the effort.
1043 unsigned int kept_shndx
;
1045 if (kept1
->object() != NULL
1046 && kept1
->is_comdat()
1047 && kept1
->find_single_comdat_section(&kept_shndx
, &kept_size
)
1048 && kept_size
== sh_size
)
1049 this->set_kept_comdat_section(index
, kept1
->object(), kept_shndx
);
1053 kept1
->set_linkonce_size(sh_size
);
1054 kept2
->set_linkonce_size(sh_size
);
1057 return include1
&& include2
;
1060 // Layout an input section.
1062 template<int size
, bool big_endian
>
1064 Sized_relobj_file
<size
, big_endian
>::layout_section(
1068 const typename
This::Shdr
& shdr
,
1069 unsigned int reloc_shndx
,
1070 unsigned int reloc_type
)
1073 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
,
1074 reloc_shndx
, reloc_type
, &offset
);
1076 this->output_sections()[shndx
] = os
;
1078 this->section_offsets()[shndx
] = invalid_address
;
1080 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1082 // If this section requires special handling, and if there are
1083 // relocs that apply to it, then we must do the special handling
1084 // before we apply the relocs.
1085 if (offset
== -1 && reloc_shndx
!= 0)
1086 this->set_relocs_must_follow_section_writes();
1089 // Layout an input .eh_frame section.
1091 template<int size
, bool big_endian
>
1093 Sized_relobj_file
<size
, big_endian
>::layout_eh_frame_section(
1095 const unsigned char* symbols_data
,
1096 section_size_type symbols_size
,
1097 const unsigned char* symbol_names_data
,
1098 section_size_type symbol_names_size
,
1100 const typename
This::Shdr
& shdr
,
1101 unsigned int reloc_shndx
,
1102 unsigned int reloc_type
)
1104 gold_assert(this->has_eh_frame_
);
1107 Output_section
* os
= layout
->layout_eh_frame(this,
1117 this->output_sections()[shndx
] = os
;
1118 if (os
== NULL
|| offset
== -1)
1120 // An object can contain at most one section holding exception
1121 // frame information.
1122 gold_assert(this->discarded_eh_frame_shndx_
== -1U);
1123 this->discarded_eh_frame_shndx_
= shndx
;
1124 this->section_offsets()[shndx
] = invalid_address
;
1127 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1129 // If this section requires special handling, and if there are
1130 // relocs that aply to it, then we must do the special handling
1131 // before we apply the relocs.
1132 if (os
!= NULL
&& offset
== -1 && reloc_shndx
!= 0)
1133 this->set_relocs_must_follow_section_writes();
1136 // Lay out the input sections. We walk through the sections and check
1137 // whether they should be included in the link. If they should, we
1138 // pass them to the Layout object, which will return an output section
1140 // During garbage collection (--gc-sections) and identical code folding
1141 // (--icf), this function is called twice. When it is called the first
1142 // time, it is for setting up some sections as roots to a work-list for
1143 // --gc-sections and to do comdat processing. Actual layout happens the
1144 // second time around after all the relevant sections have been determined.
1145 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1146 // set to true after the garbage collection worklist or identical code
1147 // folding is processed and the relevant sections to be kept are
1148 // determined. Then, this function is called again to layout the sections.
1150 template<int size
, bool big_endian
>
1152 Sized_relobj_file
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
1154 Read_symbols_data
* sd
)
1156 const unsigned int shnum
= this->shnum();
1157 bool is_gc_pass_one
= ((parameters
->options().gc_sections()
1158 && !symtab
->gc()->is_worklist_ready())
1159 || (parameters
->options().icf_enabled()
1160 && !symtab
->icf()->is_icf_ready()));
1162 bool is_gc_pass_two
= ((parameters
->options().gc_sections()
1163 && symtab
->gc()->is_worklist_ready())
1164 || (parameters
->options().icf_enabled()
1165 && symtab
->icf()->is_icf_ready()));
1167 bool is_gc_or_icf
= (parameters
->options().gc_sections()
1168 || parameters
->options().icf_enabled());
1170 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1171 gold_assert(!(is_gc_pass_one
&& is_gc_pass_two
));
1175 Symbols_data
* gc_sd
= NULL
;
1178 // During garbage collection save the symbols data to use it when
1179 // re-entering this function.
1180 gc_sd
= new Symbols_data
;
1181 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
1182 this->set_symbols_data(gc_sd
);
1184 else if (is_gc_pass_two
)
1186 gc_sd
= this->get_symbols_data();
1189 const unsigned char* section_headers_data
= NULL
;
1190 section_size_type section_names_size
;
1191 const unsigned char* symbols_data
= NULL
;
1192 section_size_type symbols_size
;
1193 const unsigned char* symbol_names_data
= NULL
;
1194 section_size_type symbol_names_size
;
1198 section_headers_data
= gc_sd
->section_headers_data
;
1199 section_names_size
= gc_sd
->section_names_size
;
1200 symbols_data
= gc_sd
->symbols_data
;
1201 symbols_size
= gc_sd
->symbols_size
;
1202 symbol_names_data
= gc_sd
->symbol_names_data
;
1203 symbol_names_size
= gc_sd
->symbol_names_size
;
1207 section_headers_data
= sd
->section_headers
->data();
1208 section_names_size
= sd
->section_names_size
;
1209 if (sd
->symbols
!= NULL
)
1210 symbols_data
= sd
->symbols
->data();
1211 symbols_size
= sd
->symbols_size
;
1212 if (sd
->symbol_names
!= NULL
)
1213 symbol_names_data
= sd
->symbol_names
->data();
1214 symbol_names_size
= sd
->symbol_names_size
;
1217 // Get the section headers.
1218 const unsigned char* shdrs
= section_headers_data
;
1219 const unsigned char* pshdrs
;
1221 // Get the section names.
1222 const unsigned char* pnamesu
= (is_gc_or_icf
)
1223 ? gc_sd
->section_names_data
1224 : sd
->section_names
->data();
1226 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1228 // If any input files have been claimed by plugins, we need to defer
1229 // actual layout until the replacement files have arrived.
1230 const bool should_defer_layout
=
1231 (parameters
->options().has_plugins()
1232 && parameters
->options().plugins()->should_defer_layout());
1233 unsigned int num_sections_to_defer
= 0;
1235 // For each section, record the index of the reloc section if any.
1236 // Use 0 to mean that there is no reloc section, -1U to mean that
1237 // there is more than one.
1238 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1239 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1240 // Skip the first, dummy, section.
1241 pshdrs
= shdrs
+ This::shdr_size
;
1242 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1244 typename
This::Shdr
shdr(pshdrs
);
1246 // Count the number of sections whose layout will be deferred.
1247 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1248 ++num_sections_to_defer
;
1250 unsigned int sh_type
= shdr
.get_sh_type();
1251 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1253 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1254 if (target_shndx
== 0 || target_shndx
>= shnum
)
1256 this->error(_("relocation section %u has bad info %u"),
1261 if (reloc_shndx
[target_shndx
] != 0)
1262 reloc_shndx
[target_shndx
] = -1U;
1265 reloc_shndx
[target_shndx
] = i
;
1266 reloc_type
[target_shndx
] = sh_type
;
1271 Output_sections
& out_sections(this->output_sections());
1272 std::vector
<Address
>& out_section_offsets(this->section_offsets());
1274 if (!is_gc_pass_two
)
1276 out_sections
.resize(shnum
);
1277 out_section_offsets
.resize(shnum
);
1280 // If we are only linking for symbols, then there is nothing else to
1282 if (this->input_file()->just_symbols())
1284 if (!is_gc_pass_two
)
1286 delete sd
->section_headers
;
1287 sd
->section_headers
= NULL
;
1288 delete sd
->section_names
;
1289 sd
->section_names
= NULL
;
1294 if (num_sections_to_defer
> 0)
1296 parameters
->options().plugins()->add_deferred_layout_object(this);
1297 this->deferred_layout_
.reserve(num_sections_to_defer
);
1300 // Whether we've seen a .note.GNU-stack section.
1301 bool seen_gnu_stack
= false;
1302 // The flags of a .note.GNU-stack section.
1303 uint64_t gnu_stack_flags
= 0;
1305 // Keep track of which sections to omit.
1306 std::vector
<bool> omit(shnum
, false);
1308 // Keep track of reloc sections when emitting relocations.
1309 const bool relocatable
= parameters
->options().relocatable();
1310 const bool emit_relocs
= (relocatable
1311 || parameters
->options().emit_relocs());
1312 std::vector
<unsigned int> reloc_sections
;
1314 // Keep track of .eh_frame sections.
1315 std::vector
<unsigned int> eh_frame_sections
;
1317 // Skip the first, dummy, section.
1318 pshdrs
= shdrs
+ This::shdr_size
;
1319 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1321 typename
This::Shdr
shdr(pshdrs
);
1323 if (shdr
.get_sh_name() >= section_names_size
)
1325 this->error(_("bad section name offset for section %u: %lu"),
1326 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
1330 const char* name
= pnames
+ shdr
.get_sh_name();
1332 if (!is_gc_pass_two
)
1334 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1336 if (!relocatable
&& !parameters
->options().shared())
1340 // The .note.GNU-stack section is special. It gives the
1341 // protection flags that this object file requires for the stack
1343 if (strcmp(name
, ".note.GNU-stack") == 0)
1345 seen_gnu_stack
= true;
1346 gnu_stack_flags
|= shdr
.get_sh_flags();
1350 // The .note.GNU-split-stack section is also special. It
1351 // indicates that the object was compiled with
1353 if (this->handle_split_stack_section(name
))
1355 if (!relocatable
&& !parameters
->options().shared())
1359 // Skip attributes section.
1360 if (parameters
->target().is_attributes_section(name
))
1365 bool discard
= omit
[i
];
1368 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1370 if (!this->include_section_group(symtab
, layout
, i
, name
,
1376 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1377 && Layout::is_linkonce(name
))
1379 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1384 // Add the section to the incremental inputs layout.
1385 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1386 if (incremental_inputs
!= NULL
1388 && can_incremental_update(shdr
.get_sh_type()))
1390 off_t sh_size
= shdr
.get_sh_size();
1391 section_size_type uncompressed_size
;
1392 if (this->section_is_compressed(i
, &uncompressed_size
))
1393 sh_size
= uncompressed_size
;
1394 incremental_inputs
->report_input_section(this, i
, name
, sh_size
);
1399 // Do not include this section in the link.
1400 out_sections
[i
] = NULL
;
1401 out_section_offsets
[i
] = invalid_address
;
1406 if (is_gc_pass_one
&& parameters
->options().gc_sections())
1408 if (this->is_section_name_included(name
)
1409 || shdr
.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1410 || shdr
.get_sh_type() == elfcpp::SHT_FINI_ARRAY
)
1412 symtab
->gc()->worklist().push(Section_id(this, i
));
1414 // If the section name XXX can be represented as a C identifier
1415 // it cannot be discarded if there are references to
1416 // __start_XXX and __stop_XXX symbols. These need to be
1417 // specially handled.
1418 if (is_cident(name
))
1420 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1424 // When doing a relocatable link we are going to copy input
1425 // reloc sections into the output. We only want to copy the
1426 // ones associated with sections which are not being discarded.
1427 // However, we don't know that yet for all sections. So save
1428 // reloc sections and process them later. Garbage collection is
1429 // not triggered when relocatable code is desired.
1431 && (shdr
.get_sh_type() == elfcpp::SHT_REL
1432 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
1434 reloc_sections
.push_back(i
);
1438 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1441 // The .eh_frame section is special. It holds exception frame
1442 // information that we need to read in order to generate the
1443 // exception frame header. We process these after all the other
1444 // sections so that the exception frame reader can reliably
1445 // determine which sections are being discarded, and discard the
1446 // corresponding information.
1448 && strcmp(name
, ".eh_frame") == 0
1449 && this->check_eh_frame_flags(&shdr
))
1453 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1454 out_section_offsets
[i
] = invalid_address
;
1456 else if (should_defer_layout
)
1457 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1462 eh_frame_sections
.push_back(i
);
1466 if (is_gc_pass_two
&& parameters
->options().gc_sections())
1468 // This is executed during the second pass of garbage
1469 // collection. do_layout has been called before and some
1470 // sections have been already discarded. Simply ignore
1471 // such sections this time around.
1472 if (out_sections
[i
] == NULL
)
1474 gold_assert(out_section_offsets
[i
] == invalid_address
);
1477 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1478 && symtab
->gc()->is_section_garbage(this, i
))
1480 if (parameters
->options().print_gc_sections())
1481 gold_info(_("%s: removing unused section from '%s'"
1483 program_name
, this->section_name(i
).c_str(),
1484 this->name().c_str());
1485 out_sections
[i
] = NULL
;
1486 out_section_offsets
[i
] = invalid_address
;
1491 if (is_gc_pass_two
&& parameters
->options().icf_enabled())
1493 if (out_sections
[i
] == NULL
)
1495 gold_assert(out_section_offsets
[i
] == invalid_address
);
1498 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1499 && symtab
->icf()->is_section_folded(this, i
))
1501 if (parameters
->options().print_icf_sections())
1504 symtab
->icf()->get_folded_section(this, i
);
1505 Relobj
* folded_obj
=
1506 reinterpret_cast<Relobj
*>(folded
.first
);
1507 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1508 "into '%s' in file '%s'"),
1509 program_name
, this->section_name(i
).c_str(),
1510 this->name().c_str(),
1511 folded_obj
->section_name(folded
.second
).c_str(),
1512 folded_obj
->name().c_str());
1514 out_sections
[i
] = NULL
;
1515 out_section_offsets
[i
] = invalid_address
;
1520 // Defer layout here if input files are claimed by plugins. When gc
1521 // is turned on this function is called twice. For the second call
1522 // should_defer_layout should be false.
1523 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1525 gold_assert(!is_gc_pass_two
);
1526 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1530 // Put dummy values here; real values will be supplied by
1531 // do_layout_deferred_sections.
1532 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1533 out_section_offsets
[i
] = invalid_address
;
1537 // During gc_pass_two if a section that was previously deferred is
1538 // found, do not layout the section as layout_deferred_sections will
1539 // do it later from gold.cc.
1541 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1546 // This is during garbage collection. The out_sections are
1547 // assigned in the second call to this function.
1548 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1549 out_section_offsets
[i
] = invalid_address
;
1553 // When garbage collection is switched on the actual layout
1554 // only happens in the second call.
1555 this->layout_section(layout
, i
, name
, shdr
, reloc_shndx
[i
],
1560 if (!is_gc_pass_two
)
1561 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
, this);
1563 // When doing a relocatable link handle the reloc sections at the
1564 // end. Garbage collection and Identical Code Folding is not
1565 // turned on for relocatable code.
1567 this->size_relocatable_relocs();
1569 gold_assert(!(is_gc_or_icf
) || reloc_sections
.empty());
1571 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1572 p
!= reloc_sections
.end();
1575 unsigned int i
= *p
;
1576 const unsigned char* pshdr
;
1577 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1578 typename
This::Shdr
shdr(pshdr
);
1580 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1581 if (data_shndx
>= shnum
)
1583 // We already warned about this above.
1587 Output_section
* data_section
= out_sections
[data_shndx
];
1588 if (data_section
== reinterpret_cast<Output_section
*>(2))
1590 // The layout for the data section was deferred, so we need
1591 // to defer the relocation section, too.
1592 const char* name
= pnames
+ shdr
.get_sh_name();
1593 this->deferred_layout_relocs_
.push_back(
1594 Deferred_layout(i
, name
, pshdr
, 0, elfcpp::SHT_NULL
));
1595 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1596 out_section_offsets
[i
] = invalid_address
;
1599 if (data_section
== NULL
)
1601 out_sections
[i
] = NULL
;
1602 out_section_offsets
[i
] = invalid_address
;
1606 Relocatable_relocs
* rr
= new Relocatable_relocs();
1607 this->set_relocatable_relocs(i
, rr
);
1609 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1611 out_sections
[i
] = os
;
1612 out_section_offsets
[i
] = invalid_address
;
1615 // Handle the .eh_frame sections at the end.
1616 gold_assert(!is_gc_pass_one
|| eh_frame_sections
.empty());
1617 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1618 p
!= eh_frame_sections
.end();
1621 unsigned int i
= *p
;
1622 const unsigned char* pshdr
;
1623 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1624 typename
This::Shdr
shdr(pshdr
);
1626 this->layout_eh_frame_section(layout
,
1639 delete[] gc_sd
->section_headers_data
;
1640 delete[] gc_sd
->section_names_data
;
1641 delete[] gc_sd
->symbols_data
;
1642 delete[] gc_sd
->symbol_names_data
;
1643 this->set_symbols_data(NULL
);
1647 delete sd
->section_headers
;
1648 sd
->section_headers
= NULL
;
1649 delete sd
->section_names
;
1650 sd
->section_names
= NULL
;
1654 // Layout sections whose layout was deferred while waiting for
1655 // input files from a plugin.
1657 template<int size
, bool big_endian
>
1659 Sized_relobj_file
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1661 typename
std::vector
<Deferred_layout
>::iterator deferred
;
1663 for (deferred
= this->deferred_layout_
.begin();
1664 deferred
!= this->deferred_layout_
.end();
1667 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1668 // If the section is not included, it is because the garbage collector
1669 // decided it is not needed. Avoid reverting that decision.
1670 if (!this->is_section_included(deferred
->shndx_
))
1673 if (parameters
->options().relocatable()
1674 || deferred
->name_
!= ".eh_frame"
1675 || !this->check_eh_frame_flags(&shdr
))
1676 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
1677 shdr
, deferred
->reloc_shndx_
,
1678 deferred
->reloc_type_
);
1681 // Reading the symbols again here may be slow.
1682 Read_symbols_data sd
;
1683 this->read_symbols(&sd
);
1684 this->layout_eh_frame_section(layout
,
1687 sd
.symbol_names
->data(),
1688 sd
.symbol_names_size
,
1691 deferred
->reloc_shndx_
,
1692 deferred
->reloc_type_
);
1696 this->deferred_layout_
.clear();
1698 // Now handle the deferred relocation sections.
1700 Output_sections
& out_sections(this->output_sections());
1701 std::vector
<Address
>& out_section_offsets(this->section_offsets());
1703 for (deferred
= this->deferred_layout_relocs_
.begin();
1704 deferred
!= this->deferred_layout_relocs_
.end();
1707 unsigned int shndx
= deferred
->shndx_
;
1708 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1709 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1711 Output_section
* data_section
= out_sections
[data_shndx
];
1712 if (data_section
== NULL
)
1714 out_sections
[shndx
] = NULL
;
1715 out_section_offsets
[shndx
] = invalid_address
;
1719 Relocatable_relocs
* rr
= new Relocatable_relocs();
1720 this->set_relocatable_relocs(shndx
, rr
);
1722 Output_section
* os
= layout
->layout_reloc(this, shndx
, shdr
,
1724 out_sections
[shndx
] = os
;
1725 out_section_offsets
[shndx
] = invalid_address
;
1729 // Add the symbols to the symbol table.
1731 template<int size
, bool big_endian
>
1733 Sized_relobj_file
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1734 Read_symbols_data
* sd
,
1737 if (sd
->symbols
== NULL
)
1739 gold_assert(sd
->symbol_names
== NULL
);
1743 const int sym_size
= This::sym_size
;
1744 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1746 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1748 this->error(_("size of symbols is not multiple of symbol size"));
1752 this->symbols_
.resize(symcount
);
1754 const char* sym_names
=
1755 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1756 symtab
->add_from_relobj(this,
1757 sd
->symbols
->data() + sd
->external_symbols_offset
,
1758 symcount
, this->local_symbol_count_
,
1759 sym_names
, sd
->symbol_names_size
,
1761 &this->defined_count_
);
1765 delete sd
->symbol_names
;
1766 sd
->symbol_names
= NULL
;
1769 // Find out if this object, that is a member of a lib group, should be included
1770 // in the link. We check every symbol defined by this object. If the symbol
1771 // table has a strong undefined reference to that symbol, we have to include
1774 template<int size
, bool big_endian
>
1775 Archive::Should_include
1776 Sized_relobj_file
<size
, big_endian
>::do_should_include_member(
1777 Symbol_table
* symtab
,
1779 Read_symbols_data
* sd
,
1782 char* tmpbuf
= NULL
;
1783 size_t tmpbuflen
= 0;
1784 const char* sym_names
=
1785 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1786 const unsigned char* syms
=
1787 sd
->symbols
->data() + sd
->external_symbols_offset
;
1788 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1789 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1792 const unsigned char* p
= syms
;
1794 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1796 elfcpp::Sym
<size
, big_endian
> sym(p
);
1797 unsigned int st_shndx
= sym
.get_st_shndx();
1798 if (st_shndx
== elfcpp::SHN_UNDEF
)
1801 unsigned int st_name
= sym
.get_st_name();
1802 const char* name
= sym_names
+ st_name
;
1804 Archive::Should_include t
= Archive::should_include_member(symtab
,
1810 if (t
== Archive::SHOULD_INCLUDE_YES
)
1819 return Archive::SHOULD_INCLUDE_UNKNOWN
;
1822 // Iterate over global defined symbols, calling a visitor class V for each.
1824 template<int size
, bool big_endian
>
1826 Sized_relobj_file
<size
, big_endian
>::do_for_all_global_symbols(
1827 Read_symbols_data
* sd
,
1828 Library_base::Symbol_visitor_base
* v
)
1830 const char* sym_names
=
1831 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1832 const unsigned char* syms
=
1833 sd
->symbols
->data() + sd
->external_symbols_offset
;
1834 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1835 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1837 const unsigned char* p
= syms
;
1839 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1841 elfcpp::Sym
<size
, big_endian
> sym(p
);
1842 if (sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
1843 v
->visit(sym_names
+ sym
.get_st_name());
1847 // Return whether the local symbol SYMNDX has a PLT offset.
1849 template<int size
, bool big_endian
>
1851 Sized_relobj_file
<size
, big_endian
>::local_has_plt_offset(
1852 unsigned int symndx
) const
1854 typename
Local_plt_offsets::const_iterator p
=
1855 this->local_plt_offsets_
.find(symndx
);
1856 return p
!= this->local_plt_offsets_
.end();
1859 // Get the PLT offset of a local symbol.
1861 template<int size
, bool big_endian
>
1863 Sized_relobj_file
<size
, big_endian
>::do_local_plt_offset(
1864 unsigned int symndx
) const
1866 typename
Local_plt_offsets::const_iterator p
=
1867 this->local_plt_offsets_
.find(symndx
);
1868 gold_assert(p
!= this->local_plt_offsets_
.end());
1872 // Set the PLT offset of a local symbol.
1874 template<int size
, bool big_endian
>
1876 Sized_relobj_file
<size
, big_endian
>::set_local_plt_offset(
1877 unsigned int symndx
, unsigned int plt_offset
)
1879 std::pair
<typename
Local_plt_offsets::iterator
, bool> ins
=
1880 this->local_plt_offsets_
.insert(std::make_pair(symndx
, plt_offset
));
1881 gold_assert(ins
.second
);
1884 // First pass over the local symbols. Here we add their names to
1885 // *POOL and *DYNPOOL, and we store the symbol value in
1886 // THIS->LOCAL_VALUES_. This function is always called from a
1887 // singleton thread. This is followed by a call to
1888 // finalize_local_symbols.
1890 template<int size
, bool big_endian
>
1892 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1893 Stringpool
* dynpool
)
1895 gold_assert(this->symtab_shndx_
!= -1U);
1896 if (this->symtab_shndx_
== 0)
1898 // This object has no symbols. Weird but legal.
1902 // Read the symbol table section header.
1903 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1904 typename
This::Shdr
symtabshdr(this,
1905 this->elf_file_
.section_header(symtab_shndx
));
1906 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1908 // Read the local symbols.
1909 const int sym_size
= This::sym_size
;
1910 const unsigned int loccount
= this->local_symbol_count_
;
1911 gold_assert(loccount
== symtabshdr
.get_sh_info());
1912 off_t locsize
= loccount
* sym_size
;
1913 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1914 locsize
, true, true);
1916 // Read the symbol names.
1917 const unsigned int strtab_shndx
=
1918 this->adjust_shndx(symtabshdr
.get_sh_link());
1919 section_size_type strtab_size
;
1920 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1923 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1925 // Loop over the local symbols.
1927 const Output_sections
& out_sections(this->output_sections());
1928 unsigned int shnum
= this->shnum();
1929 unsigned int count
= 0;
1930 unsigned int dyncount
= 0;
1931 // Skip the first, dummy, symbol.
1933 bool strip_all
= parameters
->options().strip_all();
1934 bool discard_all
= parameters
->options().discard_all();
1935 bool discard_locals
= parameters
->options().discard_locals();
1936 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1938 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1940 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1943 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1945 lv
.set_input_shndx(shndx
, is_ordinary
);
1947 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1948 lv
.set_is_section_symbol();
1949 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
1950 lv
.set_is_tls_symbol();
1951 else if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
1952 lv
.set_is_ifunc_symbol();
1954 // Save the input symbol value for use in do_finalize_local_symbols().
1955 lv
.set_input_value(sym
.get_st_value());
1957 // Decide whether this symbol should go into the output file.
1959 if ((shndx
< shnum
&& out_sections
[shndx
] == NULL
)
1960 || shndx
== this->discarded_eh_frame_shndx_
)
1962 lv
.set_no_output_symtab_entry();
1963 gold_assert(!lv
.needs_output_dynsym_entry());
1967 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1969 lv
.set_no_output_symtab_entry();
1970 gold_assert(!lv
.needs_output_dynsym_entry());
1974 if (sym
.get_st_name() >= strtab_size
)
1976 this->error(_("local symbol %u section name out of range: %u >= %u"),
1977 i
, sym
.get_st_name(),
1978 static_cast<unsigned int>(strtab_size
));
1979 lv
.set_no_output_symtab_entry();
1983 const char* name
= pnames
+ sym
.get_st_name();
1985 // If needed, add the symbol to the dynamic symbol table string pool.
1986 if (lv
.needs_output_dynsym_entry())
1988 dynpool
->add(name
, true, NULL
);
1993 || (discard_all
&& lv
.may_be_discarded_from_output_symtab()))
1995 lv
.set_no_output_symtab_entry();
1999 // If --discard-locals option is used, discard all temporary local
2000 // symbols. These symbols start with system-specific local label
2001 // prefixes, typically .L for ELF system. We want to be compatible
2002 // with GNU ld so here we essentially use the same check in
2003 // bfd_is_local_label(). The code is different because we already
2006 // - the symbol is local and thus cannot have global or weak binding.
2007 // - the symbol is not a section symbol.
2008 // - the symbol has a name.
2010 // We do not discard a symbol if it needs a dynamic symbol entry.
2012 && sym
.get_st_type() != elfcpp::STT_FILE
2013 && !lv
.needs_output_dynsym_entry()
2014 && lv
.may_be_discarded_from_output_symtab()
2015 && parameters
->target().is_local_label_name(name
))
2017 lv
.set_no_output_symtab_entry();
2021 // Discard the local symbol if -retain_symbols_file is specified
2022 // and the local symbol is not in that file.
2023 if (!parameters
->options().should_retain_symbol(name
))
2025 lv
.set_no_output_symtab_entry();
2029 // Add the symbol to the symbol table string pool.
2030 pool
->add(name
, true, NULL
);
2034 this->output_local_symbol_count_
= count
;
2035 this->output_local_dynsym_count_
= dyncount
;
2038 // Compute the final value of a local symbol.
2040 template<int size
, bool big_endian
>
2041 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2042 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value_internal(
2044 const Symbol_value
<size
>* lv_in
,
2045 Symbol_value
<size
>* lv_out
,
2047 const Output_sections
& out_sections
,
2048 const std::vector
<Address
>& out_offsets
,
2049 const Symbol_table
* symtab
)
2051 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2052 // we may have a memory leak.
2053 gold_assert(lv_out
->has_output_value());
2056 unsigned int shndx
= lv_in
->input_shndx(&is_ordinary
);
2058 // Set the output symbol value.
2062 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
2063 lv_out
->set_output_value(lv_in
->input_value());
2066 this->error(_("unknown section index %u for local symbol %u"),
2068 lv_out
->set_output_value(0);
2069 return This::CFLV_ERROR
;
2074 if (shndx
>= this->shnum())
2076 this->error(_("local symbol %u section index %u out of range"),
2078 lv_out
->set_output_value(0);
2079 return This::CFLV_ERROR
;
2082 Output_section
* os
= out_sections
[shndx
];
2083 Address secoffset
= out_offsets
[shndx
];
2084 if (symtab
->is_section_folded(this, shndx
))
2086 gold_assert(os
== NULL
&& secoffset
== invalid_address
);
2087 // Get the os of the section it is folded onto.
2088 Section_id folded
= symtab
->icf()->get_folded_section(this,
2090 gold_assert(folded
.first
!= NULL
);
2091 Sized_relobj_file
<size
, big_endian
>* folded_obj
= reinterpret_cast
2092 <Sized_relobj_file
<size
, big_endian
>*>(folded
.first
);
2093 os
= folded_obj
->output_section(folded
.second
);
2094 gold_assert(os
!= NULL
);
2095 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
2097 // This could be a relaxed input section.
2098 if (secoffset
== invalid_address
)
2100 const Output_relaxed_input_section
* relaxed_section
=
2101 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
2102 gold_assert(relaxed_section
!= NULL
);
2103 secoffset
= relaxed_section
->address() - os
->address();
2109 // This local symbol belongs to a section we are discarding.
2110 // In some cases when applying relocations later, we will
2111 // attempt to match it to the corresponding kept section,
2112 // so we leave the input value unchanged here.
2113 return This::CFLV_DISCARDED
;
2115 else if (secoffset
== invalid_address
)
2119 // This is a SHF_MERGE section or one which otherwise
2120 // requires special handling.
2121 if (shndx
== this->discarded_eh_frame_shndx_
)
2123 // This local symbol belongs to a discarded .eh_frame
2124 // section. Just treat it like the case in which
2125 // os == NULL above.
2126 gold_assert(this->has_eh_frame_
);
2127 return This::CFLV_DISCARDED
;
2129 else if (!lv_in
->is_section_symbol())
2131 // This is not a section symbol. We can determine
2132 // the final value now.
2133 lv_out
->set_output_value(
2134 os
->output_address(this, shndx
, lv_in
->input_value()));
2136 else if (!os
->find_starting_output_address(this, shndx
, &start
))
2138 // This is a section symbol, but apparently not one in a
2139 // merged section. First check to see if this is a relaxed
2140 // input section. If so, use its address. Otherwise just
2141 // use the start of the output section. This happens with
2142 // relocatable links when the input object has section
2143 // symbols for arbitrary non-merge sections.
2144 const Output_section_data
* posd
=
2145 os
->find_relaxed_input_section(this, shndx
);
2148 Address relocatable_link_adjustment
=
2149 relocatable
? os
->address() : 0;
2150 lv_out
->set_output_value(posd
->address()
2151 - relocatable_link_adjustment
);
2154 lv_out
->set_output_value(os
->address());
2158 // We have to consider the addend to determine the
2159 // value to use in a relocation. START is the start
2160 // of this input section. If we are doing a relocatable
2161 // link, use offset from start output section instead of
2163 Address adjusted_start
=
2164 relocatable
? start
- os
->address() : start
;
2165 Merged_symbol_value
<size
>* msv
=
2166 new Merged_symbol_value
<size
>(lv_in
->input_value(),
2168 lv_out
->set_merged_symbol_value(msv
);
2171 else if (lv_in
->is_tls_symbol())
2172 lv_out
->set_output_value(os
->tls_offset()
2174 + lv_in
->input_value());
2176 lv_out
->set_output_value((relocatable
? 0 : os
->address())
2178 + lv_in
->input_value());
2180 return This::CFLV_OK
;
2183 // Compute final local symbol value. R_SYM is the index of a local
2184 // symbol in symbol table. LV points to a symbol value, which is
2185 // expected to hold the input value and to be over-written by the
2186 // final value. SYMTAB points to a symbol table. Some targets may want
2187 // to know would-be-finalized local symbol values in relaxation.
2188 // Hence we provide this method. Since this method updates *LV, a
2189 // callee should make a copy of the original local symbol value and
2190 // use the copy instead of modifying an object's local symbols before
2191 // everything is finalized. The caller should also free up any allocated
2192 // memory in the return value in *LV.
2193 template<int size
, bool big_endian
>
2194 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2195 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value(
2197 const Symbol_value
<size
>* lv_in
,
2198 Symbol_value
<size
>* lv_out
,
2199 const Symbol_table
* symtab
)
2201 // This is just a wrapper of compute_final_local_value_internal.
2202 const bool relocatable
= parameters
->options().relocatable();
2203 const Output_sections
& out_sections(this->output_sections());
2204 const std::vector
<Address
>& out_offsets(this->section_offsets());
2205 return this->compute_final_local_value_internal(r_sym
, lv_in
, lv_out
,
2206 relocatable
, out_sections
,
2207 out_offsets
, symtab
);
2210 // Finalize the local symbols. Here we set the final value in
2211 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2212 // This function is always called from a singleton thread. The actual
2213 // output of the local symbols will occur in a separate task.
2215 template<int size
, bool big_endian
>
2217 Sized_relobj_file
<size
, big_endian
>::do_finalize_local_symbols(
2220 Symbol_table
* symtab
)
2222 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2224 const unsigned int loccount
= this->local_symbol_count_
;
2225 this->local_symbol_offset_
= off
;
2227 const bool relocatable
= parameters
->options().relocatable();
2228 const Output_sections
& out_sections(this->output_sections());
2229 const std::vector
<Address
>& out_offsets(this->section_offsets());
2231 for (unsigned int i
= 1; i
< loccount
; ++i
)
2233 Symbol_value
<size
>* lv
= &this->local_values_
[i
];
2235 Compute_final_local_value_status cflv_status
=
2236 this->compute_final_local_value_internal(i
, lv
, lv
, relocatable
,
2237 out_sections
, out_offsets
,
2239 switch (cflv_status
)
2242 if (!lv
->is_output_symtab_index_set())
2244 lv
->set_output_symtab_index(index
);
2248 case CFLV_DISCARDED
:
2259 // Set the output dynamic symbol table indexes for the local variables.
2261 template<int size
, bool big_endian
>
2263 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_indexes(
2266 const unsigned int loccount
= this->local_symbol_count_
;
2267 for (unsigned int i
= 1; i
< loccount
; ++i
)
2269 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2270 if (lv
.needs_output_dynsym_entry())
2272 lv
.set_output_dynsym_index(index
);
2279 // Set the offset where local dynamic symbol information will be stored.
2280 // Returns the count of local symbols contributed to the symbol table by
2283 template<int size
, bool big_endian
>
2285 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
2287 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2288 this->local_dynsym_offset_
= off
;
2289 return this->output_local_dynsym_count_
;
2292 // If Symbols_data is not NULL get the section flags from here otherwise
2293 // get it from the file.
2295 template<int size
, bool big_endian
>
2297 Sized_relobj_file
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
2299 Symbols_data
* sd
= this->get_symbols_data();
2302 const unsigned char* pshdrs
= sd
->section_headers_data
2303 + This::shdr_size
* shndx
;
2304 typename
This::Shdr
shdr(pshdrs
);
2305 return shdr
.get_sh_flags();
2307 // If sd is NULL, read the section header from the file.
2308 return this->elf_file_
.section_flags(shndx
);
2311 // Get the section's ent size from Symbols_data. Called by get_section_contents
2314 template<int size
, bool big_endian
>
2316 Sized_relobj_file
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
2318 Symbols_data
* sd
= this->get_symbols_data();
2319 gold_assert(sd
!= NULL
);
2321 const unsigned char* pshdrs
= sd
->section_headers_data
2322 + This::shdr_size
* shndx
;
2323 typename
This::Shdr
shdr(pshdrs
);
2324 return shdr
.get_sh_entsize();
2327 // Write out the local symbols.
2329 template<int size
, bool big_endian
>
2331 Sized_relobj_file
<size
, big_endian
>::write_local_symbols(
2333 const Stringpool
* sympool
,
2334 const Stringpool
* dynpool
,
2335 Output_symtab_xindex
* symtab_xindex
,
2336 Output_symtab_xindex
* dynsym_xindex
,
2339 const bool strip_all
= parameters
->options().strip_all();
2342 if (this->output_local_dynsym_count_
== 0)
2344 this->output_local_symbol_count_
= 0;
2347 gold_assert(this->symtab_shndx_
!= -1U);
2348 if (this->symtab_shndx_
== 0)
2350 // This object has no symbols. Weird but legal.
2354 // Read the symbol table section header.
2355 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2356 typename
This::Shdr
symtabshdr(this,
2357 this->elf_file_
.section_header(symtab_shndx
));
2358 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2359 const unsigned int loccount
= this->local_symbol_count_
;
2360 gold_assert(loccount
== symtabshdr
.get_sh_info());
2362 // Read the local symbols.
2363 const int sym_size
= This::sym_size
;
2364 off_t locsize
= loccount
* sym_size
;
2365 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2366 locsize
, true, false);
2368 // Read the symbol names.
2369 const unsigned int strtab_shndx
=
2370 this->adjust_shndx(symtabshdr
.get_sh_link());
2371 section_size_type strtab_size
;
2372 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2375 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2377 // Get views into the output file for the portions of the symbol table
2378 // and the dynamic symbol table that we will be writing.
2379 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
2380 unsigned char* oview
= NULL
;
2381 if (output_size
> 0)
2382 oview
= of
->get_output_view(symtab_off
+ this->local_symbol_offset_
,
2385 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
2386 unsigned char* dyn_oview
= NULL
;
2387 if (dyn_output_size
> 0)
2388 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
2391 const Output_sections
out_sections(this->output_sections());
2393 gold_assert(this->local_values_
.size() == loccount
);
2395 unsigned char* ov
= oview
;
2396 unsigned char* dyn_ov
= dyn_oview
;
2398 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2400 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2402 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2405 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2409 gold_assert(st_shndx
< out_sections
.size());
2410 if (out_sections
[st_shndx
] == NULL
)
2412 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2413 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2415 if (lv
.has_output_symtab_entry())
2416 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2417 if (lv
.has_output_dynsym_entry())
2418 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2419 st_shndx
= elfcpp::SHN_XINDEX
;
2423 // Write the symbol to the output symbol table.
2424 if (lv
.has_output_symtab_entry())
2426 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2428 gold_assert(isym
.get_st_name() < strtab_size
);
2429 const char* name
= pnames
+ isym
.get_st_name();
2430 osym
.put_st_name(sympool
->get_offset(name
));
2431 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2432 osym
.put_st_size(isym
.get_st_size());
2433 osym
.put_st_info(isym
.get_st_info());
2434 osym
.put_st_other(isym
.get_st_other());
2435 osym
.put_st_shndx(st_shndx
);
2440 // Write the symbol to the output dynamic symbol table.
2441 if (lv
.has_output_dynsym_entry())
2443 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2444 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2446 gold_assert(isym
.get_st_name() < strtab_size
);
2447 const char* name
= pnames
+ isym
.get_st_name();
2448 osym
.put_st_name(dynpool
->get_offset(name
));
2449 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2450 osym
.put_st_size(isym
.get_st_size());
2451 osym
.put_st_info(isym
.get_st_info());
2452 osym
.put_st_other(isym
.get_st_other());
2453 osym
.put_st_shndx(st_shndx
);
2460 if (output_size
> 0)
2462 gold_assert(ov
- oview
== output_size
);
2463 of
->write_output_view(symtab_off
+ this->local_symbol_offset_
,
2464 output_size
, oview
);
2467 if (dyn_output_size
> 0)
2469 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2470 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2475 // Set *INFO to symbolic information about the offset OFFSET in the
2476 // section SHNDX. Return true if we found something, false if we
2479 template<int size
, bool big_endian
>
2481 Sized_relobj_file
<size
, big_endian
>::get_symbol_location_info(
2484 Symbol_location_info
* info
)
2486 if (this->symtab_shndx_
== 0)
2489 section_size_type symbols_size
;
2490 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2494 unsigned int symbol_names_shndx
=
2495 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2496 section_size_type names_size
;
2497 const unsigned char* symbol_names_u
=
2498 this->section_contents(symbol_names_shndx
, &names_size
, false);
2499 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2501 const int sym_size
= This::sym_size
;
2502 const size_t count
= symbols_size
/ sym_size
;
2504 const unsigned char* p
= symbols
;
2505 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2507 elfcpp::Sym
<size
, big_endian
> sym(p
);
2509 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2511 if (sym
.get_st_name() >= names_size
)
2512 info
->source_file
= "(invalid)";
2514 info
->source_file
= symbol_names
+ sym
.get_st_name();
2519 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2522 && st_shndx
== shndx
2523 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2524 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2527 if (sym
.get_st_name() > names_size
)
2528 info
->enclosing_symbol_name
= "(invalid)";
2531 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2532 if (parameters
->options().do_demangle())
2534 char* demangled_name
= cplus_demangle(
2535 info
->enclosing_symbol_name
.c_str(),
2536 DMGL_ANSI
| DMGL_PARAMS
);
2537 if (demangled_name
!= NULL
)
2539 info
->enclosing_symbol_name
.assign(demangled_name
);
2540 free(demangled_name
);
2551 // Look for a kept section corresponding to the given discarded section,
2552 // and return its output address. This is used only for relocations in
2553 // debugging sections. If we can't find the kept section, return 0.
2555 template<int size
, bool big_endian
>
2556 typename Sized_relobj_file
<size
, big_endian
>::Address
2557 Sized_relobj_file
<size
, big_endian
>::map_to_kept_section(
2561 Relobj
* kept_object
;
2562 unsigned int kept_shndx
;
2563 if (this->get_kept_comdat_section(shndx
, &kept_object
, &kept_shndx
))
2565 Sized_relobj_file
<size
, big_endian
>* kept_relobj
=
2566 static_cast<Sized_relobj_file
<size
, big_endian
>*>(kept_object
);
2567 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2568 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2569 if (os
!= NULL
&& offset
!= invalid_address
)
2572 return os
->address() + offset
;
2579 // Get symbol counts.
2581 template<int size
, bool big_endian
>
2583 Sized_relobj_file
<size
, big_endian
>::do_get_global_symbol_counts(
2584 const Symbol_table
*,
2588 *defined
= this->defined_count_
;
2590 for (typename
Symbols::const_iterator p
= this->symbols_
.begin();
2591 p
!= this->symbols_
.end();
2594 && (*p
)->source() == Symbol::FROM_OBJECT
2595 && (*p
)->object() == this
2596 && (*p
)->is_defined())
2601 // Return a view of the decompressed contents of a section. Set *PLEN
2602 // to the size. Set *IS_NEW to true if the contents need to be freed
2605 template<int size
, bool big_endian
>
2606 const unsigned char*
2607 Sized_relobj_file
<size
, big_endian
>::do_decompressed_section_contents(
2609 section_size_type
* plen
,
2612 section_size_type buffer_size
;
2613 const unsigned char* buffer
= this->section_contents(shndx
, &buffer_size
,
2616 if (this->compressed_sections_
== NULL
)
2618 *plen
= buffer_size
;
2623 Compressed_section_map::const_iterator p
=
2624 this->compressed_sections_
->find(shndx
);
2625 if (p
== this->compressed_sections_
->end())
2627 *plen
= buffer_size
;
2632 section_size_type uncompressed_size
= p
->second
.size
;
2633 if (p
->second
.contents
!= NULL
)
2635 *plen
= uncompressed_size
;
2637 return p
->second
.contents
;
2640 unsigned char* uncompressed_data
= new unsigned char[uncompressed_size
];
2641 if (!decompress_input_section(buffer
,
2645 this->error(_("could not decompress section %s"),
2646 this->do_section_name(shndx
).c_str());
2648 // We could cache the results in p->second.contents and store
2649 // false in *IS_NEW, but build_compressed_section_map() would
2650 // have done so if it had expected it to be profitable. If
2651 // we reach this point, we expect to need the contents only
2652 // once in this pass.
2653 *plen
= uncompressed_size
;
2655 return uncompressed_data
;
2658 // Discard any buffers of uncompressed sections. This is done
2659 // at the end of the Add_symbols task.
2661 template<int size
, bool big_endian
>
2663 Sized_relobj_file
<size
, big_endian
>::do_discard_decompressed_sections()
2665 if (this->compressed_sections_
== NULL
)
2668 for (Compressed_section_map::iterator p
= this->compressed_sections_
->begin();
2669 p
!= this->compressed_sections_
->end();
2672 if (p
->second
.contents
!= NULL
)
2674 delete[] p
->second
.contents
;
2675 p
->second
.contents
= NULL
;
2680 // Input_objects methods.
2682 // Add a regular relocatable object to the list. Return false if this
2683 // object should be ignored.
2686 Input_objects::add_object(Object
* obj
)
2688 // Print the filename if the -t/--trace option is selected.
2689 if (parameters
->options().trace())
2690 gold_info("%s", obj
->name().c_str());
2692 if (!obj
->is_dynamic())
2693 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
2696 // See if this is a duplicate SONAME.
2697 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
2698 const char* soname
= dynobj
->soname();
2700 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
2701 this->sonames_
.insert(soname
);
2704 // We have already seen a dynamic object with this soname.
2708 this->dynobj_list_
.push_back(dynobj
);
2711 // Add this object to the cross-referencer if requested.
2712 if (parameters
->options().user_set_print_symbol_counts()
2713 || parameters
->options().cref())
2715 if (this->cref_
== NULL
)
2716 this->cref_
= new Cref();
2717 this->cref_
->add_object(obj
);
2723 // For each dynamic object, record whether we've seen all of its
2724 // explicit dependencies.
2727 Input_objects::check_dynamic_dependencies() const
2729 bool issued_copy_dt_needed_error
= false;
2730 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
2731 p
!= this->dynobj_list_
.end();
2734 const Dynobj::Needed
& needed((*p
)->needed());
2735 bool found_all
= true;
2736 Dynobj::Needed::const_iterator pneeded
;
2737 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
2739 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
2745 (*p
)->set_has_unknown_needed_entries(!found_all
);
2747 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2748 // that gold does not support. However, they cause no trouble
2749 // unless there is a DT_NEEDED entry that we don't know about;
2750 // warn only in that case.
2752 && !issued_copy_dt_needed_error
2753 && (parameters
->options().copy_dt_needed_entries()
2754 || parameters
->options().add_needed()))
2756 const char* optname
;
2757 if (parameters
->options().copy_dt_needed_entries())
2758 optname
= "--copy-dt-needed-entries";
2760 optname
= "--add-needed";
2761 gold_error(_("%s is not supported but is required for %s in %s"),
2762 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
2763 issued_copy_dt_needed_error
= true;
2768 // Start processing an archive.
2771 Input_objects::archive_start(Archive
* archive
)
2773 if (parameters
->options().user_set_print_symbol_counts()
2774 || parameters
->options().cref())
2776 if (this->cref_
== NULL
)
2777 this->cref_
= new Cref();
2778 this->cref_
->add_archive_start(archive
);
2782 // Stop processing an archive.
2785 Input_objects::archive_stop(Archive
* archive
)
2787 if (parameters
->options().user_set_print_symbol_counts()
2788 || parameters
->options().cref())
2789 this->cref_
->add_archive_stop(archive
);
2792 // Print symbol counts
2795 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
2797 if (parameters
->options().user_set_print_symbol_counts()
2798 && this->cref_
!= NULL
)
2799 this->cref_
->print_symbol_counts(symtab
);
2802 // Print a cross reference table.
2805 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
2807 if (parameters
->options().cref() && this->cref_
!= NULL
)
2808 this->cref_
->print_cref(symtab
, f
);
2811 // Relocate_info methods.
2813 // Return a string describing the location of a relocation when file
2814 // and lineno information is not available. This is only used in
2817 template<int size
, bool big_endian
>
2819 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
2821 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
2822 std::string ret
= line_info
.addr2line(this->data_shndx
, offset
, NULL
);
2826 ret
= this->object
->name();
2828 Symbol_location_info info
;
2829 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
2831 if (!info
.source_file
.empty())
2834 ret
+= info
.source_file
;
2836 size_t len
= info
.enclosing_symbol_name
.length() + 100;
2837 char* buf
= new char[len
];
2838 snprintf(buf
, len
, _(":function %s"),
2839 info
.enclosing_symbol_name
.c_str());
2846 ret
+= this->object
->section_name(this->data_shndx
);
2848 snprintf(buf
, sizeof buf
, "+0x%lx)", static_cast<long>(offset
));
2853 } // End namespace gold.
2858 using namespace gold
;
2860 // Read an ELF file with the header and return the appropriate
2861 // instance of Object.
2863 template<int size
, bool big_endian
>
2865 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
2866 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
2867 bool* punconfigured
)
2869 Target
* target
= select_target(ehdr
.get_e_machine(), size
, big_endian
,
2870 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
2871 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
2873 gold_fatal(_("%s: unsupported ELF machine number %d"),
2874 name
.c_str(), ehdr
.get_e_machine());
2876 if (!parameters
->target_valid())
2877 set_parameters_target(target
);
2878 else if (target
!= ¶meters
->target())
2880 if (punconfigured
!= NULL
)
2881 *punconfigured
= true;
2883 gold_error(_("%s: incompatible target"), name
.c_str());
2887 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
2891 } // End anonymous namespace.
2896 // Return whether INPUT_FILE is an ELF object.
2899 is_elf_object(Input_file
* input_file
, off_t offset
,
2900 const unsigned char** start
, int* read_size
)
2902 off_t filesize
= input_file
->file().filesize();
2903 int want
= elfcpp::Elf_recognizer::max_header_size
;
2904 if (filesize
- offset
< want
)
2905 want
= filesize
- offset
;
2907 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
2912 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
2915 // Read an ELF file and return the appropriate instance of Object.
2918 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
2919 const unsigned char* p
, section_offset_type bytes
,
2920 bool* punconfigured
)
2922 if (punconfigured
!= NULL
)
2923 *punconfigured
= false;
2926 bool big_endian
= false;
2928 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
2929 &big_endian
, &error
))
2931 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
2939 #ifdef HAVE_TARGET_32_BIG
2940 elfcpp::Ehdr
<32, true> ehdr(p
);
2941 return make_elf_sized_object
<32, true>(name
, input_file
,
2942 offset
, ehdr
, punconfigured
);
2944 if (punconfigured
!= NULL
)
2945 *punconfigured
= true;
2947 gold_error(_("%s: not configured to support "
2948 "32-bit big-endian object"),
2955 #ifdef HAVE_TARGET_32_LITTLE
2956 elfcpp::Ehdr
<32, false> ehdr(p
);
2957 return make_elf_sized_object
<32, false>(name
, input_file
,
2958 offset
, ehdr
, punconfigured
);
2960 if (punconfigured
!= NULL
)
2961 *punconfigured
= true;
2963 gold_error(_("%s: not configured to support "
2964 "32-bit little-endian object"),
2970 else if (size
== 64)
2974 #ifdef HAVE_TARGET_64_BIG
2975 elfcpp::Ehdr
<64, true> ehdr(p
);
2976 return make_elf_sized_object
<64, true>(name
, input_file
,
2977 offset
, ehdr
, punconfigured
);
2979 if (punconfigured
!= NULL
)
2980 *punconfigured
= true;
2982 gold_error(_("%s: not configured to support "
2983 "64-bit big-endian object"),
2990 #ifdef HAVE_TARGET_64_LITTLE
2991 elfcpp::Ehdr
<64, false> ehdr(p
);
2992 return make_elf_sized_object
<64, false>(name
, input_file
,
2993 offset
, ehdr
, punconfigured
);
2995 if (punconfigured
!= NULL
)
2996 *punconfigured
= true;
2998 gold_error(_("%s: not configured to support "
2999 "64-bit little-endian object"),
3009 // Instantiate the templates we need.
3011 #ifdef HAVE_TARGET_32_LITTLE
3014 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
3015 Read_symbols_data
*);
3018 #ifdef HAVE_TARGET_32_BIG
3021 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
3022 Read_symbols_data
*);
3025 #ifdef HAVE_TARGET_64_LITTLE
3028 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
3029 Read_symbols_data
*);
3032 #ifdef HAVE_TARGET_64_BIG
3035 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
3036 Read_symbols_data
*);
3039 #ifdef HAVE_TARGET_32_LITTLE
3041 class Sized_relobj_file
<32, false>;
3044 #ifdef HAVE_TARGET_32_BIG
3046 class Sized_relobj_file
<32, true>;
3049 #ifdef HAVE_TARGET_64_LITTLE
3051 class Sized_relobj_file
<64, false>;
3054 #ifdef HAVE_TARGET_64_BIG
3056 class Sized_relobj_file
<64, true>;
3059 #ifdef HAVE_TARGET_32_LITTLE
3061 struct Relocate_info
<32, false>;
3064 #ifdef HAVE_TARGET_32_BIG
3066 struct Relocate_info
<32, true>;
3069 #ifdef HAVE_TARGET_64_LITTLE
3071 struct Relocate_info
<64, false>;
3074 #ifdef HAVE_TARGET_64_BIG
3076 struct Relocate_info
<64, true>;
3079 #ifdef HAVE_TARGET_32_LITTLE
3082 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
3086 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
3087 const unsigned char*);
3090 #ifdef HAVE_TARGET_32_BIG
3093 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
3097 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
3098 const unsigned char*);
3101 #ifdef HAVE_TARGET_64_LITTLE
3104 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
3108 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
3109 const unsigned char*);
3112 #ifdef HAVE_TARGET_64_BIG
3115 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
3119 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
3120 const unsigned char*);
3123 } // End namespace gold.