]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/object.cc
* dwarf_reader.cc (Sized_dwarf_line_info::Sized_dwarf_line_info):
[thirdparty/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header. This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439 const unsigned int shnum = this->elf_file_.shnum();
440 this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers. The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section. Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452 const unsigned int shnum = this->shnum();
453 this->symtab_shndx_ = 0;
454 if (shnum > 0)
455 {
456 // Look through the sections in reverse order, since gas tends
457 // to put the symbol table at the end.
458 const unsigned char* p = pshdrs + shnum * This::shdr_size;
459 unsigned int i = shnum;
460 unsigned int xindex_shndx = 0;
461 unsigned int xindex_link = 0;
462 while (i > 0)
463 {
464 --i;
465 p -= This::shdr_size;
466 typename This::Shdr shdr(p);
467 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468 {
469 this->symtab_shndx_ = i;
470 if (xindex_shndx > 0 && xindex_link == i)
471 {
472 Xindex* xindex =
473 new Xindex(this->elf_file_.large_shndx_offset());
474 xindex->read_symtab_xindex<size, big_endian>(this,
475 xindex_shndx,
476 pshdrs);
477 this->set_xindex(xindex);
478 }
479 break;
480 }
481
482 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483 // one. This will work if it follows the SHT_SYMTAB
484 // section.
485 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486 {
487 xindex_shndx = i;
488 xindex_link = this->adjust_shndx(shdr.get_sh_link());
489 }
490 }
491 }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501 gold_assert(this->symtab_shndx_ != -1U);
502 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504 return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513 const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516 return ((sh_type == elfcpp::SHT_PROGBITS
517 || sh_type == elfcpp::SHT_X86_64_UNWIND)
518 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527 const unsigned char* pshdrs,
528 const char* names,
529 section_size_type names_size) const
530 {
531 const unsigned int shnum = this->shnum();
532 const unsigned char* p = pshdrs + This::shdr_size;
533 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534 {
535 typename This::Shdr shdr(p);
536 if (this->check_eh_frame_flags(&shdr))
537 {
538 if (shdr.get_sh_name() >= names_size)
539 {
540 this->error(_("bad section name offset for section %u: %lu"),
541 i, static_cast<unsigned long>(shdr.get_sh_name()));
542 continue;
543 }
544
545 const char* name = names + shdr.get_sh_name();
546 if (strcmp(name, ".eh_frame") == 0)
547 return true;
548 }
549 }
550 return false;
551 }
552
553 // Return TRUE if this is a section whose contents will be needed in the
554 // Add_symbols task.
555
556 static bool
557 need_decompressed_section(const char* name)
558 {
559 // We will need .zdebug_str if this is not an incremental link
560 // (i.e., we are processing string merge sections).
561 if (!parameters->incremental() && strcmp(name, ".zdebug_str") == 0)
562 return true;
563
564 return false;
565 }
566
567 // Build a table for any compressed debug sections, mapping each section index
568 // to the uncompressed size and (if needed) the decompressed contents.
569
570 template<int size, bool big_endian>
571 Compressed_section_map*
572 build_compressed_section_map(
573 const unsigned char* pshdrs,
574 unsigned int shnum,
575 const char* names,
576 section_size_type names_size,
577 Sized_relobj_file<size, big_endian>* obj)
578 {
579 Compressed_section_map* uncompressed_map = new Compressed_section_map();
580 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
581 const unsigned char* p = pshdrs + shdr_size;
582
583 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
584 {
585 typename elfcpp::Shdr<size, big_endian> shdr(p);
586 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
587 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
588 {
589 if (shdr.get_sh_name() >= names_size)
590 {
591 obj->error(_("bad section name offset for section %u: %lu"),
592 i, static_cast<unsigned long>(shdr.get_sh_name()));
593 continue;
594 }
595
596 const char* name = names + shdr.get_sh_name();
597 if (is_compressed_debug_section(name))
598 {
599 section_size_type len;
600 const unsigned char* contents =
601 obj->section_contents(i, &len, false);
602 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
603 if (uncompressed_size != -1ULL)
604 {
605 Compressed_section_info info;
606 info.size = convert_to_section_size_type(uncompressed_size);
607 info.contents = NULL;
608
609 #ifdef ENABLE_THREADS
610 // If we're multi-threaded, it will help to decompress
611 // any sections that will be needed during the Add_symbols
612 // task, so that several decompressions can run in
613 // parallel.
614 if (parameters->options().threads())
615 {
616 unsigned char* uncompressed_data = NULL;
617 if (need_decompressed_section(name))
618 {
619 uncompressed_data = new unsigned char[uncompressed_size];
620 if (decompress_input_section(contents, len,
621 uncompressed_data,
622 uncompressed_size))
623 info.contents = uncompressed_data;
624 else
625 delete[] uncompressed_data;
626 }
627 }
628 #endif
629
630 (*uncompressed_map)[i] = info;
631 }
632 }
633 }
634 }
635 return uncompressed_map;
636 }
637
638 // Read the sections and symbols from an object file.
639
640 template<int size, bool big_endian>
641 void
642 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
643 {
644 this->read_section_data(&this->elf_file_, sd);
645
646 const unsigned char* const pshdrs = sd->section_headers->data();
647
648 this->find_symtab(pshdrs);
649
650 const unsigned char* namesu = sd->section_names->data();
651 const char* names = reinterpret_cast<const char*>(namesu);
652 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
653 {
654 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
655 this->has_eh_frame_ = true;
656 }
657 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
658 this->compressed_sections_ =
659 build_compressed_section_map(pshdrs, this->shnum(), names,
660 sd->section_names_size, this);
661
662 sd->symbols = NULL;
663 sd->symbols_size = 0;
664 sd->external_symbols_offset = 0;
665 sd->symbol_names = NULL;
666 sd->symbol_names_size = 0;
667
668 if (this->symtab_shndx_ == 0)
669 {
670 // No symbol table. Weird but legal.
671 return;
672 }
673
674 // Get the symbol table section header.
675 typename This::Shdr symtabshdr(pshdrs
676 + this->symtab_shndx_ * This::shdr_size);
677 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
678
679 // If this object has a .eh_frame section, we need all the symbols.
680 // Otherwise we only need the external symbols. While it would be
681 // simpler to just always read all the symbols, I've seen object
682 // files with well over 2000 local symbols, which for a 64-bit
683 // object file format is over 5 pages that we don't need to read
684 // now.
685
686 const int sym_size = This::sym_size;
687 const unsigned int loccount = symtabshdr.get_sh_info();
688 this->local_symbol_count_ = loccount;
689 this->local_values_.resize(loccount);
690 section_offset_type locsize = loccount * sym_size;
691 off_t dataoff = symtabshdr.get_sh_offset();
692 section_size_type datasize =
693 convert_to_section_size_type(symtabshdr.get_sh_size());
694 off_t extoff = dataoff + locsize;
695 section_size_type extsize = datasize - locsize;
696
697 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
698 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
699
700 if (readsize == 0)
701 {
702 // No external symbols. Also weird but also legal.
703 return;
704 }
705
706 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
707
708 // Read the section header for the symbol names.
709 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
710 if (strtab_shndx >= this->shnum())
711 {
712 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
713 return;
714 }
715 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
716 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
717 {
718 this->error(_("symbol table name section has wrong type: %u"),
719 static_cast<unsigned int>(strtabshdr.get_sh_type()));
720 return;
721 }
722
723 // Read the symbol names.
724 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
725 strtabshdr.get_sh_size(),
726 false, true);
727
728 sd->symbols = fvsymtab;
729 sd->symbols_size = readsize;
730 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
731 sd->symbol_names = fvstrtab;
732 sd->symbol_names_size =
733 convert_to_section_size_type(strtabshdr.get_sh_size());
734 }
735
736 // Return the section index of symbol SYM. Set *VALUE to its value in
737 // the object file. Set *IS_ORDINARY if this is an ordinary section
738 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
739 // Note that for a symbol which is not defined in this object file,
740 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
741 // the final value of the symbol in the link.
742
743 template<int size, bool big_endian>
744 unsigned int
745 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
746 Address* value,
747 bool* is_ordinary)
748 {
749 section_size_type symbols_size;
750 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
751 &symbols_size,
752 false);
753
754 const size_t count = symbols_size / This::sym_size;
755 gold_assert(sym < count);
756
757 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
758 *value = elfsym.get_st_value();
759
760 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
761 }
762
763 // Return whether to include a section group in the link. LAYOUT is
764 // used to keep track of which section groups we have already seen.
765 // INDEX is the index of the section group and SHDR is the section
766 // header. If we do not want to include this group, we set bits in
767 // OMIT for each section which should be discarded.
768
769 template<int size, bool big_endian>
770 bool
771 Sized_relobj_file<size, big_endian>::include_section_group(
772 Symbol_table* symtab,
773 Layout* layout,
774 unsigned int index,
775 const char* name,
776 const unsigned char* shdrs,
777 const char* section_names,
778 section_size_type section_names_size,
779 std::vector<bool>* omit)
780 {
781 // Read the section contents.
782 typename This::Shdr shdr(shdrs + index * This::shdr_size);
783 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
784 shdr.get_sh_size(), true, false);
785 const elfcpp::Elf_Word* pword =
786 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
787
788 // The first word contains flags. We only care about COMDAT section
789 // groups. Other section groups are always included in the link
790 // just like ordinary sections.
791 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
792
793 // Look up the group signature, which is the name of a symbol. ELF
794 // uses a symbol name because some group signatures are long, and
795 // the name is generally already in the symbol table, so it makes
796 // sense to put the long string just once in .strtab rather than in
797 // both .strtab and .shstrtab.
798
799 // Get the appropriate symbol table header (this will normally be
800 // the single SHT_SYMTAB section, but in principle it need not be).
801 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
802 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
803
804 // Read the symbol table entry.
805 unsigned int symndx = shdr.get_sh_info();
806 if (symndx >= symshdr.get_sh_size() / This::sym_size)
807 {
808 this->error(_("section group %u info %u out of range"),
809 index, symndx);
810 return false;
811 }
812 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
813 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
814 false);
815 elfcpp::Sym<size, big_endian> sym(psym);
816
817 // Read the symbol table names.
818 section_size_type symnamelen;
819 const unsigned char* psymnamesu;
820 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
821 &symnamelen, true);
822 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
823
824 // Get the section group signature.
825 if (sym.get_st_name() >= symnamelen)
826 {
827 this->error(_("symbol %u name offset %u out of range"),
828 symndx, sym.get_st_name());
829 return false;
830 }
831
832 std::string signature(psymnames + sym.get_st_name());
833
834 // It seems that some versions of gas will create a section group
835 // associated with a section symbol, and then fail to give a name to
836 // the section symbol. In such a case, use the name of the section.
837 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
838 {
839 bool is_ordinary;
840 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
841 sym.get_st_shndx(),
842 &is_ordinary);
843 if (!is_ordinary || sym_shndx >= this->shnum())
844 {
845 this->error(_("symbol %u invalid section index %u"),
846 symndx, sym_shndx);
847 return false;
848 }
849 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
850 if (member_shdr.get_sh_name() < section_names_size)
851 signature = section_names + member_shdr.get_sh_name();
852 }
853
854 // Record this section group in the layout, and see whether we've already
855 // seen one with the same signature.
856 bool include_group;
857 bool is_comdat;
858 Kept_section* kept_section = NULL;
859
860 if ((flags & elfcpp::GRP_COMDAT) == 0)
861 {
862 include_group = true;
863 is_comdat = false;
864 }
865 else
866 {
867 include_group = layout->find_or_add_kept_section(signature,
868 this, index, true,
869 true, &kept_section);
870 is_comdat = true;
871 }
872
873 if (is_comdat && include_group)
874 {
875 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
876 if (incremental_inputs != NULL)
877 incremental_inputs->report_comdat_group(this, signature.c_str());
878 }
879
880 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
881
882 std::vector<unsigned int> shndxes;
883 bool relocate_group = include_group && parameters->options().relocatable();
884 if (relocate_group)
885 shndxes.reserve(count - 1);
886
887 for (size_t i = 1; i < count; ++i)
888 {
889 elfcpp::Elf_Word shndx =
890 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
891
892 if (relocate_group)
893 shndxes.push_back(shndx);
894
895 if (shndx >= this->shnum())
896 {
897 this->error(_("section %u in section group %u out of range"),
898 shndx, index);
899 continue;
900 }
901
902 // Check for an earlier section number, since we're going to get
903 // it wrong--we may have already decided to include the section.
904 if (shndx < index)
905 this->error(_("invalid section group %u refers to earlier section %u"),
906 index, shndx);
907
908 // Get the name of the member section.
909 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
910 if (member_shdr.get_sh_name() >= section_names_size)
911 {
912 // This is an error, but it will be diagnosed eventually
913 // in do_layout, so we don't need to do anything here but
914 // ignore it.
915 continue;
916 }
917 std::string mname(section_names + member_shdr.get_sh_name());
918
919 if (include_group)
920 {
921 if (is_comdat)
922 kept_section->add_comdat_section(mname, shndx,
923 member_shdr.get_sh_size());
924 }
925 else
926 {
927 (*omit)[shndx] = true;
928
929 if (is_comdat)
930 {
931 Relobj* kept_object = kept_section->object();
932 if (kept_section->is_comdat())
933 {
934 // Find the corresponding kept section, and store
935 // that info in the discarded section table.
936 unsigned int kept_shndx;
937 uint64_t kept_size;
938 if (kept_section->find_comdat_section(mname, &kept_shndx,
939 &kept_size))
940 {
941 // We don't keep a mapping for this section if
942 // it has a different size. The mapping is only
943 // used for relocation processing, and we don't
944 // want to treat the sections as similar if the
945 // sizes are different. Checking the section
946 // size is the approach used by the GNU linker.
947 if (kept_size == member_shdr.get_sh_size())
948 this->set_kept_comdat_section(shndx, kept_object,
949 kept_shndx);
950 }
951 }
952 else
953 {
954 // The existing section is a linkonce section. Add
955 // a mapping if there is exactly one section in the
956 // group (which is true when COUNT == 2) and if it
957 // is the same size.
958 if (count == 2
959 && (kept_section->linkonce_size()
960 == member_shdr.get_sh_size()))
961 this->set_kept_comdat_section(shndx, kept_object,
962 kept_section->shndx());
963 }
964 }
965 }
966 }
967
968 if (relocate_group)
969 layout->layout_group(symtab, this, index, name, signature.c_str(),
970 shdr, flags, &shndxes);
971
972 return include_group;
973 }
974
975 // Whether to include a linkonce section in the link. NAME is the
976 // name of the section and SHDR is the section header.
977
978 // Linkonce sections are a GNU extension implemented in the original
979 // GNU linker before section groups were defined. The semantics are
980 // that we only include one linkonce section with a given name. The
981 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
982 // where T is the type of section and SYMNAME is the name of a symbol.
983 // In an attempt to make linkonce sections interact well with section
984 // groups, we try to identify SYMNAME and use it like a section group
985 // signature. We want to block section groups with that signature,
986 // but not other linkonce sections with that signature. We also use
987 // the full name of the linkonce section as a normal section group
988 // signature.
989
990 template<int size, bool big_endian>
991 bool
992 Sized_relobj_file<size, big_endian>::include_linkonce_section(
993 Layout* layout,
994 unsigned int index,
995 const char* name,
996 const elfcpp::Shdr<size, big_endian>& shdr)
997 {
998 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
999 // In general the symbol name we want will be the string following
1000 // the last '.'. However, we have to handle the case of
1001 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1002 // some versions of gcc. So we use a heuristic: if the name starts
1003 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1004 // we look for the last '.'. We can't always simply skip
1005 // ".gnu.linkonce.X", because we have to deal with cases like
1006 // ".gnu.linkonce.d.rel.ro.local".
1007 const char* const linkonce_t = ".gnu.linkonce.t.";
1008 const char* symname;
1009 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1010 symname = name + strlen(linkonce_t);
1011 else
1012 symname = strrchr(name, '.') + 1;
1013 std::string sig1(symname);
1014 std::string sig2(name);
1015 Kept_section* kept1;
1016 Kept_section* kept2;
1017 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1018 false, &kept1);
1019 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1020 true, &kept2);
1021
1022 if (!include2)
1023 {
1024 // We are not including this section because we already saw the
1025 // name of the section as a signature. This normally implies
1026 // that the kept section is another linkonce section. If it is
1027 // the same size, record it as the section which corresponds to
1028 // this one.
1029 if (kept2->object() != NULL
1030 && !kept2->is_comdat()
1031 && kept2->linkonce_size() == sh_size)
1032 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1033 }
1034 else if (!include1)
1035 {
1036 // The section is being discarded on the basis of its symbol
1037 // name. This means that the corresponding kept section was
1038 // part of a comdat group, and it will be difficult to identify
1039 // the specific section within that group that corresponds to
1040 // this linkonce section. We'll handle the simple case where
1041 // the group has only one member section. Otherwise, it's not
1042 // worth the effort.
1043 unsigned int kept_shndx;
1044 uint64_t kept_size;
1045 if (kept1->object() != NULL
1046 && kept1->is_comdat()
1047 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1048 && kept_size == sh_size)
1049 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1050 }
1051 else
1052 {
1053 kept1->set_linkonce_size(sh_size);
1054 kept2->set_linkonce_size(sh_size);
1055 }
1056
1057 return include1 && include2;
1058 }
1059
1060 // Layout an input section.
1061
1062 template<int size, bool big_endian>
1063 inline void
1064 Sized_relobj_file<size, big_endian>::layout_section(
1065 Layout* layout,
1066 unsigned int shndx,
1067 const char* name,
1068 const typename This::Shdr& shdr,
1069 unsigned int reloc_shndx,
1070 unsigned int reloc_type)
1071 {
1072 off_t offset;
1073 Output_section* os = layout->layout(this, shndx, name, shdr,
1074 reloc_shndx, reloc_type, &offset);
1075
1076 this->output_sections()[shndx] = os;
1077 if (offset == -1)
1078 this->section_offsets()[shndx] = invalid_address;
1079 else
1080 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1081
1082 // If this section requires special handling, and if there are
1083 // relocs that apply to it, then we must do the special handling
1084 // before we apply the relocs.
1085 if (offset == -1 && reloc_shndx != 0)
1086 this->set_relocs_must_follow_section_writes();
1087 }
1088
1089 // Layout an input .eh_frame section.
1090
1091 template<int size, bool big_endian>
1092 void
1093 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1094 Layout* layout,
1095 const unsigned char* symbols_data,
1096 section_size_type symbols_size,
1097 const unsigned char* symbol_names_data,
1098 section_size_type symbol_names_size,
1099 unsigned int shndx,
1100 const typename This::Shdr& shdr,
1101 unsigned int reloc_shndx,
1102 unsigned int reloc_type)
1103 {
1104 gold_assert(this->has_eh_frame_);
1105
1106 off_t offset;
1107 Output_section* os = layout->layout_eh_frame(this,
1108 symbols_data,
1109 symbols_size,
1110 symbol_names_data,
1111 symbol_names_size,
1112 shndx,
1113 shdr,
1114 reloc_shndx,
1115 reloc_type,
1116 &offset);
1117 this->output_sections()[shndx] = os;
1118 if (os == NULL || offset == -1)
1119 {
1120 // An object can contain at most one section holding exception
1121 // frame information.
1122 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1123 this->discarded_eh_frame_shndx_ = shndx;
1124 this->section_offsets()[shndx] = invalid_address;
1125 }
1126 else
1127 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1128
1129 // If this section requires special handling, and if there are
1130 // relocs that aply to it, then we must do the special handling
1131 // before we apply the relocs.
1132 if (os != NULL && offset == -1 && reloc_shndx != 0)
1133 this->set_relocs_must_follow_section_writes();
1134 }
1135
1136 // Lay out the input sections. We walk through the sections and check
1137 // whether they should be included in the link. If they should, we
1138 // pass them to the Layout object, which will return an output section
1139 // and an offset.
1140 // During garbage collection (--gc-sections) and identical code folding
1141 // (--icf), this function is called twice. When it is called the first
1142 // time, it is for setting up some sections as roots to a work-list for
1143 // --gc-sections and to do comdat processing. Actual layout happens the
1144 // second time around after all the relevant sections have been determined.
1145 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1146 // set to true after the garbage collection worklist or identical code
1147 // folding is processed and the relevant sections to be kept are
1148 // determined. Then, this function is called again to layout the sections.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1153 Layout* layout,
1154 Read_symbols_data* sd)
1155 {
1156 const unsigned int shnum = this->shnum();
1157 bool is_gc_pass_one = ((parameters->options().gc_sections()
1158 && !symtab->gc()->is_worklist_ready())
1159 || (parameters->options().icf_enabled()
1160 && !symtab->icf()->is_icf_ready()));
1161
1162 bool is_gc_pass_two = ((parameters->options().gc_sections()
1163 && symtab->gc()->is_worklist_ready())
1164 || (parameters->options().icf_enabled()
1165 && symtab->icf()->is_icf_ready()));
1166
1167 bool is_gc_or_icf = (parameters->options().gc_sections()
1168 || parameters->options().icf_enabled());
1169
1170 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1171 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1172
1173 if (shnum == 0)
1174 return;
1175 Symbols_data* gc_sd = NULL;
1176 if (is_gc_pass_one)
1177 {
1178 // During garbage collection save the symbols data to use it when
1179 // re-entering this function.
1180 gc_sd = new Symbols_data;
1181 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1182 this->set_symbols_data(gc_sd);
1183 }
1184 else if (is_gc_pass_two)
1185 {
1186 gc_sd = this->get_symbols_data();
1187 }
1188
1189 const unsigned char* section_headers_data = NULL;
1190 section_size_type section_names_size;
1191 const unsigned char* symbols_data = NULL;
1192 section_size_type symbols_size;
1193 const unsigned char* symbol_names_data = NULL;
1194 section_size_type symbol_names_size;
1195
1196 if (is_gc_or_icf)
1197 {
1198 section_headers_data = gc_sd->section_headers_data;
1199 section_names_size = gc_sd->section_names_size;
1200 symbols_data = gc_sd->symbols_data;
1201 symbols_size = gc_sd->symbols_size;
1202 symbol_names_data = gc_sd->symbol_names_data;
1203 symbol_names_size = gc_sd->symbol_names_size;
1204 }
1205 else
1206 {
1207 section_headers_data = sd->section_headers->data();
1208 section_names_size = sd->section_names_size;
1209 if (sd->symbols != NULL)
1210 symbols_data = sd->symbols->data();
1211 symbols_size = sd->symbols_size;
1212 if (sd->symbol_names != NULL)
1213 symbol_names_data = sd->symbol_names->data();
1214 symbol_names_size = sd->symbol_names_size;
1215 }
1216
1217 // Get the section headers.
1218 const unsigned char* shdrs = section_headers_data;
1219 const unsigned char* pshdrs;
1220
1221 // Get the section names.
1222 const unsigned char* pnamesu = (is_gc_or_icf)
1223 ? gc_sd->section_names_data
1224 : sd->section_names->data();
1225
1226 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1227
1228 // If any input files have been claimed by plugins, we need to defer
1229 // actual layout until the replacement files have arrived.
1230 const bool should_defer_layout =
1231 (parameters->options().has_plugins()
1232 && parameters->options().plugins()->should_defer_layout());
1233 unsigned int num_sections_to_defer = 0;
1234
1235 // For each section, record the index of the reloc section if any.
1236 // Use 0 to mean that there is no reloc section, -1U to mean that
1237 // there is more than one.
1238 std::vector<unsigned int> reloc_shndx(shnum, 0);
1239 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1240 // Skip the first, dummy, section.
1241 pshdrs = shdrs + This::shdr_size;
1242 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1243 {
1244 typename This::Shdr shdr(pshdrs);
1245
1246 // Count the number of sections whose layout will be deferred.
1247 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1248 ++num_sections_to_defer;
1249
1250 unsigned int sh_type = shdr.get_sh_type();
1251 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1252 {
1253 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1254 if (target_shndx == 0 || target_shndx >= shnum)
1255 {
1256 this->error(_("relocation section %u has bad info %u"),
1257 i, target_shndx);
1258 continue;
1259 }
1260
1261 if (reloc_shndx[target_shndx] != 0)
1262 reloc_shndx[target_shndx] = -1U;
1263 else
1264 {
1265 reloc_shndx[target_shndx] = i;
1266 reloc_type[target_shndx] = sh_type;
1267 }
1268 }
1269 }
1270
1271 Output_sections& out_sections(this->output_sections());
1272 std::vector<Address>& out_section_offsets(this->section_offsets());
1273
1274 if (!is_gc_pass_two)
1275 {
1276 out_sections.resize(shnum);
1277 out_section_offsets.resize(shnum);
1278 }
1279
1280 // If we are only linking for symbols, then there is nothing else to
1281 // do here.
1282 if (this->input_file()->just_symbols())
1283 {
1284 if (!is_gc_pass_two)
1285 {
1286 delete sd->section_headers;
1287 sd->section_headers = NULL;
1288 delete sd->section_names;
1289 sd->section_names = NULL;
1290 }
1291 return;
1292 }
1293
1294 if (num_sections_to_defer > 0)
1295 {
1296 parameters->options().plugins()->add_deferred_layout_object(this);
1297 this->deferred_layout_.reserve(num_sections_to_defer);
1298 }
1299
1300 // Whether we've seen a .note.GNU-stack section.
1301 bool seen_gnu_stack = false;
1302 // The flags of a .note.GNU-stack section.
1303 uint64_t gnu_stack_flags = 0;
1304
1305 // Keep track of which sections to omit.
1306 std::vector<bool> omit(shnum, false);
1307
1308 // Keep track of reloc sections when emitting relocations.
1309 const bool relocatable = parameters->options().relocatable();
1310 const bool emit_relocs = (relocatable
1311 || parameters->options().emit_relocs());
1312 std::vector<unsigned int> reloc_sections;
1313
1314 // Keep track of .eh_frame sections.
1315 std::vector<unsigned int> eh_frame_sections;
1316
1317 // Skip the first, dummy, section.
1318 pshdrs = shdrs + This::shdr_size;
1319 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1320 {
1321 typename This::Shdr shdr(pshdrs);
1322
1323 if (shdr.get_sh_name() >= section_names_size)
1324 {
1325 this->error(_("bad section name offset for section %u: %lu"),
1326 i, static_cast<unsigned long>(shdr.get_sh_name()));
1327 return;
1328 }
1329
1330 const char* name = pnames + shdr.get_sh_name();
1331
1332 if (!is_gc_pass_two)
1333 {
1334 if (this->handle_gnu_warning_section(name, i, symtab))
1335 {
1336 if (!relocatable && !parameters->options().shared())
1337 omit[i] = true;
1338 }
1339
1340 // The .note.GNU-stack section is special. It gives the
1341 // protection flags that this object file requires for the stack
1342 // in memory.
1343 if (strcmp(name, ".note.GNU-stack") == 0)
1344 {
1345 seen_gnu_stack = true;
1346 gnu_stack_flags |= shdr.get_sh_flags();
1347 omit[i] = true;
1348 }
1349
1350 // The .note.GNU-split-stack section is also special. It
1351 // indicates that the object was compiled with
1352 // -fsplit-stack.
1353 if (this->handle_split_stack_section(name))
1354 {
1355 if (!relocatable && !parameters->options().shared())
1356 omit[i] = true;
1357 }
1358
1359 // Skip attributes section.
1360 if (parameters->target().is_attributes_section(name))
1361 {
1362 omit[i] = true;
1363 }
1364
1365 bool discard = omit[i];
1366 if (!discard)
1367 {
1368 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1369 {
1370 if (!this->include_section_group(symtab, layout, i, name,
1371 shdrs, pnames,
1372 section_names_size,
1373 &omit))
1374 discard = true;
1375 }
1376 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1377 && Layout::is_linkonce(name))
1378 {
1379 if (!this->include_linkonce_section(layout, i, name, shdr))
1380 discard = true;
1381 }
1382 }
1383
1384 // Add the section to the incremental inputs layout.
1385 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1386 if (incremental_inputs != NULL
1387 && !discard
1388 && can_incremental_update(shdr.get_sh_type()))
1389 {
1390 off_t sh_size = shdr.get_sh_size();
1391 section_size_type uncompressed_size;
1392 if (this->section_is_compressed(i, &uncompressed_size))
1393 sh_size = uncompressed_size;
1394 incremental_inputs->report_input_section(this, i, name, sh_size);
1395 }
1396
1397 if (discard)
1398 {
1399 // Do not include this section in the link.
1400 out_sections[i] = NULL;
1401 out_section_offsets[i] = invalid_address;
1402 continue;
1403 }
1404 }
1405
1406 if (is_gc_pass_one && parameters->options().gc_sections())
1407 {
1408 if (this->is_section_name_included(name)
1409 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1410 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1411 {
1412 symtab->gc()->worklist().push(Section_id(this, i));
1413 }
1414 // If the section name XXX can be represented as a C identifier
1415 // it cannot be discarded if there are references to
1416 // __start_XXX and __stop_XXX symbols. These need to be
1417 // specially handled.
1418 if (is_cident(name))
1419 {
1420 symtab->gc()->add_cident_section(name, Section_id(this, i));
1421 }
1422 }
1423
1424 // When doing a relocatable link we are going to copy input
1425 // reloc sections into the output. We only want to copy the
1426 // ones associated with sections which are not being discarded.
1427 // However, we don't know that yet for all sections. So save
1428 // reloc sections and process them later. Garbage collection is
1429 // not triggered when relocatable code is desired.
1430 if (emit_relocs
1431 && (shdr.get_sh_type() == elfcpp::SHT_REL
1432 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1433 {
1434 reloc_sections.push_back(i);
1435 continue;
1436 }
1437
1438 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1439 continue;
1440
1441 // The .eh_frame section is special. It holds exception frame
1442 // information that we need to read in order to generate the
1443 // exception frame header. We process these after all the other
1444 // sections so that the exception frame reader can reliably
1445 // determine which sections are being discarded, and discard the
1446 // corresponding information.
1447 if (!relocatable
1448 && strcmp(name, ".eh_frame") == 0
1449 && this->check_eh_frame_flags(&shdr))
1450 {
1451 if (is_gc_pass_one)
1452 {
1453 out_sections[i] = reinterpret_cast<Output_section*>(1);
1454 out_section_offsets[i] = invalid_address;
1455 }
1456 else if (should_defer_layout)
1457 this->deferred_layout_.push_back(Deferred_layout(i, name,
1458 pshdrs,
1459 reloc_shndx[i],
1460 reloc_type[i]));
1461 else
1462 eh_frame_sections.push_back(i);
1463 continue;
1464 }
1465
1466 if (is_gc_pass_two && parameters->options().gc_sections())
1467 {
1468 // This is executed during the second pass of garbage
1469 // collection. do_layout has been called before and some
1470 // sections have been already discarded. Simply ignore
1471 // such sections this time around.
1472 if (out_sections[i] == NULL)
1473 {
1474 gold_assert(out_section_offsets[i] == invalid_address);
1475 continue;
1476 }
1477 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1478 && symtab->gc()->is_section_garbage(this, i))
1479 {
1480 if (parameters->options().print_gc_sections())
1481 gold_info(_("%s: removing unused section from '%s'"
1482 " in file '%s'"),
1483 program_name, this->section_name(i).c_str(),
1484 this->name().c_str());
1485 out_sections[i] = NULL;
1486 out_section_offsets[i] = invalid_address;
1487 continue;
1488 }
1489 }
1490
1491 if (is_gc_pass_two && parameters->options().icf_enabled())
1492 {
1493 if (out_sections[i] == NULL)
1494 {
1495 gold_assert(out_section_offsets[i] == invalid_address);
1496 continue;
1497 }
1498 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1499 && symtab->icf()->is_section_folded(this, i))
1500 {
1501 if (parameters->options().print_icf_sections())
1502 {
1503 Section_id folded =
1504 symtab->icf()->get_folded_section(this, i);
1505 Relobj* folded_obj =
1506 reinterpret_cast<Relobj*>(folded.first);
1507 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1508 "into '%s' in file '%s'"),
1509 program_name, this->section_name(i).c_str(),
1510 this->name().c_str(),
1511 folded_obj->section_name(folded.second).c_str(),
1512 folded_obj->name().c_str());
1513 }
1514 out_sections[i] = NULL;
1515 out_section_offsets[i] = invalid_address;
1516 continue;
1517 }
1518 }
1519
1520 // Defer layout here if input files are claimed by plugins. When gc
1521 // is turned on this function is called twice. For the second call
1522 // should_defer_layout should be false.
1523 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1524 {
1525 gold_assert(!is_gc_pass_two);
1526 this->deferred_layout_.push_back(Deferred_layout(i, name,
1527 pshdrs,
1528 reloc_shndx[i],
1529 reloc_type[i]));
1530 // Put dummy values here; real values will be supplied by
1531 // do_layout_deferred_sections.
1532 out_sections[i] = reinterpret_cast<Output_section*>(2);
1533 out_section_offsets[i] = invalid_address;
1534 continue;
1535 }
1536
1537 // During gc_pass_two if a section that was previously deferred is
1538 // found, do not layout the section as layout_deferred_sections will
1539 // do it later from gold.cc.
1540 if (is_gc_pass_two
1541 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1542 continue;
1543
1544 if (is_gc_pass_one)
1545 {
1546 // This is during garbage collection. The out_sections are
1547 // assigned in the second call to this function.
1548 out_sections[i] = reinterpret_cast<Output_section*>(1);
1549 out_section_offsets[i] = invalid_address;
1550 }
1551 else
1552 {
1553 // When garbage collection is switched on the actual layout
1554 // only happens in the second call.
1555 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1556 reloc_type[i]);
1557 }
1558 }
1559
1560 if (!is_gc_pass_two)
1561 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1562
1563 // When doing a relocatable link handle the reloc sections at the
1564 // end. Garbage collection and Identical Code Folding is not
1565 // turned on for relocatable code.
1566 if (emit_relocs)
1567 this->size_relocatable_relocs();
1568
1569 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1570
1571 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1572 p != reloc_sections.end();
1573 ++p)
1574 {
1575 unsigned int i = *p;
1576 const unsigned char* pshdr;
1577 pshdr = section_headers_data + i * This::shdr_size;
1578 typename This::Shdr shdr(pshdr);
1579
1580 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1581 if (data_shndx >= shnum)
1582 {
1583 // We already warned about this above.
1584 continue;
1585 }
1586
1587 Output_section* data_section = out_sections[data_shndx];
1588 if (data_section == reinterpret_cast<Output_section*>(2))
1589 {
1590 // The layout for the data section was deferred, so we need
1591 // to defer the relocation section, too.
1592 const char* name = pnames + shdr.get_sh_name();
1593 this->deferred_layout_relocs_.push_back(
1594 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1595 out_sections[i] = reinterpret_cast<Output_section*>(2);
1596 out_section_offsets[i] = invalid_address;
1597 continue;
1598 }
1599 if (data_section == NULL)
1600 {
1601 out_sections[i] = NULL;
1602 out_section_offsets[i] = invalid_address;
1603 continue;
1604 }
1605
1606 Relocatable_relocs* rr = new Relocatable_relocs();
1607 this->set_relocatable_relocs(i, rr);
1608
1609 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1610 rr);
1611 out_sections[i] = os;
1612 out_section_offsets[i] = invalid_address;
1613 }
1614
1615 // Handle the .eh_frame sections at the end.
1616 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1617 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1618 p != eh_frame_sections.end();
1619 ++p)
1620 {
1621 unsigned int i = *p;
1622 const unsigned char* pshdr;
1623 pshdr = section_headers_data + i * This::shdr_size;
1624 typename This::Shdr shdr(pshdr);
1625
1626 this->layout_eh_frame_section(layout,
1627 symbols_data,
1628 symbols_size,
1629 symbol_names_data,
1630 symbol_names_size,
1631 i,
1632 shdr,
1633 reloc_shndx[i],
1634 reloc_type[i]);
1635 }
1636
1637 if (is_gc_pass_two)
1638 {
1639 delete[] gc_sd->section_headers_data;
1640 delete[] gc_sd->section_names_data;
1641 delete[] gc_sd->symbols_data;
1642 delete[] gc_sd->symbol_names_data;
1643 this->set_symbols_data(NULL);
1644 }
1645 else
1646 {
1647 delete sd->section_headers;
1648 sd->section_headers = NULL;
1649 delete sd->section_names;
1650 sd->section_names = NULL;
1651 }
1652 }
1653
1654 // Layout sections whose layout was deferred while waiting for
1655 // input files from a plugin.
1656
1657 template<int size, bool big_endian>
1658 void
1659 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1660 {
1661 typename std::vector<Deferred_layout>::iterator deferred;
1662
1663 for (deferred = this->deferred_layout_.begin();
1664 deferred != this->deferred_layout_.end();
1665 ++deferred)
1666 {
1667 typename This::Shdr shdr(deferred->shdr_data_);
1668 // If the section is not included, it is because the garbage collector
1669 // decided it is not needed. Avoid reverting that decision.
1670 if (!this->is_section_included(deferred->shndx_))
1671 continue;
1672
1673 if (parameters->options().relocatable()
1674 || deferred->name_ != ".eh_frame"
1675 || !this->check_eh_frame_flags(&shdr))
1676 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1677 shdr, deferred->reloc_shndx_,
1678 deferred->reloc_type_);
1679 else
1680 {
1681 // Reading the symbols again here may be slow.
1682 Read_symbols_data sd;
1683 this->read_symbols(&sd);
1684 this->layout_eh_frame_section(layout,
1685 sd.symbols->data(),
1686 sd.symbols_size,
1687 sd.symbol_names->data(),
1688 sd.symbol_names_size,
1689 deferred->shndx_,
1690 shdr,
1691 deferred->reloc_shndx_,
1692 deferred->reloc_type_);
1693 }
1694 }
1695
1696 this->deferred_layout_.clear();
1697
1698 // Now handle the deferred relocation sections.
1699
1700 Output_sections& out_sections(this->output_sections());
1701 std::vector<Address>& out_section_offsets(this->section_offsets());
1702
1703 for (deferred = this->deferred_layout_relocs_.begin();
1704 deferred != this->deferred_layout_relocs_.end();
1705 ++deferred)
1706 {
1707 unsigned int shndx = deferred->shndx_;
1708 typename This::Shdr shdr(deferred->shdr_data_);
1709 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1710
1711 Output_section* data_section = out_sections[data_shndx];
1712 if (data_section == NULL)
1713 {
1714 out_sections[shndx] = NULL;
1715 out_section_offsets[shndx] = invalid_address;
1716 continue;
1717 }
1718
1719 Relocatable_relocs* rr = new Relocatable_relocs();
1720 this->set_relocatable_relocs(shndx, rr);
1721
1722 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1723 data_section, rr);
1724 out_sections[shndx] = os;
1725 out_section_offsets[shndx] = invalid_address;
1726 }
1727 }
1728
1729 // Add the symbols to the symbol table.
1730
1731 template<int size, bool big_endian>
1732 void
1733 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1734 Read_symbols_data* sd,
1735 Layout*)
1736 {
1737 if (sd->symbols == NULL)
1738 {
1739 gold_assert(sd->symbol_names == NULL);
1740 return;
1741 }
1742
1743 const int sym_size = This::sym_size;
1744 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1745 / sym_size);
1746 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1747 {
1748 this->error(_("size of symbols is not multiple of symbol size"));
1749 return;
1750 }
1751
1752 this->symbols_.resize(symcount);
1753
1754 const char* sym_names =
1755 reinterpret_cast<const char*>(sd->symbol_names->data());
1756 symtab->add_from_relobj(this,
1757 sd->symbols->data() + sd->external_symbols_offset,
1758 symcount, this->local_symbol_count_,
1759 sym_names, sd->symbol_names_size,
1760 &this->symbols_,
1761 &this->defined_count_);
1762
1763 delete sd->symbols;
1764 sd->symbols = NULL;
1765 delete sd->symbol_names;
1766 sd->symbol_names = NULL;
1767 }
1768
1769 // Find out if this object, that is a member of a lib group, should be included
1770 // in the link. We check every symbol defined by this object. If the symbol
1771 // table has a strong undefined reference to that symbol, we have to include
1772 // the object.
1773
1774 template<int size, bool big_endian>
1775 Archive::Should_include
1776 Sized_relobj_file<size, big_endian>::do_should_include_member(
1777 Symbol_table* symtab,
1778 Layout* layout,
1779 Read_symbols_data* sd,
1780 std::string* why)
1781 {
1782 char* tmpbuf = NULL;
1783 size_t tmpbuflen = 0;
1784 const char* sym_names =
1785 reinterpret_cast<const char*>(sd->symbol_names->data());
1786 const unsigned char* syms =
1787 sd->symbols->data() + sd->external_symbols_offset;
1788 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1789 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1790 / sym_size);
1791
1792 const unsigned char* p = syms;
1793
1794 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1795 {
1796 elfcpp::Sym<size, big_endian> sym(p);
1797 unsigned int st_shndx = sym.get_st_shndx();
1798 if (st_shndx == elfcpp::SHN_UNDEF)
1799 continue;
1800
1801 unsigned int st_name = sym.get_st_name();
1802 const char* name = sym_names + st_name;
1803 Symbol* symbol;
1804 Archive::Should_include t = Archive::should_include_member(symtab,
1805 layout,
1806 name,
1807 &symbol, why,
1808 &tmpbuf,
1809 &tmpbuflen);
1810 if (t == Archive::SHOULD_INCLUDE_YES)
1811 {
1812 if (tmpbuf != NULL)
1813 free(tmpbuf);
1814 return t;
1815 }
1816 }
1817 if (tmpbuf != NULL)
1818 free(tmpbuf);
1819 return Archive::SHOULD_INCLUDE_UNKNOWN;
1820 }
1821
1822 // Iterate over global defined symbols, calling a visitor class V for each.
1823
1824 template<int size, bool big_endian>
1825 void
1826 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1827 Read_symbols_data* sd,
1828 Library_base::Symbol_visitor_base* v)
1829 {
1830 const char* sym_names =
1831 reinterpret_cast<const char*>(sd->symbol_names->data());
1832 const unsigned char* syms =
1833 sd->symbols->data() + sd->external_symbols_offset;
1834 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1835 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1836 / sym_size);
1837 const unsigned char* p = syms;
1838
1839 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1840 {
1841 elfcpp::Sym<size, big_endian> sym(p);
1842 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1843 v->visit(sym_names + sym.get_st_name());
1844 }
1845 }
1846
1847 // Return whether the local symbol SYMNDX has a PLT offset.
1848
1849 template<int size, bool big_endian>
1850 bool
1851 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1852 unsigned int symndx) const
1853 {
1854 typename Local_plt_offsets::const_iterator p =
1855 this->local_plt_offsets_.find(symndx);
1856 return p != this->local_plt_offsets_.end();
1857 }
1858
1859 // Get the PLT offset of a local symbol.
1860
1861 template<int size, bool big_endian>
1862 unsigned int
1863 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
1864 unsigned int symndx) const
1865 {
1866 typename Local_plt_offsets::const_iterator p =
1867 this->local_plt_offsets_.find(symndx);
1868 gold_assert(p != this->local_plt_offsets_.end());
1869 return p->second;
1870 }
1871
1872 // Set the PLT offset of a local symbol.
1873
1874 template<int size, bool big_endian>
1875 void
1876 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1877 unsigned int symndx, unsigned int plt_offset)
1878 {
1879 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1880 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1881 gold_assert(ins.second);
1882 }
1883
1884 // First pass over the local symbols. Here we add their names to
1885 // *POOL and *DYNPOOL, and we store the symbol value in
1886 // THIS->LOCAL_VALUES_. This function is always called from a
1887 // singleton thread. This is followed by a call to
1888 // finalize_local_symbols.
1889
1890 template<int size, bool big_endian>
1891 void
1892 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1893 Stringpool* dynpool)
1894 {
1895 gold_assert(this->symtab_shndx_ != -1U);
1896 if (this->symtab_shndx_ == 0)
1897 {
1898 // This object has no symbols. Weird but legal.
1899 return;
1900 }
1901
1902 // Read the symbol table section header.
1903 const unsigned int symtab_shndx = this->symtab_shndx_;
1904 typename This::Shdr symtabshdr(this,
1905 this->elf_file_.section_header(symtab_shndx));
1906 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1907
1908 // Read the local symbols.
1909 const int sym_size = This::sym_size;
1910 const unsigned int loccount = this->local_symbol_count_;
1911 gold_assert(loccount == symtabshdr.get_sh_info());
1912 off_t locsize = loccount * sym_size;
1913 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1914 locsize, true, true);
1915
1916 // Read the symbol names.
1917 const unsigned int strtab_shndx =
1918 this->adjust_shndx(symtabshdr.get_sh_link());
1919 section_size_type strtab_size;
1920 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1921 &strtab_size,
1922 true);
1923 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1924
1925 // Loop over the local symbols.
1926
1927 const Output_sections& out_sections(this->output_sections());
1928 unsigned int shnum = this->shnum();
1929 unsigned int count = 0;
1930 unsigned int dyncount = 0;
1931 // Skip the first, dummy, symbol.
1932 psyms += sym_size;
1933 bool strip_all = parameters->options().strip_all();
1934 bool discard_all = parameters->options().discard_all();
1935 bool discard_locals = parameters->options().discard_locals();
1936 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1937 {
1938 elfcpp::Sym<size, big_endian> sym(psyms);
1939
1940 Symbol_value<size>& lv(this->local_values_[i]);
1941
1942 bool is_ordinary;
1943 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1944 &is_ordinary);
1945 lv.set_input_shndx(shndx, is_ordinary);
1946
1947 if (sym.get_st_type() == elfcpp::STT_SECTION)
1948 lv.set_is_section_symbol();
1949 else if (sym.get_st_type() == elfcpp::STT_TLS)
1950 lv.set_is_tls_symbol();
1951 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1952 lv.set_is_ifunc_symbol();
1953
1954 // Save the input symbol value for use in do_finalize_local_symbols().
1955 lv.set_input_value(sym.get_st_value());
1956
1957 // Decide whether this symbol should go into the output file.
1958
1959 if ((shndx < shnum && out_sections[shndx] == NULL)
1960 || shndx == this->discarded_eh_frame_shndx_)
1961 {
1962 lv.set_no_output_symtab_entry();
1963 gold_assert(!lv.needs_output_dynsym_entry());
1964 continue;
1965 }
1966
1967 if (sym.get_st_type() == elfcpp::STT_SECTION)
1968 {
1969 lv.set_no_output_symtab_entry();
1970 gold_assert(!lv.needs_output_dynsym_entry());
1971 continue;
1972 }
1973
1974 if (sym.get_st_name() >= strtab_size)
1975 {
1976 this->error(_("local symbol %u section name out of range: %u >= %u"),
1977 i, sym.get_st_name(),
1978 static_cast<unsigned int>(strtab_size));
1979 lv.set_no_output_symtab_entry();
1980 continue;
1981 }
1982
1983 const char* name = pnames + sym.get_st_name();
1984
1985 // If needed, add the symbol to the dynamic symbol table string pool.
1986 if (lv.needs_output_dynsym_entry())
1987 {
1988 dynpool->add(name, true, NULL);
1989 ++dyncount;
1990 }
1991
1992 if (strip_all
1993 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1994 {
1995 lv.set_no_output_symtab_entry();
1996 continue;
1997 }
1998
1999 // If --discard-locals option is used, discard all temporary local
2000 // symbols. These symbols start with system-specific local label
2001 // prefixes, typically .L for ELF system. We want to be compatible
2002 // with GNU ld so here we essentially use the same check in
2003 // bfd_is_local_label(). The code is different because we already
2004 // know that:
2005 //
2006 // - the symbol is local and thus cannot have global or weak binding.
2007 // - the symbol is not a section symbol.
2008 // - the symbol has a name.
2009 //
2010 // We do not discard a symbol if it needs a dynamic symbol entry.
2011 if (discard_locals
2012 && sym.get_st_type() != elfcpp::STT_FILE
2013 && !lv.needs_output_dynsym_entry()
2014 && lv.may_be_discarded_from_output_symtab()
2015 && parameters->target().is_local_label_name(name))
2016 {
2017 lv.set_no_output_symtab_entry();
2018 continue;
2019 }
2020
2021 // Discard the local symbol if -retain_symbols_file is specified
2022 // and the local symbol is not in that file.
2023 if (!parameters->options().should_retain_symbol(name))
2024 {
2025 lv.set_no_output_symtab_entry();
2026 continue;
2027 }
2028
2029 // Add the symbol to the symbol table string pool.
2030 pool->add(name, true, NULL);
2031 ++count;
2032 }
2033
2034 this->output_local_symbol_count_ = count;
2035 this->output_local_dynsym_count_ = dyncount;
2036 }
2037
2038 // Compute the final value of a local symbol.
2039
2040 template<int size, bool big_endian>
2041 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2042 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2043 unsigned int r_sym,
2044 const Symbol_value<size>* lv_in,
2045 Symbol_value<size>* lv_out,
2046 bool relocatable,
2047 const Output_sections& out_sections,
2048 const std::vector<Address>& out_offsets,
2049 const Symbol_table* symtab)
2050 {
2051 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2052 // we may have a memory leak.
2053 gold_assert(lv_out->has_output_value());
2054
2055 bool is_ordinary;
2056 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2057
2058 // Set the output symbol value.
2059
2060 if (!is_ordinary)
2061 {
2062 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2063 lv_out->set_output_value(lv_in->input_value());
2064 else
2065 {
2066 this->error(_("unknown section index %u for local symbol %u"),
2067 shndx, r_sym);
2068 lv_out->set_output_value(0);
2069 return This::CFLV_ERROR;
2070 }
2071 }
2072 else
2073 {
2074 if (shndx >= this->shnum())
2075 {
2076 this->error(_("local symbol %u section index %u out of range"),
2077 r_sym, shndx);
2078 lv_out->set_output_value(0);
2079 return This::CFLV_ERROR;
2080 }
2081
2082 Output_section* os = out_sections[shndx];
2083 Address secoffset = out_offsets[shndx];
2084 if (symtab->is_section_folded(this, shndx))
2085 {
2086 gold_assert(os == NULL && secoffset == invalid_address);
2087 // Get the os of the section it is folded onto.
2088 Section_id folded = symtab->icf()->get_folded_section(this,
2089 shndx);
2090 gold_assert(folded.first != NULL);
2091 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2092 <Sized_relobj_file<size, big_endian>*>(folded.first);
2093 os = folded_obj->output_section(folded.second);
2094 gold_assert(os != NULL);
2095 secoffset = folded_obj->get_output_section_offset(folded.second);
2096
2097 // This could be a relaxed input section.
2098 if (secoffset == invalid_address)
2099 {
2100 const Output_relaxed_input_section* relaxed_section =
2101 os->find_relaxed_input_section(folded_obj, folded.second);
2102 gold_assert(relaxed_section != NULL);
2103 secoffset = relaxed_section->address() - os->address();
2104 }
2105 }
2106
2107 if (os == NULL)
2108 {
2109 // This local symbol belongs to a section we are discarding.
2110 // In some cases when applying relocations later, we will
2111 // attempt to match it to the corresponding kept section,
2112 // so we leave the input value unchanged here.
2113 return This::CFLV_DISCARDED;
2114 }
2115 else if (secoffset == invalid_address)
2116 {
2117 uint64_t start;
2118
2119 // This is a SHF_MERGE section or one which otherwise
2120 // requires special handling.
2121 if (shndx == this->discarded_eh_frame_shndx_)
2122 {
2123 // This local symbol belongs to a discarded .eh_frame
2124 // section. Just treat it like the case in which
2125 // os == NULL above.
2126 gold_assert(this->has_eh_frame_);
2127 return This::CFLV_DISCARDED;
2128 }
2129 else if (!lv_in->is_section_symbol())
2130 {
2131 // This is not a section symbol. We can determine
2132 // the final value now.
2133 lv_out->set_output_value(
2134 os->output_address(this, shndx, lv_in->input_value()));
2135 }
2136 else if (!os->find_starting_output_address(this, shndx, &start))
2137 {
2138 // This is a section symbol, but apparently not one in a
2139 // merged section. First check to see if this is a relaxed
2140 // input section. If so, use its address. Otherwise just
2141 // use the start of the output section. This happens with
2142 // relocatable links when the input object has section
2143 // symbols for arbitrary non-merge sections.
2144 const Output_section_data* posd =
2145 os->find_relaxed_input_section(this, shndx);
2146 if (posd != NULL)
2147 {
2148 Address relocatable_link_adjustment =
2149 relocatable ? os->address() : 0;
2150 lv_out->set_output_value(posd->address()
2151 - relocatable_link_adjustment);
2152 }
2153 else
2154 lv_out->set_output_value(os->address());
2155 }
2156 else
2157 {
2158 // We have to consider the addend to determine the
2159 // value to use in a relocation. START is the start
2160 // of this input section. If we are doing a relocatable
2161 // link, use offset from start output section instead of
2162 // address.
2163 Address adjusted_start =
2164 relocatable ? start - os->address() : start;
2165 Merged_symbol_value<size>* msv =
2166 new Merged_symbol_value<size>(lv_in->input_value(),
2167 adjusted_start);
2168 lv_out->set_merged_symbol_value(msv);
2169 }
2170 }
2171 else if (lv_in->is_tls_symbol())
2172 lv_out->set_output_value(os->tls_offset()
2173 + secoffset
2174 + lv_in->input_value());
2175 else
2176 lv_out->set_output_value((relocatable ? 0 : os->address())
2177 + secoffset
2178 + lv_in->input_value());
2179 }
2180 return This::CFLV_OK;
2181 }
2182
2183 // Compute final local symbol value. R_SYM is the index of a local
2184 // symbol in symbol table. LV points to a symbol value, which is
2185 // expected to hold the input value and to be over-written by the
2186 // final value. SYMTAB points to a symbol table. Some targets may want
2187 // to know would-be-finalized local symbol values in relaxation.
2188 // Hence we provide this method. Since this method updates *LV, a
2189 // callee should make a copy of the original local symbol value and
2190 // use the copy instead of modifying an object's local symbols before
2191 // everything is finalized. The caller should also free up any allocated
2192 // memory in the return value in *LV.
2193 template<int size, bool big_endian>
2194 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2195 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2196 unsigned int r_sym,
2197 const Symbol_value<size>* lv_in,
2198 Symbol_value<size>* lv_out,
2199 const Symbol_table* symtab)
2200 {
2201 // This is just a wrapper of compute_final_local_value_internal.
2202 const bool relocatable = parameters->options().relocatable();
2203 const Output_sections& out_sections(this->output_sections());
2204 const std::vector<Address>& out_offsets(this->section_offsets());
2205 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2206 relocatable, out_sections,
2207 out_offsets, symtab);
2208 }
2209
2210 // Finalize the local symbols. Here we set the final value in
2211 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2212 // This function is always called from a singleton thread. The actual
2213 // output of the local symbols will occur in a separate task.
2214
2215 template<int size, bool big_endian>
2216 unsigned int
2217 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2218 unsigned int index,
2219 off_t off,
2220 Symbol_table* symtab)
2221 {
2222 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2223
2224 const unsigned int loccount = this->local_symbol_count_;
2225 this->local_symbol_offset_ = off;
2226
2227 const bool relocatable = parameters->options().relocatable();
2228 const Output_sections& out_sections(this->output_sections());
2229 const std::vector<Address>& out_offsets(this->section_offsets());
2230
2231 for (unsigned int i = 1; i < loccount; ++i)
2232 {
2233 Symbol_value<size>* lv = &this->local_values_[i];
2234
2235 Compute_final_local_value_status cflv_status =
2236 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2237 out_sections, out_offsets,
2238 symtab);
2239 switch (cflv_status)
2240 {
2241 case CFLV_OK:
2242 if (!lv->is_output_symtab_index_set())
2243 {
2244 lv->set_output_symtab_index(index);
2245 ++index;
2246 }
2247 break;
2248 case CFLV_DISCARDED:
2249 case CFLV_ERROR:
2250 // Do nothing.
2251 break;
2252 default:
2253 gold_unreachable();
2254 }
2255 }
2256 return index;
2257 }
2258
2259 // Set the output dynamic symbol table indexes for the local variables.
2260
2261 template<int size, bool big_endian>
2262 unsigned int
2263 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2264 unsigned int index)
2265 {
2266 const unsigned int loccount = this->local_symbol_count_;
2267 for (unsigned int i = 1; i < loccount; ++i)
2268 {
2269 Symbol_value<size>& lv(this->local_values_[i]);
2270 if (lv.needs_output_dynsym_entry())
2271 {
2272 lv.set_output_dynsym_index(index);
2273 ++index;
2274 }
2275 }
2276 return index;
2277 }
2278
2279 // Set the offset where local dynamic symbol information will be stored.
2280 // Returns the count of local symbols contributed to the symbol table by
2281 // this object.
2282
2283 template<int size, bool big_endian>
2284 unsigned int
2285 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2286 {
2287 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2288 this->local_dynsym_offset_ = off;
2289 return this->output_local_dynsym_count_;
2290 }
2291
2292 // If Symbols_data is not NULL get the section flags from here otherwise
2293 // get it from the file.
2294
2295 template<int size, bool big_endian>
2296 uint64_t
2297 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2298 {
2299 Symbols_data* sd = this->get_symbols_data();
2300 if (sd != NULL)
2301 {
2302 const unsigned char* pshdrs = sd->section_headers_data
2303 + This::shdr_size * shndx;
2304 typename This::Shdr shdr(pshdrs);
2305 return shdr.get_sh_flags();
2306 }
2307 // If sd is NULL, read the section header from the file.
2308 return this->elf_file_.section_flags(shndx);
2309 }
2310
2311 // Get the section's ent size from Symbols_data. Called by get_section_contents
2312 // in icf.cc
2313
2314 template<int size, bool big_endian>
2315 uint64_t
2316 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2317 {
2318 Symbols_data* sd = this->get_symbols_data();
2319 gold_assert(sd != NULL);
2320
2321 const unsigned char* pshdrs = sd->section_headers_data
2322 + This::shdr_size * shndx;
2323 typename This::Shdr shdr(pshdrs);
2324 return shdr.get_sh_entsize();
2325 }
2326
2327 // Write out the local symbols.
2328
2329 template<int size, bool big_endian>
2330 void
2331 Sized_relobj_file<size, big_endian>::write_local_symbols(
2332 Output_file* of,
2333 const Stringpool* sympool,
2334 const Stringpool* dynpool,
2335 Output_symtab_xindex* symtab_xindex,
2336 Output_symtab_xindex* dynsym_xindex,
2337 off_t symtab_off)
2338 {
2339 const bool strip_all = parameters->options().strip_all();
2340 if (strip_all)
2341 {
2342 if (this->output_local_dynsym_count_ == 0)
2343 return;
2344 this->output_local_symbol_count_ = 0;
2345 }
2346
2347 gold_assert(this->symtab_shndx_ != -1U);
2348 if (this->symtab_shndx_ == 0)
2349 {
2350 // This object has no symbols. Weird but legal.
2351 return;
2352 }
2353
2354 // Read the symbol table section header.
2355 const unsigned int symtab_shndx = this->symtab_shndx_;
2356 typename This::Shdr symtabshdr(this,
2357 this->elf_file_.section_header(symtab_shndx));
2358 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2359 const unsigned int loccount = this->local_symbol_count_;
2360 gold_assert(loccount == symtabshdr.get_sh_info());
2361
2362 // Read the local symbols.
2363 const int sym_size = This::sym_size;
2364 off_t locsize = loccount * sym_size;
2365 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2366 locsize, true, false);
2367
2368 // Read the symbol names.
2369 const unsigned int strtab_shndx =
2370 this->adjust_shndx(symtabshdr.get_sh_link());
2371 section_size_type strtab_size;
2372 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2373 &strtab_size,
2374 false);
2375 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2376
2377 // Get views into the output file for the portions of the symbol table
2378 // and the dynamic symbol table that we will be writing.
2379 off_t output_size = this->output_local_symbol_count_ * sym_size;
2380 unsigned char* oview = NULL;
2381 if (output_size > 0)
2382 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2383 output_size);
2384
2385 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2386 unsigned char* dyn_oview = NULL;
2387 if (dyn_output_size > 0)
2388 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2389 dyn_output_size);
2390
2391 const Output_sections out_sections(this->output_sections());
2392
2393 gold_assert(this->local_values_.size() == loccount);
2394
2395 unsigned char* ov = oview;
2396 unsigned char* dyn_ov = dyn_oview;
2397 psyms += sym_size;
2398 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2399 {
2400 elfcpp::Sym<size, big_endian> isym(psyms);
2401
2402 Symbol_value<size>& lv(this->local_values_[i]);
2403
2404 bool is_ordinary;
2405 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2406 &is_ordinary);
2407 if (is_ordinary)
2408 {
2409 gold_assert(st_shndx < out_sections.size());
2410 if (out_sections[st_shndx] == NULL)
2411 continue;
2412 st_shndx = out_sections[st_shndx]->out_shndx();
2413 if (st_shndx >= elfcpp::SHN_LORESERVE)
2414 {
2415 if (lv.has_output_symtab_entry())
2416 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2417 if (lv.has_output_dynsym_entry())
2418 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2419 st_shndx = elfcpp::SHN_XINDEX;
2420 }
2421 }
2422
2423 // Write the symbol to the output symbol table.
2424 if (lv.has_output_symtab_entry())
2425 {
2426 elfcpp::Sym_write<size, big_endian> osym(ov);
2427
2428 gold_assert(isym.get_st_name() < strtab_size);
2429 const char* name = pnames + isym.get_st_name();
2430 osym.put_st_name(sympool->get_offset(name));
2431 osym.put_st_value(this->local_values_[i].value(this, 0));
2432 osym.put_st_size(isym.get_st_size());
2433 osym.put_st_info(isym.get_st_info());
2434 osym.put_st_other(isym.get_st_other());
2435 osym.put_st_shndx(st_shndx);
2436
2437 ov += sym_size;
2438 }
2439
2440 // Write the symbol to the output dynamic symbol table.
2441 if (lv.has_output_dynsym_entry())
2442 {
2443 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2444 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2445
2446 gold_assert(isym.get_st_name() < strtab_size);
2447 const char* name = pnames + isym.get_st_name();
2448 osym.put_st_name(dynpool->get_offset(name));
2449 osym.put_st_value(this->local_values_[i].value(this, 0));
2450 osym.put_st_size(isym.get_st_size());
2451 osym.put_st_info(isym.get_st_info());
2452 osym.put_st_other(isym.get_st_other());
2453 osym.put_st_shndx(st_shndx);
2454
2455 dyn_ov += sym_size;
2456 }
2457 }
2458
2459
2460 if (output_size > 0)
2461 {
2462 gold_assert(ov - oview == output_size);
2463 of->write_output_view(symtab_off + this->local_symbol_offset_,
2464 output_size, oview);
2465 }
2466
2467 if (dyn_output_size > 0)
2468 {
2469 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2470 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2471 dyn_oview);
2472 }
2473 }
2474
2475 // Set *INFO to symbolic information about the offset OFFSET in the
2476 // section SHNDX. Return true if we found something, false if we
2477 // found nothing.
2478
2479 template<int size, bool big_endian>
2480 bool
2481 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2482 unsigned int shndx,
2483 off_t offset,
2484 Symbol_location_info* info)
2485 {
2486 if (this->symtab_shndx_ == 0)
2487 return false;
2488
2489 section_size_type symbols_size;
2490 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2491 &symbols_size,
2492 false);
2493
2494 unsigned int symbol_names_shndx =
2495 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2496 section_size_type names_size;
2497 const unsigned char* symbol_names_u =
2498 this->section_contents(symbol_names_shndx, &names_size, false);
2499 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2500
2501 const int sym_size = This::sym_size;
2502 const size_t count = symbols_size / sym_size;
2503
2504 const unsigned char* p = symbols;
2505 for (size_t i = 0; i < count; ++i, p += sym_size)
2506 {
2507 elfcpp::Sym<size, big_endian> sym(p);
2508
2509 if (sym.get_st_type() == elfcpp::STT_FILE)
2510 {
2511 if (sym.get_st_name() >= names_size)
2512 info->source_file = "(invalid)";
2513 else
2514 info->source_file = symbol_names + sym.get_st_name();
2515 continue;
2516 }
2517
2518 bool is_ordinary;
2519 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2520 &is_ordinary);
2521 if (is_ordinary
2522 && st_shndx == shndx
2523 && static_cast<off_t>(sym.get_st_value()) <= offset
2524 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2525 > offset))
2526 {
2527 if (sym.get_st_name() > names_size)
2528 info->enclosing_symbol_name = "(invalid)";
2529 else
2530 {
2531 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2532 if (parameters->options().do_demangle())
2533 {
2534 char* demangled_name = cplus_demangle(
2535 info->enclosing_symbol_name.c_str(),
2536 DMGL_ANSI | DMGL_PARAMS);
2537 if (demangled_name != NULL)
2538 {
2539 info->enclosing_symbol_name.assign(demangled_name);
2540 free(demangled_name);
2541 }
2542 }
2543 }
2544 return true;
2545 }
2546 }
2547
2548 return false;
2549 }
2550
2551 // Look for a kept section corresponding to the given discarded section,
2552 // and return its output address. This is used only for relocations in
2553 // debugging sections. If we can't find the kept section, return 0.
2554
2555 template<int size, bool big_endian>
2556 typename Sized_relobj_file<size, big_endian>::Address
2557 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2558 unsigned int shndx,
2559 bool* found) const
2560 {
2561 Relobj* kept_object;
2562 unsigned int kept_shndx;
2563 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2564 {
2565 Sized_relobj_file<size, big_endian>* kept_relobj =
2566 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2567 Output_section* os = kept_relobj->output_section(kept_shndx);
2568 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2569 if (os != NULL && offset != invalid_address)
2570 {
2571 *found = true;
2572 return os->address() + offset;
2573 }
2574 }
2575 *found = false;
2576 return 0;
2577 }
2578
2579 // Get symbol counts.
2580
2581 template<int size, bool big_endian>
2582 void
2583 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2584 const Symbol_table*,
2585 size_t* defined,
2586 size_t* used) const
2587 {
2588 *defined = this->defined_count_;
2589 size_t count = 0;
2590 for (typename Symbols::const_iterator p = this->symbols_.begin();
2591 p != this->symbols_.end();
2592 ++p)
2593 if (*p != NULL
2594 && (*p)->source() == Symbol::FROM_OBJECT
2595 && (*p)->object() == this
2596 && (*p)->is_defined())
2597 ++count;
2598 *used = count;
2599 }
2600
2601 // Return a view of the decompressed contents of a section. Set *PLEN
2602 // to the size. Set *IS_NEW to true if the contents need to be freed
2603 // by the caller.
2604
2605 template<int size, bool big_endian>
2606 const unsigned char*
2607 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2608 unsigned int shndx,
2609 section_size_type* plen,
2610 bool* is_new)
2611 {
2612 section_size_type buffer_size;
2613 const unsigned char* buffer = this->section_contents(shndx, &buffer_size,
2614 false);
2615
2616 if (this->compressed_sections_ == NULL)
2617 {
2618 *plen = buffer_size;
2619 *is_new = false;
2620 return buffer;
2621 }
2622
2623 Compressed_section_map::const_iterator p =
2624 this->compressed_sections_->find(shndx);
2625 if (p == this->compressed_sections_->end())
2626 {
2627 *plen = buffer_size;
2628 *is_new = false;
2629 return buffer;
2630 }
2631
2632 section_size_type uncompressed_size = p->second.size;
2633 if (p->second.contents != NULL)
2634 {
2635 *plen = uncompressed_size;
2636 *is_new = false;
2637 return p->second.contents;
2638 }
2639
2640 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2641 if (!decompress_input_section(buffer,
2642 buffer_size,
2643 uncompressed_data,
2644 uncompressed_size))
2645 this->error(_("could not decompress section %s"),
2646 this->do_section_name(shndx).c_str());
2647
2648 // We could cache the results in p->second.contents and store
2649 // false in *IS_NEW, but build_compressed_section_map() would
2650 // have done so if it had expected it to be profitable. If
2651 // we reach this point, we expect to need the contents only
2652 // once in this pass.
2653 *plen = uncompressed_size;
2654 *is_new = true;
2655 return uncompressed_data;
2656 }
2657
2658 // Discard any buffers of uncompressed sections. This is done
2659 // at the end of the Add_symbols task.
2660
2661 template<int size, bool big_endian>
2662 void
2663 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2664 {
2665 if (this->compressed_sections_ == NULL)
2666 return;
2667
2668 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2669 p != this->compressed_sections_->end();
2670 ++p)
2671 {
2672 if (p->second.contents != NULL)
2673 {
2674 delete[] p->second.contents;
2675 p->second.contents = NULL;
2676 }
2677 }
2678 }
2679
2680 // Input_objects methods.
2681
2682 // Add a regular relocatable object to the list. Return false if this
2683 // object should be ignored.
2684
2685 bool
2686 Input_objects::add_object(Object* obj)
2687 {
2688 // Print the filename if the -t/--trace option is selected.
2689 if (parameters->options().trace())
2690 gold_info("%s", obj->name().c_str());
2691
2692 if (!obj->is_dynamic())
2693 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2694 else
2695 {
2696 // See if this is a duplicate SONAME.
2697 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2698 const char* soname = dynobj->soname();
2699
2700 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2701 this->sonames_.insert(soname);
2702 if (!ins.second)
2703 {
2704 // We have already seen a dynamic object with this soname.
2705 return false;
2706 }
2707
2708 this->dynobj_list_.push_back(dynobj);
2709 }
2710
2711 // Add this object to the cross-referencer if requested.
2712 if (parameters->options().user_set_print_symbol_counts()
2713 || parameters->options().cref())
2714 {
2715 if (this->cref_ == NULL)
2716 this->cref_ = new Cref();
2717 this->cref_->add_object(obj);
2718 }
2719
2720 return true;
2721 }
2722
2723 // For each dynamic object, record whether we've seen all of its
2724 // explicit dependencies.
2725
2726 void
2727 Input_objects::check_dynamic_dependencies() const
2728 {
2729 bool issued_copy_dt_needed_error = false;
2730 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2731 p != this->dynobj_list_.end();
2732 ++p)
2733 {
2734 const Dynobj::Needed& needed((*p)->needed());
2735 bool found_all = true;
2736 Dynobj::Needed::const_iterator pneeded;
2737 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2738 {
2739 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2740 {
2741 found_all = false;
2742 break;
2743 }
2744 }
2745 (*p)->set_has_unknown_needed_entries(!found_all);
2746
2747 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2748 // that gold does not support. However, they cause no trouble
2749 // unless there is a DT_NEEDED entry that we don't know about;
2750 // warn only in that case.
2751 if (!found_all
2752 && !issued_copy_dt_needed_error
2753 && (parameters->options().copy_dt_needed_entries()
2754 || parameters->options().add_needed()))
2755 {
2756 const char* optname;
2757 if (parameters->options().copy_dt_needed_entries())
2758 optname = "--copy-dt-needed-entries";
2759 else
2760 optname = "--add-needed";
2761 gold_error(_("%s is not supported but is required for %s in %s"),
2762 optname, (*pneeded).c_str(), (*p)->name().c_str());
2763 issued_copy_dt_needed_error = true;
2764 }
2765 }
2766 }
2767
2768 // Start processing an archive.
2769
2770 void
2771 Input_objects::archive_start(Archive* archive)
2772 {
2773 if (parameters->options().user_set_print_symbol_counts()
2774 || parameters->options().cref())
2775 {
2776 if (this->cref_ == NULL)
2777 this->cref_ = new Cref();
2778 this->cref_->add_archive_start(archive);
2779 }
2780 }
2781
2782 // Stop processing an archive.
2783
2784 void
2785 Input_objects::archive_stop(Archive* archive)
2786 {
2787 if (parameters->options().user_set_print_symbol_counts()
2788 || parameters->options().cref())
2789 this->cref_->add_archive_stop(archive);
2790 }
2791
2792 // Print symbol counts
2793
2794 void
2795 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2796 {
2797 if (parameters->options().user_set_print_symbol_counts()
2798 && this->cref_ != NULL)
2799 this->cref_->print_symbol_counts(symtab);
2800 }
2801
2802 // Print a cross reference table.
2803
2804 void
2805 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2806 {
2807 if (parameters->options().cref() && this->cref_ != NULL)
2808 this->cref_->print_cref(symtab, f);
2809 }
2810
2811 // Relocate_info methods.
2812
2813 // Return a string describing the location of a relocation when file
2814 // and lineno information is not available. This is only used in
2815 // error messages.
2816
2817 template<int size, bool big_endian>
2818 std::string
2819 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2820 {
2821 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2822 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2823 if (!ret.empty())
2824 return ret;
2825
2826 ret = this->object->name();
2827
2828 Symbol_location_info info;
2829 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2830 {
2831 if (!info.source_file.empty())
2832 {
2833 ret += ":";
2834 ret += info.source_file;
2835 }
2836 size_t len = info.enclosing_symbol_name.length() + 100;
2837 char* buf = new char[len];
2838 snprintf(buf, len, _(":function %s"),
2839 info.enclosing_symbol_name.c_str());
2840 ret += buf;
2841 delete[] buf;
2842 return ret;
2843 }
2844
2845 ret += "(";
2846 ret += this->object->section_name(this->data_shndx);
2847 char buf[100];
2848 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2849 ret += buf;
2850 return ret;
2851 }
2852
2853 } // End namespace gold.
2854
2855 namespace
2856 {
2857
2858 using namespace gold;
2859
2860 // Read an ELF file with the header and return the appropriate
2861 // instance of Object.
2862
2863 template<int size, bool big_endian>
2864 Object*
2865 make_elf_sized_object(const std::string& name, Input_file* input_file,
2866 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2867 bool* punconfigured)
2868 {
2869 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2870 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2871 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2872 if (target == NULL)
2873 gold_fatal(_("%s: unsupported ELF machine number %d"),
2874 name.c_str(), ehdr.get_e_machine());
2875
2876 if (!parameters->target_valid())
2877 set_parameters_target(target);
2878 else if (target != &parameters->target())
2879 {
2880 if (punconfigured != NULL)
2881 *punconfigured = true;
2882 else
2883 gold_error(_("%s: incompatible target"), name.c_str());
2884 return NULL;
2885 }
2886
2887 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2888 ehdr);
2889 }
2890
2891 } // End anonymous namespace.
2892
2893 namespace gold
2894 {
2895
2896 // Return whether INPUT_FILE is an ELF object.
2897
2898 bool
2899 is_elf_object(Input_file* input_file, off_t offset,
2900 const unsigned char** start, int* read_size)
2901 {
2902 off_t filesize = input_file->file().filesize();
2903 int want = elfcpp::Elf_recognizer::max_header_size;
2904 if (filesize - offset < want)
2905 want = filesize - offset;
2906
2907 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2908 true, false);
2909 *start = p;
2910 *read_size = want;
2911
2912 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2913 }
2914
2915 // Read an ELF file and return the appropriate instance of Object.
2916
2917 Object*
2918 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2919 const unsigned char* p, section_offset_type bytes,
2920 bool* punconfigured)
2921 {
2922 if (punconfigured != NULL)
2923 *punconfigured = false;
2924
2925 std::string error;
2926 bool big_endian = false;
2927 int size = 0;
2928 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2929 &big_endian, &error))
2930 {
2931 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2932 return NULL;
2933 }
2934
2935 if (size == 32)
2936 {
2937 if (big_endian)
2938 {
2939 #ifdef HAVE_TARGET_32_BIG
2940 elfcpp::Ehdr<32, true> ehdr(p);
2941 return make_elf_sized_object<32, true>(name, input_file,
2942 offset, ehdr, punconfigured);
2943 #else
2944 if (punconfigured != NULL)
2945 *punconfigured = true;
2946 else
2947 gold_error(_("%s: not configured to support "
2948 "32-bit big-endian object"),
2949 name.c_str());
2950 return NULL;
2951 #endif
2952 }
2953 else
2954 {
2955 #ifdef HAVE_TARGET_32_LITTLE
2956 elfcpp::Ehdr<32, false> ehdr(p);
2957 return make_elf_sized_object<32, false>(name, input_file,
2958 offset, ehdr, punconfigured);
2959 #else
2960 if (punconfigured != NULL)
2961 *punconfigured = true;
2962 else
2963 gold_error(_("%s: not configured to support "
2964 "32-bit little-endian object"),
2965 name.c_str());
2966 return NULL;
2967 #endif
2968 }
2969 }
2970 else if (size == 64)
2971 {
2972 if (big_endian)
2973 {
2974 #ifdef HAVE_TARGET_64_BIG
2975 elfcpp::Ehdr<64, true> ehdr(p);
2976 return make_elf_sized_object<64, true>(name, input_file,
2977 offset, ehdr, punconfigured);
2978 #else
2979 if (punconfigured != NULL)
2980 *punconfigured = true;
2981 else
2982 gold_error(_("%s: not configured to support "
2983 "64-bit big-endian object"),
2984 name.c_str());
2985 return NULL;
2986 #endif
2987 }
2988 else
2989 {
2990 #ifdef HAVE_TARGET_64_LITTLE
2991 elfcpp::Ehdr<64, false> ehdr(p);
2992 return make_elf_sized_object<64, false>(name, input_file,
2993 offset, ehdr, punconfigured);
2994 #else
2995 if (punconfigured != NULL)
2996 *punconfigured = true;
2997 else
2998 gold_error(_("%s: not configured to support "
2999 "64-bit little-endian object"),
3000 name.c_str());
3001 return NULL;
3002 #endif
3003 }
3004 }
3005 else
3006 gold_unreachable();
3007 }
3008
3009 // Instantiate the templates we need.
3010
3011 #ifdef HAVE_TARGET_32_LITTLE
3012 template
3013 void
3014 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3015 Read_symbols_data*);
3016 #endif
3017
3018 #ifdef HAVE_TARGET_32_BIG
3019 template
3020 void
3021 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3022 Read_symbols_data*);
3023 #endif
3024
3025 #ifdef HAVE_TARGET_64_LITTLE
3026 template
3027 void
3028 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3029 Read_symbols_data*);
3030 #endif
3031
3032 #ifdef HAVE_TARGET_64_BIG
3033 template
3034 void
3035 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3036 Read_symbols_data*);
3037 #endif
3038
3039 #ifdef HAVE_TARGET_32_LITTLE
3040 template
3041 class Sized_relobj_file<32, false>;
3042 #endif
3043
3044 #ifdef HAVE_TARGET_32_BIG
3045 template
3046 class Sized_relobj_file<32, true>;
3047 #endif
3048
3049 #ifdef HAVE_TARGET_64_LITTLE
3050 template
3051 class Sized_relobj_file<64, false>;
3052 #endif
3053
3054 #ifdef HAVE_TARGET_64_BIG
3055 template
3056 class Sized_relobj_file<64, true>;
3057 #endif
3058
3059 #ifdef HAVE_TARGET_32_LITTLE
3060 template
3061 struct Relocate_info<32, false>;
3062 #endif
3063
3064 #ifdef HAVE_TARGET_32_BIG
3065 template
3066 struct Relocate_info<32, true>;
3067 #endif
3068
3069 #ifdef HAVE_TARGET_64_LITTLE
3070 template
3071 struct Relocate_info<64, false>;
3072 #endif
3073
3074 #ifdef HAVE_TARGET_64_BIG
3075 template
3076 struct Relocate_info<64, true>;
3077 #endif
3078
3079 #ifdef HAVE_TARGET_32_LITTLE
3080 template
3081 void
3082 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3083
3084 template
3085 void
3086 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3087 const unsigned char*);
3088 #endif
3089
3090 #ifdef HAVE_TARGET_32_BIG
3091 template
3092 void
3093 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3094
3095 template
3096 void
3097 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3098 const unsigned char*);
3099 #endif
3100
3101 #ifdef HAVE_TARGET_64_LITTLE
3102 template
3103 void
3104 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3105
3106 template
3107 void
3108 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3109 const unsigned char*);
3110 #endif
3111
3112 #ifdef HAVE_TARGET_64_BIG
3113 template
3114 void
3115 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3116
3117 template
3118 void
3119 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3120 const unsigned char*);
3121 #endif
3122
3123 } // End namespace gold.