]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/output.cc
Fix testing gdb.rust/modules.exp against gdbserver
[thirdparty/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address,
860 bool is_relative)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address,
877 bool is_relative)
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932 if (this->is_symbolless_)
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
951 case 0:
952 break;
953
954 default:
955 {
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
964 }
965 break;
966 }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975 {
976 unsigned int index;
977 if (this->is_symbolless_)
978 return 0;
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
982 gold_unreachable();
983
984 case GSYM_CODE:
985 if (this->u1_.gsym == NULL)
986 index = 0;
987 else if (dynamic)
988 index = this->u1_.gsym->dynsym_index();
989 else
990 index = this->u1_.gsym->symtab_index();
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
995 index = this->u1_.os->dynsym_index();
996 else
997 index = this->u1_.os->symtab_index();
998 break;
999
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
1010 default:
1011 {
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
1032 }
1033 break;
1034 }
1035 gold_assert(index != -1U);
1036 return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1046 {
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1065 return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1076 {
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1082 else
1083 {
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1089 }
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1093 return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104 {
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116 {
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1127 {
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1134 else
1135 return sym->value() + addend;
1136 }
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Standard relocation writer, which just calls Output_reloc::write().
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 struct Output_reloc_writer
1259 {
1260 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1261 typedef std::vector<Output_reloc_type> Relocs;
1262
1263 static void
1264 write(typename Relocs::const_iterator p, unsigned char* pov)
1265 { p->write(pov); }
1266 };
1267
1268 // Write out relocation data.
1269
1270 template<int sh_type, bool dynamic, int size, bool big_endian>
1271 void
1272 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1273 Output_file* of)
1274 {
1275 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1276 this->do_write_generic<Writer>(of);
1277 }
1278
1279 // Class Output_relocatable_relocs.
1280
1281 template<int sh_type, int size, bool big_endian>
1282 void
1283 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1284 {
1285 this->set_data_size(this->rr_->output_reloc_count()
1286 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1287 }
1288
1289 // class Output_data_group.
1290
1291 template<int size, bool big_endian>
1292 Output_data_group<size, big_endian>::Output_data_group(
1293 Sized_relobj_file<size, big_endian>* relobj,
1294 section_size_type entry_count,
1295 elfcpp::Elf_Word flags,
1296 std::vector<unsigned int>* input_shndxes)
1297 : Output_section_data(entry_count * 4, 4, false),
1298 relobj_(relobj),
1299 flags_(flags)
1300 {
1301 this->input_shndxes_.swap(*input_shndxes);
1302 }
1303
1304 // Write out the section group, which means translating the section
1305 // indexes to apply to the output file.
1306
1307 template<int size, bool big_endian>
1308 void
1309 Output_data_group<size, big_endian>::do_write(Output_file* of)
1310 {
1311 const off_t off = this->offset();
1312 const section_size_type oview_size =
1313 convert_to_section_size_type(this->data_size());
1314 unsigned char* const oview = of->get_output_view(off, oview_size);
1315
1316 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1317 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1318 ++contents;
1319
1320 for (std::vector<unsigned int>::const_iterator p =
1321 this->input_shndxes_.begin();
1322 p != this->input_shndxes_.end();
1323 ++p, ++contents)
1324 {
1325 Output_section* os = this->relobj_->output_section(*p);
1326
1327 unsigned int output_shndx;
1328 if (os != NULL)
1329 output_shndx = os->out_shndx();
1330 else
1331 {
1332 this->relobj_->error(_("section group retained but "
1333 "group element discarded"));
1334 output_shndx = 0;
1335 }
1336
1337 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1338 }
1339
1340 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1341 gold_assert(wrote == oview_size);
1342
1343 of->write_output_view(off, oview_size, oview);
1344
1345 // We no longer need this information.
1346 this->input_shndxes_.clear();
1347 }
1348
1349 // Output_data_got::Got_entry methods.
1350
1351 // Write out the entry.
1352
1353 template<int got_size, bool big_endian>
1354 void
1355 Output_data_got<got_size, big_endian>::Got_entry::write(
1356 unsigned int got_indx,
1357 unsigned char* pov) const
1358 {
1359 Valtype val = 0;
1360
1361 switch (this->local_sym_index_)
1362 {
1363 case GSYM_CODE:
1364 {
1365 // If the symbol is resolved locally, we need to write out the
1366 // link-time value, which will be relocated dynamically by a
1367 // RELATIVE relocation.
1368 Symbol* gsym = this->u_.gsym;
1369 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1370 val = parameters->target().plt_address_for_global(gsym);
1371 else
1372 {
1373 switch (parameters->size_and_endianness())
1374 {
1375 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1376 case Parameters::TARGET_32_LITTLE:
1377 case Parameters::TARGET_32_BIG:
1378 {
1379 // This cast is ugly. We don't want to put a
1380 // virtual method in Symbol, because we want Symbol
1381 // to be as small as possible.
1382 Sized_symbol<32>::Value_type v;
1383 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1384 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1385 }
1386 break;
1387 #endif
1388 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1389 case Parameters::TARGET_64_LITTLE:
1390 case Parameters::TARGET_64_BIG:
1391 {
1392 Sized_symbol<64>::Value_type v;
1393 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1394 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1395 }
1396 break;
1397 #endif
1398 default:
1399 gold_unreachable();
1400 }
1401 if (this->use_plt_or_tls_offset_
1402 && gsym->type() == elfcpp::STT_TLS)
1403 val += parameters->target().tls_offset_for_global(gsym,
1404 got_indx);
1405 }
1406 }
1407 break;
1408
1409 case CONSTANT_CODE:
1410 val = this->u_.constant;
1411 break;
1412
1413 case RESERVED_CODE:
1414 // If we're doing an incremental update, don't touch this GOT entry.
1415 if (parameters->incremental_update())
1416 return;
1417 val = this->u_.constant;
1418 break;
1419
1420 default:
1421 {
1422 const Relobj* object = this->u_.object;
1423 const unsigned int lsi = this->local_sym_index_;
1424 bool is_tls = object->local_is_tls(lsi);
1425 if (this->use_plt_or_tls_offset_ && !is_tls)
1426 val = parameters->target().plt_address_for_local(object, lsi);
1427 else
1428 {
1429 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1430 val = convert_types<Valtype, uint64_t>(lval);
1431 if (this->use_plt_or_tls_offset_ && is_tls)
1432 val += parameters->target().tls_offset_for_local(object, lsi,
1433 got_indx);
1434 }
1435 }
1436 break;
1437 }
1438
1439 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1440 }
1441
1442 // Output_data_got methods.
1443
1444 // Add an entry for a global symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already had a GOT
1446 // entry.
1447
1448 template<int got_size, bool big_endian>
1449 bool
1450 Output_data_got<got_size, big_endian>::add_global(
1451 Symbol* gsym,
1452 unsigned int got_type)
1453 {
1454 if (gsym->has_got_offset(got_type))
1455 return false;
1456
1457 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1458 gsym->set_got_offset(got_type, got_offset);
1459 return true;
1460 }
1461
1462 // Like add_global, but use the PLT offset.
1463
1464 template<int got_size, bool big_endian>
1465 bool
1466 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1467 unsigned int got_type)
1468 {
1469 if (gsym->has_got_offset(got_type))
1470 return false;
1471
1472 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1473 gsym->set_got_offset(got_type, got_offset);
1474 return true;
1475 }
1476
1477 // Add an entry for a global symbol to the GOT, and add a dynamic
1478 // relocation of type R_TYPE for the GOT entry.
1479
1480 template<int got_size, bool big_endian>
1481 void
1482 Output_data_got<got_size, big_endian>::add_global_with_rel(
1483 Symbol* gsym,
1484 unsigned int got_type,
1485 Output_data_reloc_generic* rel_dyn,
1486 unsigned int r_type)
1487 {
1488 if (gsym->has_got_offset(got_type))
1489 return;
1490
1491 unsigned int got_offset = this->add_got_entry(Got_entry());
1492 gsym->set_got_offset(got_type, got_offset);
1493 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1494 }
1495
1496 // Add a pair of entries for a global symbol to the GOT, and add
1497 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1498 // If R_TYPE_2 == 0, add the second entry with no relocation.
1499 template<int got_size, bool big_endian>
1500 void
1501 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1502 Symbol* gsym,
1503 unsigned int got_type,
1504 Output_data_reloc_generic* rel_dyn,
1505 unsigned int r_type_1,
1506 unsigned int r_type_2)
1507 {
1508 if (gsym->has_got_offset(got_type))
1509 return;
1510
1511 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512 gsym->set_got_offset(got_type, got_offset);
1513 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1514
1515 if (r_type_2 != 0)
1516 rel_dyn->add_global_generic(gsym, r_type_2, this,
1517 got_offset + got_size / 8, 0);
1518 }
1519
1520 // Add an entry for a local symbol to the GOT. This returns true if
1521 // this is a new GOT entry, false if the symbol already has a GOT
1522 // entry.
1523
1524 template<int got_size, bool big_endian>
1525 bool
1526 Output_data_got<got_size, big_endian>::add_local(
1527 Relobj* object,
1528 unsigned int symndx,
1529 unsigned int got_type)
1530 {
1531 if (object->local_has_got_offset(symndx, got_type))
1532 return false;
1533
1534 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1535 false));
1536 object->set_local_got_offset(symndx, got_type, got_offset);
1537 return true;
1538 }
1539
1540 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1541 // true if this is a new GOT entry, false if the symbol already has a GOT
1542 // entry.
1543
1544 template<int got_size, bool big_endian>
1545 bool
1546 Output_data_got<got_size, big_endian>::add_local(
1547 Relobj* object,
1548 unsigned int symndx,
1549 unsigned int got_type,
1550 uint64_t addend)
1551 {
1552 if (object->local_has_got_offset(symndx, got_type, addend))
1553 return false;
1554
1555 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1556 false, addend));
1557 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1558 return true;
1559 }
1560
1561 // Like add_local, but use the PLT offset.
1562
1563 template<int got_size, bool big_endian>
1564 bool
1565 Output_data_got<got_size, big_endian>::add_local_plt(
1566 Relobj* object,
1567 unsigned int symndx,
1568 unsigned int got_type)
1569 {
1570 if (object->local_has_got_offset(symndx, got_type))
1571 return false;
1572
1573 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1574 true));
1575 object->set_local_got_offset(symndx, got_type, got_offset);
1576 return true;
1577 }
1578
1579 // Add an entry for a local symbol to the GOT, and add a dynamic
1580 // relocation of type R_TYPE for the GOT entry.
1581
1582 template<int got_size, bool big_endian>
1583 void
1584 Output_data_got<got_size, big_endian>::add_local_with_rel(
1585 Relobj* object,
1586 unsigned int symndx,
1587 unsigned int got_type,
1588 Output_data_reloc_generic* rel_dyn,
1589 unsigned int r_type)
1590 {
1591 if (object->local_has_got_offset(symndx, got_type))
1592 return;
1593
1594 unsigned int got_offset = this->add_got_entry(Got_entry());
1595 object->set_local_got_offset(symndx, got_type, got_offset);
1596 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1597 }
1598
1599 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1600 // relocation of type R_TYPE for the GOT entry.
1601
1602 template<int got_size, bool big_endian>
1603 void
1604 Output_data_got<got_size, big_endian>::add_local_with_rel(
1605 Relobj* object,
1606 unsigned int symndx,
1607 unsigned int got_type,
1608 Output_data_reloc_generic* rel_dyn,
1609 unsigned int r_type, uint64_t addend)
1610 {
1611 if (object->local_has_got_offset(symndx, got_type, addend))
1612 return;
1613
1614 unsigned int got_offset = this->add_got_entry(Got_entry());
1615 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1616 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1617 addend);
1618 }
1619
1620 // Add a pair of entries for a local symbol to the GOT, and add
1621 // a dynamic relocation of type R_TYPE using the section symbol of
1622 // the output section to which input section SHNDX maps, on the first.
1623 // The first got entry will have a value of zero, the second the
1624 // value of the local symbol.
1625 template<int got_size, bool big_endian>
1626 void
1627 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1628 Relobj* object,
1629 unsigned int symndx,
1630 unsigned int shndx,
1631 unsigned int got_type,
1632 Output_data_reloc_generic* rel_dyn,
1633 unsigned int r_type)
1634 {
1635 if (object->local_has_got_offset(symndx, got_type))
1636 return;
1637
1638 unsigned int got_offset =
1639 this->add_got_entry_pair(Got_entry(),
1640 Got_entry(object, symndx, false));
1641 object->set_local_got_offset(symndx, got_type, got_offset);
1642 Output_section* os = object->output_section(shndx);
1643 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1644 }
1645
1646 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1647 // a dynamic relocation of type R_TYPE using the section symbol of
1648 // the output section to which input section SHNDX maps, on the first.
1649 // The first got entry will have a value of zero, the second the
1650 // value of the local symbol.
1651 template<int got_size, bool big_endian>
1652 void
1653 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1654 Relobj* object,
1655 unsigned int symndx,
1656 unsigned int shndx,
1657 unsigned int got_type,
1658 Output_data_reloc_generic* rel_dyn,
1659 unsigned int r_type, uint64_t addend)
1660 {
1661 if (object->local_has_got_offset(symndx, got_type, addend))
1662 return;
1663
1664 unsigned int got_offset =
1665 this->add_got_entry_pair(Got_entry(),
1666 Got_entry(object, symndx, false, addend));
1667 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1668 Output_section* os = object->output_section(shndx);
1669 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1670 }
1671
1672 // Add a pair of entries for a local symbol to the GOT, and add
1673 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1674 // The first got entry will have a value of zero, the second the
1675 // value of the local symbol offset by Target::tls_offset_for_local.
1676 template<int got_size, bool big_endian>
1677 void
1678 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1679 Relobj* object,
1680 unsigned int symndx,
1681 unsigned int got_type,
1682 Output_data_reloc_generic* rel_dyn,
1683 unsigned int r_type)
1684 {
1685 if (object->local_has_got_offset(symndx, got_type))
1686 return;
1687
1688 unsigned int got_offset
1689 = this->add_got_entry_pair(Got_entry(),
1690 Got_entry(object, symndx, true));
1691 object->set_local_got_offset(symndx, got_type, got_offset);
1692 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1693 }
1694
1695 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1696
1697 template<int got_size, bool big_endian>
1698 void
1699 Output_data_got<got_size, big_endian>::reserve_local(
1700 unsigned int i,
1701 Relobj* object,
1702 unsigned int sym_index,
1703 unsigned int got_type)
1704 {
1705 this->do_reserve_slot(i);
1706 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1707 }
1708
1709 // Reserve a slot in the GOT for a global symbol.
1710
1711 template<int got_size, bool big_endian>
1712 void
1713 Output_data_got<got_size, big_endian>::reserve_global(
1714 unsigned int i,
1715 Symbol* gsym,
1716 unsigned int got_type)
1717 {
1718 this->do_reserve_slot(i);
1719 gsym->set_got_offset(got_type, this->got_offset(i));
1720 }
1721
1722 // Write out the GOT.
1723
1724 template<int got_size, bool big_endian>
1725 void
1726 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1727 {
1728 const int add = got_size / 8;
1729
1730 const off_t off = this->offset();
1731 const off_t oview_size = this->data_size();
1732 unsigned char* const oview = of->get_output_view(off, oview_size);
1733
1734 unsigned char* pov = oview;
1735 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1736 {
1737 this->entries_[i].write(i, pov);
1738 pov += add;
1739 }
1740
1741 gold_assert(pov - oview == oview_size);
1742
1743 of->write_output_view(off, oview_size, oview);
1744
1745 // We no longer need the GOT entries.
1746 this->entries_.clear();
1747 }
1748
1749 // Create a new GOT entry and return its offset.
1750
1751 template<int got_size, bool big_endian>
1752 unsigned int
1753 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1754 {
1755 if (!this->is_data_size_valid())
1756 {
1757 this->entries_.push_back(got_entry);
1758 this->set_got_size();
1759 return this->last_got_offset();
1760 }
1761 else
1762 {
1763 // For an incremental update, find an available slot.
1764 off_t got_offset = this->free_list_.allocate(got_size / 8,
1765 got_size / 8, 0);
1766 if (got_offset == -1)
1767 gold_fallback(_("out of patch space (GOT);"
1768 " relink with --incremental-full"));
1769 unsigned int got_index = got_offset / (got_size / 8);
1770 gold_assert(got_index < this->entries_.size());
1771 this->entries_[got_index] = got_entry;
1772 return static_cast<unsigned int>(got_offset);
1773 }
1774 }
1775
1776 // Create a pair of new GOT entries and return the offset of the first.
1777
1778 template<int got_size, bool big_endian>
1779 unsigned int
1780 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1781 Got_entry got_entry_1,
1782 Got_entry got_entry_2)
1783 {
1784 if (!this->is_data_size_valid())
1785 {
1786 unsigned int got_offset;
1787 this->entries_.push_back(got_entry_1);
1788 got_offset = this->last_got_offset();
1789 this->entries_.push_back(got_entry_2);
1790 this->set_got_size();
1791 return got_offset;
1792 }
1793 else
1794 {
1795 // For an incremental update, find an available pair of slots.
1796 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1797 got_size / 8, 0);
1798 if (got_offset == -1)
1799 gold_fallback(_("out of patch space (GOT);"
1800 " relink with --incremental-full"));
1801 unsigned int got_index = got_offset / (got_size / 8);
1802 gold_assert(got_index < this->entries_.size());
1803 this->entries_[got_index] = got_entry_1;
1804 this->entries_[got_index + 1] = got_entry_2;
1805 return static_cast<unsigned int>(got_offset);
1806 }
1807 }
1808
1809 // Replace GOT entry I with a new value.
1810
1811 template<int got_size, bool big_endian>
1812 void
1813 Output_data_got<got_size, big_endian>::replace_got_entry(
1814 unsigned int i,
1815 Got_entry got_entry)
1816 {
1817 gold_assert(i < this->entries_.size());
1818 this->entries_[i] = got_entry;
1819 }
1820
1821 // Output_data_dynamic::Dynamic_entry methods.
1822
1823 // Write out the entry.
1824
1825 template<int size, bool big_endian>
1826 void
1827 Output_data_dynamic::Dynamic_entry::write(
1828 unsigned char* pov,
1829 const Stringpool* pool) const
1830 {
1831 typename elfcpp::Elf_types<size>::Elf_WXword val;
1832 switch (this->offset_)
1833 {
1834 case DYNAMIC_NUMBER:
1835 val = this->u_.val;
1836 break;
1837
1838 case DYNAMIC_SECTION_SIZE:
1839 val = this->u_.od->data_size();
1840 if (this->od2 != NULL)
1841 val += this->od2->data_size();
1842 break;
1843
1844 case DYNAMIC_SYMBOL:
1845 {
1846 const Sized_symbol<size>* s =
1847 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1848 val = s->value();
1849 }
1850 break;
1851
1852 case DYNAMIC_STRING:
1853 val = pool->get_offset(this->u_.str);
1854 break;
1855
1856 case DYNAMIC_CUSTOM:
1857 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1858 break;
1859
1860 default:
1861 val = this->u_.od->address() + this->offset_;
1862 break;
1863 }
1864
1865 elfcpp::Dyn_write<size, big_endian> dw(pov);
1866 dw.put_d_tag(this->tag_);
1867 dw.put_d_val(val);
1868 }
1869
1870 // Output_data_dynamic methods.
1871
1872 // Adjust the output section to set the entry size.
1873
1874 void
1875 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1876 {
1877 if (parameters->target().get_size() == 32)
1878 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1879 else if (parameters->target().get_size() == 64)
1880 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1881 else
1882 gold_unreachable();
1883 }
1884
1885 // Get a dynamic entry offset.
1886
1887 unsigned int
1888 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1889 {
1890 int dyn_size;
1891
1892 if (parameters->target().get_size() == 32)
1893 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1894 else if (parameters->target().get_size() == 64)
1895 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1896 else
1897 gold_unreachable();
1898
1899 for (size_t i = 0; i < entries_.size(); ++i)
1900 if (entries_[i].tag() == tag)
1901 return i * dyn_size;
1902
1903 return -1U;
1904 }
1905
1906 // Set the final data size.
1907
1908 void
1909 Output_data_dynamic::set_final_data_size()
1910 {
1911 // Add the terminating entry if it hasn't been added.
1912 // Because of relaxation, we can run this multiple times.
1913 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1914 {
1915 int extra = parameters->options().spare_dynamic_tags();
1916 for (int i = 0; i < extra; ++i)
1917 this->add_constant(elfcpp::DT_NULL, 0);
1918 this->add_constant(elfcpp::DT_NULL, 0);
1919 }
1920
1921 int dyn_size;
1922 if (parameters->target().get_size() == 32)
1923 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1924 else if (parameters->target().get_size() == 64)
1925 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1926 else
1927 gold_unreachable();
1928 this->set_data_size(this->entries_.size() * dyn_size);
1929 }
1930
1931 // Write out the dynamic entries.
1932
1933 void
1934 Output_data_dynamic::do_write(Output_file* of)
1935 {
1936 switch (parameters->size_and_endianness())
1937 {
1938 #ifdef HAVE_TARGET_32_LITTLE
1939 case Parameters::TARGET_32_LITTLE:
1940 this->sized_write<32, false>(of);
1941 break;
1942 #endif
1943 #ifdef HAVE_TARGET_32_BIG
1944 case Parameters::TARGET_32_BIG:
1945 this->sized_write<32, true>(of);
1946 break;
1947 #endif
1948 #ifdef HAVE_TARGET_64_LITTLE
1949 case Parameters::TARGET_64_LITTLE:
1950 this->sized_write<64, false>(of);
1951 break;
1952 #endif
1953 #ifdef HAVE_TARGET_64_BIG
1954 case Parameters::TARGET_64_BIG:
1955 this->sized_write<64, true>(of);
1956 break;
1957 #endif
1958 default:
1959 gold_unreachable();
1960 }
1961 }
1962
1963 template<int size, bool big_endian>
1964 void
1965 Output_data_dynamic::sized_write(Output_file* of)
1966 {
1967 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1968
1969 const off_t offset = this->offset();
1970 const off_t oview_size = this->data_size();
1971 unsigned char* const oview = of->get_output_view(offset, oview_size);
1972
1973 unsigned char* pov = oview;
1974 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1975 p != this->entries_.end();
1976 ++p)
1977 {
1978 p->write<size, big_endian>(pov, this->pool_);
1979 pov += dyn_size;
1980 }
1981
1982 gold_assert(pov - oview == oview_size);
1983
1984 of->write_output_view(offset, oview_size, oview);
1985
1986 // We no longer need the dynamic entries.
1987 this->entries_.clear();
1988 }
1989
1990 // Class Output_symtab_xindex.
1991
1992 void
1993 Output_symtab_xindex::do_write(Output_file* of)
1994 {
1995 const off_t offset = this->offset();
1996 const off_t oview_size = this->data_size();
1997 unsigned char* const oview = of->get_output_view(offset, oview_size);
1998
1999 memset(oview, 0, oview_size);
2000
2001 if (parameters->target().is_big_endian())
2002 this->endian_do_write<true>(oview);
2003 else
2004 this->endian_do_write<false>(oview);
2005
2006 of->write_output_view(offset, oview_size, oview);
2007
2008 // We no longer need the data.
2009 this->entries_.clear();
2010 }
2011
2012 template<bool big_endian>
2013 void
2014 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2015 {
2016 for (Xindex_entries::const_iterator p = this->entries_.begin();
2017 p != this->entries_.end();
2018 ++p)
2019 {
2020 unsigned int symndx = p->first;
2021 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2022 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2023 }
2024 }
2025
2026 // Output_fill_debug_info methods.
2027
2028 // Return the minimum size needed for a dummy compilation unit header.
2029
2030 size_t
2031 Output_fill_debug_info::do_minimum_hole_size() const
2032 {
2033 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2034 // address_size.
2035 const size_t len = 4 + 2 + 4 + 1;
2036 // For type units, add type_signature, type_offset.
2037 if (this->is_debug_types_)
2038 return len + 8 + 4;
2039 return len;
2040 }
2041
2042 // Write a dummy compilation unit header to fill a hole in the
2043 // .debug_info or .debug_types section.
2044
2045 void
2046 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2047 {
2048 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2049 static_cast<long>(off), static_cast<long>(len));
2050
2051 gold_assert(len >= this->do_minimum_hole_size());
2052
2053 unsigned char* const oview = of->get_output_view(off, len);
2054 unsigned char* pov = oview;
2055
2056 // Write header fields: unit_length, version, debug_abbrev_offset,
2057 // address_size.
2058 if (this->is_big_endian())
2059 {
2060 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2061 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2062 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2063 }
2064 else
2065 {
2066 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2067 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2068 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2069 }
2070 pov += 4 + 2 + 4;
2071 *pov++ = 4;
2072
2073 // For type units, the additional header fields -- type_signature,
2074 // type_offset -- can be filled with zeroes.
2075
2076 // Fill the remainder of the free space with zeroes. The first
2077 // zero should tell the consumer there are no DIEs to read in this
2078 // compilation unit.
2079 if (pov < oview + len)
2080 memset(pov, 0, oview + len - pov);
2081
2082 of->write_output_view(off, len, oview);
2083 }
2084
2085 // Output_fill_debug_line methods.
2086
2087 // Return the minimum size needed for a dummy line number program header.
2088
2089 size_t
2090 Output_fill_debug_line::do_minimum_hole_size() const
2091 {
2092 // Line number program header fields: unit_length, version, header_length,
2093 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2094 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2095 const size_t len = 4 + 2 + 4 + this->header_length;
2096 return len;
2097 }
2098
2099 // Write a dummy line number program header to fill a hole in the
2100 // .debug_line section.
2101
2102 void
2103 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2104 {
2105 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2106 static_cast<long>(off), static_cast<long>(len));
2107
2108 gold_assert(len >= this->do_minimum_hole_size());
2109
2110 unsigned char* const oview = of->get_output_view(off, len);
2111 unsigned char* pov = oview;
2112
2113 // Write header fields: unit_length, version, header_length,
2114 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2115 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2116 // We set the header_length field to cover the entire hole, so the
2117 // line number program is empty.
2118 if (this->is_big_endian())
2119 {
2120 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2121 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2122 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2123 }
2124 else
2125 {
2126 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2127 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2128 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2129 }
2130 pov += 4 + 2 + 4;
2131 *pov++ = 1; // minimum_instruction_length
2132 *pov++ = 0; // default_is_stmt
2133 *pov++ = 0; // line_base
2134 *pov++ = 5; // line_range
2135 *pov++ = 13; // opcode_base
2136 *pov++ = 0; // standard_opcode_lengths[1]
2137 *pov++ = 1; // standard_opcode_lengths[2]
2138 *pov++ = 1; // standard_opcode_lengths[3]
2139 *pov++ = 1; // standard_opcode_lengths[4]
2140 *pov++ = 1; // standard_opcode_lengths[5]
2141 *pov++ = 0; // standard_opcode_lengths[6]
2142 *pov++ = 0; // standard_opcode_lengths[7]
2143 *pov++ = 0; // standard_opcode_lengths[8]
2144 *pov++ = 1; // standard_opcode_lengths[9]
2145 *pov++ = 0; // standard_opcode_lengths[10]
2146 *pov++ = 0; // standard_opcode_lengths[11]
2147 *pov++ = 1; // standard_opcode_lengths[12]
2148 *pov++ = 0; // include_directories (empty)
2149 *pov++ = 0; // filenames (empty)
2150
2151 // Some consumers don't check the header_length field, and simply
2152 // start reading the line number program immediately following the
2153 // header. For those consumers, we fill the remainder of the free
2154 // space with DW_LNS_set_basic_block opcodes. These are effectively
2155 // no-ops: the resulting line table program will not create any rows.
2156 if (pov < oview + len)
2157 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2158
2159 of->write_output_view(off, len, oview);
2160 }
2161
2162 // Output_section::Input_section methods.
2163
2164 // Return the current data size. For an input section we store the size here.
2165 // For an Output_section_data, we have to ask it for the size.
2166
2167 off_t
2168 Output_section::Input_section::current_data_size() const
2169 {
2170 if (this->is_input_section())
2171 return this->u1_.data_size;
2172 else
2173 {
2174 this->u2_.posd->pre_finalize_data_size();
2175 return this->u2_.posd->current_data_size();
2176 }
2177 }
2178
2179 // Return the data size. For an input section we store the size here.
2180 // For an Output_section_data, we have to ask it for the size.
2181
2182 off_t
2183 Output_section::Input_section::data_size() const
2184 {
2185 if (this->is_input_section())
2186 return this->u1_.data_size;
2187 else
2188 return this->u2_.posd->data_size();
2189 }
2190
2191 // Return the object for an input section.
2192
2193 Relobj*
2194 Output_section::Input_section::relobj() const
2195 {
2196 if (this->is_input_section())
2197 return this->u2_.object;
2198 else if (this->is_merge_section())
2199 {
2200 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2201 return this->u2_.pomb->first_relobj();
2202 }
2203 else if (this->is_relaxed_input_section())
2204 return this->u2_.poris->relobj();
2205 else
2206 gold_unreachable();
2207 }
2208
2209 // Return the input section index for an input section.
2210
2211 unsigned int
2212 Output_section::Input_section::shndx() const
2213 {
2214 if (this->is_input_section())
2215 return this->shndx_;
2216 else if (this->is_merge_section())
2217 {
2218 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2219 return this->u2_.pomb->first_shndx();
2220 }
2221 else if (this->is_relaxed_input_section())
2222 return this->u2_.poris->shndx();
2223 else
2224 gold_unreachable();
2225 }
2226
2227 // Set the address and file offset.
2228
2229 void
2230 Output_section::Input_section::set_address_and_file_offset(
2231 uint64_t address,
2232 off_t file_offset,
2233 off_t section_file_offset)
2234 {
2235 if (this->is_input_section())
2236 this->u2_.object->set_section_offset(this->shndx_,
2237 file_offset - section_file_offset);
2238 else
2239 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2240 }
2241
2242 // Reset the address and file offset.
2243
2244 void
2245 Output_section::Input_section::reset_address_and_file_offset()
2246 {
2247 if (!this->is_input_section())
2248 this->u2_.posd->reset_address_and_file_offset();
2249 }
2250
2251 // Finalize the data size.
2252
2253 void
2254 Output_section::Input_section::finalize_data_size()
2255 {
2256 if (!this->is_input_section())
2257 this->u2_.posd->finalize_data_size();
2258 }
2259
2260 // Try to turn an input offset into an output offset. We want to
2261 // return the output offset relative to the start of this
2262 // Input_section in the output section.
2263
2264 inline bool
2265 Output_section::Input_section::output_offset(
2266 const Relobj* object,
2267 unsigned int shndx,
2268 section_offset_type offset,
2269 section_offset_type* poutput) const
2270 {
2271 if (!this->is_input_section())
2272 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2273 else
2274 {
2275 if (this->shndx_ != shndx || this->u2_.object != object)
2276 return false;
2277 *poutput = offset;
2278 return true;
2279 }
2280 }
2281
2282 // Write out the data. We don't have to do anything for an input
2283 // section--they are handled via Object::relocate--but this is where
2284 // we write out the data for an Output_section_data.
2285
2286 void
2287 Output_section::Input_section::write(Output_file* of)
2288 {
2289 if (!this->is_input_section())
2290 this->u2_.posd->write(of);
2291 }
2292
2293 // Write the data to a buffer. As for write(), we don't have to do
2294 // anything for an input section.
2295
2296 void
2297 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2298 {
2299 if (!this->is_input_section())
2300 this->u2_.posd->write_to_buffer(buffer);
2301 }
2302
2303 // Print to a map file.
2304
2305 void
2306 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2307 {
2308 switch (this->shndx_)
2309 {
2310 case OUTPUT_SECTION_CODE:
2311 case MERGE_DATA_SECTION_CODE:
2312 case MERGE_STRING_SECTION_CODE:
2313 this->u2_.posd->print_to_mapfile(mapfile);
2314 break;
2315
2316 case RELAXED_INPUT_SECTION_CODE:
2317 {
2318 Output_relaxed_input_section* relaxed_section =
2319 this->relaxed_input_section();
2320 mapfile->print_input_section(relaxed_section->relobj(),
2321 relaxed_section->shndx());
2322 }
2323 break;
2324 default:
2325 mapfile->print_input_section(this->u2_.object, this->shndx_);
2326 break;
2327 }
2328 }
2329
2330 // Output_section methods.
2331
2332 // Construct an Output_section. NAME will point into a Stringpool.
2333
2334 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2335 elfcpp::Elf_Xword flags)
2336 : name_(name),
2337 addralign_(0),
2338 entsize_(0),
2339 load_address_(0),
2340 link_section_(NULL),
2341 link_(0),
2342 info_section_(NULL),
2343 info_symndx_(NULL),
2344 info_(0),
2345 type_(type),
2346 flags_(flags),
2347 order_(ORDER_INVALID),
2348 out_shndx_(-1U),
2349 symtab_index_(0),
2350 dynsym_index_(0),
2351 input_sections_(),
2352 first_input_offset_(0),
2353 fills_(),
2354 postprocessing_buffer_(NULL),
2355 needs_symtab_index_(false),
2356 needs_dynsym_index_(false),
2357 should_link_to_symtab_(false),
2358 should_link_to_dynsym_(false),
2359 after_input_sections_(false),
2360 requires_postprocessing_(false),
2361 found_in_sections_clause_(false),
2362 has_load_address_(false),
2363 info_uses_section_index_(false),
2364 input_section_order_specified_(false),
2365 may_sort_attached_input_sections_(false),
2366 must_sort_attached_input_sections_(false),
2367 attached_input_sections_are_sorted_(false),
2368 is_relro_(false),
2369 is_small_section_(false),
2370 is_large_section_(false),
2371 generate_code_fills_at_write_(false),
2372 is_entsize_zero_(false),
2373 section_offsets_need_adjustment_(false),
2374 is_noload_(false),
2375 always_keeps_input_sections_(false),
2376 has_fixed_layout_(false),
2377 is_patch_space_allowed_(false),
2378 is_unique_segment_(false),
2379 tls_offset_(0),
2380 extra_segment_flags_(0),
2381 segment_alignment_(0),
2382 checkpoint_(NULL),
2383 lookup_maps_(new Output_section_lookup_maps),
2384 free_list_(),
2385 free_space_fill_(NULL),
2386 patch_space_(0)
2387 {
2388 // An unallocated section has no address. Forcing this means that
2389 // we don't need special treatment for symbols defined in debug
2390 // sections.
2391 if ((flags & elfcpp::SHF_ALLOC) == 0)
2392 this->set_address(0);
2393 }
2394
2395 Output_section::~Output_section()
2396 {
2397 delete this->checkpoint_;
2398 }
2399
2400 // Set the entry size.
2401
2402 void
2403 Output_section::set_entsize(uint64_t v)
2404 {
2405 if (this->is_entsize_zero_)
2406 ;
2407 else if (this->entsize_ == 0)
2408 this->entsize_ = v;
2409 else if (this->entsize_ != v)
2410 {
2411 this->entsize_ = 0;
2412 this->is_entsize_zero_ = 1;
2413 }
2414 }
2415
2416 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2417 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2418 // relocation section which applies to this section, or 0 if none, or
2419 // -1U if more than one. Return the offset of the input section
2420 // within the output section. Return -1 if the input section will
2421 // receive special handling. In the normal case we don't always keep
2422 // track of input sections for an Output_section. Instead, each
2423 // Object keeps track of the Output_section for each of its input
2424 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2425 // track of input sections here; this is used when SECTIONS appears in
2426 // a linker script.
2427
2428 template<int size, bool big_endian>
2429 off_t
2430 Output_section::add_input_section(Layout* layout,
2431 Sized_relobj_file<size, big_endian>* object,
2432 unsigned int shndx,
2433 const char* secname,
2434 const elfcpp::Shdr<size, big_endian>& shdr,
2435 unsigned int reloc_shndx,
2436 bool have_sections_script)
2437 {
2438 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2439 if ((addralign & (addralign - 1)) != 0)
2440 {
2441 object->error(_("invalid alignment %lu for section \"%s\""),
2442 static_cast<unsigned long>(addralign), secname);
2443 addralign = 1;
2444 }
2445
2446 if (addralign > this->addralign_)
2447 this->addralign_ = addralign;
2448
2449 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2450 uint64_t entsize = shdr.get_sh_entsize();
2451
2452 // .debug_str is a mergeable string section, but is not always so
2453 // marked by compilers. Mark manually here so we can optimize.
2454 if (strcmp(secname, ".debug_str") == 0)
2455 {
2456 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2457 entsize = 1;
2458 }
2459
2460 this->update_flags_for_input_section(sh_flags);
2461 this->set_entsize(entsize);
2462
2463 // If this is a SHF_MERGE section, we pass all the input sections to
2464 // a Output_data_merge. We don't try to handle relocations for such
2465 // a section. We don't try to handle empty merge sections--they
2466 // mess up the mappings, and are useless anyhow.
2467 // FIXME: Need to handle merge sections during incremental update.
2468 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2469 && reloc_shndx == 0
2470 && shdr.get_sh_size() > 0
2471 && !parameters->incremental())
2472 {
2473 // Keep information about merged input sections for rebuilding fast
2474 // lookup maps if we have sections-script or we do relaxation.
2475 bool keeps_input_sections = (this->always_keeps_input_sections_
2476 || have_sections_script
2477 || parameters->target().may_relax());
2478
2479 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2480 addralign, keeps_input_sections))
2481 {
2482 // Tell the relocation routines that they need to call the
2483 // output_offset method to determine the final address.
2484 return -1;
2485 }
2486 }
2487
2488 section_size_type input_section_size = shdr.get_sh_size();
2489 section_size_type uncompressed_size;
2490 if (object->section_is_compressed(shndx, &uncompressed_size))
2491 input_section_size = uncompressed_size;
2492
2493 off_t offset_in_section;
2494
2495 if (this->has_fixed_layout())
2496 {
2497 // For incremental updates, find a chunk of unused space in the section.
2498 offset_in_section = this->free_list_.allocate(input_section_size,
2499 addralign, 0);
2500 if (offset_in_section == -1)
2501 gold_fallback(_("out of patch space in section %s; "
2502 "relink with --incremental-full"),
2503 this->name());
2504 return offset_in_section;
2505 }
2506
2507 offset_in_section = this->current_data_size_for_child();
2508 off_t aligned_offset_in_section = align_address(offset_in_section,
2509 addralign);
2510 this->set_current_data_size_for_child(aligned_offset_in_section
2511 + input_section_size);
2512
2513 // Determine if we want to delay code-fill generation until the output
2514 // section is written. When the target is relaxing, we want to delay fill
2515 // generating to avoid adjusting them during relaxation. Also, if we are
2516 // sorting input sections we must delay fill generation.
2517 if (!this->generate_code_fills_at_write_
2518 && !have_sections_script
2519 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2520 && parameters->target().has_code_fill()
2521 && (parameters->target().may_relax()
2522 || layout->is_section_ordering_specified()))
2523 {
2524 gold_assert(this->fills_.empty());
2525 this->generate_code_fills_at_write_ = true;
2526 }
2527
2528 if (aligned_offset_in_section > offset_in_section
2529 && !this->generate_code_fills_at_write_
2530 && !have_sections_script
2531 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2532 && parameters->target().has_code_fill())
2533 {
2534 // We need to add some fill data. Using fill_list_ when
2535 // possible is an optimization, since we will often have fill
2536 // sections without input sections.
2537 off_t fill_len = aligned_offset_in_section - offset_in_section;
2538 if (this->input_sections_.empty())
2539 this->fills_.push_back(Fill(offset_in_section, fill_len));
2540 else
2541 {
2542 std::string fill_data(parameters->target().code_fill(fill_len));
2543 Output_data_const* odc = new Output_data_const(fill_data, 1);
2544 this->input_sections_.push_back(Input_section(odc));
2545 }
2546 }
2547
2548 // We need to keep track of this section if we are already keeping
2549 // track of sections, or if we are relaxing. Also, if this is a
2550 // section which requires sorting, or which may require sorting in
2551 // the future, we keep track of the sections. If the
2552 // --section-ordering-file option is used to specify the order of
2553 // sections, we need to keep track of sections.
2554 if (this->always_keeps_input_sections_
2555 || have_sections_script
2556 || !this->input_sections_.empty()
2557 || this->may_sort_attached_input_sections()
2558 || this->must_sort_attached_input_sections()
2559 || parameters->options().user_set_Map()
2560 || parameters->target().may_relax()
2561 || layout->is_section_ordering_specified())
2562 {
2563 Input_section isecn(object, shndx, input_section_size, addralign);
2564 /* If section ordering is requested by specifying a ordering file,
2565 using --section-ordering-file, match the section name with
2566 a pattern. */
2567 if (parameters->options().section_ordering_file())
2568 {
2569 unsigned int section_order_index =
2570 layout->find_section_order_index(std::string(secname));
2571 if (section_order_index != 0)
2572 {
2573 isecn.set_section_order_index(section_order_index);
2574 this->set_input_section_order_specified();
2575 }
2576 }
2577 this->input_sections_.push_back(isecn);
2578 }
2579
2580 return aligned_offset_in_section;
2581 }
2582
2583 // Add arbitrary data to an output section.
2584
2585 void
2586 Output_section::add_output_section_data(Output_section_data* posd)
2587 {
2588 Input_section inp(posd);
2589 this->add_output_section_data(&inp);
2590
2591 if (posd->is_data_size_valid())
2592 {
2593 off_t offset_in_section;
2594 if (this->has_fixed_layout())
2595 {
2596 // For incremental updates, find a chunk of unused space.
2597 offset_in_section = this->free_list_.allocate(posd->data_size(),
2598 posd->addralign(), 0);
2599 if (offset_in_section == -1)
2600 gold_fallback(_("out of patch space in section %s; "
2601 "relink with --incremental-full"),
2602 this->name());
2603 // Finalize the address and offset now.
2604 uint64_t addr = this->address();
2605 off_t offset = this->offset();
2606 posd->set_address_and_file_offset(addr + offset_in_section,
2607 offset + offset_in_section);
2608 }
2609 else
2610 {
2611 offset_in_section = this->current_data_size_for_child();
2612 off_t aligned_offset_in_section = align_address(offset_in_section,
2613 posd->addralign());
2614 this->set_current_data_size_for_child(aligned_offset_in_section
2615 + posd->data_size());
2616 }
2617 }
2618 else if (this->has_fixed_layout())
2619 {
2620 // For incremental updates, arrange for the data to have a fixed layout.
2621 // This will mean that additions to the data must be allocated from
2622 // free space within the containing output section.
2623 uint64_t addr = this->address();
2624 posd->set_address(addr);
2625 posd->set_file_offset(0);
2626 // FIXME: This should eventually be unreachable.
2627 // gold_unreachable();
2628 }
2629 }
2630
2631 // Add a relaxed input section.
2632
2633 void
2634 Output_section::add_relaxed_input_section(Layout* layout,
2635 Output_relaxed_input_section* poris,
2636 const std::string& name)
2637 {
2638 Input_section inp(poris);
2639
2640 // If the --section-ordering-file option is used to specify the order of
2641 // sections, we need to keep track of sections.
2642 if (layout->is_section_ordering_specified())
2643 {
2644 unsigned int section_order_index =
2645 layout->find_section_order_index(name);
2646 if (section_order_index != 0)
2647 {
2648 inp.set_section_order_index(section_order_index);
2649 this->set_input_section_order_specified();
2650 }
2651 }
2652
2653 this->add_output_section_data(&inp);
2654 if (this->lookup_maps_->is_valid())
2655 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2656 poris->shndx(), poris);
2657
2658 // For a relaxed section, we use the current data size. Linker scripts
2659 // get all the input sections, including relaxed one from an output
2660 // section and add them back to the same output section to compute the
2661 // output section size. If we do not account for sizes of relaxed input
2662 // sections, an output section would be incorrectly sized.
2663 off_t offset_in_section = this->current_data_size_for_child();
2664 off_t aligned_offset_in_section = align_address(offset_in_section,
2665 poris->addralign());
2666 this->set_current_data_size_for_child(aligned_offset_in_section
2667 + poris->current_data_size());
2668 }
2669
2670 // Add arbitrary data to an output section by Input_section.
2671
2672 void
2673 Output_section::add_output_section_data(Input_section* inp)
2674 {
2675 if (this->input_sections_.empty())
2676 this->first_input_offset_ = this->current_data_size_for_child();
2677
2678 this->input_sections_.push_back(*inp);
2679
2680 uint64_t addralign = inp->addralign();
2681 if (addralign > this->addralign_)
2682 this->addralign_ = addralign;
2683
2684 inp->set_output_section(this);
2685 }
2686
2687 // Add a merge section to an output section.
2688
2689 void
2690 Output_section::add_output_merge_section(Output_section_data* posd,
2691 bool is_string, uint64_t entsize)
2692 {
2693 Input_section inp(posd, is_string, entsize);
2694 this->add_output_section_data(&inp);
2695 }
2696
2697 // Add an input section to a SHF_MERGE section.
2698
2699 bool
2700 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2701 uint64_t flags, uint64_t entsize,
2702 uint64_t addralign,
2703 bool keeps_input_sections)
2704 {
2705 // We cannot merge sections with entsize == 0.
2706 if (entsize == 0)
2707 return false;
2708
2709 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2710
2711 // We cannot restore merged input section states.
2712 gold_assert(this->checkpoint_ == NULL);
2713
2714 // Look up merge sections by required properties.
2715 // Currently, we only invalidate the lookup maps in script processing
2716 // and relaxation. We should not have done either when we reach here.
2717 // So we assume that the lookup maps are valid to simply code.
2718 gold_assert(this->lookup_maps_->is_valid());
2719 Merge_section_properties msp(is_string, entsize, addralign);
2720 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2721 bool is_new = false;
2722 if (pomb != NULL)
2723 {
2724 gold_assert(pomb->is_string() == is_string
2725 && pomb->entsize() == entsize
2726 && pomb->addralign() == addralign);
2727 }
2728 else
2729 {
2730 // Create a new Output_merge_data or Output_merge_string_data.
2731 if (!is_string)
2732 pomb = new Output_merge_data(entsize, addralign);
2733 else
2734 {
2735 switch (entsize)
2736 {
2737 case 1:
2738 pomb = new Output_merge_string<char>(addralign);
2739 break;
2740 case 2:
2741 pomb = new Output_merge_string<uint16_t>(addralign);
2742 break;
2743 case 4:
2744 pomb = new Output_merge_string<uint32_t>(addralign);
2745 break;
2746 default:
2747 return false;
2748 }
2749 }
2750 // If we need to do script processing or relaxation, we need to keep
2751 // the original input sections to rebuild the fast lookup maps.
2752 if (keeps_input_sections)
2753 pomb->set_keeps_input_sections();
2754 is_new = true;
2755 }
2756
2757 if (pomb->add_input_section(object, shndx))
2758 {
2759 // Add new merge section to this output section and link merge
2760 // section properties to new merge section in map.
2761 if (is_new)
2762 {
2763 this->add_output_merge_section(pomb, is_string, entsize);
2764 this->lookup_maps_->add_merge_section(msp, pomb);
2765 }
2766
2767 return true;
2768 }
2769 else
2770 {
2771 // If add_input_section failed, delete new merge section to avoid
2772 // exporting empty merge sections in Output_section::get_input_section.
2773 if (is_new)
2774 delete pomb;
2775 return false;
2776 }
2777 }
2778
2779 // Build a relaxation map to speed up relaxation of existing input sections.
2780 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2781
2782 void
2783 Output_section::build_relaxation_map(
2784 const Input_section_list& input_sections,
2785 size_t limit,
2786 Relaxation_map* relaxation_map) const
2787 {
2788 for (size_t i = 0; i < limit; ++i)
2789 {
2790 const Input_section& is(input_sections[i]);
2791 if (is.is_input_section() || is.is_relaxed_input_section())
2792 {
2793 Section_id sid(is.relobj(), is.shndx());
2794 (*relaxation_map)[sid] = i;
2795 }
2796 }
2797 }
2798
2799 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2800 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2801 // indices of INPUT_SECTIONS.
2802
2803 void
2804 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2805 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2806 const Relaxation_map& map,
2807 Input_section_list* input_sections)
2808 {
2809 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2810 {
2811 Output_relaxed_input_section* poris = relaxed_sections[i];
2812 Section_id sid(poris->relobj(), poris->shndx());
2813 Relaxation_map::const_iterator p = map.find(sid);
2814 gold_assert(p != map.end());
2815 gold_assert((*input_sections)[p->second].is_input_section());
2816
2817 // Remember section order index of original input section
2818 // if it is set. Copy it to the relaxed input section.
2819 unsigned int soi =
2820 (*input_sections)[p->second].section_order_index();
2821 (*input_sections)[p->second] = Input_section(poris);
2822 (*input_sections)[p->second].set_section_order_index(soi);
2823 }
2824 }
2825
2826 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2827 // is a vector of pointers to Output_relaxed_input_section or its derived
2828 // classes. The relaxed sections must correspond to existing input sections.
2829
2830 void
2831 Output_section::convert_input_sections_to_relaxed_sections(
2832 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2833 {
2834 gold_assert(parameters->target().may_relax());
2835
2836 // We want to make sure that restore_states does not undo the effect of
2837 // this. If there is no checkpoint active, just search the current
2838 // input section list and replace the sections there. If there is
2839 // a checkpoint, also replace the sections there.
2840
2841 // By default, we look at the whole list.
2842 size_t limit = this->input_sections_.size();
2843
2844 if (this->checkpoint_ != NULL)
2845 {
2846 // Replace input sections with relaxed input section in the saved
2847 // copy of the input section list.
2848 if (this->checkpoint_->input_sections_saved())
2849 {
2850 Relaxation_map map;
2851 this->build_relaxation_map(
2852 *(this->checkpoint_->input_sections()),
2853 this->checkpoint_->input_sections()->size(),
2854 &map);
2855 this->convert_input_sections_in_list_to_relaxed_sections(
2856 relaxed_sections,
2857 map,
2858 this->checkpoint_->input_sections());
2859 }
2860 else
2861 {
2862 // We have not copied the input section list yet. Instead, just
2863 // look at the portion that would be saved.
2864 limit = this->checkpoint_->input_sections_size();
2865 }
2866 }
2867
2868 // Convert input sections in input_section_list.
2869 Relaxation_map map;
2870 this->build_relaxation_map(this->input_sections_, limit, &map);
2871 this->convert_input_sections_in_list_to_relaxed_sections(
2872 relaxed_sections,
2873 map,
2874 &this->input_sections_);
2875
2876 // Update fast look-up map.
2877 if (this->lookup_maps_->is_valid())
2878 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2879 {
2880 Output_relaxed_input_section* poris = relaxed_sections[i];
2881 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2882 poris->shndx(), poris);
2883 }
2884 }
2885
2886 // Update the output section flags based on input section flags.
2887
2888 void
2889 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2890 {
2891 // If we created the section with SHF_ALLOC clear, we set the
2892 // address. If we are now setting the SHF_ALLOC flag, we need to
2893 // undo that.
2894 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2895 && (flags & elfcpp::SHF_ALLOC) != 0)
2896 this->mark_address_invalid();
2897
2898 this->flags_ |= (flags
2899 & (elfcpp::SHF_WRITE
2900 | elfcpp::SHF_ALLOC
2901 | elfcpp::SHF_EXECINSTR));
2902
2903 if ((flags & elfcpp::SHF_MERGE) == 0)
2904 this->flags_ &=~ elfcpp::SHF_MERGE;
2905 else
2906 {
2907 if (this->current_data_size_for_child() == 0)
2908 this->flags_ |= elfcpp::SHF_MERGE;
2909 }
2910
2911 if ((flags & elfcpp::SHF_STRINGS) == 0)
2912 this->flags_ &=~ elfcpp::SHF_STRINGS;
2913 else
2914 {
2915 if (this->current_data_size_for_child() == 0)
2916 this->flags_ |= elfcpp::SHF_STRINGS;
2917 }
2918 }
2919
2920 // Find the merge section into which an input section with index SHNDX in
2921 // OBJECT has been added. Return NULL if none found.
2922
2923 const Output_section_data*
2924 Output_section::find_merge_section(const Relobj* object,
2925 unsigned int shndx) const
2926 {
2927 return object->find_merge_section(shndx);
2928 }
2929
2930 // Build the lookup maps for relaxed sections. This needs
2931 // to be declared as a const method so that it is callable with a const
2932 // Output_section pointer. The method only updates states of the maps.
2933
2934 void
2935 Output_section::build_lookup_maps() const
2936 {
2937 this->lookup_maps_->clear();
2938 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2939 p != this->input_sections_.end();
2940 ++p)
2941 {
2942 if (p->is_relaxed_input_section())
2943 {
2944 Output_relaxed_input_section* poris = p->relaxed_input_section();
2945 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2946 poris->shndx(), poris);
2947 }
2948 }
2949 }
2950
2951 // Find an relaxed input section corresponding to an input section
2952 // in OBJECT with index SHNDX.
2953
2954 const Output_relaxed_input_section*
2955 Output_section::find_relaxed_input_section(const Relobj* object,
2956 unsigned int shndx) const
2957 {
2958 if (!this->lookup_maps_->is_valid())
2959 this->build_lookup_maps();
2960 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2961 }
2962
2963 // Given an address OFFSET relative to the start of input section
2964 // SHNDX in OBJECT, return whether this address is being included in
2965 // the final link. This should only be called if SHNDX in OBJECT has
2966 // a special mapping.
2967
2968 bool
2969 Output_section::is_input_address_mapped(const Relobj* object,
2970 unsigned int shndx,
2971 off_t offset) const
2972 {
2973 // Look at the Output_section_data_maps first.
2974 const Output_section_data* posd = this->find_merge_section(object, shndx);
2975 if (posd == NULL)
2976 posd = this->find_relaxed_input_section(object, shndx);
2977
2978 if (posd != NULL)
2979 {
2980 section_offset_type output_offset;
2981 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2982 // By default we assume that the address is mapped. See comment at the
2983 // end.
2984 if (!found)
2985 return true;
2986 return output_offset != -1;
2987 }
2988
2989 // Fall back to the slow look-up.
2990 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2991 p != this->input_sections_.end();
2992 ++p)
2993 {
2994 section_offset_type output_offset;
2995 if (p->output_offset(object, shndx, offset, &output_offset))
2996 return output_offset != -1;
2997 }
2998
2999 // By default we assume that the address is mapped. This should
3000 // only be called after we have passed all sections to Layout. At
3001 // that point we should know what we are discarding.
3002 return true;
3003 }
3004
3005 // Given an address OFFSET relative to the start of input section
3006 // SHNDX in object OBJECT, return the output offset relative to the
3007 // start of the input section in the output section. This should only
3008 // be called if SHNDX in OBJECT has a special mapping.
3009
3010 section_offset_type
3011 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3012 section_offset_type offset) const
3013 {
3014 // This can only be called meaningfully when we know the data size
3015 // of this.
3016 gold_assert(this->is_data_size_valid());
3017
3018 // Look at the Output_section_data_maps first.
3019 const Output_section_data* posd = this->find_merge_section(object, shndx);
3020 if (posd == NULL)
3021 posd = this->find_relaxed_input_section(object, shndx);
3022 if (posd != NULL)
3023 {
3024 section_offset_type output_offset;
3025 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3026 gold_assert(found);
3027 return output_offset;
3028 }
3029
3030 // Fall back to the slow look-up.
3031 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3032 p != this->input_sections_.end();
3033 ++p)
3034 {
3035 section_offset_type output_offset;
3036 if (p->output_offset(object, shndx, offset, &output_offset))
3037 return output_offset;
3038 }
3039 gold_unreachable();
3040 }
3041
3042 // Return the output virtual address of OFFSET relative to the start
3043 // of input section SHNDX in object OBJECT.
3044
3045 uint64_t
3046 Output_section::output_address(const Relobj* object, unsigned int shndx,
3047 off_t offset) const
3048 {
3049 uint64_t addr = this->address() + this->first_input_offset_;
3050
3051 // Look at the Output_section_data_maps first.
3052 const Output_section_data* posd = this->find_merge_section(object, shndx);
3053 if (posd == NULL)
3054 posd = this->find_relaxed_input_section(object, shndx);
3055 if (posd != NULL && posd->is_address_valid())
3056 {
3057 section_offset_type output_offset;
3058 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3059 gold_assert(found);
3060 return posd->address() + output_offset;
3061 }
3062
3063 // Fall back to the slow look-up.
3064 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3065 p != this->input_sections_.end();
3066 ++p)
3067 {
3068 addr = align_address(addr, p->addralign());
3069 section_offset_type output_offset;
3070 if (p->output_offset(object, shndx, offset, &output_offset))
3071 {
3072 if (output_offset == -1)
3073 return -1ULL;
3074 return addr + output_offset;
3075 }
3076 addr += p->data_size();
3077 }
3078
3079 // If we get here, it means that we don't know the mapping for this
3080 // input section. This might happen in principle if
3081 // add_input_section were called before add_output_section_data.
3082 // But it should never actually happen.
3083
3084 gold_unreachable();
3085 }
3086
3087 // Find the output address of the start of the merged section for
3088 // input section SHNDX in object OBJECT.
3089
3090 bool
3091 Output_section::find_starting_output_address(const Relobj* object,
3092 unsigned int shndx,
3093 uint64_t* paddr) const
3094 {
3095 const Output_section_data* data = this->find_merge_section(object, shndx);
3096 if (data == NULL)
3097 return false;
3098
3099 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3100 // Looking up the merge section map does not always work as we sometimes
3101 // find a merge section without its address set.
3102 uint64_t addr = this->address() + this->first_input_offset_;
3103 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3104 p != this->input_sections_.end();
3105 ++p)
3106 {
3107 addr = align_address(addr, p->addralign());
3108
3109 // It would be nice if we could use the existing output_offset
3110 // method to get the output offset of input offset 0.
3111 // Unfortunately we don't know for sure that input offset 0 is
3112 // mapped at all.
3113 if (!p->is_input_section() && p->output_section_data() == data)
3114 {
3115 *paddr = addr;
3116 return true;
3117 }
3118
3119 addr += p->data_size();
3120 }
3121
3122 // We couldn't find a merge output section for this input section.
3123 return false;
3124 }
3125
3126 // Update the data size of an Output_section.
3127
3128 void
3129 Output_section::update_data_size()
3130 {
3131 if (this->input_sections_.empty())
3132 return;
3133
3134 if (this->must_sort_attached_input_sections()
3135 || this->input_section_order_specified())
3136 this->sort_attached_input_sections();
3137
3138 off_t off = this->first_input_offset_;
3139 for (Input_section_list::iterator p = this->input_sections_.begin();
3140 p != this->input_sections_.end();
3141 ++p)
3142 {
3143 off = align_address(off, p->addralign());
3144 off += p->current_data_size();
3145 }
3146
3147 this->set_current_data_size_for_child(off);
3148 }
3149
3150 // Set the data size of an Output_section. This is where we handle
3151 // setting the addresses of any Output_section_data objects.
3152
3153 void
3154 Output_section::set_final_data_size()
3155 {
3156 off_t data_size;
3157
3158 if (this->input_sections_.empty())
3159 data_size = this->current_data_size_for_child();
3160 else
3161 {
3162 if (this->must_sort_attached_input_sections()
3163 || this->input_section_order_specified())
3164 this->sort_attached_input_sections();
3165
3166 uint64_t address = this->address();
3167 off_t startoff = this->offset();
3168 off_t off = this->first_input_offset_;
3169 for (Input_section_list::iterator p = this->input_sections_.begin();
3170 p != this->input_sections_.end();
3171 ++p)
3172 {
3173 off = align_address(off, p->addralign());
3174 p->set_address_and_file_offset(address + off, startoff + off,
3175 startoff);
3176 off += p->data_size();
3177 }
3178 data_size = off;
3179 }
3180
3181 // For full incremental links, we want to allocate some patch space
3182 // in most sections for subsequent incremental updates.
3183 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3184 {
3185 double pct = parameters->options().incremental_patch();
3186 size_t extra = static_cast<size_t>(data_size * pct);
3187 if (this->free_space_fill_ != NULL
3188 && this->free_space_fill_->minimum_hole_size() > extra)
3189 extra = this->free_space_fill_->minimum_hole_size();
3190 off_t new_size = align_address(data_size + extra, this->addralign());
3191 this->patch_space_ = new_size - data_size;
3192 gold_debug(DEBUG_INCREMENTAL,
3193 "set_final_data_size: %08lx + %08lx: section %s",
3194 static_cast<long>(data_size),
3195 static_cast<long>(this->patch_space_),
3196 this->name());
3197 data_size = new_size;
3198 }
3199
3200 this->set_data_size(data_size);
3201 }
3202
3203 // Reset the address and file offset.
3204
3205 void
3206 Output_section::do_reset_address_and_file_offset()
3207 {
3208 // An unallocated section has no address. Forcing this means that
3209 // we don't need special treatment for symbols defined in debug
3210 // sections. We do the same in the constructor. This does not
3211 // apply to NOLOAD sections though.
3212 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3213 this->set_address(0);
3214
3215 for (Input_section_list::iterator p = this->input_sections_.begin();
3216 p != this->input_sections_.end();
3217 ++p)
3218 p->reset_address_and_file_offset();
3219
3220 // Remove any patch space that was added in set_final_data_size.
3221 if (this->patch_space_ > 0)
3222 {
3223 this->set_current_data_size_for_child(this->current_data_size_for_child()
3224 - this->patch_space_);
3225 this->patch_space_ = 0;
3226 }
3227 }
3228
3229 // Return true if address and file offset have the values after reset.
3230
3231 bool
3232 Output_section::do_address_and_file_offset_have_reset_values() const
3233 {
3234 if (this->is_offset_valid())
3235 return false;
3236
3237 // An unallocated section has address 0 after its construction or a reset.
3238 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3239 return this->is_address_valid() && this->address() == 0;
3240 else
3241 return !this->is_address_valid();
3242 }
3243
3244 // Set the TLS offset. Called only for SHT_TLS sections.
3245
3246 void
3247 Output_section::do_set_tls_offset(uint64_t tls_base)
3248 {
3249 this->tls_offset_ = this->address() - tls_base;
3250 }
3251
3252 // In a few cases we need to sort the input sections attached to an
3253 // output section. This is used to implement the type of constructor
3254 // priority ordering implemented by the GNU linker, in which the
3255 // priority becomes part of the section name and the sections are
3256 // sorted by name. We only do this for an output section if we see an
3257 // attached input section matching ".ctors.*", ".dtors.*",
3258 // ".init_array.*" or ".fini_array.*".
3259
3260 class Output_section::Input_section_sort_entry
3261 {
3262 public:
3263 Input_section_sort_entry()
3264 : input_section_(), index_(-1U), section_name_()
3265 { }
3266
3267 Input_section_sort_entry(const Input_section& input_section,
3268 unsigned int index,
3269 bool must_sort_attached_input_sections,
3270 const char* output_section_name)
3271 : input_section_(input_section), index_(index), section_name_()
3272 {
3273 if ((input_section.is_input_section()
3274 || input_section.is_relaxed_input_section())
3275 && must_sort_attached_input_sections)
3276 {
3277 // This is only called single-threaded from Layout::finalize,
3278 // so it is OK to lock. Unfortunately we have no way to pass
3279 // in a Task token.
3280 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3281 Object* obj = (input_section.is_input_section()
3282 ? input_section.relobj()
3283 : input_section.relaxed_input_section()->relobj());
3284 Task_lock_obj<Object> tl(dummy_task, obj);
3285
3286 // This is a slow operation, which should be cached in
3287 // Layout::layout if this becomes a speed problem.
3288 this->section_name_ = obj->section_name(input_section.shndx());
3289 }
3290 else if (input_section.is_output_section_data()
3291 && must_sort_attached_input_sections)
3292 {
3293 // For linker-generated sections, use the output section name.
3294 this->section_name_.assign(output_section_name);
3295 }
3296 }
3297
3298 // Return the Input_section.
3299 const Input_section&
3300 input_section() const
3301 {
3302 gold_assert(this->index_ != -1U);
3303 return this->input_section_;
3304 }
3305
3306 // The index of this entry in the original list. This is used to
3307 // make the sort stable.
3308 unsigned int
3309 index() const
3310 {
3311 gold_assert(this->index_ != -1U);
3312 return this->index_;
3313 }
3314
3315 // The section name.
3316 const std::string&
3317 section_name() const
3318 {
3319 return this->section_name_;
3320 }
3321
3322 // Return true if the section name has a priority. This is assumed
3323 // to be true if it has a dot after the initial dot.
3324 bool
3325 has_priority() const
3326 {
3327 return this->section_name_.find('.', 1) != std::string::npos;
3328 }
3329
3330 // Return the priority. Believe it or not, gcc encodes the priority
3331 // differently for .ctors/.dtors and .init_array/.fini_array
3332 // sections.
3333 unsigned int
3334 get_priority() const
3335 {
3336 bool is_ctors;
3337 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3338 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3339 is_ctors = true;
3340 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3341 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3342 is_ctors = false;
3343 else
3344 return 0;
3345 char* end;
3346 unsigned long prio = strtoul((this->section_name_.c_str()
3347 + (is_ctors ? 7 : 12)),
3348 &end, 10);
3349 if (*end != '\0')
3350 return 0;
3351 else if (is_ctors)
3352 return 65535 - prio;
3353 else
3354 return prio;
3355 }
3356
3357 // Return true if this an input file whose base name matches
3358 // FILE_NAME. The base name must have an extension of ".o", and
3359 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3360 // This is to match crtbegin.o as well as crtbeginS.o without
3361 // getting confused by other possibilities. Overall matching the
3362 // file name this way is a dreadful hack, but the GNU linker does it
3363 // in order to better support gcc, and we need to be compatible.
3364 bool
3365 match_file_name(const char* file_name) const
3366 {
3367 if (this->input_section_.is_output_section_data())
3368 return false;
3369 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3370 }
3371
3372 // Returns 1 if THIS should appear before S in section order, -1 if S
3373 // appears before THIS and 0 if they are not comparable.
3374 int
3375 compare_section_ordering(const Input_section_sort_entry& s) const
3376 {
3377 unsigned int this_secn_index = this->input_section_.section_order_index();
3378 unsigned int s_secn_index = s.input_section().section_order_index();
3379 if (this_secn_index > 0 && s_secn_index > 0)
3380 {
3381 if (this_secn_index < s_secn_index)
3382 return 1;
3383 else if (this_secn_index > s_secn_index)
3384 return -1;
3385 }
3386 return 0;
3387 }
3388
3389 private:
3390 // The Input_section we are sorting.
3391 Input_section input_section_;
3392 // The index of this Input_section in the original list.
3393 unsigned int index_;
3394 // The section name if there is one.
3395 std::string section_name_;
3396 };
3397
3398 // Return true if S1 should come before S2 in the output section.
3399
3400 bool
3401 Output_section::Input_section_sort_compare::operator()(
3402 const Output_section::Input_section_sort_entry& s1,
3403 const Output_section::Input_section_sort_entry& s2) const
3404 {
3405 // crtbegin.o must come first.
3406 bool s1_begin = s1.match_file_name("crtbegin");
3407 bool s2_begin = s2.match_file_name("crtbegin");
3408 if (s1_begin || s2_begin)
3409 {
3410 if (!s1_begin)
3411 return false;
3412 if (!s2_begin)
3413 return true;
3414 return s1.index() < s2.index();
3415 }
3416
3417 // crtend.o must come last.
3418 bool s1_end = s1.match_file_name("crtend");
3419 bool s2_end = s2.match_file_name("crtend");
3420 if (s1_end || s2_end)
3421 {
3422 if (!s1_end)
3423 return true;
3424 if (!s2_end)
3425 return false;
3426 return s1.index() < s2.index();
3427 }
3428
3429 // A section with a priority follows a section without a priority.
3430 bool s1_has_priority = s1.has_priority();
3431 bool s2_has_priority = s2.has_priority();
3432 if (s1_has_priority && !s2_has_priority)
3433 return false;
3434 if (!s1_has_priority && s2_has_priority)
3435 return true;
3436
3437 // Check if a section order exists for these sections through a section
3438 // ordering file. If sequence_num is 0, an order does not exist.
3439 int sequence_num = s1.compare_section_ordering(s2);
3440 if (sequence_num != 0)
3441 return sequence_num == 1;
3442
3443 // Otherwise we sort by name.
3444 int compare = s1.section_name().compare(s2.section_name());
3445 if (compare != 0)
3446 return compare < 0;
3447
3448 // Otherwise we keep the input order.
3449 return s1.index() < s2.index();
3450 }
3451
3452 // Return true if S1 should come before S2 in an .init_array or .fini_array
3453 // output section.
3454
3455 bool
3456 Output_section::Input_section_sort_init_fini_compare::operator()(
3457 const Output_section::Input_section_sort_entry& s1,
3458 const Output_section::Input_section_sort_entry& s2) const
3459 {
3460 // A section without a priority follows a section with a priority.
3461 // This is the reverse of .ctors and .dtors sections.
3462 bool s1_has_priority = s1.has_priority();
3463 bool s2_has_priority = s2.has_priority();
3464 if (s1_has_priority && !s2_has_priority)
3465 return true;
3466 if (!s1_has_priority && s2_has_priority)
3467 return false;
3468
3469 // .ctors and .dtors sections without priority come after
3470 // .init_array and .fini_array sections without priority.
3471 if (!s1_has_priority
3472 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3473 && s1.section_name() != s2.section_name())
3474 return false;
3475 if (!s2_has_priority
3476 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3477 && s2.section_name() != s1.section_name())
3478 return true;
3479
3480 // Sort by priority if we can.
3481 if (s1_has_priority)
3482 {
3483 unsigned int s1_prio = s1.get_priority();
3484 unsigned int s2_prio = s2.get_priority();
3485 if (s1_prio < s2_prio)
3486 return true;
3487 else if (s1_prio > s2_prio)
3488 return false;
3489 }
3490
3491 // Check if a section order exists for these sections through a section
3492 // ordering file. If sequence_num is 0, an order does not exist.
3493 int sequence_num = s1.compare_section_ordering(s2);
3494 if (sequence_num != 0)
3495 return sequence_num == 1;
3496
3497 // Otherwise we sort by name.
3498 int compare = s1.section_name().compare(s2.section_name());
3499 if (compare != 0)
3500 return compare < 0;
3501
3502 // Otherwise we keep the input order.
3503 return s1.index() < s2.index();
3504 }
3505
3506 // Return true if S1 should come before S2. Sections that do not match
3507 // any pattern in the section ordering file are placed ahead of the sections
3508 // that match some pattern.
3509
3510 bool
3511 Output_section::Input_section_sort_section_order_index_compare::operator()(
3512 const Output_section::Input_section_sort_entry& s1,
3513 const Output_section::Input_section_sort_entry& s2) const
3514 {
3515 unsigned int s1_secn_index = s1.input_section().section_order_index();
3516 unsigned int s2_secn_index = s2.input_section().section_order_index();
3517
3518 // Keep input order if section ordering cannot determine order.
3519 if (s1_secn_index == s2_secn_index)
3520 return s1.index() < s2.index();
3521
3522 return s1_secn_index < s2_secn_index;
3523 }
3524
3525 // Return true if S1 should come before S2. This is the sort comparison
3526 // function for .text to sort sections with prefixes
3527 // .text.{unlikely,exit,startup,hot} before other sections.
3528
3529 bool
3530 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3531 ::operator()(
3532 const Output_section::Input_section_sort_entry& s1,
3533 const Output_section::Input_section_sort_entry& s2) const
3534 {
3535 // Some input section names have special ordering requirements.
3536 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3537 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3538 if (o1 != o2)
3539 {
3540 if (o1 < 0)
3541 return false;
3542 else if (o2 < 0)
3543 return true;
3544 else
3545 return o1 < o2;
3546 }
3547
3548 // Keep input order otherwise.
3549 return s1.index() < s2.index();
3550 }
3551
3552 // Return true if S1 should come before S2. This is the sort comparison
3553 // function for sections to sort them by name.
3554
3555 bool
3556 Output_section::Input_section_sort_section_name_compare
3557 ::operator()(
3558 const Output_section::Input_section_sort_entry& s1,
3559 const Output_section::Input_section_sort_entry& s2) const
3560 {
3561 // We sort by name.
3562 int compare = s1.section_name().compare(s2.section_name());
3563 if (compare != 0)
3564 return compare < 0;
3565
3566 // Keep input order otherwise.
3567 return s1.index() < s2.index();
3568 }
3569
3570 // This updates the section order index of input sections according to the
3571 // the order specified in the mapping from Section id to order index.
3572
3573 void
3574 Output_section::update_section_layout(
3575 const Section_layout_order* order_map)
3576 {
3577 for (Input_section_list::iterator p = this->input_sections_.begin();
3578 p != this->input_sections_.end();
3579 ++p)
3580 {
3581 if (p->is_input_section()
3582 || p->is_relaxed_input_section())
3583 {
3584 Relobj* obj = (p->is_input_section()
3585 ? p->relobj()
3586 : p->relaxed_input_section()->relobj());
3587 unsigned int shndx = p->shndx();
3588 Section_layout_order::const_iterator it
3589 = order_map->find(Section_id(obj, shndx));
3590 if (it == order_map->end())
3591 continue;
3592 unsigned int section_order_index = it->second;
3593 if (section_order_index != 0)
3594 {
3595 p->set_section_order_index(section_order_index);
3596 this->set_input_section_order_specified();
3597 }
3598 }
3599 }
3600 }
3601
3602 // Sort the input sections attached to an output section.
3603
3604 void
3605 Output_section::sort_attached_input_sections()
3606 {
3607 if (this->attached_input_sections_are_sorted_)
3608 return;
3609
3610 if (this->checkpoint_ != NULL
3611 && !this->checkpoint_->input_sections_saved())
3612 this->checkpoint_->save_input_sections();
3613
3614 // The only thing we know about an input section is the object and
3615 // the section index. We need the section name. Recomputing this
3616 // is slow but this is an unusual case. If this becomes a speed
3617 // problem we can cache the names as required in Layout::layout.
3618
3619 // We start by building a larger vector holding a copy of each
3620 // Input_section, plus its current index in the list and its name.
3621 std::vector<Input_section_sort_entry> sort_list;
3622
3623 unsigned int i = 0;
3624 for (Input_section_list::iterator p = this->input_sections_.begin();
3625 p != this->input_sections_.end();
3626 ++p, ++i)
3627 sort_list.push_back(Input_section_sort_entry(*p, i,
3628 this->must_sort_attached_input_sections(),
3629 this->name()));
3630
3631 // Sort the input sections.
3632 if (this->must_sort_attached_input_sections())
3633 {
3634 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3635 || this->type() == elfcpp::SHT_INIT_ARRAY
3636 || this->type() == elfcpp::SHT_FINI_ARRAY)
3637 std::sort(sort_list.begin(), sort_list.end(),
3638 Input_section_sort_init_fini_compare());
3639 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3640 std::sort(sort_list.begin(), sort_list.end(),
3641 Input_section_sort_section_name_compare());
3642 else if (strcmp(this->name(), ".text") == 0)
3643 std::sort(sort_list.begin(), sort_list.end(),
3644 Input_section_sort_section_prefix_special_ordering_compare());
3645 else
3646 std::sort(sort_list.begin(), sort_list.end(),
3647 Input_section_sort_compare());
3648 }
3649 else
3650 {
3651 gold_assert(this->input_section_order_specified());
3652 std::sort(sort_list.begin(), sort_list.end(),
3653 Input_section_sort_section_order_index_compare());
3654 }
3655
3656 // Copy the sorted input sections back to our list.
3657 this->input_sections_.clear();
3658 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3659 p != sort_list.end();
3660 ++p)
3661 this->input_sections_.push_back(p->input_section());
3662 sort_list.clear();
3663
3664 // Remember that we sorted the input sections, since we might get
3665 // called again.
3666 this->attached_input_sections_are_sorted_ = true;
3667 }
3668
3669 // Write the section header to *OSHDR.
3670
3671 template<int size, bool big_endian>
3672 void
3673 Output_section::write_header(const Layout* layout,
3674 const Stringpool* secnamepool,
3675 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3676 {
3677 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3678 oshdr->put_sh_type(this->type_);
3679
3680 elfcpp::Elf_Xword flags = this->flags_;
3681 if (this->info_section_ != NULL && this->info_uses_section_index_)
3682 flags |= elfcpp::SHF_INFO_LINK;
3683 oshdr->put_sh_flags(flags);
3684
3685 oshdr->put_sh_addr(this->address());
3686 oshdr->put_sh_offset(this->offset());
3687 oshdr->put_sh_size(this->data_size());
3688 if (this->link_section_ != NULL)
3689 oshdr->put_sh_link(this->link_section_->out_shndx());
3690 else if (this->should_link_to_symtab_)
3691 oshdr->put_sh_link(layout->symtab_section_shndx());
3692 else if (this->should_link_to_dynsym_)
3693 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3694 else
3695 oshdr->put_sh_link(this->link_);
3696
3697 elfcpp::Elf_Word info;
3698 if (this->info_section_ != NULL)
3699 {
3700 if (this->info_uses_section_index_)
3701 info = this->info_section_->out_shndx();
3702 else
3703 info = this->info_section_->symtab_index();
3704 }
3705 else if (this->info_symndx_ != NULL)
3706 info = this->info_symndx_->symtab_index();
3707 else
3708 info = this->info_;
3709 oshdr->put_sh_info(info);
3710
3711 oshdr->put_sh_addralign(this->addralign_);
3712 oshdr->put_sh_entsize(this->entsize_);
3713 }
3714
3715 // Write out the data. For input sections the data is written out by
3716 // Object::relocate, but we have to handle Output_section_data objects
3717 // here.
3718
3719 void
3720 Output_section::do_write(Output_file* of)
3721 {
3722 gold_assert(!this->requires_postprocessing());
3723
3724 // If the target performs relaxation, we delay filler generation until now.
3725 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3726
3727 off_t output_section_file_offset = this->offset();
3728 for (Fill_list::iterator p = this->fills_.begin();
3729 p != this->fills_.end();
3730 ++p)
3731 {
3732 std::string fill_data(parameters->target().code_fill(p->length()));
3733 of->write(output_section_file_offset + p->section_offset(),
3734 fill_data.data(), fill_data.size());
3735 }
3736
3737 off_t off = this->offset() + this->first_input_offset_;
3738 for (Input_section_list::iterator p = this->input_sections_.begin();
3739 p != this->input_sections_.end();
3740 ++p)
3741 {
3742 off_t aligned_off = align_address(off, p->addralign());
3743 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3744 {
3745 size_t fill_len = aligned_off - off;
3746 std::string fill_data(parameters->target().code_fill(fill_len));
3747 of->write(off, fill_data.data(), fill_data.size());
3748 }
3749
3750 p->write(of);
3751 off = aligned_off + p->data_size();
3752 }
3753
3754 // For incremental links, fill in unused chunks in debug sections
3755 // with dummy compilation unit headers.
3756 if (this->free_space_fill_ != NULL)
3757 {
3758 for (Free_list::Const_iterator p = this->free_list_.begin();
3759 p != this->free_list_.end();
3760 ++p)
3761 {
3762 off_t off = p->start_;
3763 size_t len = p->end_ - off;
3764 this->free_space_fill_->write(of, this->offset() + off, len);
3765 }
3766 if (this->patch_space_ > 0)
3767 {
3768 off_t off = this->current_data_size_for_child() - this->patch_space_;
3769 this->free_space_fill_->write(of, this->offset() + off,
3770 this->patch_space_);
3771 }
3772 }
3773 }
3774
3775 // If a section requires postprocessing, create the buffer to use.
3776
3777 void
3778 Output_section::create_postprocessing_buffer()
3779 {
3780 gold_assert(this->requires_postprocessing());
3781
3782 if (this->postprocessing_buffer_ != NULL)
3783 return;
3784
3785 if (!this->input_sections_.empty())
3786 {
3787 off_t off = this->first_input_offset_;
3788 for (Input_section_list::iterator p = this->input_sections_.begin();
3789 p != this->input_sections_.end();
3790 ++p)
3791 {
3792 off = align_address(off, p->addralign());
3793 p->finalize_data_size();
3794 off += p->data_size();
3795 }
3796 this->set_current_data_size_for_child(off);
3797 }
3798
3799 off_t buffer_size = this->current_data_size_for_child();
3800 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3801 }
3802
3803 // Write all the data of an Output_section into the postprocessing
3804 // buffer. This is used for sections which require postprocessing,
3805 // such as compression. Input sections are handled by
3806 // Object::Relocate.
3807
3808 void
3809 Output_section::write_to_postprocessing_buffer()
3810 {
3811 gold_assert(this->requires_postprocessing());
3812
3813 // If the target performs relaxation, we delay filler generation until now.
3814 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3815
3816 unsigned char* buffer = this->postprocessing_buffer();
3817 for (Fill_list::iterator p = this->fills_.begin();
3818 p != this->fills_.end();
3819 ++p)
3820 {
3821 std::string fill_data(parameters->target().code_fill(p->length()));
3822 memcpy(buffer + p->section_offset(), fill_data.data(),
3823 fill_data.size());
3824 }
3825
3826 off_t off = this->first_input_offset_;
3827 for (Input_section_list::iterator p = this->input_sections_.begin();
3828 p != this->input_sections_.end();
3829 ++p)
3830 {
3831 off_t aligned_off = align_address(off, p->addralign());
3832 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3833 {
3834 size_t fill_len = aligned_off - off;
3835 std::string fill_data(parameters->target().code_fill(fill_len));
3836 memcpy(buffer + off, fill_data.data(), fill_data.size());
3837 }
3838
3839 p->write_to_buffer(buffer + aligned_off);
3840 off = aligned_off + p->data_size();
3841 }
3842 }
3843
3844 // Get the input sections for linker script processing. We leave
3845 // behind the Output_section_data entries. Note that this may be
3846 // slightly incorrect for merge sections. We will leave them behind,
3847 // but it is possible that the script says that they should follow
3848 // some other input sections, as in:
3849 // .rodata { *(.rodata) *(.rodata.cst*) }
3850 // For that matter, we don't handle this correctly:
3851 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3852 // With luck this will never matter.
3853
3854 uint64_t
3855 Output_section::get_input_sections(
3856 uint64_t address,
3857 const std::string& fill,
3858 std::list<Input_section>* input_sections)
3859 {
3860 if (this->checkpoint_ != NULL
3861 && !this->checkpoint_->input_sections_saved())
3862 this->checkpoint_->save_input_sections();
3863
3864 // Invalidate fast look-up maps.
3865 this->lookup_maps_->invalidate();
3866
3867 uint64_t orig_address = address;
3868
3869 address = align_address(address, this->addralign());
3870
3871 Input_section_list remaining;
3872 for (Input_section_list::iterator p = this->input_sections_.begin();
3873 p != this->input_sections_.end();
3874 ++p)
3875 {
3876 if (p->is_input_section()
3877 || p->is_relaxed_input_section()
3878 || p->is_merge_section())
3879 input_sections->push_back(*p);
3880 else
3881 {
3882 uint64_t aligned_address = align_address(address, p->addralign());
3883 if (aligned_address != address && !fill.empty())
3884 {
3885 section_size_type length =
3886 convert_to_section_size_type(aligned_address - address);
3887 std::string this_fill;
3888 this_fill.reserve(length);
3889 while (this_fill.length() + fill.length() <= length)
3890 this_fill += fill;
3891 if (this_fill.length() < length)
3892 this_fill.append(fill, 0, length - this_fill.length());
3893
3894 Output_section_data* posd = new Output_data_const(this_fill, 0);
3895 remaining.push_back(Input_section(posd));
3896 }
3897 address = aligned_address;
3898
3899 remaining.push_back(*p);
3900
3901 p->finalize_data_size();
3902 address += p->data_size();
3903 }
3904 }
3905
3906 this->input_sections_.swap(remaining);
3907 this->first_input_offset_ = 0;
3908
3909 uint64_t data_size = address - orig_address;
3910 this->set_current_data_size_for_child(data_size);
3911 return data_size;
3912 }
3913
3914 // Add a script input section. SIS is an Output_section::Input_section,
3915 // which can be either a plain input section or a special input section like
3916 // a relaxed input section. For a special input section, its size must be
3917 // finalized.
3918
3919 void
3920 Output_section::add_script_input_section(const Input_section& sis)
3921 {
3922 uint64_t data_size = sis.data_size();
3923 uint64_t addralign = sis.addralign();
3924 if (addralign > this->addralign_)
3925 this->addralign_ = addralign;
3926
3927 off_t offset_in_section = this->current_data_size_for_child();
3928 off_t aligned_offset_in_section = align_address(offset_in_section,
3929 addralign);
3930
3931 this->set_current_data_size_for_child(aligned_offset_in_section
3932 + data_size);
3933
3934 this->input_sections_.push_back(sis);
3935
3936 // Update fast lookup maps if necessary.
3937 if (this->lookup_maps_->is_valid())
3938 {
3939 if (sis.is_relaxed_input_section())
3940 {
3941 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3942 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3943 poris->shndx(), poris);
3944 }
3945 }
3946 }
3947
3948 // Save states for relaxation.
3949
3950 void
3951 Output_section::save_states()
3952 {
3953 gold_assert(this->checkpoint_ == NULL);
3954 Checkpoint_output_section* checkpoint =
3955 new Checkpoint_output_section(this->addralign_, this->flags_,
3956 this->input_sections_,
3957 this->first_input_offset_,
3958 this->attached_input_sections_are_sorted_);
3959 this->checkpoint_ = checkpoint;
3960 gold_assert(this->fills_.empty());
3961 }
3962
3963 void
3964 Output_section::discard_states()
3965 {
3966 gold_assert(this->checkpoint_ != NULL);
3967 delete this->checkpoint_;
3968 this->checkpoint_ = NULL;
3969 gold_assert(this->fills_.empty());
3970
3971 // Simply invalidate the fast lookup maps since we do not keep
3972 // track of them.
3973 this->lookup_maps_->invalidate();
3974 }
3975
3976 void
3977 Output_section::restore_states()
3978 {
3979 gold_assert(this->checkpoint_ != NULL);
3980 Checkpoint_output_section* checkpoint = this->checkpoint_;
3981
3982 this->addralign_ = checkpoint->addralign();
3983 this->flags_ = checkpoint->flags();
3984 this->first_input_offset_ = checkpoint->first_input_offset();
3985
3986 if (!checkpoint->input_sections_saved())
3987 {
3988 // If we have not copied the input sections, just resize it.
3989 size_t old_size = checkpoint->input_sections_size();
3990 gold_assert(this->input_sections_.size() >= old_size);
3991 this->input_sections_.resize(old_size);
3992 }
3993 else
3994 {
3995 // We need to copy the whole list. This is not efficient for
3996 // extremely large output with hundreads of thousands of input
3997 // objects. We may need to re-think how we should pass sections
3998 // to scripts.
3999 this->input_sections_ = *checkpoint->input_sections();
4000 }
4001
4002 this->attached_input_sections_are_sorted_ =
4003 checkpoint->attached_input_sections_are_sorted();
4004
4005 // Simply invalidate the fast lookup maps since we do not keep
4006 // track of them.
4007 this->lookup_maps_->invalidate();
4008 }
4009
4010 // Update the section offsets of input sections in this. This is required if
4011 // relaxation causes some input sections to change sizes.
4012
4013 void
4014 Output_section::adjust_section_offsets()
4015 {
4016 if (!this->section_offsets_need_adjustment_)
4017 return;
4018
4019 off_t off = 0;
4020 for (Input_section_list::iterator p = this->input_sections_.begin();
4021 p != this->input_sections_.end();
4022 ++p)
4023 {
4024 off = align_address(off, p->addralign());
4025 if (p->is_input_section())
4026 p->relobj()->set_section_offset(p->shndx(), off);
4027 off += p->data_size();
4028 }
4029
4030 this->section_offsets_need_adjustment_ = false;
4031 }
4032
4033 // Print to the map file.
4034
4035 void
4036 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4037 {
4038 mapfile->print_output_section(this);
4039
4040 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4041 p != this->input_sections_.end();
4042 ++p)
4043 p->print_to_mapfile(mapfile);
4044 }
4045
4046 // Print stats for merge sections to stderr.
4047
4048 void
4049 Output_section::print_merge_stats()
4050 {
4051 Input_section_list::iterator p;
4052 for (p = this->input_sections_.begin();
4053 p != this->input_sections_.end();
4054 ++p)
4055 p->print_merge_stats(this->name_);
4056 }
4057
4058 // Set a fixed layout for the section. Used for incremental update links.
4059
4060 void
4061 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4062 off_t sh_size, uint64_t sh_addralign)
4063 {
4064 this->addralign_ = sh_addralign;
4065 this->set_current_data_size(sh_size);
4066 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4067 this->set_address(sh_addr);
4068 this->set_file_offset(sh_offset);
4069 this->finalize_data_size();
4070 this->free_list_.init(sh_size, false);
4071 this->has_fixed_layout_ = true;
4072 }
4073
4074 // Reserve space within the fixed layout for the section. Used for
4075 // incremental update links.
4076
4077 void
4078 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4079 {
4080 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4081 }
4082
4083 // Allocate space from the free list for the section. Used for
4084 // incremental update links.
4085
4086 off_t
4087 Output_section::allocate(off_t len, uint64_t addralign)
4088 {
4089 return this->free_list_.allocate(len, addralign, 0);
4090 }
4091
4092 // Output segment methods.
4093
4094 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4095 : vaddr_(0),
4096 paddr_(0),
4097 memsz_(0),
4098 max_align_(0),
4099 min_p_align_(0),
4100 offset_(0),
4101 filesz_(0),
4102 type_(type),
4103 flags_(flags),
4104 is_max_align_known_(false),
4105 are_addresses_set_(false),
4106 is_large_data_segment_(false),
4107 is_unique_segment_(false)
4108 {
4109 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4110 // the flags.
4111 if (type == elfcpp::PT_TLS)
4112 this->flags_ = elfcpp::PF_R;
4113 }
4114
4115 // Add an Output_section to a PT_LOAD Output_segment.
4116
4117 void
4118 Output_segment::add_output_section_to_load(Layout* layout,
4119 Output_section* os,
4120 elfcpp::Elf_Word seg_flags)
4121 {
4122 gold_assert(this->type() == elfcpp::PT_LOAD);
4123 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4124 gold_assert(!this->is_max_align_known_);
4125 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4126
4127 this->update_flags_for_output_section(seg_flags);
4128
4129 // We don't want to change the ordering if we have a linker script
4130 // with a SECTIONS clause.
4131 Output_section_order order = os->order();
4132 if (layout->script_options()->saw_sections_clause())
4133 order = static_cast<Output_section_order>(0);
4134 else
4135 gold_assert(order != ORDER_INVALID);
4136
4137 this->output_lists_[order].push_back(os);
4138 }
4139
4140 // Add an Output_section to a non-PT_LOAD Output_segment.
4141
4142 void
4143 Output_segment::add_output_section_to_nonload(Output_section* os,
4144 elfcpp::Elf_Word seg_flags)
4145 {
4146 gold_assert(this->type() != elfcpp::PT_LOAD);
4147 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4148 gold_assert(!this->is_max_align_known_);
4149
4150 this->update_flags_for_output_section(seg_flags);
4151
4152 this->output_lists_[0].push_back(os);
4153 }
4154
4155 // Remove an Output_section from this segment. It is an error if it
4156 // is not present.
4157
4158 void
4159 Output_segment::remove_output_section(Output_section* os)
4160 {
4161 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4162 {
4163 Output_data_list* pdl = &this->output_lists_[i];
4164 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4165 {
4166 if (*p == os)
4167 {
4168 pdl->erase(p);
4169 return;
4170 }
4171 }
4172 }
4173 gold_unreachable();
4174 }
4175
4176 // Add an Output_data (which need not be an Output_section) to the
4177 // start of a segment.
4178
4179 void
4180 Output_segment::add_initial_output_data(Output_data* od)
4181 {
4182 gold_assert(!this->is_max_align_known_);
4183 Output_data_list::iterator p = this->output_lists_[0].begin();
4184 this->output_lists_[0].insert(p, od);
4185 }
4186
4187 // Return true if this segment has any sections which hold actual
4188 // data, rather than being a BSS section.
4189
4190 bool
4191 Output_segment::has_any_data_sections() const
4192 {
4193 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4194 {
4195 const Output_data_list* pdl = &this->output_lists_[i];
4196 for (Output_data_list::const_iterator p = pdl->begin();
4197 p != pdl->end();
4198 ++p)
4199 {
4200 if (!(*p)->is_section())
4201 return true;
4202 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4203 return true;
4204 }
4205 }
4206 return false;
4207 }
4208
4209 // Return whether the first data section (not counting TLS sections)
4210 // is a relro section.
4211
4212 bool
4213 Output_segment::is_first_section_relro() const
4214 {
4215 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4216 {
4217 if (i == static_cast<int>(ORDER_TLS_BSS))
4218 continue;
4219 const Output_data_list* pdl = &this->output_lists_[i];
4220 if (!pdl->empty())
4221 {
4222 Output_data* p = pdl->front();
4223 return p->is_section() && p->output_section()->is_relro();
4224 }
4225 }
4226 return false;
4227 }
4228
4229 // Return the maximum alignment of the Output_data in Output_segment.
4230
4231 uint64_t
4232 Output_segment::maximum_alignment()
4233 {
4234 if (!this->is_max_align_known_)
4235 {
4236 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4237 {
4238 const Output_data_list* pdl = &this->output_lists_[i];
4239 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4240 if (addralign > this->max_align_)
4241 this->max_align_ = addralign;
4242 }
4243 this->is_max_align_known_ = true;
4244 }
4245
4246 return this->max_align_;
4247 }
4248
4249 // Return the maximum alignment of a list of Output_data.
4250
4251 uint64_t
4252 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4253 {
4254 uint64_t ret = 0;
4255 for (Output_data_list::const_iterator p = pdl->begin();
4256 p != pdl->end();
4257 ++p)
4258 {
4259 uint64_t addralign = (*p)->addralign();
4260 if (addralign > ret)
4261 ret = addralign;
4262 }
4263 return ret;
4264 }
4265
4266 // Return whether this segment has any dynamic relocs.
4267
4268 bool
4269 Output_segment::has_dynamic_reloc() const
4270 {
4271 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4272 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4273 return true;
4274 return false;
4275 }
4276
4277 // Return whether this Output_data_list has any dynamic relocs.
4278
4279 bool
4280 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4281 {
4282 for (Output_data_list::const_iterator p = pdl->begin();
4283 p != pdl->end();
4284 ++p)
4285 if ((*p)->has_dynamic_reloc())
4286 return true;
4287 return false;
4288 }
4289
4290 // Set the section addresses for an Output_segment. If RESET is true,
4291 // reset the addresses first. ADDR is the address and *POFF is the
4292 // file offset. Set the section indexes starting with *PSHNDX.
4293 // INCREASE_RELRO is the size of the portion of the first non-relro
4294 // section that should be included in the PT_GNU_RELRO segment.
4295 // If this segment has relro sections, and has been aligned for
4296 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4297 // the immediately following segment. Update *HAS_RELRO, *POFF,
4298 // and *PSHNDX.
4299
4300 uint64_t
4301 Output_segment::set_section_addresses(const Target* target,
4302 Layout* layout, bool reset,
4303 uint64_t addr,
4304 unsigned int* increase_relro,
4305 bool* has_relro,
4306 off_t* poff,
4307 unsigned int* pshndx)
4308 {
4309 gold_assert(this->type_ == elfcpp::PT_LOAD);
4310
4311 uint64_t last_relro_pad = 0;
4312 off_t orig_off = *poff;
4313
4314 bool in_tls = false;
4315
4316 // If we have relro sections, we need to pad forward now so that the
4317 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4318 if (parameters->options().relro()
4319 && this->is_first_section_relro()
4320 && (!this->are_addresses_set_ || reset))
4321 {
4322 uint64_t relro_size = 0;
4323 off_t off = *poff;
4324 uint64_t max_align = 0;
4325 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4326 {
4327 Output_data_list* pdl = &this->output_lists_[i];
4328 Output_data_list::iterator p;
4329 for (p = pdl->begin(); p != pdl->end(); ++p)
4330 {
4331 if (!(*p)->is_section())
4332 break;
4333 uint64_t align = (*p)->addralign();
4334 if (align > max_align)
4335 max_align = align;
4336 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4337 in_tls = true;
4338 else if (in_tls)
4339 {
4340 // Align the first non-TLS section to the alignment
4341 // of the TLS segment.
4342 align = max_align;
4343 in_tls = false;
4344 }
4345 // Ignore the size of the .tbss section.
4346 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4347 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4348 continue;
4349 relro_size = align_address(relro_size, align);
4350 if ((*p)->is_address_valid())
4351 relro_size += (*p)->data_size();
4352 else
4353 {
4354 // FIXME: This could be faster.
4355 (*p)->set_address_and_file_offset(relro_size,
4356 relro_size);
4357 relro_size += (*p)->data_size();
4358 (*p)->reset_address_and_file_offset();
4359 }
4360 }
4361 if (p != pdl->end())
4362 break;
4363 }
4364 relro_size += *increase_relro;
4365 // Pad the total relro size to a multiple of the maximum
4366 // section alignment seen.
4367 uint64_t aligned_size = align_address(relro_size, max_align);
4368 // Note the amount of padding added after the last relro section.
4369 last_relro_pad = aligned_size - relro_size;
4370 *has_relro = true;
4371
4372 uint64_t page_align = parameters->target().abi_pagesize();
4373
4374 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4375 uint64_t desired_align = page_align - (aligned_size % page_align);
4376 if (desired_align < off % page_align)
4377 off += page_align;
4378 off += desired_align - off % page_align;
4379 addr += off - orig_off;
4380 orig_off = off;
4381 *poff = off;
4382 }
4383
4384 if (!reset && this->are_addresses_set_)
4385 {
4386 gold_assert(this->paddr_ == addr);
4387 addr = this->vaddr_;
4388 }
4389 else
4390 {
4391 this->vaddr_ = addr;
4392 this->paddr_ = addr;
4393 this->are_addresses_set_ = true;
4394 }
4395
4396 in_tls = false;
4397
4398 this->offset_ = orig_off;
4399
4400 off_t off = 0;
4401 off_t foff = *poff;
4402 uint64_t ret = 0;
4403 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4404 {
4405 if (i == static_cast<int>(ORDER_RELRO_LAST))
4406 {
4407 *poff += last_relro_pad;
4408 foff += last_relro_pad;
4409 addr += last_relro_pad;
4410 if (this->output_lists_[i].empty())
4411 {
4412 // If there is nothing in the ORDER_RELRO_LAST list,
4413 // the padding will occur at the end of the relro
4414 // segment, and we need to add it to *INCREASE_RELRO.
4415 *increase_relro += last_relro_pad;
4416 }
4417 }
4418 addr = this->set_section_list_addresses(layout, reset,
4419 &this->output_lists_[i],
4420 addr, poff, &foff, pshndx,
4421 &in_tls);
4422
4423 // FOFF tracks the last offset used for the file image,
4424 // and *POFF tracks the last offset used for the memory image.
4425 // When not using a linker script, bss sections should all
4426 // be processed in the ORDER_SMALL_BSS and later buckets.
4427 gold_assert(*poff == foff
4428 || i == static_cast<int>(ORDER_TLS_BSS)
4429 || i >= static_cast<int>(ORDER_SMALL_BSS)
4430 || layout->script_options()->saw_sections_clause());
4431
4432 this->filesz_ = foff - orig_off;
4433 off = foff;
4434
4435 ret = addr;
4436 }
4437
4438 // If the last section was a TLS section, align upward to the
4439 // alignment of the TLS segment, so that the overall size of the TLS
4440 // segment is aligned.
4441 if (in_tls)
4442 {
4443 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4444 *poff = align_address(*poff, segment_align);
4445 }
4446
4447 this->memsz_ = *poff - orig_off;
4448
4449 // Ignore the file offset adjustments made by the BSS Output_data
4450 // objects.
4451 *poff = off;
4452
4453 // If code segments must contain only code, and this code segment is
4454 // page-aligned in the file, then fill it out to a whole page with
4455 // code fill (the tail of the segment will not be within any section).
4456 // Thus the entire code segment can be mapped from the file as whole
4457 // pages and that mapping will contain only valid instructions.
4458 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4459 {
4460 uint64_t abi_pagesize = target->abi_pagesize();
4461 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4462 {
4463 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4464
4465 std::string fill_data;
4466 if (target->has_code_fill())
4467 fill_data = target->code_fill(fill_size);
4468 else
4469 fill_data.resize(fill_size); // Zero fill.
4470
4471 Output_data_const* fill = new Output_data_const(fill_data, 0);
4472 fill->set_address(this->vaddr_ + this->memsz_);
4473 fill->set_file_offset(off);
4474 layout->add_relax_output(fill);
4475
4476 off += fill_size;
4477 gold_assert(off % abi_pagesize == 0);
4478 ret += fill_size;
4479 gold_assert(ret % abi_pagesize == 0);
4480
4481 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4482 this->memsz_ = this->filesz_ += fill_size;
4483
4484 *poff = off;
4485 }
4486 }
4487
4488 return ret;
4489 }
4490
4491 // Set the addresses and file offsets in a list of Output_data
4492 // structures.
4493
4494 uint64_t
4495 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4496 Output_data_list* pdl,
4497 uint64_t addr, off_t* poff,
4498 off_t* pfoff,
4499 unsigned int* pshndx,
4500 bool* in_tls)
4501 {
4502 off_t startoff = *poff;
4503 // For incremental updates, we may allocate non-fixed sections from
4504 // free space in the file. This keeps track of the high-water mark.
4505 off_t maxoff = startoff;
4506
4507 off_t off = startoff;
4508 off_t foff = *pfoff;
4509 for (Output_data_list::iterator p = pdl->begin();
4510 p != pdl->end();
4511 ++p)
4512 {
4513 bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4514 bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4515
4516 if (reset)
4517 (*p)->reset_address_and_file_offset();
4518
4519 // When doing an incremental update or when using a linker script,
4520 // the section will most likely already have an address.
4521 if (!(*p)->is_address_valid())
4522 {
4523 uint64_t align = (*p)->addralign();
4524
4525 if (is_tls)
4526 {
4527 // Give the first TLS section the alignment of the
4528 // entire TLS segment. Otherwise the TLS segment as a
4529 // whole may be misaligned.
4530 if (!*in_tls)
4531 {
4532 Output_segment* tls_segment = layout->tls_segment();
4533 gold_assert(tls_segment != NULL);
4534 uint64_t segment_align = tls_segment->maximum_alignment();
4535 gold_assert(segment_align >= align);
4536 align = segment_align;
4537
4538 *in_tls = true;
4539 }
4540 }
4541 else
4542 {
4543 // If this is the first section after the TLS segment,
4544 // align it to at least the alignment of the TLS
4545 // segment, so that the size of the overall TLS segment
4546 // is aligned.
4547 if (*in_tls)
4548 {
4549 uint64_t segment_align =
4550 layout->tls_segment()->maximum_alignment();
4551 if (segment_align > align)
4552 align = segment_align;
4553
4554 *in_tls = false;
4555 }
4556 }
4557
4558 if (!parameters->incremental_update())
4559 {
4560 gold_assert(off == foff || is_bss);
4561 off = align_address(off, align);
4562 if (is_tls || !is_bss)
4563 foff = off;
4564 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4565 }
4566 else
4567 {
4568 // Incremental update: allocate file space from free list.
4569 (*p)->pre_finalize_data_size();
4570 off_t current_size = (*p)->current_data_size();
4571 off = layout->allocate(current_size, align, startoff);
4572 foff = off;
4573 if (off == -1)
4574 {
4575 gold_assert((*p)->output_section() != NULL);
4576 gold_fallback(_("out of patch space for section %s; "
4577 "relink with --incremental-full"),
4578 (*p)->output_section()->name());
4579 }
4580 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4581 if ((*p)->data_size() > current_size)
4582 {
4583 gold_assert((*p)->output_section() != NULL);
4584 gold_fallback(_("%s: section changed size; "
4585 "relink with --incremental-full"),
4586 (*p)->output_section()->name());
4587 }
4588 }
4589 }
4590 else if (parameters->incremental_update())
4591 {
4592 // For incremental updates, use the fixed offset for the
4593 // high-water mark computation.
4594 off = (*p)->offset();
4595 foff = off;
4596 }
4597 else
4598 {
4599 // The script may have inserted a skip forward, but it
4600 // better not have moved backward.
4601 if ((*p)->address() >= addr + (off - startoff))
4602 {
4603 if (!is_bss && off > foff)
4604 gold_warning(_("script places BSS section in the middle "
4605 "of a LOAD segment; space will be allocated "
4606 "in the file"));
4607 off += (*p)->address() - (addr + (off - startoff));
4608 if (is_tls || !is_bss)
4609 foff = off;
4610 }
4611 else
4612 {
4613 if (!layout->script_options()->saw_sections_clause())
4614 gold_unreachable();
4615 else
4616 {
4617 Output_section* os = (*p)->output_section();
4618
4619 // Cast to unsigned long long to avoid format warnings.
4620 unsigned long long previous_dot =
4621 static_cast<unsigned long long>(addr + (off - startoff));
4622 unsigned long long dot =
4623 static_cast<unsigned long long>((*p)->address());
4624
4625 if (os == NULL)
4626 gold_error(_("dot moves backward in linker script "
4627 "from 0x%llx to 0x%llx"), previous_dot, dot);
4628 else
4629 gold_error(_("address of section '%s' moves backward "
4630 "from 0x%llx to 0x%llx"),
4631 os->name(), previous_dot, dot);
4632 }
4633 }
4634 (*p)->set_file_offset(foff);
4635 (*p)->finalize_data_size();
4636 }
4637
4638 if (parameters->incremental_update())
4639 gold_debug(DEBUG_INCREMENTAL,
4640 "set_section_list_addresses: %08lx %08lx %s",
4641 static_cast<long>(off),
4642 static_cast<long>((*p)->data_size()),
4643 ((*p)->output_section() != NULL
4644 ? (*p)->output_section()->name() : "(special)"));
4645
4646 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4647 // section. Such a section does not affect the size of a
4648 // PT_LOAD segment.
4649 if (!is_tls || !is_bss)
4650 off += (*p)->data_size();
4651
4652 // We don't allocate space in the file for SHT_NOBITS sections,
4653 // unless a script has force-placed one in the middle of a segment.
4654 if (!is_bss)
4655 foff = off;
4656
4657 if (off > maxoff)
4658 maxoff = off;
4659
4660 if ((*p)->is_section())
4661 {
4662 (*p)->set_out_shndx(*pshndx);
4663 ++*pshndx;
4664 }
4665 }
4666
4667 *poff = maxoff;
4668 *pfoff = foff;
4669 return addr + (maxoff - startoff);
4670 }
4671
4672 // For a non-PT_LOAD segment, set the offset from the sections, if
4673 // any. Add INCREASE to the file size and the memory size.
4674
4675 void
4676 Output_segment::set_offset(unsigned int increase)
4677 {
4678 gold_assert(this->type_ != elfcpp::PT_LOAD);
4679
4680 gold_assert(!this->are_addresses_set_);
4681
4682 // A non-load section only uses output_lists_[0].
4683
4684 Output_data_list* pdl = &this->output_lists_[0];
4685
4686 if (pdl->empty())
4687 {
4688 gold_assert(increase == 0);
4689 this->vaddr_ = 0;
4690 this->paddr_ = 0;
4691 this->are_addresses_set_ = true;
4692 this->memsz_ = 0;
4693 this->min_p_align_ = 0;
4694 this->offset_ = 0;
4695 this->filesz_ = 0;
4696 return;
4697 }
4698
4699 // Find the first and last section by address.
4700 const Output_data* first = NULL;
4701 const Output_data* last_data = NULL;
4702 const Output_data* last_bss = NULL;
4703 for (Output_data_list::const_iterator p = pdl->begin();
4704 p != pdl->end();
4705 ++p)
4706 {
4707 if (first == NULL
4708 || (*p)->address() < first->address()
4709 || ((*p)->address() == first->address()
4710 && (*p)->data_size() < first->data_size()))
4711 first = *p;
4712 const Output_data** plast;
4713 if ((*p)->is_section()
4714 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4715 plast = &last_bss;
4716 else
4717 plast = &last_data;
4718 if (*plast == NULL
4719 || (*p)->address() > (*plast)->address()
4720 || ((*p)->address() == (*plast)->address()
4721 && (*p)->data_size() > (*plast)->data_size()))
4722 *plast = *p;
4723 }
4724
4725 this->vaddr_ = first->address();
4726 this->paddr_ = (first->has_load_address()
4727 ? first->load_address()
4728 : this->vaddr_);
4729 this->are_addresses_set_ = true;
4730 this->offset_ = first->offset();
4731
4732 if (last_data == NULL)
4733 this->filesz_ = 0;
4734 else
4735 this->filesz_ = (last_data->address()
4736 + last_data->data_size()
4737 - this->vaddr_);
4738
4739 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4740 this->memsz_ = (last->address()
4741 + last->data_size()
4742 - this->vaddr_);
4743
4744 this->filesz_ += increase;
4745 this->memsz_ += increase;
4746
4747 // If this is a RELRO segment, verify that the segment ends at a
4748 // page boundary.
4749 if (this->type_ == elfcpp::PT_GNU_RELRO)
4750 {
4751 uint64_t page_align = parameters->target().abi_pagesize();
4752 uint64_t segment_end = this->vaddr_ + this->memsz_;
4753 if (parameters->incremental_update())
4754 {
4755 // The INCREASE_RELRO calculation is bypassed for an incremental
4756 // update, so we need to adjust the segment size manually here.
4757 segment_end = align_address(segment_end, page_align);
4758 this->memsz_ = segment_end - this->vaddr_;
4759 }
4760 else
4761 gold_assert(segment_end == align_address(segment_end, page_align));
4762 }
4763
4764 // If this is a TLS segment, align the memory size. The code in
4765 // set_section_list ensures that the section after the TLS segment
4766 // is aligned to give us room.
4767 if (this->type_ == elfcpp::PT_TLS)
4768 {
4769 uint64_t segment_align = this->maximum_alignment();
4770 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4771 this->memsz_ = align_address(this->memsz_, segment_align);
4772 }
4773 }
4774
4775 // Set the TLS offsets of the sections in the PT_TLS segment.
4776
4777 void
4778 Output_segment::set_tls_offsets()
4779 {
4780 gold_assert(this->type_ == elfcpp::PT_TLS);
4781
4782 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4783 p != this->output_lists_[0].end();
4784 ++p)
4785 (*p)->set_tls_offset(this->vaddr_);
4786 }
4787
4788 // Return the first section.
4789
4790 Output_section*
4791 Output_segment::first_section() const
4792 {
4793 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4794 {
4795 const Output_data_list* pdl = &this->output_lists_[i];
4796 for (Output_data_list::const_iterator p = pdl->begin();
4797 p != pdl->end();
4798 ++p)
4799 {
4800 if ((*p)->is_section())
4801 return (*p)->output_section();
4802 }
4803 }
4804 return NULL;
4805 }
4806
4807 // Return the number of Output_sections in an Output_segment.
4808
4809 unsigned int
4810 Output_segment::output_section_count() const
4811 {
4812 unsigned int ret = 0;
4813 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4814 ret += this->output_section_count_list(&this->output_lists_[i]);
4815 return ret;
4816 }
4817
4818 // Return the number of Output_sections in an Output_data_list.
4819
4820 unsigned int
4821 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4822 {
4823 unsigned int count = 0;
4824 for (Output_data_list::const_iterator p = pdl->begin();
4825 p != pdl->end();
4826 ++p)
4827 {
4828 if ((*p)->is_section())
4829 ++count;
4830 }
4831 return count;
4832 }
4833
4834 // Return the section attached to the list segment with the lowest
4835 // load address. This is used when handling a PHDRS clause in a
4836 // linker script.
4837
4838 Output_section*
4839 Output_segment::section_with_lowest_load_address() const
4840 {
4841 Output_section* found = NULL;
4842 uint64_t found_lma = 0;
4843 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4844 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4845 &found_lma);
4846 return found;
4847 }
4848
4849 // Look through a list for a section with a lower load address.
4850
4851 void
4852 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4853 Output_section** found,
4854 uint64_t* found_lma) const
4855 {
4856 for (Output_data_list::const_iterator p = pdl->begin();
4857 p != pdl->end();
4858 ++p)
4859 {
4860 if (!(*p)->is_section())
4861 continue;
4862 Output_section* os = static_cast<Output_section*>(*p);
4863 uint64_t lma = (os->has_load_address()
4864 ? os->load_address()
4865 : os->address());
4866 if (*found == NULL || lma < *found_lma)
4867 {
4868 *found = os;
4869 *found_lma = lma;
4870 }
4871 }
4872 }
4873
4874 // Write the segment data into *OPHDR.
4875
4876 template<int size, bool big_endian>
4877 void
4878 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4879 {
4880 ophdr->put_p_type(this->type_);
4881 ophdr->put_p_offset(this->offset_);
4882 ophdr->put_p_vaddr(this->vaddr_);
4883 ophdr->put_p_paddr(this->paddr_);
4884 ophdr->put_p_filesz(this->filesz_);
4885 ophdr->put_p_memsz(this->memsz_);
4886 ophdr->put_p_flags(this->flags_);
4887 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4888 }
4889
4890 // Write the section headers into V.
4891
4892 template<int size, bool big_endian>
4893 unsigned char*
4894 Output_segment::write_section_headers(const Layout* layout,
4895 const Stringpool* secnamepool,
4896 unsigned char* v,
4897 unsigned int* pshndx) const
4898 {
4899 // Every section that is attached to a segment must be attached to a
4900 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4901 // segments.
4902 if (this->type_ != elfcpp::PT_LOAD)
4903 return v;
4904
4905 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4906 {
4907 const Output_data_list* pdl = &this->output_lists_[i];
4908 v = this->write_section_headers_list<size, big_endian>(layout,
4909 secnamepool,
4910 pdl,
4911 v, pshndx);
4912 }
4913
4914 return v;
4915 }
4916
4917 template<int size, bool big_endian>
4918 unsigned char*
4919 Output_segment::write_section_headers_list(const Layout* layout,
4920 const Stringpool* secnamepool,
4921 const Output_data_list* pdl,
4922 unsigned char* v,
4923 unsigned int* pshndx) const
4924 {
4925 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4926 for (Output_data_list::const_iterator p = pdl->begin();
4927 p != pdl->end();
4928 ++p)
4929 {
4930 if ((*p)->is_section())
4931 {
4932 const Output_section* ps = static_cast<const Output_section*>(*p);
4933 gold_assert(*pshndx == ps->out_shndx());
4934 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4935 ps->write_header(layout, secnamepool, &oshdr);
4936 v += shdr_size;
4937 ++*pshndx;
4938 }
4939 }
4940 return v;
4941 }
4942
4943 // Print the output sections to the map file.
4944
4945 void
4946 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4947 {
4948 if (this->type() != elfcpp::PT_LOAD)
4949 return;
4950 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4951 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4952 }
4953
4954 // Print an output section list to the map file.
4955
4956 void
4957 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4958 const Output_data_list* pdl) const
4959 {
4960 for (Output_data_list::const_iterator p = pdl->begin();
4961 p != pdl->end();
4962 ++p)
4963 (*p)->print_to_mapfile(mapfile);
4964 }
4965
4966 // Output_file methods.
4967
4968 Output_file::Output_file(const char* name)
4969 : name_(name),
4970 o_(-1),
4971 file_size_(0),
4972 base_(NULL),
4973 map_is_anonymous_(false),
4974 map_is_allocated_(false),
4975 is_temporary_(false)
4976 {
4977 }
4978
4979 // Try to open an existing file. Returns false if the file doesn't
4980 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4981 // NULL, open that file as the base for incremental linking, and
4982 // copy its contents to the new output file. This routine can
4983 // be called for incremental updates, in which case WRITABLE should
4984 // be true, or by the incremental-dump utility, in which case
4985 // WRITABLE should be false.
4986
4987 bool
4988 Output_file::open_base_file(const char* base_name, bool writable)
4989 {
4990 // The name "-" means "stdout".
4991 if (strcmp(this->name_, "-") == 0)
4992 return false;
4993
4994 bool use_base_file = base_name != NULL;
4995 if (!use_base_file)
4996 base_name = this->name_;
4997 else if (strcmp(base_name, this->name_) == 0)
4998 gold_fatal(_("%s: incremental base and output file name are the same"),
4999 base_name);
5000
5001 // Don't bother opening files with a size of zero.
5002 struct stat s;
5003 if (::stat(base_name, &s) != 0)
5004 {
5005 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5006 return false;
5007 }
5008 if (s.st_size == 0)
5009 {
5010 gold_info(_("%s: incremental base file is empty"), base_name);
5011 return false;
5012 }
5013
5014 // If we're using a base file, we want to open it read-only.
5015 if (use_base_file)
5016 writable = false;
5017
5018 int oflags = writable ? O_RDWR : O_RDONLY;
5019 int o = open_descriptor(-1, base_name, oflags, 0);
5020 if (o < 0)
5021 {
5022 gold_info(_("%s: open: %s"), base_name, strerror(errno));
5023 return false;
5024 }
5025
5026 // If the base file and the output file are different, open a
5027 // new output file and read the contents from the base file into
5028 // the newly-mapped region.
5029 if (use_base_file)
5030 {
5031 this->open(s.st_size);
5032 ssize_t bytes_to_read = s.st_size;
5033 unsigned char* p = this->base_;
5034 while (bytes_to_read > 0)
5035 {
5036 ssize_t len = ::read(o, p, bytes_to_read);
5037 if (len < 0)
5038 {
5039 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5040 return false;
5041 }
5042 if (len == 0)
5043 {
5044 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5045 base_name,
5046 static_cast<long long>(s.st_size - bytes_to_read),
5047 static_cast<long long>(s.st_size));
5048 return false;
5049 }
5050 p += len;
5051 bytes_to_read -= len;
5052 }
5053 ::close(o);
5054 return true;
5055 }
5056
5057 this->o_ = o;
5058 this->file_size_ = s.st_size;
5059
5060 if (!this->map_no_anonymous(writable))
5061 {
5062 release_descriptor(o, true);
5063 this->o_ = -1;
5064 this->file_size_ = 0;
5065 return false;
5066 }
5067
5068 return true;
5069 }
5070
5071 // Open the output file.
5072
5073 void
5074 Output_file::open(off_t file_size)
5075 {
5076 this->file_size_ = file_size;
5077
5078 // Unlink the file first; otherwise the open() may fail if the file
5079 // is busy (e.g. it's an executable that's currently being executed).
5080 //
5081 // However, the linker may be part of a system where a zero-length
5082 // file is created for it to write to, with tight permissions (gcc
5083 // 2.95 did something like this). Unlinking the file would work
5084 // around those permission controls, so we only unlink if the file
5085 // has a non-zero size. We also unlink only regular files to avoid
5086 // trouble with directories/etc.
5087 //
5088 // If we fail, continue; this command is merely a best-effort attempt
5089 // to improve the odds for open().
5090
5091 // We let the name "-" mean "stdout"
5092 if (!this->is_temporary_)
5093 {
5094 if (strcmp(this->name_, "-") == 0)
5095 this->o_ = STDOUT_FILENO;
5096 else
5097 {
5098 struct stat s;
5099 if (::stat(this->name_, &s) == 0
5100 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5101 {
5102 if (s.st_size != 0)
5103 ::unlink(this->name_);
5104 else if (!parameters->options().relocatable())
5105 {
5106 // If we don't unlink the existing file, add execute
5107 // permission where read permissions already exist
5108 // and where the umask permits.
5109 int mask = ::umask(0);
5110 ::umask(mask);
5111 s.st_mode |= (s.st_mode & 0444) >> 2;
5112 ::chmod(this->name_, s.st_mode & ~mask);
5113 }
5114 }
5115
5116 int mode = parameters->options().relocatable() ? 0666 : 0777;
5117 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5118 mode);
5119 if (o < 0)
5120 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5121 this->o_ = o;
5122 }
5123 }
5124
5125 this->map();
5126 }
5127
5128 // Resize the output file.
5129
5130 void
5131 Output_file::resize(off_t file_size)
5132 {
5133 // If the mmap is mapping an anonymous memory buffer, this is easy:
5134 // just mremap to the new size. If it's mapping to a file, we want
5135 // to unmap to flush to the file, then remap after growing the file.
5136 if (this->map_is_anonymous_)
5137 {
5138 void* base;
5139 if (!this->map_is_allocated_)
5140 {
5141 base = ::mremap(this->base_, this->file_size_, file_size,
5142 MREMAP_MAYMOVE);
5143 if (base == MAP_FAILED)
5144 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5145 }
5146 else
5147 {
5148 base = realloc(this->base_, file_size);
5149 if (base == NULL)
5150 gold_nomem();
5151 if (file_size > this->file_size_)
5152 memset(static_cast<char*>(base) + this->file_size_, 0,
5153 file_size - this->file_size_);
5154 }
5155 this->base_ = static_cast<unsigned char*>(base);
5156 this->file_size_ = file_size;
5157 }
5158 else
5159 {
5160 this->unmap();
5161 this->file_size_ = file_size;
5162 if (!this->map_no_anonymous(true))
5163 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5164 }
5165 }
5166
5167 // Map an anonymous block of memory which will later be written to the
5168 // file. Return whether the map succeeded.
5169
5170 bool
5171 Output_file::map_anonymous()
5172 {
5173 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5174 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5175 if (base == MAP_FAILED)
5176 {
5177 base = malloc(this->file_size_);
5178 if (base == NULL)
5179 return false;
5180 memset(base, 0, this->file_size_);
5181 this->map_is_allocated_ = true;
5182 }
5183 this->base_ = static_cast<unsigned char*>(base);
5184 this->map_is_anonymous_ = true;
5185 return true;
5186 }
5187
5188 // Map the file into memory. Return whether the mapping succeeded.
5189 // If WRITABLE is true, map with write access.
5190
5191 bool
5192 Output_file::map_no_anonymous(bool writable)
5193 {
5194 const int o = this->o_;
5195
5196 // If the output file is not a regular file, don't try to mmap it;
5197 // instead, we'll mmap a block of memory (an anonymous buffer), and
5198 // then later write the buffer to the file.
5199 void* base;
5200 struct stat statbuf;
5201 if (o == STDOUT_FILENO || o == STDERR_FILENO
5202 || ::fstat(o, &statbuf) != 0
5203 || !S_ISREG(statbuf.st_mode)
5204 || this->is_temporary_)
5205 return false;
5206
5207 // Ensure that we have disk space available for the file. If we
5208 // don't do this, it is possible that we will call munmap, close,
5209 // and exit with dirty buffers still in the cache with no assigned
5210 // disk blocks. If the disk is out of space at that point, the
5211 // output file will wind up incomplete, but we will have already
5212 // exited. The alternative to fallocate would be to use fdatasync,
5213 // but that would be a more significant performance hit.
5214 if (writable)
5215 {
5216 int err = gold_fallocate(o, 0, this->file_size_);
5217 if (err != 0)
5218 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5219 }
5220
5221 // Map the file into memory.
5222 int prot = PROT_READ;
5223 if (writable)
5224 prot |= PROT_WRITE;
5225 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5226
5227 // The mmap call might fail because of file system issues: the file
5228 // system might not support mmap at all, or it might not support
5229 // mmap with PROT_WRITE.
5230 if (base == MAP_FAILED)
5231 return false;
5232
5233 this->map_is_anonymous_ = false;
5234 this->base_ = static_cast<unsigned char*>(base);
5235 return true;
5236 }
5237
5238 // Map the file into memory.
5239
5240 void
5241 Output_file::map()
5242 {
5243 if (parameters->options().mmap_output_file()
5244 && this->map_no_anonymous(true))
5245 return;
5246
5247 // The mmap call might fail because of file system issues: the file
5248 // system might not support mmap at all, or it might not support
5249 // mmap with PROT_WRITE. I'm not sure which errno values we will
5250 // see in all cases, so if the mmap fails for any reason and we
5251 // don't care about file contents, try for an anonymous map.
5252 if (this->map_anonymous())
5253 return;
5254
5255 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5256 this->name_, static_cast<unsigned long>(this->file_size_),
5257 strerror(errno));
5258 }
5259
5260 // Unmap the file from memory.
5261
5262 void
5263 Output_file::unmap()
5264 {
5265 if (this->map_is_anonymous_)
5266 {
5267 // We've already written out the data, so there is no reason to
5268 // waste time unmapping or freeing the memory.
5269 }
5270 else
5271 {
5272 if (::munmap(this->base_, this->file_size_) < 0)
5273 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5274 }
5275 this->base_ = NULL;
5276 }
5277
5278 // Close the output file.
5279
5280 void
5281 Output_file::close()
5282 {
5283 // If the map isn't file-backed, we need to write it now.
5284 if (this->map_is_anonymous_ && !this->is_temporary_)
5285 {
5286 size_t bytes_to_write = this->file_size_;
5287 size_t offset = 0;
5288 while (bytes_to_write > 0)
5289 {
5290 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5291 bytes_to_write);
5292 if (bytes_written == 0)
5293 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5294 else if (bytes_written < 0)
5295 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5296 else
5297 {
5298 bytes_to_write -= bytes_written;
5299 offset += bytes_written;
5300 }
5301 }
5302 }
5303 this->unmap();
5304
5305 // We don't close stdout or stderr
5306 if (this->o_ != STDOUT_FILENO
5307 && this->o_ != STDERR_FILENO
5308 && !this->is_temporary_)
5309 if (::close(this->o_) < 0)
5310 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5311 this->o_ = -1;
5312 }
5313
5314 // Instantiate the templates we need. We could use the configure
5315 // script to restrict this to only the ones for implemented targets.
5316
5317 #ifdef HAVE_TARGET_32_LITTLE
5318 template
5319 off_t
5320 Output_section::add_input_section<32, false>(
5321 Layout* layout,
5322 Sized_relobj_file<32, false>* object,
5323 unsigned int shndx,
5324 const char* secname,
5325 const elfcpp::Shdr<32, false>& shdr,
5326 unsigned int reloc_shndx,
5327 bool have_sections_script);
5328 #endif
5329
5330 #ifdef HAVE_TARGET_32_BIG
5331 template
5332 off_t
5333 Output_section::add_input_section<32, true>(
5334 Layout* layout,
5335 Sized_relobj_file<32, true>* object,
5336 unsigned int shndx,
5337 const char* secname,
5338 const elfcpp::Shdr<32, true>& shdr,
5339 unsigned int reloc_shndx,
5340 bool have_sections_script);
5341 #endif
5342
5343 #ifdef HAVE_TARGET_64_LITTLE
5344 template
5345 off_t
5346 Output_section::add_input_section<64, false>(
5347 Layout* layout,
5348 Sized_relobj_file<64, false>* object,
5349 unsigned int shndx,
5350 const char* secname,
5351 const elfcpp::Shdr<64, false>& shdr,
5352 unsigned int reloc_shndx,
5353 bool have_sections_script);
5354 #endif
5355
5356 #ifdef HAVE_TARGET_64_BIG
5357 template
5358 off_t
5359 Output_section::add_input_section<64, true>(
5360 Layout* layout,
5361 Sized_relobj_file<64, true>* object,
5362 unsigned int shndx,
5363 const char* secname,
5364 const elfcpp::Shdr<64, true>& shdr,
5365 unsigned int reloc_shndx,
5366 bool have_sections_script);
5367 #endif
5368
5369 #ifdef HAVE_TARGET_32_LITTLE
5370 template
5371 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5372 #endif
5373
5374 #ifdef HAVE_TARGET_32_BIG
5375 template
5376 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5377 #endif
5378
5379 #ifdef HAVE_TARGET_64_LITTLE
5380 template
5381 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5382 #endif
5383
5384 #ifdef HAVE_TARGET_64_BIG
5385 template
5386 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5387 #endif
5388
5389 #ifdef HAVE_TARGET_32_LITTLE
5390 template
5391 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5392 #endif
5393
5394 #ifdef HAVE_TARGET_32_BIG
5395 template
5396 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5397 #endif
5398
5399 #ifdef HAVE_TARGET_64_LITTLE
5400 template
5401 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5402 #endif
5403
5404 #ifdef HAVE_TARGET_64_BIG
5405 template
5406 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5407 #endif
5408
5409 #ifdef HAVE_TARGET_32_LITTLE
5410 template
5411 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5412 #endif
5413
5414 #ifdef HAVE_TARGET_32_BIG
5415 template
5416 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5417 #endif
5418
5419 #ifdef HAVE_TARGET_64_LITTLE
5420 template
5421 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5422 #endif
5423
5424 #ifdef HAVE_TARGET_64_BIG
5425 template
5426 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5427 #endif
5428
5429 #ifdef HAVE_TARGET_32_LITTLE
5430 template
5431 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5432 #endif
5433
5434 #ifdef HAVE_TARGET_32_BIG
5435 template
5436 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5437 #endif
5438
5439 #ifdef HAVE_TARGET_64_LITTLE
5440 template
5441 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5442 #endif
5443
5444 #ifdef HAVE_TARGET_64_BIG
5445 template
5446 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5447 #endif
5448
5449 #ifdef HAVE_TARGET_32_LITTLE
5450 template
5451 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5452 #endif
5453
5454 #ifdef HAVE_TARGET_32_BIG
5455 template
5456 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5457 #endif
5458
5459 #ifdef HAVE_TARGET_64_LITTLE
5460 template
5461 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5462 #endif
5463
5464 #ifdef HAVE_TARGET_64_BIG
5465 template
5466 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5467 #endif
5468
5469 #ifdef HAVE_TARGET_32_LITTLE
5470 template
5471 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5472 #endif
5473
5474 #ifdef HAVE_TARGET_32_BIG
5475 template
5476 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5477 #endif
5478
5479 #ifdef HAVE_TARGET_64_LITTLE
5480 template
5481 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5482 #endif
5483
5484 #ifdef HAVE_TARGET_64_BIG
5485 template
5486 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5487 #endif
5488
5489 #ifdef HAVE_TARGET_32_LITTLE
5490 template
5491 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5492 #endif
5493
5494 #ifdef HAVE_TARGET_32_BIG
5495 template
5496 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5497 #endif
5498
5499 #ifdef HAVE_TARGET_64_LITTLE
5500 template
5501 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5502 #endif
5503
5504 #ifdef HAVE_TARGET_64_BIG
5505 template
5506 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5507 #endif
5508
5509 #ifdef HAVE_TARGET_32_LITTLE
5510 template
5511 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5512 #endif
5513
5514 #ifdef HAVE_TARGET_32_BIG
5515 template
5516 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5517 #endif
5518
5519 #ifdef HAVE_TARGET_64_LITTLE
5520 template
5521 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5522 #endif
5523
5524 #ifdef HAVE_TARGET_64_BIG
5525 template
5526 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5527 #endif
5528
5529 #ifdef HAVE_TARGET_32_LITTLE
5530 template
5531 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5532 #endif
5533
5534 #ifdef HAVE_TARGET_32_BIG
5535 template
5536 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5537 #endif
5538
5539 #ifdef HAVE_TARGET_64_LITTLE
5540 template
5541 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5542 #endif
5543
5544 #ifdef HAVE_TARGET_64_BIG
5545 template
5546 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5547 #endif
5548
5549 #ifdef HAVE_TARGET_32_LITTLE
5550 template
5551 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5552 #endif
5553
5554 #ifdef HAVE_TARGET_32_BIG
5555 template
5556 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5557 #endif
5558
5559 #ifdef HAVE_TARGET_64_LITTLE
5560 template
5561 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5562 #endif
5563
5564 #ifdef HAVE_TARGET_64_BIG
5565 template
5566 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5567 #endif
5568
5569 #ifdef HAVE_TARGET_32_LITTLE
5570 template
5571 class Output_data_group<32, false>;
5572 #endif
5573
5574 #ifdef HAVE_TARGET_32_BIG
5575 template
5576 class Output_data_group<32, true>;
5577 #endif
5578
5579 #ifdef HAVE_TARGET_64_LITTLE
5580 template
5581 class Output_data_group<64, false>;
5582 #endif
5583
5584 #ifdef HAVE_TARGET_64_BIG
5585 template
5586 class Output_data_group<64, true>;
5587 #endif
5588
5589 template
5590 class Output_data_got<32, false>;
5591
5592 template
5593 class Output_data_got<32, true>;
5594
5595 template
5596 class Output_data_got<64, false>;
5597
5598 template
5599 class Output_data_got<64, true>;
5600
5601 } // End namespace gold.