]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/output.cc
* ld-elf/seg.d: Restrict to linux and vxworks.
[thirdparty/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h" // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64 return Output_data::default_alignment_for_size(parameters->get_size());
65 }
66
67 // Return the default alignment for a size--32 or 64.
68
69 uint64_t
70 Output_data::default_alignment_for_size(int size)
71 {
72 if (size == 32)
73 return 4;
74 else if (size == 64)
75 return 8;
76 else
77 gold_unreachable();
78 }
79
80 // Output_section_header methods. This currently assumes that the
81 // segment and section lists are complete at construction time.
82
83 Output_section_headers::Output_section_headers(
84 const Layout* layout,
85 const Layout::Segment_list* segment_list,
86 const Layout::Section_list* unattached_section_list,
87 const Stringpool* secnamepool)
88 : layout_(layout),
89 segment_list_(segment_list),
90 unattached_section_list_(unattached_section_list),
91 secnamepool_(secnamepool)
92 {
93 // Count all the sections. Start with 1 for the null section.
94 off_t count = 1;
95 for (Layout::Segment_list::const_iterator p = segment_list->begin();
96 p != segment_list->end();
97 ++p)
98 if ((*p)->type() == elfcpp::PT_LOAD)
99 count += (*p)->output_section_count();
100 count += unattached_section_list->size();
101
102 const int size = parameters->get_size();
103 int shdr_size;
104 if (size == 32)
105 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
106 else if (size == 64)
107 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
108 else
109 gold_unreachable();
110
111 this->set_data_size(count * shdr_size);
112 }
113
114 // Write out the section headers.
115
116 void
117 Output_section_headers::do_write(Output_file* of)
118 {
119 if (parameters->get_size() == 32)
120 {
121 if (parameters->is_big_endian())
122 {
123 #ifdef HAVE_TARGET_32_BIG
124 this->do_sized_write<32, true>(of);
125 #else
126 gold_unreachable();
127 #endif
128 }
129 else
130 {
131 #ifdef HAVE_TARGET_32_LITTLE
132 this->do_sized_write<32, false>(of);
133 #else
134 gold_unreachable();
135 #endif
136 }
137 }
138 else if (parameters->get_size() == 64)
139 {
140 if (parameters->is_big_endian())
141 {
142 #ifdef HAVE_TARGET_64_BIG
143 this->do_sized_write<64, true>(of);
144 #else
145 gold_unreachable();
146 #endif
147 }
148 else
149 {
150 #ifdef HAVE_TARGET_64_LITTLE
151 this->do_sized_write<64, false>(of);
152 #else
153 gold_unreachable();
154 #endif
155 }
156 }
157 else
158 gold_unreachable();
159 }
160
161 template<int size, bool big_endian>
162 void
163 Output_section_headers::do_sized_write(Output_file* of)
164 {
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
187 unsigned shndx = 1;
188 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
189 p != this->segment_list_->end();
190 ++p)
191 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
192 this->layout_, this->secnamepool_, v, &shndx
193 SELECT_SIZE_ENDIAN(size, big_endian));
194 for (Layout::Section_list::const_iterator p =
195 this->unattached_section_list_->begin();
196 p != this->unattached_section_list_->end();
197 ++p)
198 {
199 gold_assert(shndx == (*p)->out_shndx());
200 elfcpp::Shdr_write<size, big_endian> oshdr(v);
201 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
202 v += shdr_size;
203 ++shndx;
204 }
205
206 of->write_output_view(this->offset(), all_shdrs_size, view);
207 }
208
209 // Output_segment_header methods.
210
211 Output_segment_headers::Output_segment_headers(
212 const Layout::Segment_list& segment_list)
213 : segment_list_(segment_list)
214 {
215 const int size = parameters->get_size();
216 int phdr_size;
217 if (size == 32)
218 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
219 else if (size == 64)
220 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
221 else
222 gold_unreachable();
223
224 this->set_data_size(segment_list.size() * phdr_size);
225 }
226
227 void
228 Output_segment_headers::do_write(Output_file* of)
229 {
230 if (parameters->get_size() == 32)
231 {
232 if (parameters->is_big_endian())
233 {
234 #ifdef HAVE_TARGET_32_BIG
235 this->do_sized_write<32, true>(of);
236 #else
237 gold_unreachable();
238 #endif
239 }
240 else
241 {
242 #ifdef HAVE_TARGET_32_LITTLE
243 this->do_sized_write<32, false>(of);
244 #else
245 gold_unreachable();
246 #endif
247 }
248 }
249 else if (parameters->get_size() == 64)
250 {
251 if (parameters->is_big_endian())
252 {
253 #ifdef HAVE_TARGET_64_BIG
254 this->do_sized_write<64, true>(of);
255 #else
256 gold_unreachable();
257 #endif
258 }
259 else
260 {
261 #ifdef HAVE_TARGET_64_LITTLE
262 this->do_sized_write<64, false>(of);
263 #else
264 gold_unreachable();
265 #endif
266 }
267 }
268 else
269 gold_unreachable();
270 }
271
272 template<int size, bool big_endian>
273 void
274 Output_segment_headers::do_sized_write(Output_file* of)
275 {
276 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
277 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
278 unsigned char* view = of->get_output_view(this->offset(),
279 all_phdrs_size);
280 unsigned char* v = view;
281 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
282 p != this->segment_list_.end();
283 ++p)
284 {
285 elfcpp::Phdr_write<size, big_endian> ophdr(v);
286 (*p)->write_header(&ophdr);
287 v += phdr_size;
288 }
289
290 of->write_output_view(this->offset(), all_phdrs_size, view);
291 }
292
293 // Output_file_header methods.
294
295 Output_file_header::Output_file_header(const Target* target,
296 const Symbol_table* symtab,
297 const Output_segment_headers* osh)
298 : target_(target),
299 symtab_(symtab),
300 segment_header_(osh),
301 section_header_(NULL),
302 shstrtab_(NULL)
303 {
304 const int size = parameters->get_size();
305 int ehdr_size;
306 if (size == 32)
307 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
308 else if (size == 64)
309 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
310 else
311 gold_unreachable();
312
313 this->set_data_size(ehdr_size);
314 }
315
316 // Set the section table information for a file header.
317
318 void
319 Output_file_header::set_section_info(const Output_section_headers* shdrs,
320 const Output_section* shstrtab)
321 {
322 this->section_header_ = shdrs;
323 this->shstrtab_ = shstrtab;
324 }
325
326 // Write out the file header.
327
328 void
329 Output_file_header::do_write(Output_file* of)
330 {
331 gold_assert(this->offset() == 0);
332
333 if (parameters->get_size() == 32)
334 {
335 if (parameters->is_big_endian())
336 {
337 #ifdef HAVE_TARGET_32_BIG
338 this->do_sized_write<32, true>(of);
339 #else
340 gold_unreachable();
341 #endif
342 }
343 else
344 {
345 #ifdef HAVE_TARGET_32_LITTLE
346 this->do_sized_write<32, false>(of);
347 #else
348 gold_unreachable();
349 #endif
350 }
351 }
352 else if (parameters->get_size() == 64)
353 {
354 if (parameters->is_big_endian())
355 {
356 #ifdef HAVE_TARGET_64_BIG
357 this->do_sized_write<64, true>(of);
358 #else
359 gold_unreachable();
360 #endif
361 }
362 else
363 {
364 #ifdef HAVE_TARGET_64_LITTLE
365 this->do_sized_write<64, false>(of);
366 #else
367 gold_unreachable();
368 #endif
369 }
370 }
371 else
372 gold_unreachable();
373 }
374
375 // Write out the file header with appropriate size and endianess.
376
377 template<int size, bool big_endian>
378 void
379 Output_file_header::do_sized_write(Output_file* of)
380 {
381 gold_assert(this->offset() == 0);
382
383 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
384 unsigned char* view = of->get_output_view(0, ehdr_size);
385 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
386
387 unsigned char e_ident[elfcpp::EI_NIDENT];
388 memset(e_ident, 0, elfcpp::EI_NIDENT);
389 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
390 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
391 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
392 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
393 if (size == 32)
394 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
395 else if (size == 64)
396 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
397 else
398 gold_unreachable();
399 e_ident[elfcpp::EI_DATA] = (big_endian
400 ? elfcpp::ELFDATA2MSB
401 : elfcpp::ELFDATA2LSB);
402 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
403 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
404 oehdr.put_e_ident(e_ident);
405
406 elfcpp::ET e_type;
407 if (parameters->output_is_object())
408 e_type = elfcpp::ET_REL;
409 else if (parameters->output_is_shared())
410 e_type = elfcpp::ET_DYN;
411 else
412 e_type = elfcpp::ET_EXEC;
413 oehdr.put_e_type(e_type);
414
415 oehdr.put_e_machine(this->target_->machine_code());
416 oehdr.put_e_version(elfcpp::EV_CURRENT);
417
418 // FIXME: Need to support -e, and target specific entry symbol.
419 Symbol* sym = this->symtab_->lookup("_start");
420 typename Sized_symbol<size>::Value_type v;
421 if (sym == NULL)
422 v = 0;
423 else
424 {
425 Sized_symbol<size>* ssym;
426 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
427 sym SELECT_SIZE(size));
428 v = ssym->value();
429 }
430 oehdr.put_e_entry(v);
431
432 oehdr.put_e_phoff(this->segment_header_->offset());
433 oehdr.put_e_shoff(this->section_header_->offset());
434
435 // FIXME: The target needs to set the flags.
436 oehdr.put_e_flags(0);
437
438 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
439 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
440 oehdr.put_e_phnum(this->segment_header_->data_size()
441 / elfcpp::Elf_sizes<size>::phdr_size);
442 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
443 oehdr.put_e_shnum(this->section_header_->data_size()
444 / elfcpp::Elf_sizes<size>::shdr_size);
445 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
446
447 of->write_output_view(0, ehdr_size, view);
448 }
449
450 // Output_data_const methods.
451
452 void
453 Output_data_const::do_write(Output_file* of)
454 {
455 of->write(this->offset(), this->data_.data(), this->data_.size());
456 }
457
458 // Output_data_const_buffer methods.
459
460 void
461 Output_data_const_buffer::do_write(Output_file* of)
462 {
463 of->write(this->offset(), this->p_, this->data_size());
464 }
465
466 // Output_section_data methods.
467
468 // Record the output section, and set the entry size and such.
469
470 void
471 Output_section_data::set_output_section(Output_section* os)
472 {
473 gold_assert(this->output_section_ == NULL);
474 this->output_section_ = os;
475 this->do_adjust_output_section(os);
476 }
477
478 // Return the section index of the output section.
479
480 unsigned int
481 Output_section_data::do_out_shndx() const
482 {
483 gold_assert(this->output_section_ != NULL);
484 return this->output_section_->out_shndx();
485 }
486
487 // Output_data_strtab methods.
488
489 // Set the final data size.
490
491 void
492 Output_data_strtab::set_final_data_size()
493 {
494 this->strtab_->set_string_offsets();
495 this->set_data_size(this->strtab_->get_strtab_size());
496 }
497
498 // Write out a string table.
499
500 void
501 Output_data_strtab::do_write(Output_file* of)
502 {
503 this->strtab_->write(of, this->offset());
504 }
505
506 // Output_reloc methods.
507
508 // A reloc against a global symbol.
509
510 template<bool dynamic, int size, bool big_endian>
511 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
512 Symbol* gsym,
513 unsigned int type,
514 Output_data* od,
515 Address address,
516 bool is_relative)
517 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
518 is_relative_(is_relative), shndx_(INVALID_CODE)
519 {
520 this->u1_.gsym = gsym;
521 this->u2_.od = od;
522 if (dynamic && !is_relative)
523 gsym->set_needs_dynsym_entry();
524 }
525
526 template<bool dynamic, int size, bool big_endian>
527 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
528 Symbol* gsym,
529 unsigned int type,
530 Relobj* relobj,
531 unsigned int shndx,
532 Address address,
533 bool is_relative)
534 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
535 is_relative_(is_relative), shndx_(shndx)
536 {
537 gold_assert(shndx != INVALID_CODE);
538 this->u1_.gsym = gsym;
539 this->u2_.relobj = relobj;
540 if (dynamic && !is_relative)
541 gsym->set_needs_dynsym_entry();
542 }
543
544 // A reloc against a local symbol.
545
546 template<bool dynamic, int size, bool big_endian>
547 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
548 Sized_relobj<size, big_endian>* relobj,
549 unsigned int local_sym_index,
550 unsigned int type,
551 Output_data* od,
552 Address address,
553 bool is_relative)
554 : address_(address), local_sym_index_(local_sym_index), type_(type),
555 is_relative_(is_relative), shndx_(INVALID_CODE)
556 {
557 gold_assert(local_sym_index != GSYM_CODE
558 && local_sym_index != INVALID_CODE);
559 this->u1_.relobj = relobj;
560 this->u2_.od = od;
561 if (dynamic && !is_relative)
562 relobj->set_needs_output_dynsym_entry(local_sym_index);
563 }
564
565 template<bool dynamic, int size, bool big_endian>
566 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
567 Sized_relobj<size, big_endian>* relobj,
568 unsigned int local_sym_index,
569 unsigned int type,
570 unsigned int shndx,
571 Address address,
572 bool is_relative)
573 : address_(address), local_sym_index_(local_sym_index), type_(type),
574 is_relative_(is_relative), shndx_(shndx)
575 {
576 gold_assert(local_sym_index != GSYM_CODE
577 && local_sym_index != INVALID_CODE);
578 gold_assert(shndx != INVALID_CODE);
579 this->u1_.relobj = relobj;
580 this->u2_.relobj = relobj;
581 if (dynamic && !is_relative)
582 relobj->set_needs_output_dynsym_entry(local_sym_index);
583 }
584
585 // A reloc against the STT_SECTION symbol of an output section.
586
587 template<bool dynamic, int size, bool big_endian>
588 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
589 Output_section* os,
590 unsigned int type,
591 Output_data* od,
592 Address address)
593 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
594 is_relative_(false), shndx_(INVALID_CODE)
595 {
596 this->u1_.os = os;
597 this->u2_.od = od;
598 if (dynamic)
599 os->set_needs_dynsym_index();
600 }
601
602 template<bool dynamic, int size, bool big_endian>
603 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
604 Output_section* os,
605 unsigned int type,
606 Relobj* relobj,
607 unsigned int shndx,
608 Address address)
609 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
610 is_relative_(false), shndx_(shndx)
611 {
612 gold_assert(shndx != INVALID_CODE);
613 this->u1_.os = os;
614 this->u2_.relobj = relobj;
615 if (dynamic)
616 os->set_needs_dynsym_index();
617 }
618
619 // Get the symbol index of a relocation.
620
621 template<bool dynamic, int size, bool big_endian>
622 unsigned int
623 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
624 const
625 {
626 unsigned int index;
627 switch (this->local_sym_index_)
628 {
629 case INVALID_CODE:
630 gold_unreachable();
631
632 case GSYM_CODE:
633 if (this->u1_.gsym == NULL)
634 index = 0;
635 else if (dynamic)
636 index = this->u1_.gsym->dynsym_index();
637 else
638 index = this->u1_.gsym->symtab_index();
639 break;
640
641 case SECTION_CODE:
642 if (dynamic)
643 index = this->u1_.os->dynsym_index();
644 else
645 index = this->u1_.os->symtab_index();
646 break;
647
648 case 0:
649 // Relocations without symbols use a symbol index of 0.
650 index = 0;
651 break;
652
653 default:
654 if (dynamic)
655 index = this->u1_.relobj->dynsym_index(this->local_sym_index_);
656 else
657 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
658 break;
659 }
660 gold_assert(index != -1U);
661 return index;
662 }
663
664 // Write out the offset and info fields of a Rel or Rela relocation
665 // entry.
666
667 template<bool dynamic, int size, bool big_endian>
668 template<typename Write_rel>
669 void
670 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
671 Write_rel* wr) const
672 {
673 Address address = this->address_;
674 if (this->shndx_ != INVALID_CODE)
675 {
676 section_offset_type off;
677 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
678 &off);
679 gold_assert(os != NULL);
680 if (off != -1)
681 address += os->address() + off;
682 else
683 {
684 address = os->output_address(this->u2_.relobj, this->shndx_,
685 address);
686 gold_assert(address != -1U);
687 }
688 }
689 else if (this->u2_.od != NULL)
690 address += this->u2_.od->address();
691 wr->put_r_offset(address);
692 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
693 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
694 }
695
696 // Write out a Rel relocation.
697
698 template<bool dynamic, int size, bool big_endian>
699 void
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
701 unsigned char* pov) const
702 {
703 elfcpp::Rel_write<size, big_endian> orel(pov);
704 this->write_rel(&orel);
705 }
706
707 // Get the value of the symbol referred to by a Rel relocation.
708
709 template<bool dynamic, int size, bool big_endian>
710 typename elfcpp::Elf_types<size>::Elf_Addr
711 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
712 {
713 if (this->local_sym_index_ == GSYM_CODE)
714 {
715 const Sized_symbol<size>* sym;
716 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
717 return sym->value();
718 }
719 gold_assert(this->local_sym_index_ != SECTION_CODE
720 && this->local_sym_index_ != INVALID_CODE);
721 const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
722 return relobj->local_symbol_value(this->local_sym_index_);
723 }
724
725 // Write out a Rela relocation.
726
727 template<bool dynamic, int size, bool big_endian>
728 void
729 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
730 unsigned char* pov) const
731 {
732 elfcpp::Rela_write<size, big_endian> orel(pov);
733 this->rel_.write_rel(&orel);
734 Addend addend = this->addend_;
735 if (rel_.is_relative())
736 addend += rel_.symbol_value();
737 orel.put_r_addend(addend);
738 }
739
740 // Output_data_reloc_base methods.
741
742 // Adjust the output section.
743
744 template<int sh_type, bool dynamic, int size, bool big_endian>
745 void
746 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
747 ::do_adjust_output_section(Output_section* os)
748 {
749 if (sh_type == elfcpp::SHT_REL)
750 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
751 else if (sh_type == elfcpp::SHT_RELA)
752 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
753 else
754 gold_unreachable();
755 if (dynamic)
756 os->set_should_link_to_dynsym();
757 else
758 os->set_should_link_to_symtab();
759 }
760
761 // Write out relocation data.
762
763 template<int sh_type, bool dynamic, int size, bool big_endian>
764 void
765 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
766 Output_file* of)
767 {
768 const off_t off = this->offset();
769 const off_t oview_size = this->data_size();
770 unsigned char* const oview = of->get_output_view(off, oview_size);
771
772 unsigned char* pov = oview;
773 for (typename Relocs::const_iterator p = this->relocs_.begin();
774 p != this->relocs_.end();
775 ++p)
776 {
777 p->write(pov);
778 pov += reloc_size;
779 }
780
781 gold_assert(pov - oview == oview_size);
782
783 of->write_output_view(off, oview_size, oview);
784
785 // We no longer need the relocation entries.
786 this->relocs_.clear();
787 }
788
789 // Output_data_got::Got_entry methods.
790
791 // Write out the entry.
792
793 template<int size, bool big_endian>
794 void
795 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
796 {
797 Valtype val = 0;
798
799 switch (this->local_sym_index_)
800 {
801 case GSYM_CODE:
802 {
803 // If the symbol is resolved locally, we need to write out the
804 // link-time value, which will be relocated dynamically by a
805 // RELATIVE relocation.
806 Symbol* gsym = this->u_.gsym;
807 Sized_symbol<size>* sgsym;
808 // This cast is a bit ugly. We don't want to put a
809 // virtual method in Symbol, because we want Symbol to be
810 // as small as possible.
811 sgsym = static_cast<Sized_symbol<size>*>(gsym);
812 val = sgsym->value();
813 }
814 break;
815
816 case CONSTANT_CODE:
817 val = this->u_.constant;
818 break;
819
820 default:
821 val = this->u_.object->local_symbol_value(this->local_sym_index_);
822 break;
823 }
824
825 elfcpp::Swap<size, big_endian>::writeval(pov, val);
826 }
827
828 // Output_data_got methods.
829
830 // Add an entry for a global symbol to the GOT. This returns true if
831 // this is a new GOT entry, false if the symbol already had a GOT
832 // entry.
833
834 template<int size, bool big_endian>
835 bool
836 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
837 {
838 if (gsym->has_got_offset())
839 return false;
840
841 this->entries_.push_back(Got_entry(gsym));
842 this->set_got_size();
843 gsym->set_got_offset(this->last_got_offset());
844 return true;
845 }
846
847 // Add an entry for a global symbol to the GOT, and add a dynamic
848 // relocation of type R_TYPE for the GOT entry.
849 template<int size, bool big_endian>
850 void
851 Output_data_got<size, big_endian>::add_global_with_rel(
852 Symbol* gsym,
853 Rel_dyn* rel_dyn,
854 unsigned int r_type)
855 {
856 if (gsym->has_got_offset())
857 return;
858
859 this->entries_.push_back(Got_entry());
860 this->set_got_size();
861 unsigned int got_offset = this->last_got_offset();
862 gsym->set_got_offset(got_offset);
863 rel_dyn->add_global(gsym, r_type, this, got_offset);
864 }
865
866 template<int size, bool big_endian>
867 void
868 Output_data_got<size, big_endian>::add_global_with_rela(
869 Symbol* gsym,
870 Rela_dyn* rela_dyn,
871 unsigned int r_type)
872 {
873 if (gsym->has_got_offset())
874 return;
875
876 this->entries_.push_back(Got_entry());
877 this->set_got_size();
878 unsigned int got_offset = this->last_got_offset();
879 gsym->set_got_offset(got_offset);
880 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
881 }
882
883 // Add an entry for a local symbol to the GOT. This returns true if
884 // this is a new GOT entry, false if the symbol already has a GOT
885 // entry.
886
887 template<int size, bool big_endian>
888 bool
889 Output_data_got<size, big_endian>::add_local(
890 Sized_relobj<size, big_endian>* object,
891 unsigned int symndx)
892 {
893 if (object->local_has_got_offset(symndx))
894 return false;
895
896 this->entries_.push_back(Got_entry(object, symndx));
897 this->set_got_size();
898 object->set_local_got_offset(symndx, this->last_got_offset());
899 return true;
900 }
901
902 // Add an entry for a local symbol to the GOT, and add a dynamic
903 // relocation of type R_TYPE for the GOT entry.
904 template<int size, bool big_endian>
905 void
906 Output_data_got<size, big_endian>::add_local_with_rel(
907 Sized_relobj<size, big_endian>* object,
908 unsigned int symndx,
909 Rel_dyn* rel_dyn,
910 unsigned int r_type)
911 {
912 if (object->local_has_got_offset(symndx))
913 return;
914
915 this->entries_.push_back(Got_entry());
916 this->set_got_size();
917 unsigned int got_offset = this->last_got_offset();
918 object->set_local_got_offset(symndx, got_offset);
919 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
920 }
921
922 template<int size, bool big_endian>
923 void
924 Output_data_got<size, big_endian>::add_local_with_rela(
925 Sized_relobj<size, big_endian>* object,
926 unsigned int symndx,
927 Rela_dyn* rela_dyn,
928 unsigned int r_type)
929 {
930 if (object->local_has_got_offset(symndx))
931 return;
932
933 this->entries_.push_back(Got_entry());
934 this->set_got_size();
935 unsigned int got_offset = this->last_got_offset();
936 object->set_local_got_offset(symndx, got_offset);
937 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
938 }
939
940 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
941 // In a pair of entries, the first value in the pair will be used for the
942 // module index, and the second value will be used for the dtv-relative
943 // offset. This returns true if this is a new GOT entry, false if the symbol
944 // already has a GOT entry.
945
946 template<int size, bool big_endian>
947 bool
948 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
949 {
950 if (gsym->has_tls_got_offset(need_pair))
951 return false;
952
953 this->entries_.push_back(Got_entry(gsym));
954 gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
955 if (need_pair)
956 this->entries_.push_back(Got_entry(gsym));
957 this->set_got_size();
958 return true;
959 }
960
961 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
962 // relocation of type R_TYPE.
963 template<int size, bool big_endian>
964 void
965 Output_data_got<size, big_endian>::add_global_tls_with_rel(
966 Symbol* gsym,
967 Rel_dyn* rel_dyn,
968 unsigned int r_type)
969 {
970 if (gsym->has_tls_got_offset(false))
971 return;
972
973 this->entries_.push_back(Got_entry());
974 this->set_got_size();
975 unsigned int got_offset = this->last_got_offset();
976 gsym->set_tls_got_offset(got_offset, false);
977 rel_dyn->add_global(gsym, r_type, this, got_offset);
978 }
979
980 template<int size, bool big_endian>
981 void
982 Output_data_got<size, big_endian>::add_global_tls_with_rela(
983 Symbol* gsym,
984 Rela_dyn* rela_dyn,
985 unsigned int r_type)
986 {
987 if (gsym->has_tls_got_offset(false))
988 return;
989
990 this->entries_.push_back(Got_entry());
991 this->set_got_size();
992 unsigned int got_offset = this->last_got_offset();
993 gsym->set_tls_got_offset(got_offset, false);
994 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
995 }
996
997 // Add a pair of entries for a global TLS symbol to the GOT, and add
998 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
999 template<int size, bool big_endian>
1000 void
1001 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1002 Symbol* gsym,
1003 Rel_dyn* rel_dyn,
1004 unsigned int mod_r_type,
1005 unsigned int dtv_r_type)
1006 {
1007 if (gsym->has_tls_got_offset(true))
1008 return;
1009
1010 this->entries_.push_back(Got_entry());
1011 unsigned int got_offset = this->last_got_offset();
1012 gsym->set_tls_got_offset(got_offset, true);
1013 rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1014
1015 this->entries_.push_back(Got_entry());
1016 this->set_got_size();
1017 got_offset = this->last_got_offset();
1018 rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1019 }
1020
1021 template<int size, bool big_endian>
1022 void
1023 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1024 Symbol* gsym,
1025 Rela_dyn* rela_dyn,
1026 unsigned int mod_r_type,
1027 unsigned int dtv_r_type)
1028 {
1029 if (gsym->has_tls_got_offset(true))
1030 return;
1031
1032 this->entries_.push_back(Got_entry());
1033 unsigned int got_offset = this->last_got_offset();
1034 gsym->set_tls_got_offset(got_offset, true);
1035 rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1036
1037 this->entries_.push_back(Got_entry());
1038 this->set_got_size();
1039 got_offset = this->last_got_offset();
1040 rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1041 }
1042
1043 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1044 // In a pair of entries, the first value in the pair will be used for the
1045 // module index, and the second value will be used for the dtv-relative
1046 // offset. This returns true if this is a new GOT entry, false if the symbol
1047 // already has a GOT entry.
1048
1049 template<int size, bool big_endian>
1050 bool
1051 Output_data_got<size, big_endian>::add_local_tls(
1052 Sized_relobj<size, big_endian>* object,
1053 unsigned int symndx,
1054 bool need_pair)
1055 {
1056 if (object->local_has_tls_got_offset(symndx, need_pair))
1057 return false;
1058
1059 this->entries_.push_back(Got_entry(object, symndx));
1060 object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1061 if (need_pair)
1062 this->entries_.push_back(Got_entry(object, symndx));
1063 this->set_got_size();
1064 return true;
1065 }
1066
1067 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1068 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1069 // Because this is a local symbol, the first GOT entry can be relocated
1070 // relative to a section symbol, and the second GOT entry will have an
1071 // dtv-relative value that can be computed at link time.
1072 template<int size, bool big_endian>
1073 void
1074 Output_data_got<size, big_endian>::add_local_tls_with_rel(
1075 Sized_relobj<size, big_endian>* object,
1076 unsigned int symndx,
1077 unsigned int shndx,
1078 bool need_pair,
1079 Rel_dyn* rel_dyn,
1080 unsigned int r_type)
1081 {
1082 if (object->local_has_tls_got_offset(symndx, need_pair))
1083 return;
1084
1085 this->entries_.push_back(Got_entry());
1086 unsigned int got_offset = this->last_got_offset();
1087 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1088 section_offset_type off;
1089 Output_section* os = object->output_section(shndx, &off);
1090 rel_dyn->add_output_section(os, r_type, this, got_offset);
1091
1092 // The second entry of the pair will be statically initialized
1093 // with the TLS offset of the symbol.
1094 if (need_pair)
1095 this->entries_.push_back(Got_entry(object, symndx));
1096
1097 this->set_got_size();
1098 }
1099
1100 template<int size, bool big_endian>
1101 void
1102 Output_data_got<size, big_endian>::add_local_tls_with_rela(
1103 Sized_relobj<size, big_endian>* object,
1104 unsigned int symndx,
1105 unsigned int shndx,
1106 bool need_pair,
1107 Rela_dyn* rela_dyn,
1108 unsigned int r_type)
1109 {
1110 if (object->local_has_tls_got_offset(symndx, need_pair))
1111 return;
1112
1113 this->entries_.push_back(Got_entry());
1114 unsigned int got_offset = this->last_got_offset();
1115 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1116 section_offset_type off;
1117 Output_section* os = object->output_section(shndx, &off);
1118 rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1119
1120 // The second entry of the pair will be statically initialized
1121 // with the TLS offset of the symbol.
1122 if (need_pair)
1123 this->entries_.push_back(Got_entry(object, symndx));
1124
1125 this->set_got_size();
1126 }
1127
1128 // Write out the GOT.
1129
1130 template<int size, bool big_endian>
1131 void
1132 Output_data_got<size, big_endian>::do_write(Output_file* of)
1133 {
1134 const int add = size / 8;
1135
1136 const off_t off = this->offset();
1137 const off_t oview_size = this->data_size();
1138 unsigned char* const oview = of->get_output_view(off, oview_size);
1139
1140 unsigned char* pov = oview;
1141 for (typename Got_entries::const_iterator p = this->entries_.begin();
1142 p != this->entries_.end();
1143 ++p)
1144 {
1145 p->write(pov);
1146 pov += add;
1147 }
1148
1149 gold_assert(pov - oview == oview_size);
1150
1151 of->write_output_view(off, oview_size, oview);
1152
1153 // We no longer need the GOT entries.
1154 this->entries_.clear();
1155 }
1156
1157 // Output_data_dynamic::Dynamic_entry methods.
1158
1159 // Write out the entry.
1160
1161 template<int size, bool big_endian>
1162 void
1163 Output_data_dynamic::Dynamic_entry::write(
1164 unsigned char* pov,
1165 const Stringpool* pool
1166 ACCEPT_SIZE_ENDIAN) const
1167 {
1168 typename elfcpp::Elf_types<size>::Elf_WXword val;
1169 switch (this->classification_)
1170 {
1171 case DYNAMIC_NUMBER:
1172 val = this->u_.val;
1173 break;
1174
1175 case DYNAMIC_SECTION_ADDRESS:
1176 val = this->u_.od->address();
1177 break;
1178
1179 case DYNAMIC_SECTION_SIZE:
1180 val = this->u_.od->data_size();
1181 break;
1182
1183 case DYNAMIC_SYMBOL:
1184 {
1185 const Sized_symbol<size>* s =
1186 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1187 val = s->value();
1188 }
1189 break;
1190
1191 case DYNAMIC_STRING:
1192 val = pool->get_offset(this->u_.str);
1193 break;
1194
1195 default:
1196 gold_unreachable();
1197 }
1198
1199 elfcpp::Dyn_write<size, big_endian> dw(pov);
1200 dw.put_d_tag(this->tag_);
1201 dw.put_d_val(val);
1202 }
1203
1204 // Output_data_dynamic methods.
1205
1206 // Adjust the output section to set the entry size.
1207
1208 void
1209 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1210 {
1211 if (parameters->get_size() == 32)
1212 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1213 else if (parameters->get_size() == 64)
1214 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1215 else
1216 gold_unreachable();
1217 }
1218
1219 // Set the final data size.
1220
1221 void
1222 Output_data_dynamic::set_final_data_size()
1223 {
1224 // Add the terminating entry.
1225 this->add_constant(elfcpp::DT_NULL, 0);
1226
1227 int dyn_size;
1228 if (parameters->get_size() == 32)
1229 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1230 else if (parameters->get_size() == 64)
1231 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1232 else
1233 gold_unreachable();
1234 this->set_data_size(this->entries_.size() * dyn_size);
1235 }
1236
1237 // Write out the dynamic entries.
1238
1239 void
1240 Output_data_dynamic::do_write(Output_file* of)
1241 {
1242 if (parameters->get_size() == 32)
1243 {
1244 if (parameters->is_big_endian())
1245 {
1246 #ifdef HAVE_TARGET_32_BIG
1247 this->sized_write<32, true>(of);
1248 #else
1249 gold_unreachable();
1250 #endif
1251 }
1252 else
1253 {
1254 #ifdef HAVE_TARGET_32_LITTLE
1255 this->sized_write<32, false>(of);
1256 #else
1257 gold_unreachable();
1258 #endif
1259 }
1260 }
1261 else if (parameters->get_size() == 64)
1262 {
1263 if (parameters->is_big_endian())
1264 {
1265 #ifdef HAVE_TARGET_64_BIG
1266 this->sized_write<64, true>(of);
1267 #else
1268 gold_unreachable();
1269 #endif
1270 }
1271 else
1272 {
1273 #ifdef HAVE_TARGET_64_LITTLE
1274 this->sized_write<64, false>(of);
1275 #else
1276 gold_unreachable();
1277 #endif
1278 }
1279 }
1280 else
1281 gold_unreachable();
1282 }
1283
1284 template<int size, bool big_endian>
1285 void
1286 Output_data_dynamic::sized_write(Output_file* of)
1287 {
1288 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1289
1290 const off_t offset = this->offset();
1291 const off_t oview_size = this->data_size();
1292 unsigned char* const oview = of->get_output_view(offset, oview_size);
1293
1294 unsigned char* pov = oview;
1295 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1296 p != this->entries_.end();
1297 ++p)
1298 {
1299 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1300 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
1301 pov += dyn_size;
1302 }
1303
1304 gold_assert(pov - oview == oview_size);
1305
1306 of->write_output_view(offset, oview_size, oview);
1307
1308 // We no longer need the dynamic entries.
1309 this->entries_.clear();
1310 }
1311
1312 // Output_section::Input_section methods.
1313
1314 // Return the data size. For an input section we store the size here.
1315 // For an Output_section_data, we have to ask it for the size.
1316
1317 off_t
1318 Output_section::Input_section::data_size() const
1319 {
1320 if (this->is_input_section())
1321 return this->u1_.data_size;
1322 else
1323 return this->u2_.posd->data_size();
1324 }
1325
1326 // Set the address and file offset.
1327
1328 void
1329 Output_section::Input_section::set_address_and_file_offset(
1330 uint64_t address,
1331 off_t file_offset,
1332 off_t section_file_offset)
1333 {
1334 if (this->is_input_section())
1335 this->u2_.object->set_section_offset(this->shndx_,
1336 file_offset - section_file_offset);
1337 else
1338 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1339 }
1340
1341 // Finalize the data size.
1342
1343 void
1344 Output_section::Input_section::finalize_data_size()
1345 {
1346 if (!this->is_input_section())
1347 this->u2_.posd->finalize_data_size();
1348 }
1349
1350 // Try to turn an input offset into an output offset.
1351
1352 inline bool
1353 Output_section::Input_section::output_offset(
1354 const Relobj* object,
1355 unsigned int shndx,
1356 section_offset_type offset,
1357 section_offset_type *poutput) const
1358 {
1359 if (!this->is_input_section())
1360 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1361 else
1362 {
1363 if (this->shndx_ != shndx || this->u2_.object != object)
1364 return false;
1365 section_offset_type output_offset;
1366 Output_section* os = object->output_section(shndx, &output_offset);
1367 gold_assert(os != NULL);
1368 gold_assert(output_offset != -1);
1369 *poutput = output_offset + offset;
1370 return true;
1371 }
1372 }
1373
1374 // Write out the data. We don't have to do anything for an input
1375 // section--they are handled via Object::relocate--but this is where
1376 // we write out the data for an Output_section_data.
1377
1378 void
1379 Output_section::Input_section::write(Output_file* of)
1380 {
1381 if (!this->is_input_section())
1382 this->u2_.posd->write(of);
1383 }
1384
1385 // Write the data to a buffer. As for write(), we don't have to do
1386 // anything for an input section.
1387
1388 void
1389 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1390 {
1391 if (!this->is_input_section())
1392 this->u2_.posd->write_to_buffer(buffer);
1393 }
1394
1395 // Output_section methods.
1396
1397 // Construct an Output_section. NAME will point into a Stringpool.
1398
1399 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1400 elfcpp::Elf_Xword flags)
1401 : name_(name),
1402 addralign_(0),
1403 entsize_(0),
1404 link_section_(NULL),
1405 link_(0),
1406 info_section_(NULL),
1407 info_(0),
1408 type_(type),
1409 flags_(flags),
1410 out_shndx_(-1U),
1411 symtab_index_(0),
1412 dynsym_index_(0),
1413 input_sections_(),
1414 first_input_offset_(0),
1415 fills_(),
1416 postprocessing_buffer_(NULL),
1417 needs_symtab_index_(false),
1418 needs_dynsym_index_(false),
1419 should_link_to_symtab_(false),
1420 should_link_to_dynsym_(false),
1421 after_input_sections_(false),
1422 requires_postprocessing_(false),
1423 tls_offset_(0)
1424 {
1425 // An unallocated section has no address. Forcing this means that
1426 // we don't need special treatment for symbols defined in debug
1427 // sections.
1428 if ((flags & elfcpp::SHF_ALLOC) == 0)
1429 this->set_address(0);
1430 }
1431
1432 Output_section::~Output_section()
1433 {
1434 }
1435
1436 // Set the entry size.
1437
1438 void
1439 Output_section::set_entsize(uint64_t v)
1440 {
1441 if (this->entsize_ == 0)
1442 this->entsize_ = v;
1443 else
1444 gold_assert(this->entsize_ == v);
1445 }
1446
1447 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1448 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1449 // relocation section which applies to this section, or 0 if none, or
1450 // -1U if more than one. Return the offset of the input section
1451 // within the output section. Return -1 if the input section will
1452 // receive special handling. In the normal case we don't always keep
1453 // track of input sections for an Output_section. Instead, each
1454 // Object keeps track of the Output_section for each of its input
1455 // sections.
1456
1457 template<int size, bool big_endian>
1458 off_t
1459 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1460 unsigned int shndx,
1461 const char* secname,
1462 const elfcpp::Shdr<size, big_endian>& shdr,
1463 unsigned int reloc_shndx)
1464 {
1465 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1466 if ((addralign & (addralign - 1)) != 0)
1467 {
1468 object->error(_("invalid alignment %lu for section \"%s\""),
1469 static_cast<unsigned long>(addralign), secname);
1470 addralign = 1;
1471 }
1472
1473 if (addralign > this->addralign_)
1474 this->addralign_ = addralign;
1475
1476 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1477 uint64_t entsize = shdr.get_sh_entsize();
1478
1479 // .debug_str is a mergeable string section, but is not always so
1480 // marked by compilers. Mark manually here so we can optimize.
1481 if (strcmp(secname, ".debug_str") == 0)
1482 {
1483 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1484 entsize = 1;
1485 }
1486
1487 // If this is a SHF_MERGE section, we pass all the input sections to
1488 // a Output_data_merge. We don't try to handle relocations for such
1489 // a section.
1490 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1491 && reloc_shndx == 0)
1492 {
1493 if (this->add_merge_input_section(object, shndx, sh_flags,
1494 entsize, addralign))
1495 {
1496 // Tell the relocation routines that they need to call the
1497 // output_offset method to determine the final address.
1498 return -1;
1499 }
1500 }
1501
1502 off_t offset_in_section = this->current_data_size_for_child();
1503 off_t aligned_offset_in_section = align_address(offset_in_section,
1504 addralign);
1505
1506 if (aligned_offset_in_section > offset_in_section
1507 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1508 && object->target()->has_code_fill())
1509 {
1510 // We need to add some fill data. Using fill_list_ when
1511 // possible is an optimization, since we will often have fill
1512 // sections without input sections.
1513 off_t fill_len = aligned_offset_in_section - offset_in_section;
1514 if (this->input_sections_.empty())
1515 this->fills_.push_back(Fill(offset_in_section, fill_len));
1516 else
1517 {
1518 // FIXME: When relaxing, the size needs to adjust to
1519 // maintain a constant alignment.
1520 std::string fill_data(object->target()->code_fill(fill_len));
1521 Output_data_const* odc = new Output_data_const(fill_data, 1);
1522 this->input_sections_.push_back(Input_section(odc));
1523 }
1524 }
1525
1526 this->set_current_data_size_for_child(aligned_offset_in_section
1527 + shdr.get_sh_size());
1528
1529 // We need to keep track of this section if we are already keeping
1530 // track of sections, or if we are relaxing. FIXME: Add test for
1531 // relaxing.
1532 if (!this->input_sections_.empty())
1533 this->input_sections_.push_back(Input_section(object, shndx,
1534 shdr.get_sh_size(),
1535 addralign));
1536
1537 return aligned_offset_in_section;
1538 }
1539
1540 // Add arbitrary data to an output section.
1541
1542 void
1543 Output_section::add_output_section_data(Output_section_data* posd)
1544 {
1545 Input_section inp(posd);
1546 this->add_output_section_data(&inp);
1547 }
1548
1549 // Add arbitrary data to an output section by Input_section.
1550
1551 void
1552 Output_section::add_output_section_data(Input_section* inp)
1553 {
1554 if (this->input_sections_.empty())
1555 this->first_input_offset_ = this->current_data_size_for_child();
1556
1557 this->input_sections_.push_back(*inp);
1558
1559 uint64_t addralign = inp->addralign();
1560 if (addralign > this->addralign_)
1561 this->addralign_ = addralign;
1562
1563 inp->set_output_section(this);
1564 }
1565
1566 // Add a merge section to an output section.
1567
1568 void
1569 Output_section::add_output_merge_section(Output_section_data* posd,
1570 bool is_string, uint64_t entsize)
1571 {
1572 Input_section inp(posd, is_string, entsize);
1573 this->add_output_section_data(&inp);
1574 }
1575
1576 // Add an input section to a SHF_MERGE section.
1577
1578 bool
1579 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1580 uint64_t flags, uint64_t entsize,
1581 uint64_t addralign)
1582 {
1583 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1584
1585 // We only merge strings if the alignment is not more than the
1586 // character size. This could be handled, but it's unusual.
1587 if (is_string && addralign > entsize)
1588 return false;
1589
1590 Input_section_list::iterator p;
1591 for (p = this->input_sections_.begin();
1592 p != this->input_sections_.end();
1593 ++p)
1594 if (p->is_merge_section(is_string, entsize, addralign))
1595 {
1596 p->add_input_section(object, shndx);
1597 return true;
1598 }
1599
1600 // We handle the actual constant merging in Output_merge_data or
1601 // Output_merge_string_data.
1602 Output_section_data* posd;
1603 if (!is_string)
1604 posd = new Output_merge_data(entsize, addralign);
1605 else
1606 {
1607 switch (entsize)
1608 {
1609 case 1:
1610 posd = new Output_merge_string<char>(addralign);
1611 break;
1612 case 2:
1613 posd = new Output_merge_string<uint16_t>(addralign);
1614 break;
1615 case 4:
1616 posd = new Output_merge_string<uint32_t>(addralign);
1617 break;
1618 default:
1619 return false;
1620 }
1621 }
1622
1623 this->add_output_merge_section(posd, is_string, entsize);
1624 posd->add_input_section(object, shndx);
1625
1626 return true;
1627 }
1628
1629 // Given an address OFFSET relative to the start of input section
1630 // SHNDX in OBJECT, return whether this address is being included in
1631 // the final link. This should only be called if SHNDX in OBJECT has
1632 // a special mapping.
1633
1634 bool
1635 Output_section::is_input_address_mapped(const Relobj* object,
1636 unsigned int shndx,
1637 off_t offset) const
1638 {
1639 gold_assert(object->is_section_specially_mapped(shndx));
1640
1641 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1642 p != this->input_sections_.end();
1643 ++p)
1644 {
1645 section_offset_type output_offset;
1646 if (p->output_offset(object, shndx, offset, &output_offset))
1647 return output_offset != -1;
1648 }
1649
1650 // By default we assume that the address is mapped. This should
1651 // only be called after we have passed all sections to Layout. At
1652 // that point we should know what we are discarding.
1653 return true;
1654 }
1655
1656 // Given an address OFFSET relative to the start of input section
1657 // SHNDX in object OBJECT, return the output offset relative to the
1658 // start of the section. This should only be called if SHNDX in
1659 // OBJECT has a special mapping.
1660
1661 section_offset_type
1662 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1663 section_offset_type offset) const
1664 {
1665 gold_assert(object->is_section_specially_mapped(shndx));
1666 // This can only be called meaningfully when layout is complete.
1667 gold_assert(Output_data::is_layout_complete());
1668
1669 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1670 p != this->input_sections_.end();
1671 ++p)
1672 {
1673 section_offset_type output_offset;
1674 if (p->output_offset(object, shndx, offset, &output_offset))
1675 return output_offset;
1676 }
1677 gold_unreachable();
1678 }
1679
1680 // Return the output virtual address of OFFSET relative to the start
1681 // of input section SHNDX in object OBJECT.
1682
1683 uint64_t
1684 Output_section::output_address(const Relobj* object, unsigned int shndx,
1685 off_t offset) const
1686 {
1687 gold_assert(object->is_section_specially_mapped(shndx));
1688 // This can only be called meaningfully when layout is complete.
1689 gold_assert(Output_data::is_layout_complete());
1690
1691 uint64_t addr = this->address() + this->first_input_offset_;
1692 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1693 p != this->input_sections_.end();
1694 ++p)
1695 {
1696 addr = align_address(addr, p->addralign());
1697 section_offset_type output_offset;
1698 if (p->output_offset(object, shndx, offset, &output_offset))
1699 {
1700 if (output_offset == -1)
1701 return -1U;
1702 return addr + output_offset;
1703 }
1704 addr += p->data_size();
1705 }
1706
1707 // If we get here, it means that we don't know the mapping for this
1708 // input section. This might happen in principle if
1709 // add_input_section were called before add_output_section_data.
1710 // But it should never actually happen.
1711
1712 gold_unreachable();
1713 }
1714
1715 // Set the data size of an Output_section. This is where we handle
1716 // setting the addresses of any Output_section_data objects.
1717
1718 void
1719 Output_section::set_final_data_size()
1720 {
1721 if (this->input_sections_.empty())
1722 {
1723 this->set_data_size(this->current_data_size_for_child());
1724 return;
1725 }
1726
1727 uint64_t address = this->address();
1728 off_t startoff = this->offset();
1729 off_t off = startoff + this->first_input_offset_;
1730 for (Input_section_list::iterator p = this->input_sections_.begin();
1731 p != this->input_sections_.end();
1732 ++p)
1733 {
1734 off = align_address(off, p->addralign());
1735 p->set_address_and_file_offset(address + (off - startoff), off,
1736 startoff);
1737 off += p->data_size();
1738 }
1739
1740 this->set_data_size(off - startoff);
1741 }
1742
1743 // Set the TLS offset. Called only for SHT_TLS sections.
1744
1745 void
1746 Output_section::do_set_tls_offset(uint64_t tls_base)
1747 {
1748 this->tls_offset_ = this->address() - tls_base;
1749 }
1750
1751 // Write the section header to *OSHDR.
1752
1753 template<int size, bool big_endian>
1754 void
1755 Output_section::write_header(const Layout* layout,
1756 const Stringpool* secnamepool,
1757 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1758 {
1759 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1760 oshdr->put_sh_type(this->type_);
1761 oshdr->put_sh_flags(this->flags_);
1762 oshdr->put_sh_addr(this->address());
1763 oshdr->put_sh_offset(this->offset());
1764 oshdr->put_sh_size(this->data_size());
1765 if (this->link_section_ != NULL)
1766 oshdr->put_sh_link(this->link_section_->out_shndx());
1767 else if (this->should_link_to_symtab_)
1768 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1769 else if (this->should_link_to_dynsym_)
1770 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1771 else
1772 oshdr->put_sh_link(this->link_);
1773 if (this->info_section_ != NULL)
1774 oshdr->put_sh_info(this->info_section_->out_shndx());
1775 else
1776 oshdr->put_sh_info(this->info_);
1777 oshdr->put_sh_addralign(this->addralign_);
1778 oshdr->put_sh_entsize(this->entsize_);
1779 }
1780
1781 // Write out the data. For input sections the data is written out by
1782 // Object::relocate, but we have to handle Output_section_data objects
1783 // here.
1784
1785 void
1786 Output_section::do_write(Output_file* of)
1787 {
1788 gold_assert(!this->requires_postprocessing());
1789
1790 off_t output_section_file_offset = this->offset();
1791 for (Fill_list::iterator p = this->fills_.begin();
1792 p != this->fills_.end();
1793 ++p)
1794 {
1795 std::string fill_data(of->target()->code_fill(p->length()));
1796 of->write(output_section_file_offset + p->section_offset(),
1797 fill_data.data(), fill_data.size());
1798 }
1799
1800 for (Input_section_list::iterator p = this->input_sections_.begin();
1801 p != this->input_sections_.end();
1802 ++p)
1803 p->write(of);
1804 }
1805
1806 // If a section requires postprocessing, create the buffer to use.
1807
1808 void
1809 Output_section::create_postprocessing_buffer()
1810 {
1811 gold_assert(this->requires_postprocessing());
1812 gold_assert(this->postprocessing_buffer_ == NULL);
1813
1814 if (!this->input_sections_.empty())
1815 {
1816 off_t off = this->first_input_offset_;
1817 for (Input_section_list::iterator p = this->input_sections_.begin();
1818 p != this->input_sections_.end();
1819 ++p)
1820 {
1821 off = align_address(off, p->addralign());
1822 p->finalize_data_size();
1823 off += p->data_size();
1824 }
1825 this->set_current_data_size_for_child(off);
1826 }
1827
1828 off_t buffer_size = this->current_data_size_for_child();
1829 this->postprocessing_buffer_ = new unsigned char[buffer_size];
1830 }
1831
1832 // Write all the data of an Output_section into the postprocessing
1833 // buffer. This is used for sections which require postprocessing,
1834 // such as compression. Input sections are handled by
1835 // Object::Relocate.
1836
1837 void
1838 Output_section::write_to_postprocessing_buffer()
1839 {
1840 gold_assert(this->requires_postprocessing());
1841
1842 Target* target = parameters->target();
1843 unsigned char* buffer = this->postprocessing_buffer();
1844 for (Fill_list::iterator p = this->fills_.begin();
1845 p != this->fills_.end();
1846 ++p)
1847 {
1848 std::string fill_data(target->code_fill(p->length()));
1849 memcpy(buffer + p->section_offset(), fill_data.data(), fill_data.size());
1850 }
1851
1852 off_t off = this->first_input_offset_;
1853 for (Input_section_list::iterator p = this->input_sections_.begin();
1854 p != this->input_sections_.end();
1855 ++p)
1856 {
1857 off = align_address(off, p->addralign());
1858 p->write_to_buffer(buffer + off);
1859 off += p->data_size();
1860 }
1861 }
1862
1863 // Print stats for merge sections to stderr.
1864
1865 void
1866 Output_section::print_merge_stats()
1867 {
1868 Input_section_list::iterator p;
1869 for (p = this->input_sections_.begin();
1870 p != this->input_sections_.end();
1871 ++p)
1872 p->print_merge_stats(this->name_);
1873 }
1874
1875 // Output segment methods.
1876
1877 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1878 : output_data_(),
1879 output_bss_(),
1880 vaddr_(0),
1881 paddr_(0),
1882 memsz_(0),
1883 align_(0),
1884 offset_(0),
1885 filesz_(0),
1886 type_(type),
1887 flags_(flags),
1888 is_align_known_(false)
1889 {
1890 }
1891
1892 // Add an Output_section to an Output_segment.
1893
1894 void
1895 Output_segment::add_output_section(Output_section* os,
1896 elfcpp::Elf_Word seg_flags,
1897 bool front)
1898 {
1899 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1900 gold_assert(!this->is_align_known_);
1901
1902 // Update the segment flags.
1903 this->flags_ |= seg_flags;
1904
1905 Output_segment::Output_data_list* pdl;
1906 if (os->type() == elfcpp::SHT_NOBITS)
1907 pdl = &this->output_bss_;
1908 else
1909 pdl = &this->output_data_;
1910
1911 // So that PT_NOTE segments will work correctly, we need to ensure
1912 // that all SHT_NOTE sections are adjacent. This will normally
1913 // happen automatically, because all the SHT_NOTE input sections
1914 // will wind up in the same output section. However, it is possible
1915 // for multiple SHT_NOTE input sections to have different section
1916 // flags, and thus be in different output sections, but for the
1917 // different section flags to map into the same segment flags and
1918 // thus the same output segment.
1919
1920 // Note that while there may be many input sections in an output
1921 // section, there are normally only a few output sections in an
1922 // output segment. This loop is expected to be fast.
1923
1924 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1925 {
1926 Output_segment::Output_data_list::iterator p = pdl->end();
1927 do
1928 {
1929 --p;
1930 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1931 {
1932 // We don't worry about the FRONT parameter.
1933 ++p;
1934 pdl->insert(p, os);
1935 return;
1936 }
1937 }
1938 while (p != pdl->begin());
1939 }
1940
1941 // Similarly, so that PT_TLS segments will work, we need to group
1942 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1943 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1944 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
1945 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
1946 // and the PT_TLS segment -- we do this grouping only for the
1947 // PT_LOAD segment.
1948 if (this->type_ != elfcpp::PT_TLS
1949 && (os->flags() & elfcpp::SHF_TLS) != 0
1950 && !this->output_data_.empty())
1951 {
1952 pdl = &this->output_data_;
1953 bool nobits = os->type() == elfcpp::SHT_NOBITS;
1954 bool sawtls = false;
1955 Output_segment::Output_data_list::iterator p = pdl->end();
1956 do
1957 {
1958 --p;
1959 bool insert;
1960 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1961 {
1962 sawtls = true;
1963 // Put a NOBITS section after the first TLS section.
1964 // But a PROGBITS section after the first TLS/PROGBITS
1965 // section.
1966 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1967 }
1968 else
1969 {
1970 // If we've gone past the TLS sections, but we've seen a
1971 // TLS section, then we need to insert this section now.
1972 insert = sawtls;
1973 }
1974
1975 if (insert)
1976 {
1977 // We don't worry about the FRONT parameter.
1978 ++p;
1979 pdl->insert(p, os);
1980 return;
1981 }
1982 }
1983 while (p != pdl->begin());
1984
1985 // There are no TLS sections yet; put this one at the requested
1986 // location in the section list.
1987 }
1988
1989 if (front)
1990 pdl->push_front(os);
1991 else
1992 pdl->push_back(os);
1993 }
1994
1995 // Add an Output_data (which is not an Output_section) to the start of
1996 // a segment.
1997
1998 void
1999 Output_segment::add_initial_output_data(Output_data* od)
2000 {
2001 gold_assert(!this->is_align_known_);
2002 this->output_data_.push_front(od);
2003 }
2004
2005 // Return the maximum alignment of the Output_data in Output_segment.
2006 // Once we compute this, we prohibit new sections from being added.
2007
2008 uint64_t
2009 Output_segment::addralign()
2010 {
2011 if (!this->is_align_known_)
2012 {
2013 uint64_t addralign;
2014
2015 addralign = Output_segment::maximum_alignment(&this->output_data_);
2016 if (addralign > this->align_)
2017 this->align_ = addralign;
2018
2019 addralign = Output_segment::maximum_alignment(&this->output_bss_);
2020 if (addralign > this->align_)
2021 this->align_ = addralign;
2022
2023 this->is_align_known_ = true;
2024 }
2025
2026 return this->align_;
2027 }
2028
2029 // Return the maximum alignment of a list of Output_data.
2030
2031 uint64_t
2032 Output_segment::maximum_alignment(const Output_data_list* pdl)
2033 {
2034 uint64_t ret = 0;
2035 for (Output_data_list::const_iterator p = pdl->begin();
2036 p != pdl->end();
2037 ++p)
2038 {
2039 uint64_t addralign = (*p)->addralign();
2040 if (addralign > ret)
2041 ret = addralign;
2042 }
2043 return ret;
2044 }
2045
2046 // Return the number of dynamic relocs applied to this segment.
2047
2048 unsigned int
2049 Output_segment::dynamic_reloc_count() const
2050 {
2051 return (this->dynamic_reloc_count_list(&this->output_data_)
2052 + this->dynamic_reloc_count_list(&this->output_bss_));
2053 }
2054
2055 // Return the number of dynamic relocs applied to an Output_data_list.
2056
2057 unsigned int
2058 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2059 {
2060 unsigned int count = 0;
2061 for (Output_data_list::const_iterator p = pdl->begin();
2062 p != pdl->end();
2063 ++p)
2064 count += (*p)->dynamic_reloc_count();
2065 return count;
2066 }
2067
2068 // Set the section addresses for an Output_segment. ADDR is the
2069 // address and *POFF is the file offset. Set the section indexes
2070 // starting with *PSHNDX. Return the address of the immediately
2071 // following segment. Update *POFF and *PSHNDX.
2072
2073 uint64_t
2074 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
2075 unsigned int* pshndx)
2076 {
2077 gold_assert(this->type_ == elfcpp::PT_LOAD);
2078
2079 this->vaddr_ = addr;
2080 this->paddr_ = addr;
2081
2082 off_t orig_off = *poff;
2083 this->offset_ = orig_off;
2084
2085 *poff = align_address(*poff, this->addralign());
2086
2087 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
2088 pshndx);
2089 this->filesz_ = *poff - orig_off;
2090
2091 off_t off = *poff;
2092
2093 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
2094 poff, pshndx);
2095 this->memsz_ = *poff - orig_off;
2096
2097 // Ignore the file offset adjustments made by the BSS Output_data
2098 // objects.
2099 *poff = off;
2100
2101 return ret;
2102 }
2103
2104 // Set the addresses and file offsets in a list of Output_data
2105 // structures.
2106
2107 uint64_t
2108 Output_segment::set_section_list_addresses(Output_data_list* pdl,
2109 uint64_t addr, off_t* poff,
2110 unsigned int* pshndx)
2111 {
2112 off_t startoff = *poff;
2113
2114 off_t off = startoff;
2115 for (Output_data_list::iterator p = pdl->begin();
2116 p != pdl->end();
2117 ++p)
2118 {
2119 off = align_address(off, (*p)->addralign());
2120 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2121
2122 // Unless this is a PT_TLS segment, we want to ignore the size
2123 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
2124 // affect the size of a PT_LOAD segment.
2125 if (this->type_ == elfcpp::PT_TLS
2126 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2127 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2128 off += (*p)->data_size();
2129
2130 if ((*p)->is_section())
2131 {
2132 (*p)->set_out_shndx(*pshndx);
2133 ++*pshndx;
2134 }
2135 }
2136
2137 *poff = off;
2138 return addr + (off - startoff);
2139 }
2140
2141 // For a non-PT_LOAD segment, set the offset from the sections, if
2142 // any.
2143
2144 void
2145 Output_segment::set_offset()
2146 {
2147 gold_assert(this->type_ != elfcpp::PT_LOAD);
2148
2149 if (this->output_data_.empty() && this->output_bss_.empty())
2150 {
2151 this->vaddr_ = 0;
2152 this->paddr_ = 0;
2153 this->memsz_ = 0;
2154 this->align_ = 0;
2155 this->offset_ = 0;
2156 this->filesz_ = 0;
2157 return;
2158 }
2159
2160 const Output_data* first;
2161 if (this->output_data_.empty())
2162 first = this->output_bss_.front();
2163 else
2164 first = this->output_data_.front();
2165 this->vaddr_ = first->address();
2166 this->paddr_ = this->vaddr_;
2167 this->offset_ = first->offset();
2168
2169 if (this->output_data_.empty())
2170 this->filesz_ = 0;
2171 else
2172 {
2173 const Output_data* last_data = this->output_data_.back();
2174 this->filesz_ = (last_data->address()
2175 + last_data->data_size()
2176 - this->vaddr_);
2177 }
2178
2179 const Output_data* last;
2180 if (this->output_bss_.empty())
2181 last = this->output_data_.back();
2182 else
2183 last = this->output_bss_.back();
2184 this->memsz_ = (last->address()
2185 + last->data_size()
2186 - this->vaddr_);
2187 }
2188
2189 // Set the TLS offsets of the sections in the PT_TLS segment.
2190
2191 void
2192 Output_segment::set_tls_offsets()
2193 {
2194 gold_assert(this->type_ == elfcpp::PT_TLS);
2195
2196 for (Output_data_list::iterator p = this->output_data_.begin();
2197 p != this->output_data_.end();
2198 ++p)
2199 (*p)->set_tls_offset(this->vaddr_);
2200
2201 for (Output_data_list::iterator p = this->output_bss_.begin();
2202 p != this->output_bss_.end();
2203 ++p)
2204 (*p)->set_tls_offset(this->vaddr_);
2205 }
2206
2207 // Return the number of Output_sections in an Output_segment.
2208
2209 unsigned int
2210 Output_segment::output_section_count() const
2211 {
2212 return (this->output_section_count_list(&this->output_data_)
2213 + this->output_section_count_list(&this->output_bss_));
2214 }
2215
2216 // Return the number of Output_sections in an Output_data_list.
2217
2218 unsigned int
2219 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2220 {
2221 unsigned int count = 0;
2222 for (Output_data_list::const_iterator p = pdl->begin();
2223 p != pdl->end();
2224 ++p)
2225 {
2226 if ((*p)->is_section())
2227 ++count;
2228 }
2229 return count;
2230 }
2231
2232 // Write the segment data into *OPHDR.
2233
2234 template<int size, bool big_endian>
2235 void
2236 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2237 {
2238 ophdr->put_p_type(this->type_);
2239 ophdr->put_p_offset(this->offset_);
2240 ophdr->put_p_vaddr(this->vaddr_);
2241 ophdr->put_p_paddr(this->paddr_);
2242 ophdr->put_p_filesz(this->filesz_);
2243 ophdr->put_p_memsz(this->memsz_);
2244 ophdr->put_p_flags(this->flags_);
2245 ophdr->put_p_align(this->addralign());
2246 }
2247
2248 // Write the section headers into V.
2249
2250 template<int size, bool big_endian>
2251 unsigned char*
2252 Output_segment::write_section_headers(const Layout* layout,
2253 const Stringpool* secnamepool,
2254 unsigned char* v,
2255 unsigned int *pshndx
2256 ACCEPT_SIZE_ENDIAN) const
2257 {
2258 // Every section that is attached to a segment must be attached to a
2259 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2260 // segments.
2261 if (this->type_ != elfcpp::PT_LOAD)
2262 return v;
2263
2264 v = this->write_section_headers_list
2265 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2266 layout, secnamepool, &this->output_data_, v, pshndx
2267 SELECT_SIZE_ENDIAN(size, big_endian));
2268 v = this->write_section_headers_list
2269 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2270 layout, secnamepool, &this->output_bss_, v, pshndx
2271 SELECT_SIZE_ENDIAN(size, big_endian));
2272 return v;
2273 }
2274
2275 template<int size, bool big_endian>
2276 unsigned char*
2277 Output_segment::write_section_headers_list(const Layout* layout,
2278 const Stringpool* secnamepool,
2279 const Output_data_list* pdl,
2280 unsigned char* v,
2281 unsigned int* pshndx
2282 ACCEPT_SIZE_ENDIAN) const
2283 {
2284 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2285 for (Output_data_list::const_iterator p = pdl->begin();
2286 p != pdl->end();
2287 ++p)
2288 {
2289 if ((*p)->is_section())
2290 {
2291 const Output_section* ps = static_cast<const Output_section*>(*p);
2292 gold_assert(*pshndx == ps->out_shndx());
2293 elfcpp::Shdr_write<size, big_endian> oshdr(v);
2294 ps->write_header(layout, secnamepool, &oshdr);
2295 v += shdr_size;
2296 ++*pshndx;
2297 }
2298 }
2299 return v;
2300 }
2301
2302 // Output_file methods.
2303
2304 Output_file::Output_file(const General_options& options, Target* target)
2305 : options_(options),
2306 target_(target),
2307 name_(options.output_file_name()),
2308 o_(-1),
2309 file_size_(0),
2310 base_(NULL),
2311 map_is_anonymous_(false)
2312 {
2313 }
2314
2315 // Open the output file.
2316
2317 void
2318 Output_file::open(off_t file_size)
2319 {
2320 this->file_size_ = file_size;
2321
2322 // Unlink the file first; otherwise the open() may fail if the file
2323 // is busy (e.g. it's an executable that's currently being executed).
2324 //
2325 // However, the linker may be part of a system where a zero-length
2326 // file is created for it to write to, with tight permissions (gcc
2327 // 2.95 did something like this). Unlinking the file would work
2328 // around those permission controls, so we only unlink if the file
2329 // has a non-zero size. We also unlink only regular files to avoid
2330 // trouble with directories/etc.
2331 //
2332 // If we fail, continue; this command is merely a best-effort attempt
2333 // to improve the odds for open().
2334
2335 // We let the name "-" mean "stdout"
2336 if (strcmp(this->name_, "-") == 0)
2337 this->o_ = STDOUT_FILENO;
2338 else
2339 {
2340 struct stat s;
2341 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2342 unlink_if_ordinary(this->name_);
2343
2344 int mode = parameters->output_is_object() ? 0666 : 0777;
2345 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2346 if (o < 0)
2347 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2348 this->o_ = o;
2349 }
2350
2351 this->map();
2352 }
2353
2354 // Resize the output file.
2355
2356 void
2357 Output_file::resize(off_t file_size)
2358 {
2359 // If the mmap is mapping an anonymous memory buffer, this is easy:
2360 // just mremap to the new size. If it's mapping to a file, we want
2361 // to unmap to flush to the file, then remap after growing the file.
2362 if (this->map_is_anonymous_)
2363 {
2364 void* base = ::mremap(this->base_, this->file_size_, file_size,
2365 MREMAP_MAYMOVE);
2366 if (base == MAP_FAILED)
2367 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2368 this->base_ = static_cast<unsigned char*>(base);
2369 this->file_size_ = file_size;
2370 }
2371 else
2372 {
2373 this->unmap();
2374 this->file_size_ = file_size;
2375 this->map();
2376 }
2377 }
2378
2379 // Map the file into memory.
2380
2381 void
2382 Output_file::map()
2383 {
2384 const int o = this->o_;
2385
2386 // If the output file is not a regular file, don't try to mmap it;
2387 // instead, we'll mmap a block of memory (an anonymous buffer), and
2388 // then later write the buffer to the file.
2389 void* base;
2390 struct stat statbuf;
2391 if (o == STDOUT_FILENO || o == STDERR_FILENO
2392 || ::fstat(o, &statbuf) != 0
2393 || !S_ISREG(statbuf.st_mode))
2394 {
2395 this->map_is_anonymous_ = true;
2396 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2397 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2398 }
2399 else
2400 {
2401 // Write out one byte to make the file the right size.
2402 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2403 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2404 char b = 0;
2405 if (::write(o, &b, 1) != 1)
2406 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2407
2408 // Map the file into memory.
2409 this->map_is_anonymous_ = false;
2410 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2411 MAP_SHARED, o, 0);
2412 }
2413 if (base == MAP_FAILED)
2414 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2415 this->base_ = static_cast<unsigned char*>(base);
2416 }
2417
2418 // Unmap the file from memory.
2419
2420 void
2421 Output_file::unmap()
2422 {
2423 if (::munmap(this->base_, this->file_size_) < 0)
2424 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2425 this->base_ = NULL;
2426 }
2427
2428 // Close the output file.
2429
2430 void
2431 Output_file::close()
2432 {
2433 // If the map isn't file-backed, we need to write it now.
2434 if (this->map_is_anonymous_)
2435 {
2436 size_t bytes_to_write = this->file_size_;
2437 while (bytes_to_write > 0)
2438 {
2439 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2440 if (bytes_written == 0)
2441 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2442 else if (bytes_written < 0)
2443 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2444 else
2445 bytes_to_write -= bytes_written;
2446 }
2447 }
2448 this->unmap();
2449
2450 // We don't close stdout or stderr
2451 if (this->o_ != STDOUT_FILENO && this->o_ != STDERR_FILENO)
2452 if (::close(this->o_) < 0)
2453 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2454 this->o_ = -1;
2455 }
2456
2457 // Instantiate the templates we need. We could use the configure
2458 // script to restrict this to only the ones for implemented targets.
2459
2460 #ifdef HAVE_TARGET_32_LITTLE
2461 template
2462 off_t
2463 Output_section::add_input_section<32, false>(
2464 Sized_relobj<32, false>* object,
2465 unsigned int shndx,
2466 const char* secname,
2467 const elfcpp::Shdr<32, false>& shdr,
2468 unsigned int reloc_shndx);
2469 #endif
2470
2471 #ifdef HAVE_TARGET_32_BIG
2472 template
2473 off_t
2474 Output_section::add_input_section<32, true>(
2475 Sized_relobj<32, true>* object,
2476 unsigned int shndx,
2477 const char* secname,
2478 const elfcpp::Shdr<32, true>& shdr,
2479 unsigned int reloc_shndx);
2480 #endif
2481
2482 #ifdef HAVE_TARGET_64_LITTLE
2483 template
2484 off_t
2485 Output_section::add_input_section<64, false>(
2486 Sized_relobj<64, false>* object,
2487 unsigned int shndx,
2488 const char* secname,
2489 const elfcpp::Shdr<64, false>& shdr,
2490 unsigned int reloc_shndx);
2491 #endif
2492
2493 #ifdef HAVE_TARGET_64_BIG
2494 template
2495 off_t
2496 Output_section::add_input_section<64, true>(
2497 Sized_relobj<64, true>* object,
2498 unsigned int shndx,
2499 const char* secname,
2500 const elfcpp::Shdr<64, true>& shdr,
2501 unsigned int reloc_shndx);
2502 #endif
2503
2504 #ifdef HAVE_TARGET_32_LITTLE
2505 template
2506 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
2507 #endif
2508
2509 #ifdef HAVE_TARGET_32_BIG
2510 template
2511 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
2512 #endif
2513
2514 #ifdef HAVE_TARGET_64_LITTLE
2515 template
2516 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
2517 #endif
2518
2519 #ifdef HAVE_TARGET_64_BIG
2520 template
2521 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
2522 #endif
2523
2524 #ifdef HAVE_TARGET_32_LITTLE
2525 template
2526 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
2527 #endif
2528
2529 #ifdef HAVE_TARGET_32_BIG
2530 template
2531 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
2532 #endif
2533
2534 #ifdef HAVE_TARGET_64_LITTLE
2535 template
2536 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
2537 #endif
2538
2539 #ifdef HAVE_TARGET_64_BIG
2540 template
2541 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
2542 #endif
2543
2544 #ifdef HAVE_TARGET_32_LITTLE
2545 template
2546 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
2547 #endif
2548
2549 #ifdef HAVE_TARGET_32_BIG
2550 template
2551 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
2552 #endif
2553
2554 #ifdef HAVE_TARGET_64_LITTLE
2555 template
2556 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
2557 #endif
2558
2559 #ifdef HAVE_TARGET_64_BIG
2560 template
2561 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
2562 #endif
2563
2564 #ifdef HAVE_TARGET_32_LITTLE
2565 template
2566 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
2567 #endif
2568
2569 #ifdef HAVE_TARGET_32_BIG
2570 template
2571 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
2572 #endif
2573
2574 #ifdef HAVE_TARGET_64_LITTLE
2575 template
2576 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
2577 #endif
2578
2579 #ifdef HAVE_TARGET_64_BIG
2580 template
2581 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
2582 #endif
2583
2584 #ifdef HAVE_TARGET_32_LITTLE
2585 template
2586 class Output_data_got<32, false>;
2587 #endif
2588
2589 #ifdef HAVE_TARGET_32_BIG
2590 template
2591 class Output_data_got<32, true>;
2592 #endif
2593
2594 #ifdef HAVE_TARGET_64_LITTLE
2595 template
2596 class Output_data_got<64, false>;
2597 #endif
2598
2599 #ifdef HAVE_TARGET_64_BIG
2600 template
2601 class Output_data_got<64, true>;
2602 #endif
2603
2604 } // End namespace gold.