]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/output.h
* output.h (Output_data_reloc_generic::add): Only call
[thirdparty/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
123
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
128
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
133
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
138
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
143
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
148
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
154
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
159
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
163
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
168
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
173
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
179 {
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
183 }
184
185 // Set the address.
186 void
187 set_address(uint64_t addr)
188 {
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
192 }
193
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
197 {
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
201 }
202
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
206 {
207 if (!this->is_data_size_valid_)
208 {
209 // Tell the child class to update the data size.
210 this->update_data_size();
211 }
212 }
213
214 // Finalize the data size.
215 void
216 finalize_data_size()
217 {
218 if (!this->is_data_size_valid_)
219 {
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
223 }
224 }
225
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
230
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
236
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
242
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
248
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
253
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
258
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
263
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
268
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
273
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
278
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
283
284 protected:
285 // Functions that child classes may or in some cases must implement.
286
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
290
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
294
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
299
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
304
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
309
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
315
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
321
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
326
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
330
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
335
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
340
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
350 { }
351
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
358
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
362 { }
363
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
371
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
376
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
382
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
388
389 // Functions that child classes may call.
390
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
397
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
401 {
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
406 }
407
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
412 {
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
415 }
416
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
422
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
427 {
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
430 }
431
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
435
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
439
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
443
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
448
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
465 };
466
467 // Output the section headers.
468
469 class Output_section_headers : public Output_data
470 {
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
478
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
483
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
488
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
493
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
498
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
503
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
509
510 // Compute data size.
511 off_t
512 do_size() const;
513
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
520 };
521
522 // Output the segment headers.
523
524 class Output_segment_headers : public Output_data
525 {
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
528
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
533
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
538
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
543
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
548
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
554
555 // Compute the current size.
556 off_t
557 do_size() const;
558
559 const Layout::Segment_list& segment_list_;
560 };
561
562 // Output the ELF file header.
563
564 class Output_file_header : public Output_data
565 {
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
570
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
575
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
580
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
585
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
590
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
595
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
601
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
606
607 // Compute the current data size.
608 off_t
609 do_size() const;
610
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
616 };
617
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
622
623 class Output_section_data : public Output_data
624 {
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
629 {
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
633 }
634
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 { }
638
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
643
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
647
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
651
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
657
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
669
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
676
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
682
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
688
689 protected:
690 // The child class must implement do_write.
691
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
696 { }
697
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
703
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
709
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
714
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
721
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
726
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
731
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
736
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
740
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
744
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
748
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
754 };
755
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
759
760 class Output_section_data_build : public Output_section_data
761 {
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
765 { }
766
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
769 { }
770
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
775
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
781 };
782
783 // A simple case of Output_data in which we have constant data to
784 // output.
785
786 class Output_data_const : public Output_section_data
787 {
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
791 { }
792
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
795 { }
796
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
800 { }
801
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
806
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
816
817 private:
818 std::string data_;
819 };
820
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823
824 class Output_data_const_buffer : public Output_section_data
825 {
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
831 { }
832
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
837
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
842
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
847
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
854 };
855
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858
859 class Output_data_fixed_space : public Output_section_data
860 {
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
866 { }
867
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
873 { }
874
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
879
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
884 };
885
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888
889 class Output_data_space : public Output_section_data_build
890 {
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
895 { }
896
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
901 { }
902
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
907
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
913 { }
914
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
919
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
924 };
925
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
928
929 class Output_data_zero_fill : public Output_section_data
930 {
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
934 { }
935
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
940 { }
941
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
946 };
947
948 // A string table which goes into an output section.
949
950 class Output_data_strtab : public Output_section_data
951 {
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
955 { }
956
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
963
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
968
969 // Write out the data.
970 void
971 do_write(Output_file*);
972
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
982
983 private:
984 Stringpool* strtab_;
985 };
986
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
997
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1009
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1014 { }
1015
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1020
1021 // A reloc against a global symbol.
1022
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless);
1025
1026 Output_reloc(Symbol* gsym, unsigned int type,
1027 Sized_relobj<size, big_endian>* relobj,
1028 unsigned int shndx, Address address, bool is_relative,
1029 bool is_symbolless);
1030
1031 // A reloc against a local symbol or local section symbol.
1032
1033 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034 unsigned int local_sym_index, unsigned int type,
1035 Output_data* od, Address address, bool is_relative,
1036 bool is_symbolless, bool is_section_symbol,
1037 bool use_plt_offset);
1038
1039 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1040 unsigned int local_sym_index, unsigned int type,
1041 unsigned int shndx, Address address, bool is_relative,
1042 bool is_symbolless, bool is_section_symbol,
1043 bool use_plt_offset);
1044
1045 // A reloc against the STT_SECTION symbol of an output section.
1046
1047 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1048 Address address);
1049
1050 Output_reloc(Output_section* os, unsigned int type,
1051 Sized_relobj<size, big_endian>* relobj,
1052 unsigned int shndx, Address address);
1053
1054 // An absolute relocation with no symbol.
1055
1056 Output_reloc(unsigned int type, Output_data* od, Address address);
1057
1058 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1059 unsigned int shndx, Address address);
1060
1061 // A target specific relocation. The target will be called to get
1062 // the symbol index, passing ARG. The type and offset will be set
1063 // as for other relocation types.
1064
1065 Output_reloc(unsigned int type, void* arg, Output_data* od,
1066 Address address);
1067
1068 Output_reloc(unsigned int type, void* arg,
1069 Sized_relobj<size, big_endian>* relobj,
1070 unsigned int shndx, Address address);
1071
1072 // Return the reloc type.
1073 unsigned int
1074 type() const
1075 { return this->type_; }
1076
1077 // Return whether this is a RELATIVE relocation.
1078 bool
1079 is_relative() const
1080 { return this->is_relative_; }
1081
1082 // Return whether this is a relocation which should not use
1083 // a symbol, but which obtains its addend from a symbol.
1084 bool
1085 is_symbolless() const
1086 { return this->is_symbolless_; }
1087
1088 // Return whether this is against a local section symbol.
1089 bool
1090 is_local_section_symbol() const
1091 {
1092 return (this->local_sym_index_ != GSYM_CODE
1093 && this->local_sym_index_ != SECTION_CODE
1094 && this->local_sym_index_ != INVALID_CODE
1095 && this->local_sym_index_ != TARGET_CODE
1096 && this->is_section_symbol_);
1097 }
1098
1099 // Return whether this is a target specific relocation.
1100 bool
1101 is_target_specific() const
1102 { return this->local_sym_index_ == TARGET_CODE; }
1103
1104 // Return the argument to pass to the target for a target specific
1105 // relocation.
1106 void*
1107 target_arg() const
1108 {
1109 gold_assert(this->local_sym_index_ == TARGET_CODE);
1110 return this->u1_.arg;
1111 }
1112
1113 // For a local section symbol, return the offset of the input
1114 // section within the output section. ADDEND is the addend being
1115 // applied to the input section.
1116 Address
1117 local_section_offset(Addend addend) const;
1118
1119 // Get the value of the symbol referred to by a Rel relocation when
1120 // we are adding the given ADDEND.
1121 Address
1122 symbol_value(Addend addend) const;
1123
1124 // If this relocation is against an input section, return the
1125 // relocatable object containing the input section.
1126 Sized_relobj<size, big_endian>*
1127 get_relobj() const
1128 {
1129 if (this->shndx_ == INVALID_CODE)
1130 return NULL;
1131 return this->u2_.relobj;
1132 }
1133
1134 // Write the reloc entry to an output view.
1135 void
1136 write(unsigned char* pov) const;
1137
1138 // Write the offset and info fields to Write_rel.
1139 template<typename Write_rel>
1140 void write_rel(Write_rel*) const;
1141
1142 // This is used when sorting dynamic relocs. Return -1 to sort this
1143 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1144 int
1145 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1146 const;
1147
1148 // Return whether this reloc should be sorted before the argument
1149 // when sorting dynamic relocs.
1150 bool
1151 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1152 r2) const
1153 { return this->compare(r2) < 0; }
1154
1155 private:
1156 // Record that we need a dynamic symbol index.
1157 void
1158 set_needs_dynsym_index();
1159
1160 // Return the symbol index.
1161 unsigned int
1162 get_symbol_index() const;
1163
1164 // Return the output address.
1165 Address
1166 get_address() const;
1167
1168 // Codes for local_sym_index_.
1169 enum
1170 {
1171 // Global symbol.
1172 GSYM_CODE = -1U,
1173 // Output section.
1174 SECTION_CODE = -2U,
1175 // Target specific.
1176 TARGET_CODE = -3U,
1177 // Invalid uninitialized entry.
1178 INVALID_CODE = -4U
1179 };
1180
1181 union
1182 {
1183 // For a local symbol or local section symbol
1184 // (this->local_sym_index_ >= 0), the object. We will never
1185 // generate a relocation against a local symbol in a dynamic
1186 // object; that doesn't make sense. And our callers will always
1187 // be templatized, so we use Sized_relobj here.
1188 Sized_relobj<size, big_endian>* relobj;
1189 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1190 // symbol. If this is NULL, it indicates a relocation against the
1191 // undefined 0 symbol.
1192 Symbol* gsym;
1193 // For a relocation against an output section
1194 // (this->local_sym_index_ == SECTION_CODE), the output section.
1195 Output_section* os;
1196 // For a target specific relocation, an argument to pass to the
1197 // target.
1198 void* arg;
1199 } u1_;
1200 union
1201 {
1202 // If this->shndx_ is not INVALID CODE, the object which holds the
1203 // input section being used to specify the reloc address.
1204 Sized_relobj<size, big_endian>* relobj;
1205 // If this->shndx_ is INVALID_CODE, the output data being used to
1206 // specify the reloc address. This may be NULL if the reloc
1207 // address is absolute.
1208 Output_data* od;
1209 } u2_;
1210 // The address offset within the input section or the Output_data.
1211 Address address_;
1212 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1213 // relocation against an output section, or TARGET_CODE for a target
1214 // specific relocation, or INVALID_CODE for an uninitialized value.
1215 // Otherwise, for a local symbol (this->is_section_symbol_ is
1216 // false), the local symbol index. For a local section symbol
1217 // (this->is_section_symbol_ is true), the section index in the
1218 // input file.
1219 unsigned int local_sym_index_;
1220 // The reloc type--a processor specific code.
1221 unsigned int type_ : 28;
1222 // True if the relocation is a RELATIVE relocation.
1223 bool is_relative_ : 1;
1224 // True if the relocation is one which should not use
1225 // a symbol, but which obtains its addend from a symbol.
1226 bool is_symbolless_ : 1;
1227 // True if the relocation is against a section symbol.
1228 bool is_section_symbol_ : 1;
1229 // True if the addend should be the PLT offset. This is used only
1230 // for RELATIVE relocations to local symbols.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_ : 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_;
1237 };
1238
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1241
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1244 {
1245 public:
1246 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1248
1249 // An uninitialized entry.
1250 Output_reloc()
1251 : rel_()
1252 { }
1253
1254 // A reloc against a global symbol.
1255
1256 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 Address address, Addend addend, bool is_relative,
1258 bool is_symbolless)
1259 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1260 addend_(addend)
1261 { }
1262
1263 Output_reloc(Symbol* gsym, unsigned int type,
1264 Sized_relobj<size, big_endian>* relobj,
1265 unsigned int shndx, Address address, Addend addend,
1266 bool is_relative, bool is_symbolless)
1267 : rel_(gsym, type, relobj, shndx, address, is_relative,
1268 is_symbolless), addend_(addend)
1269 { }
1270
1271 // A reloc against a local symbol.
1272
1273 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1274 unsigned int local_sym_index, unsigned int type,
1275 Output_data* od, Address address,
1276 Addend addend, bool is_relative,
1277 bool is_symbolless, bool is_section_symbol,
1278 bool use_plt_offset)
1279 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1280 is_symbolless, is_section_symbol, use_plt_offset),
1281 addend_(addend)
1282 { }
1283
1284 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1285 unsigned int local_sym_index, unsigned int type,
1286 unsigned int shndx, Address address,
1287 Addend addend, bool is_relative,
1288 bool is_symbolless, bool is_section_symbol,
1289 bool use_plt_offset)
1290 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1291 is_symbolless, is_section_symbol, use_plt_offset),
1292 addend_(addend)
1293 { }
1294
1295 // A reloc against the STT_SECTION symbol of an output section.
1296
1297 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1298 Address address, Addend addend)
1299 : rel_(os, type, od, address), addend_(addend)
1300 { }
1301
1302 Output_reloc(Output_section* os, unsigned int type,
1303 Sized_relobj<size, big_endian>* relobj,
1304 unsigned int shndx, Address address, Addend addend)
1305 : rel_(os, type, relobj, shndx, address), addend_(addend)
1306 { }
1307
1308 // An absolute relocation with no symbol.
1309
1310 Output_reloc(unsigned int type, Output_data* od, Address address,
1311 Addend addend)
1312 : rel_(type, od, address), addend_(addend)
1313 { }
1314
1315 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1316 unsigned int shndx, Address address, Addend addend)
1317 : rel_(type, relobj, shndx, address), addend_(addend)
1318 { }
1319
1320 // A target specific relocation. The target will be called to get
1321 // the symbol index and the addend, passing ARG. The type and
1322 // offset will be set as for other relocation types.
1323
1324 Output_reloc(unsigned int type, void* arg, Output_data* od,
1325 Address address, Addend addend)
1326 : rel_(type, arg, od, address), addend_(addend)
1327 { }
1328
1329 Output_reloc(unsigned int type, void* arg,
1330 Sized_relobj<size, big_endian>* relobj,
1331 unsigned int shndx, Address address, Addend addend)
1332 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1333 { }
1334
1335 // Return whether this is a RELATIVE relocation.
1336 bool
1337 is_relative() const
1338 { return this->rel_.is_relative(); }
1339
1340 // Return whether this is a relocation which should not use
1341 // a symbol, but which obtains its addend from a symbol.
1342 bool
1343 is_symbolless() const
1344 { return this->rel_.is_symbolless(); }
1345
1346 // If this relocation is against an input section, return the
1347 // relocatable object containing the input section.
1348 Sized_relobj<size, big_endian>*
1349 get_relobj() const
1350 { return this->rel_.get_relobj(); }
1351
1352 // Write the reloc entry to an output view.
1353 void
1354 write(unsigned char* pov) const;
1355
1356 // Return whether this reloc should be sorted before the argument
1357 // when sorting dynamic relocs.
1358 bool
1359 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1360 r2) const
1361 {
1362 int i = this->rel_.compare(r2.rel_);
1363 if (i < 0)
1364 return true;
1365 else if (i > 0)
1366 return false;
1367 else
1368 return this->addend_ < r2.addend_;
1369 }
1370
1371 private:
1372 // The basic reloc.
1373 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1374 // The addend.
1375 Addend addend_;
1376 };
1377
1378 // Output_data_reloc_generic is a non-template base class for
1379 // Output_data_reloc_base. This gives the generic code a way to hold
1380 // a pointer to a reloc section.
1381
1382 class Output_data_reloc_generic : public Output_section_data_build
1383 {
1384 public:
1385 Output_data_reloc_generic(int size, bool sort_relocs)
1386 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1387 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1388 { }
1389
1390 // Return the number of relative relocs in this section.
1391 size_t
1392 relative_reloc_count() const
1393 { return this->relative_reloc_count_; }
1394
1395 // Whether we should sort the relocs.
1396 bool
1397 sort_relocs() const
1398 { return this->sort_relocs_; }
1399
1400 protected:
1401 // Note that we've added another relative reloc.
1402 void
1403 bump_relative_reloc_count()
1404 { ++this->relative_reloc_count_; }
1405
1406 private:
1407 // The number of relative relocs added to this section. This is to
1408 // support DT_RELCOUNT.
1409 size_t relative_reloc_count_;
1410 // Whether to sort the relocations when writing them out, to make
1411 // the dynamic linker more efficient.
1412 bool sort_relocs_;
1413 };
1414
1415 // Output_data_reloc is used to manage a section containing relocs.
1416 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1417 // indicates whether this is a dynamic relocation or a normal
1418 // relocation. Output_data_reloc_base is a base class.
1419 // Output_data_reloc is the real class, which we specialize based on
1420 // the reloc type.
1421
1422 template<int sh_type, bool dynamic, int size, bool big_endian>
1423 class Output_data_reloc_base : public Output_data_reloc_generic
1424 {
1425 public:
1426 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1427 typedef typename Output_reloc_type::Address Address;
1428 static const int reloc_size =
1429 Reloc_types<sh_type, size, big_endian>::reloc_size;
1430
1431 // Construct the section.
1432 Output_data_reloc_base(bool sort_relocs)
1433 : Output_data_reloc_generic(size, sort_relocs)
1434 { }
1435
1436 protected:
1437 // Write out the data.
1438 void
1439 do_write(Output_file*);
1440
1441 // Set the entry size and the link.
1442 void
1443 do_adjust_output_section(Output_section* os);
1444
1445 // Write to a map file.
1446 void
1447 do_print_to_mapfile(Mapfile* mapfile) const
1448 {
1449 mapfile->print_output_data(this,
1450 (dynamic
1451 ? _("** dynamic relocs")
1452 : _("** relocs")));
1453 }
1454
1455 // Add a relocation entry.
1456 void
1457 add(Output_data* od, const Output_reloc_type& reloc)
1458 {
1459 this->relocs_.push_back(reloc);
1460 this->set_current_data_size(this->relocs_.size() * reloc_size);
1461 if (dynamic)
1462 od->add_dynamic_reloc();
1463 if (reloc.is_relative())
1464 this->bump_relative_reloc_count();
1465 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1466 if (relobj != NULL)
1467 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1468 }
1469
1470 private:
1471 typedef std::vector<Output_reloc_type> Relocs;
1472
1473 // The class used to sort the relocations.
1474 struct Sort_relocs_comparison
1475 {
1476 bool
1477 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1478 { return r1.sort_before(r2); }
1479 };
1480
1481 // The relocations in this section.
1482 Relocs relocs_;
1483 };
1484
1485 // The class which callers actually create.
1486
1487 template<int sh_type, bool dynamic, int size, bool big_endian>
1488 class Output_data_reloc;
1489
1490 // The SHT_REL version of Output_data_reloc.
1491
1492 template<bool dynamic, int size, bool big_endian>
1493 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1494 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1495 {
1496 private:
1497 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1498 big_endian> Base;
1499
1500 public:
1501 typedef typename Base::Output_reloc_type Output_reloc_type;
1502 typedef typename Output_reloc_type::Address Address;
1503
1504 Output_data_reloc(bool sr)
1505 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1506 { }
1507
1508 // Add a reloc against a global symbol.
1509
1510 void
1511 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1512 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1513
1514 void
1515 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1516 Sized_relobj<size, big_endian>* relobj,
1517 unsigned int shndx, Address address)
1518 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1519 false, false)); }
1520
1521 // These are to simplify the Copy_relocs class.
1522
1523 void
1524 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1525 Address addend)
1526 {
1527 gold_assert(addend == 0);
1528 this->add_global(gsym, type, od, address);
1529 }
1530
1531 void
1532 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1533 Sized_relobj<size, big_endian>* relobj,
1534 unsigned int shndx, Address address, Address addend)
1535 {
1536 gold_assert(addend == 0);
1537 this->add_global(gsym, type, od, relobj, shndx, address);
1538 }
1539
1540 // Add a RELATIVE reloc against a global symbol. The final relocation
1541 // will not reference the symbol.
1542
1543 void
1544 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1545 Address address)
1546 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1547
1548 void
1549 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1550 Sized_relobj<size, big_endian>* relobj,
1551 unsigned int shndx, Address address)
1552 {
1553 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1554 true, true));
1555 }
1556
1557 // Add a global relocation which does not use a symbol for the relocation,
1558 // but which gets its addend from a symbol.
1559
1560 void
1561 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1562 Output_data* od, Address address)
1563 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1564
1565 void
1566 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1567 Output_data* od,
1568 Sized_relobj<size, big_endian>* relobj,
1569 unsigned int shndx, Address address)
1570 {
1571 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1572 false, true));
1573 }
1574
1575 // Add a reloc against a local symbol.
1576
1577 void
1578 add_local(Sized_relobj<size, big_endian>* relobj,
1579 unsigned int local_sym_index, unsigned int type,
1580 Output_data* od, Address address)
1581 {
1582 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1583 address, false, false, false, false));
1584 }
1585
1586 void
1587 add_local(Sized_relobj<size, big_endian>* relobj,
1588 unsigned int local_sym_index, unsigned int type,
1589 Output_data* od, unsigned int shndx, Address address)
1590 {
1591 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1592 address, false, false, false, false));
1593 }
1594
1595 // Add a RELATIVE reloc against a local symbol.
1596
1597 void
1598 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1599 unsigned int local_sym_index, unsigned int type,
1600 Output_data* od, Address address)
1601 {
1602 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1603 address, true, true, false, false));
1604 }
1605
1606 void
1607 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1608 unsigned int local_sym_index, unsigned int type,
1609 Output_data* od, unsigned int shndx, Address address)
1610 {
1611 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1612 address, true, true, false, false));
1613 }
1614
1615 // Add a local relocation which does not use a symbol for the relocation,
1616 // but which gets its addend from a symbol.
1617
1618 void
1619 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1620 unsigned int local_sym_index, unsigned int type,
1621 Output_data* od, Address address)
1622 {
1623 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1624 address, false, true, false, false));
1625 }
1626
1627 void
1628 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1629 unsigned int local_sym_index, unsigned int type,
1630 Output_data* od, unsigned int shndx,
1631 Address address)
1632 {
1633 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1634 address, false, true, false, false));
1635 }
1636
1637 // Add a reloc against a local section symbol. This will be
1638 // converted into a reloc against the STT_SECTION symbol of the
1639 // output section.
1640
1641 void
1642 add_local_section(Sized_relobj<size, big_endian>* relobj,
1643 unsigned int input_shndx, unsigned int type,
1644 Output_data* od, Address address)
1645 {
1646 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1647 address, false, false, true, false));
1648 }
1649
1650 void
1651 add_local_section(Sized_relobj<size, big_endian>* relobj,
1652 unsigned int input_shndx, unsigned int type,
1653 Output_data* od, unsigned int shndx, Address address)
1654 {
1655 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1656 address, false, false, true, false));
1657 }
1658
1659 // A reloc against the STT_SECTION symbol of an output section.
1660 // OS is the Output_section that the relocation refers to; OD is
1661 // the Output_data object being relocated.
1662
1663 void
1664 add_output_section(Output_section* os, unsigned int type,
1665 Output_data* od, Address address)
1666 { this->add(od, Output_reloc_type(os, type, od, address)); }
1667
1668 void
1669 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1670 Sized_relobj<size, big_endian>* relobj,
1671 unsigned int shndx, Address address)
1672 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1673
1674 // Add an absolute relocation.
1675
1676 void
1677 add_absolute(unsigned int type, Output_data* od, Address address)
1678 { this->add(od, Output_reloc_type(type, od, address)); }
1679
1680 void
1681 add_absolute(unsigned int type, Output_data* od,
1682 Sized_relobj<size, big_endian>* relobj,
1683 unsigned int shndx, Address address)
1684 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1685
1686 // Add a target specific relocation. A target which calls this must
1687 // define the reloc_symbol_index and reloc_addend virtual functions.
1688
1689 void
1690 add_target_specific(unsigned int type, void* arg, Output_data* od,
1691 Address address)
1692 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1693
1694 void
1695 add_target_specific(unsigned int type, void* arg, Output_data* od,
1696 Sized_relobj<size, big_endian>* relobj,
1697 unsigned int shndx, Address address)
1698 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1699 };
1700
1701 // The SHT_RELA version of Output_data_reloc.
1702
1703 template<bool dynamic, int size, bool big_endian>
1704 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1705 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1706 {
1707 private:
1708 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1709 big_endian> Base;
1710
1711 public:
1712 typedef typename Base::Output_reloc_type Output_reloc_type;
1713 typedef typename Output_reloc_type::Address Address;
1714 typedef typename Output_reloc_type::Addend Addend;
1715
1716 Output_data_reloc(bool sr)
1717 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1718 { }
1719
1720 // Add a reloc against a global symbol.
1721
1722 void
1723 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1724 Address address, Addend addend)
1725 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1726 false, false)); }
1727
1728 void
1729 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1730 Sized_relobj<size, big_endian>* relobj,
1731 unsigned int shndx, Address address,
1732 Addend addend)
1733 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1734 addend, false, false)); }
1735
1736 // Add a RELATIVE reloc against a global symbol. The final output
1737 // relocation will not reference the symbol, but we must keep the symbol
1738 // information long enough to set the addend of the relocation correctly
1739 // when it is written.
1740
1741 void
1742 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1743 Address address, Addend addend)
1744 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1745 true)); }
1746
1747 void
1748 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1749 Sized_relobj<size, big_endian>* relobj,
1750 unsigned int shndx, Address address, Addend addend)
1751 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1752 addend, true, true)); }
1753
1754 // Add a global relocation which does not use a symbol for the relocation,
1755 // but which gets its addend from a symbol.
1756
1757 void
1758 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1759 Address address, Addend addend)
1760 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1761 false, true)); }
1762
1763 void
1764 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1765 Output_data* od,
1766 Sized_relobj<size, big_endian>* relobj,
1767 unsigned int shndx, Address address, Addend addend)
1768 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1769 addend, false, true)); }
1770
1771 // Add a reloc against a local symbol.
1772
1773 void
1774 add_local(Sized_relobj<size, big_endian>* relobj,
1775 unsigned int local_sym_index, unsigned int type,
1776 Output_data* od, Address address, Addend addend)
1777 {
1778 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1779 addend, false, false, false, false));
1780 }
1781
1782 void
1783 add_local(Sized_relobj<size, big_endian>* relobj,
1784 unsigned int local_sym_index, unsigned int type,
1785 Output_data* od, unsigned int shndx, Address address,
1786 Addend addend)
1787 {
1788 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1789 address, addend, false, false, false,
1790 false));
1791 }
1792
1793 // Add a RELATIVE reloc against a local symbol.
1794
1795 void
1796 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1797 unsigned int local_sym_index, unsigned int type,
1798 Output_data* od, Address address, Addend addend,
1799 bool use_plt_offset)
1800 {
1801 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1802 addend, true, true, false,
1803 use_plt_offset));
1804 }
1805
1806 void
1807 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1808 unsigned int local_sym_index, unsigned int type,
1809 Output_data* od, unsigned int shndx, Address address,
1810 Addend addend, bool use_plt_offset)
1811 {
1812 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1813 address, addend, true, true, false,
1814 use_plt_offset));
1815 }
1816
1817 // Add a local relocation which does not use a symbol for the relocation,
1818 // but which gets it's addend from a symbol.
1819
1820 void
1821 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1822 unsigned int local_sym_index, unsigned int type,
1823 Output_data* od, Address address, Addend addend)
1824 {
1825 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1826 addend, false, true, false, false));
1827 }
1828
1829 void
1830 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1831 unsigned int local_sym_index, unsigned int type,
1832 Output_data* od, unsigned int shndx,
1833 Address address, Addend addend)
1834 {
1835 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1836 address, addend, false, true, false,
1837 false));
1838 }
1839
1840 // Add a reloc against a local section symbol. This will be
1841 // converted into a reloc against the STT_SECTION symbol of the
1842 // output section.
1843
1844 void
1845 add_local_section(Sized_relobj<size, big_endian>* relobj,
1846 unsigned int input_shndx, unsigned int type,
1847 Output_data* od, Address address, Addend addend)
1848 {
1849 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1850 addend, false, false, true, false));
1851 }
1852
1853 void
1854 add_local_section(Sized_relobj<size, big_endian>* relobj,
1855 unsigned int input_shndx, unsigned int type,
1856 Output_data* od, unsigned int shndx, Address address,
1857 Addend addend)
1858 {
1859 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1860 address, addend, false, false, true,
1861 false));
1862 }
1863
1864 // A reloc against the STT_SECTION symbol of an output section.
1865
1866 void
1867 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1868 Address address, Addend addend)
1869 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
1870
1871 void
1872 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1873 Sized_relobj<size, big_endian>* relobj,
1874 unsigned int shndx, Address address, Addend addend)
1875 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
1876 addend)); }
1877
1878 // Add an absolute relocation.
1879
1880 void
1881 add_absolute(unsigned int type, Output_data* od, Address address,
1882 Addend addend)
1883 { this->add(od, Output_reloc_type(type, od, address, addend)); }
1884
1885 void
1886 add_absolute(unsigned int type, Output_data* od,
1887 Sized_relobj<size, big_endian>* relobj,
1888 unsigned int shndx, Address address, Addend addend)
1889 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1890
1891 // Add a target specific relocation. A target which calls this must
1892 // define the reloc_symbol_index and reloc_addend virtual functions.
1893
1894 void
1895 add_target_specific(unsigned int type, void* arg, Output_data* od,
1896 Address address, Addend addend)
1897 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1898
1899 void
1900 add_target_specific(unsigned int type, void* arg, Output_data* od,
1901 Sized_relobj<size, big_endian>* relobj,
1902 unsigned int shndx, Address address, Addend addend)
1903 {
1904 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1905 addend));
1906 }
1907 };
1908
1909 // Output_relocatable_relocs represents a relocation section in a
1910 // relocatable link. The actual data is written out in the target
1911 // hook relocate_for_relocatable. This just saves space for it.
1912
1913 template<int sh_type, int size, bool big_endian>
1914 class Output_relocatable_relocs : public Output_section_data
1915 {
1916 public:
1917 Output_relocatable_relocs(Relocatable_relocs* rr)
1918 : Output_section_data(Output_data::default_alignment_for_size(size)),
1919 rr_(rr)
1920 { }
1921
1922 void
1923 set_final_data_size();
1924
1925 // Write out the data. There is nothing to do here.
1926 void
1927 do_write(Output_file*)
1928 { }
1929
1930 // Write to a map file.
1931 void
1932 do_print_to_mapfile(Mapfile* mapfile) const
1933 { mapfile->print_output_data(this, _("** relocs")); }
1934
1935 private:
1936 // The relocs associated with this input section.
1937 Relocatable_relocs* rr_;
1938 };
1939
1940 // Handle a GROUP section.
1941
1942 template<int size, bool big_endian>
1943 class Output_data_group : public Output_section_data
1944 {
1945 public:
1946 // The constructor clears *INPUT_SHNDXES.
1947 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
1948 section_size_type entry_count,
1949 elfcpp::Elf_Word flags,
1950 std::vector<unsigned int>* input_shndxes);
1951
1952 void
1953 do_write(Output_file*);
1954
1955 // Write to a map file.
1956 void
1957 do_print_to_mapfile(Mapfile* mapfile) const
1958 { mapfile->print_output_data(this, _("** group")); }
1959
1960 // Set final data size.
1961 void
1962 set_final_data_size()
1963 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1964
1965 private:
1966 // The input object.
1967 Sized_relobj_file<size, big_endian>* relobj_;
1968 // The group flag word.
1969 elfcpp::Elf_Word flags_;
1970 // The section indexes of the input sections in this group.
1971 std::vector<unsigned int> input_shndxes_;
1972 };
1973
1974 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1975 // for one symbol--either a global symbol or a local symbol in an
1976 // object. The target specific code adds entries to the GOT as
1977 // needed.
1978
1979 template<int size, bool big_endian>
1980 class Output_data_got : public Output_section_data_build
1981 {
1982 public:
1983 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1984 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1985 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1986
1987 Output_data_got()
1988 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1989 entries_(), free_list_()
1990 { }
1991
1992 Output_data_got(off_t data_size)
1993 : Output_section_data_build(data_size,
1994 Output_data::default_alignment_for_size(size)),
1995 entries_(), free_list_()
1996 {
1997 // For an incremental update, we have an existing GOT section.
1998 // Initialize the list of entries and the free list.
1999 this->entries_.resize(data_size / (size / 8));
2000 this->free_list_.init(data_size, false);
2001 }
2002
2003 // Add an entry for a global symbol to the GOT. Return true if this
2004 // is a new GOT entry, false if the symbol was already in the GOT.
2005 bool
2006 add_global(Symbol* gsym, unsigned int got_type);
2007
2008 // Like add_global, but use the PLT offset of the global symbol if
2009 // it has one.
2010 bool
2011 add_global_plt(Symbol* gsym, unsigned int got_type);
2012
2013 // Add an entry for a global symbol to the GOT, and add a dynamic
2014 // relocation of type R_TYPE for the GOT entry.
2015 void
2016 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2017 Rel_dyn* rel_dyn, unsigned int r_type);
2018
2019 void
2020 add_global_with_rela(Symbol* gsym, unsigned int got_type,
2021 Rela_dyn* rela_dyn, unsigned int r_type);
2022
2023 // Add a pair of entries for a global symbol to the GOT, and add
2024 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2025 void
2026 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2027 Rel_dyn* rel_dyn, unsigned int r_type_1,
2028 unsigned int r_type_2);
2029
2030 void
2031 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
2032 Rela_dyn* rela_dyn, unsigned int r_type_1,
2033 unsigned int r_type_2);
2034
2035 // Add an entry for a local symbol to the GOT. This returns true if
2036 // this is a new GOT entry, false if the symbol already has a GOT
2037 // entry.
2038 bool
2039 add_local(Sized_relobj_file<size, big_endian>* object, unsigned int sym_index,
2040 unsigned int got_type);
2041
2042 // Like add_local, but use the PLT offset of the local symbol if it
2043 // has one.
2044 bool
2045 add_local_plt(Sized_relobj_file<size, big_endian>* object,
2046 unsigned int sym_index,
2047 unsigned int got_type);
2048
2049 // Add an entry for a local symbol to the GOT, and add a dynamic
2050 // relocation of type R_TYPE for the GOT entry.
2051 void
2052 add_local_with_rel(Sized_relobj_file<size, big_endian>* object,
2053 unsigned int sym_index, unsigned int got_type,
2054 Rel_dyn* rel_dyn, unsigned int r_type);
2055
2056 void
2057 add_local_with_rela(Sized_relobj_file<size, big_endian>* object,
2058 unsigned int sym_index, unsigned int got_type,
2059 Rela_dyn* rela_dyn, unsigned int r_type);
2060
2061 // Add a pair of entries for a local symbol to the GOT, and add
2062 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2063 void
2064 add_local_pair_with_rel(Sized_relobj_file<size, big_endian>* object,
2065 unsigned int sym_index, unsigned int shndx,
2066 unsigned int got_type, Rel_dyn* rel_dyn,
2067 unsigned int r_type_1, unsigned int r_type_2);
2068
2069 void
2070 add_local_pair_with_rela(Sized_relobj_file<size, big_endian>* object,
2071 unsigned int sym_index, unsigned int shndx,
2072 unsigned int got_type, Rela_dyn* rela_dyn,
2073 unsigned int r_type_1, unsigned int r_type_2);
2074
2075 // Add a constant to the GOT. This returns the offset of the new
2076 // entry from the start of the GOT.
2077 unsigned int
2078 add_constant(Valtype constant)
2079 {
2080 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2081 return got_offset;
2082 }
2083
2084 // Reserve a slot in the GOT.
2085 void
2086 reserve_slot(unsigned int i)
2087 { this->free_list_.remove(i * size / 8, (i + 1) * size / 8); }
2088
2089 // Reserve a slot in the GOT for a local symbol.
2090 void
2091 reserve_local(unsigned int i, Sized_relobj<size, big_endian>* object,
2092 unsigned int sym_index, unsigned int got_type);
2093
2094 // Reserve a slot in the GOT for a global symbol.
2095 void
2096 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2097
2098 protected:
2099 // Write out the GOT table.
2100 void
2101 do_write(Output_file*);
2102
2103 // Write to a map file.
2104 void
2105 do_print_to_mapfile(Mapfile* mapfile) const
2106 { mapfile->print_output_data(this, _("** GOT")); }
2107
2108 private:
2109 // This POD class holds a single GOT entry.
2110 class Got_entry
2111 {
2112 public:
2113 // Create a zero entry.
2114 Got_entry()
2115 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2116 { this->u_.constant = 0; }
2117
2118 // Create a global symbol entry.
2119 Got_entry(Symbol* gsym, bool use_plt_offset)
2120 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2121 { this->u_.gsym = gsym; }
2122
2123 // Create a local symbol entry.
2124 Got_entry(Sized_relobj_file<size, big_endian>* object,
2125 unsigned int local_sym_index, bool use_plt_offset)
2126 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2127 {
2128 gold_assert(local_sym_index != GSYM_CODE
2129 && local_sym_index != CONSTANT_CODE
2130 && local_sym_index != RESERVED_CODE
2131 && local_sym_index == this->local_sym_index_);
2132 this->u_.object = object;
2133 }
2134
2135 // Create a constant entry. The constant is a host value--it will
2136 // be swapped, if necessary, when it is written out.
2137 explicit Got_entry(Valtype constant)
2138 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2139 { this->u_.constant = constant; }
2140
2141 // Write the GOT entry to an output view.
2142 void
2143 write(unsigned char* pov) const;
2144
2145 private:
2146 enum
2147 {
2148 GSYM_CODE = 0x7fffffff,
2149 CONSTANT_CODE = 0x7ffffffe,
2150 RESERVED_CODE = 0x7ffffffd
2151 };
2152
2153 union
2154 {
2155 // For a local symbol, the object.
2156 Sized_relobj_file<size, big_endian>* object;
2157 // For a global symbol, the symbol.
2158 Symbol* gsym;
2159 // For a constant, the constant.
2160 Valtype constant;
2161 } u_;
2162 // For a local symbol, the local symbol index. This is GSYM_CODE
2163 // for a global symbol, or CONSTANT_CODE for a constant.
2164 unsigned int local_sym_index_ : 31;
2165 // Whether to use the PLT offset of the symbol if it has one.
2166 bool use_plt_offset_ : 1;
2167 };
2168
2169 typedef std::vector<Got_entry> Got_entries;
2170
2171 // Create a new GOT entry and return its offset.
2172 unsigned int
2173 add_got_entry(Got_entry got_entry);
2174
2175 // Create a pair of new GOT entries and return the offset of the first.
2176 unsigned int
2177 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2178
2179 // Return the offset into the GOT of GOT entry I.
2180 unsigned int
2181 got_offset(unsigned int i) const
2182 { return i * (size / 8); }
2183
2184 // Return the offset into the GOT of the last entry added.
2185 unsigned int
2186 last_got_offset() const
2187 { return this->got_offset(this->entries_.size() - 1); }
2188
2189 // Set the size of the section.
2190 void
2191 set_got_size()
2192 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2193
2194 // The list of GOT entries.
2195 Got_entries entries_;
2196
2197 // List of available regions within the section, for incremental
2198 // update links.
2199 Free_list free_list_;
2200 };
2201
2202 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2203 // section.
2204
2205 class Output_data_dynamic : public Output_section_data
2206 {
2207 public:
2208 Output_data_dynamic(Stringpool* pool)
2209 : Output_section_data(Output_data::default_alignment()),
2210 entries_(), pool_(pool)
2211 { }
2212
2213 // Add a new dynamic entry with a fixed numeric value.
2214 void
2215 add_constant(elfcpp::DT tag, unsigned int val)
2216 { this->add_entry(Dynamic_entry(tag, val)); }
2217
2218 // Add a new dynamic entry with the address of output data.
2219 void
2220 add_section_address(elfcpp::DT tag, const Output_data* od)
2221 { this->add_entry(Dynamic_entry(tag, od, false)); }
2222
2223 // Add a new dynamic entry with the address of output data
2224 // plus a constant offset.
2225 void
2226 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2227 unsigned int offset)
2228 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2229
2230 // Add a new dynamic entry with the size of output data.
2231 void
2232 add_section_size(elfcpp::DT tag, const Output_data* od)
2233 { this->add_entry(Dynamic_entry(tag, od, true)); }
2234
2235 // Add a new dynamic entry with the total size of two output datas.
2236 void
2237 add_section_size(elfcpp::DT tag, const Output_data* od,
2238 const Output_data* od2)
2239 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2240
2241 // Add a new dynamic entry with the address of a symbol.
2242 void
2243 add_symbol(elfcpp::DT tag, const Symbol* sym)
2244 { this->add_entry(Dynamic_entry(tag, sym)); }
2245
2246 // Add a new dynamic entry with a string.
2247 void
2248 add_string(elfcpp::DT tag, const char* str)
2249 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2250
2251 void
2252 add_string(elfcpp::DT tag, const std::string& str)
2253 { this->add_string(tag, str.c_str()); }
2254
2255 protected:
2256 // Adjust the output section to set the entry size.
2257 void
2258 do_adjust_output_section(Output_section*);
2259
2260 // Set the final data size.
2261 void
2262 set_final_data_size();
2263
2264 // Write out the dynamic entries.
2265 void
2266 do_write(Output_file*);
2267
2268 // Write to a map file.
2269 void
2270 do_print_to_mapfile(Mapfile* mapfile) const
2271 { mapfile->print_output_data(this, _("** dynamic")); }
2272
2273 private:
2274 // This POD class holds a single dynamic entry.
2275 class Dynamic_entry
2276 {
2277 public:
2278 // Create an entry with a fixed numeric value.
2279 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2280 : tag_(tag), offset_(DYNAMIC_NUMBER)
2281 { this->u_.val = val; }
2282
2283 // Create an entry with the size or address of a section.
2284 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2285 : tag_(tag),
2286 offset_(section_size
2287 ? DYNAMIC_SECTION_SIZE
2288 : DYNAMIC_SECTION_ADDRESS)
2289 {
2290 this->u_.od = od;
2291 this->od2 = NULL;
2292 }
2293
2294 // Create an entry with the size of two sections.
2295 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2296 : tag_(tag),
2297 offset_(DYNAMIC_SECTION_SIZE)
2298 {
2299 this->u_.od = od;
2300 this->od2 = od2;
2301 }
2302
2303 // Create an entry with the address of a section plus a constant offset.
2304 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2305 : tag_(tag),
2306 offset_(offset)
2307 { this->u_.od = od; }
2308
2309 // Create an entry with the address of a symbol.
2310 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2311 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2312 { this->u_.sym = sym; }
2313
2314 // Create an entry with a string.
2315 Dynamic_entry(elfcpp::DT tag, const char* str)
2316 : tag_(tag), offset_(DYNAMIC_STRING)
2317 { this->u_.str = str; }
2318
2319 // Return the tag of this entry.
2320 elfcpp::DT
2321 tag() const
2322 { return this->tag_; }
2323
2324 // Write the dynamic entry to an output view.
2325 template<int size, bool big_endian>
2326 void
2327 write(unsigned char* pov, const Stringpool*) const;
2328
2329 private:
2330 // Classification is encoded in the OFFSET field.
2331 enum Classification
2332 {
2333 // Section address.
2334 DYNAMIC_SECTION_ADDRESS = 0,
2335 // Number.
2336 DYNAMIC_NUMBER = -1U,
2337 // Section size.
2338 DYNAMIC_SECTION_SIZE = -2U,
2339 // Symbol adress.
2340 DYNAMIC_SYMBOL = -3U,
2341 // String.
2342 DYNAMIC_STRING = -4U
2343 // Any other value indicates a section address plus OFFSET.
2344 };
2345
2346 union
2347 {
2348 // For DYNAMIC_NUMBER.
2349 unsigned int val;
2350 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2351 const Output_data* od;
2352 // For DYNAMIC_SYMBOL.
2353 const Symbol* sym;
2354 // For DYNAMIC_STRING.
2355 const char* str;
2356 } u_;
2357 // For DYNAMIC_SYMBOL with two sections.
2358 const Output_data* od2;
2359 // The dynamic tag.
2360 elfcpp::DT tag_;
2361 // The type of entry (Classification) or offset within a section.
2362 unsigned int offset_;
2363 };
2364
2365 // Add an entry to the list.
2366 void
2367 add_entry(const Dynamic_entry& entry)
2368 { this->entries_.push_back(entry); }
2369
2370 // Sized version of write function.
2371 template<int size, bool big_endian>
2372 void
2373 sized_write(Output_file* of);
2374
2375 // The type of the list of entries.
2376 typedef std::vector<Dynamic_entry> Dynamic_entries;
2377
2378 // The entries.
2379 Dynamic_entries entries_;
2380 // The pool used for strings.
2381 Stringpool* pool_;
2382 };
2383
2384 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2385 // which may be required if the object file has more than
2386 // SHN_LORESERVE sections.
2387
2388 class Output_symtab_xindex : public Output_section_data
2389 {
2390 public:
2391 Output_symtab_xindex(size_t symcount)
2392 : Output_section_data(symcount * 4, 4, true),
2393 entries_()
2394 { }
2395
2396 // Add an entry: symbol number SYMNDX has section SHNDX.
2397 void
2398 add(unsigned int symndx, unsigned int shndx)
2399 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2400
2401 protected:
2402 void
2403 do_write(Output_file*);
2404
2405 // Write to a map file.
2406 void
2407 do_print_to_mapfile(Mapfile* mapfile) const
2408 { mapfile->print_output_data(this, _("** symtab xindex")); }
2409
2410 private:
2411 template<bool big_endian>
2412 void
2413 endian_do_write(unsigned char*);
2414
2415 // It is likely that most symbols will not require entries. Rather
2416 // than keep a vector for all symbols, we keep pairs of symbol index
2417 // and section index.
2418 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2419
2420 // The entries we need.
2421 Xindex_entries entries_;
2422 };
2423
2424 // A relaxed input section.
2425 class Output_relaxed_input_section : public Output_section_data_build
2426 {
2427 public:
2428 // We would like to call relobj->section_addralign(shndx) to get the
2429 // alignment but we do not want the constructor to fail. So callers
2430 // are repsonsible for ensuring that.
2431 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2432 uint64_t addralign)
2433 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2434 { }
2435
2436 // Return the Relobj of this relaxed input section.
2437 Relobj*
2438 relobj() const
2439 { return this->relobj_; }
2440
2441 // Return the section index of this relaxed input section.
2442 unsigned int
2443 shndx() const
2444 { return this->shndx_; }
2445
2446 private:
2447 Relobj* relobj_;
2448 unsigned int shndx_;
2449 };
2450
2451 // This class describes properties of merge data sections. It is used
2452 // as a key type for maps.
2453 class Merge_section_properties
2454 {
2455 public:
2456 Merge_section_properties(bool is_string, uint64_t entsize,
2457 uint64_t addralign)
2458 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2459 { }
2460
2461 // Whether this equals to another Merge_section_properties MSP.
2462 bool
2463 eq(const Merge_section_properties& msp) const
2464 {
2465 return ((this->is_string_ == msp.is_string_)
2466 && (this->entsize_ == msp.entsize_)
2467 && (this->addralign_ == msp.addralign_));
2468 }
2469
2470 // Compute a hash value for this using 64-bit FNV-1a hash.
2471 size_t
2472 hash_value() const
2473 {
2474 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2475 uint64_t prime = 1099511628211ULL;
2476 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2477 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2478 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2479 return h;
2480 }
2481
2482 // Functors for associative containers.
2483 struct equal_to
2484 {
2485 bool
2486 operator()(const Merge_section_properties& msp1,
2487 const Merge_section_properties& msp2) const
2488 { return msp1.eq(msp2); }
2489 };
2490
2491 struct hash
2492 {
2493 size_t
2494 operator()(const Merge_section_properties& msp) const
2495 { return msp.hash_value(); }
2496 };
2497
2498 private:
2499 // Whether this merge data section is for strings.
2500 bool is_string_;
2501 // Entsize of this merge data section.
2502 uint64_t entsize_;
2503 // Address alignment.
2504 uint64_t addralign_;
2505 };
2506
2507 // This class is used to speed up look up of special input sections in an
2508 // Output_section.
2509
2510 class Output_section_lookup_maps
2511 {
2512 public:
2513 Output_section_lookup_maps()
2514 : is_valid_(true), merge_sections_by_properties_(),
2515 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2516 { }
2517
2518 // Whether the maps are valid.
2519 bool
2520 is_valid() const
2521 { return this->is_valid_; }
2522
2523 // Invalidate the maps.
2524 void
2525 invalidate()
2526 { this->is_valid_ = false; }
2527
2528 // Clear the maps.
2529 void
2530 clear()
2531 {
2532 this->merge_sections_by_properties_.clear();
2533 this->merge_sections_by_id_.clear();
2534 this->relaxed_input_sections_by_id_.clear();
2535 // A cleared map is valid.
2536 this->is_valid_ = true;
2537 }
2538
2539 // Find a merge section by merge section properties. Return NULL if none
2540 // is found.
2541 Output_merge_base*
2542 find_merge_section(const Merge_section_properties& msp) const
2543 {
2544 gold_assert(this->is_valid_);
2545 Merge_sections_by_properties::const_iterator p =
2546 this->merge_sections_by_properties_.find(msp);
2547 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2548 }
2549
2550 // Find a merge section by section ID of a merge input section. Return NULL
2551 // if none is found.
2552 Output_merge_base*
2553 find_merge_section(const Object* object, unsigned int shndx) const
2554 {
2555 gold_assert(this->is_valid_);
2556 Merge_sections_by_id::const_iterator p =
2557 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2558 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2559 }
2560
2561 // Add a merge section pointed by POMB with properties MSP.
2562 void
2563 add_merge_section(const Merge_section_properties& msp,
2564 Output_merge_base* pomb)
2565 {
2566 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2567 std::pair<Merge_sections_by_properties::iterator, bool> result =
2568 this->merge_sections_by_properties_.insert(value);
2569 gold_assert(result.second);
2570 }
2571
2572 // Add a mapping from a merged input section in OBJECT with index SHNDX
2573 // to a merge output section pointed by POMB.
2574 void
2575 add_merge_input_section(const Object* object, unsigned int shndx,
2576 Output_merge_base* pomb)
2577 {
2578 Const_section_id csid(object, shndx);
2579 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2580 std::pair<Merge_sections_by_id::iterator, bool> result =
2581 this->merge_sections_by_id_.insert(value);
2582 gold_assert(result.second);
2583 }
2584
2585 // Find a relaxed input section of OBJECT with index SHNDX.
2586 Output_relaxed_input_section*
2587 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2588 {
2589 gold_assert(this->is_valid_);
2590 Relaxed_input_sections_by_id::const_iterator p =
2591 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2592 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2593 }
2594
2595 // Add a relaxed input section pointed by POMB and whose original input
2596 // section is in OBJECT with index SHNDX.
2597 void
2598 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2599 Output_relaxed_input_section* poris)
2600 {
2601 Const_section_id csid(relobj, shndx);
2602 std::pair<Const_section_id, Output_relaxed_input_section*>
2603 value(csid, poris);
2604 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2605 this->relaxed_input_sections_by_id_.insert(value);
2606 gold_assert(result.second);
2607 }
2608
2609 private:
2610 typedef Unordered_map<Const_section_id, Output_merge_base*,
2611 Const_section_id_hash>
2612 Merge_sections_by_id;
2613
2614 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2615 Merge_section_properties::hash,
2616 Merge_section_properties::equal_to>
2617 Merge_sections_by_properties;
2618
2619 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2620 Const_section_id_hash>
2621 Relaxed_input_sections_by_id;
2622
2623 // Whether this is valid
2624 bool is_valid_;
2625 // Merge sections by merge section properties.
2626 Merge_sections_by_properties merge_sections_by_properties_;
2627 // Merge sections by section IDs.
2628 Merge_sections_by_id merge_sections_by_id_;
2629 // Relaxed sections by section IDs.
2630 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2631 };
2632
2633 // This abstract base class defines the interface for the
2634 // types of methods used to fill free space left in an output
2635 // section during an incremental link. These methods are used
2636 // to insert dummy compilation units into debug info so that
2637 // debug info consumers can scan the debug info serially.
2638
2639 class Output_fill
2640 {
2641 public:
2642 Output_fill()
2643 : is_big_endian_(parameters->target().is_big_endian())
2644 { }
2645
2646 // Return the smallest size chunk of free space that can be
2647 // filled with a dummy compilation unit.
2648 size_t
2649 minimum_hole_size() const
2650 { return this->do_minimum_hole_size(); }
2651
2652 // Write a fill pattern of length LEN at offset OFF in the file.
2653 void
2654 write(Output_file* of, off_t off, size_t len) const
2655 { this->do_write(of, off, len); }
2656
2657 protected:
2658 virtual size_t
2659 do_minimum_hole_size() const = 0;
2660
2661 virtual void
2662 do_write(Output_file* of, off_t off, size_t len) const = 0;
2663
2664 bool
2665 is_big_endian() const
2666 { return this->is_big_endian_; }
2667
2668 private:
2669 bool is_big_endian_;
2670 };
2671
2672 // Fill method that introduces a dummy compilation unit in
2673 // a .debug_info or .debug_types section.
2674
2675 class Output_fill_debug_info : public Output_fill
2676 {
2677 public:
2678 Output_fill_debug_info(bool is_debug_types)
2679 : is_debug_types_(is_debug_types)
2680 { }
2681
2682 protected:
2683 virtual size_t
2684 do_minimum_hole_size() const;
2685
2686 virtual void
2687 do_write(Output_file* of, off_t off, size_t len) const;
2688
2689 private:
2690 // Version of the header.
2691 static const int version = 4;
2692 // True if this is a .debug_types section.
2693 bool is_debug_types_;
2694 };
2695
2696 // Fill method that introduces a dummy compilation unit in
2697 // a .debug_line section.
2698
2699 class Output_fill_debug_line : public Output_fill
2700 {
2701 public:
2702 Output_fill_debug_line()
2703 { }
2704
2705 protected:
2706 virtual size_t
2707 do_minimum_hole_size() const;
2708
2709 virtual void
2710 do_write(Output_file* of, off_t off, size_t len) const;
2711
2712 private:
2713 // Version of the header. We write a DWARF-3 header because it's smaller
2714 // and many tools have not yet been updated to understand the DWARF-4 header.
2715 static const int version = 3;
2716 // Length of the portion of the header that follows the header_length
2717 // field. This includes the following fields:
2718 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2719 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2720 // The standard_opcode_lengths array is 12 bytes long, and the
2721 // include_directories and filenames fields each contain only a single
2722 // null byte.
2723 static const size_t header_length = 19;
2724 };
2725
2726 // An output section. We don't expect to have too many output
2727 // sections, so we don't bother to do a template on the size.
2728
2729 class Output_section : public Output_data
2730 {
2731 public:
2732 // Create an output section, giving the name, type, and flags.
2733 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2734 virtual ~Output_section();
2735
2736 // Add a new input section SHNDX, named NAME, with header SHDR, from
2737 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2738 // which applies to this section, or 0 if none, or -1 if more than
2739 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2740 // in a linker script; in that case we need to keep track of input
2741 // sections associated with an output section. Return the offset
2742 // within the output section.
2743 template<int size, bool big_endian>
2744 off_t
2745 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2746 unsigned int shndx, const char* name,
2747 const elfcpp::Shdr<size, big_endian>& shdr,
2748 unsigned int reloc_shndx, bool have_sections_script);
2749
2750 // Add generated data POSD to this output section.
2751 void
2752 add_output_section_data(Output_section_data* posd);
2753
2754 // Add a relaxed input section PORIS called NAME to this output section
2755 // with LAYOUT.
2756 void
2757 add_relaxed_input_section(Layout* layout,
2758 Output_relaxed_input_section* poris,
2759 const std::string& name);
2760
2761 // Return the section name.
2762 const char*
2763 name() const
2764 { return this->name_; }
2765
2766 // Return the section type.
2767 elfcpp::Elf_Word
2768 type() const
2769 { return this->type_; }
2770
2771 // Return the section flags.
2772 elfcpp::Elf_Xword
2773 flags() const
2774 { return this->flags_; }
2775
2776 typedef std::map<Section_id, unsigned int> Section_layout_order;
2777
2778 void
2779 update_section_layout(const Section_layout_order* order_map);
2780
2781 // Update the output section flags based on input section flags.
2782 void
2783 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2784
2785 // Return the entsize field.
2786 uint64_t
2787 entsize() const
2788 { return this->entsize_; }
2789
2790 // Set the entsize field.
2791 void
2792 set_entsize(uint64_t v);
2793
2794 // Set the load address.
2795 void
2796 set_load_address(uint64_t load_address)
2797 {
2798 this->load_address_ = load_address;
2799 this->has_load_address_ = true;
2800 }
2801
2802 // Set the link field to the output section index of a section.
2803 void
2804 set_link_section(const Output_data* od)
2805 {
2806 gold_assert(this->link_ == 0
2807 && !this->should_link_to_symtab_
2808 && !this->should_link_to_dynsym_);
2809 this->link_section_ = od;
2810 }
2811
2812 // Set the link field to a constant.
2813 void
2814 set_link(unsigned int v)
2815 {
2816 gold_assert(this->link_section_ == NULL
2817 && !this->should_link_to_symtab_
2818 && !this->should_link_to_dynsym_);
2819 this->link_ = v;
2820 }
2821
2822 // Record that this section should link to the normal symbol table.
2823 void
2824 set_should_link_to_symtab()
2825 {
2826 gold_assert(this->link_section_ == NULL
2827 && this->link_ == 0
2828 && !this->should_link_to_dynsym_);
2829 this->should_link_to_symtab_ = true;
2830 }
2831
2832 // Record that this section should link to the dynamic symbol table.
2833 void
2834 set_should_link_to_dynsym()
2835 {
2836 gold_assert(this->link_section_ == NULL
2837 && this->link_ == 0
2838 && !this->should_link_to_symtab_);
2839 this->should_link_to_dynsym_ = true;
2840 }
2841
2842 // Return the info field.
2843 unsigned int
2844 info() const
2845 {
2846 gold_assert(this->info_section_ == NULL
2847 && this->info_symndx_ == NULL);
2848 return this->info_;
2849 }
2850
2851 // Set the info field to the output section index of a section.
2852 void
2853 set_info_section(const Output_section* os)
2854 {
2855 gold_assert((this->info_section_ == NULL
2856 || (this->info_section_ == os
2857 && this->info_uses_section_index_))
2858 && this->info_symndx_ == NULL
2859 && this->info_ == 0);
2860 this->info_section_ = os;
2861 this->info_uses_section_index_= true;
2862 }
2863
2864 // Set the info field to the symbol table index of a symbol.
2865 void
2866 set_info_symndx(const Symbol* sym)
2867 {
2868 gold_assert(this->info_section_ == NULL
2869 && (this->info_symndx_ == NULL
2870 || this->info_symndx_ == sym)
2871 && this->info_ == 0);
2872 this->info_symndx_ = sym;
2873 }
2874
2875 // Set the info field to the symbol table index of a section symbol.
2876 void
2877 set_info_section_symndx(const Output_section* os)
2878 {
2879 gold_assert((this->info_section_ == NULL
2880 || (this->info_section_ == os
2881 && !this->info_uses_section_index_))
2882 && this->info_symndx_ == NULL
2883 && this->info_ == 0);
2884 this->info_section_ = os;
2885 this->info_uses_section_index_ = false;
2886 }
2887
2888 // Set the info field to a constant.
2889 void
2890 set_info(unsigned int v)
2891 {
2892 gold_assert(this->info_section_ == NULL
2893 && this->info_symndx_ == NULL
2894 && (this->info_ == 0
2895 || this->info_ == v));
2896 this->info_ = v;
2897 }
2898
2899 // Set the addralign field.
2900 void
2901 set_addralign(uint64_t v)
2902 { this->addralign_ = v; }
2903
2904 // Whether the output section index has been set.
2905 bool
2906 has_out_shndx() const
2907 { return this->out_shndx_ != -1U; }
2908
2909 // Indicate that we need a symtab index.
2910 void
2911 set_needs_symtab_index()
2912 { this->needs_symtab_index_ = true; }
2913
2914 // Return whether we need a symtab index.
2915 bool
2916 needs_symtab_index() const
2917 { return this->needs_symtab_index_; }
2918
2919 // Get the symtab index.
2920 unsigned int
2921 symtab_index() const
2922 {
2923 gold_assert(this->symtab_index_ != 0);
2924 return this->symtab_index_;
2925 }
2926
2927 // Set the symtab index.
2928 void
2929 set_symtab_index(unsigned int index)
2930 {
2931 gold_assert(index != 0);
2932 this->symtab_index_ = index;
2933 }
2934
2935 // Indicate that we need a dynsym index.
2936 void
2937 set_needs_dynsym_index()
2938 { this->needs_dynsym_index_ = true; }
2939
2940 // Return whether we need a dynsym index.
2941 bool
2942 needs_dynsym_index() const
2943 { return this->needs_dynsym_index_; }
2944
2945 // Get the dynsym index.
2946 unsigned int
2947 dynsym_index() const
2948 {
2949 gold_assert(this->dynsym_index_ != 0);
2950 return this->dynsym_index_;
2951 }
2952
2953 // Set the dynsym index.
2954 void
2955 set_dynsym_index(unsigned int index)
2956 {
2957 gold_assert(index != 0);
2958 this->dynsym_index_ = index;
2959 }
2960
2961 // Return whether the input sections sections attachd to this output
2962 // section may require sorting. This is used to handle constructor
2963 // priorities compatibly with GNU ld.
2964 bool
2965 may_sort_attached_input_sections() const
2966 { return this->may_sort_attached_input_sections_; }
2967
2968 // Record that the input sections attached to this output section
2969 // may require sorting.
2970 void
2971 set_may_sort_attached_input_sections()
2972 { this->may_sort_attached_input_sections_ = true; }
2973
2974 // Returns true if input sections must be sorted according to the
2975 // order in which their name appear in the --section-ordering-file.
2976 bool
2977 input_section_order_specified()
2978 { return this->input_section_order_specified_; }
2979
2980 // Record that input sections must be sorted as some of their names
2981 // match the patterns specified through --section-ordering-file.
2982 void
2983 set_input_section_order_specified()
2984 { this->input_section_order_specified_ = true; }
2985
2986 // Return whether the input sections attached to this output section
2987 // require sorting. This is used to handle constructor priorities
2988 // compatibly with GNU ld.
2989 bool
2990 must_sort_attached_input_sections() const
2991 { return this->must_sort_attached_input_sections_; }
2992
2993 // Record that the input sections attached to this output section
2994 // require sorting.
2995 void
2996 set_must_sort_attached_input_sections()
2997 { this->must_sort_attached_input_sections_ = true; }
2998
2999 // Get the order in which this section appears in the PT_LOAD output
3000 // segment.
3001 Output_section_order
3002 order() const
3003 { return this->order_; }
3004
3005 // Set the order for this section.
3006 void
3007 set_order(Output_section_order order)
3008 { this->order_ = order; }
3009
3010 // Return whether this section holds relro data--data which has
3011 // dynamic relocations but which may be marked read-only after the
3012 // dynamic relocations have been completed.
3013 bool
3014 is_relro() const
3015 { return this->is_relro_; }
3016
3017 // Record that this section holds relro data.
3018 void
3019 set_is_relro()
3020 { this->is_relro_ = true; }
3021
3022 // Record that this section does not hold relro data.
3023 void
3024 clear_is_relro()
3025 { this->is_relro_ = false; }
3026
3027 // True if this is a small section: a section which holds small
3028 // variables.
3029 bool
3030 is_small_section() const
3031 { return this->is_small_section_; }
3032
3033 // Record that this is a small section.
3034 void
3035 set_is_small_section()
3036 { this->is_small_section_ = true; }
3037
3038 // True if this is a large section: a section which holds large
3039 // variables.
3040 bool
3041 is_large_section() const
3042 { return this->is_large_section_; }
3043
3044 // Record that this is a large section.
3045 void
3046 set_is_large_section()
3047 { this->is_large_section_ = true; }
3048
3049 // True if this is a large data (not BSS) section.
3050 bool
3051 is_large_data_section()
3052 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3053
3054 // Return whether this section should be written after all the input
3055 // sections are complete.
3056 bool
3057 after_input_sections() const
3058 { return this->after_input_sections_; }
3059
3060 // Record that this section should be written after all the input
3061 // sections are complete.
3062 void
3063 set_after_input_sections()
3064 { this->after_input_sections_ = true; }
3065
3066 // Return whether this section requires postprocessing after all
3067 // relocations have been applied.
3068 bool
3069 requires_postprocessing() const
3070 { return this->requires_postprocessing_; }
3071
3072 // If a section requires postprocessing, return the buffer to use.
3073 unsigned char*
3074 postprocessing_buffer() const
3075 {
3076 gold_assert(this->postprocessing_buffer_ != NULL);
3077 return this->postprocessing_buffer_;
3078 }
3079
3080 // If a section requires postprocessing, create the buffer to use.
3081 void
3082 create_postprocessing_buffer();
3083
3084 // If a section requires postprocessing, this is the size of the
3085 // buffer to which relocations should be applied.
3086 off_t
3087 postprocessing_buffer_size() const
3088 { return this->current_data_size_for_child(); }
3089
3090 // Modify the section name. This is only permitted for an
3091 // unallocated section, and only before the size has been finalized.
3092 // Otherwise the name will not get into Layout::namepool_.
3093 void
3094 set_name(const char* newname)
3095 {
3096 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3097 gold_assert(!this->is_data_size_valid());
3098 this->name_ = newname;
3099 }
3100
3101 // Return whether the offset OFFSET in the input section SHNDX in
3102 // object OBJECT is being included in the link.
3103 bool
3104 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3105 off_t offset) const;
3106
3107 // Return the offset within the output section of OFFSET relative to
3108 // the start of input section SHNDX in object OBJECT.
3109 section_offset_type
3110 output_offset(const Relobj* object, unsigned int shndx,
3111 section_offset_type offset) const;
3112
3113 // Return the output virtual address of OFFSET relative to the start
3114 // of input section SHNDX in object OBJECT.
3115 uint64_t
3116 output_address(const Relobj* object, unsigned int shndx,
3117 off_t offset) const;
3118
3119 // Look for the merged section for input section SHNDX in object
3120 // OBJECT. If found, return true, and set *ADDR to the address of
3121 // the start of the merged section. This is not necessary the
3122 // output offset corresponding to input offset 0 in the section,
3123 // since the section may be mapped arbitrarily.
3124 bool
3125 find_starting_output_address(const Relobj* object, unsigned int shndx,
3126 uint64_t* addr) const;
3127
3128 // Record that this output section was found in the SECTIONS clause
3129 // of a linker script.
3130 void
3131 set_found_in_sections_clause()
3132 { this->found_in_sections_clause_ = true; }
3133
3134 // Return whether this output section was found in the SECTIONS
3135 // clause of a linker script.
3136 bool
3137 found_in_sections_clause() const
3138 { return this->found_in_sections_clause_; }
3139
3140 // Write the section header into *OPHDR.
3141 template<int size, bool big_endian>
3142 void
3143 write_header(const Layout*, const Stringpool*,
3144 elfcpp::Shdr_write<size, big_endian>*) const;
3145
3146 // The next few calls are for linker script support.
3147
3148 // In some cases we need to keep a list of the input sections
3149 // associated with this output section. We only need the list if we
3150 // might have to change the offsets of the input section within the
3151 // output section after we add the input section. The ordinary
3152 // input sections will be written out when we process the object
3153 // file, and as such we don't need to track them here. We do need
3154 // to track Output_section_data objects here. We store instances of
3155 // this structure in a std::vector, so it must be a POD. There can
3156 // be many instances of this structure, so we use a union to save
3157 // some space.
3158 class Input_section
3159 {
3160 public:
3161 Input_section()
3162 : shndx_(0), p2align_(0)
3163 {
3164 this->u1_.data_size = 0;
3165 this->u2_.object = NULL;
3166 }
3167
3168 // For an ordinary input section.
3169 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3170 uint64_t addralign)
3171 : shndx_(shndx),
3172 p2align_(ffsll(static_cast<long long>(addralign))),
3173 section_order_index_(0)
3174 {
3175 gold_assert(shndx != OUTPUT_SECTION_CODE
3176 && shndx != MERGE_DATA_SECTION_CODE
3177 && shndx != MERGE_STRING_SECTION_CODE
3178 && shndx != RELAXED_INPUT_SECTION_CODE);
3179 this->u1_.data_size = data_size;
3180 this->u2_.object = object;
3181 }
3182
3183 // For a non-merge output section.
3184 Input_section(Output_section_data* posd)
3185 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3186 section_order_index_(0)
3187 {
3188 this->u1_.data_size = 0;
3189 this->u2_.posd = posd;
3190 }
3191
3192 // For a merge section.
3193 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3194 : shndx_(is_string
3195 ? MERGE_STRING_SECTION_CODE
3196 : MERGE_DATA_SECTION_CODE),
3197 p2align_(0),
3198 section_order_index_(0)
3199 {
3200 this->u1_.entsize = entsize;
3201 this->u2_.posd = posd;
3202 }
3203
3204 // For a relaxed input section.
3205 Input_section(Output_relaxed_input_section* psection)
3206 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3207 section_order_index_(0)
3208 {
3209 this->u1_.data_size = 0;
3210 this->u2_.poris = psection;
3211 }
3212
3213 unsigned int
3214 section_order_index() const
3215 {
3216 return this->section_order_index_;
3217 }
3218
3219 void
3220 set_section_order_index(unsigned int number)
3221 {
3222 this->section_order_index_ = number;
3223 }
3224
3225 // The required alignment.
3226 uint64_t
3227 addralign() const
3228 {
3229 if (this->p2align_ != 0)
3230 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3231 else if (!this->is_input_section())
3232 return this->u2_.posd->addralign();
3233 else
3234 return 0;
3235 }
3236
3237 // Set the required alignment, which must be either 0 or a power of 2.
3238 // For input sections that are sub-classes of Output_section_data, a
3239 // alignment of zero means asking the underlying object for alignment.
3240 void
3241 set_addralign(uint64_t addralign)
3242 {
3243 if (addralign == 0)
3244 this->p2align_ = 0;
3245 else
3246 {
3247 gold_assert((addralign & (addralign - 1)) == 0);
3248 this->p2align_ = ffsll(static_cast<long long>(addralign));
3249 }
3250 }
3251
3252 // Return the current required size, without finalization.
3253 off_t
3254 current_data_size() const;
3255
3256 // Return the required size.
3257 off_t
3258 data_size() const;
3259
3260 // Whether this is an input section.
3261 bool
3262 is_input_section() const
3263 {
3264 return (this->shndx_ != OUTPUT_SECTION_CODE
3265 && this->shndx_ != MERGE_DATA_SECTION_CODE
3266 && this->shndx_ != MERGE_STRING_SECTION_CODE
3267 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3268 }
3269
3270 // Return whether this is a merge section which matches the
3271 // parameters.
3272 bool
3273 is_merge_section(bool is_string, uint64_t entsize,
3274 uint64_t addralign) const
3275 {
3276 return (this->shndx_ == (is_string
3277 ? MERGE_STRING_SECTION_CODE
3278 : MERGE_DATA_SECTION_CODE)
3279 && this->u1_.entsize == entsize
3280 && this->addralign() == addralign);
3281 }
3282
3283 // Return whether this is a merge section for some input section.
3284 bool
3285 is_merge_section() const
3286 {
3287 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3288 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3289 }
3290
3291 // Return whether this is a relaxed input section.
3292 bool
3293 is_relaxed_input_section() const
3294 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3295
3296 // Return whether this is a generic Output_section_data.
3297 bool
3298 is_output_section_data() const
3299 {
3300 return this->shndx_ == OUTPUT_SECTION_CODE;
3301 }
3302
3303 // Return the object for an input section.
3304 Relobj*
3305 relobj() const;
3306
3307 // Return the input section index for an input section.
3308 unsigned int
3309 shndx() const;
3310
3311 // For non-input-sections, return the associated Output_section_data
3312 // object.
3313 Output_section_data*
3314 output_section_data() const
3315 {
3316 gold_assert(!this->is_input_section());
3317 return this->u2_.posd;
3318 }
3319
3320 // For a merge section, return the Output_merge_base pointer.
3321 Output_merge_base*
3322 output_merge_base() const
3323 {
3324 gold_assert(this->is_merge_section());
3325 return this->u2_.pomb;
3326 }
3327
3328 // Return the Output_relaxed_input_section object.
3329 Output_relaxed_input_section*
3330 relaxed_input_section() const
3331 {
3332 gold_assert(this->is_relaxed_input_section());
3333 return this->u2_.poris;
3334 }
3335
3336 // Set the output section.
3337 void
3338 set_output_section(Output_section* os)
3339 {
3340 gold_assert(!this->is_input_section());
3341 Output_section_data* posd =
3342 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3343 posd->set_output_section(os);
3344 }
3345
3346 // Set the address and file offset. This is called during
3347 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3348 // the enclosing section.
3349 void
3350 set_address_and_file_offset(uint64_t address, off_t file_offset,
3351 off_t section_file_offset);
3352
3353 // Reset the address and file offset.
3354 void
3355 reset_address_and_file_offset();
3356
3357 // Finalize the data size.
3358 void
3359 finalize_data_size();
3360
3361 // Add an input section, for SHF_MERGE sections.
3362 bool
3363 add_input_section(Relobj* object, unsigned int shndx)
3364 {
3365 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3366 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3367 return this->u2_.posd->add_input_section(object, shndx);
3368 }
3369
3370 // Given an input OBJECT, an input section index SHNDX within that
3371 // object, and an OFFSET relative to the start of that input
3372 // section, return whether or not the output offset is known. If
3373 // this function returns true, it sets *POUTPUT to the offset in
3374 // the output section, relative to the start of the input section
3375 // in the output section. *POUTPUT may be different from OFFSET
3376 // for a merged section.
3377 bool
3378 output_offset(const Relobj* object, unsigned int shndx,
3379 section_offset_type offset,
3380 section_offset_type* poutput) const;
3381
3382 // Return whether this is the merge section for the input section
3383 // SHNDX in OBJECT.
3384 bool
3385 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3386
3387 // Write out the data. This does nothing for an input section.
3388 void
3389 write(Output_file*);
3390
3391 // Write the data to a buffer. This does nothing for an input
3392 // section.
3393 void
3394 write_to_buffer(unsigned char*);
3395
3396 // Print to a map file.
3397 void
3398 print_to_mapfile(Mapfile*) const;
3399
3400 // Print statistics about merge sections to stderr.
3401 void
3402 print_merge_stats(const char* section_name)
3403 {
3404 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3405 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3406 this->u2_.posd->print_merge_stats(section_name);
3407 }
3408
3409 private:
3410 // Code values which appear in shndx_. If the value is not one of
3411 // these codes, it is the input section index in the object file.
3412 enum
3413 {
3414 // An Output_section_data.
3415 OUTPUT_SECTION_CODE = -1U,
3416 // An Output_section_data for an SHF_MERGE section with
3417 // SHF_STRINGS not set.
3418 MERGE_DATA_SECTION_CODE = -2U,
3419 // An Output_section_data for an SHF_MERGE section with
3420 // SHF_STRINGS set.
3421 MERGE_STRING_SECTION_CODE = -3U,
3422 // An Output_section_data for a relaxed input section.
3423 RELAXED_INPUT_SECTION_CODE = -4U
3424 };
3425
3426 // For an ordinary input section, this is the section index in the
3427 // input file. For an Output_section_data, this is
3428 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3429 // MERGE_STRING_SECTION_CODE.
3430 unsigned int shndx_;
3431 // The required alignment, stored as a power of 2.
3432 unsigned int p2align_;
3433 union
3434 {
3435 // For an ordinary input section, the section size.
3436 off_t data_size;
3437 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3438 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3439 // entity size.
3440 uint64_t entsize;
3441 } u1_;
3442 union
3443 {
3444 // For an ordinary input section, the object which holds the
3445 // input section.
3446 Relobj* object;
3447 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3448 // MERGE_STRING_SECTION_CODE, the data.
3449 Output_section_data* posd;
3450 Output_merge_base* pomb;
3451 // For RELAXED_INPUT_SECTION_CODE, the data.
3452 Output_relaxed_input_section* poris;
3453 } u2_;
3454 // The line number of the pattern it matches in the --section-ordering-file
3455 // file. It is 0 if does not match any pattern.
3456 unsigned int section_order_index_;
3457 };
3458
3459 // Store the list of input sections for this Output_section into the
3460 // list passed in. This removes the input sections, leaving only
3461 // any Output_section_data elements. This returns the size of those
3462 // Output_section_data elements. ADDRESS is the address of this
3463 // output section. FILL is the fill value to use, in case there are
3464 // any spaces between the remaining Output_section_data elements.
3465 uint64_t
3466 get_input_sections(uint64_t address, const std::string& fill,
3467 std::list<Input_section>*);
3468
3469 // Add a script input section. A script input section can either be
3470 // a plain input section or a sub-class of Output_section_data.
3471 void
3472 add_script_input_section(const Input_section& input_section);
3473
3474 // Set the current size of the output section.
3475 void
3476 set_current_data_size(off_t size)
3477 { this->set_current_data_size_for_child(size); }
3478
3479 // End of linker script support.
3480
3481 // Save states before doing section layout.
3482 // This is used for relaxation.
3483 void
3484 save_states();
3485
3486 // Restore states prior to section layout.
3487 void
3488 restore_states();
3489
3490 // Discard states.
3491 void
3492 discard_states();
3493
3494 // Convert existing input sections to relaxed input sections.
3495 void
3496 convert_input_sections_to_relaxed_sections(
3497 const std::vector<Output_relaxed_input_section*>& sections);
3498
3499 // Find a relaxed input section to an input section in OBJECT
3500 // with index SHNDX. Return NULL if none is found.
3501 const Output_relaxed_input_section*
3502 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3503
3504 // Whether section offsets need adjustment due to relaxation.
3505 bool
3506 section_offsets_need_adjustment() const
3507 { return this->section_offsets_need_adjustment_; }
3508
3509 // Set section_offsets_need_adjustment to be true.
3510 void
3511 set_section_offsets_need_adjustment()
3512 { this->section_offsets_need_adjustment_ = true; }
3513
3514 // Adjust section offsets of input sections in this. This is
3515 // requires if relaxation caused some input sections to change sizes.
3516 void
3517 adjust_section_offsets();
3518
3519 // Whether this is a NOLOAD section.
3520 bool
3521 is_noload() const
3522 { return this->is_noload_; }
3523
3524 // Set NOLOAD flag.
3525 void
3526 set_is_noload()
3527 { this->is_noload_ = true; }
3528
3529 // Print merge statistics to stderr.
3530 void
3531 print_merge_stats();
3532
3533 // Set a fixed layout for the section. Used for incremental update links.
3534 void
3535 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3536 uint64_t sh_addralign);
3537
3538 // Return TRUE if the section has a fixed layout.
3539 bool
3540 has_fixed_layout() const
3541 { return this->has_fixed_layout_; }
3542
3543 // Set flag to allow patch space for this section. Used for full
3544 // incremental links.
3545 void
3546 set_is_patch_space_allowed()
3547 { this->is_patch_space_allowed_ = true; }
3548
3549 // Set a fill method to use for free space left in the output section
3550 // during incremental links.
3551 void
3552 set_free_space_fill(Output_fill* free_space_fill)
3553 {
3554 this->free_space_fill_ = free_space_fill;
3555 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3556 }
3557
3558 // Reserve space within the fixed layout for the section. Used for
3559 // incremental update links.
3560 void
3561 reserve(uint64_t sh_offset, uint64_t sh_size);
3562
3563 // Allocate space from the free list for the section. Used for
3564 // incremental update links.
3565 off_t
3566 allocate(off_t len, uint64_t addralign);
3567
3568 protected:
3569 // Return the output section--i.e., the object itself.
3570 Output_section*
3571 do_output_section()
3572 { return this; }
3573
3574 const Output_section*
3575 do_output_section() const
3576 { return this; }
3577
3578 // Return the section index in the output file.
3579 unsigned int
3580 do_out_shndx() const
3581 {
3582 gold_assert(this->out_shndx_ != -1U);
3583 return this->out_shndx_;
3584 }
3585
3586 // Set the output section index.
3587 void
3588 do_set_out_shndx(unsigned int shndx)
3589 {
3590 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3591 this->out_shndx_ = shndx;
3592 }
3593
3594 // Update the data size of the Output_section. For a typical
3595 // Output_section, there is nothing to do, but if there are any
3596 // Output_section_data objects we need to do a trial layout
3597 // here.
3598 virtual void
3599 update_data_size();
3600
3601 // Set the final data size of the Output_section. For a typical
3602 // Output_section, there is nothing to do, but if there are any
3603 // Output_section_data objects we need to set their final addresses
3604 // here.
3605 virtual void
3606 set_final_data_size();
3607
3608 // Reset the address and file offset.
3609 void
3610 do_reset_address_and_file_offset();
3611
3612 // Return true if address and file offset already have reset values. In
3613 // other words, calling reset_address_and_file_offset will not change them.
3614 bool
3615 do_address_and_file_offset_have_reset_values() const;
3616
3617 // Write the data to the file. For a typical Output_section, this
3618 // does nothing: the data is written out by calling Object::Relocate
3619 // on each input object. But if there are any Output_section_data
3620 // objects we do need to write them out here.
3621 virtual void
3622 do_write(Output_file*);
3623
3624 // Return the address alignment--function required by parent class.
3625 uint64_t
3626 do_addralign() const
3627 { return this->addralign_; }
3628
3629 // Return whether there is a load address.
3630 bool
3631 do_has_load_address() const
3632 { return this->has_load_address_; }
3633
3634 // Return the load address.
3635 uint64_t
3636 do_load_address() const
3637 {
3638 gold_assert(this->has_load_address_);
3639 return this->load_address_;
3640 }
3641
3642 // Return whether this is an Output_section.
3643 bool
3644 do_is_section() const
3645 { return true; }
3646
3647 // Return whether this is a section of the specified type.
3648 bool
3649 do_is_section_type(elfcpp::Elf_Word type) const
3650 { return this->type_ == type; }
3651
3652 // Return whether the specified section flag is set.
3653 bool
3654 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3655 { return (this->flags_ & flag) != 0; }
3656
3657 // Set the TLS offset. Called only for SHT_TLS sections.
3658 void
3659 do_set_tls_offset(uint64_t tls_base);
3660
3661 // Return the TLS offset, relative to the base of the TLS segment.
3662 // Valid only for SHT_TLS sections.
3663 uint64_t
3664 do_tls_offset() const
3665 { return this->tls_offset_; }
3666
3667 // This may be implemented by a child class.
3668 virtual void
3669 do_finalize_name(Layout*)
3670 { }
3671
3672 // Print to the map file.
3673 virtual void
3674 do_print_to_mapfile(Mapfile*) const;
3675
3676 // Record that this section requires postprocessing after all
3677 // relocations have been applied. This is called by a child class.
3678 void
3679 set_requires_postprocessing()
3680 {
3681 this->requires_postprocessing_ = true;
3682 this->after_input_sections_ = true;
3683 }
3684
3685 // Write all the data of an Output_section into the postprocessing
3686 // buffer.
3687 void
3688 write_to_postprocessing_buffer();
3689
3690 typedef std::vector<Input_section> Input_section_list;
3691
3692 // Allow a child class to access the input sections.
3693 const Input_section_list&
3694 input_sections() const
3695 { return this->input_sections_; }
3696
3697 // Whether this always keeps an input section list
3698 bool
3699 always_keeps_input_sections() const
3700 { return this->always_keeps_input_sections_; }
3701
3702 // Always keep an input section list.
3703 void
3704 set_always_keeps_input_sections()
3705 {
3706 gold_assert(this->current_data_size_for_child() == 0);
3707 this->always_keeps_input_sections_ = true;
3708 }
3709
3710 private:
3711 // We only save enough information to undo the effects of section layout.
3712 class Checkpoint_output_section
3713 {
3714 public:
3715 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3716 const Input_section_list& input_sections,
3717 off_t first_input_offset,
3718 bool attached_input_sections_are_sorted)
3719 : addralign_(addralign), flags_(flags),
3720 input_sections_(input_sections),
3721 input_sections_size_(input_sections_.size()),
3722 input_sections_copy_(), first_input_offset_(first_input_offset),
3723 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3724 { }
3725
3726 virtual
3727 ~Checkpoint_output_section()
3728 { }
3729
3730 // Return the address alignment.
3731 uint64_t
3732 addralign() const
3733 { return this->addralign_; }
3734
3735 // Return the section flags.
3736 elfcpp::Elf_Xword
3737 flags() const
3738 { return this->flags_; }
3739
3740 // Return a reference to the input section list copy.
3741 Input_section_list*
3742 input_sections()
3743 { return &this->input_sections_copy_; }
3744
3745 // Return the size of input_sections at the time when checkpoint is
3746 // taken.
3747 size_t
3748 input_sections_size() const
3749 { return this->input_sections_size_; }
3750
3751 // Whether input sections are copied.
3752 bool
3753 input_sections_saved() const
3754 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3755
3756 off_t
3757 first_input_offset() const
3758 { return this->first_input_offset_; }
3759
3760 bool
3761 attached_input_sections_are_sorted() const
3762 { return this->attached_input_sections_are_sorted_; }
3763
3764 // Save input sections.
3765 void
3766 save_input_sections()
3767 {
3768 this->input_sections_copy_.reserve(this->input_sections_size_);
3769 this->input_sections_copy_.clear();
3770 Input_section_list::const_iterator p = this->input_sections_.begin();
3771 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3772 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3773 this->input_sections_copy_.push_back(*p);
3774 }
3775
3776 private:
3777 // The section alignment.
3778 uint64_t addralign_;
3779 // The section flags.
3780 elfcpp::Elf_Xword flags_;
3781 // Reference to the input sections to be checkpointed.
3782 const Input_section_list& input_sections_;
3783 // Size of the checkpointed portion of input_sections_;
3784 size_t input_sections_size_;
3785 // Copy of input sections.
3786 Input_section_list input_sections_copy_;
3787 // The offset of the first entry in input_sections_.
3788 off_t first_input_offset_;
3789 // True if the input sections attached to this output section have
3790 // already been sorted.
3791 bool attached_input_sections_are_sorted_;
3792 };
3793
3794 // This class is used to sort the input sections.
3795 class Input_section_sort_entry;
3796
3797 // This is the sort comparison function for ctors and dtors.
3798 struct Input_section_sort_compare
3799 {
3800 bool
3801 operator()(const Input_section_sort_entry&,
3802 const Input_section_sort_entry&) const;
3803 };
3804
3805 // This is the sort comparison function for .init_array and .fini_array.
3806 struct Input_section_sort_init_fini_compare
3807 {
3808 bool
3809 operator()(const Input_section_sort_entry&,
3810 const Input_section_sort_entry&) const;
3811 };
3812
3813 // This is the sort comparison function when a section order is specified
3814 // from an input file.
3815 struct Input_section_sort_section_order_index_compare
3816 {
3817 bool
3818 operator()(const Input_section_sort_entry&,
3819 const Input_section_sort_entry&) const;
3820 };
3821
3822 // Fill data. This is used to fill in data between input sections.
3823 // It is also used for data statements (BYTE, WORD, etc.) in linker
3824 // scripts. When we have to keep track of the input sections, we
3825 // can use an Output_data_const, but we don't want to have to keep
3826 // track of input sections just to implement fills.
3827 class Fill
3828 {
3829 public:
3830 Fill(off_t section_offset, off_t length)
3831 : section_offset_(section_offset),
3832 length_(convert_to_section_size_type(length))
3833 { }
3834
3835 // Return section offset.
3836 off_t
3837 section_offset() const
3838 { return this->section_offset_; }
3839
3840 // Return fill length.
3841 section_size_type
3842 length() const
3843 { return this->length_; }
3844
3845 private:
3846 // The offset within the output section.
3847 off_t section_offset_;
3848 // The length of the space to fill.
3849 section_size_type length_;
3850 };
3851
3852 typedef std::vector<Fill> Fill_list;
3853
3854 // Map used during relaxation of existing sections. This map
3855 // a section id an input section list index. We assume that
3856 // Input_section_list is a vector.
3857 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3858
3859 // Add a new output section by Input_section.
3860 void
3861 add_output_section_data(Input_section*);
3862
3863 // Add an SHF_MERGE input section. Returns true if the section was
3864 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
3865 // stores information about the merged input sections.
3866 bool
3867 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3868 uint64_t entsize, uint64_t addralign,
3869 bool keeps_input_sections);
3870
3871 // Add an output SHF_MERGE section POSD to this output section.
3872 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3873 // ENTSIZE is the entity size. This returns the entry added to
3874 // input_sections_.
3875 void
3876 add_output_merge_section(Output_section_data* posd, bool is_string,
3877 uint64_t entsize);
3878
3879 // Sort the attached input sections.
3880 void
3881 sort_attached_input_sections();
3882
3883 // Find the merge section into which an input section with index SHNDX in
3884 // OBJECT has been added. Return NULL if none found.
3885 Output_section_data*
3886 find_merge_section(const Relobj* object, unsigned int shndx) const;
3887
3888 // Build a relaxation map.
3889 void
3890 build_relaxation_map(
3891 const Input_section_list& input_sections,
3892 size_t limit,
3893 Relaxation_map* map) const;
3894
3895 // Convert input sections in an input section list into relaxed sections.
3896 void
3897 convert_input_sections_in_list_to_relaxed_sections(
3898 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3899 const Relaxation_map& map,
3900 Input_section_list* input_sections);
3901
3902 // Build the lookup maps for merge and relaxed input sections.
3903 void
3904 build_lookup_maps() const;
3905
3906 // Most of these fields are only valid after layout.
3907
3908 // The name of the section. This will point into a Stringpool.
3909 const char* name_;
3910 // The section address is in the parent class.
3911 // The section alignment.
3912 uint64_t addralign_;
3913 // The section entry size.
3914 uint64_t entsize_;
3915 // The load address. This is only used when using a linker script
3916 // with a SECTIONS clause. The has_load_address_ field indicates
3917 // whether this field is valid.
3918 uint64_t load_address_;
3919 // The file offset is in the parent class.
3920 // Set the section link field to the index of this section.
3921 const Output_data* link_section_;
3922 // If link_section_ is NULL, this is the link field.
3923 unsigned int link_;
3924 // Set the section info field to the index of this section.
3925 const Output_section* info_section_;
3926 // If info_section_ is NULL, set the info field to the symbol table
3927 // index of this symbol.
3928 const Symbol* info_symndx_;
3929 // If info_section_ and info_symndx_ are NULL, this is the section
3930 // info field.
3931 unsigned int info_;
3932 // The section type.
3933 const elfcpp::Elf_Word type_;
3934 // The section flags.
3935 elfcpp::Elf_Xword flags_;
3936 // The order of this section in the output segment.
3937 Output_section_order order_;
3938 // The section index.
3939 unsigned int out_shndx_;
3940 // If there is a STT_SECTION for this output section in the normal
3941 // symbol table, this is the symbol index. This starts out as zero.
3942 // It is initialized in Layout::finalize() to be the index, or -1U
3943 // if there isn't one.
3944 unsigned int symtab_index_;
3945 // If there is a STT_SECTION for this output section in the dynamic
3946 // symbol table, this is the symbol index. This starts out as zero.
3947 // It is initialized in Layout::finalize() to be the index, or -1U
3948 // if there isn't one.
3949 unsigned int dynsym_index_;
3950 // The input sections. This will be empty in cases where we don't
3951 // need to keep track of them.
3952 Input_section_list input_sections_;
3953 // The offset of the first entry in input_sections_.
3954 off_t first_input_offset_;
3955 // The fill data. This is separate from input_sections_ because we
3956 // often will need fill sections without needing to keep track of
3957 // input sections.
3958 Fill_list fills_;
3959 // If the section requires postprocessing, this buffer holds the
3960 // section contents during relocation.
3961 unsigned char* postprocessing_buffer_;
3962 // Whether this output section needs a STT_SECTION symbol in the
3963 // normal symbol table. This will be true if there is a relocation
3964 // which needs it.
3965 bool needs_symtab_index_ : 1;
3966 // Whether this output section needs a STT_SECTION symbol in the
3967 // dynamic symbol table. This will be true if there is a dynamic
3968 // relocation which needs it.
3969 bool needs_dynsym_index_ : 1;
3970 // Whether the link field of this output section should point to the
3971 // normal symbol table.
3972 bool should_link_to_symtab_ : 1;
3973 // Whether the link field of this output section should point to the
3974 // dynamic symbol table.
3975 bool should_link_to_dynsym_ : 1;
3976 // Whether this section should be written after all the input
3977 // sections are complete.
3978 bool after_input_sections_ : 1;
3979 // Whether this section requires post processing after all
3980 // relocations have been applied.
3981 bool requires_postprocessing_ : 1;
3982 // Whether an input section was mapped to this output section
3983 // because of a SECTIONS clause in a linker script.
3984 bool found_in_sections_clause_ : 1;
3985 // Whether this section has an explicitly specified load address.
3986 bool has_load_address_ : 1;
3987 // True if the info_section_ field means the section index of the
3988 // section, false if it means the symbol index of the corresponding
3989 // section symbol.
3990 bool info_uses_section_index_ : 1;
3991 // True if input sections attached to this output section have to be
3992 // sorted according to a specified order.
3993 bool input_section_order_specified_ : 1;
3994 // True if the input sections attached to this output section may
3995 // need sorting.
3996 bool may_sort_attached_input_sections_ : 1;
3997 // True if the input sections attached to this output section must
3998 // be sorted.
3999 bool must_sort_attached_input_sections_ : 1;
4000 // True if the input sections attached to this output section have
4001 // already been sorted.
4002 bool attached_input_sections_are_sorted_ : 1;
4003 // True if this section holds relro data.
4004 bool is_relro_ : 1;
4005 // True if this is a small section.
4006 bool is_small_section_ : 1;
4007 // True if this is a large section.
4008 bool is_large_section_ : 1;
4009 // Whether code-fills are generated at write.
4010 bool generate_code_fills_at_write_ : 1;
4011 // Whether the entry size field should be zero.
4012 bool is_entsize_zero_ : 1;
4013 // Whether section offsets need adjustment due to relaxation.
4014 bool section_offsets_need_adjustment_ : 1;
4015 // Whether this is a NOLOAD section.
4016 bool is_noload_ : 1;
4017 // Whether this always keeps input section.
4018 bool always_keeps_input_sections_ : 1;
4019 // Whether this section has a fixed layout, for incremental update links.
4020 bool has_fixed_layout_ : 1;
4021 // True if we can add patch space to this section.
4022 bool is_patch_space_allowed_ : 1;
4023 // For SHT_TLS sections, the offset of this section relative to the base
4024 // of the TLS segment.
4025 uint64_t tls_offset_;
4026 // Saved checkpoint.
4027 Checkpoint_output_section* checkpoint_;
4028 // Fast lookup maps for merged and relaxed input sections.
4029 Output_section_lookup_maps* lookup_maps_;
4030 // List of available regions within the section, for incremental
4031 // update links.
4032 Free_list free_list_;
4033 // Method for filling chunks of free space.
4034 Output_fill* free_space_fill_;
4035 // Amount added as patch space for incremental linking.
4036 off_t patch_space_;
4037 };
4038
4039 // An output segment. PT_LOAD segments are built from collections of
4040 // output sections. Other segments typically point within PT_LOAD
4041 // segments, and are built directly as needed.
4042 //
4043 // NOTE: We want to use the copy constructor for this class. During
4044 // relaxation, we may try built the segments multiple times. We do
4045 // that by copying the original segment list before lay-out, doing
4046 // a trial lay-out and roll-back to the saved copied if we need to
4047 // to the lay-out again.
4048
4049 class Output_segment
4050 {
4051 public:
4052 // Create an output segment, specifying the type and flags.
4053 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4054
4055 // Return the virtual address.
4056 uint64_t
4057 vaddr() const
4058 { return this->vaddr_; }
4059
4060 // Return the physical address.
4061 uint64_t
4062 paddr() const
4063 { return this->paddr_; }
4064
4065 // Return the segment type.
4066 elfcpp::Elf_Word
4067 type() const
4068 { return this->type_; }
4069
4070 // Return the segment flags.
4071 elfcpp::Elf_Word
4072 flags() const
4073 { return this->flags_; }
4074
4075 // Return the memory size.
4076 uint64_t
4077 memsz() const
4078 { return this->memsz_; }
4079
4080 // Return the file size.
4081 off_t
4082 filesz() const
4083 { return this->filesz_; }
4084
4085 // Return the file offset.
4086 off_t
4087 offset() const
4088 { return this->offset_; }
4089
4090 // Whether this is a segment created to hold large data sections.
4091 bool
4092 is_large_data_segment() const
4093 { return this->is_large_data_segment_; }
4094
4095 // Record that this is a segment created to hold large data
4096 // sections.
4097 void
4098 set_is_large_data_segment()
4099 { this->is_large_data_segment_ = true; }
4100
4101 // Return the maximum alignment of the Output_data.
4102 uint64_t
4103 maximum_alignment();
4104
4105 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4106 // the segment flags to use.
4107 void
4108 add_output_section_to_load(Layout* layout, Output_section* os,
4109 elfcpp::Elf_Word seg_flags);
4110
4111 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4112 // is the segment flags to use.
4113 void
4114 add_output_section_to_nonload(Output_section* os,
4115 elfcpp::Elf_Word seg_flags);
4116
4117 // Remove an Output_section from this segment. It is an error if it
4118 // is not present.
4119 void
4120 remove_output_section(Output_section* os);
4121
4122 // Add an Output_data (which need not be an Output_section) to the
4123 // start of this segment.
4124 void
4125 add_initial_output_data(Output_data*);
4126
4127 // Return true if this segment has any sections which hold actual
4128 // data, rather than being a BSS section.
4129 bool
4130 has_any_data_sections() const;
4131
4132 // Whether this segment has a dynamic relocs.
4133 bool
4134 has_dynamic_reloc() const;
4135
4136 // Return the address of the first section.
4137 uint64_t
4138 first_section_load_address() const;
4139
4140 // Return whether the addresses have been set already.
4141 bool
4142 are_addresses_set() const
4143 { return this->are_addresses_set_; }
4144
4145 // Set the addresses.
4146 void
4147 set_addresses(uint64_t vaddr, uint64_t paddr)
4148 {
4149 this->vaddr_ = vaddr;
4150 this->paddr_ = paddr;
4151 this->are_addresses_set_ = true;
4152 }
4153
4154 // Update the flags for the flags of an output section added to this
4155 // segment.
4156 void
4157 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4158 {
4159 // The ELF ABI specifies that a PT_TLS segment should always have
4160 // PF_R as the flags.
4161 if (this->type() != elfcpp::PT_TLS)
4162 this->flags_ |= flags;
4163 }
4164
4165 // Set the segment flags. This is only used if we have a PHDRS
4166 // clause which explicitly specifies the flags.
4167 void
4168 set_flags(elfcpp::Elf_Word flags)
4169 { this->flags_ = flags; }
4170
4171 // Set the address of the segment to ADDR and the offset to *POFF
4172 // and set the addresses and offsets of all contained output
4173 // sections accordingly. Set the section indexes of all contained
4174 // output sections starting with *PSHNDX. If RESET is true, first
4175 // reset the addresses of the contained sections. Return the
4176 // address of the immediately following segment. Update *POFF and
4177 // *PSHNDX. This should only be called for a PT_LOAD segment.
4178 uint64_t
4179 set_section_addresses(Layout*, bool reset, uint64_t addr,
4180 unsigned int* increase_relro, bool* has_relro,
4181 off_t* poff, unsigned int* pshndx);
4182
4183 // Set the minimum alignment of this segment. This may be adjusted
4184 // upward based on the section alignments.
4185 void
4186 set_minimum_p_align(uint64_t align)
4187 {
4188 if (align > this->min_p_align_)
4189 this->min_p_align_ = align;
4190 }
4191
4192 // Set the offset of this segment based on the section. This should
4193 // only be called for a non-PT_LOAD segment.
4194 void
4195 set_offset(unsigned int increase);
4196
4197 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4198 void
4199 set_tls_offsets();
4200
4201 // Return the number of output sections.
4202 unsigned int
4203 output_section_count() const;
4204
4205 // Return the section attached to the list segment with the lowest
4206 // load address. This is used when handling a PHDRS clause in a
4207 // linker script.
4208 Output_section*
4209 section_with_lowest_load_address() const;
4210
4211 // Write the segment header into *OPHDR.
4212 template<int size, bool big_endian>
4213 void
4214 write_header(elfcpp::Phdr_write<size, big_endian>*);
4215
4216 // Write the section headers of associated sections into V.
4217 template<int size, bool big_endian>
4218 unsigned char*
4219 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4220 unsigned int* pshndx) const;
4221
4222 // Print the output sections in the map file.
4223 void
4224 print_sections_to_mapfile(Mapfile*) const;
4225
4226 private:
4227 typedef std::vector<Output_data*> Output_data_list;
4228
4229 // Find the maximum alignment in an Output_data_list.
4230 static uint64_t
4231 maximum_alignment_list(const Output_data_list*);
4232
4233 // Return whether the first data section is a relro section.
4234 bool
4235 is_first_section_relro() const;
4236
4237 // Set the section addresses in an Output_data_list.
4238 uint64_t
4239 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4240 uint64_t addr, off_t* poff, unsigned int* pshndx,
4241 bool* in_tls);
4242
4243 // Return the number of Output_sections in an Output_data_list.
4244 unsigned int
4245 output_section_count_list(const Output_data_list*) const;
4246
4247 // Return whether an Output_data_list has a dynamic reloc.
4248 bool
4249 has_dynamic_reloc_list(const Output_data_list*) const;
4250
4251 // Find the section with the lowest load address in an
4252 // Output_data_list.
4253 void
4254 lowest_load_address_in_list(const Output_data_list* pdl,
4255 Output_section** found,
4256 uint64_t* found_lma) const;
4257
4258 // Find the first and last entries by address.
4259 void
4260 find_first_and_last_list(const Output_data_list* pdl,
4261 const Output_data** pfirst,
4262 const Output_data** plast) const;
4263
4264 // Write the section headers in the list into V.
4265 template<int size, bool big_endian>
4266 unsigned char*
4267 write_section_headers_list(const Layout*, const Stringpool*,
4268 const Output_data_list*, unsigned char* v,
4269 unsigned int* pshdx) const;
4270
4271 // Print a section list to the mapfile.
4272 void
4273 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4274
4275 // NOTE: We want to use the copy constructor. Currently, shallow copy
4276 // works for us so we do not need to write our own copy constructor.
4277
4278 // The list of output data attached to this segment.
4279 Output_data_list output_lists_[ORDER_MAX];
4280 // The segment virtual address.
4281 uint64_t vaddr_;
4282 // The segment physical address.
4283 uint64_t paddr_;
4284 // The size of the segment in memory.
4285 uint64_t memsz_;
4286 // The maximum section alignment. The is_max_align_known_ field
4287 // indicates whether this has been finalized.
4288 uint64_t max_align_;
4289 // The required minimum value for the p_align field. This is used
4290 // for PT_LOAD segments. Note that this does not mean that
4291 // addresses should be aligned to this value; it means the p_paddr
4292 // and p_vaddr fields must be congruent modulo this value. For
4293 // non-PT_LOAD segments, the dynamic linker works more efficiently
4294 // if the p_align field has the more conventional value, although it
4295 // can align as needed.
4296 uint64_t min_p_align_;
4297 // The offset of the segment data within the file.
4298 off_t offset_;
4299 // The size of the segment data in the file.
4300 off_t filesz_;
4301 // The segment type;
4302 elfcpp::Elf_Word type_;
4303 // The segment flags.
4304 elfcpp::Elf_Word flags_;
4305 // Whether we have finalized max_align_.
4306 bool is_max_align_known_ : 1;
4307 // Whether vaddr and paddr were set by a linker script.
4308 bool are_addresses_set_ : 1;
4309 // Whether this segment holds large data sections.
4310 bool is_large_data_segment_ : 1;
4311 };
4312
4313 // This class represents the output file.
4314
4315 class Output_file
4316 {
4317 public:
4318 Output_file(const char* name);
4319
4320 // Indicate that this is a temporary file which should not be
4321 // output.
4322 void
4323 set_is_temporary()
4324 { this->is_temporary_ = true; }
4325
4326 // Try to open an existing file. Returns false if the file doesn't
4327 // exist, has a size of 0 or can't be mmaped. This method is
4328 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4329 // that file as the base for incremental linking.
4330 bool
4331 open_base_file(const char* base_name, bool writable);
4332
4333 // Open the output file. FILE_SIZE is the final size of the file.
4334 // If the file already exists, it is deleted/truncated. This method
4335 // is thread-unsafe.
4336 void
4337 open(off_t file_size);
4338
4339 // Resize the output file. This method is thread-unsafe.
4340 void
4341 resize(off_t file_size);
4342
4343 // Close the output file (flushing all buffered data) and make sure
4344 // there are no errors. This method is thread-unsafe.
4345 void
4346 close();
4347
4348 // Return the size of this file.
4349 off_t
4350 filesize()
4351 { return this->file_size_; }
4352
4353 // Return the name of this file.
4354 const char*
4355 filename()
4356 { return this->name_; }
4357
4358 // We currently always use mmap which makes the view handling quite
4359 // simple. In the future we may support other approaches.
4360
4361 // Write data to the output file.
4362 void
4363 write(off_t offset, const void* data, size_t len)
4364 { memcpy(this->base_ + offset, data, len); }
4365
4366 // Get a buffer to use to write to the file, given the offset into
4367 // the file and the size.
4368 unsigned char*
4369 get_output_view(off_t start, size_t size)
4370 {
4371 gold_assert(start >= 0
4372 && start + static_cast<off_t>(size) <= this->file_size_);
4373 return this->base_ + start;
4374 }
4375
4376 // VIEW must have been returned by get_output_view. Write the
4377 // buffer to the file, passing in the offset and the size.
4378 void
4379 write_output_view(off_t, size_t, unsigned char*)
4380 { }
4381
4382 // Get a read/write buffer. This is used when we want to write part
4383 // of the file, read it in, and write it again.
4384 unsigned char*
4385 get_input_output_view(off_t start, size_t size)
4386 { return this->get_output_view(start, size); }
4387
4388 // Write a read/write buffer back to the file.
4389 void
4390 write_input_output_view(off_t, size_t, unsigned char*)
4391 { }
4392
4393 // Get a read buffer. This is used when we just want to read part
4394 // of the file back it in.
4395 const unsigned char*
4396 get_input_view(off_t start, size_t size)
4397 { return this->get_output_view(start, size); }
4398
4399 // Release a read bfufer.
4400 void
4401 free_input_view(off_t, size_t, const unsigned char*)
4402 { }
4403
4404 private:
4405 // Map the file into memory or, if that fails, allocate anonymous
4406 // memory.
4407 void
4408 map();
4409
4410 // Allocate anonymous memory for the file.
4411 bool
4412 map_anonymous();
4413
4414 // Map the file into memory.
4415 bool
4416 map_no_anonymous(bool);
4417
4418 // Unmap the file from memory (and flush to disk buffers).
4419 void
4420 unmap();
4421
4422 // File name.
4423 const char* name_;
4424 // File descriptor.
4425 int o_;
4426 // File size.
4427 off_t file_size_;
4428 // Base of file mapped into memory.
4429 unsigned char* base_;
4430 // True iff base_ points to a memory buffer rather than an output file.
4431 bool map_is_anonymous_;
4432 // True if base_ was allocated using new rather than mmap.
4433 bool map_is_allocated_;
4434 // True if this is a temporary file which should not be output.
4435 bool is_temporary_;
4436 };
4437
4438 } // End namespace gold.
4439
4440 #endif // !defined(GOLD_OUTPUT_H)