]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/script.cc
Don't check assertions until symbols are finalized. Create an output
[thirdparty/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <fnmatch.h>
26 #include <string>
27 #include <vector>
28 #include <cstdio>
29 #include <cstdlib>
30 #include "filenames.h"
31
32 #include "elfcpp.h"
33 #include "demangle.h"
34 #include "dirsearch.h"
35 #include "options.h"
36 #include "fileread.h"
37 #include "workqueue.h"
38 #include "readsyms.h"
39 #include "parameters.h"
40 #include "layout.h"
41 #include "symtab.h"
42 #include "script.h"
43 #include "script-c.h"
44
45 namespace gold
46 {
47
48 // A token read from a script file. We don't implement keywords here;
49 // all keywords are simply represented as a string.
50
51 class Token
52 {
53 public:
54 // Token classification.
55 enum Classification
56 {
57 // Token is invalid.
58 TOKEN_INVALID,
59 // Token indicates end of input.
60 TOKEN_EOF,
61 // Token is a string of characters.
62 TOKEN_STRING,
63 // Token is a quoted string of characters.
64 TOKEN_QUOTED_STRING,
65 // Token is an operator.
66 TOKEN_OPERATOR,
67 // Token is a number (an integer).
68 TOKEN_INTEGER
69 };
70
71 // We need an empty constructor so that we can put this STL objects.
72 Token()
73 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
74 opcode_(0), lineno_(0), charpos_(0)
75 { }
76
77 // A general token with no value.
78 Token(Classification classification, int lineno, int charpos)
79 : classification_(classification), value_(NULL), value_length_(0),
80 opcode_(0), lineno_(lineno), charpos_(charpos)
81 {
82 gold_assert(classification == TOKEN_INVALID
83 || classification == TOKEN_EOF);
84 }
85
86 // A general token with a value.
87 Token(Classification classification, const char* value, size_t length,
88 int lineno, int charpos)
89 : classification_(classification), value_(value), value_length_(length),
90 opcode_(0), lineno_(lineno), charpos_(charpos)
91 {
92 gold_assert(classification != TOKEN_INVALID
93 && classification != TOKEN_EOF);
94 }
95
96 // A token representing an operator.
97 Token(int opcode, int lineno, int charpos)
98 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
99 opcode_(opcode), lineno_(lineno), charpos_(charpos)
100 { }
101
102 // Return whether the token is invalid.
103 bool
104 is_invalid() const
105 { return this->classification_ == TOKEN_INVALID; }
106
107 // Return whether this is an EOF token.
108 bool
109 is_eof() const
110 { return this->classification_ == TOKEN_EOF; }
111
112 // Return the token classification.
113 Classification
114 classification() const
115 { return this->classification_; }
116
117 // Return the line number at which the token starts.
118 int
119 lineno() const
120 { return this->lineno_; }
121
122 // Return the character position at this the token starts.
123 int
124 charpos() const
125 { return this->charpos_; }
126
127 // Get the value of a token.
128
129 const char*
130 string_value(size_t* length) const
131 {
132 gold_assert(this->classification_ == TOKEN_STRING
133 || this->classification_ == TOKEN_QUOTED_STRING);
134 *length = this->value_length_;
135 return this->value_;
136 }
137
138 int
139 operator_value() const
140 {
141 gold_assert(this->classification_ == TOKEN_OPERATOR);
142 return this->opcode_;
143 }
144
145 uint64_t
146 integer_value() const
147 {
148 gold_assert(this->classification_ == TOKEN_INTEGER);
149 // Null terminate.
150 std::string s(this->value_, this->value_length_);
151 return strtoull(s.c_str(), NULL, 0);
152 }
153
154 private:
155 // The token classification.
156 Classification classification_;
157 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
158 // TOKEN_INTEGER.
159 const char* value_;
160 // The length of the token value.
161 size_t value_length_;
162 // The token value, for TOKEN_OPERATOR.
163 int opcode_;
164 // The line number where this token started (one based).
165 int lineno_;
166 // The character position within the line where this token started
167 // (one based).
168 int charpos_;
169 };
170
171 // This class handles lexing a file into a sequence of tokens.
172
173 class Lex
174 {
175 public:
176 // We unfortunately have to support different lexing modes, because
177 // when reading different parts of a linker script we need to parse
178 // things differently.
179 enum Mode
180 {
181 // Reading an ordinary linker script.
182 LINKER_SCRIPT,
183 // Reading an expression in a linker script.
184 EXPRESSION,
185 // Reading a version script.
186 VERSION_SCRIPT
187 };
188
189 Lex(const char* input_string, size_t input_length, int parsing_token)
190 : input_string_(input_string), input_length_(input_length),
191 current_(input_string), mode_(LINKER_SCRIPT),
192 first_token_(parsing_token), token_(),
193 lineno_(1), linestart_(input_string)
194 { }
195
196 // Read a file into a string.
197 static void
198 read_file(Input_file*, std::string*);
199
200 // Return the next token.
201 const Token*
202 next_token();
203
204 // Return the current lexing mode.
205 Lex::Mode
206 mode() const
207 { return this->mode_; }
208
209 // Set the lexing mode.
210 void
211 set_mode(Mode mode)
212 { this->mode_ = mode; }
213
214 private:
215 Lex(const Lex&);
216 Lex& operator=(const Lex&);
217
218 // Make a general token with no value at the current location.
219 Token
220 make_token(Token::Classification c, const char* start) const
221 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
222
223 // Make a general token with a value at the current location.
224 Token
225 make_token(Token::Classification c, const char* v, size_t len,
226 const char* start)
227 const
228 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
229
230 // Make an operator token at the current location.
231 Token
232 make_token(int opcode, const char* start) const
233 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an invalid token at the current location.
236 Token
237 make_invalid_token(const char* start)
238 { return this->make_token(Token::TOKEN_INVALID, start); }
239
240 // Make an EOF token at the current location.
241 Token
242 make_eof_token(const char* start)
243 { return this->make_token(Token::TOKEN_EOF, start); }
244
245 // Return whether C can be the first character in a name. C2 is the
246 // next character, since we sometimes need that.
247 inline bool
248 can_start_name(char c, char c2);
249
250 // If C can appear in a name which has already started, return a
251 // pointer to a character later in the token or just past
252 // it. Otherwise, return NULL.
253 inline const char*
254 can_continue_name(const char* c);
255
256 // Return whether C, C2, C3 can start a hex number.
257 inline bool
258 can_start_hex(char c, char c2, char c3);
259
260 // If C can appear in a hex number which has already started, return
261 // a pointer to a character later in the token or just past
262 // it. Otherwise, return NULL.
263 inline const char*
264 can_continue_hex(const char* c);
265
266 // Return whether C can start a non-hex number.
267 static inline bool
268 can_start_number(char c);
269
270 // If C can appear in a decimal number which has already started,
271 // return a pointer to a character later in the token or just past
272 // it. Otherwise, return NULL.
273 inline const char*
274 can_continue_number(const char* c)
275 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
276
277 // If C1 C2 C3 form a valid three character operator, return the
278 // opcode. Otherwise return 0.
279 static inline int
280 three_char_operator(char c1, char c2, char c3);
281
282 // If C1 C2 form a valid two character operator, return the opcode.
283 // Otherwise return 0.
284 static inline int
285 two_char_operator(char c1, char c2);
286
287 // If C1 is a valid one character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 one_char_operator(char c1);
291
292 // Read the next token.
293 Token
294 get_token(const char**);
295
296 // Skip a C style /* */ comment. Return false if the comment did
297 // not end.
298 bool
299 skip_c_comment(const char**);
300
301 // Skip a line # comment. Return false if there was no newline.
302 bool
303 skip_line_comment(const char**);
304
305 // Build a token CLASSIFICATION from all characters that match
306 // CAN_CONTINUE_FN. The token starts at START. Start matching from
307 // MATCH. Set *PP to the character following the token.
308 inline Token
309 gather_token(Token::Classification,
310 const char* (Lex::*can_continue_fn)(const char*),
311 const char* start, const char* match, const char** pp);
312
313 // Build a token from a quoted string.
314 Token
315 gather_quoted_string(const char** pp);
316
317 // The string we are tokenizing.
318 const char* input_string_;
319 // The length of the string.
320 size_t input_length_;
321 // The current offset into the string.
322 const char* current_;
323 // The current lexing mode.
324 Mode mode_;
325 // The code to use for the first token. This is set to 0 after it
326 // is used.
327 int first_token_;
328 // The current token.
329 Token token_;
330 // The current line number.
331 int lineno_;
332 // The start of the current line in the string.
333 const char* linestart_;
334 };
335
336 // Read the whole file into memory. We don't expect linker scripts to
337 // be large, so we just use a std::string as a buffer. We ignore the
338 // data we've already read, so that we read aligned buffers.
339
340 void
341 Lex::read_file(Input_file* input_file, std::string* contents)
342 {
343 off_t filesize = input_file->file().filesize();
344 contents->clear();
345 contents->reserve(filesize);
346
347 off_t off = 0;
348 unsigned char buf[BUFSIZ];
349 while (off < filesize)
350 {
351 off_t get = BUFSIZ;
352 if (get > filesize - off)
353 get = filesize - off;
354 input_file->file().read(off, get, buf);
355 contents->append(reinterpret_cast<char*>(&buf[0]), get);
356 off += get;
357 }
358 }
359
360 // Return whether C can be the start of a name, if the next character
361 // is C2. A name can being with a letter, underscore, period, or
362 // dollar sign. Because a name can be a file name, we also permit
363 // forward slash, backslash, and tilde. Tilde is the tricky case
364 // here; GNU ld also uses it as a bitwise not operator. It is only
365 // recognized as the operator if it is not immediately followed by
366 // some character which can appear in a symbol. That is, when we
367 // don't know that we are looking at an expression, "~0" is a file
368 // name, and "~ 0" is an expression using bitwise not. We are
369 // compatible.
370
371 inline bool
372 Lex::can_start_name(char c, char c2)
373 {
374 switch (c)
375 {
376 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
377 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
378 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
379 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
380 case 'Y': case 'Z':
381 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
382 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
383 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
384 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
385 case 'y': case 'z':
386 case '_': case '.': case '$':
387 return true;
388
389 case '/': case '\\':
390 return this->mode_ == LINKER_SCRIPT;
391
392 case '~':
393 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
394
395 case '*': case '[':
396 return (this->mode_ == VERSION_SCRIPT
397 || (this->mode_ == LINKER_SCRIPT
398 && can_continue_name(&c2)));
399
400 default:
401 return false;
402 }
403 }
404
405 // Return whether C can continue a name which has already started.
406 // Subsequent characters in a name are the same as the leading
407 // characters, plus digits and "=+-:[],?*". So in general the linker
408 // script language requires spaces around operators, unless we know
409 // that we are parsing an expression.
410
411 inline const char*
412 Lex::can_continue_name(const char* c)
413 {
414 switch (*c)
415 {
416 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
417 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
418 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
419 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
420 case 'Y': case 'Z':
421 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
422 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
423 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
424 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
425 case 'y': case 'z':
426 case '_': case '.': case '$':
427 case '0': case '1': case '2': case '3': case '4':
428 case '5': case '6': case '7': case '8': case '9':
429 return c + 1;
430
431 case '/': case '\\': case '~':
432 case '=': case '+':
433 case ',': case '?':
434 if (this->mode_ == LINKER_SCRIPT)
435 return c + 1;
436 return NULL;
437
438 case '[': case ']': case '*': case '-':
439 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT)
440 return c + 1;
441 return NULL;
442
443 case '^':
444 if (this->mode_ == VERSION_SCRIPT)
445 return c + 1;
446 return NULL;
447
448 case ':':
449 if (this->mode_ == LINKER_SCRIPT)
450 return c + 1;
451 else if (this->mode_ == VERSION_SCRIPT && (c[1] == ':'))
452 {
453 // A name can have '::' in it, as that's a c++ namespace
454 // separator. But a single colon is not part of a name.
455 return c + 2;
456 }
457 return NULL;
458
459 default:
460 return NULL;
461 }
462 }
463
464 // For a number we accept 0x followed by hex digits, or any sequence
465 // of digits. The old linker accepts leading '$' for hex, and
466 // trailing HXBOD. Those are for MRI compatibility and we don't
467 // accept them. The old linker also accepts trailing MK for mega or
468 // kilo. FIXME: Those are mentioned in the documentation, and we
469 // should accept them.
470
471 // Return whether C1 C2 C3 can start a hex number.
472
473 inline bool
474 Lex::can_start_hex(char c1, char c2, char c3)
475 {
476 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
477 return this->can_continue_hex(&c3);
478 return false;
479 }
480
481 // Return whether C can appear in a hex number.
482
483 inline const char*
484 Lex::can_continue_hex(const char* c)
485 {
486 switch (*c)
487 {
488 case '0': case '1': case '2': case '3': case '4':
489 case '5': case '6': case '7': case '8': case '9':
490 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
491 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
492 return c + 1;
493
494 default:
495 return NULL;
496 }
497 }
498
499 // Return whether C can start a non-hex number.
500
501 inline bool
502 Lex::can_start_number(char c)
503 {
504 switch (c)
505 {
506 case '0': case '1': case '2': case '3': case '4':
507 case '5': case '6': case '7': case '8': case '9':
508 return true;
509
510 default:
511 return false;
512 }
513 }
514
515 // If C1 C2 C3 form a valid three character operator, return the
516 // opcode (defined in the yyscript.h file generated from yyscript.y).
517 // Otherwise return 0.
518
519 inline int
520 Lex::three_char_operator(char c1, char c2, char c3)
521 {
522 switch (c1)
523 {
524 case '<':
525 if (c2 == '<' && c3 == '=')
526 return LSHIFTEQ;
527 break;
528 case '>':
529 if (c2 == '>' && c3 == '=')
530 return RSHIFTEQ;
531 break;
532 default:
533 break;
534 }
535 return 0;
536 }
537
538 // If C1 C2 form a valid two character operator, return the opcode
539 // (defined in the yyscript.h file generated from yyscript.y).
540 // Otherwise return 0.
541
542 inline int
543 Lex::two_char_operator(char c1, char c2)
544 {
545 switch (c1)
546 {
547 case '=':
548 if (c2 == '=')
549 return EQ;
550 break;
551 case '!':
552 if (c2 == '=')
553 return NE;
554 break;
555 case '+':
556 if (c2 == '=')
557 return PLUSEQ;
558 break;
559 case '-':
560 if (c2 == '=')
561 return MINUSEQ;
562 break;
563 case '*':
564 if (c2 == '=')
565 return MULTEQ;
566 break;
567 case '/':
568 if (c2 == '=')
569 return DIVEQ;
570 break;
571 case '|':
572 if (c2 == '=')
573 return OREQ;
574 if (c2 == '|')
575 return OROR;
576 break;
577 case '&':
578 if (c2 == '=')
579 return ANDEQ;
580 if (c2 == '&')
581 return ANDAND;
582 break;
583 case '>':
584 if (c2 == '=')
585 return GE;
586 if (c2 == '>')
587 return RSHIFT;
588 break;
589 case '<':
590 if (c2 == '=')
591 return LE;
592 if (c2 == '<')
593 return LSHIFT;
594 break;
595 default:
596 break;
597 }
598 return 0;
599 }
600
601 // If C1 is a valid operator, return the opcode. Otherwise return 0.
602
603 inline int
604 Lex::one_char_operator(char c1)
605 {
606 switch (c1)
607 {
608 case '+':
609 case '-':
610 case '*':
611 case '/':
612 case '%':
613 case '!':
614 case '&':
615 case '|':
616 case '^':
617 case '~':
618 case '<':
619 case '>':
620 case '=':
621 case '?':
622 case ',':
623 case '(':
624 case ')':
625 case '{':
626 case '}':
627 case '[':
628 case ']':
629 case ':':
630 case ';':
631 return c1;
632 default:
633 return 0;
634 }
635 }
636
637 // Skip a C style comment. *PP points to just after the "/*". Return
638 // false if the comment did not end.
639
640 bool
641 Lex::skip_c_comment(const char** pp)
642 {
643 const char* p = *pp;
644 while (p[0] != '*' || p[1] != '/')
645 {
646 if (*p == '\0')
647 {
648 *pp = p;
649 return false;
650 }
651
652 if (*p == '\n')
653 {
654 ++this->lineno_;
655 this->linestart_ = p + 1;
656 }
657 ++p;
658 }
659
660 *pp = p + 2;
661 return true;
662 }
663
664 // Skip a line # comment. Return false if there was no newline.
665
666 bool
667 Lex::skip_line_comment(const char** pp)
668 {
669 const char* p = *pp;
670 size_t skip = strcspn(p, "\n");
671 if (p[skip] == '\0')
672 {
673 *pp = p + skip;
674 return false;
675 }
676
677 p += skip + 1;
678 ++this->lineno_;
679 this->linestart_ = p;
680 *pp = p;
681
682 return true;
683 }
684
685 // Build a token CLASSIFICATION from all characters that match
686 // CAN_CONTINUE_FN. Update *PP.
687
688 inline Token
689 Lex::gather_token(Token::Classification classification,
690 const char* (Lex::*can_continue_fn)(const char*),
691 const char* start,
692 const char* match,
693 const char **pp)
694 {
695 const char* new_match = NULL;
696 while ((new_match = (this->*can_continue_fn)(match)))
697 match = new_match;
698 *pp = match;
699 return this->make_token(classification, start, match - start, start);
700 }
701
702 // Build a token from a quoted string.
703
704 Token
705 Lex::gather_quoted_string(const char** pp)
706 {
707 const char* start = *pp;
708 const char* p = start;
709 ++p;
710 size_t skip = strcspn(p, "\"\n");
711 if (p[skip] != '"')
712 return this->make_invalid_token(start);
713 *pp = p + skip + 1;
714 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
715 }
716
717 // Return the next token at *PP. Update *PP. General guideline: we
718 // require linker scripts to be simple ASCII. No unicode linker
719 // scripts. In particular we can assume that any '\0' is the end of
720 // the input.
721
722 Token
723 Lex::get_token(const char** pp)
724 {
725 const char* p = *pp;
726
727 while (true)
728 {
729 if (*p == '\0')
730 {
731 *pp = p;
732 return this->make_eof_token(p);
733 }
734
735 // Skip whitespace quickly.
736 while (*p == ' ' || *p == '\t')
737 ++p;
738
739 if (*p == '\n')
740 {
741 ++p;
742 ++this->lineno_;
743 this->linestart_ = p;
744 continue;
745 }
746
747 // Skip C style comments.
748 if (p[0] == '/' && p[1] == '*')
749 {
750 int lineno = this->lineno_;
751 int charpos = p - this->linestart_ + 1;
752
753 *pp = p + 2;
754 if (!this->skip_c_comment(pp))
755 return Token(Token::TOKEN_INVALID, lineno, charpos);
756 p = *pp;
757
758 continue;
759 }
760
761 // Skip line comments.
762 if (*p == '#')
763 {
764 *pp = p + 1;
765 if (!this->skip_line_comment(pp))
766 return this->make_eof_token(p);
767 p = *pp;
768 continue;
769 }
770
771 // Check for a name.
772 if (this->can_start_name(p[0], p[1]))
773 return this->gather_token(Token::TOKEN_STRING,
774 &Lex::can_continue_name,
775 p, p + 1, pp);
776
777 // We accept any arbitrary name in double quotes, as long as it
778 // does not cross a line boundary.
779 if (*p == '"')
780 {
781 *pp = p;
782 return this->gather_quoted_string(pp);
783 }
784
785 // Check for a number.
786
787 if (this->can_start_hex(p[0], p[1], p[2]))
788 return this->gather_token(Token::TOKEN_INTEGER,
789 &Lex::can_continue_hex,
790 p, p + 3, pp);
791
792 if (Lex::can_start_number(p[0]))
793 return this->gather_token(Token::TOKEN_INTEGER,
794 &Lex::can_continue_number,
795 p, p + 1, pp);
796
797 // Check for operators.
798
799 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
800 if (opcode != 0)
801 {
802 *pp = p + 3;
803 return this->make_token(opcode, p);
804 }
805
806 opcode = Lex::two_char_operator(p[0], p[1]);
807 if (opcode != 0)
808 {
809 *pp = p + 2;
810 return this->make_token(opcode, p);
811 }
812
813 opcode = Lex::one_char_operator(p[0]);
814 if (opcode != 0)
815 {
816 *pp = p + 1;
817 return this->make_token(opcode, p);
818 }
819
820 return this->make_token(Token::TOKEN_INVALID, p);
821 }
822 }
823
824 // Return the next token.
825
826 const Token*
827 Lex::next_token()
828 {
829 // The first token is special.
830 if (this->first_token_ != 0)
831 {
832 this->token_ = Token(this->first_token_, 0, 0);
833 this->first_token_ = 0;
834 return &this->token_;
835 }
836
837 this->token_ = this->get_token(&this->current_);
838
839 // Don't let an early null byte fool us into thinking that we've
840 // reached the end of the file.
841 if (this->token_.is_eof()
842 && (static_cast<size_t>(this->current_ - this->input_string_)
843 < this->input_length_))
844 this->token_ = this->make_invalid_token(this->current_);
845
846 return &this->token_;
847 }
848
849 // A trivial task which waits for THIS_BLOCKER to be clear and then
850 // clears NEXT_BLOCKER. THIS_BLOCKER may be NULL.
851
852 class Script_unblock : public Task
853 {
854 public:
855 Script_unblock(Task_token* this_blocker, Task_token* next_blocker)
856 : this_blocker_(this_blocker), next_blocker_(next_blocker)
857 { }
858
859 ~Script_unblock()
860 {
861 if (this->this_blocker_ != NULL)
862 delete this->this_blocker_;
863 }
864
865 Task_token*
866 is_runnable()
867 {
868 if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
869 return this->this_blocker_;
870 return NULL;
871 }
872
873 void
874 locks(Task_locker* tl)
875 { tl->add(this, this->next_blocker_); }
876
877 void
878 run(Workqueue*)
879 { }
880
881 std::string
882 get_name() const
883 { return "Script_unblock"; }
884
885 private:
886 Task_token* this_blocker_;
887 Task_token* next_blocker_;
888 };
889
890 // class Symbol_assignment.
891
892 // Add the symbol to the symbol table. This makes sure the symbol is
893 // there and defined. The actual value is stored later. We can't
894 // determine the actual value at this point, because we can't
895 // necessarily evaluate the expression until all ordinary symbols have
896 // been finalized.
897
898 // The GNU linker lets symbol assignments in the linker script
899 // silently override defined symbols in object files. We are
900 // compatible. FIXME: Should we issue a warning?
901
902 void
903 Symbol_assignment::add_to_table(Symbol_table* symtab)
904 {
905 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
906 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
907 NULL, // version
908 0, // value
909 0, // size
910 elfcpp::STT_NOTYPE,
911 elfcpp::STB_GLOBAL,
912 vis,
913 0, // nonvis
914 this->provide_,
915 true); // force_override
916 }
917
918 // Finalize a symbol value.
919
920 void
921 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
922 {
923 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
924 }
925
926 // Finalize a symbol value which can refer to the dot symbol.
927
928 void
929 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
930 const Layout* layout,
931 uint64_t dot_value,
932 Output_section* dot_section)
933 {
934 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
935 }
936
937 // Finalize a symbol value, internal version.
938
939 void
940 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
941 const Layout* layout,
942 bool is_dot_available,
943 uint64_t dot_value,
944 Output_section* dot_section)
945 {
946 // If we were only supposed to provide this symbol, the sym_ field
947 // will be NULL if the symbol was not referenced.
948 if (this->sym_ == NULL)
949 {
950 gold_assert(this->provide_);
951 return;
952 }
953
954 if (parameters->target().get_size() == 32)
955 {
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
958 dot_section);
959 #else
960 gold_unreachable();
961 #endif
962 }
963 else if (parameters->target().get_size() == 64)
964 {
965 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
966 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
967 dot_section);
968 #else
969 gold_unreachable();
970 #endif
971 }
972 else
973 gold_unreachable();
974 }
975
976 template<int size>
977 void
978 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
979 bool is_dot_available, uint64_t dot_value,
980 Output_section* dot_section)
981 {
982 Output_section* section;
983 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
984 is_dot_available,
985 dot_value, dot_section,
986 &section);
987 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
988 ssym->set_value(final_val);
989 if (section != NULL)
990 ssym->set_output_section(section);
991 }
992
993 // Set the symbol value if the expression yields an absolute value.
994
995 void
996 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
997 bool is_dot_available, uint64_t dot_value)
998 {
999 if (this->sym_ == NULL)
1000 return;
1001
1002 Output_section* val_section;
1003 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1004 is_dot_available, dot_value,
1005 NULL, &val_section);
1006 if (val_section != NULL)
1007 return;
1008
1009 if (parameters->target().get_size() == 32)
1010 {
1011 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1012 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1013 ssym->set_value(val);
1014 #else
1015 gold_unreachable();
1016 #endif
1017 }
1018 else if (parameters->target().get_size() == 64)
1019 {
1020 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1021 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1022 ssym->set_value(val);
1023 #else
1024 gold_unreachable();
1025 #endif
1026 }
1027 else
1028 gold_unreachable();
1029 }
1030
1031 // Print for debugging.
1032
1033 void
1034 Symbol_assignment::print(FILE* f) const
1035 {
1036 if (this->provide_ && this->hidden_)
1037 fprintf(f, "PROVIDE_HIDDEN(");
1038 else if (this->provide_)
1039 fprintf(f, "PROVIDE(");
1040 else if (this->hidden_)
1041 gold_unreachable();
1042
1043 fprintf(f, "%s = ", this->name_.c_str());
1044 this->val_->print(f);
1045
1046 if (this->provide_ || this->hidden_)
1047 fprintf(f, ")");
1048
1049 fprintf(f, "\n");
1050 }
1051
1052 // Class Script_assertion.
1053
1054 // Check the assertion.
1055
1056 void
1057 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1058 {
1059 if (!this->check_->eval(symtab, layout, true))
1060 gold_error("%s", this->message_.c_str());
1061 }
1062
1063 // Print for debugging.
1064
1065 void
1066 Script_assertion::print(FILE* f) const
1067 {
1068 fprintf(f, "ASSERT(");
1069 this->check_->print(f);
1070 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1071 }
1072
1073 // Class Script_options.
1074
1075 Script_options::Script_options()
1076 : entry_(), symbol_assignments_(), version_script_info_(),
1077 script_sections_()
1078 {
1079 }
1080
1081 // Add a symbol to be defined.
1082
1083 void
1084 Script_options::add_symbol_assignment(const char* name, size_t length,
1085 Expression* value, bool provide,
1086 bool hidden)
1087 {
1088 if (length != 1 || name[0] != '.')
1089 {
1090 if (this->script_sections_.in_sections_clause())
1091 this->script_sections_.add_symbol_assignment(name, length, value,
1092 provide, hidden);
1093 else
1094 {
1095 Symbol_assignment* p = new Symbol_assignment(name, length, value,
1096 provide, hidden);
1097 this->symbol_assignments_.push_back(p);
1098 }
1099 }
1100 else
1101 {
1102 if (provide || hidden)
1103 gold_error(_("invalid use of PROVIDE for dot symbol"));
1104 if (!this->script_sections_.in_sections_clause())
1105 gold_error(_("invalid assignment to dot outside of SECTIONS"));
1106 else
1107 this->script_sections_.add_dot_assignment(value);
1108 }
1109 }
1110
1111 // Add an assertion.
1112
1113 void
1114 Script_options::add_assertion(Expression* check, const char* message,
1115 size_t messagelen)
1116 {
1117 if (this->script_sections_.in_sections_clause())
1118 this->script_sections_.add_assertion(check, message, messagelen);
1119 else
1120 {
1121 Script_assertion* p = new Script_assertion(check, message, messagelen);
1122 this->assertions_.push_back(p);
1123 }
1124 }
1125
1126 // Create sections required by any linker scripts.
1127
1128 void
1129 Script_options::create_script_sections(Layout* layout)
1130 {
1131 if (this->saw_sections_clause())
1132 this->script_sections_.create_sections(layout);
1133 }
1134
1135 // Add any symbols we are defining to the symbol table.
1136
1137 void
1138 Script_options::add_symbols_to_table(Symbol_table* symtab)
1139 {
1140 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1141 p != this->symbol_assignments_.end();
1142 ++p)
1143 (*p)->add_to_table(symtab);
1144 this->script_sections_.add_symbols_to_table(symtab);
1145 }
1146
1147 // Finalize symbol values. Also check assertions.
1148
1149 void
1150 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1151 {
1152 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1153 p != this->symbol_assignments_.end();
1154 ++p)
1155 (*p)->finalize(symtab, layout);
1156
1157 for (Assertions::iterator p = this->assertions_.begin();
1158 p != this->assertions_.end();
1159 ++p)
1160 (*p)->check(symtab, layout);
1161
1162 this->script_sections_.finalize_symbols(symtab, layout);
1163 }
1164
1165 // Set section addresses. We set all the symbols which have absolute
1166 // values. Then we let the SECTIONS clause do its thing. This
1167 // returns the segment which holds the file header and segment
1168 // headers, if any.
1169
1170 Output_segment*
1171 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1172 {
1173 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1174 p != this->symbol_assignments_.end();
1175 ++p)
1176 (*p)->set_if_absolute(symtab, layout, false, 0);
1177
1178 return this->script_sections_.set_section_addresses(symtab, layout);
1179 }
1180
1181 // This class holds data passed through the parser to the lexer and to
1182 // the parser support functions. This avoids global variables. We
1183 // can't use global variables because we need not be called by a
1184 // singleton thread.
1185
1186 class Parser_closure
1187 {
1188 public:
1189 Parser_closure(const char* filename,
1190 const Position_dependent_options& posdep_options,
1191 bool in_group, bool is_in_sysroot,
1192 Command_line* command_line,
1193 Script_options* script_options,
1194 Lex* lex)
1195 : filename_(filename), posdep_options_(posdep_options),
1196 in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1197 command_line_(command_line), script_options_(script_options),
1198 version_script_info_(script_options->version_script_info()),
1199 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1200 {
1201 // We start out processing C symbols in the default lex mode.
1202 language_stack_.push_back("");
1203 lex_mode_stack_.push_back(lex->mode());
1204 }
1205
1206 // Return the file name.
1207 const char*
1208 filename() const
1209 { return this->filename_; }
1210
1211 // Return the position dependent options. The caller may modify
1212 // this.
1213 Position_dependent_options&
1214 position_dependent_options()
1215 { return this->posdep_options_; }
1216
1217 // Return whether this script is being run in a group.
1218 bool
1219 in_group() const
1220 { return this->in_group_; }
1221
1222 // Return whether this script was found using a directory in the
1223 // sysroot.
1224 bool
1225 is_in_sysroot() const
1226 { return this->is_in_sysroot_; }
1227
1228 // Returns the Command_line structure passed in at constructor time.
1229 // This value may be NULL. The caller may modify this, which modifies
1230 // the passed-in Command_line object (not a copy).
1231 Command_line*
1232 command_line()
1233 { return this->command_line_; }
1234
1235 // Return the options which may be set by a script.
1236 Script_options*
1237 script_options()
1238 { return this->script_options_; }
1239
1240 // Return the object in which version script information should be stored.
1241 Version_script_info*
1242 version_script()
1243 { return this->version_script_info_; }
1244
1245 // Return the next token, and advance.
1246 const Token*
1247 next_token()
1248 {
1249 const Token* token = this->lex_->next_token();
1250 this->lineno_ = token->lineno();
1251 this->charpos_ = token->charpos();
1252 return token;
1253 }
1254
1255 // Set a new lexer mode, pushing the current one.
1256 void
1257 push_lex_mode(Lex::Mode mode)
1258 {
1259 this->lex_mode_stack_.push_back(this->lex_->mode());
1260 this->lex_->set_mode(mode);
1261 }
1262
1263 // Pop the lexer mode.
1264 void
1265 pop_lex_mode()
1266 {
1267 gold_assert(!this->lex_mode_stack_.empty());
1268 this->lex_->set_mode(this->lex_mode_stack_.back());
1269 this->lex_mode_stack_.pop_back();
1270 }
1271
1272 // Return the current lexer mode.
1273 Lex::Mode
1274 lex_mode() const
1275 { return this->lex_mode_stack_.back(); }
1276
1277 // Return the line number of the last token.
1278 int
1279 lineno() const
1280 { return this->lineno_; }
1281
1282 // Return the character position in the line of the last token.
1283 int
1284 charpos() const
1285 { return this->charpos_; }
1286
1287 // Return the list of input files, creating it if necessary. This
1288 // is a space leak--we never free the INPUTS_ pointer.
1289 Input_arguments*
1290 inputs()
1291 {
1292 if (this->inputs_ == NULL)
1293 this->inputs_ = new Input_arguments();
1294 return this->inputs_;
1295 }
1296
1297 // Return whether we saw any input files.
1298 bool
1299 saw_inputs() const
1300 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1301
1302 // Return the current language being processed in a version script
1303 // (eg, "C++"). The empty string represents unmangled C names.
1304 const std::string&
1305 get_current_language() const
1306 { return this->language_stack_.back(); }
1307
1308 // Push a language onto the stack when entering an extern block.
1309 void push_language(const std::string& lang)
1310 { this->language_stack_.push_back(lang); }
1311
1312 // Pop a language off of the stack when exiting an extern block.
1313 void pop_language()
1314 {
1315 gold_assert(!this->language_stack_.empty());
1316 this->language_stack_.pop_back();
1317 }
1318
1319 private:
1320 // The name of the file we are reading.
1321 const char* filename_;
1322 // The position dependent options.
1323 Position_dependent_options posdep_options_;
1324 // Whether we are currently in a --start-group/--end-group.
1325 bool in_group_;
1326 // Whether the script was found in a sysrooted directory.
1327 bool is_in_sysroot_;
1328 // May be NULL if the user chooses not to pass one in.
1329 Command_line* command_line_;
1330 // Options which may be set from any linker script.
1331 Script_options* script_options_;
1332 // Information parsed from a version script.
1333 Version_script_info* version_script_info_;
1334 // The lexer.
1335 Lex* lex_;
1336 // The line number of the last token returned by next_token.
1337 int lineno_;
1338 // The column number of the last token returned by next_token.
1339 int charpos_;
1340 // A stack of lexer modes.
1341 std::vector<Lex::Mode> lex_mode_stack_;
1342 // A stack of which extern/language block we're inside. Can be C++,
1343 // java, or empty for C.
1344 std::vector<std::string> language_stack_;
1345 // New input files found to add to the link.
1346 Input_arguments* inputs_;
1347 };
1348
1349 // FILE was found as an argument on the command line. Try to read it
1350 // as a script. We've already read BYTES of data into P, but we
1351 // ignore that. Return true if the file was handled.
1352
1353 bool
1354 read_input_script(Workqueue* workqueue, const General_options& options,
1355 Symbol_table* symtab, Layout* layout,
1356 Dirsearch* dirsearch, Input_objects* input_objects,
1357 Input_group* input_group,
1358 const Input_argument* input_argument,
1359 Input_file* input_file, const unsigned char*, off_t,
1360 Task_token* this_blocker, Task_token* next_blocker)
1361 {
1362 std::string input_string;
1363 Lex::read_file(input_file, &input_string);
1364
1365 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1366
1367 Parser_closure closure(input_file->filename().c_str(),
1368 input_argument->file().options(),
1369 input_group != NULL,
1370 input_file->is_in_sysroot(),
1371 NULL,
1372 layout->script_options(),
1373 &lex);
1374
1375 if (yyparse(&closure) != 0)
1376 return false;
1377
1378 // THIS_BLOCKER must be clear before we may add anything to the
1379 // symbol table. We are responsible for unblocking NEXT_BLOCKER
1380 // when we are done. We are responsible for deleting THIS_BLOCKER
1381 // when it is unblocked.
1382
1383 if (!closure.saw_inputs())
1384 {
1385 // The script did not add any files to read. Note that we are
1386 // not permitted to call NEXT_BLOCKER->unblock() here even if
1387 // THIS_BLOCKER is NULL, as we do not hold the workqueue lock.
1388 workqueue->queue(new Script_unblock(this_blocker, next_blocker));
1389 return true;
1390 }
1391
1392 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1393 p != closure.inputs()->end();
1394 ++p)
1395 {
1396 Task_token* nb;
1397 if (p + 1 == closure.inputs()->end())
1398 nb = next_blocker;
1399 else
1400 {
1401 nb = new Task_token(true);
1402 nb->add_blocker();
1403 }
1404 workqueue->queue(new Read_symbols(options, input_objects, symtab,
1405 layout, dirsearch, &*p,
1406 input_group, this_blocker, nb));
1407 this_blocker = nb;
1408 }
1409
1410 return true;
1411 }
1412
1413 // Helper function for read_version_script() and
1414 // read_commandline_script(). Processes the given file in the mode
1415 // indicated by first_token and lex_mode.
1416
1417 static bool
1418 read_script_file(const char* filename, Command_line* cmdline,
1419 int first_token, Lex::Mode lex_mode)
1420 {
1421 // TODO: if filename is a relative filename, search for it manually
1422 // using "." + cmdline->options()->search_path() -- not dirsearch.
1423 Dirsearch dirsearch;
1424
1425 // The file locking code wants to record a Task, but we haven't
1426 // started the workqueue yet. This is only for debugging purposes,
1427 // so we invent a fake value.
1428 const Task* task = reinterpret_cast<const Task*>(-1);
1429
1430 // We don't want this file to be opened in binary mode.
1431 Position_dependent_options posdep = cmdline->position_dependent_options();
1432 if (posdep.format() == General_options::OBJECT_FORMAT_BINARY)
1433 posdep.set_format("elf");
1434 Input_file_argument input_argument(filename, false, "", false, posdep);
1435 Input_file input_file(&input_argument);
1436 if (!input_file.open(cmdline->options(), dirsearch, task))
1437 return false;
1438
1439 std::string input_string;
1440 Lex::read_file(&input_file, &input_string);
1441
1442 Lex lex(input_string.c_str(), input_string.length(), first_token);
1443 lex.set_mode(lex_mode);
1444
1445 Parser_closure closure(filename,
1446 cmdline->position_dependent_options(),
1447 false,
1448 input_file.is_in_sysroot(),
1449 cmdline,
1450 &cmdline->script_options(),
1451 &lex);
1452 if (yyparse(&closure) != 0)
1453 {
1454 input_file.file().unlock(task);
1455 return false;
1456 }
1457
1458 input_file.file().unlock(task);
1459
1460 gold_assert(!closure.saw_inputs());
1461
1462 return true;
1463 }
1464
1465 // FILENAME was found as an argument to --script (-T).
1466 // Read it as a script, and execute its contents immediately.
1467
1468 bool
1469 read_commandline_script(const char* filename, Command_line* cmdline)
1470 {
1471 return read_script_file(filename, cmdline,
1472 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1473 }
1474
1475 // FILE was found as an argument to --version-script. Read it as a
1476 // version script, and store its contents in
1477 // cmdline->script_options()->version_script_info().
1478
1479 bool
1480 read_version_script(const char* filename, Command_line* cmdline)
1481 {
1482 return read_script_file(filename, cmdline,
1483 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1484 }
1485
1486 // Implement the --defsym option on the command line. Return true if
1487 // all is well.
1488
1489 bool
1490 Script_options::define_symbol(const char* definition)
1491 {
1492 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1493 lex.set_mode(Lex::EXPRESSION);
1494
1495 // Dummy value.
1496 Position_dependent_options posdep_options;
1497
1498 Parser_closure closure("command line", posdep_options, false, false, NULL,
1499 this, &lex);
1500
1501 if (yyparse(&closure) != 0)
1502 return false;
1503
1504 gold_assert(!closure.saw_inputs());
1505
1506 return true;
1507 }
1508
1509 // Print the script to F for debugging.
1510
1511 void
1512 Script_options::print(FILE* f) const
1513 {
1514 fprintf(f, "%s: Dumping linker script\n", program_name);
1515
1516 if (!this->entry_.empty())
1517 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1518
1519 for (Symbol_assignments::const_iterator p =
1520 this->symbol_assignments_.begin();
1521 p != this->symbol_assignments_.end();
1522 ++p)
1523 (*p)->print(f);
1524
1525 for (Assertions::const_iterator p = this->assertions_.begin();
1526 p != this->assertions_.end();
1527 ++p)
1528 (*p)->print(f);
1529
1530 this->script_sections_.print(f);
1531
1532 this->version_script_info_.print(f);
1533 }
1534
1535 // Manage mapping from keywords to the codes expected by the bison
1536 // parser. We construct one global object for each lex mode with
1537 // keywords.
1538
1539 class Keyword_to_parsecode
1540 {
1541 public:
1542 // The structure which maps keywords to parsecodes.
1543 struct Keyword_parsecode
1544 {
1545 // Keyword.
1546 const char* keyword;
1547 // Corresponding parsecode.
1548 int parsecode;
1549 };
1550
1551 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1552 int keyword_count)
1553 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1554 { }
1555
1556 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1557 // keyword.
1558 int
1559 keyword_to_parsecode(const char* keyword, size_t len) const;
1560
1561 private:
1562 const Keyword_parsecode* keyword_parsecodes_;
1563 const int keyword_count_;
1564 };
1565
1566 // Mapping from keyword string to keyword parsecode. This array must
1567 // be kept in sorted order. Parsecodes are looked up using bsearch.
1568 // This array must correspond to the list of parsecodes in yyscript.y.
1569
1570 static const Keyword_to_parsecode::Keyword_parsecode
1571 script_keyword_parsecodes[] =
1572 {
1573 { "ABSOLUTE", ABSOLUTE },
1574 { "ADDR", ADDR },
1575 { "ALIGN", ALIGN_K },
1576 { "ALIGNOF", ALIGNOF },
1577 { "ASSERT", ASSERT_K },
1578 { "AS_NEEDED", AS_NEEDED },
1579 { "AT", AT },
1580 { "BIND", BIND },
1581 { "BLOCK", BLOCK },
1582 { "BYTE", BYTE },
1583 { "CONSTANT", CONSTANT },
1584 { "CONSTRUCTORS", CONSTRUCTORS },
1585 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1586 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1587 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1588 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1589 { "DEFINED", DEFINED },
1590 { "ENTRY", ENTRY },
1591 { "EXCLUDE_FILE", EXCLUDE_FILE },
1592 { "EXTERN", EXTERN },
1593 { "FILL", FILL },
1594 { "FLOAT", FLOAT },
1595 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1596 { "GROUP", GROUP },
1597 { "HLL", HLL },
1598 { "INCLUDE", INCLUDE },
1599 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1600 { "INPUT", INPUT },
1601 { "KEEP", KEEP },
1602 { "LENGTH", LENGTH },
1603 { "LOADADDR", LOADADDR },
1604 { "LONG", LONG },
1605 { "MAP", MAP },
1606 { "MAX", MAX_K },
1607 { "MEMORY", MEMORY },
1608 { "MIN", MIN_K },
1609 { "NEXT", NEXT },
1610 { "NOCROSSREFS", NOCROSSREFS },
1611 { "NOFLOAT", NOFLOAT },
1612 { "ONLY_IF_RO", ONLY_IF_RO },
1613 { "ONLY_IF_RW", ONLY_IF_RW },
1614 { "OPTION", OPTION },
1615 { "ORIGIN", ORIGIN },
1616 { "OUTPUT", OUTPUT },
1617 { "OUTPUT_ARCH", OUTPUT_ARCH },
1618 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1619 { "OVERLAY", OVERLAY },
1620 { "PHDRS", PHDRS },
1621 { "PROVIDE", PROVIDE },
1622 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1623 { "QUAD", QUAD },
1624 { "SEARCH_DIR", SEARCH_DIR },
1625 { "SECTIONS", SECTIONS },
1626 { "SEGMENT_START", SEGMENT_START },
1627 { "SHORT", SHORT },
1628 { "SIZEOF", SIZEOF },
1629 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1630 { "SORT", SORT_BY_NAME },
1631 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1632 { "SORT_BY_NAME", SORT_BY_NAME },
1633 { "SPECIAL", SPECIAL },
1634 { "SQUAD", SQUAD },
1635 { "STARTUP", STARTUP },
1636 { "SUBALIGN", SUBALIGN },
1637 { "SYSLIB", SYSLIB },
1638 { "TARGET", TARGET_K },
1639 { "TRUNCATE", TRUNCATE },
1640 { "VERSION", VERSIONK },
1641 { "global", GLOBAL },
1642 { "l", LENGTH },
1643 { "len", LENGTH },
1644 { "local", LOCAL },
1645 { "o", ORIGIN },
1646 { "org", ORIGIN },
1647 { "sizeof_headers", SIZEOF_HEADERS },
1648 };
1649
1650 static const Keyword_to_parsecode
1651 script_keywords(&script_keyword_parsecodes[0],
1652 (sizeof(script_keyword_parsecodes)
1653 / sizeof(script_keyword_parsecodes[0])));
1654
1655 static const Keyword_to_parsecode::Keyword_parsecode
1656 version_script_keyword_parsecodes[] =
1657 {
1658 { "extern", EXTERN },
1659 { "global", GLOBAL },
1660 { "local", LOCAL },
1661 };
1662
1663 static const Keyword_to_parsecode
1664 version_script_keywords(&version_script_keyword_parsecodes[0],
1665 (sizeof(version_script_keyword_parsecodes)
1666 / sizeof(version_script_keyword_parsecodes[0])));
1667
1668 // Comparison function passed to bsearch.
1669
1670 extern "C"
1671 {
1672
1673 struct Ktt_key
1674 {
1675 const char* str;
1676 size_t len;
1677 };
1678
1679 static int
1680 ktt_compare(const void* keyv, const void* kttv)
1681 {
1682 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1683 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1684 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1685 int i = strncmp(key->str, ktt->keyword, key->len);
1686 if (i != 0)
1687 return i;
1688 if (ktt->keyword[key->len] != '\0')
1689 return -1;
1690 return 0;
1691 }
1692
1693 } // End extern "C".
1694
1695 int
1696 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1697 size_t len) const
1698 {
1699 Ktt_key key;
1700 key.str = keyword;
1701 key.len = len;
1702 void* kttv = bsearch(&key,
1703 this->keyword_parsecodes_,
1704 this->keyword_count_,
1705 sizeof(this->keyword_parsecodes_[0]),
1706 ktt_compare);
1707 if (kttv == NULL)
1708 return 0;
1709 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1710 return ktt->parsecode;
1711 }
1712
1713 // The following structs are used within the VersionInfo class as well
1714 // as in the bison helper functions. They store the information
1715 // parsed from the version script.
1716
1717 // A single version expression.
1718 // For example, pattern="std::map*" and language="C++".
1719 // pattern and language should be from the stringpool
1720 struct Version_expression {
1721 Version_expression(const std::string& pattern,
1722 const std::string& language,
1723 bool exact_match)
1724 : pattern(pattern), language(language), exact_match(exact_match) {}
1725
1726 std::string pattern;
1727 std::string language;
1728 // If false, we use glob() to match pattern. If true, we use strcmp().
1729 bool exact_match;
1730 };
1731
1732
1733 // A list of expressions.
1734 struct Version_expression_list {
1735 std::vector<struct Version_expression> expressions;
1736 };
1737
1738
1739 // A list of which versions upon which another version depends.
1740 // Strings should be from the Stringpool.
1741 struct Version_dependency_list {
1742 std::vector<std::string> dependencies;
1743 };
1744
1745
1746 // The total definition of a version. It includes the tag for the
1747 // version, its global and local expressions, and any dependencies.
1748 struct Version_tree {
1749 Version_tree()
1750 : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1751
1752 std::string tag;
1753 const struct Version_expression_list* global;
1754 const struct Version_expression_list* local;
1755 const struct Version_dependency_list* dependencies;
1756 };
1757
1758 Version_script_info::~Version_script_info()
1759 {
1760 this->clear();
1761 }
1762
1763 void
1764 Version_script_info::clear()
1765 {
1766 for (size_t k = 0; k < dependency_lists_.size(); ++k)
1767 delete dependency_lists_[k];
1768 this->dependency_lists_.clear();
1769 for (size_t k = 0; k < version_trees_.size(); ++k)
1770 delete version_trees_[k];
1771 this->version_trees_.clear();
1772 for (size_t k = 0; k < expression_lists_.size(); ++k)
1773 delete expression_lists_[k];
1774 this->expression_lists_.clear();
1775 }
1776
1777 std::vector<std::string>
1778 Version_script_info::get_versions() const
1779 {
1780 std::vector<std::string> ret;
1781 for (size_t j = 0; j < version_trees_.size(); ++j)
1782 ret.push_back(version_trees_[j]->tag);
1783 return ret;
1784 }
1785
1786 std::vector<std::string>
1787 Version_script_info::get_dependencies(const char* version) const
1788 {
1789 std::vector<std::string> ret;
1790 for (size_t j = 0; j < version_trees_.size(); ++j)
1791 if (version_trees_[j]->tag == version)
1792 {
1793 const struct Version_dependency_list* deps =
1794 version_trees_[j]->dependencies;
1795 if (deps != NULL)
1796 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1797 ret.push_back(deps->dependencies[k]);
1798 return ret;
1799 }
1800 return ret;
1801 }
1802
1803 const std::string&
1804 Version_script_info::get_symbol_version_helper(const char* symbol_name,
1805 bool check_global) const
1806 {
1807 for (size_t j = 0; j < version_trees_.size(); ++j)
1808 {
1809 // Is it a global symbol for this version?
1810 const Version_expression_list* explist =
1811 check_global ? version_trees_[j]->global : version_trees_[j]->local;
1812 if (explist != NULL)
1813 for (size_t k = 0; k < explist->expressions.size(); ++k)
1814 {
1815 const char* name_to_match = symbol_name;
1816 const struct Version_expression& exp = explist->expressions[k];
1817 char* demangled_name = NULL;
1818 if (exp.language == "C++")
1819 {
1820 demangled_name = cplus_demangle(symbol_name,
1821 DMGL_ANSI | DMGL_PARAMS);
1822 // This isn't a C++ symbol.
1823 if (demangled_name == NULL)
1824 continue;
1825 name_to_match = demangled_name;
1826 }
1827 else if (exp.language == "Java")
1828 {
1829 demangled_name = cplus_demangle(symbol_name,
1830 (DMGL_ANSI | DMGL_PARAMS
1831 | DMGL_JAVA));
1832 // This isn't a Java symbol.
1833 if (demangled_name == NULL)
1834 continue;
1835 name_to_match = demangled_name;
1836 }
1837 bool matched;
1838 if (exp.exact_match)
1839 matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1840 else
1841 matched = fnmatch(exp.pattern.c_str(), name_to_match,
1842 FNM_NOESCAPE) == 0;
1843 if (demangled_name != NULL)
1844 free(demangled_name);
1845 if (matched)
1846 return version_trees_[j]->tag;
1847 }
1848 }
1849 static const std::string empty = "";
1850 return empty;
1851 }
1852
1853 struct Version_dependency_list*
1854 Version_script_info::allocate_dependency_list()
1855 {
1856 dependency_lists_.push_back(new Version_dependency_list);
1857 return dependency_lists_.back();
1858 }
1859
1860 struct Version_expression_list*
1861 Version_script_info::allocate_expression_list()
1862 {
1863 expression_lists_.push_back(new Version_expression_list);
1864 return expression_lists_.back();
1865 }
1866
1867 struct Version_tree*
1868 Version_script_info::allocate_version_tree()
1869 {
1870 version_trees_.push_back(new Version_tree);
1871 return version_trees_.back();
1872 }
1873
1874 // Print for debugging.
1875
1876 void
1877 Version_script_info::print(FILE* f) const
1878 {
1879 if (this->empty())
1880 return;
1881
1882 fprintf(f, "VERSION {");
1883
1884 for (size_t i = 0; i < this->version_trees_.size(); ++i)
1885 {
1886 const Version_tree* vt = this->version_trees_[i];
1887
1888 if (vt->tag.empty())
1889 fprintf(f, " {\n");
1890 else
1891 fprintf(f, " %s {\n", vt->tag.c_str());
1892
1893 if (vt->global != NULL)
1894 {
1895 fprintf(f, " global :\n");
1896 this->print_expression_list(f, vt->global);
1897 }
1898
1899 if (vt->local != NULL)
1900 {
1901 fprintf(f, " local :\n");
1902 this->print_expression_list(f, vt->local);
1903 }
1904
1905 fprintf(f, " }");
1906 if (vt->dependencies != NULL)
1907 {
1908 const Version_dependency_list* deps = vt->dependencies;
1909 for (size_t j = 0; j < deps->dependencies.size(); ++j)
1910 {
1911 if (j < deps->dependencies.size() - 1)
1912 fprintf(f, "\n");
1913 fprintf(f, " %s", deps->dependencies[j].c_str());
1914 }
1915 }
1916 fprintf(f, ";\n");
1917 }
1918
1919 fprintf(f, "}\n");
1920 }
1921
1922 void
1923 Version_script_info::print_expression_list(
1924 FILE* f,
1925 const Version_expression_list* vel) const
1926 {
1927 std::string current_language;
1928 for (size_t i = 0; i < vel->expressions.size(); ++i)
1929 {
1930 const Version_expression& ve(vel->expressions[i]);
1931
1932 if (ve.language != current_language)
1933 {
1934 if (!current_language.empty())
1935 fprintf(f, " }\n");
1936 fprintf(f, " extern \"%s\" {\n", ve.language.c_str());
1937 current_language = ve.language;
1938 }
1939
1940 fprintf(f, " ");
1941 if (!current_language.empty())
1942 fprintf(f, " ");
1943
1944 if (ve.exact_match)
1945 fprintf(f, "\"");
1946 fprintf(f, "%s", ve.pattern.c_str());
1947 if (ve.exact_match)
1948 fprintf(f, "\"");
1949
1950 fprintf(f, "\n");
1951 }
1952
1953 if (!current_language.empty())
1954 fprintf(f, " }\n");
1955 }
1956
1957 } // End namespace gold.
1958
1959 // The remaining functions are extern "C", so it's clearer to not put
1960 // them in namespace gold.
1961
1962 using namespace gold;
1963
1964 // This function is called by the bison parser to return the next
1965 // token.
1966
1967 extern "C" int
1968 yylex(YYSTYPE* lvalp, void* closurev)
1969 {
1970 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1971 const Token* token = closure->next_token();
1972 switch (token->classification())
1973 {
1974 default:
1975 gold_unreachable();
1976
1977 case Token::TOKEN_INVALID:
1978 yyerror(closurev, "invalid character");
1979 return 0;
1980
1981 case Token::TOKEN_EOF:
1982 return 0;
1983
1984 case Token::TOKEN_STRING:
1985 {
1986 // This is either a keyword or a STRING.
1987 size_t len;
1988 const char* str = token->string_value(&len);
1989 int parsecode = 0;
1990 switch (closure->lex_mode())
1991 {
1992 case Lex::LINKER_SCRIPT:
1993 parsecode = script_keywords.keyword_to_parsecode(str, len);
1994 break;
1995 case Lex::VERSION_SCRIPT:
1996 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
1997 break;
1998 default:
1999 break;
2000 }
2001 if (parsecode != 0)
2002 return parsecode;
2003 lvalp->string.value = str;
2004 lvalp->string.length = len;
2005 return STRING;
2006 }
2007
2008 case Token::TOKEN_QUOTED_STRING:
2009 lvalp->string.value = token->string_value(&lvalp->string.length);
2010 return QUOTED_STRING;
2011
2012 case Token::TOKEN_OPERATOR:
2013 return token->operator_value();
2014
2015 case Token::TOKEN_INTEGER:
2016 lvalp->integer = token->integer_value();
2017 return INTEGER;
2018 }
2019 }
2020
2021 // This function is called by the bison parser to report an error.
2022
2023 extern "C" void
2024 yyerror(void* closurev, const char* message)
2025 {
2026 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2027 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2028 closure->charpos(), message);
2029 }
2030
2031 // Called by the bison parser to add a file to the link.
2032
2033 extern "C" void
2034 script_add_file(void* closurev, const char* name, size_t length)
2035 {
2036 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2037
2038 // If this is an absolute path, and we found the script in the
2039 // sysroot, then we want to prepend the sysroot to the file name.
2040 // For example, this is how we handle a cross link to the x86_64
2041 // libc.so, which refers to /lib/libc.so.6.
2042 std::string name_string(name, length);
2043 const char* extra_search_path = ".";
2044 std::string script_directory;
2045 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2046 {
2047 if (closure->is_in_sysroot())
2048 {
2049 const std::string& sysroot(parameters->options().sysroot());
2050 gold_assert(!sysroot.empty());
2051 name_string = sysroot + name_string;
2052 }
2053 }
2054 else
2055 {
2056 // In addition to checking the normal library search path, we
2057 // also want to check in the script-directory.
2058 const char *slash = strrchr(closure->filename(), '/');
2059 if (slash != NULL)
2060 {
2061 script_directory.assign(closure->filename(),
2062 slash - closure->filename() + 1);
2063 extra_search_path = script_directory.c_str();
2064 }
2065 }
2066
2067 Input_file_argument file(name_string.c_str(), false, extra_search_path,
2068 false, closure->position_dependent_options());
2069 closure->inputs()->add_file(file);
2070 }
2071
2072 // Called by the bison parser to start a group. If we are already in
2073 // a group, that means that this script was invoked within a
2074 // --start-group --end-group sequence on the command line, or that
2075 // this script was found in a GROUP of another script. In that case,
2076 // we simply continue the existing group, rather than starting a new
2077 // one. It is possible to construct a case in which this will do
2078 // something other than what would happen if we did a recursive group,
2079 // but it's hard to imagine why the different behaviour would be
2080 // useful for a real program. Avoiding recursive groups is simpler
2081 // and more efficient.
2082
2083 extern "C" void
2084 script_start_group(void* closurev)
2085 {
2086 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2087 if (!closure->in_group())
2088 closure->inputs()->start_group();
2089 }
2090
2091 // Called by the bison parser at the end of a group.
2092
2093 extern "C" void
2094 script_end_group(void* closurev)
2095 {
2096 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2097 if (!closure->in_group())
2098 closure->inputs()->end_group();
2099 }
2100
2101 // Called by the bison parser to start an AS_NEEDED list.
2102
2103 extern "C" void
2104 script_start_as_needed(void* closurev)
2105 {
2106 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2107 closure->position_dependent_options().set_as_needed(true);
2108 }
2109
2110 // Called by the bison parser at the end of an AS_NEEDED list.
2111
2112 extern "C" void
2113 script_end_as_needed(void* closurev)
2114 {
2115 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2116 closure->position_dependent_options().set_as_needed(false);
2117 }
2118
2119 // Called by the bison parser to set the entry symbol.
2120
2121 extern "C" void
2122 script_set_entry(void* closurev, const char* entry, size_t length)
2123 {
2124 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2125 // TODO(csilvers): FIXME -- call set_entry directly.
2126 std::string arg("--entry=");
2127 arg.append(entry, length);
2128 script_parse_option(closurev, arg.c_str(), arg.size());
2129 }
2130
2131 // Called by the bison parser to define a symbol.
2132
2133 extern "C" void
2134 script_set_symbol(void* closurev, const char* name, size_t length,
2135 Expression* value, int providei, int hiddeni)
2136 {
2137 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2138 const bool provide = providei != 0;
2139 const bool hidden = hiddeni != 0;
2140 closure->script_options()->add_symbol_assignment(name, length, value,
2141 provide, hidden);
2142 }
2143
2144 // Called by the bison parser to add an assertion.
2145
2146 extern "C" void
2147 script_add_assertion(void* closurev, Expression* check, const char* message,
2148 size_t messagelen)
2149 {
2150 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2151 closure->script_options()->add_assertion(check, message, messagelen);
2152 }
2153
2154 // Called by the bison parser to parse an OPTION.
2155
2156 extern "C" void
2157 script_parse_option(void* closurev, const char* option, size_t length)
2158 {
2159 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2160 // We treat the option as a single command-line option, even if
2161 // it has internal whitespace.
2162 if (closure->command_line() == NULL)
2163 {
2164 // There are some options that we could handle here--e.g.,
2165 // -lLIBRARY. Should we bother?
2166 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2167 " for scripts specified via -T/--script"),
2168 closure->filename(), closure->lineno(), closure->charpos());
2169 }
2170 else
2171 {
2172 bool past_a_double_dash_option = false;
2173 char* mutable_option = strndup(option, length);
2174 gold_assert(mutable_option != NULL);
2175 closure->command_line()->process_one_option(1, &mutable_option, 0,
2176 &past_a_double_dash_option);
2177 // The General_options class will quite possibly store a pointer
2178 // into mutable_option, so we can't free it. In cases the class
2179 // does not store such a pointer, this is a memory leak. Alas. :(
2180 }
2181 }
2182
2183 // Called by the bison parser to handle SEARCH_DIR. This is handled
2184 // exactly like a -L option.
2185
2186 extern "C" void
2187 script_add_search_dir(void* closurev, const char* option, size_t length)
2188 {
2189 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2190 if (closure->command_line() == NULL)
2191 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2192 " for scripts specified via -T/--script"),
2193 closure->filename(), closure->lineno(), closure->charpos());
2194 else
2195 {
2196 std::string s = "-L" + std::string(option, length);
2197 script_parse_option(closurev, s.c_str(), s.size());
2198 }
2199 }
2200
2201 /* Called by the bison parser to push the lexer into expression
2202 mode. */
2203
2204 extern "C" void
2205 script_push_lex_into_expression_mode(void* closurev)
2206 {
2207 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2208 closure->push_lex_mode(Lex::EXPRESSION);
2209 }
2210
2211 /* Called by the bison parser to push the lexer into version
2212 mode. */
2213
2214 extern "C" void
2215 script_push_lex_into_version_mode(void* closurev)
2216 {
2217 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2218 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2219 }
2220
2221 /* Called by the bison parser to pop the lexer mode. */
2222
2223 extern "C" void
2224 script_pop_lex_mode(void* closurev)
2225 {
2226 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2227 closure->pop_lex_mode();
2228 }
2229
2230 // Register an entire version node. For example:
2231 //
2232 // GLIBC_2.1 {
2233 // global: foo;
2234 // } GLIBC_2.0;
2235 //
2236 // - tag is "GLIBC_2.1"
2237 // - tree contains the information "global: foo"
2238 // - deps contains "GLIBC_2.0"
2239
2240 extern "C" void
2241 script_register_vers_node(void*,
2242 const char* tag,
2243 int taglen,
2244 struct Version_tree *tree,
2245 struct Version_dependency_list *deps)
2246 {
2247 gold_assert(tree != NULL);
2248 gold_assert(tag != NULL);
2249 tree->dependencies = deps;
2250 tree->tag = std::string(tag, taglen);
2251 }
2252
2253 // Add a dependencies to the list of existing dependencies, if any,
2254 // and return the expanded list.
2255
2256 extern "C" struct Version_dependency_list *
2257 script_add_vers_depend(void* closurev,
2258 struct Version_dependency_list *all_deps,
2259 const char *depend_to_add, int deplen)
2260 {
2261 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2262 if (all_deps == NULL)
2263 all_deps = closure->version_script()->allocate_dependency_list();
2264 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2265 return all_deps;
2266 }
2267
2268 // Add a pattern expression to an existing list of expressions, if any.
2269 // TODO: In the old linker, the last argument used to be a bool, but I
2270 // don't know what it meant.
2271
2272 extern "C" struct Version_expression_list *
2273 script_new_vers_pattern(void* closurev,
2274 struct Version_expression_list *expressions,
2275 const char *pattern, int patlen, int exact_match)
2276 {
2277 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2278 if (expressions == NULL)
2279 expressions = closure->version_script()->allocate_expression_list();
2280 expressions->expressions.push_back(
2281 Version_expression(std::string(pattern, patlen),
2282 closure->get_current_language(),
2283 static_cast<bool>(exact_match)));
2284 return expressions;
2285 }
2286
2287 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2288
2289 extern "C" struct Version_expression_list*
2290 script_merge_expressions(struct Version_expression_list *a,
2291 struct Version_expression_list *b)
2292 {
2293 a->expressions.insert(a->expressions.end(),
2294 b->expressions.begin(), b->expressions.end());
2295 // We could delete b and remove it from expressions_lists_, but
2296 // that's a lot of work. This works just as well.
2297 b->expressions.clear();
2298 return a;
2299 }
2300
2301 // Combine the global and local expressions into a a Version_tree.
2302
2303 extern "C" struct Version_tree *
2304 script_new_vers_node(void* closurev,
2305 struct Version_expression_list *global,
2306 struct Version_expression_list *local)
2307 {
2308 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2309 Version_tree* tree = closure->version_script()->allocate_version_tree();
2310 tree->global = global;
2311 tree->local = local;
2312 return tree;
2313 }
2314
2315 // Handle a transition in language, such as at the
2316 // start or end of 'extern "C++"'
2317
2318 extern "C" void
2319 version_script_push_lang(void* closurev, const char* lang, int langlen)
2320 {
2321 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2322 closure->push_language(std::string(lang, langlen));
2323 }
2324
2325 extern "C" void
2326 version_script_pop_lang(void* closurev)
2327 {
2328 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2329 closure->pop_language();
2330 }
2331
2332 // Called by the bison parser to start a SECTIONS clause.
2333
2334 extern "C" void
2335 script_start_sections(void* closurev)
2336 {
2337 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2338 closure->script_options()->script_sections()->start_sections();
2339 }
2340
2341 // Called by the bison parser to finish a SECTIONS clause.
2342
2343 extern "C" void
2344 script_finish_sections(void* closurev)
2345 {
2346 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2347 closure->script_options()->script_sections()->finish_sections();
2348 }
2349
2350 // Start processing entries for an output section.
2351
2352 extern "C" void
2353 script_start_output_section(void* closurev, const char* name, size_t namelen,
2354 const struct Parser_output_section_header* header)
2355 {
2356 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2357 closure->script_options()->script_sections()->start_output_section(name,
2358 namelen,
2359 header);
2360 }
2361
2362 // Finish processing entries for an output section.
2363
2364 extern "C" void
2365 script_finish_output_section(void* closurev,
2366 const struct Parser_output_section_trailer* trail)
2367 {
2368 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2369 closure->script_options()->script_sections()->finish_output_section(trail);
2370 }
2371
2372 // Add a data item (e.g., "WORD (0)") to the current output section.
2373
2374 extern "C" void
2375 script_add_data(void* closurev, int data_token, Expression* val)
2376 {
2377 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2378 int size;
2379 bool is_signed = true;
2380 switch (data_token)
2381 {
2382 case QUAD:
2383 size = 8;
2384 is_signed = false;
2385 break;
2386 case SQUAD:
2387 size = 8;
2388 break;
2389 case LONG:
2390 size = 4;
2391 break;
2392 case SHORT:
2393 size = 2;
2394 break;
2395 case BYTE:
2396 size = 1;
2397 break;
2398 default:
2399 gold_unreachable();
2400 }
2401 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2402 }
2403
2404 // Add a clause setting the fill value to the current output section.
2405
2406 extern "C" void
2407 script_add_fill(void* closurev, Expression* val)
2408 {
2409 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2410 closure->script_options()->script_sections()->add_fill(val);
2411 }
2412
2413 // Add a new input section specification to the current output
2414 // section.
2415
2416 extern "C" void
2417 script_add_input_section(void* closurev,
2418 const struct Input_section_spec* spec,
2419 int keepi)
2420 {
2421 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2422 bool keep = keepi != 0;
2423 closure->script_options()->script_sections()->add_input_section(spec, keep);
2424 }
2425
2426 // Create a new list of string/sort pairs.
2427
2428 extern "C" String_sort_list_ptr
2429 script_new_string_sort_list(const struct Wildcard_section* string_sort)
2430 {
2431 return new String_sort_list(1, *string_sort);
2432 }
2433
2434 // Add an entry to a list of string/sort pairs. The way the parser
2435 // works permits us to simply modify the first parameter, rather than
2436 // copy the vector.
2437
2438 extern "C" String_sort_list_ptr
2439 script_string_sort_list_add(String_sort_list_ptr pv,
2440 const struct Wildcard_section* string_sort)
2441 {
2442 if (pv == NULL)
2443 return script_new_string_sort_list(string_sort);
2444 else
2445 {
2446 pv->push_back(*string_sort);
2447 return pv;
2448 }
2449 }
2450
2451 // Create a new list of strings.
2452
2453 extern "C" String_list_ptr
2454 script_new_string_list(const char* str, size_t len)
2455 {
2456 return new String_list(1, std::string(str, len));
2457 }
2458
2459 // Add an element to a list of strings. The way the parser works
2460 // permits us to simply modify the first parameter, rather than copy
2461 // the vector.
2462
2463 extern "C" String_list_ptr
2464 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2465 {
2466 if (pv == NULL)
2467 return script_new_string_list(str, len);
2468 else
2469 {
2470 pv->push_back(std::string(str, len));
2471 return pv;
2472 }
2473 }
2474
2475 // Concatenate two string lists. Either or both may be NULL. The way
2476 // the parser works permits us to modify the parameters, rather than
2477 // copy the vector.
2478
2479 extern "C" String_list_ptr
2480 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2481 {
2482 if (pv1 == NULL)
2483 return pv2;
2484 if (pv2 == NULL)
2485 return pv1;
2486 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2487 return pv1;
2488 }
2489
2490 // Add a new program header.
2491
2492 extern "C" void
2493 script_add_phdr(void* closurev, const char* name, size_t namelen,
2494 unsigned int type, const Phdr_info* info)
2495 {
2496 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2497 bool includes_filehdr = info->includes_filehdr != 0;
2498 bool includes_phdrs = info->includes_phdrs != 0;
2499 bool is_flags_valid = info->is_flags_valid != 0;
2500 Script_sections* ss = closure->script_options()->script_sections();
2501 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
2502 is_flags_valid, info->flags, info->load_address);
2503 }
2504
2505 // Convert a program header string to a type.
2506
2507 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
2508
2509 static struct
2510 {
2511 const char* name;
2512 size_t namelen;
2513 unsigned int val;
2514 } phdr_type_names[] =
2515 {
2516 PHDR_TYPE(PT_NULL),
2517 PHDR_TYPE(PT_LOAD),
2518 PHDR_TYPE(PT_DYNAMIC),
2519 PHDR_TYPE(PT_INTERP),
2520 PHDR_TYPE(PT_NOTE),
2521 PHDR_TYPE(PT_SHLIB),
2522 PHDR_TYPE(PT_PHDR),
2523 PHDR_TYPE(PT_TLS),
2524 PHDR_TYPE(PT_GNU_EH_FRAME),
2525 PHDR_TYPE(PT_GNU_STACK),
2526 PHDR_TYPE(PT_GNU_RELRO)
2527 };
2528
2529 extern "C" unsigned int
2530 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
2531 {
2532 for (unsigned int i = 0;
2533 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
2534 ++i)
2535 if (namelen == phdr_type_names[i].namelen
2536 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
2537 return phdr_type_names[i].val;
2538 yyerror(closurev, _("unknown PHDR type (try integer)"));
2539 return elfcpp::PT_NULL;
2540 }