]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/target-reloc.h
PR 10843
[thirdparty/binutils-gdb.git] / gold / target-reloc.h
1 // target-reloc.h -- target specific relocation support -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_TARGET_RELOC_H
24 #define GOLD_TARGET_RELOC_H
25
26 #include "elfcpp.h"
27 #include "symtab.h"
28 #include "object.h"
29 #include "reloc.h"
30 #include "reloc-types.h"
31
32 namespace gold
33 {
34
35 // This function implements the generic part of reloc scanning. The
36 // template parameter Scan must be a class type which provides two
37 // functions: local() and global(). Those functions implement the
38 // machine specific part of scanning. We do it this way to
39 // avoidmaking a function call for each relocation, and to avoid
40 // repeating the generic code for each target.
41
42 template<int size, bool big_endian, typename Target_type, int sh_type,
43 typename Scan>
44 inline void
45 scan_relocs(
46 Symbol_table* symtab,
47 Layout* layout,
48 Target_type* target,
49 Sized_relobj<size, big_endian>* object,
50 unsigned int data_shndx,
51 const unsigned char* prelocs,
52 size_t reloc_count,
53 Output_section* output_section,
54 bool needs_special_offset_handling,
55 size_t local_count,
56 const unsigned char* plocal_syms)
57 {
58 typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
59 const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
60 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
61 Scan scan;
62
63 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
64 {
65 Reltype reloc(prelocs);
66
67 if (needs_special_offset_handling
68 && !output_section->is_input_address_mapped(object, data_shndx,
69 reloc.get_r_offset()))
70 continue;
71
72 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
73 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
74 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
75
76 if (r_sym < local_count)
77 {
78 gold_assert(plocal_syms != NULL);
79 typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
80 + r_sym * sym_size);
81 unsigned int shndx = lsym.get_st_shndx();
82 bool is_ordinary;
83 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
84 if (is_ordinary
85 && shndx != elfcpp::SHN_UNDEF
86 && !object->is_section_included(shndx))
87 {
88 // RELOC is a relocation against a local symbol in a
89 // section we are discarding. We can ignore this
90 // relocation. It will eventually become a reloc
91 // against the value zero.
92 //
93 // FIXME: We should issue a warning if this is an
94 // allocated section; is this the best place to do it?
95 //
96 // FIXME: The old GNU linker would in some cases look
97 // for the linkonce section which caused this section to
98 // be discarded, and, if the other section was the same
99 // size, change the reloc to refer to the other section.
100 // That seems risky and weird to me, and I don't know of
101 // any case where it is actually required.
102
103 continue;
104 }
105
106 scan.local(symtab, layout, target, object, data_shndx,
107 output_section, reloc, r_type, lsym);
108 }
109 else
110 {
111 Symbol* gsym = object->global_symbol(r_sym);
112 gold_assert(gsym != NULL);
113 if (gsym->is_forwarder())
114 gsym = symtab->resolve_forwards(gsym);
115
116 scan.global(symtab, layout, target, object, data_shndx,
117 output_section, reloc, r_type, gsym);
118 }
119 }
120 }
121
122 // Behavior for relocations to discarded comdat sections.
123
124 enum Comdat_behavior
125 {
126 CB_UNDETERMINED, // Not yet determined -- need to look at section name.
127 CB_PRETEND, // Attempt to map to the corresponding kept section.
128 CB_IGNORE, // Ignore the relocation.
129 CB_WARNING // Print a warning.
130 };
131
132 // Decide what the linker should do for relocations that refer to discarded
133 // comdat sections. This decision is based on the name of the section being
134 // relocated.
135
136 inline Comdat_behavior
137 get_comdat_behavior(const char* name)
138 {
139 if (Layout::is_debug_info_section(name))
140 return CB_PRETEND;
141 if (strcmp(name, ".eh_frame") == 0
142 || strcmp(name, ".gcc_except_table") == 0)
143 return CB_IGNORE;
144 return CB_WARNING;
145 }
146
147 // This function implements the generic part of relocation processing.
148 // The template parameter Relocate must be a class type which provides
149 // a single function, relocate(), which implements the machine
150 // specific part of a relocation.
151
152 // SIZE is the ELF size: 32 or 64. BIG_ENDIAN is the endianness of
153 // the data. SH_TYPE is the section type: SHT_REL or SHT_RELA.
154 // RELOCATE implements operator() to do a relocation.
155
156 // PRELOCS points to the relocation data. RELOC_COUNT is the number
157 // of relocs. OUTPUT_SECTION is the output section.
158 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
159 // mapped to output offsets.
160
161 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
162 // VIEW_SIZE is the size. These refer to the input section, unless
163 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
164 // the output section.
165
166 // RELOC_SYMBOL_CHANGES is used for -fsplit-stack support. If it is
167 // not NULL, it is a vector indexed by relocation index. If that
168 // entry is not NULL, it points to a global symbol which used as the
169 // symbol for the relocation, ignoring the symbol index in the
170 // relocation.
171
172 template<int size, bool big_endian, typename Target_type, int sh_type,
173 typename Relocate>
174 inline void
175 relocate_section(
176 const Relocate_info<size, big_endian>* relinfo,
177 Target_type* target,
178 const unsigned char* prelocs,
179 size_t reloc_count,
180 Output_section* output_section,
181 bool needs_special_offset_handling,
182 unsigned char* view,
183 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
184 section_size_type view_size,
185 const Reloc_symbol_changes* reloc_symbol_changes)
186 {
187 typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
188 const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
189 Relocate relocate;
190
191 Sized_relobj<size, big_endian>* object = relinfo->object;
192 unsigned int local_count = object->local_symbol_count();
193
194 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
195
196 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
197 {
198 Reltype reloc(prelocs);
199
200 section_offset_type offset =
201 convert_to_section_size_type(reloc.get_r_offset());
202
203 if (needs_special_offset_handling)
204 {
205 offset = output_section->output_offset(relinfo->object,
206 relinfo->data_shndx,
207 offset);
208 if (offset == -1)
209 continue;
210 }
211
212 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
213 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
214 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
215
216 const Sized_symbol<size>* sym;
217
218 Symbol_value<size> symval;
219 const Symbol_value<size> *psymval;
220 if (r_sym < local_count
221 && (reloc_symbol_changes == NULL
222 || (*reloc_symbol_changes)[i] == NULL))
223 {
224 sym = NULL;
225 psymval = object->local_symbol(r_sym);
226
227 // If the local symbol belongs to a section we are discarding,
228 // and that section is a debug section, try to find the
229 // corresponding kept section and map this symbol to its
230 // counterpart in the kept section. The symbol must not
231 // correspond to a section we are folding.
232 bool is_ordinary;
233 unsigned int shndx = psymval->input_shndx(&is_ordinary);
234 if (is_ordinary
235 && shndx != elfcpp::SHN_UNDEF
236 && !object->is_section_included(shndx)
237 && !(relinfo->symtab->is_section_folded(object, shndx)))
238 {
239 if (comdat_behavior == CB_UNDETERMINED)
240 {
241 std::string name = object->section_name(relinfo->data_shndx);
242 comdat_behavior = get_comdat_behavior(name.c_str());
243 }
244 if (comdat_behavior == CB_PRETEND)
245 {
246 bool found;
247 typename elfcpp::Elf_types<size>::Elf_Addr value =
248 object->map_to_kept_section(shndx, &found);
249 if (found)
250 symval.set_output_value(value + psymval->input_value());
251 else
252 symval.set_output_value(0);
253 }
254 else
255 {
256 if (comdat_behavior == CB_WARNING)
257 gold_warning_at_location(relinfo, i, offset,
258 _("relocation refers to discarded "
259 "comdat section"));
260 symval.set_output_value(0);
261 }
262 symval.set_no_output_symtab_entry();
263 psymval = &symval;
264 }
265 }
266 else
267 {
268 const Symbol* gsym;
269 if (reloc_symbol_changes != NULL
270 && (*reloc_symbol_changes)[i] != NULL)
271 gsym = (*reloc_symbol_changes)[i];
272 else
273 {
274 gsym = object->global_symbol(r_sym);
275 gold_assert(gsym != NULL);
276 if (gsym->is_forwarder())
277 gsym = relinfo->symtab->resolve_forwards(gsym);
278 }
279
280 sym = static_cast<const Sized_symbol<size>*>(gsym);
281 if (sym->has_symtab_index())
282 symval.set_output_symtab_index(sym->symtab_index());
283 else
284 symval.set_no_output_symtab_entry();
285 symval.set_output_value(sym->value());
286 psymval = &symval;
287 }
288
289 if (!relocate.relocate(relinfo, target, output_section, i, reloc,
290 r_type, sym, psymval, view + offset,
291 view_address + offset, view_size))
292 continue;
293
294 if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
295 {
296 gold_error_at_location(relinfo, i, offset,
297 _("reloc has bad offset %zu"),
298 static_cast<size_t>(offset));
299 continue;
300 }
301
302 if (sym != NULL
303 && sym->is_undefined()
304 && sym->binding() != elfcpp::STB_WEAK
305 && !target->is_defined_by_abi(sym)
306 && (!parameters->options().shared() // -shared
307 || parameters->options().defs())) // -z defs
308 gold_undefined_symbol_at_location(sym, relinfo, i, offset);
309
310 if (sym != NULL && sym->has_warning())
311 relinfo->symtab->issue_warning(sym, relinfo, i, offset);
312 }
313 }
314
315 // This class may be used as a typical class for the
316 // Scan_relocatable_reloc parameter to scan_relocatable_relocs. The
317 // template parameter Classify_reloc must be a class type which
318 // provides a function get_size_for_reloc which returns the number of
319 // bytes to which a reloc applies. This class is intended to capture
320 // the most typical target behaviour, while still permitting targets
321 // to define their own independent class for Scan_relocatable_reloc.
322
323 template<int sh_type, typename Classify_reloc>
324 class Default_scan_relocatable_relocs
325 {
326 public:
327 // Return the strategy to use for a local symbol which is not a
328 // section symbol, given the relocation type.
329 inline Relocatable_relocs::Reloc_strategy
330 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
331 {
332 // We assume that relocation type 0 is NONE. Targets which are
333 // different must override.
334 if (r_type == 0 && r_sym == 0)
335 return Relocatable_relocs::RELOC_DISCARD;
336 return Relocatable_relocs::RELOC_COPY;
337 }
338
339 // Return the strategy to use for a local symbol which is a section
340 // symbol, given the relocation type.
341 inline Relocatable_relocs::Reloc_strategy
342 local_section_strategy(unsigned int r_type, Relobj* object)
343 {
344 if (sh_type == elfcpp::SHT_RELA)
345 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
346 else
347 {
348 Classify_reloc classify;
349 switch (classify.get_size_for_reloc(r_type, object))
350 {
351 case 0:
352 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
353 case 1:
354 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
355 case 2:
356 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
357 case 4:
358 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
359 case 8:
360 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
361 default:
362 gold_unreachable();
363 }
364 }
365 }
366
367 // Return the strategy to use for a global symbol, given the
368 // relocation type, the object, and the symbol index.
369 inline Relocatable_relocs::Reloc_strategy
370 global_strategy(unsigned int, Relobj*, unsigned int)
371 { return Relocatable_relocs::RELOC_COPY; }
372 };
373
374 // Scan relocs during a relocatable link. This is a default
375 // definition which should work for most targets.
376 // Scan_relocatable_reloc must name a class type which provides three
377 // functions which return a Relocatable_relocs::Reloc_strategy code:
378 // global_strategy, local_non_section_strategy, and
379 // local_section_strategy. Most targets should be able to use
380 // Default_scan_relocatable_relocs as this class.
381
382 template<int size, bool big_endian, int sh_type,
383 typename Scan_relocatable_reloc>
384 void
385 scan_relocatable_relocs(
386 Symbol_table*,
387 Layout*,
388 Sized_relobj<size, big_endian>* object,
389 unsigned int data_shndx,
390 const unsigned char* prelocs,
391 size_t reloc_count,
392 Output_section* output_section,
393 bool needs_special_offset_handling,
394 size_t local_symbol_count,
395 const unsigned char* plocal_syms,
396 Relocatable_relocs* rr)
397 {
398 typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
399 const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
400 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
401 Scan_relocatable_reloc scan;
402
403 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
404 {
405 Reltype reloc(prelocs);
406
407 Relocatable_relocs::Reloc_strategy strategy;
408
409 if (needs_special_offset_handling
410 && !output_section->is_input_address_mapped(object, data_shndx,
411 reloc.get_r_offset()))
412 strategy = Relocatable_relocs::RELOC_DISCARD;
413 else
414 {
415 typename elfcpp::Elf_types<size>::Elf_WXword r_info =
416 reloc.get_r_info();
417 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
418 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
419
420 if (r_sym >= local_symbol_count)
421 strategy = scan.global_strategy(r_type, object, r_sym);
422 else
423 {
424 gold_assert(plocal_syms != NULL);
425 typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
426 + r_sym * sym_size);
427 unsigned int shndx = lsym.get_st_shndx();
428 bool is_ordinary;
429 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
430 if (is_ordinary
431 && shndx != elfcpp::SHN_UNDEF
432 && !object->is_section_included(shndx))
433 {
434 // RELOC is a relocation against a local symbol
435 // defined in a section we are discarding. Discard
436 // the reloc. FIXME: Should we issue a warning?
437 strategy = Relocatable_relocs::RELOC_DISCARD;
438 }
439 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
440 strategy = scan.local_non_section_strategy(r_type, object,
441 r_sym);
442 else
443 {
444 strategy = scan.local_section_strategy(r_type, object);
445 if (strategy != Relocatable_relocs::RELOC_DISCARD)
446 object->output_section(shndx)->set_needs_symtab_index();
447 }
448 }
449 }
450
451 rr->set_next_reloc_strategy(strategy);
452 }
453 }
454
455 // Relocate relocs during a relocatable link. This is a default
456 // definition which should work for most targets.
457
458 template<int size, bool big_endian, int sh_type>
459 void
460 relocate_for_relocatable(
461 const Relocate_info<size, big_endian>* relinfo,
462 const unsigned char* prelocs,
463 size_t reloc_count,
464 Output_section* output_section,
465 typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
466 const Relocatable_relocs* rr,
467 unsigned char* view,
468 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
469 section_size_type,
470 unsigned char* reloc_view,
471 section_size_type reloc_view_size)
472 {
473 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
474 typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
475 typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
476 Reltype_write;
477 const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
478 const Address invalid_address = static_cast<Address>(0) - 1;
479
480 Sized_relobj<size, big_endian>* const object = relinfo->object;
481 const unsigned int local_count = object->local_symbol_count();
482
483 unsigned char* pwrite = reloc_view;
484
485 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
486 {
487 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
488 if (strategy == Relocatable_relocs::RELOC_DISCARD)
489 continue;
490
491 Reltype reloc(prelocs);
492 Reltype_write reloc_write(pwrite);
493
494 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
495 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
496 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
497
498 // Get the new symbol index.
499
500 unsigned int new_symndx;
501 if (r_sym < local_count)
502 {
503 switch (strategy)
504 {
505 case Relocatable_relocs::RELOC_COPY:
506 if (r_sym == 0)
507 new_symndx = 0;
508 else
509 {
510 new_symndx = object->symtab_index(r_sym);
511 gold_assert(new_symndx != -1U);
512 }
513 break;
514
515 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
516 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
517 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
518 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
519 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
520 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
521 {
522 // We are adjusting a section symbol. We need to find
523 // the symbol table index of the section symbol for
524 // the output section corresponding to input section
525 // in which this symbol is defined.
526 gold_assert(r_sym < local_count);
527 bool is_ordinary;
528 unsigned int shndx =
529 object->local_symbol_input_shndx(r_sym, &is_ordinary);
530 gold_assert(is_ordinary);
531 Output_section* os = object->output_section(shndx);
532 gold_assert(os != NULL);
533 gold_assert(os->needs_symtab_index());
534 new_symndx = os->symtab_index();
535 }
536 break;
537
538 default:
539 gold_unreachable();
540 }
541 }
542 else
543 {
544 const Symbol* gsym = object->global_symbol(r_sym);
545 gold_assert(gsym != NULL);
546 if (gsym->is_forwarder())
547 gsym = relinfo->symtab->resolve_forwards(gsym);
548
549 gold_assert(gsym->has_symtab_index());
550 new_symndx = gsym->symtab_index();
551 }
552
553 // Get the new offset--the location in the output section where
554 // this relocation should be applied.
555
556 Address offset = reloc.get_r_offset();
557 Address new_offset;
558 if (offset_in_output_section != invalid_address)
559 new_offset = offset + offset_in_output_section;
560 else
561 {
562 section_offset_type sot_offset =
563 convert_types<section_offset_type, Address>(offset);
564 section_offset_type new_sot_offset =
565 output_section->output_offset(object, relinfo->data_shndx,
566 sot_offset);
567 gold_assert(new_sot_offset != -1);
568 new_offset = new_sot_offset;
569 }
570
571 // In an object file, r_offset is an offset within the section.
572 // In an executable or dynamic object, generated by
573 // --emit-relocs, r_offset is an absolute address.
574 if (!parameters->options().relocatable())
575 {
576 new_offset += view_address;
577 if (offset_in_output_section != invalid_address)
578 new_offset -= offset_in_output_section;
579 }
580
581 reloc_write.put_r_offset(new_offset);
582 reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
583
584 // Handle the reloc addend based on the strategy.
585
586 if (strategy == Relocatable_relocs::RELOC_COPY)
587 {
588 if (sh_type == elfcpp::SHT_RELA)
589 Reloc_types<sh_type, size, big_endian>::
590 copy_reloc_addend(&reloc_write,
591 &reloc);
592 }
593 else
594 {
595 // The relocation uses a section symbol in the input file.
596 // We are adjusting it to use a section symbol in the output
597 // file. The input section symbol refers to some address in
598 // the input section. We need the relocation in the output
599 // file to refer to that same address. This adjustment to
600 // the addend is the same calculation we use for a simple
601 // absolute relocation for the input section symbol.
602
603 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
604
605 unsigned char* padd = view + offset;
606 switch (strategy)
607 {
608 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
609 {
610 typename elfcpp::Elf_types<size>::Elf_Swxword addend;
611 addend = Reloc_types<sh_type, size, big_endian>::
612 get_reloc_addend(&reloc);
613 addend = psymval->value(object, addend);
614 Reloc_types<sh_type, size, big_endian>::
615 set_reloc_addend(&reloc_write, addend);
616 }
617 break;
618
619 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
620 break;
621
622 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
623 Relocate_functions<size, big_endian>::rel8(padd, object,
624 psymval);
625 break;
626
627 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
628 Relocate_functions<size, big_endian>::rel16(padd, object,
629 psymval);
630 break;
631
632 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
633 Relocate_functions<size, big_endian>::rel32(padd, object,
634 psymval);
635 break;
636
637 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
638 Relocate_functions<size, big_endian>::rel64(padd, object,
639 psymval);
640 break;
641
642 default:
643 gold_unreachable();
644 }
645 }
646
647 pwrite += reloc_size;
648 }
649
650 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
651 == reloc_view_size);
652 }
653
654 } // End namespace gold.
655
656 #endif // !defined(GOLD_TARGET_RELOC_H)