]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - ld/ldlang.c
MSP430: ld: Update output section tail when shuffling ".either" sections
[thirdparty/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2020 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bfd_boolean map_head_is_link_order = FALSE;
67 static lang_output_section_statement_type *default_common_section;
68 static bfd_boolean map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 /* Header for list of statements corresponding to any files involved in the
73 link, either specified from the command-line or added implicitely (eg.
74 archive member used to resolved undefined symbol, wildcard statement from
75 linker script, etc.). Next pointer is in next field of a
76 lang_statement_header_type (reached via header field in a
77 lang_statement_union). */
78 static lang_statement_list_type statement_list;
79 static lang_statement_list_type *stat_save[10];
80 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
81 static struct unique_sections *unique_section_list;
82 static struct asneeded_minfo *asneeded_list_head;
83 static unsigned int opb_shift = 0;
84
85 /* Forward declarations. */
86 static void exp_init_os (etree_type *);
87 static lang_input_statement_type *lookup_name (const char *);
88 static void insert_undefined (const char *);
89 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bfd_boolean);
96 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (void);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bfd_boolean entry_from_cmdline;
126 bfd_boolean lang_has_input_file = FALSE;
127 bfd_boolean had_output_filename = FALSE;
128 bfd_boolean lang_float_flag = FALSE;
129 bfd_boolean delete_output_file_on_failure = FALSE;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_file_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bfd_boolean
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bfd_boolean match = FALSE;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = TRUE;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bfd_boolean
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return TRUE;
263
264 return FALSE;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bfd_boolean
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return TRUE;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return TRUE;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return TRUE;
301 }
302
303 return FALSE;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
343
344 while (sec != NULL)
345 {
346 bfd_boolean skip = FALSE;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bfd_boolean multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bfd_boolean
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = TRUE;
380 return TRUE;
381 }
382
383 d->found_section = s;
384 return FALSE;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bfd_boolean *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, FALSE };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bfd_boolean
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bfd_boolean
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return FALSE;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return FALSE;
427
428 return TRUE;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
570 lang_input_statement_type *file,
571 void *output)
572 {
573 lang_section_bst_type *node;
574 lang_section_bst_type **tree;
575 lang_output_section_statement_type *os;
576
577 os = (lang_output_section_statement_type *) output;
578
579 if (unique_section_p (section, os))
580 return;
581
582 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
583 node->left = 0;
584 node->right = 0;
585 node->section = section;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bfd_boolean multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bfd_boolean multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bfd_boolean multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bfd_boolean multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
772 sname);
773
774 if (!skip)
775 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
776 data);
777 else
778 {
779 skip = !match_simple_wild (wildsec3->spec.name, sname);
780 if (!skip)
781 walk_wild_consider_section (ptr, file, s, wildsec3,
782 callback, data);
783 }
784 }
785 }
786 }
787
788 static void
789 walk_wild_section (lang_wild_statement_type *ptr,
790 lang_input_statement_type *file,
791 callback_t callback,
792 void *data)
793 {
794 if (file->flags.just_syms)
795 return;
796
797 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
798 }
799
800 /* Returns TRUE when name1 is a wildcard spec that might match
801 something name2 can match. We're conservative: we return FALSE
802 only if the prefixes of name1 and name2 are different up to the
803 first wildcard character. */
804
805 static bfd_boolean
806 wild_spec_can_overlap (const char *name1, const char *name2)
807 {
808 size_t prefix1_len = strcspn (name1, "?*[");
809 size_t prefix2_len = strcspn (name2, "?*[");
810 size_t min_prefix_len;
811
812 /* Note that if there is no wildcard character, then we treat the
813 terminating 0 as part of the prefix. Thus ".text" won't match
814 ".text." or ".text.*", for example. */
815 if (name1[prefix1_len] == '\0')
816 prefix1_len++;
817 if (name2[prefix2_len] == '\0')
818 prefix2_len++;
819
820 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
821
822 return memcmp (name1, name2, min_prefix_len) == 0;
823 }
824
825 /* Select specialized code to handle various kinds of wildcard
826 statements. */
827
828 static void
829 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
830 {
831 int sec_count = 0;
832 int wild_name_count = 0;
833 struct wildcard_list *sec;
834 int signature;
835 int data_counter;
836
837 ptr->walk_wild_section_handler = walk_wild_section_general;
838 ptr->handler_data[0] = NULL;
839 ptr->handler_data[1] = NULL;
840 ptr->handler_data[2] = NULL;
841 ptr->handler_data[3] = NULL;
842 ptr->tree = NULL;
843
844 /* Count how many wildcard_specs there are, and how many of those
845 actually use wildcards in the name. Also, bail out if any of the
846 wildcard names are NULL. (Can this actually happen?
847 walk_wild_section used to test for it.) And bail out if any
848 of the wildcards are more complex than a simple string
849 ending in a single '*'. */
850 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
851 {
852 ++sec_count;
853 if (sec->spec.name == NULL)
854 return;
855 if (wildcardp (sec->spec.name))
856 {
857 ++wild_name_count;
858 if (!is_simple_wild (sec->spec.name))
859 return;
860 }
861 }
862
863 /* The zero-spec case would be easy to optimize but it doesn't
864 happen in practice. Likewise, more than 4 specs doesn't
865 happen in practice. */
866 if (sec_count == 0 || sec_count > 4)
867 return;
868
869 /* Check that no two specs can match the same section. */
870 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
871 {
872 struct wildcard_list *sec2;
873 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
874 {
875 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
876 return;
877 }
878 }
879
880 signature = (sec_count << 8) + wild_name_count;
881 switch (signature)
882 {
883 case 0x0100:
884 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
885 break;
886 case 0x0101:
887 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
888 break;
889 case 0x0201:
890 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
891 break;
892 case 0x0302:
893 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
894 break;
895 case 0x0402:
896 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
897 break;
898 default:
899 return;
900 }
901
902 /* Now fill the data array with pointers to the specs, first the
903 specs with non-wildcard names, then the specs with wildcard
904 names. It's OK to process the specs in different order from the
905 given order, because we've already determined that no section
906 will match more than one spec. */
907 data_counter = 0;
908 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
909 if (!wildcardp (sec->spec.name))
910 ptr->handler_data[data_counter++] = sec;
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 if (wildcardp (sec->spec.name))
913 ptr->handler_data[data_counter++] = sec;
914 }
915
916 /* Handle a wild statement for a single file F. */
917
918 static void
919 walk_wild_file (lang_wild_statement_type *s,
920 lang_input_statement_type *f,
921 callback_t callback,
922 void *data)
923 {
924 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
925 return;
926
927 if (f->the_bfd == NULL
928 || !bfd_check_format (f->the_bfd, bfd_archive))
929 walk_wild_section (s, f, callback, data);
930 else
931 {
932 bfd *member;
933
934 /* This is an archive file. We must map each member of the
935 archive separately. */
936 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
937 while (member != NULL)
938 {
939 /* When lookup_name is called, it will call the add_symbols
940 entry point for the archive. For each element of the
941 archive which is included, BFD will call ldlang_add_file,
942 which will set the usrdata field of the member to the
943 lang_input_statement. */
944 if (bfd_usrdata (member) != NULL)
945 walk_wild_section (s, bfd_usrdata (member), callback, data);
946
947 member = bfd_openr_next_archived_file (f->the_bfd, member);
948 }
949 }
950 }
951
952 static void
953 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
954 {
955 const char *file_spec = s->filename;
956 char *p;
957
958 if (file_spec == NULL)
959 {
960 /* Perform the iteration over all files in the list. */
961 LANG_FOR_EACH_INPUT_STATEMENT (f)
962 {
963 walk_wild_file (s, f, callback, data);
964 }
965 }
966 else if ((p = archive_path (file_spec)) != NULL)
967 {
968 LANG_FOR_EACH_INPUT_STATEMENT (f)
969 {
970 if (input_statement_is_archive_path (file_spec, p, f))
971 walk_wild_file (s, f, callback, data);
972 }
973 }
974 else if (wildcardp (file_spec))
975 {
976 LANG_FOR_EACH_INPUT_STATEMENT (f)
977 {
978 if (fnmatch (file_spec, f->filename, 0) == 0)
979 walk_wild_file (s, f, callback, data);
980 }
981 }
982 else
983 {
984 lang_input_statement_type *f;
985
986 /* Perform the iteration over a single file. */
987 f = lookup_name (file_spec);
988 if (f)
989 walk_wild_file (s, f, callback, data);
990 }
991 }
992
993 /* lang_for_each_statement walks the parse tree and calls the provided
994 function for each node, except those inside output section statements
995 with constraint set to -1. */
996
997 void
998 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
999 lang_statement_union_type *s)
1000 {
1001 for (; s != NULL; s = s->header.next)
1002 {
1003 func (s);
1004
1005 switch (s->header.type)
1006 {
1007 case lang_constructors_statement_enum:
1008 lang_for_each_statement_worker (func, constructor_list.head);
1009 break;
1010 case lang_output_section_statement_enum:
1011 if (s->output_section_statement.constraint != -1)
1012 lang_for_each_statement_worker
1013 (func, s->output_section_statement.children.head);
1014 break;
1015 case lang_wild_statement_enum:
1016 lang_for_each_statement_worker (func,
1017 s->wild_statement.children.head);
1018 break;
1019 case lang_group_statement_enum:
1020 lang_for_each_statement_worker (func,
1021 s->group_statement.children.head);
1022 break;
1023 case lang_data_statement_enum:
1024 case lang_reloc_statement_enum:
1025 case lang_object_symbols_statement_enum:
1026 case lang_output_statement_enum:
1027 case lang_target_statement_enum:
1028 case lang_input_section_enum:
1029 case lang_input_statement_enum:
1030 case lang_assignment_statement_enum:
1031 case lang_padding_statement_enum:
1032 case lang_address_statement_enum:
1033 case lang_fill_statement_enum:
1034 case lang_insert_statement_enum:
1035 break;
1036 default:
1037 FAIL ();
1038 break;
1039 }
1040 }
1041 }
1042
1043 void
1044 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1045 {
1046 lang_for_each_statement_worker (func, statement_list.head);
1047 }
1048
1049 /*----------------------------------------------------------------------*/
1050
1051 void
1052 lang_list_init (lang_statement_list_type *list)
1053 {
1054 list->head = NULL;
1055 list->tail = &list->head;
1056 }
1057
1058 static void
1059 lang_statement_append (lang_statement_list_type *list,
1060 void *element,
1061 void *field)
1062 {
1063 *(list->tail) = element;
1064 list->tail = field;
1065 }
1066
1067 void
1068 push_stat_ptr (lang_statement_list_type *new_ptr)
1069 {
1070 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1071 abort ();
1072 *stat_save_ptr++ = stat_ptr;
1073 stat_ptr = new_ptr;
1074 }
1075
1076 void
1077 pop_stat_ptr (void)
1078 {
1079 if (stat_save_ptr <= stat_save)
1080 abort ();
1081 stat_ptr = *--stat_save_ptr;
1082 }
1083
1084 /* Build a new statement node for the parse tree. */
1085
1086 static lang_statement_union_type *
1087 new_statement (enum statement_enum type,
1088 size_t size,
1089 lang_statement_list_type *list)
1090 {
1091 lang_statement_union_type *new_stmt;
1092
1093 new_stmt = stat_alloc (size);
1094 new_stmt->header.type = type;
1095 new_stmt->header.next = NULL;
1096 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1097 return new_stmt;
1098 }
1099
1100 /* Build a new input file node for the language. There are several
1101 ways in which we treat an input file, eg, we only look at symbols,
1102 or prefix it with a -l etc.
1103
1104 We can be supplied with requests for input files more than once;
1105 they may, for example be split over several lines like foo.o(.text)
1106 foo.o(.data) etc, so when asked for a file we check that we haven't
1107 got it already so we don't duplicate the bfd. */
1108
1109 static lang_input_statement_type *
1110 new_afile (const char *name,
1111 lang_input_file_enum_type file_type,
1112 const char *target,
1113 const char *from_filename)
1114 {
1115 lang_input_statement_type *p;
1116
1117 lang_has_input_file = TRUE;
1118
1119 p = new_stat (lang_input_statement, stat_ptr);
1120 memset (&p->the_bfd, 0,
1121 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1122 p->extra_search_path = NULL;
1123 p->target = target;
1124 p->flags.dynamic = input_flags.dynamic;
1125 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1126 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1127 p->flags.whole_archive = input_flags.whole_archive;
1128 p->flags.sysrooted = input_flags.sysrooted;
1129
1130 switch (file_type)
1131 {
1132 case lang_input_file_is_symbols_only_enum:
1133 p->filename = name;
1134 p->local_sym_name = name;
1135 p->flags.real = TRUE;
1136 p->flags.just_syms = TRUE;
1137 break;
1138 case lang_input_file_is_fake_enum:
1139 p->filename = name;
1140 p->local_sym_name = name;
1141 break;
1142 case lang_input_file_is_l_enum:
1143 if (name[0] == ':' && name[1] != '\0')
1144 {
1145 p->filename = name + 1;
1146 p->flags.full_name_provided = TRUE;
1147 }
1148 else
1149 p->filename = name;
1150 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1151 p->flags.maybe_archive = TRUE;
1152 p->flags.real = TRUE;
1153 p->flags.search_dirs = TRUE;
1154 break;
1155 case lang_input_file_is_marker_enum:
1156 p->filename = name;
1157 p->local_sym_name = name;
1158 p->flags.search_dirs = TRUE;
1159 break;
1160 case lang_input_file_is_search_file_enum:
1161 p->filename = name;
1162 p->local_sym_name = name;
1163 /* If name is a relative path, search the directory of the current linker
1164 script first. */
1165 if (from_filename && !IS_ABSOLUTE_PATH (name))
1166 p->extra_search_path = ldirname (from_filename);
1167 p->flags.real = TRUE;
1168 p->flags.search_dirs = TRUE;
1169 break;
1170 case lang_input_file_is_file_enum:
1171 p->filename = name;
1172 p->local_sym_name = name;
1173 p->flags.real = TRUE;
1174 break;
1175 default:
1176 FAIL ();
1177 }
1178
1179 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1180 return p;
1181 }
1182
1183 lang_input_statement_type *
1184 lang_add_input_file (const char *name,
1185 lang_input_file_enum_type file_type,
1186 const char *target)
1187 {
1188 if (name != NULL
1189 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1190 {
1191 lang_input_statement_type *ret;
1192 char *sysrooted_name
1193 = concat (ld_sysroot,
1194 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1195 (const char *) NULL);
1196
1197 /* We've now forcibly prepended the sysroot, making the input
1198 file independent of the context. Therefore, temporarily
1199 force a non-sysrooted context for this statement, so it won't
1200 get the sysroot prepended again when opened. (N.B. if it's a
1201 script, any child nodes with input files starting with "/"
1202 will be handled as "sysrooted" as they'll be found to be
1203 within the sysroot subdirectory.) */
1204 unsigned int outer_sysrooted = input_flags.sysrooted;
1205 input_flags.sysrooted = 0;
1206 ret = new_afile (sysrooted_name, file_type, target, NULL);
1207 input_flags.sysrooted = outer_sysrooted;
1208 return ret;
1209 }
1210
1211 return new_afile (name, file_type, target, current_input_file);
1212 }
1213
1214 struct out_section_hash_entry
1215 {
1216 struct bfd_hash_entry root;
1217 lang_statement_union_type s;
1218 };
1219
1220 /* The hash table. */
1221
1222 static struct bfd_hash_table output_section_statement_table;
1223
1224 /* Support routines for the hash table used by lang_output_section_find,
1225 initialize the table, fill in an entry and remove the table. */
1226
1227 static struct bfd_hash_entry *
1228 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1229 struct bfd_hash_table *table,
1230 const char *string)
1231 {
1232 lang_output_section_statement_type **nextp;
1233 struct out_section_hash_entry *ret;
1234
1235 if (entry == NULL)
1236 {
1237 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1238 sizeof (*ret));
1239 if (entry == NULL)
1240 return entry;
1241 }
1242
1243 entry = bfd_hash_newfunc (entry, table, string);
1244 if (entry == NULL)
1245 return entry;
1246
1247 ret = (struct out_section_hash_entry *) entry;
1248 memset (&ret->s, 0, sizeof (ret->s));
1249 ret->s.header.type = lang_output_section_statement_enum;
1250 ret->s.output_section_statement.subsection_alignment = NULL;
1251 ret->s.output_section_statement.section_alignment = NULL;
1252 ret->s.output_section_statement.block_value = 1;
1253 lang_list_init (&ret->s.output_section_statement.children);
1254 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1255
1256 /* For every output section statement added to the list, except the
1257 first one, lang_os_list.tail points to the "next"
1258 field of the last element of the list. */
1259 if (lang_os_list.head != NULL)
1260 ret->s.output_section_statement.prev
1261 = ((lang_output_section_statement_type *)
1262 ((char *) lang_os_list.tail
1263 - offsetof (lang_output_section_statement_type, next)));
1264
1265 /* GCC's strict aliasing rules prevent us from just casting the
1266 address, so we store the pointer in a variable and cast that
1267 instead. */
1268 nextp = &ret->s.output_section_statement.next;
1269 lang_statement_append (&lang_os_list, &ret->s, nextp);
1270 return &ret->root;
1271 }
1272
1273 static void
1274 output_section_statement_table_init (void)
1275 {
1276 if (!bfd_hash_table_init_n (&output_section_statement_table,
1277 output_section_statement_newfunc,
1278 sizeof (struct out_section_hash_entry),
1279 61))
1280 einfo (_("%F%P: can not create hash table: %E\n"));
1281 }
1282
1283 static void
1284 output_section_statement_table_free (void)
1285 {
1286 bfd_hash_table_free (&output_section_statement_table);
1287 }
1288
1289 /* Build enough state so that the parser can build its tree. */
1290
1291 void
1292 lang_init (void)
1293 {
1294 obstack_begin (&stat_obstack, 1000);
1295
1296 stat_ptr = &statement_list;
1297
1298 output_section_statement_table_init ();
1299
1300 lang_list_init (stat_ptr);
1301
1302 lang_list_init (&input_file_chain);
1303 lang_list_init (&lang_os_list);
1304 lang_list_init (&file_chain);
1305 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1306 NULL);
1307 abs_output_section =
1308 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1309
1310 abs_output_section->bfd_section = bfd_abs_section_ptr;
1311
1312 asneeded_list_head = NULL;
1313 asneeded_list_tail = &asneeded_list_head;
1314 }
1315
1316 void
1317 lang_finish (void)
1318 {
1319 output_section_statement_table_free ();
1320 }
1321
1322 /*----------------------------------------------------------------------
1323 A region is an area of memory declared with the
1324 MEMORY { name:org=exp, len=exp ... }
1325 syntax.
1326
1327 We maintain a list of all the regions here.
1328
1329 If no regions are specified in the script, then the default is used
1330 which is created when looked up to be the entire data space.
1331
1332 If create is true we are creating a region inside a MEMORY block.
1333 In this case it is probably an error to create a region that has
1334 already been created. If we are not inside a MEMORY block it is
1335 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1336 and so we issue a warning.
1337
1338 Each region has at least one name. The first name is either
1339 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1340 alias names to an existing region within a script with
1341 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1342 region. */
1343
1344 static lang_memory_region_type *lang_memory_region_list;
1345 static lang_memory_region_type **lang_memory_region_list_tail
1346 = &lang_memory_region_list;
1347
1348 lang_memory_region_type *
1349 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1350 {
1351 lang_memory_region_name *n;
1352 lang_memory_region_type *r;
1353 lang_memory_region_type *new_region;
1354
1355 /* NAME is NULL for LMA memspecs if no region was specified. */
1356 if (name == NULL)
1357 return NULL;
1358
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 if (strcmp (n->name, name) == 0)
1362 {
1363 if (create)
1364 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1365 NULL, name);
1366 return r;
1367 }
1368
1369 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1370 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1371 NULL, name);
1372
1373 new_region = stat_alloc (sizeof (lang_memory_region_type));
1374
1375 new_region->name_list.name = xstrdup (name);
1376 new_region->name_list.next = NULL;
1377 new_region->next = NULL;
1378 new_region->origin_exp = NULL;
1379 new_region->origin = 0;
1380 new_region->length_exp = NULL;
1381 new_region->length = ~(bfd_size_type) 0;
1382 new_region->current = 0;
1383 new_region->last_os = NULL;
1384 new_region->flags = 0;
1385 new_region->not_flags = 0;
1386 new_region->had_full_message = FALSE;
1387
1388 *lang_memory_region_list_tail = new_region;
1389 lang_memory_region_list_tail = &new_region->next;
1390
1391 return new_region;
1392 }
1393
1394 void
1395 lang_memory_region_alias (const char *alias, const char *region_name)
1396 {
1397 lang_memory_region_name *n;
1398 lang_memory_region_type *r;
1399 lang_memory_region_type *region;
1400
1401 /* The default region must be unique. This ensures that it is not necessary
1402 to iterate through the name list if someone wants the check if a region is
1403 the default memory region. */
1404 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1405 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1406 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1407
1408 /* Look for the target region and check if the alias is not already
1409 in use. */
1410 region = NULL;
1411 for (r = lang_memory_region_list; r != NULL; r = r->next)
1412 for (n = &r->name_list; n != NULL; n = n->next)
1413 {
1414 if (region == NULL && strcmp (n->name, region_name) == 0)
1415 region = r;
1416 if (strcmp (n->name, alias) == 0)
1417 einfo (_("%F%P:%pS: error: redefinition of memory region "
1418 "alias `%s'\n"),
1419 NULL, alias);
1420 }
1421
1422 /* Check if the target region exists. */
1423 if (region == NULL)
1424 einfo (_("%F%P:%pS: error: memory region `%s' "
1425 "for alias `%s' does not exist\n"),
1426 NULL, region_name, alias);
1427
1428 /* Add alias to region name list. */
1429 n = stat_alloc (sizeof (lang_memory_region_name));
1430 n->name = xstrdup (alias);
1431 n->next = region->name_list.next;
1432 region->name_list.next = n;
1433 }
1434
1435 static lang_memory_region_type *
1436 lang_memory_default (asection *section)
1437 {
1438 lang_memory_region_type *p;
1439
1440 flagword sec_flags = section->flags;
1441
1442 /* Override SEC_DATA to mean a writable section. */
1443 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1444 sec_flags |= SEC_DATA;
1445
1446 for (p = lang_memory_region_list; p != NULL; p = p->next)
1447 {
1448 if ((p->flags & sec_flags) != 0
1449 && (p->not_flags & sec_flags) == 0)
1450 {
1451 return p;
1452 }
1453 }
1454 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1455 }
1456
1457 /* Get the output section statement directly from the userdata. */
1458
1459 lang_output_section_statement_type *
1460 lang_output_section_get (const asection *output_section)
1461 {
1462 return bfd_section_userdata (output_section);
1463 }
1464
1465 /* Find or create an output_section_statement with the given NAME.
1466 If CONSTRAINT is non-zero match one with that constraint, otherwise
1467 match any non-negative constraint. If CREATE, always make a
1468 new output_section_statement for SPECIAL CONSTRAINT. */
1469
1470 lang_output_section_statement_type *
1471 lang_output_section_statement_lookup (const char *name,
1472 int constraint,
1473 bfd_boolean create)
1474 {
1475 struct out_section_hash_entry *entry;
1476
1477 entry = ((struct out_section_hash_entry *)
1478 bfd_hash_lookup (&output_section_statement_table, name,
1479 create, FALSE));
1480 if (entry == NULL)
1481 {
1482 if (create)
1483 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1484 return NULL;
1485 }
1486
1487 if (entry->s.output_section_statement.name != NULL)
1488 {
1489 /* We have a section of this name, but it might not have the correct
1490 constraint. */
1491 struct out_section_hash_entry *last_ent;
1492
1493 name = entry->s.output_section_statement.name;
1494 if (create && constraint == SPECIAL)
1495 /* Not traversing to the end reverses the order of the second
1496 and subsequent SPECIAL sections in the hash table chain,
1497 but that shouldn't matter. */
1498 last_ent = entry;
1499 else
1500 do
1501 {
1502 if (constraint == entry->s.output_section_statement.constraint
1503 || (constraint == 0
1504 && entry->s.output_section_statement.constraint >= 0))
1505 return &entry->s.output_section_statement;
1506 last_ent = entry;
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 }
1509 while (entry != NULL
1510 && name == entry->s.output_section_statement.name);
1511
1512 if (!create)
1513 return NULL;
1514
1515 entry
1516 = ((struct out_section_hash_entry *)
1517 output_section_statement_newfunc (NULL,
1518 &output_section_statement_table,
1519 name));
1520 if (entry == NULL)
1521 {
1522 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1523 return NULL;
1524 }
1525 entry->root = last_ent->root;
1526 last_ent->root.next = &entry->root;
1527 }
1528
1529 entry->s.output_section_statement.name = name;
1530 entry->s.output_section_statement.constraint = constraint;
1531 return &entry->s.output_section_statement;
1532 }
1533
1534 /* Find the next output_section_statement with the same name as OS.
1535 If CONSTRAINT is non-zero, find one with that constraint otherwise
1536 match any non-negative constraint. */
1537
1538 lang_output_section_statement_type *
1539 next_matching_output_section_statement (lang_output_section_statement_type *os,
1540 int constraint)
1541 {
1542 /* All output_section_statements are actually part of a
1543 struct out_section_hash_entry. */
1544 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1545 ((char *) os
1546 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1547 const char *name = os->name;
1548
1549 ASSERT (name == entry->root.string);
1550 do
1551 {
1552 entry = (struct out_section_hash_entry *) entry->root.next;
1553 if (entry == NULL
1554 || name != entry->s.output_section_statement.name)
1555 return NULL;
1556 }
1557 while (constraint != entry->s.output_section_statement.constraint
1558 && (constraint != 0
1559 || entry->s.output_section_statement.constraint < 0));
1560
1561 return &entry->s.output_section_statement;
1562 }
1563
1564 /* A variant of lang_output_section_find used by place_orphan.
1565 Returns the output statement that should precede a new output
1566 statement for SEC. If an exact match is found on certain flags,
1567 sets *EXACT too. */
1568
1569 lang_output_section_statement_type *
1570 lang_output_section_find_by_flags (const asection *sec,
1571 flagword sec_flags,
1572 lang_output_section_statement_type **exact,
1573 lang_match_sec_type_func match_type)
1574 {
1575 lang_output_section_statement_type *first, *look, *found;
1576 flagword look_flags, differ;
1577
1578 /* We know the first statement on this list is *ABS*. May as well
1579 skip it. */
1580 first = (void *) lang_os_list.head;
1581 first = first->next;
1582
1583 /* First try for an exact match. */
1584 found = NULL;
1585 for (look = first; look; look = look->next)
1586 {
1587 look_flags = look->flags;
1588 if (look->bfd_section != NULL)
1589 {
1590 look_flags = look->bfd_section->flags;
1591 if (match_type && !match_type (link_info.output_bfd,
1592 look->bfd_section,
1593 sec->owner, sec))
1594 continue;
1595 }
1596 differ = look_flags ^ sec_flags;
1597 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1598 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1599 found = look;
1600 }
1601 if (found != NULL)
1602 {
1603 if (exact != NULL)
1604 *exact = found;
1605 return found;
1606 }
1607
1608 if ((sec_flags & SEC_CODE) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* Try for a rw code section. */
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_READONLY) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .rodata can go after .text, .sdata2 after .rodata. */
1633 for (look = first; look; look = look->next)
1634 {
1635 look_flags = look->flags;
1636 if (look->bfd_section != NULL)
1637 {
1638 look_flags = look->bfd_section->flags;
1639 if (match_type && !match_type (link_info.output_bfd,
1640 look->bfd_section,
1641 sec->owner, sec))
1642 continue;
1643 }
1644 differ = look_flags ^ sec_flags;
1645 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1646 | SEC_READONLY | SEC_SMALL_DATA))
1647 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1648 | SEC_READONLY))
1649 && !(look_flags & SEC_SMALL_DATA)))
1650 found = look;
1651 }
1652 }
1653 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1654 && (sec_flags & SEC_ALLOC) != 0)
1655 {
1656 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1657 as if it were a loaded section, and don't use match_type. */
1658 bfd_boolean seen_thread_local = FALSE;
1659
1660 match_type = NULL;
1661 for (look = first; look; look = look->next)
1662 {
1663 look_flags = look->flags;
1664 if (look->bfd_section != NULL)
1665 look_flags = look->bfd_section->flags;
1666
1667 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1668 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1669 {
1670 /* .tdata and .tbss must be adjacent and in that order. */
1671 if (!(look_flags & SEC_LOAD)
1672 && (sec_flags & SEC_LOAD))
1673 /* ..so if we're at a .tbss section and we're placing
1674 a .tdata section stop looking and return the
1675 previous section. */
1676 break;
1677 found = look;
1678 seen_thread_local = TRUE;
1679 }
1680 else if (seen_thread_local)
1681 break;
1682 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_SMALL_DATA) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .sdata goes after .data, .sbss after .sdata. */
1690 for (look = first; look; look = look->next)
1691 {
1692 look_flags = look->flags;
1693 if (look->bfd_section != NULL)
1694 {
1695 look_flags = look->bfd_section->flags;
1696 if (match_type && !match_type (link_info.output_bfd,
1697 look->bfd_section,
1698 sec->owner, sec))
1699 continue;
1700 }
1701 differ = look_flags ^ sec_flags;
1702 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1703 | SEC_THREAD_LOCAL))
1704 || ((look_flags & SEC_SMALL_DATA)
1705 && !(sec_flags & SEC_HAS_CONTENTS)))
1706 found = look;
1707 }
1708 }
1709 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1710 && (sec_flags & SEC_ALLOC) != 0)
1711 {
1712 /* .data goes after .rodata. */
1713 for (look = first; look; look = look->next)
1714 {
1715 look_flags = look->flags;
1716 if (look->bfd_section != NULL)
1717 {
1718 look_flags = look->bfd_section->flags;
1719 if (match_type && !match_type (link_info.output_bfd,
1720 look->bfd_section,
1721 sec->owner, sec))
1722 continue;
1723 }
1724 differ = look_flags ^ sec_flags;
1725 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1726 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1727 found = look;
1728 }
1729 }
1730 else if ((sec_flags & SEC_ALLOC) != 0)
1731 {
1732 /* .bss goes after any other alloc section. */
1733 for (look = first; look; look = look->next)
1734 {
1735 look_flags = look->flags;
1736 if (look->bfd_section != NULL)
1737 {
1738 look_flags = look->bfd_section->flags;
1739 if (match_type && !match_type (link_info.output_bfd,
1740 look->bfd_section,
1741 sec->owner, sec))
1742 continue;
1743 }
1744 differ = look_flags ^ sec_flags;
1745 if (!(differ & SEC_ALLOC))
1746 found = look;
1747 }
1748 }
1749 else
1750 {
1751 /* non-alloc go last. */
1752 for (look = first; look; look = look->next)
1753 {
1754 look_flags = look->flags;
1755 if (look->bfd_section != NULL)
1756 look_flags = look->bfd_section->flags;
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & SEC_DEBUGGING))
1759 found = look;
1760 }
1761 return found;
1762 }
1763
1764 if (found || !match_type)
1765 return found;
1766
1767 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1768 }
1769
1770 /* Find the last output section before given output statement.
1771 Used by place_orphan. */
1772
1773 static asection *
1774 output_prev_sec_find (lang_output_section_statement_type *os)
1775 {
1776 lang_output_section_statement_type *lookup;
1777
1778 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1779 {
1780 if (lookup->constraint < 0)
1781 continue;
1782
1783 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1784 return lookup->bfd_section;
1785 }
1786
1787 return NULL;
1788 }
1789
1790 /* Look for a suitable place for a new output section statement. The
1791 idea is to skip over anything that might be inside a SECTIONS {}
1792 statement in a script, before we find another output section
1793 statement. Assignments to "dot" before an output section statement
1794 are assumed to belong to it, except in two cases; The first
1795 assignment to dot, and assignments before non-alloc sections.
1796 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1797 similar assignments that set the initial address, or we might
1798 insert non-alloc note sections among assignments setting end of
1799 image symbols. */
1800
1801 static lang_statement_union_type **
1802 insert_os_after (lang_output_section_statement_type *after)
1803 {
1804 lang_statement_union_type **where;
1805 lang_statement_union_type **assign = NULL;
1806 bfd_boolean ignore_first;
1807
1808 ignore_first = after == (void *) lang_os_list.head;
1809
1810 for (where = &after->header.next;
1811 *where != NULL;
1812 where = &(*where)->header.next)
1813 {
1814 switch ((*where)->header.type)
1815 {
1816 case lang_assignment_statement_enum:
1817 if (assign == NULL)
1818 {
1819 lang_assignment_statement_type *ass;
1820
1821 ass = &(*where)->assignment_statement;
1822 if (ass->exp->type.node_class != etree_assert
1823 && ass->exp->assign.dst[0] == '.'
1824 && ass->exp->assign.dst[1] == 0)
1825 {
1826 if (!ignore_first)
1827 assign = where;
1828 ignore_first = FALSE;
1829 }
1830 }
1831 continue;
1832 case lang_wild_statement_enum:
1833 case lang_input_section_enum:
1834 case lang_object_symbols_statement_enum:
1835 case lang_fill_statement_enum:
1836 case lang_data_statement_enum:
1837 case lang_reloc_statement_enum:
1838 case lang_padding_statement_enum:
1839 case lang_constructors_statement_enum:
1840 assign = NULL;
1841 ignore_first = FALSE;
1842 continue;
1843 case lang_output_section_statement_enum:
1844 if (assign != NULL)
1845 {
1846 asection *s = (*where)->output_section_statement.bfd_section;
1847
1848 if (s == NULL
1849 || s->map_head.s == NULL
1850 || (s->flags & SEC_ALLOC) != 0)
1851 where = assign;
1852 }
1853 break;
1854 case lang_input_statement_enum:
1855 case lang_address_statement_enum:
1856 case lang_target_statement_enum:
1857 case lang_output_statement_enum:
1858 case lang_group_statement_enum:
1859 case lang_insert_statement_enum:
1860 continue;
1861 }
1862 break;
1863 }
1864
1865 return where;
1866 }
1867
1868 lang_output_section_statement_type *
1869 lang_insert_orphan (asection *s,
1870 const char *secname,
1871 int constraint,
1872 lang_output_section_statement_type *after,
1873 struct orphan_save *place,
1874 etree_type *address,
1875 lang_statement_list_type *add_child)
1876 {
1877 lang_statement_list_type add;
1878 lang_output_section_statement_type *os;
1879 lang_output_section_statement_type **os_tail;
1880
1881 /* If we have found an appropriate place for the output section
1882 statements for this orphan, add them to our own private list,
1883 inserting them later into the global statement list. */
1884 if (after != NULL)
1885 {
1886 lang_list_init (&add);
1887 push_stat_ptr (&add);
1888 }
1889
1890 if (bfd_link_relocatable (&link_info)
1891 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1892 address = exp_intop (0);
1893
1894 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1895 os = lang_enter_output_section_statement (secname, address, normal_section,
1896 NULL, NULL, NULL, constraint, 0);
1897
1898 if (add_child == NULL)
1899 add_child = &os->children;
1900 lang_add_section (add_child, s, NULL, os);
1901
1902 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1903 {
1904 const char *region = (after->region
1905 ? after->region->name_list.name
1906 : DEFAULT_MEMORY_REGION);
1907 const char *lma_region = (after->lma_region
1908 ? after->lma_region->name_list.name
1909 : NULL);
1910 lang_leave_output_section_statement (NULL, region, after->phdrs,
1911 lma_region);
1912 }
1913 else
1914 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1915 NULL);
1916
1917 /* Restore the global list pointer. */
1918 if (after != NULL)
1919 pop_stat_ptr ();
1920
1921 if (after != NULL && os->bfd_section != NULL)
1922 {
1923 asection *snew, *as;
1924 bfd_boolean place_after = place->stmt == NULL;
1925 bfd_boolean insert_after = TRUE;
1926
1927 snew = os->bfd_section;
1928
1929 /* Shuffle the bfd section list to make the output file look
1930 neater. This is really only cosmetic. */
1931 if (place->section == NULL
1932 && after != (void *) lang_os_list.head)
1933 {
1934 asection *bfd_section = after->bfd_section;
1935
1936 /* If the output statement hasn't been used to place any input
1937 sections (and thus doesn't have an output bfd_section),
1938 look for the closest prior output statement having an
1939 output section. */
1940 if (bfd_section == NULL)
1941 bfd_section = output_prev_sec_find (after);
1942
1943 if (bfd_section != NULL && bfd_section != snew)
1944 place->section = &bfd_section->next;
1945 }
1946
1947 if (place->section == NULL)
1948 place->section = &link_info.output_bfd->sections;
1949
1950 as = *place->section;
1951
1952 if (!as)
1953 {
1954 /* Put the section at the end of the list. */
1955
1956 /* Unlink the section. */
1957 bfd_section_list_remove (link_info.output_bfd, snew);
1958
1959 /* Now tack it back on in the right place. */
1960 bfd_section_list_append (link_info.output_bfd, snew);
1961 }
1962 else if ((bfd_get_flavour (link_info.output_bfd)
1963 == bfd_target_elf_flavour)
1964 && (bfd_get_flavour (s->owner)
1965 == bfd_target_elf_flavour)
1966 && ((elf_section_type (s) == SHT_NOTE
1967 && (s->flags & SEC_LOAD) != 0)
1968 || (elf_section_type (as) == SHT_NOTE
1969 && (as->flags & SEC_LOAD) != 0)))
1970 {
1971 /* Make sure that output note sections are grouped and sorted
1972 by alignments when inserting a note section or insert a
1973 section after a note section, */
1974 asection *sec;
1975 /* A specific section after which the output note section
1976 should be placed. */
1977 asection *after_sec;
1978 /* True if we need to insert the orphan section after a
1979 specific section to maintain output note section order. */
1980 bfd_boolean after_sec_note = FALSE;
1981
1982 static asection *first_orphan_note = NULL;
1983
1984 /* Group and sort output note section by alignments in
1985 ascending order. */
1986 after_sec = NULL;
1987 if (elf_section_type (s) == SHT_NOTE
1988 && (s->flags & SEC_LOAD) != 0)
1989 {
1990 /* Search from the beginning for the last output note
1991 section with equal or larger alignments. NB: Don't
1992 place orphan note section after non-note sections. */
1993
1994 first_orphan_note = NULL;
1995 for (sec = link_info.output_bfd->sections;
1996 (sec != NULL
1997 && !bfd_is_abs_section (sec));
1998 sec = sec->next)
1999 if (sec != snew
2000 && elf_section_type (sec) == SHT_NOTE
2001 && (sec->flags & SEC_LOAD) != 0)
2002 {
2003 if (!first_orphan_note)
2004 first_orphan_note = sec;
2005 if (sec->alignment_power >= s->alignment_power)
2006 after_sec = sec;
2007 }
2008 else if (first_orphan_note)
2009 {
2010 /* Stop if there is non-note section after the first
2011 orphan note section. */
2012 break;
2013 }
2014
2015 /* If this will be the first orphan note section, it can
2016 be placed at the default location. */
2017 after_sec_note = first_orphan_note != NULL;
2018 if (after_sec == NULL && after_sec_note)
2019 {
2020 /* If all output note sections have smaller
2021 alignments, place the section before all
2022 output orphan note sections. */
2023 after_sec = first_orphan_note;
2024 insert_after = FALSE;
2025 }
2026 }
2027 else if (first_orphan_note)
2028 {
2029 /* Don't place non-note sections in the middle of orphan
2030 note sections. */
2031 after_sec_note = TRUE;
2032 after_sec = as;
2033 for (sec = as->next;
2034 (sec != NULL
2035 && !bfd_is_abs_section (sec));
2036 sec = sec->next)
2037 if (elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 after_sec = sec;
2040 }
2041
2042 if (after_sec_note)
2043 {
2044 if (after_sec)
2045 {
2046 /* Search forward to insert OS after AFTER_SEC output
2047 statement. */
2048 lang_output_section_statement_type *stmt, *next;
2049 bfd_boolean found = FALSE;
2050 for (stmt = after; stmt != NULL; stmt = next)
2051 {
2052 next = stmt->next;
2053 if (insert_after)
2054 {
2055 if (stmt->bfd_section == after_sec)
2056 {
2057 place_after = TRUE;
2058 found = TRUE;
2059 after = stmt;
2060 break;
2061 }
2062 }
2063 else
2064 {
2065 /* If INSERT_AFTER is FALSE, place OS before
2066 AFTER_SEC output statement. */
2067 if (next && next->bfd_section == after_sec)
2068 {
2069 place_after = TRUE;
2070 found = TRUE;
2071 after = stmt;
2072 break;
2073 }
2074 }
2075 }
2076
2077 /* Search backward to insert OS after AFTER_SEC output
2078 statement. */
2079 if (!found)
2080 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2081 {
2082 if (insert_after)
2083 {
2084 if (stmt->bfd_section == after_sec)
2085 {
2086 place_after = TRUE;
2087 after = stmt;
2088 break;
2089 }
2090 }
2091 else
2092 {
2093 /* If INSERT_AFTER is FALSE, place OS before
2094 AFTER_SEC output statement. */
2095 if (stmt->next->bfd_section == after_sec)
2096 {
2097 place_after = TRUE;
2098 after = stmt;
2099 break;
2100 }
2101 }
2102 }
2103 }
2104
2105 if (after_sec == NULL
2106 || (insert_after && after_sec->next != snew)
2107 || (!insert_after && after_sec->prev != snew))
2108 {
2109 /* Unlink the section. */
2110 bfd_section_list_remove (link_info.output_bfd, snew);
2111
2112 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2113 prepend SNEW. */
2114 if (after_sec)
2115 {
2116 if (insert_after)
2117 bfd_section_list_insert_after (link_info.output_bfd,
2118 after_sec, snew);
2119 else
2120 bfd_section_list_insert_before (link_info.output_bfd,
2121 after_sec, snew);
2122 }
2123 else
2124 bfd_section_list_prepend (link_info.output_bfd, snew);
2125 }
2126 }
2127 else if (as != snew && as->prev != snew)
2128 {
2129 /* Unlink the section. */
2130 bfd_section_list_remove (link_info.output_bfd, snew);
2131
2132 /* Now tack it back on in the right place. */
2133 bfd_section_list_insert_before (link_info.output_bfd,
2134 as, snew);
2135 }
2136 }
2137 else if (as != snew && as->prev != snew)
2138 {
2139 /* Unlink the section. */
2140 bfd_section_list_remove (link_info.output_bfd, snew);
2141
2142 /* Now tack it back on in the right place. */
2143 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2144 }
2145
2146 /* Save the end of this list. Further ophans of this type will
2147 follow the one we've just added. */
2148 place->section = &snew->next;
2149
2150 /* The following is non-cosmetic. We try to put the output
2151 statements in some sort of reasonable order here, because they
2152 determine the final load addresses of the orphan sections.
2153 In addition, placing output statements in the wrong order may
2154 require extra segments. For instance, given a typical
2155 situation of all read-only sections placed in one segment and
2156 following that a segment containing all the read-write
2157 sections, we wouldn't want to place an orphan read/write
2158 section before or amongst the read-only ones. */
2159 if (add.head != NULL)
2160 {
2161 lang_output_section_statement_type *newly_added_os;
2162
2163 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2164 if (place_after)
2165 {
2166 lang_statement_union_type **where = insert_os_after (after);
2167
2168 *add.tail = *where;
2169 *where = add.head;
2170
2171 place->os_tail = &after->next;
2172 }
2173 else
2174 {
2175 /* Put it after the last orphan statement we added. */
2176 *add.tail = *place->stmt;
2177 *place->stmt = add.head;
2178 }
2179
2180 /* Fix the global list pointer if we happened to tack our
2181 new list at the tail. */
2182 if (*stat_ptr->tail == add.head)
2183 stat_ptr->tail = add.tail;
2184
2185 /* Save the end of this list. */
2186 place->stmt = add.tail;
2187
2188 /* Do the same for the list of output section statements. */
2189 newly_added_os = *os_tail;
2190 *os_tail = NULL;
2191 newly_added_os->prev = (lang_output_section_statement_type *)
2192 ((char *) place->os_tail
2193 - offsetof (lang_output_section_statement_type, next));
2194 newly_added_os->next = *place->os_tail;
2195 if (newly_added_os->next != NULL)
2196 newly_added_os->next->prev = newly_added_os;
2197 *place->os_tail = newly_added_os;
2198 place->os_tail = &newly_added_os->next;
2199
2200 /* Fixing the global list pointer here is a little different.
2201 We added to the list in lang_enter_output_section_statement,
2202 trimmed off the new output_section_statment above when
2203 assigning *os_tail = NULL, but possibly added it back in
2204 the same place when assigning *place->os_tail. */
2205 if (*os_tail == NULL)
2206 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2207 }
2208 }
2209 return os;
2210 }
2211
2212 static void
2213 lang_print_asneeded (void)
2214 {
2215 struct asneeded_minfo *m;
2216
2217 if (asneeded_list_head == NULL)
2218 return;
2219
2220 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2221
2222 for (m = asneeded_list_head; m != NULL; m = m->next)
2223 {
2224 size_t len;
2225
2226 minfo ("%s", m->soname);
2227 len = strlen (m->soname);
2228
2229 if (len >= 29)
2230 {
2231 print_nl ();
2232 len = 0;
2233 }
2234 while (len < 30)
2235 {
2236 print_space ();
2237 ++len;
2238 }
2239
2240 if (m->ref != NULL)
2241 minfo ("%pB ", m->ref);
2242 minfo ("(%pT)\n", m->name);
2243 }
2244 }
2245
2246 static void
2247 lang_map_flags (flagword flag)
2248 {
2249 if (flag & SEC_ALLOC)
2250 minfo ("a");
2251
2252 if (flag & SEC_CODE)
2253 minfo ("x");
2254
2255 if (flag & SEC_READONLY)
2256 minfo ("r");
2257
2258 if (flag & SEC_DATA)
2259 minfo ("w");
2260
2261 if (flag & SEC_LOAD)
2262 minfo ("l");
2263 }
2264
2265 void
2266 lang_map (void)
2267 {
2268 lang_memory_region_type *m;
2269 bfd_boolean dis_header_printed = FALSE;
2270
2271 LANG_FOR_EACH_INPUT_STATEMENT (file)
2272 {
2273 asection *s;
2274
2275 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2276 || file->flags.just_syms)
2277 continue;
2278
2279 if (config.print_map_discarded)
2280 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2281 if ((s->output_section == NULL
2282 || s->output_section->owner != link_info.output_bfd)
2283 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2284 {
2285 if (! dis_header_printed)
2286 {
2287 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2288 dis_header_printed = TRUE;
2289 }
2290
2291 print_input_section (s, TRUE);
2292 }
2293 }
2294
2295 minfo (_("\nMemory Configuration\n\n"));
2296 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2297 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2298
2299 for (m = lang_memory_region_list; m != NULL; m = m->next)
2300 {
2301 char buf[100];
2302 int len;
2303
2304 fprintf (config.map_file, "%-16s ", m->name_list.name);
2305
2306 sprintf_vma (buf, m->origin);
2307 minfo ("0x%s ", buf);
2308 len = strlen (buf);
2309 while (len < 16)
2310 {
2311 print_space ();
2312 ++len;
2313 }
2314
2315 minfo ("0x%V", m->length);
2316 if (m->flags || m->not_flags)
2317 {
2318 #ifndef BFD64
2319 minfo (" ");
2320 #endif
2321 if (m->flags)
2322 {
2323 print_space ();
2324 lang_map_flags (m->flags);
2325 }
2326
2327 if (m->not_flags)
2328 {
2329 minfo (" !");
2330 lang_map_flags (m->not_flags);
2331 }
2332 }
2333
2334 print_nl ();
2335 }
2336
2337 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2338
2339 if (!link_info.reduce_memory_overheads)
2340 {
2341 obstack_begin (&map_obstack, 1000);
2342 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2343 }
2344 expld.phase = lang_fixed_phase_enum;
2345 lang_statement_iteration++;
2346 print_statements ();
2347
2348 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2349 config.map_file);
2350 }
2351
2352 static bfd_boolean
2353 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2354 void *info ATTRIBUTE_UNUSED)
2355 {
2356 if ((hash_entry->type == bfd_link_hash_defined
2357 || hash_entry->type == bfd_link_hash_defweak)
2358 && hash_entry->u.def.section->owner != link_info.output_bfd
2359 && hash_entry->u.def.section->owner != NULL)
2360 {
2361 input_section_userdata_type *ud;
2362 struct map_symbol_def *def;
2363
2364 ud = bfd_section_userdata (hash_entry->u.def.section);
2365 if (!ud)
2366 {
2367 ud = stat_alloc (sizeof (*ud));
2368 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2369 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2370 ud->map_symbol_def_count = 0;
2371 }
2372 else if (!ud->map_symbol_def_tail)
2373 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2374
2375 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2376 def->entry = hash_entry;
2377 *(ud->map_symbol_def_tail) = def;
2378 ud->map_symbol_def_tail = &def->next;
2379 ud->map_symbol_def_count++;
2380 }
2381 return TRUE;
2382 }
2383
2384 /* Initialize an output section. */
2385
2386 static void
2387 init_os (lang_output_section_statement_type *s, flagword flags)
2388 {
2389 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2390 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2391
2392 if (s->constraint != SPECIAL)
2393 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2394 if (s->bfd_section == NULL)
2395 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2396 s->name, flags);
2397 if (s->bfd_section == NULL)
2398 {
2399 einfo (_("%F%P: output format %s cannot represent section"
2400 " called %s: %E\n"),
2401 link_info.output_bfd->xvec->name, s->name);
2402 }
2403 s->bfd_section->output_section = s->bfd_section;
2404 s->bfd_section->output_offset = 0;
2405
2406 /* Set the userdata of the output section to the output section
2407 statement to avoid lookup. */
2408 bfd_set_section_userdata (s->bfd_section, s);
2409
2410 /* If there is a base address, make sure that any sections it might
2411 mention are initialized. */
2412 if (s->addr_tree != NULL)
2413 exp_init_os (s->addr_tree);
2414
2415 if (s->load_base != NULL)
2416 exp_init_os (s->load_base);
2417
2418 /* If supplied an alignment, set it. */
2419 if (s->section_alignment != NULL)
2420 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2421 "section alignment");
2422 }
2423
2424 /* Make sure that all output sections mentioned in an expression are
2425 initialized. */
2426
2427 static void
2428 exp_init_os (etree_type *exp)
2429 {
2430 switch (exp->type.node_class)
2431 {
2432 case etree_assign:
2433 case etree_provide:
2434 case etree_provided:
2435 exp_init_os (exp->assign.src);
2436 break;
2437
2438 case etree_binary:
2439 exp_init_os (exp->binary.lhs);
2440 exp_init_os (exp->binary.rhs);
2441 break;
2442
2443 case etree_trinary:
2444 exp_init_os (exp->trinary.cond);
2445 exp_init_os (exp->trinary.lhs);
2446 exp_init_os (exp->trinary.rhs);
2447 break;
2448
2449 case etree_assert:
2450 exp_init_os (exp->assert_s.child);
2451 break;
2452
2453 case etree_unary:
2454 exp_init_os (exp->unary.child);
2455 break;
2456
2457 case etree_name:
2458 switch (exp->type.node_code)
2459 {
2460 case ADDR:
2461 case LOADADDR:
2462 case SIZEOF:
2463 {
2464 lang_output_section_statement_type *os;
2465
2466 os = lang_output_section_find (exp->name.name);
2467 if (os != NULL && os->bfd_section == NULL)
2468 init_os (os, 0);
2469 }
2470 }
2471 break;
2472
2473 default:
2474 break;
2475 }
2476 }
2477 \f
2478 static void
2479 section_already_linked (bfd *abfd, asection *sec, void *data)
2480 {
2481 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2482
2483 /* If we are only reading symbols from this object, then we want to
2484 discard all sections. */
2485 if (entry->flags.just_syms)
2486 {
2487 bfd_link_just_syms (abfd, sec, &link_info);
2488 return;
2489 }
2490
2491 /* Deal with SHF_EXCLUDE ELF sections. */
2492 if (!bfd_link_relocatable (&link_info)
2493 && (abfd->flags & BFD_PLUGIN) == 0
2494 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2495 sec->output_section = bfd_abs_section_ptr;
2496
2497 if (!(abfd->flags & DYNAMIC))
2498 bfd_section_already_linked (abfd, sec, &link_info);
2499 }
2500 \f
2501
2502 /* Returns true if SECTION is one we know will be discarded based on its
2503 section flags, otherwise returns false. */
2504
2505 static bfd_boolean
2506 lang_discard_section_p (asection *section)
2507 {
2508 bfd_boolean discard;
2509 flagword flags = section->flags;
2510
2511 /* Discard sections marked with SEC_EXCLUDE. */
2512 discard = (flags & SEC_EXCLUDE) != 0;
2513
2514 /* Discard the group descriptor sections when we're finally placing the
2515 sections from within the group. */
2516 if ((flags & SEC_GROUP) != 0
2517 && link_info.resolve_section_groups)
2518 discard = TRUE;
2519
2520 /* Discard debugging sections if we are stripping debugging
2521 information. */
2522 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2523 && (flags & SEC_DEBUGGING) != 0)
2524 discard = TRUE;
2525
2526 return discard;
2527 }
2528
2529 /* The wild routines.
2530
2531 These expand statements like *(.text) and foo.o to a list of
2532 explicit actions, like foo.o(.text), bar.o(.text) and
2533 foo.o(.text, .data). */
2534
2535 /* Add SECTION to the output section OUTPUT. Do this by creating a
2536 lang_input_section statement which is placed at PTR. */
2537
2538 void
2539 lang_add_section (lang_statement_list_type *ptr,
2540 asection *section,
2541 struct flag_info *sflag_info,
2542 lang_output_section_statement_type *output)
2543 {
2544 flagword flags = section->flags;
2545
2546 bfd_boolean discard;
2547 lang_input_section_type *new_section;
2548 bfd *abfd = link_info.output_bfd;
2549
2550 /* Is this section one we know should be discarded? */
2551 discard = lang_discard_section_p (section);
2552
2553 /* Discard input sections which are assigned to a section named
2554 DISCARD_SECTION_NAME. */
2555 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2556 discard = TRUE;
2557
2558 if (discard)
2559 {
2560 if (section->output_section == NULL)
2561 {
2562 /* This prevents future calls from assigning this section. */
2563 section->output_section = bfd_abs_section_ptr;
2564 }
2565 else if (link_info.non_contiguous_regions_warnings)
2566 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2567 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2568 NULL, section, section->owner);
2569
2570 return;
2571 }
2572
2573 if (sflag_info)
2574 {
2575 bfd_boolean keep;
2576
2577 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2578 if (!keep)
2579 return;
2580 }
2581
2582 if (section->output_section != NULL)
2583 {
2584 if (!link_info.non_contiguous_regions)
2585 return;
2586
2587 /* SECTION has already been handled in a special way
2588 (eg. LINK_ONCE): skip it. */
2589 if (bfd_is_abs_section (section->output_section))
2590 return;
2591
2592 /* Already assigned to the same output section, do not process
2593 it again, to avoid creating loops between duplicate sections
2594 later. */
2595 if (section->output_section == output->bfd_section)
2596 return;
2597
2598 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2599 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2600 "change behaviour for section `%pA' from '%pB' (assigned to "
2601 "%pA, but additional match: %pA)\n"),
2602 NULL, section, section->owner, section->output_section,
2603 output->bfd_section);
2604
2605 /* SECTION has already been assigned to an output section, but
2606 the user allows it to be mapped to another one in case it
2607 overflows. We'll later update the actual output section in
2608 size_input_section as appropriate. */
2609 }
2610
2611 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2612 to an output section, because we want to be able to include a
2613 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2614 section (I don't know why we want to do this, but we do).
2615 build_link_order in ldwrite.c handles this case by turning
2616 the embedded SEC_NEVER_LOAD section into a fill. */
2617 flags &= ~ SEC_NEVER_LOAD;
2618
2619 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2620 already been processed. One reason to do this is that on pe
2621 format targets, .text$foo sections go into .text and it's odd
2622 to see .text with SEC_LINK_ONCE set. */
2623 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2624 {
2625 if (link_info.resolve_section_groups)
2626 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2627 else
2628 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2629 }
2630 else if (!bfd_link_relocatable (&link_info))
2631 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2632
2633 switch (output->sectype)
2634 {
2635 case normal_section:
2636 case overlay_section:
2637 case first_overlay_section:
2638 break;
2639 case noalloc_section:
2640 flags &= ~SEC_ALLOC;
2641 break;
2642 case noload_section:
2643 flags &= ~SEC_LOAD;
2644 flags |= SEC_NEVER_LOAD;
2645 /* Unfortunately GNU ld has managed to evolve two different
2646 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2647 alloc, no contents section. All others get a noload, noalloc
2648 section. */
2649 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2650 flags &= ~SEC_HAS_CONTENTS;
2651 else
2652 flags &= ~SEC_ALLOC;
2653 break;
2654 }
2655
2656 if (output->bfd_section == NULL)
2657 init_os (output, flags);
2658
2659 /* If SEC_READONLY is not set in the input section, then clear
2660 it from the output section. */
2661 output->bfd_section->flags &= flags | ~SEC_READONLY;
2662
2663 if (output->bfd_section->linker_has_input)
2664 {
2665 /* Only set SEC_READONLY flag on the first input section. */
2666 flags &= ~ SEC_READONLY;
2667
2668 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2669 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2670 != (flags & (SEC_MERGE | SEC_STRINGS))
2671 || ((flags & SEC_MERGE) != 0
2672 && output->bfd_section->entsize != section->entsize))
2673 {
2674 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2675 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2676 }
2677 }
2678 output->bfd_section->flags |= flags;
2679
2680 if (!output->bfd_section->linker_has_input)
2681 {
2682 output->bfd_section->linker_has_input = 1;
2683 /* This must happen after flags have been updated. The output
2684 section may have been created before we saw its first input
2685 section, eg. for a data statement. */
2686 bfd_init_private_section_data (section->owner, section,
2687 link_info.output_bfd,
2688 output->bfd_section,
2689 &link_info);
2690 if ((flags & SEC_MERGE) != 0)
2691 output->bfd_section->entsize = section->entsize;
2692 }
2693
2694 if ((flags & SEC_TIC54X_BLOCK) != 0
2695 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2696 {
2697 /* FIXME: This value should really be obtained from the bfd... */
2698 output->block_value = 128;
2699 }
2700
2701 if (section->alignment_power > output->bfd_section->alignment_power)
2702 output->bfd_section->alignment_power = section->alignment_power;
2703
2704 section->output_section = output->bfd_section;
2705
2706 if (!map_head_is_link_order)
2707 {
2708 asection *s = output->bfd_section->map_tail.s;
2709 output->bfd_section->map_tail.s = section;
2710 section->map_head.s = NULL;
2711 section->map_tail.s = s;
2712 if (s != NULL)
2713 s->map_head.s = section;
2714 else
2715 output->bfd_section->map_head.s = section;
2716 }
2717
2718 /* Add a section reference to the list. */
2719 new_section = new_stat (lang_input_section, ptr);
2720 new_section->section = section;
2721 }
2722
2723 /* Handle wildcard sorting. This returns the lang_input_section which
2724 should follow the one we are going to create for SECTION and FILE,
2725 based on the sorting requirements of WILD. It returns NULL if the
2726 new section should just go at the end of the current list. */
2727
2728 static lang_statement_union_type *
2729 wild_sort (lang_wild_statement_type *wild,
2730 struct wildcard_list *sec,
2731 lang_input_statement_type *file,
2732 asection *section)
2733 {
2734 lang_statement_union_type *l;
2735
2736 if (!wild->filenames_sorted
2737 && (sec == NULL || sec->spec.sorted == none))
2738 return NULL;
2739
2740 for (l = wild->children.head; l != NULL; l = l->header.next)
2741 {
2742 lang_input_section_type *ls;
2743
2744 if (l->header.type != lang_input_section_enum)
2745 continue;
2746 ls = &l->input_section;
2747
2748 /* Sorting by filename takes precedence over sorting by section
2749 name. */
2750
2751 if (wild->filenames_sorted)
2752 {
2753 const char *fn, *ln;
2754 bfd_boolean fa, la;
2755 int i;
2756
2757 /* The PE support for the .idata section as generated by
2758 dlltool assumes that files will be sorted by the name of
2759 the archive and then the name of the file within the
2760 archive. */
2761
2762 if (file->the_bfd != NULL
2763 && file->the_bfd->my_archive != NULL)
2764 {
2765 fn = bfd_get_filename (file->the_bfd->my_archive);
2766 fa = TRUE;
2767 }
2768 else
2769 {
2770 fn = file->filename;
2771 fa = FALSE;
2772 }
2773
2774 if (ls->section->owner->my_archive != NULL)
2775 {
2776 ln = bfd_get_filename (ls->section->owner->my_archive);
2777 la = TRUE;
2778 }
2779 else
2780 {
2781 ln = bfd_get_filename (ls->section->owner);
2782 la = FALSE;
2783 }
2784
2785 i = filename_cmp (fn, ln);
2786 if (i > 0)
2787 continue;
2788 else if (i < 0)
2789 break;
2790
2791 if (fa || la)
2792 {
2793 if (fa)
2794 fn = file->filename;
2795 if (la)
2796 ln = bfd_get_filename (ls->section->owner);
2797
2798 i = filename_cmp (fn, ln);
2799 if (i > 0)
2800 continue;
2801 else if (i < 0)
2802 break;
2803 }
2804 }
2805
2806 /* Here either the files are not sorted by name, or we are
2807 looking at the sections for this file. */
2808
2809 if (sec != NULL
2810 && sec->spec.sorted != none
2811 && sec->spec.sorted != by_none)
2812 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2813 break;
2814 }
2815
2816 return l;
2817 }
2818
2819 /* Expand a wild statement for a particular FILE. SECTION may be
2820 NULL, in which case it is a wild card. */
2821
2822 static void
2823 output_section_callback (lang_wild_statement_type *ptr,
2824 struct wildcard_list *sec,
2825 asection *section,
2826 struct flag_info *sflag_info,
2827 lang_input_statement_type *file,
2828 void *output)
2829 {
2830 lang_statement_union_type *before;
2831 lang_output_section_statement_type *os;
2832
2833 os = (lang_output_section_statement_type *) output;
2834
2835 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2836 if (unique_section_p (section, os))
2837 return;
2838
2839 before = wild_sort (ptr, sec, file, section);
2840
2841 /* Here BEFORE points to the lang_input_section which
2842 should follow the one we are about to add. If BEFORE
2843 is NULL, then the section should just go at the end
2844 of the current list. */
2845
2846 if (before == NULL)
2847 lang_add_section (&ptr->children, section, sflag_info, os);
2848 else
2849 {
2850 lang_statement_list_type list;
2851 lang_statement_union_type **pp;
2852
2853 lang_list_init (&list);
2854 lang_add_section (&list, section, sflag_info, os);
2855
2856 /* If we are discarding the section, LIST.HEAD will
2857 be NULL. */
2858 if (list.head != NULL)
2859 {
2860 ASSERT (list.head->header.next == NULL);
2861
2862 for (pp = &ptr->children.head;
2863 *pp != before;
2864 pp = &(*pp)->header.next)
2865 ASSERT (*pp != NULL);
2866
2867 list.head->header.next = *pp;
2868 *pp = list.head;
2869 }
2870 }
2871 }
2872
2873 /* Check if all sections in a wild statement for a particular FILE
2874 are readonly. */
2875
2876 static void
2877 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2878 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2879 asection *section,
2880 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2881 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2882 void *output)
2883 {
2884 lang_output_section_statement_type *os;
2885
2886 os = (lang_output_section_statement_type *) output;
2887
2888 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2889 if (unique_section_p (section, os))
2890 return;
2891
2892 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2893 os->all_input_readonly = FALSE;
2894 }
2895
2896 /* This is passed a file name which must have been seen already and
2897 added to the statement tree. We will see if it has been opened
2898 already and had its symbols read. If not then we'll read it. */
2899
2900 static lang_input_statement_type *
2901 lookup_name (const char *name)
2902 {
2903 lang_input_statement_type *search;
2904
2905 for (search = (void *) input_file_chain.head;
2906 search != NULL;
2907 search = search->next_real_file)
2908 {
2909 /* Use the local_sym_name as the name of the file that has
2910 already been loaded as filename might have been transformed
2911 via the search directory lookup mechanism. */
2912 const char *filename = search->local_sym_name;
2913
2914 if (filename != NULL
2915 && filename_cmp (filename, name) == 0)
2916 break;
2917 }
2918
2919 if (search == NULL)
2920 {
2921 /* Arrange to splice the input statement added by new_afile into
2922 statement_list after the current input_file_chain tail.
2923 We know input_file_chain is not an empty list, and that
2924 lookup_name was called via open_input_bfds. Later calls to
2925 lookup_name should always match an existing input_statement. */
2926 lang_statement_union_type **tail = stat_ptr->tail;
2927 lang_statement_union_type **after
2928 = (void *) ((char *) input_file_chain.tail
2929 - offsetof (lang_input_statement_type, next_real_file)
2930 + offsetof (lang_input_statement_type, header.next));
2931 lang_statement_union_type *rest = *after;
2932 stat_ptr->tail = after;
2933 search = new_afile (name, lang_input_file_is_search_file_enum,
2934 default_target, NULL);
2935 *stat_ptr->tail = rest;
2936 if (*tail == NULL)
2937 stat_ptr->tail = tail;
2938 }
2939
2940 /* If we have already added this file, or this file is not real
2941 don't add this file. */
2942 if (search->flags.loaded || !search->flags.real)
2943 return search;
2944
2945 if (!load_symbols (search, NULL))
2946 return NULL;
2947
2948 return search;
2949 }
2950
2951 /* Save LIST as a list of libraries whose symbols should not be exported. */
2952
2953 struct excluded_lib
2954 {
2955 char *name;
2956 struct excluded_lib *next;
2957 };
2958 static struct excluded_lib *excluded_libs;
2959
2960 void
2961 add_excluded_libs (const char *list)
2962 {
2963 const char *p = list, *end;
2964
2965 while (*p != '\0')
2966 {
2967 struct excluded_lib *entry;
2968 end = strpbrk (p, ",:");
2969 if (end == NULL)
2970 end = p + strlen (p);
2971 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2972 entry->next = excluded_libs;
2973 entry->name = (char *) xmalloc (end - p + 1);
2974 memcpy (entry->name, p, end - p);
2975 entry->name[end - p] = '\0';
2976 excluded_libs = entry;
2977 if (*end == '\0')
2978 break;
2979 p = end + 1;
2980 }
2981 }
2982
2983 static void
2984 check_excluded_libs (bfd *abfd)
2985 {
2986 struct excluded_lib *lib = excluded_libs;
2987
2988 while (lib)
2989 {
2990 int len = strlen (lib->name);
2991 const char *filename = lbasename (bfd_get_filename (abfd));
2992
2993 if (strcmp (lib->name, "ALL") == 0)
2994 {
2995 abfd->no_export = TRUE;
2996 return;
2997 }
2998
2999 if (filename_ncmp (lib->name, filename, len) == 0
3000 && (filename[len] == '\0'
3001 || (filename[len] == '.' && filename[len + 1] == 'a'
3002 && filename[len + 2] == '\0')))
3003 {
3004 abfd->no_export = TRUE;
3005 return;
3006 }
3007
3008 lib = lib->next;
3009 }
3010 }
3011
3012 /* Get the symbols for an input file. */
3013
3014 bfd_boolean
3015 load_symbols (lang_input_statement_type *entry,
3016 lang_statement_list_type *place)
3017 {
3018 char **matching;
3019
3020 if (entry->flags.loaded)
3021 return TRUE;
3022
3023 ldfile_open_file (entry);
3024
3025 /* Do not process further if the file was missing. */
3026 if (entry->flags.missing_file)
3027 return TRUE;
3028
3029 if (trace_files || verbose)
3030 info_msg ("%pI\n", entry);
3031
3032 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3033 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3034 {
3035 bfd_error_type err;
3036 struct lang_input_statement_flags save_flags;
3037 extern FILE *yyin;
3038
3039 err = bfd_get_error ();
3040
3041 /* See if the emulation has some special knowledge. */
3042 if (ldemul_unrecognized_file (entry))
3043 return TRUE;
3044
3045 if (err == bfd_error_file_ambiguously_recognized)
3046 {
3047 char **p;
3048
3049 einfo (_("%P: %pB: file not recognized: %E;"
3050 " matching formats:"), entry->the_bfd);
3051 for (p = matching; *p != NULL; p++)
3052 einfo (" %s", *p);
3053 einfo ("%F\n");
3054 }
3055 else if (err != bfd_error_file_not_recognized
3056 || place == NULL)
3057 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3058
3059 bfd_close (entry->the_bfd);
3060 entry->the_bfd = NULL;
3061
3062 /* Try to interpret the file as a linker script. */
3063 save_flags = input_flags;
3064 ldfile_open_command_file (entry->filename);
3065
3066 push_stat_ptr (place);
3067 input_flags.add_DT_NEEDED_for_regular
3068 = entry->flags.add_DT_NEEDED_for_regular;
3069 input_flags.add_DT_NEEDED_for_dynamic
3070 = entry->flags.add_DT_NEEDED_for_dynamic;
3071 input_flags.whole_archive = entry->flags.whole_archive;
3072 input_flags.dynamic = entry->flags.dynamic;
3073
3074 ldfile_assumed_script = TRUE;
3075 parser_input = input_script;
3076 current_input_file = entry->filename;
3077 yyparse ();
3078 current_input_file = NULL;
3079 ldfile_assumed_script = FALSE;
3080
3081 /* missing_file is sticky. sysrooted will already have been
3082 restored when seeing EOF in yyparse, but no harm to restore
3083 again. */
3084 save_flags.missing_file |= input_flags.missing_file;
3085 input_flags = save_flags;
3086 pop_stat_ptr ();
3087 fclose (yyin);
3088 yyin = NULL;
3089 entry->flags.loaded = TRUE;
3090
3091 return TRUE;
3092 }
3093
3094 if (ldemul_recognized_file (entry))
3095 return TRUE;
3096
3097 /* We don't call ldlang_add_file for an archive. Instead, the
3098 add_symbols entry point will call ldlang_add_file, via the
3099 add_archive_element callback, for each element of the archive
3100 which is used. */
3101 switch (bfd_get_format (entry->the_bfd))
3102 {
3103 default:
3104 break;
3105
3106 case bfd_object:
3107 if (!entry->flags.reload)
3108 ldlang_add_file (entry);
3109 break;
3110
3111 case bfd_archive:
3112 check_excluded_libs (entry->the_bfd);
3113
3114 bfd_set_usrdata (entry->the_bfd, entry);
3115 if (entry->flags.whole_archive)
3116 {
3117 bfd *member = NULL;
3118 bfd_boolean loaded = TRUE;
3119
3120 for (;;)
3121 {
3122 bfd *subsbfd;
3123 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3124
3125 if (member == NULL)
3126 break;
3127
3128 if (!bfd_check_format (member, bfd_object))
3129 {
3130 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3131 entry->the_bfd, member);
3132 loaded = FALSE;
3133 }
3134
3135 subsbfd = member;
3136 if (!(*link_info.callbacks
3137 ->add_archive_element) (&link_info, member,
3138 "--whole-archive", &subsbfd))
3139 abort ();
3140
3141 /* Potentially, the add_archive_element hook may have set a
3142 substitute BFD for us. */
3143 if (!bfd_link_add_symbols (subsbfd, &link_info))
3144 {
3145 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3146 loaded = FALSE;
3147 }
3148 }
3149
3150 entry->flags.loaded = loaded;
3151 return loaded;
3152 }
3153 break;
3154 }
3155
3156 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3157 entry->flags.loaded = TRUE;
3158 else
3159 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3160
3161 return entry->flags.loaded;
3162 }
3163
3164 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3165 may be NULL, indicating that it is a wildcard. Separate
3166 lang_input_section statements are created for each part of the
3167 expansion; they are added after the wild statement S. OUTPUT is
3168 the output section. */
3169
3170 static void
3171 wild (lang_wild_statement_type *s,
3172 const char *target ATTRIBUTE_UNUSED,
3173 lang_output_section_statement_type *output)
3174 {
3175 struct wildcard_list *sec;
3176
3177 if (s->handler_data[0]
3178 && s->handler_data[0]->spec.sorted == by_name
3179 && !s->filenames_sorted)
3180 {
3181 lang_section_bst_type *tree;
3182
3183 walk_wild (s, output_section_callback_fast, output);
3184
3185 tree = s->tree;
3186 if (tree)
3187 {
3188 output_section_callback_tree_to_list (s, tree, output);
3189 s->tree = NULL;
3190 }
3191 }
3192 else
3193 walk_wild (s, output_section_callback, output);
3194
3195 if (default_common_section == NULL)
3196 for (sec = s->section_list; sec != NULL; sec = sec->next)
3197 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3198 {
3199 /* Remember the section that common is going to in case we
3200 later get something which doesn't know where to put it. */
3201 default_common_section = output;
3202 break;
3203 }
3204 }
3205
3206 /* Return TRUE iff target is the sought target. */
3207
3208 static int
3209 get_target (const bfd_target *target, void *data)
3210 {
3211 const char *sought = (const char *) data;
3212
3213 return strcmp (target->name, sought) == 0;
3214 }
3215
3216 /* Like strcpy() but convert to lower case as well. */
3217
3218 static void
3219 stricpy (char *dest, const char *src)
3220 {
3221 char c;
3222
3223 while ((c = *src++) != 0)
3224 *dest++ = TOLOWER (c);
3225
3226 *dest = 0;
3227 }
3228
3229 /* Remove the first occurrence of needle (if any) in haystack
3230 from haystack. */
3231
3232 static void
3233 strcut (char *haystack, const char *needle)
3234 {
3235 haystack = strstr (haystack, needle);
3236
3237 if (haystack)
3238 {
3239 char *src;
3240
3241 for (src = haystack + strlen (needle); *src;)
3242 *haystack++ = *src++;
3243
3244 *haystack = 0;
3245 }
3246 }
3247
3248 /* Compare two target format name strings.
3249 Return a value indicating how "similar" they are. */
3250
3251 static int
3252 name_compare (const char *first, const char *second)
3253 {
3254 char *copy1;
3255 char *copy2;
3256 int result;
3257
3258 copy1 = (char *) xmalloc (strlen (first) + 1);
3259 copy2 = (char *) xmalloc (strlen (second) + 1);
3260
3261 /* Convert the names to lower case. */
3262 stricpy (copy1, first);
3263 stricpy (copy2, second);
3264
3265 /* Remove size and endian strings from the name. */
3266 strcut (copy1, "big");
3267 strcut (copy1, "little");
3268 strcut (copy2, "big");
3269 strcut (copy2, "little");
3270
3271 /* Return a value based on how many characters match,
3272 starting from the beginning. If both strings are
3273 the same then return 10 * their length. */
3274 for (result = 0; copy1[result] == copy2[result]; result++)
3275 if (copy1[result] == 0)
3276 {
3277 result *= 10;
3278 break;
3279 }
3280
3281 free (copy1);
3282 free (copy2);
3283
3284 return result;
3285 }
3286
3287 /* Set by closest_target_match() below. */
3288 static const bfd_target *winner;
3289
3290 /* Scan all the valid bfd targets looking for one that has the endianness
3291 requirement that was specified on the command line, and is the nearest
3292 match to the original output target. */
3293
3294 static int
3295 closest_target_match (const bfd_target *target, void *data)
3296 {
3297 const bfd_target *original = (const bfd_target *) data;
3298
3299 if (command_line.endian == ENDIAN_BIG
3300 && target->byteorder != BFD_ENDIAN_BIG)
3301 return 0;
3302
3303 if (command_line.endian == ENDIAN_LITTLE
3304 && target->byteorder != BFD_ENDIAN_LITTLE)
3305 return 0;
3306
3307 /* Must be the same flavour. */
3308 if (target->flavour != original->flavour)
3309 return 0;
3310
3311 /* Ignore generic big and little endian elf vectors. */
3312 if (strcmp (target->name, "elf32-big") == 0
3313 || strcmp (target->name, "elf64-big") == 0
3314 || strcmp (target->name, "elf32-little") == 0
3315 || strcmp (target->name, "elf64-little") == 0)
3316 return 0;
3317
3318 /* If we have not found a potential winner yet, then record this one. */
3319 if (winner == NULL)
3320 {
3321 winner = target;
3322 return 0;
3323 }
3324
3325 /* Oh dear, we now have two potential candidates for a successful match.
3326 Compare their names and choose the better one. */
3327 if (name_compare (target->name, original->name)
3328 > name_compare (winner->name, original->name))
3329 winner = target;
3330
3331 /* Keep on searching until wqe have checked them all. */
3332 return 0;
3333 }
3334
3335 /* Return the BFD target format of the first input file. */
3336
3337 static const char *
3338 get_first_input_target (void)
3339 {
3340 const char *target = NULL;
3341
3342 LANG_FOR_EACH_INPUT_STATEMENT (s)
3343 {
3344 if (s->header.type == lang_input_statement_enum
3345 && s->flags.real)
3346 {
3347 ldfile_open_file (s);
3348
3349 if (s->the_bfd != NULL
3350 && bfd_check_format (s->the_bfd, bfd_object))
3351 {
3352 target = bfd_get_target (s->the_bfd);
3353
3354 if (target != NULL)
3355 break;
3356 }
3357 }
3358 }
3359
3360 return target;
3361 }
3362
3363 const char *
3364 lang_get_output_target (void)
3365 {
3366 const char *target;
3367
3368 /* Has the user told us which output format to use? */
3369 if (output_target != NULL)
3370 return output_target;
3371
3372 /* No - has the current target been set to something other than
3373 the default? */
3374 if (current_target != default_target && current_target != NULL)
3375 return current_target;
3376
3377 /* No - can we determine the format of the first input file? */
3378 target = get_first_input_target ();
3379 if (target != NULL)
3380 return target;
3381
3382 /* Failed - use the default output target. */
3383 return default_target;
3384 }
3385
3386 /* Open the output file. */
3387
3388 static void
3389 open_output (const char *name)
3390 {
3391 output_target = lang_get_output_target ();
3392
3393 /* Has the user requested a particular endianness on the command
3394 line? */
3395 if (command_line.endian != ENDIAN_UNSET)
3396 {
3397 /* Get the chosen target. */
3398 const bfd_target *target
3399 = bfd_iterate_over_targets (get_target, (void *) output_target);
3400
3401 /* If the target is not supported, we cannot do anything. */
3402 if (target != NULL)
3403 {
3404 enum bfd_endian desired_endian;
3405
3406 if (command_line.endian == ENDIAN_BIG)
3407 desired_endian = BFD_ENDIAN_BIG;
3408 else
3409 desired_endian = BFD_ENDIAN_LITTLE;
3410
3411 /* See if the target has the wrong endianness. This should
3412 not happen if the linker script has provided big and
3413 little endian alternatives, but some scrips don't do
3414 this. */
3415 if (target->byteorder != desired_endian)
3416 {
3417 /* If it does, then see if the target provides
3418 an alternative with the correct endianness. */
3419 if (target->alternative_target != NULL
3420 && (target->alternative_target->byteorder == desired_endian))
3421 output_target = target->alternative_target->name;
3422 else
3423 {
3424 /* Try to find a target as similar as possible to
3425 the default target, but which has the desired
3426 endian characteristic. */
3427 bfd_iterate_over_targets (closest_target_match,
3428 (void *) target);
3429
3430 /* Oh dear - we could not find any targets that
3431 satisfy our requirements. */
3432 if (winner == NULL)
3433 einfo (_("%P: warning: could not find any targets"
3434 " that match endianness requirement\n"));
3435 else
3436 output_target = winner->name;
3437 }
3438 }
3439 }
3440 }
3441
3442 link_info.output_bfd = bfd_openw (name, output_target);
3443
3444 if (link_info.output_bfd == NULL)
3445 {
3446 if (bfd_get_error () == bfd_error_invalid_target)
3447 einfo (_("%F%P: target %s not found\n"), output_target);
3448
3449 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3450 }
3451
3452 delete_output_file_on_failure = TRUE;
3453
3454 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3455 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3456 if (!bfd_set_arch_mach (link_info.output_bfd,
3457 ldfile_output_architecture,
3458 ldfile_output_machine))
3459 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3460
3461 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3462 if (link_info.hash == NULL)
3463 einfo (_("%F%P: can not create hash table: %E\n"));
3464
3465 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3466 }
3467
3468 static void
3469 ldlang_open_output (lang_statement_union_type *statement)
3470 {
3471 switch (statement->header.type)
3472 {
3473 case lang_output_statement_enum:
3474 ASSERT (link_info.output_bfd == NULL);
3475 open_output (statement->output_statement.name);
3476 ldemul_set_output_arch ();
3477 if (config.magic_demand_paged
3478 && !bfd_link_relocatable (&link_info))
3479 link_info.output_bfd->flags |= D_PAGED;
3480 else
3481 link_info.output_bfd->flags &= ~D_PAGED;
3482 if (config.text_read_only)
3483 link_info.output_bfd->flags |= WP_TEXT;
3484 else
3485 link_info.output_bfd->flags &= ~WP_TEXT;
3486 if (link_info.traditional_format)
3487 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3488 else
3489 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3490 break;
3491
3492 case lang_target_statement_enum:
3493 current_target = statement->target_statement.target;
3494 break;
3495 default:
3496 break;
3497 }
3498 }
3499
3500 static void
3501 init_opb (asection *s)
3502 {
3503 unsigned int x;
3504
3505 opb_shift = 0;
3506 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3507 && s != NULL
3508 && (s->flags & SEC_ELF_OCTETS) != 0)
3509 return;
3510
3511 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3512 ldfile_output_machine);
3513 if (x > 1)
3514 while ((x & 1) == 0)
3515 {
3516 x >>= 1;
3517 ++opb_shift;
3518 }
3519 ASSERT (x == 1);
3520 }
3521
3522 /* Open all the input files. */
3523
3524 enum open_bfd_mode
3525 {
3526 OPEN_BFD_NORMAL = 0,
3527 OPEN_BFD_FORCE = 1,
3528 OPEN_BFD_RESCAN = 2
3529 };
3530 #if BFD_SUPPORTS_PLUGINS
3531 static lang_input_statement_type *plugin_insert = NULL;
3532 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3533 #endif
3534
3535 static void
3536 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3537 {
3538 for (; s != NULL; s = s->header.next)
3539 {
3540 switch (s->header.type)
3541 {
3542 case lang_constructors_statement_enum:
3543 open_input_bfds (constructor_list.head, mode);
3544 break;
3545 case lang_output_section_statement_enum:
3546 open_input_bfds (s->output_section_statement.children.head, mode);
3547 break;
3548 case lang_wild_statement_enum:
3549 /* Maybe we should load the file's symbols. */
3550 if ((mode & OPEN_BFD_RESCAN) == 0
3551 && s->wild_statement.filename
3552 && !wildcardp (s->wild_statement.filename)
3553 && !archive_path (s->wild_statement.filename))
3554 lookup_name (s->wild_statement.filename);
3555 open_input_bfds (s->wild_statement.children.head, mode);
3556 break;
3557 case lang_group_statement_enum:
3558 {
3559 struct bfd_link_hash_entry *undefs;
3560 #if BFD_SUPPORTS_PLUGINS
3561 lang_input_statement_type *plugin_insert_save;
3562 #endif
3563
3564 /* We must continually search the entries in the group
3565 until no new symbols are added to the list of undefined
3566 symbols. */
3567
3568 do
3569 {
3570 #if BFD_SUPPORTS_PLUGINS
3571 plugin_insert_save = plugin_insert;
3572 #endif
3573 undefs = link_info.hash->undefs_tail;
3574 open_input_bfds (s->group_statement.children.head,
3575 mode | OPEN_BFD_FORCE);
3576 }
3577 while (undefs != link_info.hash->undefs_tail
3578 #if BFD_SUPPORTS_PLUGINS
3579 /* Objects inserted by a plugin, which are loaded
3580 before we hit this loop, may have added new
3581 undefs. */
3582 || (plugin_insert != plugin_insert_save && plugin_undefs)
3583 #endif
3584 );
3585 }
3586 break;
3587 case lang_target_statement_enum:
3588 current_target = s->target_statement.target;
3589 break;
3590 case lang_input_statement_enum:
3591 if (s->input_statement.flags.real)
3592 {
3593 lang_statement_union_type **os_tail;
3594 lang_statement_list_type add;
3595 bfd *abfd;
3596
3597 s->input_statement.target = current_target;
3598
3599 /* If we are being called from within a group, and this
3600 is an archive which has already been searched, then
3601 force it to be researched unless the whole archive
3602 has been loaded already. Do the same for a rescan.
3603 Likewise reload --as-needed shared libs. */
3604 if (mode != OPEN_BFD_NORMAL
3605 #if BFD_SUPPORTS_PLUGINS
3606 && ((mode & OPEN_BFD_RESCAN) == 0
3607 || plugin_insert == NULL)
3608 #endif
3609 && s->input_statement.flags.loaded
3610 && (abfd = s->input_statement.the_bfd) != NULL
3611 && ((bfd_get_format (abfd) == bfd_archive
3612 && !s->input_statement.flags.whole_archive)
3613 || (bfd_get_format (abfd) == bfd_object
3614 && ((abfd->flags) & DYNAMIC) != 0
3615 && s->input_statement.flags.add_DT_NEEDED_for_regular
3616 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3617 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3618 {
3619 s->input_statement.flags.loaded = FALSE;
3620 s->input_statement.flags.reload = TRUE;
3621 }
3622
3623 os_tail = lang_os_list.tail;
3624 lang_list_init (&add);
3625
3626 if (!load_symbols (&s->input_statement, &add))
3627 config.make_executable = FALSE;
3628
3629 if (add.head != NULL)
3630 {
3631 /* If this was a script with output sections then
3632 tack any added statements on to the end of the
3633 list. This avoids having to reorder the output
3634 section statement list. Very likely the user
3635 forgot -T, and whatever we do here will not meet
3636 naive user expectations. */
3637 if (os_tail != lang_os_list.tail)
3638 {
3639 einfo (_("%P: warning: %s contains output sections;"
3640 " did you forget -T?\n"),
3641 s->input_statement.filename);
3642 *stat_ptr->tail = add.head;
3643 stat_ptr->tail = add.tail;
3644 }
3645 else
3646 {
3647 *add.tail = s->header.next;
3648 s->header.next = add.head;
3649 }
3650 }
3651 }
3652 #if BFD_SUPPORTS_PLUGINS
3653 /* If we have found the point at which a plugin added new
3654 files, clear plugin_insert to enable archive rescan. */
3655 if (&s->input_statement == plugin_insert)
3656 plugin_insert = NULL;
3657 #endif
3658 break;
3659 case lang_assignment_statement_enum:
3660 if (s->assignment_statement.exp->type.node_class != etree_assert)
3661 exp_fold_tree_no_dot (s->assignment_statement.exp);
3662 break;
3663 default:
3664 break;
3665 }
3666 }
3667
3668 /* Exit if any of the files were missing. */
3669 if (input_flags.missing_file)
3670 einfo ("%F");
3671 }
3672
3673 #ifdef ENABLE_LIBCTF
3674 /* Open the CTF sections in the input files with libctf: if any were opened,
3675 create a fake input file that we'll write the merged CTF data to later
3676 on. */
3677
3678 static void
3679 ldlang_open_ctf (void)
3680 {
3681 int any_ctf = 0;
3682 int err;
3683
3684 LANG_FOR_EACH_INPUT_STATEMENT (file)
3685 {
3686 asection *sect;
3687
3688 /* Incoming files from the compiler have a single ctf_file_t in them
3689 (which is presented to us by the libctf API in a ctf_archive_t
3690 wrapper): files derived from a previous relocatable link have a CTF
3691 archive containing possibly many CTF files. */
3692
3693 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3694 {
3695 if (err != ECTF_NOCTFDATA)
3696 einfo (_("%P: warning: CTF section in %pB not loaded; "
3697 "its types will be discarded: `%s'\n"), file->the_bfd,
3698 ctf_errmsg (err));
3699 continue;
3700 }
3701
3702 /* Prevent the contents of this section from being written, while
3703 requiring the section itself to be duplicated in the output, but only
3704 once. */
3705 /* This section must exist if ctf_bfdopen() succeeded. */
3706 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3707 sect->size = 0;
3708 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3709
3710 if (any_ctf)
3711 sect->flags |= SEC_EXCLUDE;
3712 any_ctf = 1;
3713 }
3714
3715 if (!any_ctf)
3716 {
3717 ctf_output = NULL;
3718 return;
3719 }
3720
3721 if ((ctf_output = ctf_create (&err)) != NULL)
3722 return;
3723
3724 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3725 ctf_errmsg (err));
3726
3727 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3728 ctf_close (errfile->the_ctf);
3729 }
3730
3731 /* Emit CTF errors and warnings. */
3732 static void
3733 lang_ctf_errs_warnings (ctf_file_t *fp)
3734 {
3735 ctf_next_t *i = NULL;
3736 char *text;
3737 int is_warning;
3738
3739 while ((text = ctf_errwarning_next (fp, &i, &is_warning)) != NULL)
3740 {
3741 einfo (_("%s: `%s'\n"), is_warning ? _("CTF warning"): _("CTF error"),
3742 text);
3743 free (text);
3744 }
3745 if (ctf_errno (fp) != ECTF_NEXT_END)
3746 {
3747 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3748 ctf_errmsg (ctf_errno (fp)));
3749 }
3750
3751 ASSERT (ctf_errno (fp) != ECTF_INTERNAL);
3752 }
3753
3754 /* Merge together CTF sections. After this, only the symtab-dependent
3755 function and data object sections need adjustment. */
3756
3757 static void
3758 lang_merge_ctf (void)
3759 {
3760 asection *output_sect;
3761 int flags = 0;
3762
3763 if (!ctf_output)
3764 return;
3765
3766 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3767
3768 /* If the section was discarded, don't waste time merging. */
3769 if (output_sect == NULL)
3770 {
3771 ctf_file_close (ctf_output);
3772 ctf_output = NULL;
3773
3774 LANG_FOR_EACH_INPUT_STATEMENT (file)
3775 {
3776 ctf_close (file->the_ctf);
3777 file->the_ctf = NULL;
3778 }
3779 return;
3780 }
3781
3782 LANG_FOR_EACH_INPUT_STATEMENT (file)
3783 {
3784 if (!file->the_ctf)
3785 continue;
3786
3787 /* Takes ownership of file->the_ctf. */
3788 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3789 {
3790 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3791 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3792 ctf_close (file->the_ctf);
3793 file->the_ctf = NULL;
3794 continue;
3795 }
3796 }
3797
3798 if (!config.ctf_share_duplicated)
3799 flags = CTF_LINK_SHARE_UNCONFLICTED;
3800 else
3801 flags = CTF_LINK_SHARE_DUPLICATED;
3802 if (!config.ctf_variables)
3803 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3804
3805 if (ctf_link (ctf_output, flags) < 0)
3806 {
3807 einfo (_("%P: warning: CTF linking failed; "
3808 "output will have no CTF section: `%s'\n"),
3809 ctf_errmsg (ctf_errno (ctf_output)));
3810 if (output_sect)
3811 {
3812 output_sect->size = 0;
3813 output_sect->flags |= SEC_EXCLUDE;
3814 }
3815 }
3816 lang_ctf_errs_warnings (ctf_output);
3817 }
3818
3819 /* Let the emulation examine the symbol table and strtab to help it optimize the
3820 CTF, if supported. */
3821
3822 void
3823 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms, bfd_size_type symcount,
3824 struct elf_strtab_hash *symstrtab)
3825 {
3826 ldemul_examine_strtab_for_ctf (ctf_output, syms, symcount, symstrtab);
3827 }
3828
3829 /* Write out the CTF section. Called early, if the emulation isn't going to
3830 need to dedup against the strtab and symtab, then possibly called from the
3831 target linker code if the dedup has happened. */
3832 static void
3833 lang_write_ctf (int late)
3834 {
3835 size_t output_size;
3836 asection *output_sect;
3837
3838 if (!ctf_output)
3839 return;
3840
3841 if (late)
3842 {
3843 /* Emit CTF late if this emulation says it can do so. */
3844 if (ldemul_emit_ctf_early ())
3845 return;
3846 }
3847 else
3848 {
3849 if (!ldemul_emit_ctf_early ())
3850 return;
3851 }
3852
3853 /* Emit CTF. */
3854
3855 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3856 if (output_sect)
3857 {
3858 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3859 CTF_COMPRESSION_THRESHOLD);
3860 output_sect->size = output_size;
3861 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3862
3863 if (!output_sect->contents)
3864 {
3865 einfo (_("%P: warning: CTF section emission failed; "
3866 "output will have no CTF section: `%s'\n"),
3867 ctf_errmsg (ctf_errno (ctf_output)));
3868 output_sect->size = 0;
3869 output_sect->flags |= SEC_EXCLUDE;
3870 }
3871
3872 lang_ctf_errs_warnings (ctf_output);
3873 }
3874
3875 /* This also closes every CTF input file used in the link. */
3876 ctf_file_close (ctf_output);
3877 ctf_output = NULL;
3878
3879 LANG_FOR_EACH_INPUT_STATEMENT (file)
3880 file->the_ctf = NULL;
3881 }
3882
3883 /* Write out the CTF section late, if the emulation needs that. */
3884
3885 void
3886 ldlang_write_ctf_late (void)
3887 {
3888 /* Trigger a "late call", if the emulation needs one. */
3889
3890 lang_write_ctf (1);
3891 }
3892 #else
3893 static void
3894 ldlang_open_ctf (void)
3895 {
3896 LANG_FOR_EACH_INPUT_STATEMENT (file)
3897 {
3898 asection *sect;
3899
3900 /* If built without CTF, warn and delete all CTF sections from the output.
3901 (The alternative would be to simply concatenate them, which does not
3902 yield a valid CTF section.) */
3903
3904 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3905 {
3906 einfo (_("%P: warning: CTF section in %pB not linkable: "
3907 "%P was built without support for CTF\n"), file->the_bfd);
3908 sect->size = 0;
3909 sect->flags |= SEC_EXCLUDE;
3910 }
3911 }
3912 }
3913
3914 static void lang_merge_ctf (void) {}
3915 void
3916 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms ATTRIBUTE_UNUSED,
3917 bfd_size_type symcount ATTRIBUTE_UNUSED,
3918 struct elf_strtab_hash *symstrtab ATTRIBUTE_UNUSED)
3919 {
3920 }
3921 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3922 void ldlang_write_ctf_late (void) {}
3923 #endif
3924
3925 /* Add the supplied name to the symbol table as an undefined reference.
3926 This is a two step process as the symbol table doesn't even exist at
3927 the time the ld command line is processed. First we put the name
3928 on a list, then, once the output file has been opened, transfer the
3929 name to the symbol table. */
3930
3931 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3932
3933 #define ldlang_undef_chain_list_head entry_symbol.next
3934
3935 void
3936 ldlang_add_undef (const char *const name, bfd_boolean cmdline ATTRIBUTE_UNUSED)
3937 {
3938 ldlang_undef_chain_list_type *new_undef;
3939
3940 new_undef = stat_alloc (sizeof (*new_undef));
3941 new_undef->next = ldlang_undef_chain_list_head;
3942 ldlang_undef_chain_list_head = new_undef;
3943
3944 new_undef->name = xstrdup (name);
3945
3946 if (link_info.output_bfd != NULL)
3947 insert_undefined (new_undef->name);
3948 }
3949
3950 /* Insert NAME as undefined in the symbol table. */
3951
3952 static void
3953 insert_undefined (const char *name)
3954 {
3955 struct bfd_link_hash_entry *h;
3956
3957 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3958 if (h == NULL)
3959 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3960 if (h->type == bfd_link_hash_new)
3961 {
3962 h->type = bfd_link_hash_undefined;
3963 h->u.undef.abfd = NULL;
3964 h->non_ir_ref_regular = TRUE;
3965 if (is_elf_hash_table (link_info.hash))
3966 ((struct elf_link_hash_entry *) h)->mark = 1;
3967 bfd_link_add_undef (link_info.hash, h);
3968 }
3969 }
3970
3971 /* Run through the list of undefineds created above and place them
3972 into the linker hash table as undefined symbols belonging to the
3973 script file. */
3974
3975 static void
3976 lang_place_undefineds (void)
3977 {
3978 ldlang_undef_chain_list_type *ptr;
3979
3980 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3981 insert_undefined (ptr->name);
3982 }
3983
3984 /* Structure used to build the list of symbols that the user has required
3985 be defined. */
3986
3987 struct require_defined_symbol
3988 {
3989 const char *name;
3990 struct require_defined_symbol *next;
3991 };
3992
3993 /* The list of symbols that the user has required be defined. */
3994
3995 static struct require_defined_symbol *require_defined_symbol_list;
3996
3997 /* Add a new symbol NAME to the list of symbols that are required to be
3998 defined. */
3999
4000 void
4001 ldlang_add_require_defined (const char *const name)
4002 {
4003 struct require_defined_symbol *ptr;
4004
4005 ldlang_add_undef (name, TRUE);
4006 ptr = stat_alloc (sizeof (*ptr));
4007 ptr->next = require_defined_symbol_list;
4008 ptr->name = strdup (name);
4009 require_defined_symbol_list = ptr;
4010 }
4011
4012 /* Check that all symbols the user required to be defined, are defined,
4013 raise an error if we find a symbol that is not defined. */
4014
4015 static void
4016 ldlang_check_require_defined_symbols (void)
4017 {
4018 struct require_defined_symbol *ptr;
4019
4020 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4021 {
4022 struct bfd_link_hash_entry *h;
4023
4024 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4025 FALSE, FALSE, TRUE);
4026 if (h == NULL
4027 || (h->type != bfd_link_hash_defined
4028 && h->type != bfd_link_hash_defweak))
4029 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4030 }
4031 }
4032
4033 /* Check for all readonly or some readwrite sections. */
4034
4035 static void
4036 check_input_sections
4037 (lang_statement_union_type *s,
4038 lang_output_section_statement_type *output_section_statement)
4039 {
4040 for (; s != NULL; s = s->header.next)
4041 {
4042 switch (s->header.type)
4043 {
4044 case lang_wild_statement_enum:
4045 walk_wild (&s->wild_statement, check_section_callback,
4046 output_section_statement);
4047 if (!output_section_statement->all_input_readonly)
4048 return;
4049 break;
4050 case lang_constructors_statement_enum:
4051 check_input_sections (constructor_list.head,
4052 output_section_statement);
4053 if (!output_section_statement->all_input_readonly)
4054 return;
4055 break;
4056 case lang_group_statement_enum:
4057 check_input_sections (s->group_statement.children.head,
4058 output_section_statement);
4059 if (!output_section_statement->all_input_readonly)
4060 return;
4061 break;
4062 default:
4063 break;
4064 }
4065 }
4066 }
4067
4068 /* Update wildcard statements if needed. */
4069
4070 static void
4071 update_wild_statements (lang_statement_union_type *s)
4072 {
4073 struct wildcard_list *sec;
4074
4075 switch (sort_section)
4076 {
4077 default:
4078 FAIL ();
4079
4080 case none:
4081 break;
4082
4083 case by_name:
4084 case by_alignment:
4085 for (; s != NULL; s = s->header.next)
4086 {
4087 switch (s->header.type)
4088 {
4089 default:
4090 break;
4091
4092 case lang_wild_statement_enum:
4093 for (sec = s->wild_statement.section_list; sec != NULL;
4094 sec = sec->next)
4095 /* Don't sort .init/.fini sections. */
4096 if (strcmp (sec->spec.name, ".init") != 0
4097 && strcmp (sec->spec.name, ".fini") != 0)
4098 switch (sec->spec.sorted)
4099 {
4100 case none:
4101 sec->spec.sorted = sort_section;
4102 break;
4103 case by_name:
4104 if (sort_section == by_alignment)
4105 sec->spec.sorted = by_name_alignment;
4106 break;
4107 case by_alignment:
4108 if (sort_section == by_name)
4109 sec->spec.sorted = by_alignment_name;
4110 break;
4111 default:
4112 break;
4113 }
4114 break;
4115
4116 case lang_constructors_statement_enum:
4117 update_wild_statements (constructor_list.head);
4118 break;
4119
4120 case lang_output_section_statement_enum:
4121 update_wild_statements
4122 (s->output_section_statement.children.head);
4123 break;
4124
4125 case lang_group_statement_enum:
4126 update_wild_statements (s->group_statement.children.head);
4127 break;
4128 }
4129 }
4130 break;
4131 }
4132 }
4133
4134 /* Open input files and attach to output sections. */
4135
4136 static void
4137 map_input_to_output_sections
4138 (lang_statement_union_type *s, const char *target,
4139 lang_output_section_statement_type *os)
4140 {
4141 for (; s != NULL; s = s->header.next)
4142 {
4143 lang_output_section_statement_type *tos;
4144 flagword flags;
4145
4146 switch (s->header.type)
4147 {
4148 case lang_wild_statement_enum:
4149 wild (&s->wild_statement, target, os);
4150 break;
4151 case lang_constructors_statement_enum:
4152 map_input_to_output_sections (constructor_list.head,
4153 target,
4154 os);
4155 break;
4156 case lang_output_section_statement_enum:
4157 tos = &s->output_section_statement;
4158 if (tos->constraint != 0)
4159 {
4160 if (tos->constraint != ONLY_IF_RW
4161 && tos->constraint != ONLY_IF_RO)
4162 break;
4163 tos->all_input_readonly = TRUE;
4164 check_input_sections (tos->children.head, tos);
4165 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4166 {
4167 tos->constraint = -1;
4168 break;
4169 }
4170 }
4171 map_input_to_output_sections (tos->children.head,
4172 target,
4173 tos);
4174 break;
4175 case lang_output_statement_enum:
4176 break;
4177 case lang_target_statement_enum:
4178 target = s->target_statement.target;
4179 break;
4180 case lang_group_statement_enum:
4181 map_input_to_output_sections (s->group_statement.children.head,
4182 target,
4183 os);
4184 break;
4185 case lang_data_statement_enum:
4186 /* Make sure that any sections mentioned in the expression
4187 are initialized. */
4188 exp_init_os (s->data_statement.exp);
4189 /* The output section gets CONTENTS, ALLOC and LOAD, but
4190 these may be overridden by the script. */
4191 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4192 switch (os->sectype)
4193 {
4194 case normal_section:
4195 case overlay_section:
4196 case first_overlay_section:
4197 break;
4198 case noalloc_section:
4199 flags = SEC_HAS_CONTENTS;
4200 break;
4201 case noload_section:
4202 if (bfd_get_flavour (link_info.output_bfd)
4203 == bfd_target_elf_flavour)
4204 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4205 else
4206 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4207 break;
4208 }
4209 if (os->bfd_section == NULL)
4210 init_os (os, flags);
4211 else
4212 os->bfd_section->flags |= flags;
4213 break;
4214 case lang_input_section_enum:
4215 break;
4216 case lang_fill_statement_enum:
4217 case lang_object_symbols_statement_enum:
4218 case lang_reloc_statement_enum:
4219 case lang_padding_statement_enum:
4220 case lang_input_statement_enum:
4221 if (os != NULL && os->bfd_section == NULL)
4222 init_os (os, 0);
4223 break;
4224 case lang_assignment_statement_enum:
4225 if (os != NULL && os->bfd_section == NULL)
4226 init_os (os, 0);
4227
4228 /* Make sure that any sections mentioned in the assignment
4229 are initialized. */
4230 exp_init_os (s->assignment_statement.exp);
4231 break;
4232 case lang_address_statement_enum:
4233 /* Mark the specified section with the supplied address.
4234 If this section was actually a segment marker, then the
4235 directive is ignored if the linker script explicitly
4236 processed the segment marker. Originally, the linker
4237 treated segment directives (like -Ttext on the
4238 command-line) as section directives. We honor the
4239 section directive semantics for backwards compatibility;
4240 linker scripts that do not specifically check for
4241 SEGMENT_START automatically get the old semantics. */
4242 if (!s->address_statement.segment
4243 || !s->address_statement.segment->used)
4244 {
4245 const char *name = s->address_statement.section_name;
4246
4247 /* Create the output section statement here so that
4248 orphans with a set address will be placed after other
4249 script sections. If we let the orphan placement code
4250 place them in amongst other sections then the address
4251 will affect following script sections, which is
4252 likely to surprise naive users. */
4253 tos = lang_output_section_statement_lookup (name, 0, TRUE);
4254 tos->addr_tree = s->address_statement.address;
4255 if (tos->bfd_section == NULL)
4256 init_os (tos, 0);
4257 }
4258 break;
4259 case lang_insert_statement_enum:
4260 break;
4261 }
4262 }
4263 }
4264
4265 /* An insert statement snips out all the linker statements from the
4266 start of the list and places them after the output section
4267 statement specified by the insert. This operation is complicated
4268 by the fact that we keep a doubly linked list of output section
4269 statements as well as the singly linked list of all statements.
4270 FIXME someday: Twiddling with the list not only moves statements
4271 from the user's script but also input and group statements that are
4272 built from command line object files and --start-group. We only
4273 get away with this because the list pointers used by file_chain
4274 and input_file_chain are not reordered, and processing via
4275 statement_list after this point mostly ignores input statements.
4276 One exception is the map file, where LOAD and START GROUP/END GROUP
4277 can end up looking odd. */
4278
4279 static void
4280 process_insert_statements (lang_statement_union_type **start)
4281 {
4282 lang_statement_union_type **s;
4283 lang_output_section_statement_type *first_os = NULL;
4284 lang_output_section_statement_type *last_os = NULL;
4285 lang_output_section_statement_type *os;
4286
4287 s = start;
4288 while (*s != NULL)
4289 {
4290 if ((*s)->header.type == lang_output_section_statement_enum)
4291 {
4292 /* Keep pointers to the first and last output section
4293 statement in the sequence we may be about to move. */
4294 os = &(*s)->output_section_statement;
4295
4296 ASSERT (last_os == NULL || last_os->next == os);
4297 last_os = os;
4298
4299 /* Set constraint negative so that lang_output_section_find
4300 won't match this output section statement. At this
4301 stage in linking constraint has values in the range
4302 [-1, ONLY_IN_RW]. */
4303 last_os->constraint = -2 - last_os->constraint;
4304 if (first_os == NULL)
4305 first_os = last_os;
4306 }
4307 else if ((*s)->header.type == lang_group_statement_enum)
4308 {
4309 /* A user might put -T between --start-group and
4310 --end-group. One way this odd construct might arise is
4311 from a wrapper around ld to change library search
4312 behaviour. For example:
4313 #! /bin/sh
4314 exec real_ld --start-group "$@" --end-group
4315 This isn't completely unreasonable so go looking inside a
4316 group statement for insert statements. */
4317 process_insert_statements (&(*s)->group_statement.children.head);
4318 }
4319 else if ((*s)->header.type == lang_insert_statement_enum)
4320 {
4321 lang_insert_statement_type *i = &(*s)->insert_statement;
4322 lang_output_section_statement_type *where;
4323 lang_statement_union_type **ptr;
4324 lang_statement_union_type *first;
4325
4326 if (link_info.non_contiguous_regions)
4327 {
4328 einfo (_("warning: INSERT statement in linker script is "
4329 "incompatible with --enable-non-contiguous-regions.\n"));
4330 }
4331
4332 where = lang_output_section_find (i->where);
4333 if (where != NULL && i->is_before)
4334 {
4335 do
4336 where = where->prev;
4337 while (where != NULL && where->constraint < 0);
4338 }
4339 if (where == NULL)
4340 {
4341 einfo (_("%F%P: %s not found for insert\n"), i->where);
4342 return;
4343 }
4344
4345 /* Deal with reordering the output section statement list. */
4346 if (last_os != NULL)
4347 {
4348 asection *first_sec, *last_sec;
4349 struct lang_output_section_statement_struct **next;
4350
4351 /* Snip out the output sections we are moving. */
4352 first_os->prev->next = last_os->next;
4353 if (last_os->next == NULL)
4354 {
4355 next = &first_os->prev->next;
4356 lang_os_list.tail = (lang_statement_union_type **) next;
4357 }
4358 else
4359 last_os->next->prev = first_os->prev;
4360 /* Add them in at the new position. */
4361 last_os->next = where->next;
4362 if (where->next == NULL)
4363 {
4364 next = &last_os->next;
4365 lang_os_list.tail = (lang_statement_union_type **) next;
4366 }
4367 else
4368 where->next->prev = last_os;
4369 first_os->prev = where;
4370 where->next = first_os;
4371
4372 /* Move the bfd sections in the same way. */
4373 first_sec = NULL;
4374 last_sec = NULL;
4375 for (os = first_os; os != NULL; os = os->next)
4376 {
4377 os->constraint = -2 - os->constraint;
4378 if (os->bfd_section != NULL
4379 && os->bfd_section->owner != NULL)
4380 {
4381 last_sec = os->bfd_section;
4382 if (first_sec == NULL)
4383 first_sec = last_sec;
4384 }
4385 if (os == last_os)
4386 break;
4387 }
4388 if (last_sec != NULL)
4389 {
4390 asection *sec = where->bfd_section;
4391 if (sec == NULL)
4392 sec = output_prev_sec_find (where);
4393
4394 /* The place we want to insert must come after the
4395 sections we are moving. So if we find no
4396 section or if the section is the same as our
4397 last section, then no move is needed. */
4398 if (sec != NULL && sec != last_sec)
4399 {
4400 /* Trim them off. */
4401 if (first_sec->prev != NULL)
4402 first_sec->prev->next = last_sec->next;
4403 else
4404 link_info.output_bfd->sections = last_sec->next;
4405 if (last_sec->next != NULL)
4406 last_sec->next->prev = first_sec->prev;
4407 else
4408 link_info.output_bfd->section_last = first_sec->prev;
4409 /* Add back. */
4410 last_sec->next = sec->next;
4411 if (sec->next != NULL)
4412 sec->next->prev = last_sec;
4413 else
4414 link_info.output_bfd->section_last = last_sec;
4415 first_sec->prev = sec;
4416 sec->next = first_sec;
4417 }
4418 }
4419
4420 first_os = NULL;
4421 last_os = NULL;
4422 }
4423
4424 ptr = insert_os_after (where);
4425 /* Snip everything from the start of the list, up to and
4426 including the insert statement we are currently processing. */
4427 first = *start;
4428 *start = (*s)->header.next;
4429 /* Add them back where they belong, minus the insert. */
4430 *s = *ptr;
4431 if (*s == NULL)
4432 statement_list.tail = s;
4433 *ptr = first;
4434 s = start;
4435 continue;
4436 }
4437 s = &(*s)->header.next;
4438 }
4439
4440 /* Undo constraint twiddling. */
4441 for (os = first_os; os != NULL; os = os->next)
4442 {
4443 os->constraint = -2 - os->constraint;
4444 if (os == last_os)
4445 break;
4446 }
4447 }
4448
4449 /* An output section might have been removed after its statement was
4450 added. For example, ldemul_before_allocation can remove dynamic
4451 sections if they turn out to be not needed. Clean them up here. */
4452
4453 void
4454 strip_excluded_output_sections (void)
4455 {
4456 lang_output_section_statement_type *os;
4457
4458 /* Run lang_size_sections (if not already done). */
4459 if (expld.phase != lang_mark_phase_enum)
4460 {
4461 expld.phase = lang_mark_phase_enum;
4462 expld.dataseg.phase = exp_seg_none;
4463 one_lang_size_sections_pass (NULL, FALSE);
4464 lang_reset_memory_regions ();
4465 }
4466
4467 for (os = (void *) lang_os_list.head;
4468 os != NULL;
4469 os = os->next)
4470 {
4471 asection *output_section;
4472 bfd_boolean exclude;
4473
4474 if (os->constraint < 0)
4475 continue;
4476
4477 output_section = os->bfd_section;
4478 if (output_section == NULL)
4479 continue;
4480
4481 exclude = (output_section->rawsize == 0
4482 && (output_section->flags & SEC_KEEP) == 0
4483 && !bfd_section_removed_from_list (link_info.output_bfd,
4484 output_section));
4485
4486 /* Some sections have not yet been sized, notably .gnu.version,
4487 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4488 input sections, so don't drop output sections that have such
4489 input sections unless they are also marked SEC_EXCLUDE. */
4490 if (exclude && output_section->map_head.s != NULL)
4491 {
4492 asection *s;
4493
4494 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4495 if ((s->flags & SEC_EXCLUDE) == 0
4496 && ((s->flags & SEC_LINKER_CREATED) != 0
4497 || link_info.emitrelocations))
4498 {
4499 exclude = FALSE;
4500 break;
4501 }
4502 }
4503
4504 if (exclude)
4505 {
4506 /* We don't set bfd_section to NULL since bfd_section of the
4507 removed output section statement may still be used. */
4508 if (!os->update_dot)
4509 os->ignored = TRUE;
4510 output_section->flags |= SEC_EXCLUDE;
4511 bfd_section_list_remove (link_info.output_bfd, output_section);
4512 link_info.output_bfd->section_count--;
4513 }
4514 }
4515 }
4516
4517 /* Called from ldwrite to clear out asection.map_head and
4518 asection.map_tail for use as link_orders in ldwrite. */
4519
4520 void
4521 lang_clear_os_map (void)
4522 {
4523 lang_output_section_statement_type *os;
4524
4525 if (map_head_is_link_order)
4526 return;
4527
4528 for (os = (void *) lang_os_list.head;
4529 os != NULL;
4530 os = os->next)
4531 {
4532 asection *output_section;
4533
4534 if (os->constraint < 0)
4535 continue;
4536
4537 output_section = os->bfd_section;
4538 if (output_section == NULL)
4539 continue;
4540
4541 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4542 output_section->map_head.link_order = NULL;
4543 output_section->map_tail.link_order = NULL;
4544 }
4545
4546 /* Stop future calls to lang_add_section from messing with map_head
4547 and map_tail link_order fields. */
4548 map_head_is_link_order = TRUE;
4549 }
4550
4551 static void
4552 print_output_section_statement
4553 (lang_output_section_statement_type *output_section_statement)
4554 {
4555 asection *section = output_section_statement->bfd_section;
4556 int len;
4557
4558 if (output_section_statement != abs_output_section)
4559 {
4560 minfo ("\n%s", output_section_statement->name);
4561
4562 if (section != NULL)
4563 {
4564 print_dot = section->vma;
4565
4566 len = strlen (output_section_statement->name);
4567 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4568 {
4569 print_nl ();
4570 len = 0;
4571 }
4572 while (len < SECTION_NAME_MAP_LENGTH)
4573 {
4574 print_space ();
4575 ++len;
4576 }
4577
4578 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4579
4580 if (section->vma != section->lma)
4581 minfo (_(" load address 0x%V"), section->lma);
4582
4583 if (output_section_statement->update_dot_tree != NULL)
4584 exp_fold_tree (output_section_statement->update_dot_tree,
4585 bfd_abs_section_ptr, &print_dot);
4586 }
4587
4588 print_nl ();
4589 }
4590
4591 print_statement_list (output_section_statement->children.head,
4592 output_section_statement);
4593 }
4594
4595 static void
4596 print_assignment (lang_assignment_statement_type *assignment,
4597 lang_output_section_statement_type *output_section)
4598 {
4599 unsigned int i;
4600 bfd_boolean is_dot;
4601 etree_type *tree;
4602 asection *osec;
4603
4604 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4605 print_space ();
4606
4607 if (assignment->exp->type.node_class == etree_assert)
4608 {
4609 is_dot = FALSE;
4610 tree = assignment->exp->assert_s.child;
4611 }
4612 else
4613 {
4614 const char *dst = assignment->exp->assign.dst;
4615
4616 is_dot = (dst[0] == '.' && dst[1] == 0);
4617 tree = assignment->exp;
4618 }
4619
4620 osec = output_section->bfd_section;
4621 if (osec == NULL)
4622 osec = bfd_abs_section_ptr;
4623
4624 if (assignment->exp->type.node_class != etree_provide)
4625 exp_fold_tree (tree, osec, &print_dot);
4626 else
4627 expld.result.valid_p = FALSE;
4628
4629 if (expld.result.valid_p)
4630 {
4631 bfd_vma value;
4632
4633 if (assignment->exp->type.node_class == etree_assert
4634 || is_dot
4635 || expld.assign_name != NULL)
4636 {
4637 value = expld.result.value;
4638
4639 if (expld.result.section != NULL)
4640 value += expld.result.section->vma;
4641
4642 minfo ("0x%V", value);
4643 if (is_dot)
4644 print_dot = value;
4645 }
4646 else
4647 {
4648 struct bfd_link_hash_entry *h;
4649
4650 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4651 FALSE, FALSE, TRUE);
4652 if (h != NULL
4653 && (h->type == bfd_link_hash_defined
4654 || h->type == bfd_link_hash_defweak))
4655 {
4656 value = h->u.def.value;
4657 value += h->u.def.section->output_section->vma;
4658 value += h->u.def.section->output_offset;
4659
4660 minfo ("[0x%V]", value);
4661 }
4662 else
4663 minfo ("[unresolved]");
4664 }
4665 }
4666 else
4667 {
4668 if (assignment->exp->type.node_class == etree_provide)
4669 minfo ("[!provide]");
4670 else
4671 minfo ("*undef* ");
4672 #ifdef BFD64
4673 minfo (" ");
4674 #endif
4675 }
4676 expld.assign_name = NULL;
4677
4678 minfo (" ");
4679 exp_print_tree (assignment->exp);
4680 print_nl ();
4681 }
4682
4683 static void
4684 print_input_statement (lang_input_statement_type *statm)
4685 {
4686 if (statm->filename != NULL)
4687 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4688 }
4689
4690 /* Print all symbols defined in a particular section. This is called
4691 via bfd_link_hash_traverse, or by print_all_symbols. */
4692
4693 bfd_boolean
4694 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4695 {
4696 asection *sec = (asection *) ptr;
4697
4698 if ((hash_entry->type == bfd_link_hash_defined
4699 || hash_entry->type == bfd_link_hash_defweak)
4700 && sec == hash_entry->u.def.section)
4701 {
4702 int i;
4703
4704 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4705 print_space ();
4706 minfo ("0x%V ",
4707 (hash_entry->u.def.value
4708 + hash_entry->u.def.section->output_offset
4709 + hash_entry->u.def.section->output_section->vma));
4710
4711 minfo (" %pT\n", hash_entry->root.string);
4712 }
4713
4714 return TRUE;
4715 }
4716
4717 static int
4718 hash_entry_addr_cmp (const void *a, const void *b)
4719 {
4720 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4721 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4722
4723 if (l->u.def.value < r->u.def.value)
4724 return -1;
4725 else if (l->u.def.value > r->u.def.value)
4726 return 1;
4727 else
4728 return 0;
4729 }
4730
4731 static void
4732 print_all_symbols (asection *sec)
4733 {
4734 input_section_userdata_type *ud = bfd_section_userdata (sec);
4735 struct map_symbol_def *def;
4736 struct bfd_link_hash_entry **entries;
4737 unsigned int i;
4738
4739 if (!ud)
4740 return;
4741
4742 *ud->map_symbol_def_tail = 0;
4743
4744 /* Sort the symbols by address. */
4745 entries = (struct bfd_link_hash_entry **)
4746 obstack_alloc (&map_obstack,
4747 ud->map_symbol_def_count * sizeof (*entries));
4748
4749 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4750 entries[i] = def->entry;
4751
4752 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4753 hash_entry_addr_cmp);
4754
4755 /* Print the symbols. */
4756 for (i = 0; i < ud->map_symbol_def_count; i++)
4757 ldemul_print_symbol (entries[i], sec);
4758
4759 obstack_free (&map_obstack, entries);
4760 }
4761
4762 /* Print information about an input section to the map file. */
4763
4764 static void
4765 print_input_section (asection *i, bfd_boolean is_discarded)
4766 {
4767 bfd_size_type size = i->size;
4768 int len;
4769 bfd_vma addr;
4770
4771 init_opb (i);
4772
4773 print_space ();
4774 minfo ("%s", i->name);
4775
4776 len = 1 + strlen (i->name);
4777 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4778 {
4779 print_nl ();
4780 len = 0;
4781 }
4782 while (len < SECTION_NAME_MAP_LENGTH)
4783 {
4784 print_space ();
4785 ++len;
4786 }
4787
4788 if (i->output_section != NULL
4789 && i->output_section->owner == link_info.output_bfd)
4790 addr = i->output_section->vma + i->output_offset;
4791 else
4792 {
4793 addr = print_dot;
4794 if (!is_discarded)
4795 size = 0;
4796 }
4797
4798 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4799
4800 if (size != i->rawsize && i->rawsize != 0)
4801 {
4802 len = SECTION_NAME_MAP_LENGTH + 3;
4803 #ifdef BFD64
4804 len += 16;
4805 #else
4806 len += 8;
4807 #endif
4808 while (len > 0)
4809 {
4810 print_space ();
4811 --len;
4812 }
4813
4814 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4815 }
4816
4817 if (i->output_section != NULL
4818 && i->output_section->owner == link_info.output_bfd)
4819 {
4820 if (link_info.reduce_memory_overheads)
4821 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4822 else
4823 print_all_symbols (i);
4824
4825 /* Update print_dot, but make sure that we do not move it
4826 backwards - this could happen if we have overlays and a
4827 later overlay is shorter than an earier one. */
4828 if (addr + TO_ADDR (size) > print_dot)
4829 print_dot = addr + TO_ADDR (size);
4830 }
4831 }
4832
4833 static void
4834 print_fill_statement (lang_fill_statement_type *fill)
4835 {
4836 size_t size;
4837 unsigned char *p;
4838 fputs (" FILL mask 0x", config.map_file);
4839 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4840 fprintf (config.map_file, "%02x", *p);
4841 fputs ("\n", config.map_file);
4842 }
4843
4844 static void
4845 print_data_statement (lang_data_statement_type *data)
4846 {
4847 int i;
4848 bfd_vma addr;
4849 bfd_size_type size;
4850 const char *name;
4851
4852 init_opb (data->output_section);
4853 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4854 print_space ();
4855
4856 addr = data->output_offset;
4857 if (data->output_section != NULL)
4858 addr += data->output_section->vma;
4859
4860 switch (data->type)
4861 {
4862 default:
4863 abort ();
4864 case BYTE:
4865 size = BYTE_SIZE;
4866 name = "BYTE";
4867 break;
4868 case SHORT:
4869 size = SHORT_SIZE;
4870 name = "SHORT";
4871 break;
4872 case LONG:
4873 size = LONG_SIZE;
4874 name = "LONG";
4875 break;
4876 case QUAD:
4877 size = QUAD_SIZE;
4878 name = "QUAD";
4879 break;
4880 case SQUAD:
4881 size = QUAD_SIZE;
4882 name = "SQUAD";
4883 break;
4884 }
4885
4886 if (size < TO_SIZE ((unsigned) 1))
4887 size = TO_SIZE ((unsigned) 1);
4888 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4889
4890 if (data->exp->type.node_class != etree_value)
4891 {
4892 print_space ();
4893 exp_print_tree (data->exp);
4894 }
4895
4896 print_nl ();
4897
4898 print_dot = addr + TO_ADDR (size);
4899 }
4900
4901 /* Print an address statement. These are generated by options like
4902 -Ttext. */
4903
4904 static void
4905 print_address_statement (lang_address_statement_type *address)
4906 {
4907 minfo (_("Address of section %s set to "), address->section_name);
4908 exp_print_tree (address->address);
4909 print_nl ();
4910 }
4911
4912 /* Print a reloc statement. */
4913
4914 static void
4915 print_reloc_statement (lang_reloc_statement_type *reloc)
4916 {
4917 int i;
4918 bfd_vma addr;
4919 bfd_size_type size;
4920
4921 init_opb (reloc->output_section);
4922 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4923 print_space ();
4924
4925 addr = reloc->output_offset;
4926 if (reloc->output_section != NULL)
4927 addr += reloc->output_section->vma;
4928
4929 size = bfd_get_reloc_size (reloc->howto);
4930
4931 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4932
4933 if (reloc->name != NULL)
4934 minfo ("%s+", reloc->name);
4935 else
4936 minfo ("%s+", reloc->section->name);
4937
4938 exp_print_tree (reloc->addend_exp);
4939
4940 print_nl ();
4941
4942 print_dot = addr + TO_ADDR (size);
4943 }
4944
4945 static void
4946 print_padding_statement (lang_padding_statement_type *s)
4947 {
4948 int len;
4949 bfd_vma addr;
4950
4951 init_opb (s->output_section);
4952 minfo (" *fill*");
4953
4954 len = sizeof " *fill*" - 1;
4955 while (len < SECTION_NAME_MAP_LENGTH)
4956 {
4957 print_space ();
4958 ++len;
4959 }
4960
4961 addr = s->output_offset;
4962 if (s->output_section != NULL)
4963 addr += s->output_section->vma;
4964 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4965
4966 if (s->fill->size != 0)
4967 {
4968 size_t size;
4969 unsigned char *p;
4970 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4971 fprintf (config.map_file, "%02x", *p);
4972 }
4973
4974 print_nl ();
4975
4976 print_dot = addr + TO_ADDR (s->size);
4977 }
4978
4979 static void
4980 print_wild_statement (lang_wild_statement_type *w,
4981 lang_output_section_statement_type *os)
4982 {
4983 struct wildcard_list *sec;
4984
4985 print_space ();
4986
4987 if (w->exclude_name_list)
4988 {
4989 name_list *tmp;
4990 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4991 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4992 minfo (" %s", tmp->name);
4993 minfo (") ");
4994 }
4995
4996 if (w->filenames_sorted)
4997 minfo ("SORT_BY_NAME(");
4998 if (w->filename != NULL)
4999 minfo ("%s", w->filename);
5000 else
5001 minfo ("*");
5002 if (w->filenames_sorted)
5003 minfo (")");
5004
5005 minfo ("(");
5006 for (sec = w->section_list; sec; sec = sec->next)
5007 {
5008 int closing_paren = 0;
5009
5010 switch (sec->spec.sorted)
5011 {
5012 case none:
5013 break;
5014
5015 case by_name:
5016 minfo ("SORT_BY_NAME(");
5017 closing_paren = 1;
5018 break;
5019
5020 case by_alignment:
5021 minfo ("SORT_BY_ALIGNMENT(");
5022 closing_paren = 1;
5023 break;
5024
5025 case by_name_alignment:
5026 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5027 closing_paren = 2;
5028 break;
5029
5030 case by_alignment_name:
5031 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5032 closing_paren = 2;
5033 break;
5034
5035 case by_none:
5036 minfo ("SORT_NONE(");
5037 closing_paren = 1;
5038 break;
5039
5040 case by_init_priority:
5041 minfo ("SORT_BY_INIT_PRIORITY(");
5042 closing_paren = 1;
5043 break;
5044 }
5045
5046 if (sec->spec.exclude_name_list != NULL)
5047 {
5048 name_list *tmp;
5049 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5050 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5051 minfo (" %s", tmp->name);
5052 minfo (") ");
5053 }
5054 if (sec->spec.name != NULL)
5055 minfo ("%s", sec->spec.name);
5056 else
5057 minfo ("*");
5058 for (;closing_paren > 0; closing_paren--)
5059 minfo (")");
5060 if (sec->next)
5061 minfo (" ");
5062 }
5063 minfo (")");
5064
5065 print_nl ();
5066
5067 print_statement_list (w->children.head, os);
5068 }
5069
5070 /* Print a group statement. */
5071
5072 static void
5073 print_group (lang_group_statement_type *s,
5074 lang_output_section_statement_type *os)
5075 {
5076 fprintf (config.map_file, "START GROUP\n");
5077 print_statement_list (s->children.head, os);
5078 fprintf (config.map_file, "END GROUP\n");
5079 }
5080
5081 /* Print the list of statements in S.
5082 This can be called for any statement type. */
5083
5084 static void
5085 print_statement_list (lang_statement_union_type *s,
5086 lang_output_section_statement_type *os)
5087 {
5088 while (s != NULL)
5089 {
5090 print_statement (s, os);
5091 s = s->header.next;
5092 }
5093 }
5094
5095 /* Print the first statement in statement list S.
5096 This can be called for any statement type. */
5097
5098 static void
5099 print_statement (lang_statement_union_type *s,
5100 lang_output_section_statement_type *os)
5101 {
5102 switch (s->header.type)
5103 {
5104 default:
5105 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5106 FAIL ();
5107 break;
5108 case lang_constructors_statement_enum:
5109 if (constructor_list.head != NULL)
5110 {
5111 if (constructors_sorted)
5112 minfo (" SORT (CONSTRUCTORS)\n");
5113 else
5114 minfo (" CONSTRUCTORS\n");
5115 print_statement_list (constructor_list.head, os);
5116 }
5117 break;
5118 case lang_wild_statement_enum:
5119 print_wild_statement (&s->wild_statement, os);
5120 break;
5121 case lang_address_statement_enum:
5122 print_address_statement (&s->address_statement);
5123 break;
5124 case lang_object_symbols_statement_enum:
5125 minfo (" CREATE_OBJECT_SYMBOLS\n");
5126 break;
5127 case lang_fill_statement_enum:
5128 print_fill_statement (&s->fill_statement);
5129 break;
5130 case lang_data_statement_enum:
5131 print_data_statement (&s->data_statement);
5132 break;
5133 case lang_reloc_statement_enum:
5134 print_reloc_statement (&s->reloc_statement);
5135 break;
5136 case lang_input_section_enum:
5137 print_input_section (s->input_section.section, FALSE);
5138 break;
5139 case lang_padding_statement_enum:
5140 print_padding_statement (&s->padding_statement);
5141 break;
5142 case lang_output_section_statement_enum:
5143 print_output_section_statement (&s->output_section_statement);
5144 break;
5145 case lang_assignment_statement_enum:
5146 print_assignment (&s->assignment_statement, os);
5147 break;
5148 case lang_target_statement_enum:
5149 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5150 break;
5151 case lang_output_statement_enum:
5152 minfo ("OUTPUT(%s", s->output_statement.name);
5153 if (output_target != NULL)
5154 minfo (" %s", output_target);
5155 minfo (")\n");
5156 break;
5157 case lang_input_statement_enum:
5158 print_input_statement (&s->input_statement);
5159 break;
5160 case lang_group_statement_enum:
5161 print_group (&s->group_statement, os);
5162 break;
5163 case lang_insert_statement_enum:
5164 minfo ("INSERT %s %s\n",
5165 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5166 s->insert_statement.where);
5167 break;
5168 }
5169 }
5170
5171 static void
5172 print_statements (void)
5173 {
5174 print_statement_list (statement_list.head, abs_output_section);
5175 }
5176
5177 /* Print the first N statements in statement list S to STDERR.
5178 If N == 0, nothing is printed.
5179 If N < 0, the entire list is printed.
5180 Intended to be called from GDB. */
5181
5182 void
5183 dprint_statement (lang_statement_union_type *s, int n)
5184 {
5185 FILE *map_save = config.map_file;
5186
5187 config.map_file = stderr;
5188
5189 if (n < 0)
5190 print_statement_list (s, abs_output_section);
5191 else
5192 {
5193 while (s && --n >= 0)
5194 {
5195 print_statement (s, abs_output_section);
5196 s = s->header.next;
5197 }
5198 }
5199
5200 config.map_file = map_save;
5201 }
5202
5203 static void
5204 insert_pad (lang_statement_union_type **ptr,
5205 fill_type *fill,
5206 bfd_size_type alignment_needed,
5207 asection *output_section,
5208 bfd_vma dot)
5209 {
5210 static fill_type zero_fill;
5211 lang_statement_union_type *pad = NULL;
5212
5213 if (ptr != &statement_list.head)
5214 pad = ((lang_statement_union_type *)
5215 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5216 if (pad != NULL
5217 && pad->header.type == lang_padding_statement_enum
5218 && pad->padding_statement.output_section == output_section)
5219 {
5220 /* Use the existing pad statement. */
5221 }
5222 else if ((pad = *ptr) != NULL
5223 && pad->header.type == lang_padding_statement_enum
5224 && pad->padding_statement.output_section == output_section)
5225 {
5226 /* Use the existing pad statement. */
5227 }
5228 else
5229 {
5230 /* Make a new padding statement, linked into existing chain. */
5231 pad = stat_alloc (sizeof (lang_padding_statement_type));
5232 pad->header.next = *ptr;
5233 *ptr = pad;
5234 pad->header.type = lang_padding_statement_enum;
5235 pad->padding_statement.output_section = output_section;
5236 if (fill == NULL)
5237 fill = &zero_fill;
5238 pad->padding_statement.fill = fill;
5239 }
5240 pad->padding_statement.output_offset = dot - output_section->vma;
5241 pad->padding_statement.size = alignment_needed;
5242 if (!(output_section->flags & SEC_FIXED_SIZE))
5243 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5244 - output_section->vma);
5245 }
5246
5247 /* Work out how much this section will move the dot point. */
5248
5249 static bfd_vma
5250 size_input_section
5251 (lang_statement_union_type **this_ptr,
5252 lang_output_section_statement_type *output_section_statement,
5253 fill_type *fill,
5254 bfd_boolean *removed,
5255 bfd_vma dot)
5256 {
5257 lang_input_section_type *is = &((*this_ptr)->input_section);
5258 asection *i = is->section;
5259 asection *o = output_section_statement->bfd_section;
5260 *removed = 0;
5261
5262 if (link_info.non_contiguous_regions)
5263 {
5264 /* If the input section I has already been successfully assigned
5265 to an output section other than O, don't bother with it and
5266 let the caller remove it from the list. Keep processing in
5267 case we have already handled O, because the repeated passes
5268 have reinitialized its size. */
5269 if (i->already_assigned && i->already_assigned != o)
5270 {
5271 *removed = 1;
5272 return dot;
5273 }
5274 }
5275
5276 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5277 i->output_offset = i->vma - o->vma;
5278 else if (((i->flags & SEC_EXCLUDE) != 0)
5279 || output_section_statement->ignored)
5280 i->output_offset = dot - o->vma;
5281 else
5282 {
5283 bfd_size_type alignment_needed;
5284
5285 /* Align this section first to the input sections requirement,
5286 then to the output section's requirement. If this alignment
5287 is greater than any seen before, then record it too. Perform
5288 the alignment by inserting a magic 'padding' statement. */
5289
5290 if (output_section_statement->subsection_alignment != NULL)
5291 i->alignment_power
5292 = exp_get_power (output_section_statement->subsection_alignment,
5293 "subsection alignment");
5294
5295 if (o->alignment_power < i->alignment_power)
5296 o->alignment_power = i->alignment_power;
5297
5298 alignment_needed = align_power (dot, i->alignment_power) - dot;
5299
5300 if (alignment_needed != 0)
5301 {
5302 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5303 dot += alignment_needed;
5304 }
5305
5306 if (link_info.non_contiguous_regions)
5307 {
5308 /* If I would overflow O, let the caller remove I from the
5309 list. */
5310 if (output_section_statement->region)
5311 {
5312 bfd_vma end = output_section_statement->region->origin
5313 + output_section_statement->region->length;
5314
5315 if (dot + TO_ADDR (i->size) > end)
5316 {
5317 if (i->flags & SEC_LINKER_CREATED)
5318 einfo (_("%F%P: Output section '%s' not large enough for the "
5319 "linker-created stubs section '%s'.\n"),
5320 i->output_section->name, i->name);
5321
5322 if (i->rawsize && i->rawsize != i->size)
5323 einfo (_("%F%P: Relaxation not supported with "
5324 "--enable-non-contiguous-regions (section '%s' "
5325 "would overflow '%s' after it changed size).\n"),
5326 i->name, i->output_section->name);
5327
5328 *removed = 1;
5329 dot = end;
5330 i->output_section = NULL;
5331 return dot;
5332 }
5333 }
5334 }
5335
5336 /* Remember where in the output section this input section goes. */
5337 i->output_offset = dot - o->vma;
5338
5339 /* Mark how big the output section must be to contain this now. */
5340 dot += TO_ADDR (i->size);
5341 if (!(o->flags & SEC_FIXED_SIZE))
5342 o->size = TO_SIZE (dot - o->vma);
5343
5344 if (link_info.non_contiguous_regions)
5345 {
5346 /* Record that I was successfully assigned to O, and update
5347 its actual output section too. */
5348 i->already_assigned = o;
5349 i->output_section = o;
5350 }
5351 }
5352
5353 return dot;
5354 }
5355
5356 struct check_sec
5357 {
5358 asection *sec;
5359 bfd_boolean warned;
5360 };
5361
5362 static int
5363 sort_sections_by_lma (const void *arg1, const void *arg2)
5364 {
5365 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5366 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5367
5368 if (sec1->lma < sec2->lma)
5369 return -1;
5370 else if (sec1->lma > sec2->lma)
5371 return 1;
5372 else if (sec1->id < sec2->id)
5373 return -1;
5374 else if (sec1->id > sec2->id)
5375 return 1;
5376
5377 return 0;
5378 }
5379
5380 static int
5381 sort_sections_by_vma (const void *arg1, const void *arg2)
5382 {
5383 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5384 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5385
5386 if (sec1->vma < sec2->vma)
5387 return -1;
5388 else if (sec1->vma > sec2->vma)
5389 return 1;
5390 else if (sec1->id < sec2->id)
5391 return -1;
5392 else if (sec1->id > sec2->id)
5393 return 1;
5394
5395 return 0;
5396 }
5397
5398 #define IS_TBSS(s) \
5399 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5400
5401 #define IGNORE_SECTION(s) \
5402 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5403
5404 /* Check to see if any allocated sections overlap with other allocated
5405 sections. This can happen if a linker script specifies the output
5406 section addresses of the two sections. Also check whether any memory
5407 region has overflowed. */
5408
5409 static void
5410 lang_check_section_addresses (void)
5411 {
5412 asection *s, *p;
5413 struct check_sec *sections;
5414 size_t i, count;
5415 bfd_vma addr_mask;
5416 bfd_vma s_start;
5417 bfd_vma s_end;
5418 bfd_vma p_start = 0;
5419 bfd_vma p_end = 0;
5420 lang_memory_region_type *m;
5421 bfd_boolean overlays;
5422
5423 /* Detect address space overflow on allocated sections. */
5424 addr_mask = ((bfd_vma) 1 <<
5425 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5426 addr_mask = (addr_mask << 1) + 1;
5427 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5428 if ((s->flags & SEC_ALLOC) != 0)
5429 {
5430 s_end = (s->vma + s->size) & addr_mask;
5431 if (s_end != 0 && s_end < (s->vma & addr_mask))
5432 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5433 s->name);
5434 else
5435 {
5436 s_end = (s->lma + s->size) & addr_mask;
5437 if (s_end != 0 && s_end < (s->lma & addr_mask))
5438 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5439 s->name);
5440 }
5441 }
5442
5443 if (bfd_count_sections (link_info.output_bfd) <= 1)
5444 return;
5445
5446 count = bfd_count_sections (link_info.output_bfd);
5447 sections = XNEWVEC (struct check_sec, count);
5448
5449 /* Scan all sections in the output list. */
5450 count = 0;
5451 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5452 {
5453 if (IGNORE_SECTION (s)
5454 || s->size == 0)
5455 continue;
5456
5457 sections[count].sec = s;
5458 sections[count].warned = FALSE;
5459 count++;
5460 }
5461
5462 if (count <= 1)
5463 {
5464 free (sections);
5465 return;
5466 }
5467
5468 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5469
5470 /* First check section LMAs. There should be no overlap of LMAs on
5471 loadable sections, even with overlays. */
5472 for (p = NULL, i = 0; i < count; i++)
5473 {
5474 s = sections[i].sec;
5475 init_opb (s);
5476 if ((s->flags & SEC_LOAD) != 0)
5477 {
5478 s_start = s->lma;
5479 s_end = s_start + TO_ADDR (s->size) - 1;
5480
5481 /* Look for an overlap. We have sorted sections by lma, so
5482 we know that s_start >= p_start. Besides the obvious
5483 case of overlap when the current section starts before
5484 the previous one ends, we also must have overlap if the
5485 previous section wraps around the address space. */
5486 if (p != NULL
5487 && (s_start <= p_end
5488 || p_end < p_start))
5489 {
5490 einfo (_("%X%P: section %s LMA [%V,%V]"
5491 " overlaps section %s LMA [%V,%V]\n"),
5492 s->name, s_start, s_end, p->name, p_start, p_end);
5493 sections[i].warned = TRUE;
5494 }
5495 p = s;
5496 p_start = s_start;
5497 p_end = s_end;
5498 }
5499 }
5500
5501 /* If any non-zero size allocated section (excluding tbss) starts at
5502 exactly the same VMA as another such section, then we have
5503 overlays. Overlays generated by the OVERLAY keyword will have
5504 this property. It is possible to intentionally generate overlays
5505 that fail this test, but it would be unusual. */
5506 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5507 overlays = FALSE;
5508 p_start = sections[0].sec->vma;
5509 for (i = 1; i < count; i++)
5510 {
5511 s_start = sections[i].sec->vma;
5512 if (p_start == s_start)
5513 {
5514 overlays = TRUE;
5515 break;
5516 }
5517 p_start = s_start;
5518 }
5519
5520 /* Now check section VMAs if no overlays were detected. */
5521 if (!overlays)
5522 {
5523 for (p = NULL, i = 0; i < count; i++)
5524 {
5525 s = sections[i].sec;
5526 init_opb (s);
5527 s_start = s->vma;
5528 s_end = s_start + TO_ADDR (s->size) - 1;
5529
5530 if (p != NULL
5531 && !sections[i].warned
5532 && (s_start <= p_end
5533 || p_end < p_start))
5534 einfo (_("%X%P: section %s VMA [%V,%V]"
5535 " overlaps section %s VMA [%V,%V]\n"),
5536 s->name, s_start, s_end, p->name, p_start, p_end);
5537 p = s;
5538 p_start = s_start;
5539 p_end = s_end;
5540 }
5541 }
5542
5543 free (sections);
5544
5545 /* If any memory region has overflowed, report by how much.
5546 We do not issue this diagnostic for regions that had sections
5547 explicitly placed outside their bounds; os_region_check's
5548 diagnostics are adequate for that case.
5549
5550 FIXME: It is conceivable that m->current - (m->origin + m->length)
5551 might overflow a 32-bit integer. There is, alas, no way to print
5552 a bfd_vma quantity in decimal. */
5553 for (m = lang_memory_region_list; m; m = m->next)
5554 if (m->had_full_message)
5555 {
5556 unsigned long over = m->current - (m->origin + m->length);
5557 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5558 "%X%P: region `%s' overflowed by %lu bytes\n",
5559 over),
5560 m->name_list.name, over);
5561 }
5562 }
5563
5564 /* Make sure the new address is within the region. We explicitly permit the
5565 current address to be at the exact end of the region when the address is
5566 non-zero, in case the region is at the end of addressable memory and the
5567 calculation wraps around. */
5568
5569 static void
5570 os_region_check (lang_output_section_statement_type *os,
5571 lang_memory_region_type *region,
5572 etree_type *tree,
5573 bfd_vma rbase)
5574 {
5575 if ((region->current < region->origin
5576 || (region->current - region->origin > region->length))
5577 && ((region->current != region->origin + region->length)
5578 || rbase == 0))
5579 {
5580 if (tree != NULL)
5581 {
5582 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5583 " is not within region `%s'\n"),
5584 region->current,
5585 os->bfd_section->owner,
5586 os->bfd_section->name,
5587 region->name_list.name);
5588 }
5589 else if (!region->had_full_message)
5590 {
5591 region->had_full_message = TRUE;
5592
5593 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5594 os->bfd_section->owner,
5595 os->bfd_section->name,
5596 region->name_list.name);
5597 }
5598 }
5599 }
5600
5601 static void
5602 ldlang_check_relro_region (lang_statement_union_type *s,
5603 seg_align_type *seg)
5604 {
5605 if (seg->relro == exp_seg_relro_start)
5606 {
5607 if (!seg->relro_start_stat)
5608 seg->relro_start_stat = s;
5609 else
5610 {
5611 ASSERT (seg->relro_start_stat == s);
5612 }
5613 }
5614 else if (seg->relro == exp_seg_relro_end)
5615 {
5616 if (!seg->relro_end_stat)
5617 seg->relro_end_stat = s;
5618 else
5619 {
5620 ASSERT (seg->relro_end_stat == s);
5621 }
5622 }
5623 }
5624
5625 /* Set the sizes for all the output sections. */
5626
5627 static bfd_vma
5628 lang_size_sections_1
5629 (lang_statement_union_type **prev,
5630 lang_output_section_statement_type *output_section_statement,
5631 fill_type *fill,
5632 bfd_vma dot,
5633 bfd_boolean *relax,
5634 bfd_boolean check_regions)
5635 {
5636 lang_statement_union_type *s;
5637 lang_statement_union_type *prev_s = NULL;
5638 bfd_boolean removed_prev_s = FALSE;
5639
5640 /* Size up the sections from their constituent parts. */
5641 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5642 {
5643 bfd_boolean removed=FALSE;
5644
5645 switch (s->header.type)
5646 {
5647 case lang_output_section_statement_enum:
5648 {
5649 bfd_vma newdot, after, dotdelta;
5650 lang_output_section_statement_type *os;
5651 lang_memory_region_type *r;
5652 int section_alignment = 0;
5653
5654 os = &s->output_section_statement;
5655 init_opb (os->bfd_section);
5656 if (os->constraint == -1)
5657 break;
5658
5659 /* FIXME: We shouldn't need to zero section vmas for ld -r
5660 here, in lang_insert_orphan, or in the default linker scripts.
5661 This is covering for coff backend linker bugs. See PR6945. */
5662 if (os->addr_tree == NULL
5663 && bfd_link_relocatable (&link_info)
5664 && (bfd_get_flavour (link_info.output_bfd)
5665 == bfd_target_coff_flavour))
5666 os->addr_tree = exp_intop (0);
5667 if (os->addr_tree != NULL)
5668 {
5669 os->processed_vma = FALSE;
5670 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5671
5672 if (expld.result.valid_p)
5673 {
5674 dot = expld.result.value;
5675 if (expld.result.section != NULL)
5676 dot += expld.result.section->vma;
5677 }
5678 else if (expld.phase != lang_mark_phase_enum)
5679 einfo (_("%F%P:%pS: non constant or forward reference"
5680 " address expression for section %s\n"),
5681 os->addr_tree, os->name);
5682 }
5683
5684 if (os->bfd_section == NULL)
5685 /* This section was removed or never actually created. */
5686 break;
5687
5688 /* If this is a COFF shared library section, use the size and
5689 address from the input section. FIXME: This is COFF
5690 specific; it would be cleaner if there were some other way
5691 to do this, but nothing simple comes to mind. */
5692 if (((bfd_get_flavour (link_info.output_bfd)
5693 == bfd_target_ecoff_flavour)
5694 || (bfd_get_flavour (link_info.output_bfd)
5695 == bfd_target_coff_flavour))
5696 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5697 {
5698 asection *input;
5699
5700 if (os->children.head == NULL
5701 || os->children.head->header.next != NULL
5702 || (os->children.head->header.type
5703 != lang_input_section_enum))
5704 einfo (_("%X%P: internal error on COFF shared library"
5705 " section %s\n"), os->name);
5706
5707 input = os->children.head->input_section.section;
5708 bfd_set_section_vma (os->bfd_section,
5709 bfd_section_vma (input));
5710 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5711 os->bfd_section->size = input->size;
5712 break;
5713 }
5714
5715 newdot = dot;
5716 dotdelta = 0;
5717 if (bfd_is_abs_section (os->bfd_section))
5718 {
5719 /* No matter what happens, an abs section starts at zero. */
5720 ASSERT (os->bfd_section->vma == 0);
5721 }
5722 else
5723 {
5724 if (os->addr_tree == NULL)
5725 {
5726 /* No address specified for this section, get one
5727 from the region specification. */
5728 if (os->region == NULL
5729 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5730 && os->region->name_list.name[0] == '*'
5731 && strcmp (os->region->name_list.name,
5732 DEFAULT_MEMORY_REGION) == 0))
5733 {
5734 os->region = lang_memory_default (os->bfd_section);
5735 }
5736
5737 /* If a loadable section is using the default memory
5738 region, and some non default memory regions were
5739 defined, issue an error message. */
5740 if (!os->ignored
5741 && !IGNORE_SECTION (os->bfd_section)
5742 && !bfd_link_relocatable (&link_info)
5743 && check_regions
5744 && strcmp (os->region->name_list.name,
5745 DEFAULT_MEMORY_REGION) == 0
5746 && lang_memory_region_list != NULL
5747 && (strcmp (lang_memory_region_list->name_list.name,
5748 DEFAULT_MEMORY_REGION) != 0
5749 || lang_memory_region_list->next != NULL)
5750 && lang_sizing_iteration == 1)
5751 {
5752 /* By default this is an error rather than just a
5753 warning because if we allocate the section to the
5754 default memory region we can end up creating an
5755 excessively large binary, or even seg faulting when
5756 attempting to perform a negative seek. See
5757 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5758 for an example of this. This behaviour can be
5759 overridden by the using the --no-check-sections
5760 switch. */
5761 if (command_line.check_section_addresses)
5762 einfo (_("%F%P: error: no memory region specified"
5763 " for loadable section `%s'\n"),
5764 bfd_section_name (os->bfd_section));
5765 else
5766 einfo (_("%P: warning: no memory region specified"
5767 " for loadable section `%s'\n"),
5768 bfd_section_name (os->bfd_section));
5769 }
5770
5771 newdot = os->region->current;
5772 section_alignment = os->bfd_section->alignment_power;
5773 }
5774 else
5775 section_alignment = exp_get_power (os->section_alignment,
5776 "section alignment");
5777
5778 /* Align to what the section needs. */
5779 if (section_alignment > 0)
5780 {
5781 bfd_vma savedot = newdot;
5782 bfd_vma diff = 0;
5783
5784 newdot = align_power (newdot, section_alignment);
5785 dotdelta = newdot - savedot;
5786
5787 if (lang_sizing_iteration == 1)
5788 diff = dotdelta;
5789 else if (lang_sizing_iteration > 1)
5790 {
5791 /* Only report adjustments that would change
5792 alignment from what we have already reported. */
5793 diff = newdot - os->bfd_section->vma;
5794 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5795 diff = 0;
5796 }
5797 if (diff != 0
5798 && (config.warn_section_align
5799 || os->addr_tree != NULL))
5800 einfo (_("%P: warning: "
5801 "start of section %s changed by %ld\n"),
5802 os->name, (long) diff);
5803 }
5804
5805 bfd_set_section_vma (os->bfd_section, newdot);
5806
5807 os->bfd_section->output_offset = 0;
5808 }
5809
5810 lang_size_sections_1 (&os->children.head, os,
5811 os->fill, newdot, relax, check_regions);
5812
5813 os->processed_vma = TRUE;
5814
5815 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5816 /* Except for some special linker created sections,
5817 no output section should change from zero size
5818 after strip_excluded_output_sections. A non-zero
5819 size on an ignored section indicates that some
5820 input section was not sized early enough. */
5821 ASSERT (os->bfd_section->size == 0);
5822 else
5823 {
5824 dot = os->bfd_section->vma;
5825
5826 /* Put the section within the requested block size, or
5827 align at the block boundary. */
5828 after = ((dot
5829 + TO_ADDR (os->bfd_section->size)
5830 + os->block_value - 1)
5831 & - (bfd_vma) os->block_value);
5832
5833 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5834 os->bfd_section->size = TO_SIZE (after
5835 - os->bfd_section->vma);
5836 }
5837
5838 /* Set section lma. */
5839 r = os->region;
5840 if (r == NULL)
5841 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5842
5843 if (os->load_base)
5844 {
5845 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5846 os->bfd_section->lma = lma;
5847 }
5848 else if (os->lma_region != NULL)
5849 {
5850 bfd_vma lma = os->lma_region->current;
5851
5852 if (os->align_lma_with_input)
5853 lma += dotdelta;
5854 else
5855 {
5856 /* When LMA_REGION is the same as REGION, align the LMA
5857 as we did for the VMA, possibly including alignment
5858 from the bfd section. If a different region, then
5859 only align according to the value in the output
5860 statement. */
5861 if (os->lma_region != os->region)
5862 section_alignment = exp_get_power (os->section_alignment,
5863 "section alignment");
5864 if (section_alignment > 0)
5865 lma = align_power (lma, section_alignment);
5866 }
5867 os->bfd_section->lma = lma;
5868 }
5869 else if (r->last_os != NULL
5870 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5871 {
5872 bfd_vma lma;
5873 asection *last;
5874
5875 last = r->last_os->output_section_statement.bfd_section;
5876
5877 /* A backwards move of dot should be accompanied by
5878 an explicit assignment to the section LMA (ie.
5879 os->load_base set) because backwards moves can
5880 create overlapping LMAs. */
5881 if (dot < last->vma
5882 && os->bfd_section->size != 0
5883 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5884 {
5885 /* If dot moved backwards then leave lma equal to
5886 vma. This is the old default lma, which might
5887 just happen to work when the backwards move is
5888 sufficiently large. Nag if this changes anything,
5889 so people can fix their linker scripts. */
5890
5891 if (last->vma != last->lma)
5892 einfo (_("%P: warning: dot moved backwards "
5893 "before `%s'\n"), os->name);
5894 }
5895 else
5896 {
5897 /* If this is an overlay, set the current lma to that
5898 at the end of the previous section. */
5899 if (os->sectype == overlay_section)
5900 lma = last->lma + TO_ADDR (last->size);
5901
5902 /* Otherwise, keep the same lma to vma relationship
5903 as the previous section. */
5904 else
5905 lma = os->bfd_section->vma + last->lma - last->vma;
5906
5907 if (section_alignment > 0)
5908 lma = align_power (lma, section_alignment);
5909 os->bfd_section->lma = lma;
5910 }
5911 }
5912 os->processed_lma = TRUE;
5913
5914 /* Keep track of normal sections using the default
5915 lma region. We use this to set the lma for
5916 following sections. Overlays or other linker
5917 script assignment to lma might mean that the
5918 default lma == vma is incorrect.
5919 To avoid warnings about dot moving backwards when using
5920 -Ttext, don't start tracking sections until we find one
5921 of non-zero size or with lma set differently to vma.
5922 Do this tracking before we short-cut the loop so that we
5923 track changes for the case where the section size is zero,
5924 but the lma is set differently to the vma. This is
5925 important, if an orphan section is placed after an
5926 otherwise empty output section that has an explicit lma
5927 set, we want that lma reflected in the orphans lma. */
5928 if (((!IGNORE_SECTION (os->bfd_section)
5929 && (os->bfd_section->size != 0
5930 || (r->last_os == NULL
5931 && os->bfd_section->vma != os->bfd_section->lma)
5932 || (r->last_os != NULL
5933 && dot >= (r->last_os->output_section_statement
5934 .bfd_section->vma))))
5935 || os->sectype == first_overlay_section)
5936 && os->lma_region == NULL
5937 && !bfd_link_relocatable (&link_info))
5938 r->last_os = s;
5939
5940 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5941 break;
5942
5943 /* .tbss sections effectively have zero size. */
5944 if (!IS_TBSS (os->bfd_section)
5945 || bfd_link_relocatable (&link_info))
5946 dotdelta = TO_ADDR (os->bfd_section->size);
5947 else
5948 dotdelta = 0;
5949 dot += dotdelta;
5950
5951 if (os->update_dot_tree != 0)
5952 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5953
5954 /* Update dot in the region ?
5955 We only do this if the section is going to be allocated,
5956 since unallocated sections do not contribute to the region's
5957 overall size in memory. */
5958 if (os->region != NULL
5959 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5960 {
5961 os->region->current = dot;
5962
5963 if (check_regions)
5964 /* Make sure the new address is within the region. */
5965 os_region_check (os, os->region, os->addr_tree,
5966 os->bfd_section->vma);
5967
5968 if (os->lma_region != NULL && os->lma_region != os->region
5969 && ((os->bfd_section->flags & SEC_LOAD)
5970 || os->align_lma_with_input))
5971 {
5972 os->lma_region->current = os->bfd_section->lma + dotdelta;
5973
5974 if (check_regions)
5975 os_region_check (os, os->lma_region, NULL,
5976 os->bfd_section->lma);
5977 }
5978 }
5979 }
5980 break;
5981
5982 case lang_constructors_statement_enum:
5983 dot = lang_size_sections_1 (&constructor_list.head,
5984 output_section_statement,
5985 fill, dot, relax, check_regions);
5986 break;
5987
5988 case lang_data_statement_enum:
5989 {
5990 unsigned int size = 0;
5991
5992 s->data_statement.output_offset =
5993 dot - output_section_statement->bfd_section->vma;
5994 s->data_statement.output_section =
5995 output_section_statement->bfd_section;
5996
5997 /* We might refer to provided symbols in the expression, and
5998 need to mark them as needed. */
5999 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6000
6001 switch (s->data_statement.type)
6002 {
6003 default:
6004 abort ();
6005 case QUAD:
6006 case SQUAD:
6007 size = QUAD_SIZE;
6008 break;
6009 case LONG:
6010 size = LONG_SIZE;
6011 break;
6012 case SHORT:
6013 size = SHORT_SIZE;
6014 break;
6015 case BYTE:
6016 size = BYTE_SIZE;
6017 break;
6018 }
6019 if (size < TO_SIZE ((unsigned) 1))
6020 size = TO_SIZE ((unsigned) 1);
6021 dot += TO_ADDR (size);
6022 if (!(output_section_statement->bfd_section->flags
6023 & SEC_FIXED_SIZE))
6024 output_section_statement->bfd_section->size
6025 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6026
6027 }
6028 break;
6029
6030 case lang_reloc_statement_enum:
6031 {
6032 int size;
6033
6034 s->reloc_statement.output_offset =
6035 dot - output_section_statement->bfd_section->vma;
6036 s->reloc_statement.output_section =
6037 output_section_statement->bfd_section;
6038 size = bfd_get_reloc_size (s->reloc_statement.howto);
6039 dot += TO_ADDR (size);
6040 if (!(output_section_statement->bfd_section->flags
6041 & SEC_FIXED_SIZE))
6042 output_section_statement->bfd_section->size
6043 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6044 }
6045 break;
6046
6047 case lang_wild_statement_enum:
6048 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6049 output_section_statement,
6050 fill, dot, relax, check_regions);
6051 break;
6052
6053 case lang_object_symbols_statement_enum:
6054 link_info.create_object_symbols_section
6055 = output_section_statement->bfd_section;
6056 output_section_statement->bfd_section->flags |= SEC_KEEP;
6057 break;
6058
6059 case lang_output_statement_enum:
6060 case lang_target_statement_enum:
6061 break;
6062
6063 case lang_input_section_enum:
6064 {
6065 asection *i;
6066
6067 i = s->input_section.section;
6068 if (relax)
6069 {
6070 bfd_boolean again;
6071
6072 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6073 einfo (_("%F%P: can't relax section: %E\n"));
6074 if (again)
6075 *relax = TRUE;
6076 }
6077 dot = size_input_section (prev, output_section_statement,
6078 fill, &removed, dot);
6079 }
6080 break;
6081
6082 case lang_input_statement_enum:
6083 break;
6084
6085 case lang_fill_statement_enum:
6086 s->fill_statement.output_section =
6087 output_section_statement->bfd_section;
6088
6089 fill = s->fill_statement.fill;
6090 break;
6091
6092 case lang_assignment_statement_enum:
6093 {
6094 bfd_vma newdot = dot;
6095 etree_type *tree = s->assignment_statement.exp;
6096
6097 expld.dataseg.relro = exp_seg_relro_none;
6098
6099 exp_fold_tree (tree,
6100 output_section_statement->bfd_section,
6101 &newdot);
6102
6103 ldlang_check_relro_region (s, &expld.dataseg);
6104
6105 expld.dataseg.relro = exp_seg_relro_none;
6106
6107 /* This symbol may be relative to this section. */
6108 if ((tree->type.node_class == etree_provided
6109 || tree->type.node_class == etree_assign)
6110 && (tree->assign.dst [0] != '.'
6111 || tree->assign.dst [1] != '\0'))
6112 output_section_statement->update_dot = 1;
6113
6114 if (!output_section_statement->ignored)
6115 {
6116 if (output_section_statement == abs_output_section)
6117 {
6118 /* If we don't have an output section, then just adjust
6119 the default memory address. */
6120 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6121 FALSE)->current = newdot;
6122 }
6123 else if (newdot != dot)
6124 {
6125 /* Insert a pad after this statement. We can't
6126 put the pad before when relaxing, in case the
6127 assignment references dot. */
6128 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6129 output_section_statement->bfd_section, dot);
6130
6131 /* Don't neuter the pad below when relaxing. */
6132 s = s->header.next;
6133
6134 /* If dot is advanced, this implies that the section
6135 should have space allocated to it, unless the
6136 user has explicitly stated that the section
6137 should not be allocated. */
6138 if (output_section_statement->sectype != noalloc_section
6139 && (output_section_statement->sectype != noload_section
6140 || (bfd_get_flavour (link_info.output_bfd)
6141 == bfd_target_elf_flavour)))
6142 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6143 }
6144 dot = newdot;
6145 }
6146 }
6147 break;
6148
6149 case lang_padding_statement_enum:
6150 /* If this is the first time lang_size_sections is called,
6151 we won't have any padding statements. If this is the
6152 second or later passes when relaxing, we should allow
6153 padding to shrink. If padding is needed on this pass, it
6154 will be added back in. */
6155 s->padding_statement.size = 0;
6156
6157 /* Make sure output_offset is valid. If relaxation shrinks
6158 the section and this pad isn't needed, it's possible to
6159 have output_offset larger than the final size of the
6160 section. bfd_set_section_contents will complain even for
6161 a pad size of zero. */
6162 s->padding_statement.output_offset
6163 = dot - output_section_statement->bfd_section->vma;
6164 break;
6165
6166 case lang_group_statement_enum:
6167 dot = lang_size_sections_1 (&s->group_statement.children.head,
6168 output_section_statement,
6169 fill, dot, relax, check_regions);
6170 break;
6171
6172 case lang_insert_statement_enum:
6173 break;
6174
6175 /* We can only get here when relaxing is turned on. */
6176 case lang_address_statement_enum:
6177 break;
6178
6179 default:
6180 FAIL ();
6181 break;
6182 }
6183
6184 /* If an input section doesn't fit in the current output
6185 section, remove it from the list. Handle the case where we
6186 have to remove an input_section statement here: there is a
6187 special case to remove the first element of the list. */
6188 if (link_info.non_contiguous_regions && removed)
6189 {
6190 /* If we removed the first element during the previous
6191 iteration, override the loop assignment of prev_s. */
6192 if (removed_prev_s)
6193 prev_s = NULL;
6194
6195 if (prev_s)
6196 {
6197 /* If there was a real previous input section, just skip
6198 the current one. */
6199 prev_s->header.next=s->header.next;
6200 s = prev_s;
6201 removed_prev_s = FALSE;
6202 }
6203 else
6204 {
6205 /* Remove the first input section of the list. */
6206 *prev = s->header.next;
6207 removed_prev_s = TRUE;
6208 }
6209
6210 /* Move to next element, unless we removed the head of the
6211 list. */
6212 if (!removed_prev_s)
6213 prev = &s->header.next;
6214 }
6215 else
6216 {
6217 prev = &s->header.next;
6218 removed_prev_s = FALSE;
6219 }
6220 }
6221 return dot;
6222 }
6223
6224 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6225 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6226 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6227 segments. We are allowed an opportunity to override this decision. */
6228
6229 bfd_boolean
6230 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6231 bfd *abfd ATTRIBUTE_UNUSED,
6232 asection *current_section,
6233 asection *previous_section,
6234 bfd_boolean new_segment)
6235 {
6236 lang_output_section_statement_type *cur;
6237 lang_output_section_statement_type *prev;
6238
6239 /* The checks below are only necessary when the BFD library has decided
6240 that the two sections ought to be placed into the same segment. */
6241 if (new_segment)
6242 return TRUE;
6243
6244 /* Paranoia checks. */
6245 if (current_section == NULL || previous_section == NULL)
6246 return new_segment;
6247
6248 /* If this flag is set, the target never wants code and non-code
6249 sections comingled in the same segment. */
6250 if (config.separate_code
6251 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6252 return TRUE;
6253
6254 /* Find the memory regions associated with the two sections.
6255 We call lang_output_section_find() here rather than scanning the list
6256 of output sections looking for a matching section pointer because if
6257 we have a large number of sections then a hash lookup is faster. */
6258 cur = lang_output_section_find (current_section->name);
6259 prev = lang_output_section_find (previous_section->name);
6260
6261 /* More paranoia. */
6262 if (cur == NULL || prev == NULL)
6263 return new_segment;
6264
6265 /* If the regions are different then force the sections to live in
6266 different segments. See the email thread starting at the following
6267 URL for the reasons why this is necessary:
6268 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6269 return cur->region != prev->region;
6270 }
6271
6272 void
6273 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
6274 {
6275 lang_statement_iteration++;
6276 if (expld.phase != lang_mark_phase_enum)
6277 lang_sizing_iteration++;
6278 lang_size_sections_1 (&statement_list.head, abs_output_section,
6279 0, 0, relax, check_regions);
6280 }
6281
6282 static bfd_boolean
6283 lang_size_segment (seg_align_type *seg)
6284 {
6285 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6286 a page could be saved in the data segment. */
6287 bfd_vma first, last;
6288
6289 first = -seg->base & (seg->pagesize - 1);
6290 last = seg->end & (seg->pagesize - 1);
6291 if (first && last
6292 && ((seg->base & ~(seg->pagesize - 1))
6293 != (seg->end & ~(seg->pagesize - 1)))
6294 && first + last <= seg->pagesize)
6295 {
6296 seg->phase = exp_seg_adjust;
6297 return TRUE;
6298 }
6299
6300 seg->phase = exp_seg_done;
6301 return FALSE;
6302 }
6303
6304 static bfd_vma
6305 lang_size_relro_segment_1 (seg_align_type *seg)
6306 {
6307 bfd_vma relro_end, desired_end;
6308 asection *sec;
6309
6310 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6311 relro_end = ((seg->relro_end + seg->pagesize - 1)
6312 & ~(seg->pagesize - 1));
6313
6314 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6315 desired_end = relro_end - seg->relro_offset;
6316
6317 /* For sections in the relro segment.. */
6318 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6319 if ((sec->flags & SEC_ALLOC) != 0
6320 && sec->vma >= seg->base
6321 && sec->vma < seg->relro_end - seg->relro_offset)
6322 {
6323 /* Where do we want to put this section so that it ends as
6324 desired? */
6325 bfd_vma start, end, bump;
6326
6327 end = start = sec->vma;
6328 if (!IS_TBSS (sec))
6329 end += TO_ADDR (sec->size);
6330 bump = desired_end - end;
6331 /* We'd like to increase START by BUMP, but we must heed
6332 alignment so the increase might be less than optimum. */
6333 start += bump;
6334 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6335 /* This is now the desired end for the previous section. */
6336 desired_end = start;
6337 }
6338
6339 seg->phase = exp_seg_relro_adjust;
6340 ASSERT (desired_end >= seg->base);
6341 seg->base = desired_end;
6342 return relro_end;
6343 }
6344
6345 static bfd_boolean
6346 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
6347 {
6348 bfd_boolean do_reset = FALSE;
6349 bfd_boolean do_data_relro;
6350 bfd_vma data_initial_base, data_relro_end;
6351
6352 if (link_info.relro && expld.dataseg.relro_end)
6353 {
6354 do_data_relro = TRUE;
6355 data_initial_base = expld.dataseg.base;
6356 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6357 }
6358 else
6359 {
6360 do_data_relro = FALSE;
6361 data_initial_base = data_relro_end = 0;
6362 }
6363
6364 if (do_data_relro)
6365 {
6366 lang_reset_memory_regions ();
6367 one_lang_size_sections_pass (relax, check_regions);
6368
6369 /* Assignments to dot, or to output section address in a user
6370 script have increased padding over the original. Revert. */
6371 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6372 {
6373 expld.dataseg.base = data_initial_base;;
6374 do_reset = TRUE;
6375 }
6376 }
6377
6378 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6379 do_reset = TRUE;
6380
6381 return do_reset;
6382 }
6383
6384 void
6385 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
6386 {
6387 expld.phase = lang_allocating_phase_enum;
6388 expld.dataseg.phase = exp_seg_none;
6389
6390 one_lang_size_sections_pass (relax, check_regions);
6391
6392 if (expld.dataseg.phase != exp_seg_end_seen)
6393 expld.dataseg.phase = exp_seg_done;
6394
6395 if (expld.dataseg.phase == exp_seg_end_seen)
6396 {
6397 bfd_boolean do_reset
6398 = lang_size_relro_segment (relax, check_regions);
6399
6400 if (do_reset)
6401 {
6402 lang_reset_memory_regions ();
6403 one_lang_size_sections_pass (relax, check_regions);
6404 }
6405
6406 if (link_info.relro && expld.dataseg.relro_end)
6407 {
6408 link_info.relro_start = expld.dataseg.base;
6409 link_info.relro_end = expld.dataseg.relro_end;
6410 }
6411 }
6412 }
6413
6414 static lang_output_section_statement_type *current_section;
6415 static lang_assignment_statement_type *current_assign;
6416 static bfd_boolean prefer_next_section;
6417
6418 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6419
6420 static bfd_vma
6421 lang_do_assignments_1 (lang_statement_union_type *s,
6422 lang_output_section_statement_type *current_os,
6423 fill_type *fill,
6424 bfd_vma dot,
6425 bfd_boolean *found_end)
6426 {
6427 for (; s != NULL; s = s->header.next)
6428 {
6429 switch (s->header.type)
6430 {
6431 case lang_constructors_statement_enum:
6432 dot = lang_do_assignments_1 (constructor_list.head,
6433 current_os, fill, dot, found_end);
6434 break;
6435
6436 case lang_output_section_statement_enum:
6437 {
6438 lang_output_section_statement_type *os;
6439 bfd_vma newdot;
6440
6441 os = &(s->output_section_statement);
6442 os->after_end = *found_end;
6443 init_opb (os->bfd_section);
6444 if (os->bfd_section != NULL && !os->ignored)
6445 {
6446 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6447 {
6448 current_section = os;
6449 prefer_next_section = FALSE;
6450 }
6451 dot = os->bfd_section->vma;
6452 }
6453 newdot = lang_do_assignments_1 (os->children.head,
6454 os, os->fill, dot, found_end);
6455 if (!os->ignored)
6456 {
6457 if (os->bfd_section != NULL)
6458 {
6459 /* .tbss sections effectively have zero size. */
6460 if (!IS_TBSS (os->bfd_section)
6461 || bfd_link_relocatable (&link_info))
6462 dot += TO_ADDR (os->bfd_section->size);
6463
6464 if (os->update_dot_tree != NULL)
6465 exp_fold_tree (os->update_dot_tree,
6466 bfd_abs_section_ptr, &dot);
6467 }
6468 else
6469 dot = newdot;
6470 }
6471 }
6472 break;
6473
6474 case lang_wild_statement_enum:
6475
6476 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6477 current_os, fill, dot, found_end);
6478 break;
6479
6480 case lang_object_symbols_statement_enum:
6481 case lang_output_statement_enum:
6482 case lang_target_statement_enum:
6483 break;
6484
6485 case lang_data_statement_enum:
6486 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6487 if (expld.result.valid_p)
6488 {
6489 s->data_statement.value = expld.result.value;
6490 if (expld.result.section != NULL)
6491 s->data_statement.value += expld.result.section->vma;
6492 }
6493 else if (expld.phase == lang_final_phase_enum)
6494 einfo (_("%F%P: invalid data statement\n"));
6495 {
6496 unsigned int size;
6497 switch (s->data_statement.type)
6498 {
6499 default:
6500 abort ();
6501 case QUAD:
6502 case SQUAD:
6503 size = QUAD_SIZE;
6504 break;
6505 case LONG:
6506 size = LONG_SIZE;
6507 break;
6508 case SHORT:
6509 size = SHORT_SIZE;
6510 break;
6511 case BYTE:
6512 size = BYTE_SIZE;
6513 break;
6514 }
6515 if (size < TO_SIZE ((unsigned) 1))
6516 size = TO_SIZE ((unsigned) 1);
6517 dot += TO_ADDR (size);
6518 }
6519 break;
6520
6521 case lang_reloc_statement_enum:
6522 exp_fold_tree (s->reloc_statement.addend_exp,
6523 bfd_abs_section_ptr, &dot);
6524 if (expld.result.valid_p)
6525 s->reloc_statement.addend_value = expld.result.value;
6526 else if (expld.phase == lang_final_phase_enum)
6527 einfo (_("%F%P: invalid reloc statement\n"));
6528 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6529 break;
6530
6531 case lang_input_section_enum:
6532 {
6533 asection *in = s->input_section.section;
6534
6535 if ((in->flags & SEC_EXCLUDE) == 0)
6536 dot += TO_ADDR (in->size);
6537 }
6538 break;
6539
6540 case lang_input_statement_enum:
6541 break;
6542
6543 case lang_fill_statement_enum:
6544 fill = s->fill_statement.fill;
6545 break;
6546
6547 case lang_assignment_statement_enum:
6548 current_assign = &s->assignment_statement;
6549 if (current_assign->exp->type.node_class != etree_assert)
6550 {
6551 const char *p = current_assign->exp->assign.dst;
6552
6553 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6554 prefer_next_section = TRUE;
6555
6556 while (*p == '_')
6557 ++p;
6558 if (strcmp (p, "end") == 0)
6559 *found_end = TRUE;
6560 }
6561 exp_fold_tree (s->assignment_statement.exp,
6562 (current_os->bfd_section != NULL
6563 ? current_os->bfd_section : bfd_und_section_ptr),
6564 &dot);
6565 break;
6566
6567 case lang_padding_statement_enum:
6568 dot += TO_ADDR (s->padding_statement.size);
6569 break;
6570
6571 case lang_group_statement_enum:
6572 dot = lang_do_assignments_1 (s->group_statement.children.head,
6573 current_os, fill, dot, found_end);
6574 break;
6575
6576 case lang_insert_statement_enum:
6577 break;
6578
6579 case lang_address_statement_enum:
6580 break;
6581
6582 default:
6583 FAIL ();
6584 break;
6585 }
6586 }
6587 return dot;
6588 }
6589
6590 void
6591 lang_do_assignments (lang_phase_type phase)
6592 {
6593 bfd_boolean found_end = FALSE;
6594
6595 current_section = NULL;
6596 prefer_next_section = FALSE;
6597 expld.phase = phase;
6598 lang_statement_iteration++;
6599 lang_do_assignments_1 (statement_list.head,
6600 abs_output_section, NULL, 0, &found_end);
6601 }
6602
6603 /* For an assignment statement outside of an output section statement,
6604 choose the best of neighbouring output sections to use for values
6605 of "dot". */
6606
6607 asection *
6608 section_for_dot (void)
6609 {
6610 asection *s;
6611
6612 /* Assignments belong to the previous output section, unless there
6613 has been an assignment to "dot", in which case following
6614 assignments belong to the next output section. (The assumption
6615 is that an assignment to "dot" is setting up the address for the
6616 next output section.) Except that past the assignment to "_end"
6617 we always associate with the previous section. This exception is
6618 for targets like SH that define an alloc .stack or other
6619 weirdness after non-alloc sections. */
6620 if (current_section == NULL || prefer_next_section)
6621 {
6622 lang_statement_union_type *stmt;
6623 lang_output_section_statement_type *os;
6624
6625 for (stmt = (lang_statement_union_type *) current_assign;
6626 stmt != NULL;
6627 stmt = stmt->header.next)
6628 if (stmt->header.type == lang_output_section_statement_enum)
6629 break;
6630
6631 os = &stmt->output_section_statement;
6632 while (os != NULL
6633 && !os->after_end
6634 && (os->bfd_section == NULL
6635 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6636 || bfd_section_removed_from_list (link_info.output_bfd,
6637 os->bfd_section)))
6638 os = os->next;
6639
6640 if (current_section == NULL || os == NULL || !os->after_end)
6641 {
6642 if (os != NULL)
6643 s = os->bfd_section;
6644 else
6645 s = link_info.output_bfd->section_last;
6646 while (s != NULL
6647 && ((s->flags & SEC_ALLOC) == 0
6648 || (s->flags & SEC_THREAD_LOCAL) != 0))
6649 s = s->prev;
6650 if (s != NULL)
6651 return s;
6652
6653 return bfd_abs_section_ptr;
6654 }
6655 }
6656
6657 s = current_section->bfd_section;
6658
6659 /* The section may have been stripped. */
6660 while (s != NULL
6661 && ((s->flags & SEC_EXCLUDE) != 0
6662 || (s->flags & SEC_ALLOC) == 0
6663 || (s->flags & SEC_THREAD_LOCAL) != 0
6664 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6665 s = s->prev;
6666 if (s == NULL)
6667 s = link_info.output_bfd->sections;
6668 while (s != NULL
6669 && ((s->flags & SEC_ALLOC) == 0
6670 || (s->flags & SEC_THREAD_LOCAL) != 0))
6671 s = s->next;
6672 if (s != NULL)
6673 return s;
6674
6675 return bfd_abs_section_ptr;
6676 }
6677
6678 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6679
6680 static struct bfd_link_hash_entry **start_stop_syms;
6681 static size_t start_stop_count = 0;
6682 static size_t start_stop_alloc = 0;
6683
6684 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6685 to start_stop_syms. */
6686
6687 static void
6688 lang_define_start_stop (const char *symbol, asection *sec)
6689 {
6690 struct bfd_link_hash_entry *h;
6691
6692 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6693 if (h != NULL)
6694 {
6695 if (start_stop_count == start_stop_alloc)
6696 {
6697 start_stop_alloc = 2 * start_stop_alloc + 10;
6698 start_stop_syms
6699 = xrealloc (start_stop_syms,
6700 start_stop_alloc * sizeof (*start_stop_syms));
6701 }
6702 start_stop_syms[start_stop_count++] = h;
6703 }
6704 }
6705
6706 /* Check for input sections whose names match references to
6707 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6708 preliminary definitions. */
6709
6710 static void
6711 lang_init_start_stop (void)
6712 {
6713 bfd *abfd;
6714 asection *s;
6715 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6716
6717 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6718 for (s = abfd->sections; s != NULL; s = s->next)
6719 {
6720 const char *ps;
6721 const char *secname = s->name;
6722
6723 for (ps = secname; *ps != '\0'; ps++)
6724 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6725 break;
6726 if (*ps == '\0')
6727 {
6728 char *symbol = (char *) xmalloc (10 + strlen (secname));
6729
6730 symbol[0] = leading_char;
6731 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6732 lang_define_start_stop (symbol, s);
6733
6734 symbol[1] = leading_char;
6735 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6736 lang_define_start_stop (symbol + 1, s);
6737
6738 free (symbol);
6739 }
6740 }
6741 }
6742
6743 /* Iterate over start_stop_syms. */
6744
6745 static void
6746 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6747 {
6748 size_t i;
6749
6750 for (i = 0; i < start_stop_count; ++i)
6751 func (start_stop_syms[i]);
6752 }
6753
6754 /* __start and __stop symbols are only supposed to be defined by the
6755 linker for orphan sections, but we now extend that to sections that
6756 map to an output section of the same name. The symbols were
6757 defined early for --gc-sections, before we mapped input to output
6758 sections, so undo those that don't satisfy this rule. */
6759
6760 static void
6761 undef_start_stop (struct bfd_link_hash_entry *h)
6762 {
6763 if (h->ldscript_def)
6764 return;
6765
6766 if (h->u.def.section->output_section == NULL
6767 || h->u.def.section->output_section->owner != link_info.output_bfd
6768 || strcmp (h->u.def.section->name,
6769 h->u.def.section->output_section->name) != 0)
6770 {
6771 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6772 h->u.def.section->name);
6773 if (sec != NULL)
6774 {
6775 /* When there are more than one input sections with the same
6776 section name, SECNAME, linker picks the first one to define
6777 __start_SECNAME and __stop_SECNAME symbols. When the first
6778 input section is removed by comdat group, we need to check
6779 if there is still an output section with section name
6780 SECNAME. */
6781 asection *i;
6782 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6783 if (strcmp (h->u.def.section->name, i->name) == 0)
6784 {
6785 h->u.def.section = i;
6786 return;
6787 }
6788 }
6789 h->type = bfd_link_hash_undefined;
6790 h->u.undef.abfd = NULL;
6791 }
6792 }
6793
6794 static void
6795 lang_undef_start_stop (void)
6796 {
6797 foreach_start_stop (undef_start_stop);
6798 }
6799
6800 /* Check for output sections whose names match references to
6801 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6802 preliminary definitions. */
6803
6804 static void
6805 lang_init_startof_sizeof (void)
6806 {
6807 asection *s;
6808
6809 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6810 {
6811 const char *secname = s->name;
6812 char *symbol = (char *) xmalloc (10 + strlen (secname));
6813
6814 sprintf (symbol, ".startof.%s", secname);
6815 lang_define_start_stop (symbol, s);
6816
6817 memcpy (symbol + 1, ".size", 5);
6818 lang_define_start_stop (symbol + 1, s);
6819 free (symbol);
6820 }
6821 }
6822
6823 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6824
6825 static void
6826 set_start_stop (struct bfd_link_hash_entry *h)
6827 {
6828 if (h->ldscript_def
6829 || h->type != bfd_link_hash_defined)
6830 return;
6831
6832 if (h->root.string[0] == '.')
6833 {
6834 /* .startof. or .sizeof. symbol.
6835 .startof. already has final value. */
6836 if (h->root.string[2] == 'i')
6837 {
6838 /* .sizeof. */
6839 h->u.def.value = TO_ADDR (h->u.def.section->size);
6840 h->u.def.section = bfd_abs_section_ptr;
6841 }
6842 }
6843 else
6844 {
6845 /* __start or __stop symbol. */
6846 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6847
6848 h->u.def.section = h->u.def.section->output_section;
6849 if (h->root.string[4 + has_lead] == 'o')
6850 {
6851 /* __stop_ */
6852 h->u.def.value = TO_ADDR (h->u.def.section->size);
6853 }
6854 }
6855 }
6856
6857 static void
6858 lang_finalize_start_stop (void)
6859 {
6860 foreach_start_stop (set_start_stop);
6861 }
6862
6863 static void
6864 lang_end (void)
6865 {
6866 struct bfd_link_hash_entry *h;
6867 bfd_boolean warn;
6868
6869 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6870 || bfd_link_dll (&link_info))
6871 warn = entry_from_cmdline;
6872 else
6873 warn = TRUE;
6874
6875 /* Force the user to specify a root when generating a relocatable with
6876 --gc-sections, unless --gc-keep-exported was also given. */
6877 if (bfd_link_relocatable (&link_info)
6878 && link_info.gc_sections
6879 && !link_info.gc_keep_exported)
6880 {
6881 struct bfd_sym_chain *sym;
6882
6883 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6884 {
6885 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6886 FALSE, FALSE, FALSE);
6887 if (h != NULL
6888 && (h->type == bfd_link_hash_defined
6889 || h->type == bfd_link_hash_defweak)
6890 && !bfd_is_const_section (h->u.def.section))
6891 break;
6892 }
6893 if (!sym)
6894 einfo (_("%F%P: --gc-sections requires a defined symbol root "
6895 "specified by -e or -u\n"));
6896 }
6897
6898 if (entry_symbol.name == NULL)
6899 {
6900 /* No entry has been specified. Look for the default entry, but
6901 don't warn if we don't find it. */
6902 entry_symbol.name = entry_symbol_default;
6903 warn = FALSE;
6904 }
6905
6906 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6907 FALSE, FALSE, TRUE);
6908 if (h != NULL
6909 && (h->type == bfd_link_hash_defined
6910 || h->type == bfd_link_hash_defweak)
6911 && h->u.def.section->output_section != NULL)
6912 {
6913 bfd_vma val;
6914
6915 val = (h->u.def.value
6916 + bfd_section_vma (h->u.def.section->output_section)
6917 + h->u.def.section->output_offset);
6918 if (!bfd_set_start_address (link_info.output_bfd, val))
6919 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6920 }
6921 else
6922 {
6923 bfd_vma val;
6924 const char *send;
6925
6926 /* We couldn't find the entry symbol. Try parsing it as a
6927 number. */
6928 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6929 if (*send == '\0')
6930 {
6931 if (!bfd_set_start_address (link_info.output_bfd, val))
6932 einfo (_("%F%P: can't set start address\n"));
6933 }
6934 else
6935 {
6936 asection *ts;
6937
6938 /* Can't find the entry symbol, and it's not a number. Use
6939 the first address in the text section. */
6940 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6941 if (ts != NULL)
6942 {
6943 if (warn)
6944 einfo (_("%P: warning: cannot find entry symbol %s;"
6945 " defaulting to %V\n"),
6946 entry_symbol.name,
6947 bfd_section_vma (ts));
6948 if (!bfd_set_start_address (link_info.output_bfd,
6949 bfd_section_vma (ts)))
6950 einfo (_("%F%P: can't set start address\n"));
6951 }
6952 else
6953 {
6954 if (warn)
6955 einfo (_("%P: warning: cannot find entry symbol %s;"
6956 " not setting start address\n"),
6957 entry_symbol.name);
6958 }
6959 }
6960 }
6961 }
6962
6963 /* This is a small function used when we want to ignore errors from
6964 BFD. */
6965
6966 static void
6967 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6968 va_list ap ATTRIBUTE_UNUSED)
6969 {
6970 /* Don't do anything. */
6971 }
6972
6973 /* Check that the architecture of all the input files is compatible
6974 with the output file. Also call the backend to let it do any
6975 other checking that is needed. */
6976
6977 static void
6978 lang_check (void)
6979 {
6980 lang_input_statement_type *file;
6981 bfd *input_bfd;
6982 const bfd_arch_info_type *compatible;
6983
6984 for (file = (void *) file_chain.head;
6985 file != NULL;
6986 file = file->next)
6987 {
6988 #if BFD_SUPPORTS_PLUGINS
6989 /* Don't check format of files claimed by plugin. */
6990 if (file->flags.claimed)
6991 continue;
6992 #endif /* BFD_SUPPORTS_PLUGINS */
6993 input_bfd = file->the_bfd;
6994 compatible
6995 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6996 command_line.accept_unknown_input_arch);
6997
6998 /* In general it is not possible to perform a relocatable
6999 link between differing object formats when the input
7000 file has relocations, because the relocations in the
7001 input format may not have equivalent representations in
7002 the output format (and besides BFD does not translate
7003 relocs for other link purposes than a final link). */
7004 if (!file->flags.just_syms
7005 && (bfd_link_relocatable (&link_info)
7006 || link_info.emitrelocations)
7007 && (compatible == NULL
7008 || (bfd_get_flavour (input_bfd)
7009 != bfd_get_flavour (link_info.output_bfd)))
7010 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7011 {
7012 einfo (_("%F%P: relocatable linking with relocations from"
7013 " format %s (%pB) to format %s (%pB) is not supported\n"),
7014 bfd_get_target (input_bfd), input_bfd,
7015 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7016 /* einfo with %F exits. */
7017 }
7018
7019 if (compatible == NULL)
7020 {
7021 if (command_line.warn_mismatch)
7022 einfo (_("%X%P: %s architecture of input file `%pB'"
7023 " is incompatible with %s output\n"),
7024 bfd_printable_name (input_bfd), input_bfd,
7025 bfd_printable_name (link_info.output_bfd));
7026 }
7027
7028 /* If the input bfd has no contents, it shouldn't set the
7029 private data of the output bfd. */
7030 else if (!file->flags.just_syms
7031 && ((input_bfd->flags & DYNAMIC) != 0
7032 || bfd_count_sections (input_bfd) != 0))
7033 {
7034 bfd_error_handler_type pfn = NULL;
7035
7036 /* If we aren't supposed to warn about mismatched input
7037 files, temporarily set the BFD error handler to a
7038 function which will do nothing. We still want to call
7039 bfd_merge_private_bfd_data, since it may set up
7040 information which is needed in the output file. */
7041 if (!command_line.warn_mismatch)
7042 pfn = bfd_set_error_handler (ignore_bfd_errors);
7043 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7044 {
7045 if (command_line.warn_mismatch)
7046 einfo (_("%X%P: failed to merge target specific data"
7047 " of file %pB\n"), input_bfd);
7048 }
7049 if (!command_line.warn_mismatch)
7050 bfd_set_error_handler (pfn);
7051 }
7052 }
7053 }
7054
7055 /* Look through all the global common symbols and attach them to the
7056 correct section. The -sort-common command line switch may be used
7057 to roughly sort the entries by alignment. */
7058
7059 static void
7060 lang_common (void)
7061 {
7062 if (link_info.inhibit_common_definition)
7063 return;
7064 if (bfd_link_relocatable (&link_info)
7065 && !command_line.force_common_definition)
7066 return;
7067
7068 if (!config.sort_common)
7069 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7070 else
7071 {
7072 unsigned int power;
7073
7074 if (config.sort_common == sort_descending)
7075 {
7076 for (power = 4; power > 0; power--)
7077 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7078
7079 power = 0;
7080 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7081 }
7082 else
7083 {
7084 for (power = 0; power <= 4; power++)
7085 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7086
7087 power = (unsigned int) -1;
7088 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7089 }
7090 }
7091 }
7092
7093 /* Place one common symbol in the correct section. */
7094
7095 static bfd_boolean
7096 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7097 {
7098 unsigned int power_of_two;
7099 bfd_vma size;
7100 asection *section;
7101
7102 if (h->type != bfd_link_hash_common)
7103 return TRUE;
7104
7105 size = h->u.c.size;
7106 power_of_two = h->u.c.p->alignment_power;
7107
7108 if (config.sort_common == sort_descending
7109 && power_of_two < *(unsigned int *) info)
7110 return TRUE;
7111 else if (config.sort_common == sort_ascending
7112 && power_of_two > *(unsigned int *) info)
7113 return TRUE;
7114
7115 section = h->u.c.p->section;
7116 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7117 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7118 h->root.string);
7119
7120 if (config.map_file != NULL)
7121 {
7122 static bfd_boolean header_printed;
7123 int len;
7124 char *name;
7125 char buf[50];
7126
7127 if (!header_printed)
7128 {
7129 minfo (_("\nAllocating common symbols\n"));
7130 minfo (_("Common symbol size file\n\n"));
7131 header_printed = TRUE;
7132 }
7133
7134 name = bfd_demangle (link_info.output_bfd, h->root.string,
7135 DMGL_ANSI | DMGL_PARAMS);
7136 if (name == NULL)
7137 {
7138 minfo ("%s", h->root.string);
7139 len = strlen (h->root.string);
7140 }
7141 else
7142 {
7143 minfo ("%s", name);
7144 len = strlen (name);
7145 free (name);
7146 }
7147
7148 if (len >= 19)
7149 {
7150 print_nl ();
7151 len = 0;
7152 }
7153 while (len < 20)
7154 {
7155 print_space ();
7156 ++len;
7157 }
7158
7159 minfo ("0x");
7160 if (size <= 0xffffffff)
7161 sprintf (buf, "%lx", (unsigned long) size);
7162 else
7163 sprintf_vma (buf, size);
7164 minfo ("%s", buf);
7165 len = strlen (buf);
7166
7167 while (len < 16)
7168 {
7169 print_space ();
7170 ++len;
7171 }
7172
7173 minfo ("%pB\n", section->owner);
7174 }
7175
7176 return TRUE;
7177 }
7178
7179 /* Handle a single orphan section S, placing the orphan into an appropriate
7180 output section. The effects of the --orphan-handling command line
7181 option are handled here. */
7182
7183 static void
7184 ldlang_place_orphan (asection *s)
7185 {
7186 if (config.orphan_handling == orphan_handling_discard)
7187 {
7188 lang_output_section_statement_type *os;
7189 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
7190 TRUE);
7191 if (os->addr_tree == NULL
7192 && (bfd_link_relocatable (&link_info)
7193 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7194 os->addr_tree = exp_intop (0);
7195 lang_add_section (&os->children, s, NULL, os);
7196 }
7197 else
7198 {
7199 lang_output_section_statement_type *os;
7200 const char *name = s->name;
7201 int constraint = 0;
7202
7203 if (config.orphan_handling == orphan_handling_error)
7204 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7205 s, s->owner);
7206
7207 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7208 constraint = SPECIAL;
7209
7210 os = ldemul_place_orphan (s, name, constraint);
7211 if (os == NULL)
7212 {
7213 os = lang_output_section_statement_lookup (name, constraint, TRUE);
7214 if (os->addr_tree == NULL
7215 && (bfd_link_relocatable (&link_info)
7216 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7217 os->addr_tree = exp_intop (0);
7218 lang_add_section (&os->children, s, NULL, os);
7219 }
7220
7221 if (config.orphan_handling == orphan_handling_warn)
7222 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7223 "placed in section `%s'\n"),
7224 s, s->owner, os->name);
7225 }
7226 }
7227
7228 /* Run through the input files and ensure that every input section has
7229 somewhere to go. If one is found without a destination then create
7230 an input request and place it into the statement tree. */
7231
7232 static void
7233 lang_place_orphans (void)
7234 {
7235 LANG_FOR_EACH_INPUT_STATEMENT (file)
7236 {
7237 asection *s;
7238
7239 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7240 {
7241 if (s->output_section == NULL)
7242 {
7243 /* This section of the file is not attached, root
7244 around for a sensible place for it to go. */
7245
7246 if (file->flags.just_syms)
7247 bfd_link_just_syms (file->the_bfd, s, &link_info);
7248 else if (lang_discard_section_p (s))
7249 s->output_section = bfd_abs_section_ptr;
7250 else if (strcmp (s->name, "COMMON") == 0)
7251 {
7252 /* This is a lonely common section which must have
7253 come from an archive. We attach to the section
7254 with the wildcard. */
7255 if (!bfd_link_relocatable (&link_info)
7256 || command_line.force_common_definition)
7257 {
7258 if (default_common_section == NULL)
7259 default_common_section
7260 = lang_output_section_statement_lookup (".bss", 0,
7261 TRUE);
7262 lang_add_section (&default_common_section->children, s,
7263 NULL, default_common_section);
7264 }
7265 }
7266 else
7267 ldlang_place_orphan (s);
7268 }
7269 }
7270 }
7271 }
7272
7273 void
7274 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7275 {
7276 flagword *ptr_flags;
7277
7278 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7279
7280 while (*flags)
7281 {
7282 switch (*flags)
7283 {
7284 /* PR 17900: An exclamation mark in the attributes reverses
7285 the sense of any of the attributes that follow. */
7286 case '!':
7287 invert = !invert;
7288 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7289 break;
7290
7291 case 'A': case 'a':
7292 *ptr_flags |= SEC_ALLOC;
7293 break;
7294
7295 case 'R': case 'r':
7296 *ptr_flags |= SEC_READONLY;
7297 break;
7298
7299 case 'W': case 'w':
7300 *ptr_flags |= SEC_DATA;
7301 break;
7302
7303 case 'X': case 'x':
7304 *ptr_flags |= SEC_CODE;
7305 break;
7306
7307 case 'L': case 'l':
7308 case 'I': case 'i':
7309 *ptr_flags |= SEC_LOAD;
7310 break;
7311
7312 default:
7313 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7314 *flags, *flags);
7315 break;
7316 }
7317 flags++;
7318 }
7319 }
7320
7321 /* Call a function on each real input file. This function will be
7322 called on an archive, but not on the elements. */
7323
7324 void
7325 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7326 {
7327 lang_input_statement_type *f;
7328
7329 for (f = (void *) input_file_chain.head;
7330 f != NULL;
7331 f = f->next_real_file)
7332 if (f->flags.real)
7333 func (f);
7334 }
7335
7336 /* Call a function on each real file. The function will be called on
7337 all the elements of an archive which are included in the link, but
7338 will not be called on the archive file itself. */
7339
7340 void
7341 lang_for_each_file (void (*func) (lang_input_statement_type *))
7342 {
7343 LANG_FOR_EACH_INPUT_STATEMENT (f)
7344 {
7345 if (f->flags.real)
7346 func (f);
7347 }
7348 }
7349
7350 void
7351 ldlang_add_file (lang_input_statement_type *entry)
7352 {
7353 lang_statement_append (&file_chain, entry, &entry->next);
7354
7355 /* The BFD linker needs to have a list of all input BFDs involved in
7356 a link. */
7357 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7358 && entry->the_bfd->link.next == NULL);
7359 ASSERT (entry->the_bfd != link_info.output_bfd);
7360
7361 *link_info.input_bfds_tail = entry->the_bfd;
7362 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7363 bfd_set_usrdata (entry->the_bfd, entry);
7364 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7365
7366 /* Look through the sections and check for any which should not be
7367 included in the link. We need to do this now, so that we can
7368 notice when the backend linker tries to report multiple
7369 definition errors for symbols which are in sections we aren't
7370 going to link. FIXME: It might be better to entirely ignore
7371 symbols which are defined in sections which are going to be
7372 discarded. This would require modifying the backend linker for
7373 each backend which might set the SEC_LINK_ONCE flag. If we do
7374 this, we should probably handle SEC_EXCLUDE in the same way. */
7375
7376 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7377 }
7378
7379 void
7380 lang_add_output (const char *name, int from_script)
7381 {
7382 /* Make -o on command line override OUTPUT in script. */
7383 if (!had_output_filename || !from_script)
7384 {
7385 output_filename = name;
7386 had_output_filename = TRUE;
7387 }
7388 }
7389
7390 lang_output_section_statement_type *
7391 lang_enter_output_section_statement (const char *output_section_statement_name,
7392 etree_type *address_exp,
7393 enum section_type sectype,
7394 etree_type *align,
7395 etree_type *subalign,
7396 etree_type *ebase,
7397 int constraint,
7398 int align_with_input)
7399 {
7400 lang_output_section_statement_type *os;
7401
7402 os = lang_output_section_statement_lookup (output_section_statement_name,
7403 constraint, TRUE);
7404 current_section = os;
7405
7406 if (os->addr_tree == NULL)
7407 {
7408 os->addr_tree = address_exp;
7409 }
7410 os->sectype = sectype;
7411 if (sectype != noload_section)
7412 os->flags = SEC_NO_FLAGS;
7413 else
7414 os->flags = SEC_NEVER_LOAD;
7415 os->block_value = 1;
7416
7417 /* Make next things chain into subchain of this. */
7418 push_stat_ptr (&os->children);
7419
7420 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7421 if (os->align_lma_with_input && align != NULL)
7422 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7423 NULL);
7424
7425 os->subsection_alignment = subalign;
7426 os->section_alignment = align;
7427
7428 os->load_base = ebase;
7429 return os;
7430 }
7431
7432 void
7433 lang_final (void)
7434 {
7435 lang_output_statement_type *new_stmt;
7436
7437 new_stmt = new_stat (lang_output_statement, stat_ptr);
7438 new_stmt->name = output_filename;
7439 }
7440
7441 /* Reset the current counters in the regions. */
7442
7443 void
7444 lang_reset_memory_regions (void)
7445 {
7446 lang_memory_region_type *p = lang_memory_region_list;
7447 asection *o;
7448 lang_output_section_statement_type *os;
7449
7450 for (p = lang_memory_region_list; p != NULL; p = p->next)
7451 {
7452 p->current = p->origin;
7453 p->last_os = NULL;
7454 }
7455
7456 for (os = (void *) lang_os_list.head;
7457 os != NULL;
7458 os = os->next)
7459 {
7460 os->processed_vma = FALSE;
7461 os->processed_lma = FALSE;
7462 }
7463
7464 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7465 {
7466 /* Save the last size for possible use by bfd_relax_section. */
7467 o->rawsize = o->size;
7468 if (!(o->flags & SEC_FIXED_SIZE))
7469 o->size = 0;
7470 }
7471 }
7472
7473 /* Worker for lang_gc_sections_1. */
7474
7475 static void
7476 gc_section_callback (lang_wild_statement_type *ptr,
7477 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7478 asection *section,
7479 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7480 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7481 void *data ATTRIBUTE_UNUSED)
7482 {
7483 /* If the wild pattern was marked KEEP, the member sections
7484 should be as well. */
7485 if (ptr->keep_sections)
7486 section->flags |= SEC_KEEP;
7487 }
7488
7489 /* Iterate over sections marking them against GC. */
7490
7491 static void
7492 lang_gc_sections_1 (lang_statement_union_type *s)
7493 {
7494 for (; s != NULL; s = s->header.next)
7495 {
7496 switch (s->header.type)
7497 {
7498 case lang_wild_statement_enum:
7499 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7500 break;
7501 case lang_constructors_statement_enum:
7502 lang_gc_sections_1 (constructor_list.head);
7503 break;
7504 case lang_output_section_statement_enum:
7505 lang_gc_sections_1 (s->output_section_statement.children.head);
7506 break;
7507 case lang_group_statement_enum:
7508 lang_gc_sections_1 (s->group_statement.children.head);
7509 break;
7510 default:
7511 break;
7512 }
7513 }
7514 }
7515
7516 static void
7517 lang_gc_sections (void)
7518 {
7519 /* Keep all sections so marked in the link script. */
7520 lang_gc_sections_1 (statement_list.head);
7521
7522 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7523 the special case of debug info. (See bfd/stabs.c)
7524 Twiddle the flag here, to simplify later linker code. */
7525 if (bfd_link_relocatable (&link_info))
7526 {
7527 LANG_FOR_EACH_INPUT_STATEMENT (f)
7528 {
7529 asection *sec;
7530 #if BFD_SUPPORTS_PLUGINS
7531 if (f->flags.claimed)
7532 continue;
7533 #endif
7534 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7535 if ((sec->flags & SEC_DEBUGGING) == 0)
7536 sec->flags &= ~SEC_EXCLUDE;
7537 }
7538 }
7539
7540 if (link_info.gc_sections)
7541 bfd_gc_sections (link_info.output_bfd, &link_info);
7542 }
7543
7544 /* Worker for lang_find_relro_sections_1. */
7545
7546 static void
7547 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7548 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7549 asection *section,
7550 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7551 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7552 void *data)
7553 {
7554 /* Discarded, excluded and ignored sections effectively have zero
7555 size. */
7556 if (section->output_section != NULL
7557 && section->output_section->owner == link_info.output_bfd
7558 && (section->output_section->flags & SEC_EXCLUDE) == 0
7559 && !IGNORE_SECTION (section)
7560 && section->size != 0)
7561 {
7562 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7563 *has_relro_section = TRUE;
7564 }
7565 }
7566
7567 /* Iterate over sections for relro sections. */
7568
7569 static void
7570 lang_find_relro_sections_1 (lang_statement_union_type *s,
7571 seg_align_type *seg,
7572 bfd_boolean *has_relro_section)
7573 {
7574 if (*has_relro_section)
7575 return;
7576
7577 for (; s != NULL; s = s->header.next)
7578 {
7579 if (s == seg->relro_end_stat)
7580 break;
7581
7582 switch (s->header.type)
7583 {
7584 case lang_wild_statement_enum:
7585 walk_wild (&s->wild_statement,
7586 find_relro_section_callback,
7587 has_relro_section);
7588 break;
7589 case lang_constructors_statement_enum:
7590 lang_find_relro_sections_1 (constructor_list.head,
7591 seg, has_relro_section);
7592 break;
7593 case lang_output_section_statement_enum:
7594 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7595 seg, has_relro_section);
7596 break;
7597 case lang_group_statement_enum:
7598 lang_find_relro_sections_1 (s->group_statement.children.head,
7599 seg, has_relro_section);
7600 break;
7601 default:
7602 break;
7603 }
7604 }
7605 }
7606
7607 static void
7608 lang_find_relro_sections (void)
7609 {
7610 bfd_boolean has_relro_section = FALSE;
7611
7612 /* Check all sections in the link script. */
7613
7614 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7615 &expld.dataseg, &has_relro_section);
7616
7617 if (!has_relro_section)
7618 link_info.relro = FALSE;
7619 }
7620
7621 /* Relax all sections until bfd_relax_section gives up. */
7622
7623 void
7624 lang_relax_sections (bfd_boolean need_layout)
7625 {
7626 if (RELAXATION_ENABLED)
7627 {
7628 /* We may need more than one relaxation pass. */
7629 int i = link_info.relax_pass;
7630
7631 /* The backend can use it to determine the current pass. */
7632 link_info.relax_pass = 0;
7633
7634 while (i--)
7635 {
7636 /* Keep relaxing until bfd_relax_section gives up. */
7637 bfd_boolean relax_again;
7638
7639 link_info.relax_trip = -1;
7640 do
7641 {
7642 link_info.relax_trip++;
7643
7644 /* Note: pe-dll.c does something like this also. If you find
7645 you need to change this code, you probably need to change
7646 pe-dll.c also. DJ */
7647
7648 /* Do all the assignments with our current guesses as to
7649 section sizes. */
7650 lang_do_assignments (lang_assigning_phase_enum);
7651
7652 /* We must do this after lang_do_assignments, because it uses
7653 size. */
7654 lang_reset_memory_regions ();
7655
7656 /* Perform another relax pass - this time we know where the
7657 globals are, so can make a better guess. */
7658 relax_again = FALSE;
7659 lang_size_sections (&relax_again, FALSE);
7660 }
7661 while (relax_again);
7662
7663 link_info.relax_pass++;
7664 }
7665 need_layout = TRUE;
7666 }
7667
7668 if (need_layout)
7669 {
7670 /* Final extra sizing to report errors. */
7671 lang_do_assignments (lang_assigning_phase_enum);
7672 lang_reset_memory_regions ();
7673 lang_size_sections (NULL, TRUE);
7674 }
7675 }
7676
7677 #if BFD_SUPPORTS_PLUGINS
7678 /* Find the insert point for the plugin's replacement files. We
7679 place them after the first claimed real object file, or if the
7680 first claimed object is an archive member, after the last real
7681 object file immediately preceding the archive. In the event
7682 no objects have been claimed at all, we return the first dummy
7683 object file on the list as the insert point; that works, but
7684 the callee must be careful when relinking the file_chain as it
7685 is not actually on that chain, only the statement_list and the
7686 input_file list; in that case, the replacement files must be
7687 inserted at the head of the file_chain. */
7688
7689 static lang_input_statement_type *
7690 find_replacements_insert_point (bfd_boolean *before)
7691 {
7692 lang_input_statement_type *claim1, *lastobject;
7693 lastobject = (void *) input_file_chain.head;
7694 for (claim1 = (void *) file_chain.head;
7695 claim1 != NULL;
7696 claim1 = claim1->next)
7697 {
7698 if (claim1->flags.claimed)
7699 {
7700 *before = claim1->flags.claim_archive;
7701 return claim1->flags.claim_archive ? lastobject : claim1;
7702 }
7703 /* Update lastobject if this is a real object file. */
7704 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7705 lastobject = claim1;
7706 }
7707 /* No files were claimed by the plugin. Choose the last object
7708 file found on the list (maybe the first, dummy entry) as the
7709 insert point. */
7710 *before = FALSE;
7711 return lastobject;
7712 }
7713
7714 /* Find where to insert ADD, an archive element or shared library
7715 added during a rescan. */
7716
7717 static lang_input_statement_type **
7718 find_rescan_insertion (lang_input_statement_type *add)
7719 {
7720 bfd *add_bfd = add->the_bfd;
7721 lang_input_statement_type *f;
7722 lang_input_statement_type *last_loaded = NULL;
7723 lang_input_statement_type *before = NULL;
7724 lang_input_statement_type **iter = NULL;
7725
7726 if (add_bfd->my_archive != NULL)
7727 add_bfd = add_bfd->my_archive;
7728
7729 /* First look through the input file chain, to find an object file
7730 before the one we've rescanned. Normal object files always
7731 appear on both the input file chain and the file chain, so this
7732 lets us get quickly to somewhere near the correct place on the
7733 file chain if it is full of archive elements. Archives don't
7734 appear on the file chain, but if an element has been extracted
7735 then their input_statement->next points at it. */
7736 for (f = (void *) input_file_chain.head;
7737 f != NULL;
7738 f = f->next_real_file)
7739 {
7740 if (f->the_bfd == add_bfd)
7741 {
7742 before = last_loaded;
7743 if (f->next != NULL)
7744 return &f->next->next;
7745 }
7746 if (f->the_bfd != NULL && f->next != NULL)
7747 last_loaded = f;
7748 }
7749
7750 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7751 *iter != NULL;
7752 iter = &(*iter)->next)
7753 if (!(*iter)->flags.claim_archive
7754 && (*iter)->the_bfd->my_archive == NULL)
7755 break;
7756
7757 return iter;
7758 }
7759
7760 /* Insert SRCLIST into DESTLIST after given element by chaining
7761 on FIELD as the next-pointer. (Counterintuitively does not need
7762 a pointer to the actual after-node itself, just its chain field.) */
7763
7764 static void
7765 lang_list_insert_after (lang_statement_list_type *destlist,
7766 lang_statement_list_type *srclist,
7767 lang_statement_union_type **field)
7768 {
7769 *(srclist->tail) = *field;
7770 *field = srclist->head;
7771 if (destlist->tail == field)
7772 destlist->tail = srclist->tail;
7773 }
7774
7775 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7776 was taken as a copy of it and leave them in ORIGLIST. */
7777
7778 static void
7779 lang_list_remove_tail (lang_statement_list_type *destlist,
7780 lang_statement_list_type *origlist)
7781 {
7782 union lang_statement_union **savetail;
7783 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7784 ASSERT (origlist->head == destlist->head);
7785 savetail = origlist->tail;
7786 origlist->head = *(savetail);
7787 origlist->tail = destlist->tail;
7788 destlist->tail = savetail;
7789 *savetail = NULL;
7790 }
7791
7792 static lang_statement_union_type **
7793 find_next_input_statement (lang_statement_union_type **s)
7794 {
7795 for ( ; *s; s = &(*s)->header.next)
7796 {
7797 lang_statement_union_type **t;
7798 switch ((*s)->header.type)
7799 {
7800 case lang_input_statement_enum:
7801 return s;
7802 case lang_wild_statement_enum:
7803 t = &(*s)->wild_statement.children.head;
7804 break;
7805 case lang_group_statement_enum:
7806 t = &(*s)->group_statement.children.head;
7807 break;
7808 case lang_output_section_statement_enum:
7809 t = &(*s)->output_section_statement.children.head;
7810 break;
7811 default:
7812 continue;
7813 }
7814 t = find_next_input_statement (t);
7815 if (*t)
7816 return t;
7817 }
7818 return s;
7819 }
7820 #endif /* BFD_SUPPORTS_PLUGINS */
7821
7822 /* Add NAME to the list of garbage collection entry points. */
7823
7824 void
7825 lang_add_gc_name (const char *name)
7826 {
7827 struct bfd_sym_chain *sym;
7828
7829 if (name == NULL)
7830 return;
7831
7832 sym = stat_alloc (sizeof (*sym));
7833
7834 sym->next = link_info.gc_sym_list;
7835 sym->name = name;
7836 link_info.gc_sym_list = sym;
7837 }
7838
7839 /* Check relocations. */
7840
7841 static void
7842 lang_check_relocs (void)
7843 {
7844 if (link_info.check_relocs_after_open_input)
7845 {
7846 bfd *abfd;
7847
7848 for (abfd = link_info.input_bfds;
7849 abfd != (bfd *) NULL; abfd = abfd->link.next)
7850 if (!bfd_link_check_relocs (abfd, &link_info))
7851 {
7852 /* No object output, fail return. */
7853 config.make_executable = FALSE;
7854 /* Note: we do not abort the loop, but rather
7855 continue the scan in case there are other
7856 bad relocations to report. */
7857 }
7858 }
7859 }
7860
7861 /* Look through all output sections looking for places where we can
7862 propagate forward the lma region. */
7863
7864 static void
7865 lang_propagate_lma_regions (void)
7866 {
7867 lang_output_section_statement_type *os;
7868
7869 for (os = (void *) lang_os_list.head;
7870 os != NULL;
7871 os = os->next)
7872 {
7873 if (os->prev != NULL
7874 && os->lma_region == NULL
7875 && os->load_base == NULL
7876 && os->addr_tree == NULL
7877 && os->region == os->prev->region)
7878 os->lma_region = os->prev->lma_region;
7879 }
7880 }
7881
7882 void
7883 lang_process (void)
7884 {
7885 /* Finalize dynamic list. */
7886 if (link_info.dynamic_list)
7887 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7888
7889 current_target = default_target;
7890
7891 /* Open the output file. */
7892 lang_for_each_statement (ldlang_open_output);
7893 init_opb (NULL);
7894
7895 ldemul_create_output_section_statements ();
7896
7897 /* Add to the hash table all undefineds on the command line. */
7898 lang_place_undefineds ();
7899
7900 if (!bfd_section_already_linked_table_init ())
7901 einfo (_("%F%P: can not create hash table: %E\n"));
7902
7903 /* Create a bfd for each input file. */
7904 current_target = default_target;
7905 lang_statement_iteration++;
7906 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7907 /* open_input_bfds also handles assignments, so we can give values
7908 to symbolic origin/length now. */
7909 lang_do_memory_regions ();
7910
7911 #if BFD_SUPPORTS_PLUGINS
7912 if (link_info.lto_plugin_active)
7913 {
7914 lang_statement_list_type added;
7915 lang_statement_list_type files, inputfiles;
7916
7917 /* Now all files are read, let the plugin(s) decide if there
7918 are any more to be added to the link before we call the
7919 emulation's after_open hook. We create a private list of
7920 input statements for this purpose, which we will eventually
7921 insert into the global statement list after the first claimed
7922 file. */
7923 added = *stat_ptr;
7924 /* We need to manipulate all three chains in synchrony. */
7925 files = file_chain;
7926 inputfiles = input_file_chain;
7927 if (plugin_call_all_symbols_read ())
7928 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7929 plugin_error_plugin ());
7930 link_info.lto_all_symbols_read = TRUE;
7931 /* Open any newly added files, updating the file chains. */
7932 plugin_undefs = link_info.hash->undefs_tail;
7933 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7934 if (plugin_undefs == link_info.hash->undefs_tail)
7935 plugin_undefs = NULL;
7936 /* Restore the global list pointer now they have all been added. */
7937 lang_list_remove_tail (stat_ptr, &added);
7938 /* And detach the fresh ends of the file lists. */
7939 lang_list_remove_tail (&file_chain, &files);
7940 lang_list_remove_tail (&input_file_chain, &inputfiles);
7941 /* Were any new files added? */
7942 if (added.head != NULL)
7943 {
7944 /* If so, we will insert them into the statement list immediately
7945 after the first input file that was claimed by the plugin,
7946 unless that file was an archive in which case it is inserted
7947 immediately before. */
7948 bfd_boolean before;
7949 lang_statement_union_type **prev;
7950 plugin_insert = find_replacements_insert_point (&before);
7951 /* If a plugin adds input files without having claimed any, we
7952 don't really have a good idea where to place them. Just putting
7953 them at the start or end of the list is liable to leave them
7954 outside the crtbegin...crtend range. */
7955 ASSERT (plugin_insert != NULL);
7956 /* Splice the new statement list into the old one. */
7957 prev = &plugin_insert->header.next;
7958 if (before)
7959 {
7960 prev = find_next_input_statement (prev);
7961 if (*prev != (void *) plugin_insert->next_real_file)
7962 {
7963 /* We didn't find the expected input statement.
7964 Fall back to adding after plugin_insert. */
7965 prev = &plugin_insert->header.next;
7966 }
7967 }
7968 lang_list_insert_after (stat_ptr, &added, prev);
7969 /* Likewise for the file chains. */
7970 lang_list_insert_after (&input_file_chain, &inputfiles,
7971 (void *) &plugin_insert->next_real_file);
7972 /* We must be careful when relinking file_chain; we may need to
7973 insert the new files at the head of the list if the insert
7974 point chosen is the dummy first input file. */
7975 if (plugin_insert->filename)
7976 lang_list_insert_after (&file_chain, &files,
7977 (void *) &plugin_insert->next);
7978 else
7979 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7980
7981 /* Rescan archives in case new undefined symbols have appeared. */
7982 files = file_chain;
7983 lang_statement_iteration++;
7984 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7985 lang_list_remove_tail (&file_chain, &files);
7986 while (files.head != NULL)
7987 {
7988 lang_input_statement_type **insert;
7989 lang_input_statement_type **iter, *temp;
7990 bfd *my_arch;
7991
7992 insert = find_rescan_insertion (&files.head->input_statement);
7993 /* All elements from an archive can be added at once. */
7994 iter = &files.head->input_statement.next;
7995 my_arch = files.head->input_statement.the_bfd->my_archive;
7996 if (my_arch != NULL)
7997 for (; *iter != NULL; iter = &(*iter)->next)
7998 if ((*iter)->the_bfd->my_archive != my_arch)
7999 break;
8000 temp = *insert;
8001 *insert = &files.head->input_statement;
8002 files.head = (lang_statement_union_type *) *iter;
8003 *iter = temp;
8004 if (my_arch != NULL)
8005 {
8006 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8007 if (parent != NULL)
8008 parent->next = (lang_input_statement_type *)
8009 ((char *) iter
8010 - offsetof (lang_input_statement_type, next));
8011 }
8012 }
8013 }
8014 }
8015 #endif /* BFD_SUPPORTS_PLUGINS */
8016
8017 /* Make sure that nobody has tried to add a symbol to this list
8018 before now. */
8019 ASSERT (link_info.gc_sym_list == NULL);
8020
8021 link_info.gc_sym_list = &entry_symbol;
8022
8023 if (entry_symbol.name == NULL)
8024 {
8025 link_info.gc_sym_list = ldlang_undef_chain_list_head;
8026
8027 /* entry_symbol is normally initialied by a ENTRY definition in the
8028 linker script or the -e command line option. But if neither of
8029 these have been used, the target specific backend may still have
8030 provided an entry symbol via a call to lang_default_entry().
8031 Unfortunately this value will not be processed until lang_end()
8032 is called, long after this function has finished. So detect this
8033 case here and add the target's entry symbol to the list of starting
8034 points for garbage collection resolution. */
8035 lang_add_gc_name (entry_symbol_default);
8036 }
8037
8038 lang_add_gc_name (link_info.init_function);
8039 lang_add_gc_name (link_info.fini_function);
8040
8041 ldemul_after_open ();
8042 if (config.map_file != NULL)
8043 lang_print_asneeded ();
8044
8045 ldlang_open_ctf ();
8046
8047 bfd_section_already_linked_table_free ();
8048
8049 /* Make sure that we're not mixing architectures. We call this
8050 after all the input files have been opened, but before we do any
8051 other processing, so that any operations merge_private_bfd_data
8052 does on the output file will be known during the rest of the
8053 link. */
8054 lang_check ();
8055
8056 /* Handle .exports instead of a version script if we're told to do so. */
8057 if (command_line.version_exports_section)
8058 lang_do_version_exports_section ();
8059
8060 /* Build all sets based on the information gathered from the input
8061 files. */
8062 ldctor_build_sets ();
8063
8064 /* Give initial values for __start and __stop symbols, so that ELF
8065 gc_sections will keep sections referenced by these symbols. Must
8066 be done before lang_do_assignments below. */
8067 if (config.build_constructors)
8068 lang_init_start_stop ();
8069
8070 /* PR 13683: We must rerun the assignments prior to running garbage
8071 collection in order to make sure that all symbol aliases are resolved. */
8072 lang_do_assignments (lang_mark_phase_enum);
8073 expld.phase = lang_first_phase_enum;
8074
8075 /* Size up the common data. */
8076 lang_common ();
8077
8078 /* Remove unreferenced sections if asked to. */
8079 lang_gc_sections ();
8080
8081 /* Check relocations. */
8082 lang_check_relocs ();
8083
8084 ldemul_after_check_relocs ();
8085
8086 /* Update wild statements. */
8087 update_wild_statements (statement_list.head);
8088
8089 /* Run through the contours of the script and attach input sections
8090 to the correct output sections. */
8091 lang_statement_iteration++;
8092 map_input_to_output_sections (statement_list.head, NULL, NULL);
8093
8094 /* Start at the statement immediately after the special abs_section
8095 output statement, so that it isn't reordered. */
8096 process_insert_statements (&lang_os_list.head->header.next);
8097
8098 ldemul_before_place_orphans ();
8099
8100 /* Find any sections not attached explicitly and handle them. */
8101 lang_place_orphans ();
8102
8103 if (!bfd_link_relocatable (&link_info))
8104 {
8105 asection *found;
8106
8107 /* Merge SEC_MERGE sections. This has to be done after GC of
8108 sections, so that GCed sections are not merged, but before
8109 assigning dynamic symbols, since removing whole input sections
8110 is hard then. */
8111 bfd_merge_sections (link_info.output_bfd, &link_info);
8112
8113 /* Look for a text section and set the readonly attribute in it. */
8114 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8115
8116 if (found != NULL)
8117 {
8118 if (config.text_read_only)
8119 found->flags |= SEC_READONLY;
8120 else
8121 found->flags &= ~SEC_READONLY;
8122 }
8123 }
8124
8125 /* Merge together CTF sections. After this, only the symtab-dependent
8126 function and data object sections need adjustment. */
8127 lang_merge_ctf ();
8128
8129 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8130 examining things laid out late, like the strtab. */
8131 lang_write_ctf (0);
8132
8133 /* Copy forward lma regions for output sections in same lma region. */
8134 lang_propagate_lma_regions ();
8135
8136 /* Defining __start/__stop symbols early for --gc-sections to work
8137 around a glibc build problem can result in these symbols being
8138 defined when they should not be. Fix them now. */
8139 if (config.build_constructors)
8140 lang_undef_start_stop ();
8141
8142 /* Define .startof./.sizeof. symbols with preliminary values before
8143 dynamic symbols are created. */
8144 if (!bfd_link_relocatable (&link_info))
8145 lang_init_startof_sizeof ();
8146
8147 /* Do anything special before sizing sections. This is where ELF
8148 and other back-ends size dynamic sections. */
8149 ldemul_before_allocation ();
8150
8151 /* We must record the program headers before we try to fix the
8152 section positions, since they will affect SIZEOF_HEADERS. */
8153 lang_record_phdrs ();
8154
8155 /* Check relro sections. */
8156 if (link_info.relro && !bfd_link_relocatable (&link_info))
8157 lang_find_relro_sections ();
8158
8159 /* Size up the sections. */
8160 lang_size_sections (NULL, !RELAXATION_ENABLED);
8161
8162 /* See if anything special should be done now we know how big
8163 everything is. This is where relaxation is done. */
8164 ldemul_after_allocation ();
8165
8166 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8167 lang_finalize_start_stop ();
8168
8169 /* Do all the assignments again, to report errors. Assignment
8170 statements are processed multiple times, updating symbols; In
8171 open_input_bfds, lang_do_assignments, and lang_size_sections.
8172 Since lang_relax_sections calls lang_do_assignments, symbols are
8173 also updated in ldemul_after_allocation. */
8174 lang_do_assignments (lang_final_phase_enum);
8175
8176 ldemul_finish ();
8177
8178 /* Convert absolute symbols to section relative. */
8179 ldexp_finalize_syms ();
8180
8181 /* Make sure that the section addresses make sense. */
8182 if (command_line.check_section_addresses)
8183 lang_check_section_addresses ();
8184
8185 /* Check any required symbols are known. */
8186 ldlang_check_require_defined_symbols ();
8187
8188 lang_end ();
8189 }
8190
8191 /* EXPORTED TO YACC */
8192
8193 void
8194 lang_add_wild (struct wildcard_spec *filespec,
8195 struct wildcard_list *section_list,
8196 bfd_boolean keep_sections)
8197 {
8198 struct wildcard_list *curr, *next;
8199 lang_wild_statement_type *new_stmt;
8200
8201 /* Reverse the list as the parser puts it back to front. */
8202 for (curr = section_list, section_list = NULL;
8203 curr != NULL;
8204 section_list = curr, curr = next)
8205 {
8206 next = curr->next;
8207 curr->next = section_list;
8208 }
8209
8210 if (filespec != NULL && filespec->name != NULL)
8211 {
8212 if (strcmp (filespec->name, "*") == 0)
8213 filespec->name = NULL;
8214 else if (!wildcardp (filespec->name))
8215 lang_has_input_file = TRUE;
8216 }
8217
8218 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8219 new_stmt->filename = NULL;
8220 new_stmt->filenames_sorted = FALSE;
8221 new_stmt->section_flag_list = NULL;
8222 new_stmt->exclude_name_list = NULL;
8223 if (filespec != NULL)
8224 {
8225 new_stmt->filename = filespec->name;
8226 new_stmt->filenames_sorted = filespec->sorted == by_name;
8227 new_stmt->section_flag_list = filespec->section_flag_list;
8228 new_stmt->exclude_name_list = filespec->exclude_name_list;
8229 }
8230 new_stmt->section_list = section_list;
8231 new_stmt->keep_sections = keep_sections;
8232 lang_list_init (&new_stmt->children);
8233 analyze_walk_wild_section_handler (new_stmt);
8234 }
8235
8236 void
8237 lang_section_start (const char *name, etree_type *address,
8238 const segment_type *segment)
8239 {
8240 lang_address_statement_type *ad;
8241
8242 ad = new_stat (lang_address_statement, stat_ptr);
8243 ad->section_name = name;
8244 ad->address = address;
8245 ad->segment = segment;
8246 }
8247
8248 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8249 because of a -e argument on the command line, or zero if this is
8250 called by ENTRY in a linker script. Command line arguments take
8251 precedence. */
8252
8253 void
8254 lang_add_entry (const char *name, bfd_boolean cmdline)
8255 {
8256 if (entry_symbol.name == NULL
8257 || cmdline
8258 || !entry_from_cmdline)
8259 {
8260 entry_symbol.name = name;
8261 entry_from_cmdline = cmdline;
8262 }
8263 }
8264
8265 /* Set the default start symbol to NAME. .em files should use this,
8266 not lang_add_entry, to override the use of "start" if neither the
8267 linker script nor the command line specifies an entry point. NAME
8268 must be permanently allocated. */
8269 void
8270 lang_default_entry (const char *name)
8271 {
8272 entry_symbol_default = name;
8273 }
8274
8275 void
8276 lang_add_target (const char *name)
8277 {
8278 lang_target_statement_type *new_stmt;
8279
8280 new_stmt = new_stat (lang_target_statement, stat_ptr);
8281 new_stmt->target = name;
8282 }
8283
8284 void
8285 lang_add_map (const char *name)
8286 {
8287 while (*name)
8288 {
8289 switch (*name)
8290 {
8291 case 'F':
8292 map_option_f = TRUE;
8293 break;
8294 }
8295 name++;
8296 }
8297 }
8298
8299 void
8300 lang_add_fill (fill_type *fill)
8301 {
8302 lang_fill_statement_type *new_stmt;
8303
8304 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8305 new_stmt->fill = fill;
8306 }
8307
8308 void
8309 lang_add_data (int type, union etree_union *exp)
8310 {
8311 lang_data_statement_type *new_stmt;
8312
8313 new_stmt = new_stat (lang_data_statement, stat_ptr);
8314 new_stmt->exp = exp;
8315 new_stmt->type = type;
8316 }
8317
8318 /* Create a new reloc statement. RELOC is the BFD relocation type to
8319 generate. HOWTO is the corresponding howto structure (we could
8320 look this up, but the caller has already done so). SECTION is the
8321 section to generate a reloc against, or NAME is the name of the
8322 symbol to generate a reloc against. Exactly one of SECTION and
8323 NAME must be NULL. ADDEND is an expression for the addend. */
8324
8325 void
8326 lang_add_reloc (bfd_reloc_code_real_type reloc,
8327 reloc_howto_type *howto,
8328 asection *section,
8329 const char *name,
8330 union etree_union *addend)
8331 {
8332 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8333
8334 p->reloc = reloc;
8335 p->howto = howto;
8336 p->section = section;
8337 p->name = name;
8338 p->addend_exp = addend;
8339
8340 p->addend_value = 0;
8341 p->output_section = NULL;
8342 p->output_offset = 0;
8343 }
8344
8345 lang_assignment_statement_type *
8346 lang_add_assignment (etree_type *exp)
8347 {
8348 lang_assignment_statement_type *new_stmt;
8349
8350 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8351 new_stmt->exp = exp;
8352 return new_stmt;
8353 }
8354
8355 void
8356 lang_add_attribute (enum statement_enum attribute)
8357 {
8358 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8359 }
8360
8361 void
8362 lang_startup (const char *name)
8363 {
8364 if (first_file->filename != NULL)
8365 {
8366 einfo (_("%F%P: multiple STARTUP files\n"));
8367 }
8368 first_file->filename = name;
8369 first_file->local_sym_name = name;
8370 first_file->flags.real = TRUE;
8371 }
8372
8373 void
8374 lang_float (bfd_boolean maybe)
8375 {
8376 lang_float_flag = maybe;
8377 }
8378
8379
8380 /* Work out the load- and run-time regions from a script statement, and
8381 store them in *LMA_REGION and *REGION respectively.
8382
8383 MEMSPEC is the name of the run-time region, or the value of
8384 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8385 LMA_MEMSPEC is the name of the load-time region, or null if the
8386 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8387 had an explicit load address.
8388
8389 It is an error to specify both a load region and a load address. */
8390
8391 static void
8392 lang_get_regions (lang_memory_region_type **region,
8393 lang_memory_region_type **lma_region,
8394 const char *memspec,
8395 const char *lma_memspec,
8396 bfd_boolean have_lma,
8397 bfd_boolean have_vma)
8398 {
8399 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
8400
8401 /* If no runtime region or VMA has been specified, but the load region
8402 has been specified, then use the load region for the runtime region
8403 as well. */
8404 if (lma_memspec != NULL
8405 && !have_vma
8406 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8407 *region = *lma_region;
8408 else
8409 *region = lang_memory_region_lookup (memspec, FALSE);
8410
8411 if (have_lma && lma_memspec != 0)
8412 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8413 NULL);
8414 }
8415
8416 void
8417 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8418 lang_output_section_phdr_list *phdrs,
8419 const char *lma_memspec)
8420 {
8421 lang_get_regions (&current_section->region,
8422 &current_section->lma_region,
8423 memspec, lma_memspec,
8424 current_section->load_base != NULL,
8425 current_section->addr_tree != NULL);
8426
8427 current_section->fill = fill;
8428 current_section->phdrs = phdrs;
8429 pop_stat_ptr ();
8430 }
8431
8432 /* Set the output format type. -oformat overrides scripts. */
8433
8434 void
8435 lang_add_output_format (const char *format,
8436 const char *big,
8437 const char *little,
8438 int from_script)
8439 {
8440 if (output_target == NULL || !from_script)
8441 {
8442 if (command_line.endian == ENDIAN_BIG
8443 && big != NULL)
8444 format = big;
8445 else if (command_line.endian == ENDIAN_LITTLE
8446 && little != NULL)
8447 format = little;
8448
8449 output_target = format;
8450 }
8451 }
8452
8453 void
8454 lang_add_insert (const char *where, int is_before)
8455 {
8456 lang_insert_statement_type *new_stmt;
8457
8458 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8459 new_stmt->where = where;
8460 new_stmt->is_before = is_before;
8461 saved_script_handle = previous_script_handle;
8462 }
8463
8464 /* Enter a group. This creates a new lang_group_statement, and sets
8465 stat_ptr to build new statements within the group. */
8466
8467 void
8468 lang_enter_group (void)
8469 {
8470 lang_group_statement_type *g;
8471
8472 g = new_stat (lang_group_statement, stat_ptr);
8473 lang_list_init (&g->children);
8474 push_stat_ptr (&g->children);
8475 }
8476
8477 /* Leave a group. This just resets stat_ptr to start writing to the
8478 regular list of statements again. Note that this will not work if
8479 groups can occur inside anything else which can adjust stat_ptr,
8480 but currently they can't. */
8481
8482 void
8483 lang_leave_group (void)
8484 {
8485 pop_stat_ptr ();
8486 }
8487
8488 /* Add a new program header. This is called for each entry in a PHDRS
8489 command in a linker script. */
8490
8491 void
8492 lang_new_phdr (const char *name,
8493 etree_type *type,
8494 bfd_boolean filehdr,
8495 bfd_boolean phdrs,
8496 etree_type *at,
8497 etree_type *flags)
8498 {
8499 struct lang_phdr *n, **pp;
8500 bfd_boolean hdrs;
8501
8502 n = stat_alloc (sizeof (struct lang_phdr));
8503 n->next = NULL;
8504 n->name = name;
8505 n->type = exp_get_vma (type, 0, "program header type");
8506 n->filehdr = filehdr;
8507 n->phdrs = phdrs;
8508 n->at = at;
8509 n->flags = flags;
8510
8511 hdrs = n->type == 1 && (phdrs || filehdr);
8512
8513 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8514 if (hdrs
8515 && (*pp)->type == 1
8516 && !((*pp)->filehdr || (*pp)->phdrs))
8517 {
8518 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8519 " when prior PT_LOAD headers lack them\n"), NULL);
8520 hdrs = FALSE;
8521 }
8522
8523 *pp = n;
8524 }
8525
8526 /* Record the program header information in the output BFD. FIXME: We
8527 should not be calling an ELF specific function here. */
8528
8529 static void
8530 lang_record_phdrs (void)
8531 {
8532 unsigned int alc;
8533 asection **secs;
8534 lang_output_section_phdr_list *last;
8535 struct lang_phdr *l;
8536 lang_output_section_statement_type *os;
8537
8538 alc = 10;
8539 secs = (asection **) xmalloc (alc * sizeof (asection *));
8540 last = NULL;
8541
8542 for (l = lang_phdr_list; l != NULL; l = l->next)
8543 {
8544 unsigned int c;
8545 flagword flags;
8546 bfd_vma at;
8547
8548 c = 0;
8549 for (os = (void *) lang_os_list.head;
8550 os != NULL;
8551 os = os->next)
8552 {
8553 lang_output_section_phdr_list *pl;
8554
8555 if (os->constraint < 0)
8556 continue;
8557
8558 pl = os->phdrs;
8559 if (pl != NULL)
8560 last = pl;
8561 else
8562 {
8563 if (os->sectype == noload_section
8564 || os->bfd_section == NULL
8565 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8566 continue;
8567
8568 /* Don't add orphans to PT_INTERP header. */
8569 if (l->type == 3)
8570 continue;
8571
8572 if (last == NULL)
8573 {
8574 lang_output_section_statement_type *tmp_os;
8575
8576 /* If we have not run across a section with a program
8577 header assigned to it yet, then scan forwards to find
8578 one. This prevents inconsistencies in the linker's
8579 behaviour when a script has specified just a single
8580 header and there are sections in that script which are
8581 not assigned to it, and which occur before the first
8582 use of that header. See here for more details:
8583 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8584 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8585 if (tmp_os->phdrs)
8586 {
8587 last = tmp_os->phdrs;
8588 break;
8589 }
8590 if (last == NULL)
8591 einfo (_("%F%P: no sections assigned to phdrs\n"));
8592 }
8593 pl = last;
8594 }
8595
8596 if (os->bfd_section == NULL)
8597 continue;
8598
8599 for (; pl != NULL; pl = pl->next)
8600 {
8601 if (strcmp (pl->name, l->name) == 0)
8602 {
8603 if (c >= alc)
8604 {
8605 alc *= 2;
8606 secs = (asection **) xrealloc (secs,
8607 alc * sizeof (asection *));
8608 }
8609 secs[c] = os->bfd_section;
8610 ++c;
8611 pl->used = TRUE;
8612 }
8613 }
8614 }
8615
8616 if (l->flags == NULL)
8617 flags = 0;
8618 else
8619 flags = exp_get_vma (l->flags, 0, "phdr flags");
8620
8621 if (l->at == NULL)
8622 at = 0;
8623 else
8624 at = exp_get_vma (l->at, 0, "phdr load address");
8625
8626 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8627 l->flags != NULL, flags, l->at != NULL,
8628 at, l->filehdr, l->phdrs, c, secs))
8629 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8630 }
8631
8632 free (secs);
8633
8634 /* Make sure all the phdr assignments succeeded. */
8635 for (os = (void *) lang_os_list.head;
8636 os != NULL;
8637 os = os->next)
8638 {
8639 lang_output_section_phdr_list *pl;
8640
8641 if (os->constraint < 0
8642 || os->bfd_section == NULL)
8643 continue;
8644
8645 for (pl = os->phdrs;
8646 pl != NULL;
8647 pl = pl->next)
8648 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8649 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8650 os->name, pl->name);
8651 }
8652 }
8653
8654 /* Record a list of sections which may not be cross referenced. */
8655
8656 void
8657 lang_add_nocrossref (lang_nocrossref_type *l)
8658 {
8659 struct lang_nocrossrefs *n;
8660
8661 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8662 n->next = nocrossref_list;
8663 n->list = l;
8664 n->onlyfirst = FALSE;
8665 nocrossref_list = n;
8666
8667 /* Set notice_all so that we get informed about all symbols. */
8668 link_info.notice_all = TRUE;
8669 }
8670
8671 /* Record a section that cannot be referenced from a list of sections. */
8672
8673 void
8674 lang_add_nocrossref_to (lang_nocrossref_type *l)
8675 {
8676 lang_add_nocrossref (l);
8677 nocrossref_list->onlyfirst = TRUE;
8678 }
8679 \f
8680 /* Overlay handling. We handle overlays with some static variables. */
8681
8682 /* The overlay virtual address. */
8683 static etree_type *overlay_vma;
8684 /* And subsection alignment. */
8685 static etree_type *overlay_subalign;
8686
8687 /* An expression for the maximum section size seen so far. */
8688 static etree_type *overlay_max;
8689
8690 /* A list of all the sections in this overlay. */
8691
8692 struct overlay_list {
8693 struct overlay_list *next;
8694 lang_output_section_statement_type *os;
8695 };
8696
8697 static struct overlay_list *overlay_list;
8698
8699 /* Start handling an overlay. */
8700
8701 void
8702 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8703 {
8704 /* The grammar should prevent nested overlays from occurring. */
8705 ASSERT (overlay_vma == NULL
8706 && overlay_subalign == NULL
8707 && overlay_max == NULL);
8708
8709 overlay_vma = vma_expr;
8710 overlay_subalign = subalign;
8711 }
8712
8713 /* Start a section in an overlay. We handle this by calling
8714 lang_enter_output_section_statement with the correct VMA.
8715 lang_leave_overlay sets up the LMA and memory regions. */
8716
8717 void
8718 lang_enter_overlay_section (const char *name)
8719 {
8720 struct overlay_list *n;
8721 etree_type *size;
8722
8723 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8724 0, overlay_subalign, 0, 0, 0);
8725
8726 /* If this is the first section, then base the VMA of future
8727 sections on this one. This will work correctly even if `.' is
8728 used in the addresses. */
8729 if (overlay_list == NULL)
8730 overlay_vma = exp_nameop (ADDR, name);
8731
8732 /* Remember the section. */
8733 n = (struct overlay_list *) xmalloc (sizeof *n);
8734 n->os = current_section;
8735 n->next = overlay_list;
8736 overlay_list = n;
8737
8738 size = exp_nameop (SIZEOF, name);
8739
8740 /* Arrange to work out the maximum section end address. */
8741 if (overlay_max == NULL)
8742 overlay_max = size;
8743 else
8744 overlay_max = exp_binop (MAX_K, overlay_max, size);
8745 }
8746
8747 /* Finish a section in an overlay. There isn't any special to do
8748 here. */
8749
8750 void
8751 lang_leave_overlay_section (fill_type *fill,
8752 lang_output_section_phdr_list *phdrs)
8753 {
8754 const char *name;
8755 char *clean, *s2;
8756 const char *s1;
8757 char *buf;
8758
8759 name = current_section->name;
8760
8761 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8762 region and that no load-time region has been specified. It doesn't
8763 really matter what we say here, since lang_leave_overlay will
8764 override it. */
8765 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8766
8767 /* Define the magic symbols. */
8768
8769 clean = (char *) xmalloc (strlen (name) + 1);
8770 s2 = clean;
8771 for (s1 = name; *s1 != '\0'; s1++)
8772 if (ISALNUM (*s1) || *s1 == '_')
8773 *s2++ = *s1;
8774 *s2 = '\0';
8775
8776 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8777 sprintf (buf, "__load_start_%s", clean);
8778 lang_add_assignment (exp_provide (buf,
8779 exp_nameop (LOADADDR, name),
8780 FALSE));
8781
8782 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8783 sprintf (buf, "__load_stop_%s", clean);
8784 lang_add_assignment (exp_provide (buf,
8785 exp_binop ('+',
8786 exp_nameop (LOADADDR, name),
8787 exp_nameop (SIZEOF, name)),
8788 FALSE));
8789
8790 free (clean);
8791 }
8792
8793 /* Finish an overlay. If there are any overlay wide settings, this
8794 looks through all the sections in the overlay and sets them. */
8795
8796 void
8797 lang_leave_overlay (etree_type *lma_expr,
8798 int nocrossrefs,
8799 fill_type *fill,
8800 const char *memspec,
8801 lang_output_section_phdr_list *phdrs,
8802 const char *lma_memspec)
8803 {
8804 lang_memory_region_type *region;
8805 lang_memory_region_type *lma_region;
8806 struct overlay_list *l;
8807 lang_nocrossref_type *nocrossref;
8808
8809 lang_get_regions (&region, &lma_region,
8810 memspec, lma_memspec,
8811 lma_expr != NULL, FALSE);
8812
8813 nocrossref = NULL;
8814
8815 /* After setting the size of the last section, set '.' to end of the
8816 overlay region. */
8817 if (overlay_list != NULL)
8818 {
8819 overlay_list->os->update_dot = 1;
8820 overlay_list->os->update_dot_tree
8821 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8822 }
8823
8824 l = overlay_list;
8825 while (l != NULL)
8826 {
8827 struct overlay_list *next;
8828
8829 if (fill != NULL && l->os->fill == NULL)
8830 l->os->fill = fill;
8831
8832 l->os->region = region;
8833 l->os->lma_region = lma_region;
8834
8835 /* The first section has the load address specified in the
8836 OVERLAY statement. The rest are worked out from that.
8837 The base address is not needed (and should be null) if
8838 an LMA region was specified. */
8839 if (l->next == 0)
8840 {
8841 l->os->load_base = lma_expr;
8842 l->os->sectype = first_overlay_section;
8843 }
8844 if (phdrs != NULL && l->os->phdrs == NULL)
8845 l->os->phdrs = phdrs;
8846
8847 if (nocrossrefs)
8848 {
8849 lang_nocrossref_type *nc;
8850
8851 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8852 nc->name = l->os->name;
8853 nc->next = nocrossref;
8854 nocrossref = nc;
8855 }
8856
8857 next = l->next;
8858 free (l);
8859 l = next;
8860 }
8861
8862 if (nocrossref != NULL)
8863 lang_add_nocrossref (nocrossref);
8864
8865 overlay_vma = NULL;
8866 overlay_list = NULL;
8867 overlay_max = NULL;
8868 overlay_subalign = NULL;
8869 }
8870 \f
8871 /* Version handling. This is only useful for ELF. */
8872
8873 /* If PREV is NULL, return first version pattern matching particular symbol.
8874 If PREV is non-NULL, return first version pattern matching particular
8875 symbol after PREV (previously returned by lang_vers_match). */
8876
8877 static struct bfd_elf_version_expr *
8878 lang_vers_match (struct bfd_elf_version_expr_head *head,
8879 struct bfd_elf_version_expr *prev,
8880 const char *sym)
8881 {
8882 const char *c_sym;
8883 const char *cxx_sym = sym;
8884 const char *java_sym = sym;
8885 struct bfd_elf_version_expr *expr = NULL;
8886 enum demangling_styles curr_style;
8887
8888 curr_style = CURRENT_DEMANGLING_STYLE;
8889 cplus_demangle_set_style (no_demangling);
8890 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8891 if (!c_sym)
8892 c_sym = sym;
8893 cplus_demangle_set_style (curr_style);
8894
8895 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8896 {
8897 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8898 DMGL_PARAMS | DMGL_ANSI);
8899 if (!cxx_sym)
8900 cxx_sym = sym;
8901 }
8902 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8903 {
8904 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8905 if (!java_sym)
8906 java_sym = sym;
8907 }
8908
8909 if (head->htab && (prev == NULL || prev->literal))
8910 {
8911 struct bfd_elf_version_expr e;
8912
8913 switch (prev ? prev->mask : 0)
8914 {
8915 case 0:
8916 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8917 {
8918 e.pattern = c_sym;
8919 expr = (struct bfd_elf_version_expr *)
8920 htab_find ((htab_t) head->htab, &e);
8921 while (expr && strcmp (expr->pattern, c_sym) == 0)
8922 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8923 goto out_ret;
8924 else
8925 expr = expr->next;
8926 }
8927 /* Fallthrough */
8928 case BFD_ELF_VERSION_C_TYPE:
8929 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8930 {
8931 e.pattern = cxx_sym;
8932 expr = (struct bfd_elf_version_expr *)
8933 htab_find ((htab_t) head->htab, &e);
8934 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8935 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8936 goto out_ret;
8937 else
8938 expr = expr->next;
8939 }
8940 /* Fallthrough */
8941 case BFD_ELF_VERSION_CXX_TYPE:
8942 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8943 {
8944 e.pattern = java_sym;
8945 expr = (struct bfd_elf_version_expr *)
8946 htab_find ((htab_t) head->htab, &e);
8947 while (expr && strcmp (expr->pattern, java_sym) == 0)
8948 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8949 goto out_ret;
8950 else
8951 expr = expr->next;
8952 }
8953 /* Fallthrough */
8954 default:
8955 break;
8956 }
8957 }
8958
8959 /* Finally, try the wildcards. */
8960 if (prev == NULL || prev->literal)
8961 expr = head->remaining;
8962 else
8963 expr = prev->next;
8964 for (; expr; expr = expr->next)
8965 {
8966 const char *s;
8967
8968 if (!expr->pattern)
8969 continue;
8970
8971 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8972 break;
8973
8974 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8975 s = java_sym;
8976 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8977 s = cxx_sym;
8978 else
8979 s = c_sym;
8980 if (fnmatch (expr->pattern, s, 0) == 0)
8981 break;
8982 }
8983
8984 out_ret:
8985 if (c_sym != sym)
8986 free ((char *) c_sym);
8987 if (cxx_sym != sym)
8988 free ((char *) cxx_sym);
8989 if (java_sym != sym)
8990 free ((char *) java_sym);
8991 return expr;
8992 }
8993
8994 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8995 return a pointer to the symbol name with any backslash quotes removed. */
8996
8997 static const char *
8998 realsymbol (const char *pattern)
8999 {
9000 const char *p;
9001 bfd_boolean changed = FALSE, backslash = FALSE;
9002 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9003
9004 for (p = pattern, s = symbol; *p != '\0'; ++p)
9005 {
9006 /* It is a glob pattern only if there is no preceding
9007 backslash. */
9008 if (backslash)
9009 {
9010 /* Remove the preceding backslash. */
9011 *(s - 1) = *p;
9012 backslash = FALSE;
9013 changed = TRUE;
9014 }
9015 else
9016 {
9017 if (*p == '?' || *p == '*' || *p == '[')
9018 {
9019 free (symbol);
9020 return NULL;
9021 }
9022
9023 *s++ = *p;
9024 backslash = *p == '\\';
9025 }
9026 }
9027
9028 if (changed)
9029 {
9030 *s = '\0';
9031 return symbol;
9032 }
9033 else
9034 {
9035 free (symbol);
9036 return pattern;
9037 }
9038 }
9039
9040 /* This is called for each variable name or match expression. NEW_NAME is
9041 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9042 pattern to be matched against symbol names. */
9043
9044 struct bfd_elf_version_expr *
9045 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9046 const char *new_name,
9047 const char *lang,
9048 bfd_boolean literal_p)
9049 {
9050 struct bfd_elf_version_expr *ret;
9051
9052 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9053 ret->next = orig;
9054 ret->symver = 0;
9055 ret->script = 0;
9056 ret->literal = TRUE;
9057 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9058 if (ret->pattern == NULL)
9059 {
9060 ret->pattern = new_name;
9061 ret->literal = FALSE;
9062 }
9063
9064 if (lang == NULL || strcasecmp (lang, "C") == 0)
9065 ret->mask = BFD_ELF_VERSION_C_TYPE;
9066 else if (strcasecmp (lang, "C++") == 0)
9067 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9068 else if (strcasecmp (lang, "Java") == 0)
9069 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9070 else
9071 {
9072 einfo (_("%X%P: unknown language `%s' in version information\n"),
9073 lang);
9074 ret->mask = BFD_ELF_VERSION_C_TYPE;
9075 }
9076
9077 return ldemul_new_vers_pattern (ret);
9078 }
9079
9080 /* This is called for each set of variable names and match
9081 expressions. */
9082
9083 struct bfd_elf_version_tree *
9084 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9085 struct bfd_elf_version_expr *locals)
9086 {
9087 struct bfd_elf_version_tree *ret;
9088
9089 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9090 ret->globals.list = globals;
9091 ret->locals.list = locals;
9092 ret->match = lang_vers_match;
9093 ret->name_indx = (unsigned int) -1;
9094 return ret;
9095 }
9096
9097 /* This static variable keeps track of version indices. */
9098
9099 static int version_index;
9100
9101 static hashval_t
9102 version_expr_head_hash (const void *p)
9103 {
9104 const struct bfd_elf_version_expr *e =
9105 (const struct bfd_elf_version_expr *) p;
9106
9107 return htab_hash_string (e->pattern);
9108 }
9109
9110 static int
9111 version_expr_head_eq (const void *p1, const void *p2)
9112 {
9113 const struct bfd_elf_version_expr *e1 =
9114 (const struct bfd_elf_version_expr *) p1;
9115 const struct bfd_elf_version_expr *e2 =
9116 (const struct bfd_elf_version_expr *) p2;
9117
9118 return strcmp (e1->pattern, e2->pattern) == 0;
9119 }
9120
9121 static void
9122 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9123 {
9124 size_t count = 0;
9125 struct bfd_elf_version_expr *e, *next;
9126 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9127
9128 for (e = head->list; e; e = e->next)
9129 {
9130 if (e->literal)
9131 count++;
9132 head->mask |= e->mask;
9133 }
9134
9135 if (count)
9136 {
9137 head->htab = htab_create (count * 2, version_expr_head_hash,
9138 version_expr_head_eq, NULL);
9139 list_loc = &head->list;
9140 remaining_loc = &head->remaining;
9141 for (e = head->list; e; e = next)
9142 {
9143 next = e->next;
9144 if (!e->literal)
9145 {
9146 *remaining_loc = e;
9147 remaining_loc = &e->next;
9148 }
9149 else
9150 {
9151 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9152
9153 if (*loc)
9154 {
9155 struct bfd_elf_version_expr *e1, *last;
9156
9157 e1 = (struct bfd_elf_version_expr *) *loc;
9158 last = NULL;
9159 do
9160 {
9161 if (e1->mask == e->mask)
9162 {
9163 last = NULL;
9164 break;
9165 }
9166 last = e1;
9167 e1 = e1->next;
9168 }
9169 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9170
9171 if (last == NULL)
9172 {
9173 /* This is a duplicate. */
9174 /* FIXME: Memory leak. Sometimes pattern is not
9175 xmalloced alone, but in larger chunk of memory. */
9176 /* free (e->pattern); */
9177 free (e);
9178 }
9179 else
9180 {
9181 e->next = last->next;
9182 last->next = e;
9183 }
9184 }
9185 else
9186 {
9187 *loc = e;
9188 *list_loc = e;
9189 list_loc = &e->next;
9190 }
9191 }
9192 }
9193 *remaining_loc = NULL;
9194 *list_loc = head->remaining;
9195 }
9196 else
9197 head->remaining = head->list;
9198 }
9199
9200 /* This is called when we know the name and dependencies of the
9201 version. */
9202
9203 void
9204 lang_register_vers_node (const char *name,
9205 struct bfd_elf_version_tree *version,
9206 struct bfd_elf_version_deps *deps)
9207 {
9208 struct bfd_elf_version_tree *t, **pp;
9209 struct bfd_elf_version_expr *e1;
9210
9211 if (name == NULL)
9212 name = "";
9213
9214 if (link_info.version_info != NULL
9215 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9216 {
9217 einfo (_("%X%P: anonymous version tag cannot be combined"
9218 " with other version tags\n"));
9219 free (version);
9220 return;
9221 }
9222
9223 /* Make sure this node has a unique name. */
9224 for (t = link_info.version_info; t != NULL; t = t->next)
9225 if (strcmp (t->name, name) == 0)
9226 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9227
9228 lang_finalize_version_expr_head (&version->globals);
9229 lang_finalize_version_expr_head (&version->locals);
9230
9231 /* Check the global and local match names, and make sure there
9232 aren't any duplicates. */
9233
9234 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9235 {
9236 for (t = link_info.version_info; t != NULL; t = t->next)
9237 {
9238 struct bfd_elf_version_expr *e2;
9239
9240 if (t->locals.htab && e1->literal)
9241 {
9242 e2 = (struct bfd_elf_version_expr *)
9243 htab_find ((htab_t) t->locals.htab, e1);
9244 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9245 {
9246 if (e1->mask == e2->mask)
9247 einfo (_("%X%P: duplicate expression `%s'"
9248 " in version information\n"), e1->pattern);
9249 e2 = e2->next;
9250 }
9251 }
9252 else if (!e1->literal)
9253 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9254 if (strcmp (e1->pattern, e2->pattern) == 0
9255 && e1->mask == e2->mask)
9256 einfo (_("%X%P: duplicate expression `%s'"
9257 " in version information\n"), e1->pattern);
9258 }
9259 }
9260
9261 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9262 {
9263 for (t = link_info.version_info; t != NULL; t = t->next)
9264 {
9265 struct bfd_elf_version_expr *e2;
9266
9267 if (t->globals.htab && e1->literal)
9268 {
9269 e2 = (struct bfd_elf_version_expr *)
9270 htab_find ((htab_t) t->globals.htab, e1);
9271 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9272 {
9273 if (e1->mask == e2->mask)
9274 einfo (_("%X%P: duplicate expression `%s'"
9275 " in version information\n"),
9276 e1->pattern);
9277 e2 = e2->next;
9278 }
9279 }
9280 else if (!e1->literal)
9281 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9282 if (strcmp (e1->pattern, e2->pattern) == 0
9283 && e1->mask == e2->mask)
9284 einfo (_("%X%P: duplicate expression `%s'"
9285 " in version information\n"), e1->pattern);
9286 }
9287 }
9288
9289 version->deps = deps;
9290 version->name = name;
9291 if (name[0] != '\0')
9292 {
9293 ++version_index;
9294 version->vernum = version_index;
9295 }
9296 else
9297 version->vernum = 0;
9298
9299 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9300 ;
9301 *pp = version;
9302 }
9303
9304 /* This is called when we see a version dependency. */
9305
9306 struct bfd_elf_version_deps *
9307 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9308 {
9309 struct bfd_elf_version_deps *ret;
9310 struct bfd_elf_version_tree *t;
9311
9312 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9313 ret->next = list;
9314
9315 for (t = link_info.version_info; t != NULL; t = t->next)
9316 {
9317 if (strcmp (t->name, name) == 0)
9318 {
9319 ret->version_needed = t;
9320 return ret;
9321 }
9322 }
9323
9324 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9325
9326 ret->version_needed = NULL;
9327 return ret;
9328 }
9329
9330 static void
9331 lang_do_version_exports_section (void)
9332 {
9333 struct bfd_elf_version_expr *greg = NULL, *lreg;
9334
9335 LANG_FOR_EACH_INPUT_STATEMENT (is)
9336 {
9337 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9338 char *contents, *p;
9339 bfd_size_type len;
9340
9341 if (sec == NULL)
9342 continue;
9343
9344 len = sec->size;
9345 contents = (char *) xmalloc (len);
9346 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9347 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9348
9349 p = contents;
9350 while (p < contents + len)
9351 {
9352 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
9353 p = strchr (p, '\0') + 1;
9354 }
9355
9356 /* Do not free the contents, as we used them creating the regex. */
9357
9358 /* Do not include this section in the link. */
9359 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9360 }
9361
9362 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
9363 lang_register_vers_node (command_line.version_exports_section,
9364 lang_new_vers_node (greg, lreg), NULL);
9365 }
9366
9367 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
9368
9369 static void
9370 lang_do_memory_regions (void)
9371 {
9372 lang_memory_region_type *r = lang_memory_region_list;
9373
9374 for (; r != NULL; r = r->next)
9375 {
9376 if (r->origin_exp)
9377 {
9378 exp_fold_tree_no_dot (r->origin_exp);
9379 if (expld.result.valid_p)
9380 {
9381 r->origin = expld.result.value;
9382 r->current = r->origin;
9383 }
9384 else
9385 einfo (_("%F%P: invalid origin for memory region %s\n"),
9386 r->name_list.name);
9387 }
9388 if (r->length_exp)
9389 {
9390 exp_fold_tree_no_dot (r->length_exp);
9391 if (expld.result.valid_p)
9392 r->length = expld.result.value;
9393 else
9394 einfo (_("%F%P: invalid length for memory region %s\n"),
9395 r->name_list.name);
9396 }
9397 }
9398 }
9399
9400 void
9401 lang_add_unique (const char *name)
9402 {
9403 struct unique_sections *ent;
9404
9405 for (ent = unique_section_list; ent; ent = ent->next)
9406 if (strcmp (ent->name, name) == 0)
9407 return;
9408
9409 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9410 ent->name = xstrdup (name);
9411 ent->next = unique_section_list;
9412 unique_section_list = ent;
9413 }
9414
9415 /* Append the list of dynamic symbols to the existing one. */
9416
9417 void
9418 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9419 struct bfd_elf_version_expr *dynamic)
9420 {
9421 if (*list_p)
9422 {
9423 struct bfd_elf_version_expr *tail;
9424 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9425 ;
9426 tail->next = (*list_p)->head.list;
9427 (*list_p)->head.list = dynamic;
9428 }
9429 else
9430 {
9431 struct bfd_elf_dynamic_list *d;
9432
9433 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9434 d->head.list = dynamic;
9435 d->match = lang_vers_match;
9436 *list_p = d;
9437 }
9438 }
9439
9440 /* Append the list of C++ typeinfo dynamic symbols to the existing
9441 one. */
9442
9443 void
9444 lang_append_dynamic_list_cpp_typeinfo (void)
9445 {
9446 const char *symbols[] =
9447 {
9448 "typeinfo name for*",
9449 "typeinfo for*"
9450 };
9451 struct bfd_elf_version_expr *dynamic = NULL;
9452 unsigned int i;
9453
9454 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9455 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9456 FALSE);
9457
9458 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9459 }
9460
9461 /* Append the list of C++ operator new and delete dynamic symbols to the
9462 existing one. */
9463
9464 void
9465 lang_append_dynamic_list_cpp_new (void)
9466 {
9467 const char *symbols[] =
9468 {
9469 "operator new*",
9470 "operator delete*"
9471 };
9472 struct bfd_elf_version_expr *dynamic = NULL;
9473 unsigned int i;
9474
9475 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9476 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9477 FALSE);
9478
9479 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9480 }
9481
9482 /* Scan a space and/or comma separated string of features. */
9483
9484 void
9485 lang_ld_feature (char *str)
9486 {
9487 char *p, *q;
9488
9489 p = str;
9490 while (*p)
9491 {
9492 char sep;
9493 while (*p == ',' || ISSPACE (*p))
9494 ++p;
9495 if (!*p)
9496 break;
9497 q = p + 1;
9498 while (*q && *q != ',' && !ISSPACE (*q))
9499 ++q;
9500 sep = *q;
9501 *q = 0;
9502 if (strcasecmp (p, "SANE_EXPR") == 0)
9503 config.sane_expr = TRUE;
9504 else
9505 einfo (_("%X%P: unknown feature `%s'\n"), p);
9506 *q = sep;
9507 p = q;
9508 }
9509 }
9510
9511 /* Pretty print memory amount. */
9512
9513 static void
9514 lang_print_memory_size (bfd_vma sz)
9515 {
9516 if ((sz & 0x3fffffff) == 0)
9517 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9518 else if ((sz & 0xfffff) == 0)
9519 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9520 else if ((sz & 0x3ff) == 0)
9521 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9522 else
9523 printf (" %10" BFD_VMA_FMT "u B", sz);
9524 }
9525
9526 /* Implement --print-memory-usage: disply per region memory usage. */
9527
9528 void
9529 lang_print_memory_usage (void)
9530 {
9531 lang_memory_region_type *r;
9532
9533 printf ("Memory region Used Size Region Size %%age Used\n");
9534 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9535 {
9536 bfd_vma used_length = r->current - r->origin;
9537
9538 printf ("%16s: ",r->name_list.name);
9539 lang_print_memory_size (used_length);
9540 lang_print_memory_size ((bfd_vma) r->length);
9541
9542 if (r->length != 0)
9543 {
9544 double percent = used_length * 100.0 / r->length;
9545 printf (" %6.2f%%", percent);
9546 }
9547 printf ("\n");
9548 }
9549 }