]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - ld/ldlang.c
lang_input_statement_type next pointers
[thirdparty/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2019 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean map_head_is_link_order = FALSE;
65 static lang_output_section_statement_type *default_common_section;
66 static bfd_boolean map_option_f;
67 static bfd_vma print_dot;
68 static lang_input_statement_type *first_file;
69 static const char *current_target;
70 /* Header for list of statements corresponding to any files involved in the
71 link, either specified from the command-line or added implicitely (eg.
72 archive member used to resolved undefined symbol, wildcard statement from
73 linker script, etc.). Next pointer is in next field of a
74 lang_statement_header_type (reached via header field in a
75 lang_statement_union). */
76 static lang_statement_list_type statement_list;
77 static lang_statement_list_type *stat_save[10];
78 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
79 static struct unique_sections *unique_section_list;
80 static struct asneeded_minfo *asneeded_list_head;
81 static unsigned int opb_shift = 0;
82
83 /* Forward declarations. */
84 static void exp_init_os (etree_type *);
85 static lang_input_statement_type *lookup_name (const char *);
86 static void insert_undefined (const char *);
87 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
88 static void print_statement (lang_statement_union_type *,
89 lang_output_section_statement_type *);
90 static void print_statement_list (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statements (void);
93 static void print_input_section (asection *, bfd_boolean);
94 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
95 static void lang_record_phdrs (void);
96 static void lang_do_version_exports_section (void);
97 static void lang_finalize_version_expr_head
98 (struct bfd_elf_version_expr_head *);
99 static void lang_do_memory_regions (void);
100
101 /* Exported variables. */
102 const char *output_target;
103 lang_output_section_statement_type *abs_output_section;
104 lang_statement_list_type lang_os_list;
105 lang_statement_list_type *stat_ptr = &statement_list;
106 /* Header for list of statements corresponding to files used in the final
107 executable. This can be either object file specified on the command-line
108 or library member resolving an undefined reference. Next pointer is in next
109 field of a lang_input_statement_type (reached via input_statement field in a
110 lang_statement_union). */
111 lang_statement_list_type file_chain = { NULL, NULL };
112 /* Header for list of statements corresponding to files specified on the
113 command-line for linking. It thus contains real object files and archive
114 but not archive members. Next pointer is in next_real_file field of a
115 lang_input_statement_type statement (reached via input_statement field in a
116 lang_statement_union). */
117 lang_statement_list_type input_file_chain;
118 struct bfd_sym_chain entry_symbol = { NULL, NULL };
119 const char *entry_section = ".text";
120 struct lang_input_statement_flags input_flags;
121 bfd_boolean entry_from_cmdline;
122 bfd_boolean undef_from_cmdline;
123 bfd_boolean lang_has_input_file = FALSE;
124 bfd_boolean had_output_filename = FALSE;
125 bfd_boolean lang_float_flag = FALSE;
126 bfd_boolean delete_output_file_on_failure = FALSE;
127 struct lang_phdr *lang_phdr_list;
128 struct lang_nocrossrefs *nocrossref_list;
129 struct asneeded_minfo **asneeded_list_tail;
130
131 /* Functions that traverse the linker script and might evaluate
132 DEFINED() need to increment this at the start of the traversal. */
133 int lang_statement_iteration = 0;
134
135 /* Return TRUE if the PATTERN argument is a wildcard pattern.
136 Although backslashes are treated specially if a pattern contains
137 wildcards, we do not consider the mere presence of a backslash to
138 be enough to cause the pattern to be treated as a wildcard.
139 That lets us handle DOS filenames more naturally. */
140 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
141
142 #define new_stat(x, y) \
143 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
144
145 #define outside_section_address(q) \
146 ((q)->output_offset + (q)->output_section->vma)
147
148 #define outside_symbol_address(q) \
149 ((q)->value + outside_section_address (q->section))
150
151 #define SECTION_NAME_MAP_LENGTH (16)
152
153 void *
154 stat_alloc (size_t size)
155 {
156 return obstack_alloc (&stat_obstack, size);
157 }
158
159 static int
160 name_match (const char *pattern, const char *name)
161 {
162 if (wildcardp (pattern))
163 return fnmatch (pattern, name, 0);
164 return strcmp (pattern, name);
165 }
166
167 /* If PATTERN is of the form archive:file, return a pointer to the
168 separator. If not, return NULL. */
169
170 static char *
171 archive_path (const char *pattern)
172 {
173 char *p = NULL;
174
175 if (link_info.path_separator == 0)
176 return p;
177
178 p = strchr (pattern, link_info.path_separator);
179 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
180 if (p == NULL || link_info.path_separator != ':')
181 return p;
182
183 /* Assume a match on the second char is part of drive specifier,
184 as in "c:\silly.dos". */
185 if (p == pattern + 1 && ISALPHA (*pattern))
186 p = strchr (p + 1, link_info.path_separator);
187 #endif
188 return p;
189 }
190
191 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
192 return whether F matches FILE_SPEC. */
193
194 static bfd_boolean
195 input_statement_is_archive_path (const char *file_spec, char *sep,
196 lang_input_statement_type *f)
197 {
198 bfd_boolean match = FALSE;
199
200 if ((*(sep + 1) == 0
201 || name_match (sep + 1, f->filename) == 0)
202 && ((sep != file_spec)
203 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
204 {
205 match = TRUE;
206
207 if (sep != file_spec)
208 {
209 const char *aname = f->the_bfd->my_archive->filename;
210 *sep = 0;
211 match = name_match (file_spec, aname) == 0;
212 *sep = link_info.path_separator;
213 }
214 }
215 return match;
216 }
217
218 static bfd_boolean
219 unique_section_p (const asection *sec,
220 const lang_output_section_statement_type *os)
221 {
222 struct unique_sections *unam;
223 const char *secnam;
224
225 if (!link_info.resolve_section_groups
226 && sec->owner != NULL
227 && bfd_is_group_section (sec->owner, sec))
228 return !(os != NULL
229 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
230
231 secnam = sec->name;
232 for (unam = unique_section_list; unam; unam = unam->next)
233 if (name_match (unam->name, secnam) == 0)
234 return TRUE;
235
236 return FALSE;
237 }
238
239 /* Generic traversal routines for finding matching sections. */
240
241 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
242 false. */
243
244 static bfd_boolean
245 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
246 lang_input_statement_type *file)
247 {
248 struct name_list *list_tmp;
249
250 for (list_tmp = exclude_list;
251 list_tmp;
252 list_tmp = list_tmp->next)
253 {
254 char *p = archive_path (list_tmp->name);
255
256 if (p != NULL)
257 {
258 if (input_statement_is_archive_path (list_tmp->name, p, file))
259 return TRUE;
260 }
261
262 else if (name_match (list_tmp->name, file->filename) == 0)
263 return TRUE;
264
265 /* FIXME: Perhaps remove the following at some stage? Matching
266 unadorned archives like this was never documented and has
267 been superceded by the archive:path syntax. */
268 else if (file->the_bfd != NULL
269 && file->the_bfd->my_archive != NULL
270 && name_match (list_tmp->name,
271 file->the_bfd->my_archive->filename) == 0)
272 return TRUE;
273 }
274
275 return FALSE;
276 }
277
278 /* Try processing a section against a wildcard. This just calls
279 the callback unless the filename exclusion list is present
280 and excludes the file. It's hardly ever present so this
281 function is very fast. */
282
283 static void
284 walk_wild_consider_section (lang_wild_statement_type *ptr,
285 lang_input_statement_type *file,
286 asection *s,
287 struct wildcard_list *sec,
288 callback_t callback,
289 void *data)
290 {
291 /* Don't process sections from files which were excluded. */
292 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
293 return;
294
295 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
296 }
297
298 /* Lowest common denominator routine that can handle everything correctly,
299 but slowly. */
300
301 static void
302 walk_wild_section_general (lang_wild_statement_type *ptr,
303 lang_input_statement_type *file,
304 callback_t callback,
305 void *data)
306 {
307 asection *s;
308 struct wildcard_list *sec;
309
310 for (s = file->the_bfd->sections; s != NULL; s = s->next)
311 {
312 sec = ptr->section_list;
313 if (sec == NULL)
314 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
315
316 while (sec != NULL)
317 {
318 bfd_boolean skip = FALSE;
319
320 if (sec->spec.name != NULL)
321 {
322 const char *sname = bfd_get_section_name (file->the_bfd, s);
323
324 skip = name_match (sec->spec.name, sname) != 0;
325 }
326
327 if (!skip)
328 walk_wild_consider_section (ptr, file, s, sec, callback, data);
329
330 sec = sec->next;
331 }
332 }
333 }
334
335 /* Routines to find a single section given its name. If there's more
336 than one section with that name, we report that. */
337
338 typedef struct
339 {
340 asection *found_section;
341 bfd_boolean multiple_sections_found;
342 } section_iterator_callback_data;
343
344 static bfd_boolean
345 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
346 {
347 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
348
349 if (d->found_section != NULL)
350 {
351 d->multiple_sections_found = TRUE;
352 return TRUE;
353 }
354
355 d->found_section = s;
356 return FALSE;
357 }
358
359 static asection *
360 find_section (lang_input_statement_type *file,
361 struct wildcard_list *sec,
362 bfd_boolean *multiple_sections_found)
363 {
364 section_iterator_callback_data cb_data = { NULL, FALSE };
365
366 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
367 section_iterator_callback, &cb_data);
368 *multiple_sections_found = cb_data.multiple_sections_found;
369 return cb_data.found_section;
370 }
371
372 /* Code for handling simple wildcards without going through fnmatch,
373 which can be expensive because of charset translations etc. */
374
375 /* A simple wild is a literal string followed by a single '*',
376 where the literal part is at least 4 characters long. */
377
378 static bfd_boolean
379 is_simple_wild (const char *name)
380 {
381 size_t len = strcspn (name, "*?[");
382 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
383 }
384
385 static bfd_boolean
386 match_simple_wild (const char *pattern, const char *name)
387 {
388 /* The first four characters of the pattern are guaranteed valid
389 non-wildcard characters. So we can go faster. */
390 if (pattern[0] != name[0] || pattern[1] != name[1]
391 || pattern[2] != name[2] || pattern[3] != name[3])
392 return FALSE;
393
394 pattern += 4;
395 name += 4;
396 while (*pattern != '*')
397 if (*name++ != *pattern++)
398 return FALSE;
399
400 return TRUE;
401 }
402
403 /* Return the numerical value of the init_priority attribute from
404 section name NAME. */
405
406 static unsigned long
407 get_init_priority (const char *name)
408 {
409 char *end;
410 unsigned long init_priority;
411
412 /* GCC uses the following section names for the init_priority
413 attribute with numerical values 101 and 65535 inclusive. A
414 lower value means a higher priority.
415
416 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
417 decimal numerical value of the init_priority attribute.
418 The order of execution in .init_array is forward and
419 .fini_array is backward.
420 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
421 decimal numerical value of the init_priority attribute.
422 The order of execution in .ctors is backward and .dtors
423 is forward.
424 */
425 if (strncmp (name, ".init_array.", 12) == 0
426 || strncmp (name, ".fini_array.", 12) == 0)
427 {
428 init_priority = strtoul (name + 12, &end, 10);
429 return *end ? 0 : init_priority;
430 }
431 else if (strncmp (name, ".ctors.", 7) == 0
432 || strncmp (name, ".dtors.", 7) == 0)
433 {
434 init_priority = strtoul (name + 7, &end, 10);
435 return *end ? 0 : 65535 - init_priority;
436 }
437
438 return 0;
439 }
440
441 /* Compare sections ASEC and BSEC according to SORT. */
442
443 static int
444 compare_section (sort_type sort, asection *asec, asection *bsec)
445 {
446 int ret;
447 unsigned long ainit_priority, binit_priority;
448
449 switch (sort)
450 {
451 default:
452 abort ();
453
454 case by_init_priority:
455 ainit_priority
456 = get_init_priority (bfd_get_section_name (asec->owner, asec));
457 binit_priority
458 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
459 if (ainit_priority == 0 || binit_priority == 0)
460 goto sort_by_name;
461 ret = ainit_priority - binit_priority;
462 if (ret)
463 break;
464 else
465 goto sort_by_name;
466
467 case by_alignment_name:
468 ret = (bfd_section_alignment (bsec->owner, bsec)
469 - bfd_section_alignment (asec->owner, asec));
470 if (ret)
471 break;
472 /* Fall through. */
473
474 case by_name:
475 sort_by_name:
476 ret = strcmp (bfd_get_section_name (asec->owner, asec),
477 bfd_get_section_name (bsec->owner, bsec));
478 break;
479
480 case by_name_alignment:
481 ret = strcmp (bfd_get_section_name (asec->owner, asec),
482 bfd_get_section_name (bsec->owner, bsec));
483 if (ret)
484 break;
485 /* Fall through. */
486
487 case by_alignment:
488 ret = (bfd_section_alignment (bsec->owner, bsec)
489 - bfd_section_alignment (asec->owner, asec));
490 break;
491 }
492
493 return ret;
494 }
495
496 /* Build a Binary Search Tree to sort sections, unlike insertion sort
497 used in wild_sort(). BST is considerably faster if the number of
498 of sections are large. */
499
500 static lang_section_bst_type **
501 wild_sort_fast (lang_wild_statement_type *wild,
502 struct wildcard_list *sec,
503 lang_input_statement_type *file ATTRIBUTE_UNUSED,
504 asection *section)
505 {
506 lang_section_bst_type **tree;
507
508 tree = &wild->tree;
509 if (!wild->filenames_sorted
510 && (sec == NULL || sec->spec.sorted == none))
511 {
512 /* Append at the right end of tree. */
513 while (*tree)
514 tree = &((*tree)->right);
515 return tree;
516 }
517
518 while (*tree)
519 {
520 /* Find the correct node to append this section. */
521 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
522 tree = &((*tree)->left);
523 else
524 tree = &((*tree)->right);
525 }
526
527 return tree;
528 }
529
530 /* Use wild_sort_fast to build a BST to sort sections. */
531
532 static void
533 output_section_callback_fast (lang_wild_statement_type *ptr,
534 struct wildcard_list *sec,
535 asection *section,
536 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
537 lang_input_statement_type *file,
538 void *output)
539 {
540 lang_section_bst_type *node;
541 lang_section_bst_type **tree;
542 lang_output_section_statement_type *os;
543
544 os = (lang_output_section_statement_type *) output;
545
546 if (unique_section_p (section, os))
547 return;
548
549 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
550 node->left = 0;
551 node->right = 0;
552 node->section = section;
553
554 tree = wild_sort_fast (ptr, sec, file, section);
555 if (tree != NULL)
556 *tree = node;
557 }
558
559 /* Convert a sorted sections' BST back to list form. */
560
561 static void
562 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
563 lang_section_bst_type *tree,
564 void *output)
565 {
566 if (tree->left)
567 output_section_callback_tree_to_list (ptr, tree->left, output);
568
569 lang_add_section (&ptr->children, tree->section, NULL,
570 (lang_output_section_statement_type *) output);
571
572 if (tree->right)
573 output_section_callback_tree_to_list (ptr, tree->right, output);
574
575 free (tree);
576 }
577
578 /* Specialized, optimized routines for handling different kinds of
579 wildcards */
580
581 static void
582 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
583 lang_input_statement_type *file,
584 callback_t callback,
585 void *data)
586 {
587 /* We can just do a hash lookup for the section with the right name.
588 But if that lookup discovers more than one section with the name
589 (should be rare), we fall back to the general algorithm because
590 we would otherwise have to sort the sections to make sure they
591 get processed in the bfd's order. */
592 bfd_boolean multiple_sections_found;
593 struct wildcard_list *sec0 = ptr->handler_data[0];
594 asection *s0 = find_section (file, sec0, &multiple_sections_found);
595
596 if (multiple_sections_found)
597 walk_wild_section_general (ptr, file, callback, data);
598 else if (s0)
599 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
600 }
601
602 static void
603 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
604 lang_input_statement_type *file,
605 callback_t callback,
606 void *data)
607 {
608 asection *s;
609 struct wildcard_list *wildsec0 = ptr->handler_data[0];
610
611 for (s = file->the_bfd->sections; s != NULL; s = s->next)
612 {
613 const char *sname = bfd_get_section_name (file->the_bfd, s);
614 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
615
616 if (!skip)
617 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
618 }
619 }
620
621 static void
622 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
623 lang_input_statement_type *file,
624 callback_t callback,
625 void *data)
626 {
627 asection *s;
628 struct wildcard_list *sec0 = ptr->handler_data[0];
629 struct wildcard_list *wildsec1 = ptr->handler_data[1];
630 bfd_boolean multiple_sections_found;
631 asection *s0 = find_section (file, sec0, &multiple_sections_found);
632
633 if (multiple_sections_found)
634 {
635 walk_wild_section_general (ptr, file, callback, data);
636 return;
637 }
638
639 /* Note that if the section was not found, s0 is NULL and
640 we'll simply never succeed the s == s0 test below. */
641 for (s = file->the_bfd->sections; s != NULL; s = s->next)
642 {
643 /* Recall that in this code path, a section cannot satisfy more
644 than one spec, so if s == s0 then it cannot match
645 wildspec1. */
646 if (s == s0)
647 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
648 else
649 {
650 const char *sname = bfd_get_section_name (file->the_bfd, s);
651 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
652
653 if (!skip)
654 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
655 data);
656 }
657 }
658 }
659
660 static void
661 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
662 lang_input_statement_type *file,
663 callback_t callback,
664 void *data)
665 {
666 asection *s;
667 struct wildcard_list *sec0 = ptr->handler_data[0];
668 struct wildcard_list *wildsec1 = ptr->handler_data[1];
669 struct wildcard_list *wildsec2 = ptr->handler_data[2];
670 bfd_boolean multiple_sections_found;
671 asection *s0 = find_section (file, sec0, &multiple_sections_found);
672
673 if (multiple_sections_found)
674 {
675 walk_wild_section_general (ptr, file, callback, data);
676 return;
677 }
678
679 for (s = file->the_bfd->sections; s != NULL; s = s->next)
680 {
681 if (s == s0)
682 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
683 else
684 {
685 const char *sname = bfd_get_section_name (file->the_bfd, s);
686 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
687
688 if (!skip)
689 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
690 else
691 {
692 skip = !match_simple_wild (wildsec2->spec.name, sname);
693 if (!skip)
694 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
695 data);
696 }
697 }
698 }
699 }
700
701 static void
702 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
703 lang_input_statement_type *file,
704 callback_t callback,
705 void *data)
706 {
707 asection *s;
708 struct wildcard_list *sec0 = ptr->handler_data[0];
709 struct wildcard_list *sec1 = ptr->handler_data[1];
710 struct wildcard_list *wildsec2 = ptr->handler_data[2];
711 struct wildcard_list *wildsec3 = ptr->handler_data[3];
712 bfd_boolean multiple_sections_found;
713 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
714
715 if (multiple_sections_found)
716 {
717 walk_wild_section_general (ptr, file, callback, data);
718 return;
719 }
720
721 s1 = find_section (file, sec1, &multiple_sections_found);
722 if (multiple_sections_found)
723 {
724 walk_wild_section_general (ptr, file, callback, data);
725 return;
726 }
727
728 for (s = file->the_bfd->sections; s != NULL; s = s->next)
729 {
730 if (s == s0)
731 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
732 else
733 if (s == s1)
734 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
735 else
736 {
737 const char *sname = bfd_get_section_name (file->the_bfd, s);
738 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
739 sname);
740
741 if (!skip)
742 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
743 data);
744 else
745 {
746 skip = !match_simple_wild (wildsec3->spec.name, sname);
747 if (!skip)
748 walk_wild_consider_section (ptr, file, s, wildsec3,
749 callback, data);
750 }
751 }
752 }
753 }
754
755 static void
756 walk_wild_section (lang_wild_statement_type *ptr,
757 lang_input_statement_type *file,
758 callback_t callback,
759 void *data)
760 {
761 if (file->flags.just_syms)
762 return;
763
764 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
765 }
766
767 /* Returns TRUE when name1 is a wildcard spec that might match
768 something name2 can match. We're conservative: we return FALSE
769 only if the prefixes of name1 and name2 are different up to the
770 first wildcard character. */
771
772 static bfd_boolean
773 wild_spec_can_overlap (const char *name1, const char *name2)
774 {
775 size_t prefix1_len = strcspn (name1, "?*[");
776 size_t prefix2_len = strcspn (name2, "?*[");
777 size_t min_prefix_len;
778
779 /* Note that if there is no wildcard character, then we treat the
780 terminating 0 as part of the prefix. Thus ".text" won't match
781 ".text." or ".text.*", for example. */
782 if (name1[prefix1_len] == '\0')
783 prefix1_len++;
784 if (name2[prefix2_len] == '\0')
785 prefix2_len++;
786
787 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
788
789 return memcmp (name1, name2, min_prefix_len) == 0;
790 }
791
792 /* Select specialized code to handle various kinds of wildcard
793 statements. */
794
795 static void
796 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
797 {
798 int sec_count = 0;
799 int wild_name_count = 0;
800 struct wildcard_list *sec;
801 int signature;
802 int data_counter;
803
804 ptr->walk_wild_section_handler = walk_wild_section_general;
805 ptr->handler_data[0] = NULL;
806 ptr->handler_data[1] = NULL;
807 ptr->handler_data[2] = NULL;
808 ptr->handler_data[3] = NULL;
809 ptr->tree = NULL;
810
811 /* Count how many wildcard_specs there are, and how many of those
812 actually use wildcards in the name. Also, bail out if any of the
813 wildcard names are NULL. (Can this actually happen?
814 walk_wild_section used to test for it.) And bail out if any
815 of the wildcards are more complex than a simple string
816 ending in a single '*'. */
817 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
818 {
819 ++sec_count;
820 if (sec->spec.name == NULL)
821 return;
822 if (wildcardp (sec->spec.name))
823 {
824 ++wild_name_count;
825 if (!is_simple_wild (sec->spec.name))
826 return;
827 }
828 }
829
830 /* The zero-spec case would be easy to optimize but it doesn't
831 happen in practice. Likewise, more than 4 specs doesn't
832 happen in practice. */
833 if (sec_count == 0 || sec_count > 4)
834 return;
835
836 /* Check that no two specs can match the same section. */
837 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
838 {
839 struct wildcard_list *sec2;
840 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
841 {
842 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
843 return;
844 }
845 }
846
847 signature = (sec_count << 8) + wild_name_count;
848 switch (signature)
849 {
850 case 0x0100:
851 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
852 break;
853 case 0x0101:
854 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
855 break;
856 case 0x0201:
857 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
858 break;
859 case 0x0302:
860 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
861 break;
862 case 0x0402:
863 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
864 break;
865 default:
866 return;
867 }
868
869 /* Now fill the data array with pointers to the specs, first the
870 specs with non-wildcard names, then the specs with wildcard
871 names. It's OK to process the specs in different order from the
872 given order, because we've already determined that no section
873 will match more than one spec. */
874 data_counter = 0;
875 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
876 if (!wildcardp (sec->spec.name))
877 ptr->handler_data[data_counter++] = sec;
878 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
879 if (wildcardp (sec->spec.name))
880 ptr->handler_data[data_counter++] = sec;
881 }
882
883 /* Handle a wild statement for a single file F. */
884
885 static void
886 walk_wild_file (lang_wild_statement_type *s,
887 lang_input_statement_type *f,
888 callback_t callback,
889 void *data)
890 {
891 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
892 return;
893
894 if (f->the_bfd == NULL
895 || !bfd_check_format (f->the_bfd, bfd_archive))
896 walk_wild_section (s, f, callback, data);
897 else
898 {
899 bfd *member;
900
901 /* This is an archive file. We must map each member of the
902 archive separately. */
903 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
904 while (member != NULL)
905 {
906 /* When lookup_name is called, it will call the add_symbols
907 entry point for the archive. For each element of the
908 archive which is included, BFD will call ldlang_add_file,
909 which will set the usrdata field of the member to the
910 lang_input_statement. */
911 if (member->usrdata != NULL)
912 {
913 walk_wild_section (s,
914 (lang_input_statement_type *) member->usrdata,
915 callback, data);
916 }
917
918 member = bfd_openr_next_archived_file (f->the_bfd, member);
919 }
920 }
921 }
922
923 static void
924 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
925 {
926 const char *file_spec = s->filename;
927 char *p;
928
929 if (file_spec == NULL)
930 {
931 /* Perform the iteration over all files in the list. */
932 LANG_FOR_EACH_INPUT_STATEMENT (f)
933 {
934 walk_wild_file (s, f, callback, data);
935 }
936 }
937 else if ((p = archive_path (file_spec)) != NULL)
938 {
939 LANG_FOR_EACH_INPUT_STATEMENT (f)
940 {
941 if (input_statement_is_archive_path (file_spec, p, f))
942 walk_wild_file (s, f, callback, data);
943 }
944 }
945 else if (wildcardp (file_spec))
946 {
947 LANG_FOR_EACH_INPUT_STATEMENT (f)
948 {
949 if (fnmatch (file_spec, f->filename, 0) == 0)
950 walk_wild_file (s, f, callback, data);
951 }
952 }
953 else
954 {
955 lang_input_statement_type *f;
956
957 /* Perform the iteration over a single file. */
958 f = lookup_name (file_spec);
959 if (f)
960 walk_wild_file (s, f, callback, data);
961 }
962 }
963
964 /* lang_for_each_statement walks the parse tree and calls the provided
965 function for each node, except those inside output section statements
966 with constraint set to -1. */
967
968 void
969 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
970 lang_statement_union_type *s)
971 {
972 for (; s != NULL; s = s->header.next)
973 {
974 func (s);
975
976 switch (s->header.type)
977 {
978 case lang_constructors_statement_enum:
979 lang_for_each_statement_worker (func, constructor_list.head);
980 break;
981 case lang_output_section_statement_enum:
982 if (s->output_section_statement.constraint != -1)
983 lang_for_each_statement_worker
984 (func, s->output_section_statement.children.head);
985 break;
986 case lang_wild_statement_enum:
987 lang_for_each_statement_worker (func,
988 s->wild_statement.children.head);
989 break;
990 case lang_group_statement_enum:
991 lang_for_each_statement_worker (func,
992 s->group_statement.children.head);
993 break;
994 case lang_data_statement_enum:
995 case lang_reloc_statement_enum:
996 case lang_object_symbols_statement_enum:
997 case lang_output_statement_enum:
998 case lang_target_statement_enum:
999 case lang_input_section_enum:
1000 case lang_input_statement_enum:
1001 case lang_assignment_statement_enum:
1002 case lang_padding_statement_enum:
1003 case lang_address_statement_enum:
1004 case lang_fill_statement_enum:
1005 case lang_insert_statement_enum:
1006 break;
1007 default:
1008 FAIL ();
1009 break;
1010 }
1011 }
1012 }
1013
1014 void
1015 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1016 {
1017 lang_for_each_statement_worker (func, statement_list.head);
1018 }
1019
1020 /*----------------------------------------------------------------------*/
1021
1022 void
1023 lang_list_init (lang_statement_list_type *list)
1024 {
1025 list->head = NULL;
1026 list->tail = &list->head;
1027 }
1028
1029 static void
1030 lang_statement_append (lang_statement_list_type *list,
1031 void *element,
1032 void *field)
1033 {
1034 *(list->tail) = element;
1035 list->tail = field;
1036 }
1037
1038 void
1039 push_stat_ptr (lang_statement_list_type *new_ptr)
1040 {
1041 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1042 abort ();
1043 *stat_save_ptr++ = stat_ptr;
1044 stat_ptr = new_ptr;
1045 }
1046
1047 void
1048 pop_stat_ptr (void)
1049 {
1050 if (stat_save_ptr <= stat_save)
1051 abort ();
1052 stat_ptr = *--stat_save_ptr;
1053 }
1054
1055 /* Build a new statement node for the parse tree. */
1056
1057 static lang_statement_union_type *
1058 new_statement (enum statement_enum type,
1059 size_t size,
1060 lang_statement_list_type *list)
1061 {
1062 lang_statement_union_type *new_stmt;
1063
1064 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1065 new_stmt->header.type = type;
1066 new_stmt->header.next = NULL;
1067 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1068 return new_stmt;
1069 }
1070
1071 /* Build a new input file node for the language. There are several
1072 ways in which we treat an input file, eg, we only look at symbols,
1073 or prefix it with a -l etc.
1074
1075 We can be supplied with requests for input files more than once;
1076 they may, for example be split over several lines like foo.o(.text)
1077 foo.o(.data) etc, so when asked for a file we check that we haven't
1078 got it already so we don't duplicate the bfd. */
1079
1080 static lang_input_statement_type *
1081 new_afile (const char *name,
1082 lang_input_file_enum_type file_type,
1083 const char *target,
1084 bfd_boolean add_to_list)
1085 {
1086 lang_input_statement_type *p;
1087
1088 lang_has_input_file = TRUE;
1089
1090 if (add_to_list)
1091 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1092 else
1093 {
1094 p = (lang_input_statement_type *)
1095 stat_alloc (sizeof (lang_input_statement_type));
1096 p->header.type = lang_input_statement_enum;
1097 p->header.next = NULL;
1098 }
1099
1100 memset (&p->the_bfd, 0,
1101 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1102 p->target = target;
1103 p->flags.dynamic = input_flags.dynamic;
1104 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1105 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1106 p->flags.whole_archive = input_flags.whole_archive;
1107 p->flags.sysrooted = input_flags.sysrooted;
1108
1109 switch (file_type)
1110 {
1111 case lang_input_file_is_symbols_only_enum:
1112 p->filename = name;
1113 p->local_sym_name = name;
1114 p->flags.real = TRUE;
1115 p->flags.just_syms = TRUE;
1116 break;
1117 case lang_input_file_is_fake_enum:
1118 p->filename = name;
1119 p->local_sym_name = name;
1120 break;
1121 case lang_input_file_is_l_enum:
1122 if (name[0] == ':' && name[1] != '\0')
1123 {
1124 p->filename = name + 1;
1125 p->flags.full_name_provided = TRUE;
1126 }
1127 else
1128 p->filename = name;
1129 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1130 p->flags.maybe_archive = TRUE;
1131 p->flags.real = TRUE;
1132 p->flags.search_dirs = TRUE;
1133 break;
1134 case lang_input_file_is_marker_enum:
1135 p->filename = name;
1136 p->local_sym_name = name;
1137 p->flags.search_dirs = TRUE;
1138 break;
1139 case lang_input_file_is_search_file_enum:
1140 p->filename = name;
1141 p->local_sym_name = name;
1142 p->flags.real = TRUE;
1143 p->flags.search_dirs = TRUE;
1144 break;
1145 case lang_input_file_is_file_enum:
1146 p->filename = name;
1147 p->local_sym_name = name;
1148 p->flags.real = TRUE;
1149 break;
1150 default:
1151 FAIL ();
1152 }
1153
1154 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1155 return p;
1156 }
1157
1158 lang_input_statement_type *
1159 lang_add_input_file (const char *name,
1160 lang_input_file_enum_type file_type,
1161 const char *target)
1162 {
1163 if (name != NULL
1164 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1165 {
1166 lang_input_statement_type *ret;
1167 char *sysrooted_name
1168 = concat (ld_sysroot,
1169 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1170 (const char *) NULL);
1171
1172 /* We've now forcibly prepended the sysroot, making the input
1173 file independent of the context. Therefore, temporarily
1174 force a non-sysrooted context for this statement, so it won't
1175 get the sysroot prepended again when opened. (N.B. if it's a
1176 script, any child nodes with input files starting with "/"
1177 will be handled as "sysrooted" as they'll be found to be
1178 within the sysroot subdirectory.) */
1179 unsigned int outer_sysrooted = input_flags.sysrooted;
1180 input_flags.sysrooted = 0;
1181 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1182 input_flags.sysrooted = outer_sysrooted;
1183 return ret;
1184 }
1185
1186 return new_afile (name, file_type, target, TRUE);
1187 }
1188
1189 struct out_section_hash_entry
1190 {
1191 struct bfd_hash_entry root;
1192 lang_statement_union_type s;
1193 };
1194
1195 /* The hash table. */
1196
1197 static struct bfd_hash_table output_section_statement_table;
1198
1199 /* Support routines for the hash table used by lang_output_section_find,
1200 initialize the table, fill in an entry and remove the table. */
1201
1202 static struct bfd_hash_entry *
1203 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1204 struct bfd_hash_table *table,
1205 const char *string)
1206 {
1207 lang_output_section_statement_type **nextp;
1208 struct out_section_hash_entry *ret;
1209
1210 if (entry == NULL)
1211 {
1212 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1213 sizeof (*ret));
1214 if (entry == NULL)
1215 return entry;
1216 }
1217
1218 entry = bfd_hash_newfunc (entry, table, string);
1219 if (entry == NULL)
1220 return entry;
1221
1222 ret = (struct out_section_hash_entry *) entry;
1223 memset (&ret->s, 0, sizeof (ret->s));
1224 ret->s.header.type = lang_output_section_statement_enum;
1225 ret->s.output_section_statement.subsection_alignment = NULL;
1226 ret->s.output_section_statement.section_alignment = NULL;
1227 ret->s.output_section_statement.block_value = 1;
1228 lang_list_init (&ret->s.output_section_statement.children);
1229 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1230
1231 /* For every output section statement added to the list, except the
1232 first one, lang_os_list.tail points to the "next"
1233 field of the last element of the list. */
1234 if (lang_os_list.head != NULL)
1235 ret->s.output_section_statement.prev
1236 = ((lang_output_section_statement_type *)
1237 ((char *) lang_os_list.tail
1238 - offsetof (lang_output_section_statement_type, next)));
1239
1240 /* GCC's strict aliasing rules prevent us from just casting the
1241 address, so we store the pointer in a variable and cast that
1242 instead. */
1243 nextp = &ret->s.output_section_statement.next;
1244 lang_statement_append (&lang_os_list, &ret->s, nextp);
1245 return &ret->root;
1246 }
1247
1248 static void
1249 output_section_statement_table_init (void)
1250 {
1251 if (!bfd_hash_table_init_n (&output_section_statement_table,
1252 output_section_statement_newfunc,
1253 sizeof (struct out_section_hash_entry),
1254 61))
1255 einfo (_("%F%P: can not create hash table: %E\n"));
1256 }
1257
1258 static void
1259 output_section_statement_table_free (void)
1260 {
1261 bfd_hash_table_free (&output_section_statement_table);
1262 }
1263
1264 /* Build enough state so that the parser can build its tree. */
1265
1266 void
1267 lang_init (void)
1268 {
1269 obstack_begin (&stat_obstack, 1000);
1270
1271 stat_ptr = &statement_list;
1272
1273 output_section_statement_table_init ();
1274
1275 lang_list_init (stat_ptr);
1276
1277 lang_list_init (&input_file_chain);
1278 lang_list_init (&lang_os_list);
1279 lang_list_init (&file_chain);
1280 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1281 NULL);
1282 abs_output_section =
1283 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1284
1285 abs_output_section->bfd_section = bfd_abs_section_ptr;
1286
1287 asneeded_list_head = NULL;
1288 asneeded_list_tail = &asneeded_list_head;
1289 }
1290
1291 void
1292 lang_finish (void)
1293 {
1294 output_section_statement_table_free ();
1295 }
1296
1297 /*----------------------------------------------------------------------
1298 A region is an area of memory declared with the
1299 MEMORY { name:org=exp, len=exp ... }
1300 syntax.
1301
1302 We maintain a list of all the regions here.
1303
1304 If no regions are specified in the script, then the default is used
1305 which is created when looked up to be the entire data space.
1306
1307 If create is true we are creating a region inside a MEMORY block.
1308 In this case it is probably an error to create a region that has
1309 already been created. If we are not inside a MEMORY block it is
1310 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1311 and so we issue a warning.
1312
1313 Each region has at least one name. The first name is either
1314 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1315 alias names to an existing region within a script with
1316 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1317 region. */
1318
1319 static lang_memory_region_type *lang_memory_region_list;
1320 static lang_memory_region_type **lang_memory_region_list_tail
1321 = &lang_memory_region_list;
1322
1323 lang_memory_region_type *
1324 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1325 {
1326 lang_memory_region_name *n;
1327 lang_memory_region_type *r;
1328 lang_memory_region_type *new_region;
1329
1330 /* NAME is NULL for LMA memspecs if no region was specified. */
1331 if (name == NULL)
1332 return NULL;
1333
1334 for (r = lang_memory_region_list; r != NULL; r = r->next)
1335 for (n = &r->name_list; n != NULL; n = n->next)
1336 if (strcmp (n->name, name) == 0)
1337 {
1338 if (create)
1339 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1340 NULL, name);
1341 return r;
1342 }
1343
1344 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1345 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1346 NULL, name);
1347
1348 new_region = (lang_memory_region_type *)
1349 stat_alloc (sizeof (lang_memory_region_type));
1350
1351 new_region->name_list.name = xstrdup (name);
1352 new_region->name_list.next = NULL;
1353 new_region->next = NULL;
1354 new_region->origin_exp = NULL;
1355 new_region->origin = 0;
1356 new_region->length_exp = NULL;
1357 new_region->length = ~(bfd_size_type) 0;
1358 new_region->current = 0;
1359 new_region->last_os = NULL;
1360 new_region->flags = 0;
1361 new_region->not_flags = 0;
1362 new_region->had_full_message = FALSE;
1363
1364 *lang_memory_region_list_tail = new_region;
1365 lang_memory_region_list_tail = &new_region->next;
1366
1367 return new_region;
1368 }
1369
1370 void
1371 lang_memory_region_alias (const char *alias, const char *region_name)
1372 {
1373 lang_memory_region_name *n;
1374 lang_memory_region_type *r;
1375 lang_memory_region_type *region;
1376
1377 /* The default region must be unique. This ensures that it is not necessary
1378 to iterate through the name list if someone wants the check if a region is
1379 the default memory region. */
1380 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1381 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1382 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1383
1384 /* Look for the target region and check if the alias is not already
1385 in use. */
1386 region = NULL;
1387 for (r = lang_memory_region_list; r != NULL; r = r->next)
1388 for (n = &r->name_list; n != NULL; n = n->next)
1389 {
1390 if (region == NULL && strcmp (n->name, region_name) == 0)
1391 region = r;
1392 if (strcmp (n->name, alias) == 0)
1393 einfo (_("%F%P:%pS: error: redefinition of memory region "
1394 "alias `%s'\n"),
1395 NULL, alias);
1396 }
1397
1398 /* Check if the target region exists. */
1399 if (region == NULL)
1400 einfo (_("%F%P:%pS: error: memory region `%s' "
1401 "for alias `%s' does not exist\n"),
1402 NULL, region_name, alias);
1403
1404 /* Add alias to region name list. */
1405 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1406 n->name = xstrdup (alias);
1407 n->next = region->name_list.next;
1408 region->name_list.next = n;
1409 }
1410
1411 static lang_memory_region_type *
1412 lang_memory_default (asection *section)
1413 {
1414 lang_memory_region_type *p;
1415
1416 flagword sec_flags = section->flags;
1417
1418 /* Override SEC_DATA to mean a writable section. */
1419 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1420 sec_flags |= SEC_DATA;
1421
1422 for (p = lang_memory_region_list; p != NULL; p = p->next)
1423 {
1424 if ((p->flags & sec_flags) != 0
1425 && (p->not_flags & sec_flags) == 0)
1426 {
1427 return p;
1428 }
1429 }
1430 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1431 }
1432
1433 /* Get the output section statement directly from the userdata. */
1434
1435 lang_output_section_statement_type *
1436 lang_output_section_get (const asection *output_section)
1437 {
1438 return get_userdata (output_section);
1439 }
1440
1441 /* Find or create an output_section_statement with the given NAME.
1442 If CONSTRAINT is non-zero match one with that constraint, otherwise
1443 match any non-negative constraint. If CREATE, always make a
1444 new output_section_statement for SPECIAL CONSTRAINT. */
1445
1446 lang_output_section_statement_type *
1447 lang_output_section_statement_lookup (const char *name,
1448 int constraint,
1449 bfd_boolean create)
1450 {
1451 struct out_section_hash_entry *entry;
1452
1453 entry = ((struct out_section_hash_entry *)
1454 bfd_hash_lookup (&output_section_statement_table, name,
1455 create, FALSE));
1456 if (entry == NULL)
1457 {
1458 if (create)
1459 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1460 return NULL;
1461 }
1462
1463 if (entry->s.output_section_statement.name != NULL)
1464 {
1465 /* We have a section of this name, but it might not have the correct
1466 constraint. */
1467 struct out_section_hash_entry *last_ent;
1468
1469 name = entry->s.output_section_statement.name;
1470 if (create && constraint == SPECIAL)
1471 /* Not traversing to the end reverses the order of the second
1472 and subsequent SPECIAL sections in the hash table chain,
1473 but that shouldn't matter. */
1474 last_ent = entry;
1475 else
1476 do
1477 {
1478 if (constraint == entry->s.output_section_statement.constraint
1479 || (constraint == 0
1480 && entry->s.output_section_statement.constraint >= 0))
1481 return &entry->s.output_section_statement;
1482 last_ent = entry;
1483 entry = (struct out_section_hash_entry *) entry->root.next;
1484 }
1485 while (entry != NULL
1486 && name == entry->s.output_section_statement.name);
1487
1488 if (!create)
1489 return NULL;
1490
1491 entry
1492 = ((struct out_section_hash_entry *)
1493 output_section_statement_newfunc (NULL,
1494 &output_section_statement_table,
1495 name));
1496 if (entry == NULL)
1497 {
1498 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1499 return NULL;
1500 }
1501 entry->root = last_ent->root;
1502 last_ent->root.next = &entry->root;
1503 }
1504
1505 entry->s.output_section_statement.name = name;
1506 entry->s.output_section_statement.constraint = constraint;
1507 return &entry->s.output_section_statement;
1508 }
1509
1510 /* Find the next output_section_statement with the same name as OS.
1511 If CONSTRAINT is non-zero, find one with that constraint otherwise
1512 match any non-negative constraint. */
1513
1514 lang_output_section_statement_type *
1515 next_matching_output_section_statement (lang_output_section_statement_type *os,
1516 int constraint)
1517 {
1518 /* All output_section_statements are actually part of a
1519 struct out_section_hash_entry. */
1520 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1521 ((char *) os
1522 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1523 const char *name = os->name;
1524
1525 ASSERT (name == entry->root.string);
1526 do
1527 {
1528 entry = (struct out_section_hash_entry *) entry->root.next;
1529 if (entry == NULL
1530 || name != entry->s.output_section_statement.name)
1531 return NULL;
1532 }
1533 while (constraint != entry->s.output_section_statement.constraint
1534 && (constraint != 0
1535 || entry->s.output_section_statement.constraint < 0));
1536
1537 return &entry->s.output_section_statement;
1538 }
1539
1540 /* A variant of lang_output_section_find used by place_orphan.
1541 Returns the output statement that should precede a new output
1542 statement for SEC. If an exact match is found on certain flags,
1543 sets *EXACT too. */
1544
1545 lang_output_section_statement_type *
1546 lang_output_section_find_by_flags (const asection *sec,
1547 flagword sec_flags,
1548 lang_output_section_statement_type **exact,
1549 lang_match_sec_type_func match_type)
1550 {
1551 lang_output_section_statement_type *first, *look, *found;
1552 flagword look_flags, differ;
1553
1554 /* We know the first statement on this list is *ABS*. May as well
1555 skip it. */
1556 first = &lang_os_list.head->output_section_statement;
1557 first = first->next;
1558
1559 /* First try for an exact match. */
1560 found = NULL;
1561 for (look = first; look; look = look->next)
1562 {
1563 look_flags = look->flags;
1564 if (look->bfd_section != NULL)
1565 {
1566 look_flags = look->bfd_section->flags;
1567 if (match_type && !match_type (link_info.output_bfd,
1568 look->bfd_section,
1569 sec->owner, sec))
1570 continue;
1571 }
1572 differ = look_flags ^ sec_flags;
1573 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1574 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1575 found = look;
1576 }
1577 if (found != NULL)
1578 {
1579 if (exact != NULL)
1580 *exact = found;
1581 return found;
1582 }
1583
1584 if ((sec_flags & SEC_CODE) != 0
1585 && (sec_flags & SEC_ALLOC) != 0)
1586 {
1587 /* Try for a rw code section. */
1588 for (look = first; look; look = look->next)
1589 {
1590 look_flags = look->flags;
1591 if (look->bfd_section != NULL)
1592 {
1593 look_flags = look->bfd_section->flags;
1594 if (match_type && !match_type (link_info.output_bfd,
1595 look->bfd_section,
1596 sec->owner, sec))
1597 continue;
1598 }
1599 differ = look_flags ^ sec_flags;
1600 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1602 found = look;
1603 }
1604 }
1605 else if ((sec_flags & SEC_READONLY) != 0
1606 && (sec_flags & SEC_ALLOC) != 0)
1607 {
1608 /* .rodata can go after .text, .sdata2 after .rodata. */
1609 for (look = first; look; look = look->next)
1610 {
1611 look_flags = look->flags;
1612 if (look->bfd_section != NULL)
1613 {
1614 look_flags = look->bfd_section->flags;
1615 if (match_type && !match_type (link_info.output_bfd,
1616 look->bfd_section,
1617 sec->owner, sec))
1618 continue;
1619 }
1620 differ = look_flags ^ sec_flags;
1621 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1622 | SEC_READONLY | SEC_SMALL_DATA))
1623 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1624 | SEC_READONLY))
1625 && !(look_flags & SEC_SMALL_DATA)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1633 as if it were a loaded section, and don't use match_type. */
1634 bfd_boolean seen_thread_local = FALSE;
1635
1636 match_type = NULL;
1637 for (look = first; look; look = look->next)
1638 {
1639 look_flags = look->flags;
1640 if (look->bfd_section != NULL)
1641 look_flags = look->bfd_section->flags;
1642
1643 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1644 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1645 {
1646 /* .tdata and .tbss must be adjacent and in that order. */
1647 if (!(look_flags & SEC_LOAD)
1648 && (sec_flags & SEC_LOAD))
1649 /* ..so if we're at a .tbss section and we're placing
1650 a .tdata section stop looking and return the
1651 previous section. */
1652 break;
1653 found = look;
1654 seen_thread_local = TRUE;
1655 }
1656 else if (seen_thread_local)
1657 break;
1658 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1659 found = look;
1660 }
1661 }
1662 else if ((sec_flags & SEC_SMALL_DATA) != 0
1663 && (sec_flags & SEC_ALLOC) != 0)
1664 {
1665 /* .sdata goes after .data, .sbss after .sdata. */
1666 for (look = first; look; look = look->next)
1667 {
1668 look_flags = look->flags;
1669 if (look->bfd_section != NULL)
1670 {
1671 look_flags = look->bfd_section->flags;
1672 if (match_type && !match_type (link_info.output_bfd,
1673 look->bfd_section,
1674 sec->owner, sec))
1675 continue;
1676 }
1677 differ = look_flags ^ sec_flags;
1678 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1679 | SEC_THREAD_LOCAL))
1680 || ((look_flags & SEC_SMALL_DATA)
1681 && !(sec_flags & SEC_HAS_CONTENTS)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1686 && (sec_flags & SEC_ALLOC) != 0)
1687 {
1688 /* .data goes after .rodata. */
1689 for (look = first; look; look = look->next)
1690 {
1691 look_flags = look->flags;
1692 if (look->bfd_section != NULL)
1693 {
1694 look_flags = look->bfd_section->flags;
1695 if (match_type && !match_type (link_info.output_bfd,
1696 look->bfd_section,
1697 sec->owner, sec))
1698 continue;
1699 }
1700 differ = look_flags ^ sec_flags;
1701 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1702 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1703 found = look;
1704 }
1705 }
1706 else if ((sec_flags & SEC_ALLOC) != 0)
1707 {
1708 /* .bss goes after any other alloc section. */
1709 for (look = first; look; look = look->next)
1710 {
1711 look_flags = look->flags;
1712 if (look->bfd_section != NULL)
1713 {
1714 look_flags = look->bfd_section->flags;
1715 if (match_type && !match_type (link_info.output_bfd,
1716 look->bfd_section,
1717 sec->owner, sec))
1718 continue;
1719 }
1720 differ = look_flags ^ sec_flags;
1721 if (!(differ & SEC_ALLOC))
1722 found = look;
1723 }
1724 }
1725 else
1726 {
1727 /* non-alloc go last. */
1728 for (look = first; look; look = look->next)
1729 {
1730 look_flags = look->flags;
1731 if (look->bfd_section != NULL)
1732 look_flags = look->bfd_section->flags;
1733 differ = look_flags ^ sec_flags;
1734 if (!(differ & SEC_DEBUGGING))
1735 found = look;
1736 }
1737 return found;
1738 }
1739
1740 if (found || !match_type)
1741 return found;
1742
1743 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1744 }
1745
1746 /* Find the last output section before given output statement.
1747 Used by place_orphan. */
1748
1749 static asection *
1750 output_prev_sec_find (lang_output_section_statement_type *os)
1751 {
1752 lang_output_section_statement_type *lookup;
1753
1754 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1755 {
1756 if (lookup->constraint < 0)
1757 continue;
1758
1759 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1760 return lookup->bfd_section;
1761 }
1762
1763 return NULL;
1764 }
1765
1766 /* Look for a suitable place for a new output section statement. The
1767 idea is to skip over anything that might be inside a SECTIONS {}
1768 statement in a script, before we find another output section
1769 statement. Assignments to "dot" before an output section statement
1770 are assumed to belong to it, except in two cases; The first
1771 assignment to dot, and assignments before non-alloc sections.
1772 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1773 similar assignments that set the initial address, or we might
1774 insert non-alloc note sections among assignments setting end of
1775 image symbols. */
1776
1777 static lang_statement_union_type **
1778 insert_os_after (lang_output_section_statement_type *after)
1779 {
1780 lang_statement_union_type **where;
1781 lang_statement_union_type **assign = NULL;
1782 bfd_boolean ignore_first;
1783
1784 ignore_first = after == &lang_os_list.head->output_section_statement;
1785
1786 for (where = &after->header.next;
1787 *where != NULL;
1788 where = &(*where)->header.next)
1789 {
1790 switch ((*where)->header.type)
1791 {
1792 case lang_assignment_statement_enum:
1793 if (assign == NULL)
1794 {
1795 lang_assignment_statement_type *ass;
1796
1797 ass = &(*where)->assignment_statement;
1798 if (ass->exp->type.node_class != etree_assert
1799 && ass->exp->assign.dst[0] == '.'
1800 && ass->exp->assign.dst[1] == 0)
1801 {
1802 if (!ignore_first)
1803 assign = where;
1804 ignore_first = FALSE;
1805 }
1806 }
1807 continue;
1808 case lang_wild_statement_enum:
1809 case lang_input_section_enum:
1810 case lang_object_symbols_statement_enum:
1811 case lang_fill_statement_enum:
1812 case lang_data_statement_enum:
1813 case lang_reloc_statement_enum:
1814 case lang_padding_statement_enum:
1815 case lang_constructors_statement_enum:
1816 assign = NULL;
1817 ignore_first = FALSE;
1818 continue;
1819 case lang_output_section_statement_enum:
1820 if (assign != NULL)
1821 {
1822 asection *s = (*where)->output_section_statement.bfd_section;
1823
1824 if (s == NULL
1825 || s->map_head.s == NULL
1826 || (s->flags & SEC_ALLOC) != 0)
1827 where = assign;
1828 }
1829 break;
1830 case lang_input_statement_enum:
1831 case lang_address_statement_enum:
1832 case lang_target_statement_enum:
1833 case lang_output_statement_enum:
1834 case lang_group_statement_enum:
1835 case lang_insert_statement_enum:
1836 continue;
1837 }
1838 break;
1839 }
1840
1841 return where;
1842 }
1843
1844 lang_output_section_statement_type *
1845 lang_insert_orphan (asection *s,
1846 const char *secname,
1847 int constraint,
1848 lang_output_section_statement_type *after,
1849 struct orphan_save *place,
1850 etree_type *address,
1851 lang_statement_list_type *add_child)
1852 {
1853 lang_statement_list_type add;
1854 lang_output_section_statement_type *os;
1855 lang_output_section_statement_type **os_tail;
1856
1857 /* If we have found an appropriate place for the output section
1858 statements for this orphan, add them to our own private list,
1859 inserting them later into the global statement list. */
1860 if (after != NULL)
1861 {
1862 lang_list_init (&add);
1863 push_stat_ptr (&add);
1864 }
1865
1866 if (bfd_link_relocatable (&link_info)
1867 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1868 address = exp_intop (0);
1869
1870 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1871 os = lang_enter_output_section_statement (secname, address, normal_section,
1872 NULL, NULL, NULL, constraint, 0);
1873
1874 if (add_child == NULL)
1875 add_child = &os->children;
1876 lang_add_section (add_child, s, NULL, os);
1877
1878 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1879 {
1880 const char *region = (after->region
1881 ? after->region->name_list.name
1882 : DEFAULT_MEMORY_REGION);
1883 const char *lma_region = (after->lma_region
1884 ? after->lma_region->name_list.name
1885 : NULL);
1886 lang_leave_output_section_statement (NULL, region, after->phdrs,
1887 lma_region);
1888 }
1889 else
1890 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1891 NULL);
1892
1893 /* Restore the global list pointer. */
1894 if (after != NULL)
1895 pop_stat_ptr ();
1896
1897 if (after != NULL && os->bfd_section != NULL)
1898 {
1899 asection *snew, *as;
1900 bfd_boolean place_after = place->stmt == NULL;
1901 bfd_boolean insert_after = TRUE;
1902
1903 snew = os->bfd_section;
1904
1905 /* Shuffle the bfd section list to make the output file look
1906 neater. This is really only cosmetic. */
1907 if (place->section == NULL
1908 && after != &lang_os_list.head->output_section_statement)
1909 {
1910 asection *bfd_section = after->bfd_section;
1911
1912 /* If the output statement hasn't been used to place any input
1913 sections (and thus doesn't have an output bfd_section),
1914 look for the closest prior output statement having an
1915 output section. */
1916 if (bfd_section == NULL)
1917 bfd_section = output_prev_sec_find (after);
1918
1919 if (bfd_section != NULL && bfd_section != snew)
1920 place->section = &bfd_section->next;
1921 }
1922
1923 if (place->section == NULL)
1924 place->section = &link_info.output_bfd->sections;
1925
1926 as = *place->section;
1927
1928 if (!as)
1929 {
1930 /* Put the section at the end of the list. */
1931
1932 /* Unlink the section. */
1933 bfd_section_list_remove (link_info.output_bfd, snew);
1934
1935 /* Now tack it back on in the right place. */
1936 bfd_section_list_append (link_info.output_bfd, snew);
1937 }
1938 else if ((bfd_get_flavour (link_info.output_bfd)
1939 == bfd_target_elf_flavour)
1940 && (bfd_get_flavour (s->owner)
1941 == bfd_target_elf_flavour)
1942 && ((elf_section_type (s) == SHT_NOTE
1943 && (s->flags & SEC_LOAD) != 0)
1944 || (elf_section_type (as) == SHT_NOTE
1945 && (as->flags & SEC_LOAD) != 0)))
1946 {
1947 /* Make sure that output note sections are grouped and sorted
1948 by alignments when inserting a note section or insert a
1949 section after a note section, */
1950 asection *sec;
1951 /* A specific section after which the output note section
1952 should be placed. */
1953 asection *after_sec;
1954 /* True if we need to insert the orphan section after a
1955 specific section to maintain output note section order. */
1956 bfd_boolean after_sec_note = FALSE;
1957
1958 static asection *first_orphan_note = NULL;
1959
1960 /* Group and sort output note section by alignments in
1961 ascending order. */
1962 after_sec = NULL;
1963 if (elf_section_type (s) == SHT_NOTE
1964 && (s->flags & SEC_LOAD) != 0)
1965 {
1966 /* Search from the beginning for the last output note
1967 section with equal or larger alignments. NB: Don't
1968 place orphan note section after non-note sections. */
1969
1970 first_orphan_note = NULL;
1971 for (sec = link_info.output_bfd->sections;
1972 (sec != NULL
1973 && !bfd_is_abs_section (sec));
1974 sec = sec->next)
1975 if (sec != snew
1976 && elf_section_type (sec) == SHT_NOTE
1977 && (sec->flags & SEC_LOAD) != 0)
1978 {
1979 if (!first_orphan_note)
1980 first_orphan_note = sec;
1981 if (sec->alignment_power >= s->alignment_power)
1982 after_sec = sec;
1983 }
1984 else if (first_orphan_note)
1985 {
1986 /* Stop if there is non-note section after the first
1987 orphan note section. */
1988 break;
1989 }
1990
1991 /* If this will be the first orphan note section, it can
1992 be placed at the default location. */
1993 after_sec_note = first_orphan_note != NULL;
1994 if (after_sec == NULL && after_sec_note)
1995 {
1996 /* If all output note sections have smaller
1997 alignments, place the section before all
1998 output orphan note sections. */
1999 after_sec = first_orphan_note;
2000 insert_after = FALSE;
2001 }
2002 }
2003 else if (first_orphan_note)
2004 {
2005 /* Don't place non-note sections in the middle of orphan
2006 note sections. */
2007 after_sec_note = TRUE;
2008 after_sec = as;
2009 for (sec = as->next;
2010 (sec != NULL
2011 && !bfd_is_abs_section (sec));
2012 sec = sec->next)
2013 if (elf_section_type (sec) == SHT_NOTE
2014 && (sec->flags & SEC_LOAD) != 0)
2015 after_sec = sec;
2016 }
2017
2018 if (after_sec_note)
2019 {
2020 if (after_sec)
2021 {
2022 /* Search forward to insert OS after AFTER_SEC output
2023 statement. */
2024 lang_output_section_statement_type *stmt, *next;
2025 bfd_boolean found = FALSE;
2026 for (stmt = after; stmt != NULL; stmt = next)
2027 {
2028 next = stmt->next;
2029 if (insert_after)
2030 {
2031 if (stmt->bfd_section == after_sec)
2032 {
2033 place_after = TRUE;
2034 found = TRUE;
2035 after = stmt;
2036 break;
2037 }
2038 }
2039 else
2040 {
2041 /* If INSERT_AFTER is FALSE, place OS before
2042 AFTER_SEC output statement. */
2043 if (next && next->bfd_section == after_sec)
2044 {
2045 place_after = TRUE;
2046 found = TRUE;
2047 after = stmt;
2048 break;
2049 }
2050 }
2051 }
2052
2053 /* Search backward to insert OS after AFTER_SEC output
2054 statement. */
2055 if (!found)
2056 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2057 {
2058 if (insert_after)
2059 {
2060 if (stmt->bfd_section == after_sec)
2061 {
2062 place_after = TRUE;
2063 after = stmt;
2064 break;
2065 }
2066 }
2067 else
2068 {
2069 /* If INSERT_AFTER is FALSE, place OS before
2070 AFTER_SEC output statement. */
2071 if (stmt->next->bfd_section == after_sec)
2072 {
2073 place_after = TRUE;
2074 after = stmt;
2075 break;
2076 }
2077 }
2078 }
2079 }
2080
2081 if (after_sec == NULL
2082 || (insert_after && after_sec->next != snew)
2083 || (!insert_after && after_sec->prev != snew))
2084 {
2085 /* Unlink the section. */
2086 bfd_section_list_remove (link_info.output_bfd, snew);
2087
2088 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2089 prepend SNEW. */
2090 if (after_sec)
2091 {
2092 if (insert_after)
2093 bfd_section_list_insert_after (link_info.output_bfd,
2094 after_sec, snew);
2095 else
2096 bfd_section_list_insert_before (link_info.output_bfd,
2097 after_sec, snew);
2098 }
2099 else
2100 bfd_section_list_prepend (link_info.output_bfd, snew);
2101 }
2102 }
2103 else if (as != snew && as->prev != snew)
2104 {
2105 /* Unlink the section. */
2106 bfd_section_list_remove (link_info.output_bfd, snew);
2107
2108 /* Now tack it back on in the right place. */
2109 bfd_section_list_insert_before (link_info.output_bfd,
2110 as, snew);
2111 }
2112 }
2113 else if (as != snew && as->prev != snew)
2114 {
2115 /* Unlink the section. */
2116 bfd_section_list_remove (link_info.output_bfd, snew);
2117
2118 /* Now tack it back on in the right place. */
2119 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2120 }
2121
2122 /* Save the end of this list. Further ophans of this type will
2123 follow the one we've just added. */
2124 place->section = &snew->next;
2125
2126 /* The following is non-cosmetic. We try to put the output
2127 statements in some sort of reasonable order here, because they
2128 determine the final load addresses of the orphan sections.
2129 In addition, placing output statements in the wrong order may
2130 require extra segments. For instance, given a typical
2131 situation of all read-only sections placed in one segment and
2132 following that a segment containing all the read-write
2133 sections, we wouldn't want to place an orphan read/write
2134 section before or amongst the read-only ones. */
2135 if (add.head != NULL)
2136 {
2137 lang_output_section_statement_type *newly_added_os;
2138
2139 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2140 if (place_after)
2141 {
2142 lang_statement_union_type **where = insert_os_after (after);
2143
2144 *add.tail = *where;
2145 *where = add.head;
2146
2147 place->os_tail = &after->next;
2148 }
2149 else
2150 {
2151 /* Put it after the last orphan statement we added. */
2152 *add.tail = *place->stmt;
2153 *place->stmt = add.head;
2154 }
2155
2156 /* Fix the global list pointer if we happened to tack our
2157 new list at the tail. */
2158 if (*stat_ptr->tail == add.head)
2159 stat_ptr->tail = add.tail;
2160
2161 /* Save the end of this list. */
2162 place->stmt = add.tail;
2163
2164 /* Do the same for the list of output section statements. */
2165 newly_added_os = *os_tail;
2166 *os_tail = NULL;
2167 newly_added_os->prev = (lang_output_section_statement_type *)
2168 ((char *) place->os_tail
2169 - offsetof (lang_output_section_statement_type, next));
2170 newly_added_os->next = *place->os_tail;
2171 if (newly_added_os->next != NULL)
2172 newly_added_os->next->prev = newly_added_os;
2173 *place->os_tail = newly_added_os;
2174 place->os_tail = &newly_added_os->next;
2175
2176 /* Fixing the global list pointer here is a little different.
2177 We added to the list in lang_enter_output_section_statement,
2178 trimmed off the new output_section_statment above when
2179 assigning *os_tail = NULL, but possibly added it back in
2180 the same place when assigning *place->os_tail. */
2181 if (*os_tail == NULL)
2182 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2183 }
2184 }
2185 return os;
2186 }
2187
2188 static void
2189 lang_print_asneeded (void)
2190 {
2191 struct asneeded_minfo *m;
2192
2193 if (asneeded_list_head == NULL)
2194 return;
2195
2196 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2197
2198 for (m = asneeded_list_head; m != NULL; m = m->next)
2199 {
2200 size_t len;
2201
2202 minfo ("%s", m->soname);
2203 len = strlen (m->soname);
2204
2205 if (len >= 29)
2206 {
2207 print_nl ();
2208 len = 0;
2209 }
2210 while (len < 30)
2211 {
2212 print_space ();
2213 ++len;
2214 }
2215
2216 if (m->ref != NULL)
2217 minfo ("%pB ", m->ref);
2218 minfo ("(%pT)\n", m->name);
2219 }
2220 }
2221
2222 static void
2223 lang_map_flags (flagword flag)
2224 {
2225 if (flag & SEC_ALLOC)
2226 minfo ("a");
2227
2228 if (flag & SEC_CODE)
2229 minfo ("x");
2230
2231 if (flag & SEC_READONLY)
2232 minfo ("r");
2233
2234 if (flag & SEC_DATA)
2235 minfo ("w");
2236
2237 if (flag & SEC_LOAD)
2238 minfo ("l");
2239 }
2240
2241 void
2242 lang_map (void)
2243 {
2244 lang_memory_region_type *m;
2245 bfd_boolean dis_header_printed = FALSE;
2246
2247 LANG_FOR_EACH_INPUT_STATEMENT (file)
2248 {
2249 asection *s;
2250
2251 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2252 || file->flags.just_syms)
2253 continue;
2254
2255 if (config.print_map_discarded)
2256 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2257 if ((s->output_section == NULL
2258 || s->output_section->owner != link_info.output_bfd)
2259 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2260 {
2261 if (! dis_header_printed)
2262 {
2263 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2264 dis_header_printed = TRUE;
2265 }
2266
2267 print_input_section (s, TRUE);
2268 }
2269 }
2270
2271 minfo (_("\nMemory Configuration\n\n"));
2272 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2273 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2274
2275 for (m = lang_memory_region_list; m != NULL; m = m->next)
2276 {
2277 char buf[100];
2278 int len;
2279
2280 fprintf (config.map_file, "%-16s ", m->name_list.name);
2281
2282 sprintf_vma (buf, m->origin);
2283 minfo ("0x%s ", buf);
2284 len = strlen (buf);
2285 while (len < 16)
2286 {
2287 print_space ();
2288 ++len;
2289 }
2290
2291 minfo ("0x%V", m->length);
2292 if (m->flags || m->not_flags)
2293 {
2294 #ifndef BFD64
2295 minfo (" ");
2296 #endif
2297 if (m->flags)
2298 {
2299 print_space ();
2300 lang_map_flags (m->flags);
2301 }
2302
2303 if (m->not_flags)
2304 {
2305 minfo (" !");
2306 lang_map_flags (m->not_flags);
2307 }
2308 }
2309
2310 print_nl ();
2311 }
2312
2313 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2314
2315 if (!link_info.reduce_memory_overheads)
2316 {
2317 obstack_begin (&map_obstack, 1000);
2318 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2319 }
2320 expld.phase = lang_fixed_phase_enum;
2321 lang_statement_iteration++;
2322 print_statements ();
2323
2324 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2325 config.map_file);
2326 }
2327
2328 static bfd_boolean
2329 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2330 void *info ATTRIBUTE_UNUSED)
2331 {
2332 if ((hash_entry->type == bfd_link_hash_defined
2333 || hash_entry->type == bfd_link_hash_defweak)
2334 && hash_entry->u.def.section->owner != link_info.output_bfd
2335 && hash_entry->u.def.section->owner != NULL)
2336 {
2337 input_section_userdata_type *ud;
2338 struct map_symbol_def *def;
2339
2340 ud = ((input_section_userdata_type *)
2341 get_userdata (hash_entry->u.def.section));
2342 if (!ud)
2343 {
2344 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2345 get_userdata (hash_entry->u.def.section) = ud;
2346 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2347 ud->map_symbol_def_count = 0;
2348 }
2349 else if (!ud->map_symbol_def_tail)
2350 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2351
2352 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2353 def->entry = hash_entry;
2354 *(ud->map_symbol_def_tail) = def;
2355 ud->map_symbol_def_tail = &def->next;
2356 ud->map_symbol_def_count++;
2357 }
2358 return TRUE;
2359 }
2360
2361 /* Initialize an output section. */
2362
2363 static void
2364 init_os (lang_output_section_statement_type *s, flagword flags)
2365 {
2366 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2367 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2368
2369 if (s->constraint != SPECIAL)
2370 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2371 if (s->bfd_section == NULL)
2372 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2373 s->name, flags);
2374 if (s->bfd_section == NULL)
2375 {
2376 einfo (_("%F%P: output format %s cannot represent section"
2377 " called %s: %E\n"),
2378 link_info.output_bfd->xvec->name, s->name);
2379 }
2380 s->bfd_section->output_section = s->bfd_section;
2381 s->bfd_section->output_offset = 0;
2382
2383 /* Set the userdata of the output section to the output section
2384 statement to avoid lookup. */
2385 get_userdata (s->bfd_section) = s;
2386
2387 /* If there is a base address, make sure that any sections it might
2388 mention are initialized. */
2389 if (s->addr_tree != NULL)
2390 exp_init_os (s->addr_tree);
2391
2392 if (s->load_base != NULL)
2393 exp_init_os (s->load_base);
2394
2395 /* If supplied an alignment, set it. */
2396 if (s->section_alignment != NULL)
2397 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2398 "section alignment");
2399 }
2400
2401 /* Make sure that all output sections mentioned in an expression are
2402 initialized. */
2403
2404 static void
2405 exp_init_os (etree_type *exp)
2406 {
2407 switch (exp->type.node_class)
2408 {
2409 case etree_assign:
2410 case etree_provide:
2411 case etree_provided:
2412 exp_init_os (exp->assign.src);
2413 break;
2414
2415 case etree_binary:
2416 exp_init_os (exp->binary.lhs);
2417 exp_init_os (exp->binary.rhs);
2418 break;
2419
2420 case etree_trinary:
2421 exp_init_os (exp->trinary.cond);
2422 exp_init_os (exp->trinary.lhs);
2423 exp_init_os (exp->trinary.rhs);
2424 break;
2425
2426 case etree_assert:
2427 exp_init_os (exp->assert_s.child);
2428 break;
2429
2430 case etree_unary:
2431 exp_init_os (exp->unary.child);
2432 break;
2433
2434 case etree_name:
2435 switch (exp->type.node_code)
2436 {
2437 case ADDR:
2438 case LOADADDR:
2439 case SIZEOF:
2440 {
2441 lang_output_section_statement_type *os;
2442
2443 os = lang_output_section_find (exp->name.name);
2444 if (os != NULL && os->bfd_section == NULL)
2445 init_os (os, 0);
2446 }
2447 }
2448 break;
2449
2450 default:
2451 break;
2452 }
2453 }
2454 \f
2455 static void
2456 section_already_linked (bfd *abfd, asection *sec, void *data)
2457 {
2458 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2459
2460 /* If we are only reading symbols from this object, then we want to
2461 discard all sections. */
2462 if (entry->flags.just_syms)
2463 {
2464 bfd_link_just_syms (abfd, sec, &link_info);
2465 return;
2466 }
2467
2468 /* Deal with SHF_EXCLUDE ELF sections. */
2469 if (!bfd_link_relocatable (&link_info)
2470 && (abfd->flags & BFD_PLUGIN) == 0
2471 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2472 sec->output_section = bfd_abs_section_ptr;
2473
2474 if (!(abfd->flags & DYNAMIC))
2475 bfd_section_already_linked (abfd, sec, &link_info);
2476 }
2477 \f
2478
2479 /* Returns true if SECTION is one we know will be discarded based on its
2480 section flags, otherwise returns false. */
2481
2482 static bfd_boolean
2483 lang_discard_section_p (asection *section)
2484 {
2485 bfd_boolean discard;
2486 flagword flags = section->flags;
2487
2488 /* Discard sections marked with SEC_EXCLUDE. */
2489 discard = (flags & SEC_EXCLUDE) != 0;
2490
2491 /* Discard the group descriptor sections when we're finally placing the
2492 sections from within the group. */
2493 if ((flags & SEC_GROUP) != 0
2494 && link_info.resolve_section_groups)
2495 discard = TRUE;
2496
2497 /* Discard debugging sections if we are stripping debugging
2498 information. */
2499 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2500 && (flags & SEC_DEBUGGING) != 0)
2501 discard = TRUE;
2502
2503 return discard;
2504 }
2505
2506 /* The wild routines.
2507
2508 These expand statements like *(.text) and foo.o to a list of
2509 explicit actions, like foo.o(.text), bar.o(.text) and
2510 foo.o(.text, .data). */
2511
2512 /* Add SECTION to the output section OUTPUT. Do this by creating a
2513 lang_input_section statement which is placed at PTR. */
2514
2515 void
2516 lang_add_section (lang_statement_list_type *ptr,
2517 asection *section,
2518 struct flag_info *sflag_info,
2519 lang_output_section_statement_type *output)
2520 {
2521 flagword flags = section->flags;
2522
2523 bfd_boolean discard;
2524 lang_input_section_type *new_section;
2525 bfd *abfd = link_info.output_bfd;
2526
2527 /* Is this section one we know should be discarded? */
2528 discard = lang_discard_section_p (section);
2529
2530 /* Discard input sections which are assigned to a section named
2531 DISCARD_SECTION_NAME. */
2532 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2533 discard = TRUE;
2534
2535 if (discard)
2536 {
2537 if (section->output_section == NULL)
2538 {
2539 /* This prevents future calls from assigning this section. */
2540 section->output_section = bfd_abs_section_ptr;
2541 }
2542 return;
2543 }
2544
2545 if (sflag_info)
2546 {
2547 bfd_boolean keep;
2548
2549 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2550 if (!keep)
2551 return;
2552 }
2553
2554 if (section->output_section != NULL)
2555 return;
2556
2557 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2558 to an output section, because we want to be able to include a
2559 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2560 section (I don't know why we want to do this, but we do).
2561 build_link_order in ldwrite.c handles this case by turning
2562 the embedded SEC_NEVER_LOAD section into a fill. */
2563 flags &= ~ SEC_NEVER_LOAD;
2564
2565 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2566 already been processed. One reason to do this is that on pe
2567 format targets, .text$foo sections go into .text and it's odd
2568 to see .text with SEC_LINK_ONCE set. */
2569 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2570 {
2571 if (link_info.resolve_section_groups)
2572 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2573 else
2574 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2575 }
2576 else if (!bfd_link_relocatable (&link_info))
2577 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2578
2579 switch (output->sectype)
2580 {
2581 case normal_section:
2582 case overlay_section:
2583 case first_overlay_section:
2584 break;
2585 case noalloc_section:
2586 flags &= ~SEC_ALLOC;
2587 break;
2588 case noload_section:
2589 flags &= ~SEC_LOAD;
2590 flags |= SEC_NEVER_LOAD;
2591 /* Unfortunately GNU ld has managed to evolve two different
2592 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2593 alloc, no contents section. All others get a noload, noalloc
2594 section. */
2595 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2596 flags &= ~SEC_HAS_CONTENTS;
2597 else
2598 flags &= ~SEC_ALLOC;
2599 break;
2600 }
2601
2602 if (output->bfd_section == NULL)
2603 init_os (output, flags);
2604
2605 /* If SEC_READONLY is not set in the input section, then clear
2606 it from the output section. */
2607 output->bfd_section->flags &= flags | ~SEC_READONLY;
2608
2609 if (output->bfd_section->linker_has_input)
2610 {
2611 /* Only set SEC_READONLY flag on the first input section. */
2612 flags &= ~ SEC_READONLY;
2613
2614 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2615 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2616 != (flags & (SEC_MERGE | SEC_STRINGS))
2617 || ((flags & SEC_MERGE) != 0
2618 && output->bfd_section->entsize != section->entsize))
2619 {
2620 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2621 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2622 }
2623 }
2624 output->bfd_section->flags |= flags;
2625
2626 if (!output->bfd_section->linker_has_input)
2627 {
2628 output->bfd_section->linker_has_input = 1;
2629 /* This must happen after flags have been updated. The output
2630 section may have been created before we saw its first input
2631 section, eg. for a data statement. */
2632 bfd_init_private_section_data (section->owner, section,
2633 link_info.output_bfd,
2634 output->bfd_section,
2635 &link_info);
2636 if ((flags & SEC_MERGE) != 0)
2637 output->bfd_section->entsize = section->entsize;
2638 }
2639
2640 if ((flags & SEC_TIC54X_BLOCK) != 0
2641 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2642 {
2643 /* FIXME: This value should really be obtained from the bfd... */
2644 output->block_value = 128;
2645 }
2646
2647 if (section->alignment_power > output->bfd_section->alignment_power)
2648 output->bfd_section->alignment_power = section->alignment_power;
2649
2650 section->output_section = output->bfd_section;
2651
2652 if (!map_head_is_link_order)
2653 {
2654 asection *s = output->bfd_section->map_tail.s;
2655 output->bfd_section->map_tail.s = section;
2656 section->map_head.s = NULL;
2657 section->map_tail.s = s;
2658 if (s != NULL)
2659 s->map_head.s = section;
2660 else
2661 output->bfd_section->map_head.s = section;
2662 }
2663
2664 /* Add a section reference to the list. */
2665 new_section = new_stat (lang_input_section, ptr);
2666 new_section->section = section;
2667 }
2668
2669 /* Handle wildcard sorting. This returns the lang_input_section which
2670 should follow the one we are going to create for SECTION and FILE,
2671 based on the sorting requirements of WILD. It returns NULL if the
2672 new section should just go at the end of the current list. */
2673
2674 static lang_statement_union_type *
2675 wild_sort (lang_wild_statement_type *wild,
2676 struct wildcard_list *sec,
2677 lang_input_statement_type *file,
2678 asection *section)
2679 {
2680 lang_statement_union_type *l;
2681
2682 if (!wild->filenames_sorted
2683 && (sec == NULL || sec->spec.sorted == none))
2684 return NULL;
2685
2686 for (l = wild->children.head; l != NULL; l = l->header.next)
2687 {
2688 lang_input_section_type *ls;
2689
2690 if (l->header.type != lang_input_section_enum)
2691 continue;
2692 ls = &l->input_section;
2693
2694 /* Sorting by filename takes precedence over sorting by section
2695 name. */
2696
2697 if (wild->filenames_sorted)
2698 {
2699 const char *fn, *ln;
2700 bfd_boolean fa, la;
2701 int i;
2702
2703 /* The PE support for the .idata section as generated by
2704 dlltool assumes that files will be sorted by the name of
2705 the archive and then the name of the file within the
2706 archive. */
2707
2708 if (file->the_bfd != NULL
2709 && file->the_bfd->my_archive != NULL)
2710 {
2711 fn = bfd_get_filename (file->the_bfd->my_archive);
2712 fa = TRUE;
2713 }
2714 else
2715 {
2716 fn = file->filename;
2717 fa = FALSE;
2718 }
2719
2720 if (ls->section->owner->my_archive != NULL)
2721 {
2722 ln = bfd_get_filename (ls->section->owner->my_archive);
2723 la = TRUE;
2724 }
2725 else
2726 {
2727 ln = ls->section->owner->filename;
2728 la = FALSE;
2729 }
2730
2731 i = filename_cmp (fn, ln);
2732 if (i > 0)
2733 continue;
2734 else if (i < 0)
2735 break;
2736
2737 if (fa || la)
2738 {
2739 if (fa)
2740 fn = file->filename;
2741 if (la)
2742 ln = ls->section->owner->filename;
2743
2744 i = filename_cmp (fn, ln);
2745 if (i > 0)
2746 continue;
2747 else if (i < 0)
2748 break;
2749 }
2750 }
2751
2752 /* Here either the files are not sorted by name, or we are
2753 looking at the sections for this file. */
2754
2755 if (sec != NULL
2756 && sec->spec.sorted != none
2757 && sec->spec.sorted != by_none)
2758 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2759 break;
2760 }
2761
2762 return l;
2763 }
2764
2765 /* Expand a wild statement for a particular FILE. SECTION may be
2766 NULL, in which case it is a wild card. */
2767
2768 static void
2769 output_section_callback (lang_wild_statement_type *ptr,
2770 struct wildcard_list *sec,
2771 asection *section,
2772 struct flag_info *sflag_info,
2773 lang_input_statement_type *file,
2774 void *output)
2775 {
2776 lang_statement_union_type *before;
2777 lang_output_section_statement_type *os;
2778
2779 os = (lang_output_section_statement_type *) output;
2780
2781 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2782 if (unique_section_p (section, os))
2783 return;
2784
2785 before = wild_sort (ptr, sec, file, section);
2786
2787 /* Here BEFORE points to the lang_input_section which
2788 should follow the one we are about to add. If BEFORE
2789 is NULL, then the section should just go at the end
2790 of the current list. */
2791
2792 if (before == NULL)
2793 lang_add_section (&ptr->children, section, sflag_info, os);
2794 else
2795 {
2796 lang_statement_list_type list;
2797 lang_statement_union_type **pp;
2798
2799 lang_list_init (&list);
2800 lang_add_section (&list, section, sflag_info, os);
2801
2802 /* If we are discarding the section, LIST.HEAD will
2803 be NULL. */
2804 if (list.head != NULL)
2805 {
2806 ASSERT (list.head->header.next == NULL);
2807
2808 for (pp = &ptr->children.head;
2809 *pp != before;
2810 pp = &(*pp)->header.next)
2811 ASSERT (*pp != NULL);
2812
2813 list.head->header.next = *pp;
2814 *pp = list.head;
2815 }
2816 }
2817 }
2818
2819 /* Check if all sections in a wild statement for a particular FILE
2820 are readonly. */
2821
2822 static void
2823 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2824 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2825 asection *section,
2826 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2827 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2828 void *output)
2829 {
2830 lang_output_section_statement_type *os;
2831
2832 os = (lang_output_section_statement_type *) output;
2833
2834 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2835 if (unique_section_p (section, os))
2836 return;
2837
2838 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2839 os->all_input_readonly = FALSE;
2840 }
2841
2842 /* This is passed a file name which must have been seen already and
2843 added to the statement tree. We will see if it has been opened
2844 already and had its symbols read. If not then we'll read it. */
2845
2846 static lang_input_statement_type *
2847 lookup_name (const char *name)
2848 {
2849 lang_input_statement_type *search;
2850
2851 for (search = &input_file_chain.head->input_statement;
2852 search != NULL;
2853 search = search->next_real_file)
2854 {
2855 /* Use the local_sym_name as the name of the file that has
2856 already been loaded as filename might have been transformed
2857 via the search directory lookup mechanism. */
2858 const char *filename = search->local_sym_name;
2859
2860 if (filename != NULL
2861 && filename_cmp (filename, name) == 0)
2862 break;
2863 }
2864
2865 if (search == NULL)
2866 search = new_afile (name, lang_input_file_is_search_file_enum,
2867 default_target, FALSE);
2868
2869 /* If we have already added this file, or this file is not real
2870 don't add this file. */
2871 if (search->flags.loaded || !search->flags.real)
2872 return search;
2873
2874 if (!load_symbols (search, NULL))
2875 return NULL;
2876
2877 return search;
2878 }
2879
2880 /* Save LIST as a list of libraries whose symbols should not be exported. */
2881
2882 struct excluded_lib
2883 {
2884 char *name;
2885 struct excluded_lib *next;
2886 };
2887 static struct excluded_lib *excluded_libs;
2888
2889 void
2890 add_excluded_libs (const char *list)
2891 {
2892 const char *p = list, *end;
2893
2894 while (*p != '\0')
2895 {
2896 struct excluded_lib *entry;
2897 end = strpbrk (p, ",:");
2898 if (end == NULL)
2899 end = p + strlen (p);
2900 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2901 entry->next = excluded_libs;
2902 entry->name = (char *) xmalloc (end - p + 1);
2903 memcpy (entry->name, p, end - p);
2904 entry->name[end - p] = '\0';
2905 excluded_libs = entry;
2906 if (*end == '\0')
2907 break;
2908 p = end + 1;
2909 }
2910 }
2911
2912 static void
2913 check_excluded_libs (bfd *abfd)
2914 {
2915 struct excluded_lib *lib = excluded_libs;
2916
2917 while (lib)
2918 {
2919 int len = strlen (lib->name);
2920 const char *filename = lbasename (abfd->filename);
2921
2922 if (strcmp (lib->name, "ALL") == 0)
2923 {
2924 abfd->no_export = TRUE;
2925 return;
2926 }
2927
2928 if (filename_ncmp (lib->name, filename, len) == 0
2929 && (filename[len] == '\0'
2930 || (filename[len] == '.' && filename[len + 1] == 'a'
2931 && filename[len + 2] == '\0')))
2932 {
2933 abfd->no_export = TRUE;
2934 return;
2935 }
2936
2937 lib = lib->next;
2938 }
2939 }
2940
2941 /* Get the symbols for an input file. */
2942
2943 bfd_boolean
2944 load_symbols (lang_input_statement_type *entry,
2945 lang_statement_list_type *place)
2946 {
2947 char **matching;
2948
2949 if (entry->flags.loaded)
2950 return TRUE;
2951
2952 ldfile_open_file (entry);
2953
2954 /* Do not process further if the file was missing. */
2955 if (entry->flags.missing_file)
2956 return TRUE;
2957
2958 if (trace_files || verbose)
2959 info_msg ("%pI\n", entry);
2960
2961 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2962 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2963 {
2964 bfd_error_type err;
2965 struct lang_input_statement_flags save_flags;
2966 extern FILE *yyin;
2967
2968 err = bfd_get_error ();
2969
2970 /* See if the emulation has some special knowledge. */
2971 if (ldemul_unrecognized_file (entry))
2972 return TRUE;
2973
2974 if (err == bfd_error_file_ambiguously_recognized)
2975 {
2976 char **p;
2977
2978 einfo (_("%P: %pB: file not recognized: %E;"
2979 " matching formats:"), entry->the_bfd);
2980 for (p = matching; *p != NULL; p++)
2981 einfo (" %s", *p);
2982 einfo ("%F\n");
2983 }
2984 else if (err != bfd_error_file_not_recognized
2985 || place == NULL)
2986 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
2987
2988 bfd_close (entry->the_bfd);
2989 entry->the_bfd = NULL;
2990
2991 /* Try to interpret the file as a linker script. */
2992 save_flags = input_flags;
2993 ldfile_open_command_file (entry->filename);
2994
2995 push_stat_ptr (place);
2996 input_flags.add_DT_NEEDED_for_regular
2997 = entry->flags.add_DT_NEEDED_for_regular;
2998 input_flags.add_DT_NEEDED_for_dynamic
2999 = entry->flags.add_DT_NEEDED_for_dynamic;
3000 input_flags.whole_archive = entry->flags.whole_archive;
3001 input_flags.dynamic = entry->flags.dynamic;
3002
3003 ldfile_assumed_script = TRUE;
3004 parser_input = input_script;
3005 yyparse ();
3006 ldfile_assumed_script = FALSE;
3007
3008 /* missing_file is sticky. sysrooted will already have been
3009 restored when seeing EOF in yyparse, but no harm to restore
3010 again. */
3011 save_flags.missing_file |= input_flags.missing_file;
3012 input_flags = save_flags;
3013 pop_stat_ptr ();
3014 fclose (yyin);
3015 yyin = NULL;
3016 entry->flags.loaded = TRUE;
3017
3018 return TRUE;
3019 }
3020
3021 if (ldemul_recognized_file (entry))
3022 return TRUE;
3023
3024 /* We don't call ldlang_add_file for an archive. Instead, the
3025 add_symbols entry point will call ldlang_add_file, via the
3026 add_archive_element callback, for each element of the archive
3027 which is used. */
3028 switch (bfd_get_format (entry->the_bfd))
3029 {
3030 default:
3031 break;
3032
3033 case bfd_object:
3034 if (!entry->flags.reload)
3035 ldlang_add_file (entry);
3036 break;
3037
3038 case bfd_archive:
3039 check_excluded_libs (entry->the_bfd);
3040
3041 entry->the_bfd->usrdata = entry;
3042 if (entry->flags.whole_archive)
3043 {
3044 bfd *member = NULL;
3045 bfd_boolean loaded = TRUE;
3046
3047 for (;;)
3048 {
3049 bfd *subsbfd;
3050 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3051
3052 if (member == NULL)
3053 break;
3054
3055 if (!bfd_check_format (member, bfd_object))
3056 {
3057 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3058 entry->the_bfd, member);
3059 loaded = FALSE;
3060 }
3061
3062 subsbfd = member;
3063 if (!(*link_info.callbacks
3064 ->add_archive_element) (&link_info, member,
3065 "--whole-archive", &subsbfd))
3066 abort ();
3067
3068 /* Potentially, the add_archive_element hook may have set a
3069 substitute BFD for us. */
3070 if (!bfd_link_add_symbols (subsbfd, &link_info))
3071 {
3072 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3073 loaded = FALSE;
3074 }
3075 }
3076
3077 entry->flags.loaded = loaded;
3078 return loaded;
3079 }
3080 break;
3081 }
3082
3083 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3084 entry->flags.loaded = TRUE;
3085 else
3086 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3087
3088 return entry->flags.loaded;
3089 }
3090
3091 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3092 may be NULL, indicating that it is a wildcard. Separate
3093 lang_input_section statements are created for each part of the
3094 expansion; they are added after the wild statement S. OUTPUT is
3095 the output section. */
3096
3097 static void
3098 wild (lang_wild_statement_type *s,
3099 const char *target ATTRIBUTE_UNUSED,
3100 lang_output_section_statement_type *output)
3101 {
3102 struct wildcard_list *sec;
3103
3104 if (s->handler_data[0]
3105 && s->handler_data[0]->spec.sorted == by_name
3106 && !s->filenames_sorted)
3107 {
3108 lang_section_bst_type *tree;
3109
3110 walk_wild (s, output_section_callback_fast, output);
3111
3112 tree = s->tree;
3113 if (tree)
3114 {
3115 output_section_callback_tree_to_list (s, tree, output);
3116 s->tree = NULL;
3117 }
3118 }
3119 else
3120 walk_wild (s, output_section_callback, output);
3121
3122 if (default_common_section == NULL)
3123 for (sec = s->section_list; sec != NULL; sec = sec->next)
3124 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3125 {
3126 /* Remember the section that common is going to in case we
3127 later get something which doesn't know where to put it. */
3128 default_common_section = output;
3129 break;
3130 }
3131 }
3132
3133 /* Return TRUE iff target is the sought target. */
3134
3135 static int
3136 get_target (const bfd_target *target, void *data)
3137 {
3138 const char *sought = (const char *) data;
3139
3140 return strcmp (target->name, sought) == 0;
3141 }
3142
3143 /* Like strcpy() but convert to lower case as well. */
3144
3145 static void
3146 stricpy (char *dest, char *src)
3147 {
3148 char c;
3149
3150 while ((c = *src++) != 0)
3151 *dest++ = TOLOWER (c);
3152
3153 *dest = 0;
3154 }
3155
3156 /* Remove the first occurrence of needle (if any) in haystack
3157 from haystack. */
3158
3159 static void
3160 strcut (char *haystack, char *needle)
3161 {
3162 haystack = strstr (haystack, needle);
3163
3164 if (haystack)
3165 {
3166 char *src;
3167
3168 for (src = haystack + strlen (needle); *src;)
3169 *haystack++ = *src++;
3170
3171 *haystack = 0;
3172 }
3173 }
3174
3175 /* Compare two target format name strings.
3176 Return a value indicating how "similar" they are. */
3177
3178 static int
3179 name_compare (char *first, char *second)
3180 {
3181 char *copy1;
3182 char *copy2;
3183 int result;
3184
3185 copy1 = (char *) xmalloc (strlen (first) + 1);
3186 copy2 = (char *) xmalloc (strlen (second) + 1);
3187
3188 /* Convert the names to lower case. */
3189 stricpy (copy1, first);
3190 stricpy (copy2, second);
3191
3192 /* Remove size and endian strings from the name. */
3193 strcut (copy1, "big");
3194 strcut (copy1, "little");
3195 strcut (copy2, "big");
3196 strcut (copy2, "little");
3197
3198 /* Return a value based on how many characters match,
3199 starting from the beginning. If both strings are
3200 the same then return 10 * their length. */
3201 for (result = 0; copy1[result] == copy2[result]; result++)
3202 if (copy1[result] == 0)
3203 {
3204 result *= 10;
3205 break;
3206 }
3207
3208 free (copy1);
3209 free (copy2);
3210
3211 return result;
3212 }
3213
3214 /* Set by closest_target_match() below. */
3215 static const bfd_target *winner;
3216
3217 /* Scan all the valid bfd targets looking for one that has the endianness
3218 requirement that was specified on the command line, and is the nearest
3219 match to the original output target. */
3220
3221 static int
3222 closest_target_match (const bfd_target *target, void *data)
3223 {
3224 const bfd_target *original = (const bfd_target *) data;
3225
3226 if (command_line.endian == ENDIAN_BIG
3227 && target->byteorder != BFD_ENDIAN_BIG)
3228 return 0;
3229
3230 if (command_line.endian == ENDIAN_LITTLE
3231 && target->byteorder != BFD_ENDIAN_LITTLE)
3232 return 0;
3233
3234 /* Must be the same flavour. */
3235 if (target->flavour != original->flavour)
3236 return 0;
3237
3238 /* Ignore generic big and little endian elf vectors. */
3239 if (strcmp (target->name, "elf32-big") == 0
3240 || strcmp (target->name, "elf64-big") == 0
3241 || strcmp (target->name, "elf32-little") == 0
3242 || strcmp (target->name, "elf64-little") == 0)
3243 return 0;
3244
3245 /* If we have not found a potential winner yet, then record this one. */
3246 if (winner == NULL)
3247 {
3248 winner = target;
3249 return 0;
3250 }
3251
3252 /* Oh dear, we now have two potential candidates for a successful match.
3253 Compare their names and choose the better one. */
3254 if (name_compare (target->name, original->name)
3255 > name_compare (winner->name, original->name))
3256 winner = target;
3257
3258 /* Keep on searching until wqe have checked them all. */
3259 return 0;
3260 }
3261
3262 /* Return the BFD target format of the first input file. */
3263
3264 static char *
3265 get_first_input_target (void)
3266 {
3267 char *target = NULL;
3268
3269 LANG_FOR_EACH_INPUT_STATEMENT (s)
3270 {
3271 if (s->header.type == lang_input_statement_enum
3272 && s->flags.real)
3273 {
3274 ldfile_open_file (s);
3275
3276 if (s->the_bfd != NULL
3277 && bfd_check_format (s->the_bfd, bfd_object))
3278 {
3279 target = bfd_get_target (s->the_bfd);
3280
3281 if (target != NULL)
3282 break;
3283 }
3284 }
3285 }
3286
3287 return target;
3288 }
3289
3290 const char *
3291 lang_get_output_target (void)
3292 {
3293 const char *target;
3294
3295 /* Has the user told us which output format to use? */
3296 if (output_target != NULL)
3297 return output_target;
3298
3299 /* No - has the current target been set to something other than
3300 the default? */
3301 if (current_target != default_target && current_target != NULL)
3302 return current_target;
3303
3304 /* No - can we determine the format of the first input file? */
3305 target = get_first_input_target ();
3306 if (target != NULL)
3307 return target;
3308
3309 /* Failed - use the default output target. */
3310 return default_target;
3311 }
3312
3313 /* Open the output file. */
3314
3315 static void
3316 open_output (const char *name)
3317 {
3318 output_target = lang_get_output_target ();
3319
3320 /* Has the user requested a particular endianness on the command
3321 line? */
3322 if (command_line.endian != ENDIAN_UNSET)
3323 {
3324 /* Get the chosen target. */
3325 const bfd_target *target
3326 = bfd_iterate_over_targets (get_target, (void *) output_target);
3327
3328 /* If the target is not supported, we cannot do anything. */
3329 if (target != NULL)
3330 {
3331 enum bfd_endian desired_endian;
3332
3333 if (command_line.endian == ENDIAN_BIG)
3334 desired_endian = BFD_ENDIAN_BIG;
3335 else
3336 desired_endian = BFD_ENDIAN_LITTLE;
3337
3338 /* See if the target has the wrong endianness. This should
3339 not happen if the linker script has provided big and
3340 little endian alternatives, but some scrips don't do
3341 this. */
3342 if (target->byteorder != desired_endian)
3343 {
3344 /* If it does, then see if the target provides
3345 an alternative with the correct endianness. */
3346 if (target->alternative_target != NULL
3347 && (target->alternative_target->byteorder == desired_endian))
3348 output_target = target->alternative_target->name;
3349 else
3350 {
3351 /* Try to find a target as similar as possible to
3352 the default target, but which has the desired
3353 endian characteristic. */
3354 bfd_iterate_over_targets (closest_target_match,
3355 (void *) target);
3356
3357 /* Oh dear - we could not find any targets that
3358 satisfy our requirements. */
3359 if (winner == NULL)
3360 einfo (_("%P: warning: could not find any targets"
3361 " that match endianness requirement\n"));
3362 else
3363 output_target = winner->name;
3364 }
3365 }
3366 }
3367 }
3368
3369 link_info.output_bfd = bfd_openw (name, output_target);
3370
3371 if (link_info.output_bfd == NULL)
3372 {
3373 if (bfd_get_error () == bfd_error_invalid_target)
3374 einfo (_("%F%P: target %s not found\n"), output_target);
3375
3376 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3377 }
3378
3379 delete_output_file_on_failure = TRUE;
3380
3381 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3382 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3383 if (!bfd_set_arch_mach (link_info.output_bfd,
3384 ldfile_output_architecture,
3385 ldfile_output_machine))
3386 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3387
3388 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3389 if (link_info.hash == NULL)
3390 einfo (_("%F%P: can not create hash table: %E\n"));
3391
3392 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3393 }
3394
3395 static void
3396 ldlang_open_output (lang_statement_union_type *statement)
3397 {
3398 switch (statement->header.type)
3399 {
3400 case lang_output_statement_enum:
3401 ASSERT (link_info.output_bfd == NULL);
3402 open_output (statement->output_statement.name);
3403 ldemul_set_output_arch ();
3404 if (config.magic_demand_paged
3405 && !bfd_link_relocatable (&link_info))
3406 link_info.output_bfd->flags |= D_PAGED;
3407 else
3408 link_info.output_bfd->flags &= ~D_PAGED;
3409 if (config.text_read_only)
3410 link_info.output_bfd->flags |= WP_TEXT;
3411 else
3412 link_info.output_bfd->flags &= ~WP_TEXT;
3413 if (link_info.traditional_format)
3414 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3415 else
3416 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3417 break;
3418
3419 case lang_target_statement_enum:
3420 current_target = statement->target_statement.target;
3421 break;
3422 default:
3423 break;
3424 }
3425 }
3426
3427 static void
3428 init_opb (void)
3429 {
3430 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3431 ldfile_output_machine);
3432 opb_shift = 0;
3433 if (x > 1)
3434 while ((x & 1) == 0)
3435 {
3436 x >>= 1;
3437 ++opb_shift;
3438 }
3439 ASSERT (x == 1);
3440 }
3441
3442 /* Open all the input files. */
3443
3444 enum open_bfd_mode
3445 {
3446 OPEN_BFD_NORMAL = 0,
3447 OPEN_BFD_FORCE = 1,
3448 OPEN_BFD_RESCAN = 2
3449 };
3450 #ifdef ENABLE_PLUGINS
3451 static lang_input_statement_type *plugin_insert = NULL;
3452 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3453 #endif
3454
3455 static void
3456 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3457 {
3458 for (; s != NULL; s = s->header.next)
3459 {
3460 switch (s->header.type)
3461 {
3462 case lang_constructors_statement_enum:
3463 open_input_bfds (constructor_list.head, mode);
3464 break;
3465 case lang_output_section_statement_enum:
3466 open_input_bfds (s->output_section_statement.children.head, mode);
3467 break;
3468 case lang_wild_statement_enum:
3469 /* Maybe we should load the file's symbols. */
3470 if ((mode & OPEN_BFD_RESCAN) == 0
3471 && s->wild_statement.filename
3472 && !wildcardp (s->wild_statement.filename)
3473 && !archive_path (s->wild_statement.filename))
3474 lookup_name (s->wild_statement.filename);
3475 open_input_bfds (s->wild_statement.children.head, mode);
3476 break;
3477 case lang_group_statement_enum:
3478 {
3479 struct bfd_link_hash_entry *undefs;
3480 #ifdef ENABLE_PLUGINS
3481 lang_input_statement_type *plugin_insert_save;
3482 #endif
3483
3484 /* We must continually search the entries in the group
3485 until no new symbols are added to the list of undefined
3486 symbols. */
3487
3488 do
3489 {
3490 #ifdef ENABLE_PLUGINS
3491 plugin_insert_save = plugin_insert;
3492 #endif
3493 undefs = link_info.hash->undefs_tail;
3494 open_input_bfds (s->group_statement.children.head,
3495 mode | OPEN_BFD_FORCE);
3496 }
3497 while (undefs != link_info.hash->undefs_tail
3498 #ifdef ENABLE_PLUGINS
3499 /* Objects inserted by a plugin, which are loaded
3500 before we hit this loop, may have added new
3501 undefs. */
3502 || (plugin_insert != plugin_insert_save && plugin_undefs)
3503 #endif
3504 );
3505 }
3506 break;
3507 case lang_target_statement_enum:
3508 current_target = s->target_statement.target;
3509 break;
3510 case lang_input_statement_enum:
3511 if (s->input_statement.flags.real)
3512 {
3513 lang_statement_union_type **os_tail;
3514 lang_statement_list_type add;
3515 bfd *abfd;
3516
3517 s->input_statement.target = current_target;
3518
3519 /* If we are being called from within a group, and this
3520 is an archive which has already been searched, then
3521 force it to be researched unless the whole archive
3522 has been loaded already. Do the same for a rescan.
3523 Likewise reload --as-needed shared libs. */
3524 if (mode != OPEN_BFD_NORMAL
3525 #ifdef ENABLE_PLUGINS
3526 && ((mode & OPEN_BFD_RESCAN) == 0
3527 || plugin_insert == NULL)
3528 #endif
3529 && s->input_statement.flags.loaded
3530 && (abfd = s->input_statement.the_bfd) != NULL
3531 && ((bfd_get_format (abfd) == bfd_archive
3532 && !s->input_statement.flags.whole_archive)
3533 || (bfd_get_format (abfd) == bfd_object
3534 && ((abfd->flags) & DYNAMIC) != 0
3535 && s->input_statement.flags.add_DT_NEEDED_for_regular
3536 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3537 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3538 {
3539 s->input_statement.flags.loaded = FALSE;
3540 s->input_statement.flags.reload = TRUE;
3541 }
3542
3543 os_tail = lang_os_list.tail;
3544 lang_list_init (&add);
3545
3546 if (!load_symbols (&s->input_statement, &add))
3547 config.make_executable = FALSE;
3548
3549 if (add.head != NULL)
3550 {
3551 /* If this was a script with output sections then
3552 tack any added statements on to the end of the
3553 list. This avoids having to reorder the output
3554 section statement list. Very likely the user
3555 forgot -T, and whatever we do here will not meet
3556 naive user expectations. */
3557 if (os_tail != lang_os_list.tail)
3558 {
3559 einfo (_("%P: warning: %s contains output sections;"
3560 " did you forget -T?\n"),
3561 s->input_statement.filename);
3562 *stat_ptr->tail = add.head;
3563 stat_ptr->tail = add.tail;
3564 }
3565 else
3566 {
3567 *add.tail = s->header.next;
3568 s->header.next = add.head;
3569 }
3570 }
3571 }
3572 #ifdef ENABLE_PLUGINS
3573 /* If we have found the point at which a plugin added new
3574 files, clear plugin_insert to enable archive rescan. */
3575 if (&s->input_statement == plugin_insert)
3576 plugin_insert = NULL;
3577 #endif
3578 break;
3579 case lang_assignment_statement_enum:
3580 if (s->assignment_statement.exp->type.node_class != etree_assert)
3581 exp_fold_tree_no_dot (s->assignment_statement.exp);
3582 break;
3583 default:
3584 break;
3585 }
3586 }
3587
3588 /* Exit if any of the files were missing. */
3589 if (input_flags.missing_file)
3590 einfo ("%F");
3591 }
3592
3593 /* Add the supplied name to the symbol table as an undefined reference.
3594 This is a two step process as the symbol table doesn't even exist at
3595 the time the ld command line is processed. First we put the name
3596 on a list, then, once the output file has been opened, transfer the
3597 name to the symbol table. */
3598
3599 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3600
3601 #define ldlang_undef_chain_list_head entry_symbol.next
3602
3603 void
3604 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3605 {
3606 ldlang_undef_chain_list_type *new_undef;
3607
3608 undef_from_cmdline = undef_from_cmdline || cmdline;
3609 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3610 new_undef->next = ldlang_undef_chain_list_head;
3611 ldlang_undef_chain_list_head = new_undef;
3612
3613 new_undef->name = xstrdup (name);
3614
3615 if (link_info.output_bfd != NULL)
3616 insert_undefined (new_undef->name);
3617 }
3618
3619 /* Insert NAME as undefined in the symbol table. */
3620
3621 static void
3622 insert_undefined (const char *name)
3623 {
3624 struct bfd_link_hash_entry *h;
3625
3626 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3627 if (h == NULL)
3628 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3629 if (h->type == bfd_link_hash_new)
3630 {
3631 h->type = bfd_link_hash_undefined;
3632 h->u.undef.abfd = NULL;
3633 h->non_ir_ref_regular = TRUE;
3634 if (is_elf_hash_table (link_info.hash))
3635 ((struct elf_link_hash_entry *) h)->mark = 1;
3636 bfd_link_add_undef (link_info.hash, h);
3637 }
3638 }
3639
3640 /* Run through the list of undefineds created above and place them
3641 into the linker hash table as undefined symbols belonging to the
3642 script file. */
3643
3644 static void
3645 lang_place_undefineds (void)
3646 {
3647 ldlang_undef_chain_list_type *ptr;
3648
3649 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3650 insert_undefined (ptr->name);
3651 }
3652
3653 /* Structure used to build the list of symbols that the user has required
3654 be defined. */
3655
3656 struct require_defined_symbol
3657 {
3658 const char *name;
3659 struct require_defined_symbol *next;
3660 };
3661
3662 /* The list of symbols that the user has required be defined. */
3663
3664 static struct require_defined_symbol *require_defined_symbol_list;
3665
3666 /* Add a new symbol NAME to the list of symbols that are required to be
3667 defined. */
3668
3669 void
3670 ldlang_add_require_defined (const char *const name)
3671 {
3672 struct require_defined_symbol *ptr;
3673
3674 ldlang_add_undef (name, TRUE);
3675 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3676 ptr->next = require_defined_symbol_list;
3677 ptr->name = strdup (name);
3678 require_defined_symbol_list = ptr;
3679 }
3680
3681 /* Check that all symbols the user required to be defined, are defined,
3682 raise an error if we find a symbol that is not defined. */
3683
3684 static void
3685 ldlang_check_require_defined_symbols (void)
3686 {
3687 struct require_defined_symbol *ptr;
3688
3689 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3690 {
3691 struct bfd_link_hash_entry *h;
3692
3693 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3694 FALSE, FALSE, TRUE);
3695 if (h == NULL
3696 || (h->type != bfd_link_hash_defined
3697 && h->type != bfd_link_hash_defweak))
3698 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
3699 }
3700 }
3701
3702 /* Check for all readonly or some readwrite sections. */
3703
3704 static void
3705 check_input_sections
3706 (lang_statement_union_type *s,
3707 lang_output_section_statement_type *output_section_statement)
3708 {
3709 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3710 {
3711 switch (s->header.type)
3712 {
3713 case lang_wild_statement_enum:
3714 walk_wild (&s->wild_statement, check_section_callback,
3715 output_section_statement);
3716 if (!output_section_statement->all_input_readonly)
3717 return;
3718 break;
3719 case lang_constructors_statement_enum:
3720 check_input_sections (constructor_list.head,
3721 output_section_statement);
3722 if (!output_section_statement->all_input_readonly)
3723 return;
3724 break;
3725 case lang_group_statement_enum:
3726 check_input_sections (s->group_statement.children.head,
3727 output_section_statement);
3728 if (!output_section_statement->all_input_readonly)
3729 return;
3730 break;
3731 default:
3732 break;
3733 }
3734 }
3735 }
3736
3737 /* Update wildcard statements if needed. */
3738
3739 static void
3740 update_wild_statements (lang_statement_union_type *s)
3741 {
3742 struct wildcard_list *sec;
3743
3744 switch (sort_section)
3745 {
3746 default:
3747 FAIL ();
3748
3749 case none:
3750 break;
3751
3752 case by_name:
3753 case by_alignment:
3754 for (; s != NULL; s = s->header.next)
3755 {
3756 switch (s->header.type)
3757 {
3758 default:
3759 break;
3760
3761 case lang_wild_statement_enum:
3762 for (sec = s->wild_statement.section_list; sec != NULL;
3763 sec = sec->next)
3764 /* Don't sort .init/.fini sections. */
3765 if (strcmp (sec->spec.name, ".init") != 0
3766 && strcmp (sec->spec.name, ".fini") != 0)
3767 switch (sec->spec.sorted)
3768 {
3769 case none:
3770 sec->spec.sorted = sort_section;
3771 break;
3772 case by_name:
3773 if (sort_section == by_alignment)
3774 sec->spec.sorted = by_name_alignment;
3775 break;
3776 case by_alignment:
3777 if (sort_section == by_name)
3778 sec->spec.sorted = by_alignment_name;
3779 break;
3780 default:
3781 break;
3782 }
3783 break;
3784
3785 case lang_constructors_statement_enum:
3786 update_wild_statements (constructor_list.head);
3787 break;
3788
3789 case lang_output_section_statement_enum:
3790 update_wild_statements
3791 (s->output_section_statement.children.head);
3792 break;
3793
3794 case lang_group_statement_enum:
3795 update_wild_statements (s->group_statement.children.head);
3796 break;
3797 }
3798 }
3799 break;
3800 }
3801 }
3802
3803 /* Open input files and attach to output sections. */
3804
3805 static void
3806 map_input_to_output_sections
3807 (lang_statement_union_type *s, const char *target,
3808 lang_output_section_statement_type *os)
3809 {
3810 for (; s != NULL; s = s->header.next)
3811 {
3812 lang_output_section_statement_type *tos;
3813 flagword flags;
3814
3815 switch (s->header.type)
3816 {
3817 case lang_wild_statement_enum:
3818 wild (&s->wild_statement, target, os);
3819 break;
3820 case lang_constructors_statement_enum:
3821 map_input_to_output_sections (constructor_list.head,
3822 target,
3823 os);
3824 break;
3825 case lang_output_section_statement_enum:
3826 tos = &s->output_section_statement;
3827 if (tos->constraint != 0)
3828 {
3829 if (tos->constraint != ONLY_IF_RW
3830 && tos->constraint != ONLY_IF_RO)
3831 break;
3832 tos->all_input_readonly = TRUE;
3833 check_input_sections (tos->children.head, tos);
3834 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3835 {
3836 tos->constraint = -1;
3837 break;
3838 }
3839 }
3840 map_input_to_output_sections (tos->children.head,
3841 target,
3842 tos);
3843 break;
3844 case lang_output_statement_enum:
3845 break;
3846 case lang_target_statement_enum:
3847 target = s->target_statement.target;
3848 break;
3849 case lang_group_statement_enum:
3850 map_input_to_output_sections (s->group_statement.children.head,
3851 target,
3852 os);
3853 break;
3854 case lang_data_statement_enum:
3855 /* Make sure that any sections mentioned in the expression
3856 are initialized. */
3857 exp_init_os (s->data_statement.exp);
3858 /* The output section gets CONTENTS, ALLOC and LOAD, but
3859 these may be overridden by the script. */
3860 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3861 switch (os->sectype)
3862 {
3863 case normal_section:
3864 case overlay_section:
3865 case first_overlay_section:
3866 break;
3867 case noalloc_section:
3868 flags = SEC_HAS_CONTENTS;
3869 break;
3870 case noload_section:
3871 if (bfd_get_flavour (link_info.output_bfd)
3872 == bfd_target_elf_flavour)
3873 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3874 else
3875 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3876 break;
3877 }
3878 if (os->bfd_section == NULL)
3879 init_os (os, flags);
3880 else
3881 os->bfd_section->flags |= flags;
3882 break;
3883 case lang_input_section_enum:
3884 break;
3885 case lang_fill_statement_enum:
3886 case lang_object_symbols_statement_enum:
3887 case lang_reloc_statement_enum:
3888 case lang_padding_statement_enum:
3889 case lang_input_statement_enum:
3890 if (os != NULL && os->bfd_section == NULL)
3891 init_os (os, 0);
3892 break;
3893 case lang_assignment_statement_enum:
3894 if (os != NULL && os->bfd_section == NULL)
3895 init_os (os, 0);
3896
3897 /* Make sure that any sections mentioned in the assignment
3898 are initialized. */
3899 exp_init_os (s->assignment_statement.exp);
3900 break;
3901 case lang_address_statement_enum:
3902 /* Mark the specified section with the supplied address.
3903 If this section was actually a segment marker, then the
3904 directive is ignored if the linker script explicitly
3905 processed the segment marker. Originally, the linker
3906 treated segment directives (like -Ttext on the
3907 command-line) as section directives. We honor the
3908 section directive semantics for backwards compatibility;
3909 linker scripts that do not specifically check for
3910 SEGMENT_START automatically get the old semantics. */
3911 if (!s->address_statement.segment
3912 || !s->address_statement.segment->used)
3913 {
3914 const char *name = s->address_statement.section_name;
3915
3916 /* Create the output section statement here so that
3917 orphans with a set address will be placed after other
3918 script sections. If we let the orphan placement code
3919 place them in amongst other sections then the address
3920 will affect following script sections, which is
3921 likely to surprise naive users. */
3922 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3923 tos->addr_tree = s->address_statement.address;
3924 if (tos->bfd_section == NULL)
3925 init_os (tos, 0);
3926 }
3927 break;
3928 case lang_insert_statement_enum:
3929 break;
3930 }
3931 }
3932 }
3933
3934 /* An insert statement snips out all the linker statements from the
3935 start of the list and places them after the output section
3936 statement specified by the insert. This operation is complicated
3937 by the fact that we keep a doubly linked list of output section
3938 statements as well as the singly linked list of all statements.
3939 FIXME someday: Twiddling with the list not only moves statements
3940 from the user's script but also input and group statements that are
3941 built from command line object files and --start-group. We only
3942 get away with this because the list pointers used by file_chain
3943 and input_file_chain are not reordered, and processing via
3944 statement_list after this point mostly ignores input statements.
3945 One exception is the map file, where LOAD and START GROUP/END GROUP
3946 can end up looking odd. */
3947
3948 static void
3949 process_insert_statements (lang_statement_union_type **start)
3950 {
3951 lang_statement_union_type **s;
3952 lang_output_section_statement_type *first_os = NULL;
3953 lang_output_section_statement_type *last_os = NULL;
3954 lang_output_section_statement_type *os;
3955
3956 s = start;
3957 while (*s != NULL)
3958 {
3959 if ((*s)->header.type == lang_output_section_statement_enum)
3960 {
3961 /* Keep pointers to the first and last output section
3962 statement in the sequence we may be about to move. */
3963 os = &(*s)->output_section_statement;
3964
3965 ASSERT (last_os == NULL || last_os->next == os);
3966 last_os = os;
3967
3968 /* Set constraint negative so that lang_output_section_find
3969 won't match this output section statement. At this
3970 stage in linking constraint has values in the range
3971 [-1, ONLY_IN_RW]. */
3972 last_os->constraint = -2 - last_os->constraint;
3973 if (first_os == NULL)
3974 first_os = last_os;
3975 }
3976 else if ((*s)->header.type == lang_group_statement_enum)
3977 {
3978 /* A user might put -T between --start-group and
3979 --end-group. One way this odd construct might arise is
3980 from a wrapper around ld to change library search
3981 behaviour. For example:
3982 #! /bin/sh
3983 exec real_ld --start-group "$@" --end-group
3984 This isn't completely unreasonable so go looking inside a
3985 group statement for insert statements. */
3986 process_insert_statements (&(*s)->group_statement.children.head);
3987 }
3988 else if ((*s)->header.type == lang_insert_statement_enum)
3989 {
3990 lang_insert_statement_type *i = &(*s)->insert_statement;
3991 lang_output_section_statement_type *where;
3992 lang_statement_union_type **ptr;
3993 lang_statement_union_type *first;
3994
3995 where = lang_output_section_find (i->where);
3996 if (where != NULL && i->is_before)
3997 {
3998 do
3999 where = where->prev;
4000 while (where != NULL && where->constraint < 0);
4001 }
4002 if (where == NULL)
4003 {
4004 einfo (_("%F%P: %s not found for insert\n"), i->where);
4005 return;
4006 }
4007
4008 /* Deal with reordering the output section statement list. */
4009 if (last_os != NULL)
4010 {
4011 asection *first_sec, *last_sec;
4012 struct lang_output_section_statement_struct **next;
4013
4014 /* Snip out the output sections we are moving. */
4015 first_os->prev->next = last_os->next;
4016 if (last_os->next == NULL)
4017 {
4018 next = &first_os->prev->next;
4019 lang_os_list.tail = (lang_statement_union_type **) next;
4020 }
4021 else
4022 last_os->next->prev = first_os->prev;
4023 /* Add them in at the new position. */
4024 last_os->next = where->next;
4025 if (where->next == NULL)
4026 {
4027 next = &last_os->next;
4028 lang_os_list.tail = (lang_statement_union_type **) next;
4029 }
4030 else
4031 where->next->prev = last_os;
4032 first_os->prev = where;
4033 where->next = first_os;
4034
4035 /* Move the bfd sections in the same way. */
4036 first_sec = NULL;
4037 last_sec = NULL;
4038 for (os = first_os; os != NULL; os = os->next)
4039 {
4040 os->constraint = -2 - os->constraint;
4041 if (os->bfd_section != NULL
4042 && os->bfd_section->owner != NULL)
4043 {
4044 last_sec = os->bfd_section;
4045 if (first_sec == NULL)
4046 first_sec = last_sec;
4047 }
4048 if (os == last_os)
4049 break;
4050 }
4051 if (last_sec != NULL)
4052 {
4053 asection *sec = where->bfd_section;
4054 if (sec == NULL)
4055 sec = output_prev_sec_find (where);
4056
4057 /* The place we want to insert must come after the
4058 sections we are moving. So if we find no
4059 section or if the section is the same as our
4060 last section, then no move is needed. */
4061 if (sec != NULL && sec != last_sec)
4062 {
4063 /* Trim them off. */
4064 if (first_sec->prev != NULL)
4065 first_sec->prev->next = last_sec->next;
4066 else
4067 link_info.output_bfd->sections = last_sec->next;
4068 if (last_sec->next != NULL)
4069 last_sec->next->prev = first_sec->prev;
4070 else
4071 link_info.output_bfd->section_last = first_sec->prev;
4072 /* Add back. */
4073 last_sec->next = sec->next;
4074 if (sec->next != NULL)
4075 sec->next->prev = last_sec;
4076 else
4077 link_info.output_bfd->section_last = last_sec;
4078 first_sec->prev = sec;
4079 sec->next = first_sec;
4080 }
4081 }
4082
4083 first_os = NULL;
4084 last_os = NULL;
4085 }
4086
4087 ptr = insert_os_after (where);
4088 /* Snip everything from the start of the list, up to and
4089 including the insert statement we are currently processing. */
4090 first = *start;
4091 *start = (*s)->header.next;
4092 /* Add them back where they belong, minus the insert. */
4093 *s = *ptr;
4094 if (*s == NULL)
4095 statement_list.tail = s;
4096 *ptr = first;
4097 s = start;
4098 continue;
4099 }
4100 s = &(*s)->header.next;
4101 }
4102
4103 /* Undo constraint twiddling. */
4104 for (os = first_os; os != NULL; os = os->next)
4105 {
4106 os->constraint = -2 - os->constraint;
4107 if (os == last_os)
4108 break;
4109 }
4110 }
4111
4112 /* An output section might have been removed after its statement was
4113 added. For example, ldemul_before_allocation can remove dynamic
4114 sections if they turn out to be not needed. Clean them up here. */
4115
4116 void
4117 strip_excluded_output_sections (void)
4118 {
4119 lang_output_section_statement_type *os;
4120
4121 /* Run lang_size_sections (if not already done). */
4122 if (expld.phase != lang_mark_phase_enum)
4123 {
4124 expld.phase = lang_mark_phase_enum;
4125 expld.dataseg.phase = exp_seg_none;
4126 one_lang_size_sections_pass (NULL, FALSE);
4127 lang_reset_memory_regions ();
4128 }
4129
4130 for (os = &lang_os_list.head->output_section_statement;
4131 os != NULL;
4132 os = os->next)
4133 {
4134 asection *output_section;
4135 bfd_boolean exclude;
4136
4137 if (os->constraint < 0)
4138 continue;
4139
4140 output_section = os->bfd_section;
4141 if (output_section == NULL)
4142 continue;
4143
4144 exclude = (output_section->rawsize == 0
4145 && (output_section->flags & SEC_KEEP) == 0
4146 && !bfd_section_removed_from_list (link_info.output_bfd,
4147 output_section));
4148
4149 /* Some sections have not yet been sized, notably .gnu.version,
4150 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4151 input sections, so don't drop output sections that have such
4152 input sections unless they are also marked SEC_EXCLUDE. */
4153 if (exclude && output_section->map_head.s != NULL)
4154 {
4155 asection *s;
4156
4157 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4158 if ((s->flags & SEC_EXCLUDE) == 0
4159 && ((s->flags & SEC_LINKER_CREATED) != 0
4160 || link_info.emitrelocations))
4161 {
4162 exclude = FALSE;
4163 break;
4164 }
4165 }
4166
4167 if (exclude)
4168 {
4169 /* We don't set bfd_section to NULL since bfd_section of the
4170 removed output section statement may still be used. */
4171 if (!os->update_dot)
4172 os->ignored = TRUE;
4173 output_section->flags |= SEC_EXCLUDE;
4174 bfd_section_list_remove (link_info.output_bfd, output_section);
4175 link_info.output_bfd->section_count--;
4176 }
4177 }
4178 }
4179
4180 /* Called from ldwrite to clear out asection.map_head and
4181 asection.map_tail for use as link_orders in ldwrite. */
4182
4183 void
4184 lang_clear_os_map (void)
4185 {
4186 lang_output_section_statement_type *os;
4187
4188 if (map_head_is_link_order)
4189 return;
4190
4191 for (os = &lang_os_list.head->output_section_statement;
4192 os != NULL;
4193 os = os->next)
4194 {
4195 asection *output_section;
4196
4197 if (os->constraint < 0)
4198 continue;
4199
4200 output_section = os->bfd_section;
4201 if (output_section == NULL)
4202 continue;
4203
4204 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4205 output_section->map_head.link_order = NULL;
4206 output_section->map_tail.link_order = NULL;
4207 }
4208
4209 /* Stop future calls to lang_add_section from messing with map_head
4210 and map_tail link_order fields. */
4211 map_head_is_link_order = TRUE;
4212 }
4213
4214 static void
4215 print_output_section_statement
4216 (lang_output_section_statement_type *output_section_statement)
4217 {
4218 asection *section = output_section_statement->bfd_section;
4219 int len;
4220
4221 if (output_section_statement != abs_output_section)
4222 {
4223 minfo ("\n%s", output_section_statement->name);
4224
4225 if (section != NULL)
4226 {
4227 print_dot = section->vma;
4228
4229 len = strlen (output_section_statement->name);
4230 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4231 {
4232 print_nl ();
4233 len = 0;
4234 }
4235 while (len < SECTION_NAME_MAP_LENGTH)
4236 {
4237 print_space ();
4238 ++len;
4239 }
4240
4241 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4242
4243 if (section->vma != section->lma)
4244 minfo (_(" load address 0x%V"), section->lma);
4245
4246 if (output_section_statement->update_dot_tree != NULL)
4247 exp_fold_tree (output_section_statement->update_dot_tree,
4248 bfd_abs_section_ptr, &print_dot);
4249 }
4250
4251 print_nl ();
4252 }
4253
4254 print_statement_list (output_section_statement->children.head,
4255 output_section_statement);
4256 }
4257
4258 static void
4259 print_assignment (lang_assignment_statement_type *assignment,
4260 lang_output_section_statement_type *output_section)
4261 {
4262 unsigned int i;
4263 bfd_boolean is_dot;
4264 etree_type *tree;
4265 asection *osec;
4266
4267 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4268 print_space ();
4269
4270 if (assignment->exp->type.node_class == etree_assert)
4271 {
4272 is_dot = FALSE;
4273 tree = assignment->exp->assert_s.child;
4274 }
4275 else
4276 {
4277 const char *dst = assignment->exp->assign.dst;
4278
4279 is_dot = (dst[0] == '.' && dst[1] == 0);
4280 tree = assignment->exp;
4281 }
4282
4283 osec = output_section->bfd_section;
4284 if (osec == NULL)
4285 osec = bfd_abs_section_ptr;
4286
4287 if (assignment->exp->type.node_class != etree_provide)
4288 exp_fold_tree (tree, osec, &print_dot);
4289 else
4290 expld.result.valid_p = FALSE;
4291
4292 if (expld.result.valid_p)
4293 {
4294 bfd_vma value;
4295
4296 if (assignment->exp->type.node_class == etree_assert
4297 || is_dot
4298 || expld.assign_name != NULL)
4299 {
4300 value = expld.result.value;
4301
4302 if (expld.result.section != NULL)
4303 value += expld.result.section->vma;
4304
4305 minfo ("0x%V", value);
4306 if (is_dot)
4307 print_dot = value;
4308 }
4309 else
4310 {
4311 struct bfd_link_hash_entry *h;
4312
4313 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4314 FALSE, FALSE, TRUE);
4315 if (h != NULL
4316 && (h->type == bfd_link_hash_defined
4317 || h->type == bfd_link_hash_defweak))
4318 {
4319 value = h->u.def.value;
4320 value += h->u.def.section->output_section->vma;
4321 value += h->u.def.section->output_offset;
4322
4323 minfo ("[0x%V]", value);
4324 }
4325 else
4326 minfo ("[unresolved]");
4327 }
4328 }
4329 else
4330 {
4331 if (assignment->exp->type.node_class == etree_provide)
4332 minfo ("[!provide]");
4333 else
4334 minfo ("*undef* ");
4335 #ifdef BFD64
4336 minfo (" ");
4337 #endif
4338 }
4339 expld.assign_name = NULL;
4340
4341 minfo (" ");
4342 exp_print_tree (assignment->exp);
4343 print_nl ();
4344 }
4345
4346 static void
4347 print_input_statement (lang_input_statement_type *statm)
4348 {
4349 if (statm->filename != NULL
4350 && (statm->the_bfd == NULL
4351 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4352 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4353 }
4354
4355 /* Print all symbols defined in a particular section. This is called
4356 via bfd_link_hash_traverse, or by print_all_symbols. */
4357
4358 static bfd_boolean
4359 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4360 {
4361 asection *sec = (asection *) ptr;
4362
4363 if ((hash_entry->type == bfd_link_hash_defined
4364 || hash_entry->type == bfd_link_hash_defweak)
4365 && sec == hash_entry->u.def.section)
4366 {
4367 int i;
4368
4369 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4370 print_space ();
4371 minfo ("0x%V ",
4372 (hash_entry->u.def.value
4373 + hash_entry->u.def.section->output_offset
4374 + hash_entry->u.def.section->output_section->vma));
4375
4376 minfo (" %pT\n", hash_entry->root.string);
4377 }
4378
4379 return TRUE;
4380 }
4381
4382 static int
4383 hash_entry_addr_cmp (const void *a, const void *b)
4384 {
4385 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4386 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4387
4388 if (l->u.def.value < r->u.def.value)
4389 return -1;
4390 else if (l->u.def.value > r->u.def.value)
4391 return 1;
4392 else
4393 return 0;
4394 }
4395
4396 static void
4397 print_all_symbols (asection *sec)
4398 {
4399 input_section_userdata_type *ud
4400 = (input_section_userdata_type *) get_userdata (sec);
4401 struct map_symbol_def *def;
4402 struct bfd_link_hash_entry **entries;
4403 unsigned int i;
4404
4405 if (!ud)
4406 return;
4407
4408 *ud->map_symbol_def_tail = 0;
4409
4410 /* Sort the symbols by address. */
4411 entries = (struct bfd_link_hash_entry **)
4412 obstack_alloc (&map_obstack,
4413 ud->map_symbol_def_count * sizeof (*entries));
4414
4415 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4416 entries[i] = def->entry;
4417
4418 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4419 hash_entry_addr_cmp);
4420
4421 /* Print the symbols. */
4422 for (i = 0; i < ud->map_symbol_def_count; i++)
4423 print_one_symbol (entries[i], sec);
4424
4425 obstack_free (&map_obstack, entries);
4426 }
4427
4428 /* Print information about an input section to the map file. */
4429
4430 static void
4431 print_input_section (asection *i, bfd_boolean is_discarded)
4432 {
4433 bfd_size_type size = i->size;
4434 int len;
4435 bfd_vma addr;
4436
4437 init_opb ();
4438
4439 print_space ();
4440 minfo ("%s", i->name);
4441
4442 len = 1 + strlen (i->name);
4443 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4444 {
4445 print_nl ();
4446 len = 0;
4447 }
4448 while (len < SECTION_NAME_MAP_LENGTH)
4449 {
4450 print_space ();
4451 ++len;
4452 }
4453
4454 if (i->output_section != NULL
4455 && i->output_section->owner == link_info.output_bfd)
4456 addr = i->output_section->vma + i->output_offset;
4457 else
4458 {
4459 addr = print_dot;
4460 if (!is_discarded)
4461 size = 0;
4462 }
4463
4464 minfo ("0x%V %W %pB\n", addr, size, i->owner);
4465
4466 if (size != i->rawsize && i->rawsize != 0)
4467 {
4468 len = SECTION_NAME_MAP_LENGTH + 3;
4469 #ifdef BFD64
4470 len += 16;
4471 #else
4472 len += 8;
4473 #endif
4474 while (len > 0)
4475 {
4476 print_space ();
4477 --len;
4478 }
4479
4480 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4481 }
4482
4483 if (i->output_section != NULL
4484 && i->output_section->owner == link_info.output_bfd)
4485 {
4486 if (link_info.reduce_memory_overheads)
4487 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4488 else
4489 print_all_symbols (i);
4490
4491 /* Update print_dot, but make sure that we do not move it
4492 backwards - this could happen if we have overlays and a
4493 later overlay is shorter than an earier one. */
4494 if (addr + TO_ADDR (size) > print_dot)
4495 print_dot = addr + TO_ADDR (size);
4496 }
4497 }
4498
4499 static void
4500 print_fill_statement (lang_fill_statement_type *fill)
4501 {
4502 size_t size;
4503 unsigned char *p;
4504 fputs (" FILL mask 0x", config.map_file);
4505 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4506 fprintf (config.map_file, "%02x", *p);
4507 fputs ("\n", config.map_file);
4508 }
4509
4510 static void
4511 print_data_statement (lang_data_statement_type *data)
4512 {
4513 int i;
4514 bfd_vma addr;
4515 bfd_size_type size;
4516 const char *name;
4517
4518 init_opb ();
4519 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4520 print_space ();
4521
4522 addr = data->output_offset;
4523 if (data->output_section != NULL)
4524 addr += data->output_section->vma;
4525
4526 switch (data->type)
4527 {
4528 default:
4529 abort ();
4530 case BYTE:
4531 size = BYTE_SIZE;
4532 name = "BYTE";
4533 break;
4534 case SHORT:
4535 size = SHORT_SIZE;
4536 name = "SHORT";
4537 break;
4538 case LONG:
4539 size = LONG_SIZE;
4540 name = "LONG";
4541 break;
4542 case QUAD:
4543 size = QUAD_SIZE;
4544 name = "QUAD";
4545 break;
4546 case SQUAD:
4547 size = QUAD_SIZE;
4548 name = "SQUAD";
4549 break;
4550 }
4551
4552 if (size < TO_SIZE ((unsigned) 1))
4553 size = TO_SIZE ((unsigned) 1);
4554 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4555
4556 if (data->exp->type.node_class != etree_value)
4557 {
4558 print_space ();
4559 exp_print_tree (data->exp);
4560 }
4561
4562 print_nl ();
4563
4564 print_dot = addr + TO_ADDR (size);
4565 }
4566
4567 /* Print an address statement. These are generated by options like
4568 -Ttext. */
4569
4570 static void
4571 print_address_statement (lang_address_statement_type *address)
4572 {
4573 minfo (_("Address of section %s set to "), address->section_name);
4574 exp_print_tree (address->address);
4575 print_nl ();
4576 }
4577
4578 /* Print a reloc statement. */
4579
4580 static void
4581 print_reloc_statement (lang_reloc_statement_type *reloc)
4582 {
4583 int i;
4584 bfd_vma addr;
4585 bfd_size_type size;
4586
4587 init_opb ();
4588 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4589 print_space ();
4590
4591 addr = reloc->output_offset;
4592 if (reloc->output_section != NULL)
4593 addr += reloc->output_section->vma;
4594
4595 size = bfd_get_reloc_size (reloc->howto);
4596
4597 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4598
4599 if (reloc->name != NULL)
4600 minfo ("%s+", reloc->name);
4601 else
4602 minfo ("%s+", reloc->section->name);
4603
4604 exp_print_tree (reloc->addend_exp);
4605
4606 print_nl ();
4607
4608 print_dot = addr + TO_ADDR (size);
4609 }
4610
4611 static void
4612 print_padding_statement (lang_padding_statement_type *s)
4613 {
4614 int len;
4615 bfd_vma addr;
4616
4617 init_opb ();
4618 minfo (" *fill*");
4619
4620 len = sizeof " *fill*" - 1;
4621 while (len < SECTION_NAME_MAP_LENGTH)
4622 {
4623 print_space ();
4624 ++len;
4625 }
4626
4627 addr = s->output_offset;
4628 if (s->output_section != NULL)
4629 addr += s->output_section->vma;
4630 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4631
4632 if (s->fill->size != 0)
4633 {
4634 size_t size;
4635 unsigned char *p;
4636 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4637 fprintf (config.map_file, "%02x", *p);
4638 }
4639
4640 print_nl ();
4641
4642 print_dot = addr + TO_ADDR (s->size);
4643 }
4644
4645 static void
4646 print_wild_statement (lang_wild_statement_type *w,
4647 lang_output_section_statement_type *os)
4648 {
4649 struct wildcard_list *sec;
4650
4651 print_space ();
4652
4653 if (w->exclude_name_list)
4654 {
4655 name_list *tmp;
4656 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4657 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4658 minfo (" %s", tmp->name);
4659 minfo (") ");
4660 }
4661
4662 if (w->filenames_sorted)
4663 minfo ("SORT_BY_NAME(");
4664 if (w->filename != NULL)
4665 minfo ("%s", w->filename);
4666 else
4667 minfo ("*");
4668 if (w->filenames_sorted)
4669 minfo (")");
4670
4671 minfo ("(");
4672 for (sec = w->section_list; sec; sec = sec->next)
4673 {
4674 int closing_paren = 0;
4675
4676 switch (sec->spec.sorted)
4677 {
4678 case none:
4679 break;
4680
4681 case by_name:
4682 minfo ("SORT_BY_NAME(");
4683 closing_paren = 1;
4684 break;
4685
4686 case by_alignment:
4687 minfo ("SORT_BY_ALIGNMENT(");
4688 closing_paren = 1;
4689 break;
4690
4691 case by_name_alignment:
4692 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4693 closing_paren = 2;
4694 break;
4695
4696 case by_alignment_name:
4697 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4698 closing_paren = 2;
4699 break;
4700
4701 case by_none:
4702 minfo ("SORT_NONE(");
4703 closing_paren = 1;
4704 break;
4705
4706 case by_init_priority:
4707 minfo ("SORT_BY_INIT_PRIORITY(");
4708 closing_paren = 1;
4709 break;
4710 }
4711
4712 if (sec->spec.exclude_name_list != NULL)
4713 {
4714 name_list *tmp;
4715 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4716 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4717 minfo (" %s", tmp->name);
4718 minfo (") ");
4719 }
4720 if (sec->spec.name != NULL)
4721 minfo ("%s", sec->spec.name);
4722 else
4723 minfo ("*");
4724 for (;closing_paren > 0; closing_paren--)
4725 minfo (")");
4726 if (sec->next)
4727 minfo (" ");
4728 }
4729 minfo (")");
4730
4731 print_nl ();
4732
4733 print_statement_list (w->children.head, os);
4734 }
4735
4736 /* Print a group statement. */
4737
4738 static void
4739 print_group (lang_group_statement_type *s,
4740 lang_output_section_statement_type *os)
4741 {
4742 fprintf (config.map_file, "START GROUP\n");
4743 print_statement_list (s->children.head, os);
4744 fprintf (config.map_file, "END GROUP\n");
4745 }
4746
4747 /* Print the list of statements in S.
4748 This can be called for any statement type. */
4749
4750 static void
4751 print_statement_list (lang_statement_union_type *s,
4752 lang_output_section_statement_type *os)
4753 {
4754 while (s != NULL)
4755 {
4756 print_statement (s, os);
4757 s = s->header.next;
4758 }
4759 }
4760
4761 /* Print the first statement in statement list S.
4762 This can be called for any statement type. */
4763
4764 static void
4765 print_statement (lang_statement_union_type *s,
4766 lang_output_section_statement_type *os)
4767 {
4768 switch (s->header.type)
4769 {
4770 default:
4771 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4772 FAIL ();
4773 break;
4774 case lang_constructors_statement_enum:
4775 if (constructor_list.head != NULL)
4776 {
4777 if (constructors_sorted)
4778 minfo (" SORT (CONSTRUCTORS)\n");
4779 else
4780 minfo (" CONSTRUCTORS\n");
4781 print_statement_list (constructor_list.head, os);
4782 }
4783 break;
4784 case lang_wild_statement_enum:
4785 print_wild_statement (&s->wild_statement, os);
4786 break;
4787 case lang_address_statement_enum:
4788 print_address_statement (&s->address_statement);
4789 break;
4790 case lang_object_symbols_statement_enum:
4791 minfo (" CREATE_OBJECT_SYMBOLS\n");
4792 break;
4793 case lang_fill_statement_enum:
4794 print_fill_statement (&s->fill_statement);
4795 break;
4796 case lang_data_statement_enum:
4797 print_data_statement (&s->data_statement);
4798 break;
4799 case lang_reloc_statement_enum:
4800 print_reloc_statement (&s->reloc_statement);
4801 break;
4802 case lang_input_section_enum:
4803 print_input_section (s->input_section.section, FALSE);
4804 break;
4805 case lang_padding_statement_enum:
4806 print_padding_statement (&s->padding_statement);
4807 break;
4808 case lang_output_section_statement_enum:
4809 print_output_section_statement (&s->output_section_statement);
4810 break;
4811 case lang_assignment_statement_enum:
4812 print_assignment (&s->assignment_statement, os);
4813 break;
4814 case lang_target_statement_enum:
4815 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4816 break;
4817 case lang_output_statement_enum:
4818 minfo ("OUTPUT(%s", s->output_statement.name);
4819 if (output_target != NULL)
4820 minfo (" %s", output_target);
4821 minfo (")\n");
4822 break;
4823 case lang_input_statement_enum:
4824 print_input_statement (&s->input_statement);
4825 break;
4826 case lang_group_statement_enum:
4827 print_group (&s->group_statement, os);
4828 break;
4829 case lang_insert_statement_enum:
4830 minfo ("INSERT %s %s\n",
4831 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4832 s->insert_statement.where);
4833 break;
4834 }
4835 }
4836
4837 static void
4838 print_statements (void)
4839 {
4840 print_statement_list (statement_list.head, abs_output_section);
4841 }
4842
4843 /* Print the first N statements in statement list S to STDERR.
4844 If N == 0, nothing is printed.
4845 If N < 0, the entire list is printed.
4846 Intended to be called from GDB. */
4847
4848 void
4849 dprint_statement (lang_statement_union_type *s, int n)
4850 {
4851 FILE *map_save = config.map_file;
4852
4853 config.map_file = stderr;
4854
4855 if (n < 0)
4856 print_statement_list (s, abs_output_section);
4857 else
4858 {
4859 while (s && --n >= 0)
4860 {
4861 print_statement (s, abs_output_section);
4862 s = s->header.next;
4863 }
4864 }
4865
4866 config.map_file = map_save;
4867 }
4868
4869 static void
4870 insert_pad (lang_statement_union_type **ptr,
4871 fill_type *fill,
4872 bfd_size_type alignment_needed,
4873 asection *output_section,
4874 bfd_vma dot)
4875 {
4876 static fill_type zero_fill;
4877 lang_statement_union_type *pad = NULL;
4878
4879 if (ptr != &statement_list.head)
4880 pad = ((lang_statement_union_type *)
4881 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4882 if (pad != NULL
4883 && pad->header.type == lang_padding_statement_enum
4884 && pad->padding_statement.output_section == output_section)
4885 {
4886 /* Use the existing pad statement. */
4887 }
4888 else if ((pad = *ptr) != NULL
4889 && pad->header.type == lang_padding_statement_enum
4890 && pad->padding_statement.output_section == output_section)
4891 {
4892 /* Use the existing pad statement. */
4893 }
4894 else
4895 {
4896 /* Make a new padding statement, linked into existing chain. */
4897 pad = (lang_statement_union_type *)
4898 stat_alloc (sizeof (lang_padding_statement_type));
4899 pad->header.next = *ptr;
4900 *ptr = pad;
4901 pad->header.type = lang_padding_statement_enum;
4902 pad->padding_statement.output_section = output_section;
4903 if (fill == NULL)
4904 fill = &zero_fill;
4905 pad->padding_statement.fill = fill;
4906 }
4907 pad->padding_statement.output_offset = dot - output_section->vma;
4908 pad->padding_statement.size = alignment_needed;
4909 if (!(output_section->flags & SEC_FIXED_SIZE))
4910 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4911 - output_section->vma);
4912 }
4913
4914 /* Work out how much this section will move the dot point. */
4915
4916 static bfd_vma
4917 size_input_section
4918 (lang_statement_union_type **this_ptr,
4919 lang_output_section_statement_type *output_section_statement,
4920 fill_type *fill,
4921 bfd_vma dot)
4922 {
4923 lang_input_section_type *is = &((*this_ptr)->input_section);
4924 asection *i = is->section;
4925 asection *o = output_section_statement->bfd_section;
4926
4927 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4928 i->output_offset = i->vma - o->vma;
4929 else if (((i->flags & SEC_EXCLUDE) != 0)
4930 || output_section_statement->ignored)
4931 i->output_offset = dot - o->vma;
4932 else
4933 {
4934 bfd_size_type alignment_needed;
4935
4936 /* Align this section first to the input sections requirement,
4937 then to the output section's requirement. If this alignment
4938 is greater than any seen before, then record it too. Perform
4939 the alignment by inserting a magic 'padding' statement. */
4940
4941 if (output_section_statement->subsection_alignment != NULL)
4942 i->alignment_power
4943 = exp_get_power (output_section_statement->subsection_alignment,
4944 "subsection alignment");
4945
4946 if (o->alignment_power < i->alignment_power)
4947 o->alignment_power = i->alignment_power;
4948
4949 alignment_needed = align_power (dot, i->alignment_power) - dot;
4950
4951 if (alignment_needed != 0)
4952 {
4953 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4954 dot += alignment_needed;
4955 }
4956
4957 /* Remember where in the output section this input section goes. */
4958 i->output_offset = dot - o->vma;
4959
4960 /* Mark how big the output section must be to contain this now. */
4961 dot += TO_ADDR (i->size);
4962 if (!(o->flags & SEC_FIXED_SIZE))
4963 o->size = TO_SIZE (dot - o->vma);
4964 }
4965
4966 return dot;
4967 }
4968
4969 struct check_sec
4970 {
4971 asection *sec;
4972 bfd_boolean warned;
4973 };
4974
4975 static int
4976 sort_sections_by_lma (const void *arg1, const void *arg2)
4977 {
4978 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4979 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4980
4981 if (sec1->lma < sec2->lma)
4982 return -1;
4983 else if (sec1->lma > sec2->lma)
4984 return 1;
4985 else if (sec1->id < sec2->id)
4986 return -1;
4987 else if (sec1->id > sec2->id)
4988 return 1;
4989
4990 return 0;
4991 }
4992
4993 static int
4994 sort_sections_by_vma (const void *arg1, const void *arg2)
4995 {
4996 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4997 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4998
4999 if (sec1->vma < sec2->vma)
5000 return -1;
5001 else if (sec1->vma > sec2->vma)
5002 return 1;
5003 else if (sec1->id < sec2->id)
5004 return -1;
5005 else if (sec1->id > sec2->id)
5006 return 1;
5007
5008 return 0;
5009 }
5010
5011 #define IS_TBSS(s) \
5012 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5013
5014 #define IGNORE_SECTION(s) \
5015 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5016
5017 /* Check to see if any allocated sections overlap with other allocated
5018 sections. This can happen if a linker script specifies the output
5019 section addresses of the two sections. Also check whether any memory
5020 region has overflowed. */
5021
5022 static void
5023 lang_check_section_addresses (void)
5024 {
5025 asection *s, *p;
5026 struct check_sec *sections;
5027 size_t i, count;
5028 bfd_vma addr_mask;
5029 bfd_vma s_start;
5030 bfd_vma s_end;
5031 bfd_vma p_start = 0;
5032 bfd_vma p_end = 0;
5033 lang_memory_region_type *m;
5034 bfd_boolean overlays;
5035
5036 /* Detect address space overflow on allocated sections. */
5037 addr_mask = ((bfd_vma) 1 <<
5038 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5039 addr_mask = (addr_mask << 1) + 1;
5040 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5041 if ((s->flags & SEC_ALLOC) != 0)
5042 {
5043 s_end = (s->vma + s->size) & addr_mask;
5044 if (s_end != 0 && s_end < (s->vma & addr_mask))
5045 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5046 s->name);
5047 else
5048 {
5049 s_end = (s->lma + s->size) & addr_mask;
5050 if (s_end != 0 && s_end < (s->lma & addr_mask))
5051 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5052 s->name);
5053 }
5054 }
5055
5056 if (bfd_count_sections (link_info.output_bfd) <= 1)
5057 return;
5058
5059 count = bfd_count_sections (link_info.output_bfd);
5060 sections = XNEWVEC (struct check_sec, count);
5061
5062 /* Scan all sections in the output list. */
5063 count = 0;
5064 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5065 {
5066 if (IGNORE_SECTION (s)
5067 || s->size == 0)
5068 continue;
5069
5070 sections[count].sec = s;
5071 sections[count].warned = FALSE;
5072 count++;
5073 }
5074
5075 if (count <= 1)
5076 {
5077 free (sections);
5078 return;
5079 }
5080
5081 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5082
5083 /* First check section LMAs. There should be no overlap of LMAs on
5084 loadable sections, even with overlays. */
5085 for (p = NULL, i = 0; i < count; i++)
5086 {
5087 s = sections[i].sec;
5088 if ((s->flags & SEC_LOAD) != 0)
5089 {
5090 s_start = s->lma;
5091 s_end = s_start + TO_ADDR (s->size) - 1;
5092
5093 /* Look for an overlap. We have sorted sections by lma, so
5094 we know that s_start >= p_start. Besides the obvious
5095 case of overlap when the current section starts before
5096 the previous one ends, we also must have overlap if the
5097 previous section wraps around the address space. */
5098 if (p != NULL
5099 && (s_start <= p_end
5100 || p_end < p_start))
5101 {
5102 einfo (_("%X%P: section %s LMA [%V,%V]"
5103 " overlaps section %s LMA [%V,%V]\n"),
5104 s->name, s_start, s_end, p->name, p_start, p_end);
5105 sections[i].warned = TRUE;
5106 }
5107 p = s;
5108 p_start = s_start;
5109 p_end = s_end;
5110 }
5111 }
5112
5113 /* If any non-zero size allocated section (excluding tbss) starts at
5114 exactly the same VMA as another such section, then we have
5115 overlays. Overlays generated by the OVERLAY keyword will have
5116 this property. It is possible to intentionally generate overlays
5117 that fail this test, but it would be unusual. */
5118 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5119 overlays = FALSE;
5120 p_start = sections[0].sec->vma;
5121 for (i = 1; i < count; i++)
5122 {
5123 s_start = sections[i].sec->vma;
5124 if (p_start == s_start)
5125 {
5126 overlays = TRUE;
5127 break;
5128 }
5129 p_start = s_start;
5130 }
5131
5132 /* Now check section VMAs if no overlays were detected. */
5133 if (!overlays)
5134 {
5135 for (p = NULL, i = 0; i < count; i++)
5136 {
5137 s = sections[i].sec;
5138 s_start = s->vma;
5139 s_end = s_start + TO_ADDR (s->size) - 1;
5140
5141 if (p != NULL
5142 && !sections[i].warned
5143 && (s_start <= p_end
5144 || p_end < p_start))
5145 einfo (_("%X%P: section %s VMA [%V,%V]"
5146 " overlaps section %s VMA [%V,%V]\n"),
5147 s->name, s_start, s_end, p->name, p_start, p_end);
5148 p = s;
5149 p_start = s_start;
5150 p_end = s_end;
5151 }
5152 }
5153
5154 free (sections);
5155
5156 /* If any memory region has overflowed, report by how much.
5157 We do not issue this diagnostic for regions that had sections
5158 explicitly placed outside their bounds; os_region_check's
5159 diagnostics are adequate for that case.
5160
5161 FIXME: It is conceivable that m->current - (m->origin + m->length)
5162 might overflow a 32-bit integer. There is, alas, no way to print
5163 a bfd_vma quantity in decimal. */
5164 for (m = lang_memory_region_list; m; m = m->next)
5165 if (m->had_full_message)
5166 {
5167 unsigned long over = m->current - (m->origin + m->length);
5168 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5169 "%X%P: region `%s' overflowed by %lu bytes\n",
5170 over),
5171 m->name_list.name, over);
5172 }
5173 }
5174
5175 /* Make sure the new address is within the region. We explicitly permit the
5176 current address to be at the exact end of the region when the address is
5177 non-zero, in case the region is at the end of addressable memory and the
5178 calculation wraps around. */
5179
5180 static void
5181 os_region_check (lang_output_section_statement_type *os,
5182 lang_memory_region_type *region,
5183 etree_type *tree,
5184 bfd_vma rbase)
5185 {
5186 if ((region->current < region->origin
5187 || (region->current - region->origin > region->length))
5188 && ((region->current != region->origin + region->length)
5189 || rbase == 0))
5190 {
5191 if (tree != NULL)
5192 {
5193 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5194 " is not within region `%s'\n"),
5195 region->current,
5196 os->bfd_section->owner,
5197 os->bfd_section->name,
5198 region->name_list.name);
5199 }
5200 else if (!region->had_full_message)
5201 {
5202 region->had_full_message = TRUE;
5203
5204 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5205 os->bfd_section->owner,
5206 os->bfd_section->name,
5207 region->name_list.name);
5208 }
5209 }
5210 }
5211
5212 static void
5213 ldlang_check_relro_region (lang_statement_union_type *s,
5214 seg_align_type *seg)
5215 {
5216 if (seg->relro == exp_seg_relro_start)
5217 {
5218 if (!seg->relro_start_stat)
5219 seg->relro_start_stat = s;
5220 else
5221 {
5222 ASSERT (seg->relro_start_stat == s);
5223 }
5224 }
5225 else if (seg->relro == exp_seg_relro_end)
5226 {
5227 if (!seg->relro_end_stat)
5228 seg->relro_end_stat = s;
5229 else
5230 {
5231 ASSERT (seg->relro_end_stat == s);
5232 }
5233 }
5234 }
5235
5236 /* Set the sizes for all the output sections. */
5237
5238 static bfd_vma
5239 lang_size_sections_1
5240 (lang_statement_union_type **prev,
5241 lang_output_section_statement_type *output_section_statement,
5242 fill_type *fill,
5243 bfd_vma dot,
5244 bfd_boolean *relax,
5245 bfd_boolean check_regions)
5246 {
5247 lang_statement_union_type *s;
5248
5249 /* Size up the sections from their constituent parts. */
5250 for (s = *prev; s != NULL; s = s->header.next)
5251 {
5252 switch (s->header.type)
5253 {
5254 case lang_output_section_statement_enum:
5255 {
5256 bfd_vma newdot, after, dotdelta;
5257 lang_output_section_statement_type *os;
5258 lang_memory_region_type *r;
5259 int section_alignment = 0;
5260
5261 os = &s->output_section_statement;
5262 if (os->constraint == -1)
5263 break;
5264
5265 /* FIXME: We shouldn't need to zero section vmas for ld -r
5266 here, in lang_insert_orphan, or in the default linker scripts.
5267 This is covering for coff backend linker bugs. See PR6945. */
5268 if (os->addr_tree == NULL
5269 && bfd_link_relocatable (&link_info)
5270 && (bfd_get_flavour (link_info.output_bfd)
5271 == bfd_target_coff_flavour))
5272 os->addr_tree = exp_intop (0);
5273 if (os->addr_tree != NULL)
5274 {
5275 os->processed_vma = FALSE;
5276 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5277
5278 if (expld.result.valid_p)
5279 {
5280 dot = expld.result.value;
5281 if (expld.result.section != NULL)
5282 dot += expld.result.section->vma;
5283 }
5284 else if (expld.phase != lang_mark_phase_enum)
5285 einfo (_("%F%P:%pS: non constant or forward reference"
5286 " address expression for section %s\n"),
5287 os->addr_tree, os->name);
5288 }
5289
5290 if (os->bfd_section == NULL)
5291 /* This section was removed or never actually created. */
5292 break;
5293
5294 /* If this is a COFF shared library section, use the size and
5295 address from the input section. FIXME: This is COFF
5296 specific; it would be cleaner if there were some other way
5297 to do this, but nothing simple comes to mind. */
5298 if (((bfd_get_flavour (link_info.output_bfd)
5299 == bfd_target_ecoff_flavour)
5300 || (bfd_get_flavour (link_info.output_bfd)
5301 == bfd_target_coff_flavour))
5302 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5303 {
5304 asection *input;
5305
5306 if (os->children.head == NULL
5307 || os->children.head->header.next != NULL
5308 || (os->children.head->header.type
5309 != lang_input_section_enum))
5310 einfo (_("%X%P: internal error on COFF shared library"
5311 " section %s\n"), os->name);
5312
5313 input = os->children.head->input_section.section;
5314 bfd_set_section_vma (os->bfd_section->owner,
5315 os->bfd_section,
5316 bfd_section_vma (input->owner, input));
5317 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5318 os->bfd_section->size = input->size;
5319 break;
5320 }
5321
5322 newdot = dot;
5323 dotdelta = 0;
5324 if (bfd_is_abs_section (os->bfd_section))
5325 {
5326 /* No matter what happens, an abs section starts at zero. */
5327 ASSERT (os->bfd_section->vma == 0);
5328 }
5329 else
5330 {
5331 if (os->addr_tree == NULL)
5332 {
5333 /* No address specified for this section, get one
5334 from the region specification. */
5335 if (os->region == NULL
5336 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5337 && os->region->name_list.name[0] == '*'
5338 && strcmp (os->region->name_list.name,
5339 DEFAULT_MEMORY_REGION) == 0))
5340 {
5341 os->region = lang_memory_default (os->bfd_section);
5342 }
5343
5344 /* If a loadable section is using the default memory
5345 region, and some non default memory regions were
5346 defined, issue an error message. */
5347 if (!os->ignored
5348 && !IGNORE_SECTION (os->bfd_section)
5349 && !bfd_link_relocatable (&link_info)
5350 && check_regions
5351 && strcmp (os->region->name_list.name,
5352 DEFAULT_MEMORY_REGION) == 0
5353 && lang_memory_region_list != NULL
5354 && (strcmp (lang_memory_region_list->name_list.name,
5355 DEFAULT_MEMORY_REGION) != 0
5356 || lang_memory_region_list->next != NULL)
5357 && expld.phase != lang_mark_phase_enum)
5358 {
5359 /* By default this is an error rather than just a
5360 warning because if we allocate the section to the
5361 default memory region we can end up creating an
5362 excessively large binary, or even seg faulting when
5363 attempting to perform a negative seek. See
5364 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5365 for an example of this. This behaviour can be
5366 overridden by the using the --no-check-sections
5367 switch. */
5368 if (command_line.check_section_addresses)
5369 einfo (_("%F%P: error: no memory region specified"
5370 " for loadable section `%s'\n"),
5371 bfd_get_section_name (link_info.output_bfd,
5372 os->bfd_section));
5373 else
5374 einfo (_("%P: warning: no memory region specified"
5375 " for loadable section `%s'\n"),
5376 bfd_get_section_name (link_info.output_bfd,
5377 os->bfd_section));
5378 }
5379
5380 newdot = os->region->current;
5381 section_alignment = os->bfd_section->alignment_power;
5382 }
5383 else
5384 section_alignment = exp_get_power (os->section_alignment,
5385 "section alignment");
5386
5387 /* Align to what the section needs. */
5388 if (section_alignment > 0)
5389 {
5390 bfd_vma savedot = newdot;
5391 newdot = align_power (newdot, section_alignment);
5392
5393 dotdelta = newdot - savedot;
5394 if (dotdelta != 0
5395 && (config.warn_section_align
5396 || os->addr_tree != NULL)
5397 && expld.phase != lang_mark_phase_enum)
5398 einfo (ngettext ("%P: warning: changing start of "
5399 "section %s by %lu byte\n",
5400 "%P: warning: changing start of "
5401 "section %s by %lu bytes\n",
5402 (unsigned long) dotdelta),
5403 os->name, (unsigned long) dotdelta);
5404 }
5405
5406 bfd_set_section_vma (0, os->bfd_section, newdot);
5407
5408 os->bfd_section->output_offset = 0;
5409 }
5410
5411 lang_size_sections_1 (&os->children.head, os,
5412 os->fill, newdot, relax, check_regions);
5413
5414 os->processed_vma = TRUE;
5415
5416 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5417 /* Except for some special linker created sections,
5418 no output section should change from zero size
5419 after strip_excluded_output_sections. A non-zero
5420 size on an ignored section indicates that some
5421 input section was not sized early enough. */
5422 ASSERT (os->bfd_section->size == 0);
5423 else
5424 {
5425 dot = os->bfd_section->vma;
5426
5427 /* Put the section within the requested block size, or
5428 align at the block boundary. */
5429 after = ((dot
5430 + TO_ADDR (os->bfd_section->size)
5431 + os->block_value - 1)
5432 & - (bfd_vma) os->block_value);
5433
5434 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5435 os->bfd_section->size = TO_SIZE (after
5436 - os->bfd_section->vma);
5437 }
5438
5439 /* Set section lma. */
5440 r = os->region;
5441 if (r == NULL)
5442 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5443
5444 if (os->load_base)
5445 {
5446 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5447 os->bfd_section->lma = lma;
5448 }
5449 else if (os->lma_region != NULL)
5450 {
5451 bfd_vma lma = os->lma_region->current;
5452
5453 if (os->align_lma_with_input)
5454 lma += dotdelta;
5455 else
5456 {
5457 /* When LMA_REGION is the same as REGION, align the LMA
5458 as we did for the VMA, possibly including alignment
5459 from the bfd section. If a different region, then
5460 only align according to the value in the output
5461 statement. */
5462 if (os->lma_region != os->region)
5463 section_alignment = exp_get_power (os->section_alignment,
5464 "section alignment");
5465 if (section_alignment > 0)
5466 lma = align_power (lma, section_alignment);
5467 }
5468 os->bfd_section->lma = lma;
5469 }
5470 else if (r->last_os != NULL
5471 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5472 {
5473 bfd_vma lma;
5474 asection *last;
5475
5476 last = r->last_os->output_section_statement.bfd_section;
5477
5478 /* A backwards move of dot should be accompanied by
5479 an explicit assignment to the section LMA (ie.
5480 os->load_base set) because backwards moves can
5481 create overlapping LMAs. */
5482 if (dot < last->vma
5483 && os->bfd_section->size != 0
5484 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5485 {
5486 /* If dot moved backwards then leave lma equal to
5487 vma. This is the old default lma, which might
5488 just happen to work when the backwards move is
5489 sufficiently large. Nag if this changes anything,
5490 so people can fix their linker scripts. */
5491
5492 if (last->vma != last->lma)
5493 einfo (_("%P: warning: dot moved backwards "
5494 "before `%s'\n"), os->name);
5495 }
5496 else
5497 {
5498 /* If this is an overlay, set the current lma to that
5499 at the end of the previous section. */
5500 if (os->sectype == overlay_section)
5501 lma = last->lma + TO_ADDR (last->size);
5502
5503 /* Otherwise, keep the same lma to vma relationship
5504 as the previous section. */
5505 else
5506 lma = dot + last->lma - last->vma;
5507
5508 if (section_alignment > 0)
5509 lma = align_power (lma, section_alignment);
5510 os->bfd_section->lma = lma;
5511 }
5512 }
5513 os->processed_lma = TRUE;
5514
5515 /* Keep track of normal sections using the default
5516 lma region. We use this to set the lma for
5517 following sections. Overlays or other linker
5518 script assignment to lma might mean that the
5519 default lma == vma is incorrect.
5520 To avoid warnings about dot moving backwards when using
5521 -Ttext, don't start tracking sections until we find one
5522 of non-zero size or with lma set differently to vma.
5523 Do this tracking before we short-cut the loop so that we
5524 track changes for the case where the section size is zero,
5525 but the lma is set differently to the vma. This is
5526 important, if an orphan section is placed after an
5527 otherwise empty output section that has an explicit lma
5528 set, we want that lma reflected in the orphans lma. */
5529 if (((!IGNORE_SECTION (os->bfd_section)
5530 && (os->bfd_section->size != 0
5531 || (r->last_os == NULL
5532 && os->bfd_section->vma != os->bfd_section->lma)
5533 || (r->last_os != NULL
5534 && dot >= (r->last_os->output_section_statement
5535 .bfd_section->vma))))
5536 || os->sectype == first_overlay_section)
5537 && os->lma_region == NULL
5538 && !bfd_link_relocatable (&link_info))
5539 r->last_os = s;
5540
5541 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5542 break;
5543
5544 /* .tbss sections effectively have zero size. */
5545 if (!IS_TBSS (os->bfd_section)
5546 || bfd_link_relocatable (&link_info))
5547 dotdelta = TO_ADDR (os->bfd_section->size);
5548 else
5549 dotdelta = 0;
5550 dot += dotdelta;
5551
5552 if (os->update_dot_tree != 0)
5553 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5554
5555 /* Update dot in the region ?
5556 We only do this if the section is going to be allocated,
5557 since unallocated sections do not contribute to the region's
5558 overall size in memory. */
5559 if (os->region != NULL
5560 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5561 {
5562 os->region->current = dot;
5563
5564 if (check_regions)
5565 /* Make sure the new address is within the region. */
5566 os_region_check (os, os->region, os->addr_tree,
5567 os->bfd_section->vma);
5568
5569 if (os->lma_region != NULL && os->lma_region != os->region
5570 && ((os->bfd_section->flags & SEC_LOAD)
5571 || os->align_lma_with_input))
5572 {
5573 os->lma_region->current = os->bfd_section->lma + dotdelta;
5574
5575 if (check_regions)
5576 os_region_check (os, os->lma_region, NULL,
5577 os->bfd_section->lma);
5578 }
5579 }
5580 }
5581 break;
5582
5583 case lang_constructors_statement_enum:
5584 dot = lang_size_sections_1 (&constructor_list.head,
5585 output_section_statement,
5586 fill, dot, relax, check_regions);
5587 break;
5588
5589 case lang_data_statement_enum:
5590 {
5591 unsigned int size = 0;
5592
5593 s->data_statement.output_offset =
5594 dot - output_section_statement->bfd_section->vma;
5595 s->data_statement.output_section =
5596 output_section_statement->bfd_section;
5597
5598 /* We might refer to provided symbols in the expression, and
5599 need to mark them as needed. */
5600 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5601
5602 switch (s->data_statement.type)
5603 {
5604 default:
5605 abort ();
5606 case QUAD:
5607 case SQUAD:
5608 size = QUAD_SIZE;
5609 break;
5610 case LONG:
5611 size = LONG_SIZE;
5612 break;
5613 case SHORT:
5614 size = SHORT_SIZE;
5615 break;
5616 case BYTE:
5617 size = BYTE_SIZE;
5618 break;
5619 }
5620 if (size < TO_SIZE ((unsigned) 1))
5621 size = TO_SIZE ((unsigned) 1);
5622 dot += TO_ADDR (size);
5623 if (!(output_section_statement->bfd_section->flags
5624 & SEC_FIXED_SIZE))
5625 output_section_statement->bfd_section->size
5626 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5627
5628 }
5629 break;
5630
5631 case lang_reloc_statement_enum:
5632 {
5633 int size;
5634
5635 s->reloc_statement.output_offset =
5636 dot - output_section_statement->bfd_section->vma;
5637 s->reloc_statement.output_section =
5638 output_section_statement->bfd_section;
5639 size = bfd_get_reloc_size (s->reloc_statement.howto);
5640 dot += TO_ADDR (size);
5641 if (!(output_section_statement->bfd_section->flags
5642 & SEC_FIXED_SIZE))
5643 output_section_statement->bfd_section->size
5644 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5645 }
5646 break;
5647
5648 case lang_wild_statement_enum:
5649 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5650 output_section_statement,
5651 fill, dot, relax, check_regions);
5652 break;
5653
5654 case lang_object_symbols_statement_enum:
5655 link_info.create_object_symbols_section
5656 = output_section_statement->bfd_section;
5657 output_section_statement->bfd_section->flags |= SEC_KEEP;
5658 break;
5659
5660 case lang_output_statement_enum:
5661 case lang_target_statement_enum:
5662 break;
5663
5664 case lang_input_section_enum:
5665 {
5666 asection *i;
5667
5668 i = s->input_section.section;
5669 if (relax)
5670 {
5671 bfd_boolean again;
5672
5673 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5674 einfo (_("%F%P: can't relax section: %E\n"));
5675 if (again)
5676 *relax = TRUE;
5677 }
5678 dot = size_input_section (prev, output_section_statement,
5679 fill, dot);
5680 }
5681 break;
5682
5683 case lang_input_statement_enum:
5684 break;
5685
5686 case lang_fill_statement_enum:
5687 s->fill_statement.output_section =
5688 output_section_statement->bfd_section;
5689
5690 fill = s->fill_statement.fill;
5691 break;
5692
5693 case lang_assignment_statement_enum:
5694 {
5695 bfd_vma newdot = dot;
5696 etree_type *tree = s->assignment_statement.exp;
5697
5698 expld.dataseg.relro = exp_seg_relro_none;
5699
5700 exp_fold_tree (tree,
5701 output_section_statement->bfd_section,
5702 &newdot);
5703
5704 ldlang_check_relro_region (s, &expld.dataseg);
5705
5706 expld.dataseg.relro = exp_seg_relro_none;
5707
5708 /* This symbol may be relative to this section. */
5709 if ((tree->type.node_class == etree_provided
5710 || tree->type.node_class == etree_assign)
5711 && (tree->assign.dst [0] != '.'
5712 || tree->assign.dst [1] != '\0'))
5713 output_section_statement->update_dot = 1;
5714
5715 if (!output_section_statement->ignored)
5716 {
5717 if (output_section_statement == abs_output_section)
5718 {
5719 /* If we don't have an output section, then just adjust
5720 the default memory address. */
5721 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5722 FALSE)->current = newdot;
5723 }
5724 else if (newdot != dot)
5725 {
5726 /* Insert a pad after this statement. We can't
5727 put the pad before when relaxing, in case the
5728 assignment references dot. */
5729 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5730 output_section_statement->bfd_section, dot);
5731
5732 /* Don't neuter the pad below when relaxing. */
5733 s = s->header.next;
5734
5735 /* If dot is advanced, this implies that the section
5736 should have space allocated to it, unless the
5737 user has explicitly stated that the section
5738 should not be allocated. */
5739 if (output_section_statement->sectype != noalloc_section
5740 && (output_section_statement->sectype != noload_section
5741 || (bfd_get_flavour (link_info.output_bfd)
5742 == bfd_target_elf_flavour)))
5743 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5744 }
5745 dot = newdot;
5746 }
5747 }
5748 break;
5749
5750 case lang_padding_statement_enum:
5751 /* If this is the first time lang_size_sections is called,
5752 we won't have any padding statements. If this is the
5753 second or later passes when relaxing, we should allow
5754 padding to shrink. If padding is needed on this pass, it
5755 will be added back in. */
5756 s->padding_statement.size = 0;
5757
5758 /* Make sure output_offset is valid. If relaxation shrinks
5759 the section and this pad isn't needed, it's possible to
5760 have output_offset larger than the final size of the
5761 section. bfd_set_section_contents will complain even for
5762 a pad size of zero. */
5763 s->padding_statement.output_offset
5764 = dot - output_section_statement->bfd_section->vma;
5765 break;
5766
5767 case lang_group_statement_enum:
5768 dot = lang_size_sections_1 (&s->group_statement.children.head,
5769 output_section_statement,
5770 fill, dot, relax, check_regions);
5771 break;
5772
5773 case lang_insert_statement_enum:
5774 break;
5775
5776 /* We can only get here when relaxing is turned on. */
5777 case lang_address_statement_enum:
5778 break;
5779
5780 default:
5781 FAIL ();
5782 break;
5783 }
5784 prev = &s->header.next;
5785 }
5786 return dot;
5787 }
5788
5789 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5790 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5791 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5792 segments. We are allowed an opportunity to override this decision. */
5793
5794 bfd_boolean
5795 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5796 bfd *abfd ATTRIBUTE_UNUSED,
5797 asection *current_section,
5798 asection *previous_section,
5799 bfd_boolean new_segment)
5800 {
5801 lang_output_section_statement_type *cur;
5802 lang_output_section_statement_type *prev;
5803
5804 /* The checks below are only necessary when the BFD library has decided
5805 that the two sections ought to be placed into the same segment. */
5806 if (new_segment)
5807 return TRUE;
5808
5809 /* Paranoia checks. */
5810 if (current_section == NULL || previous_section == NULL)
5811 return new_segment;
5812
5813 /* If this flag is set, the target never wants code and non-code
5814 sections comingled in the same segment. */
5815 if (config.separate_code
5816 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5817 return TRUE;
5818
5819 /* Find the memory regions associated with the two sections.
5820 We call lang_output_section_find() here rather than scanning the list
5821 of output sections looking for a matching section pointer because if
5822 we have a large number of sections then a hash lookup is faster. */
5823 cur = lang_output_section_find (current_section->name);
5824 prev = lang_output_section_find (previous_section->name);
5825
5826 /* More paranoia. */
5827 if (cur == NULL || prev == NULL)
5828 return new_segment;
5829
5830 /* If the regions are different then force the sections to live in
5831 different segments. See the email thread starting at the following
5832 URL for the reasons why this is necessary:
5833 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5834 return cur->region != prev->region;
5835 }
5836
5837 void
5838 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5839 {
5840 lang_statement_iteration++;
5841 lang_size_sections_1 (&statement_list.head, abs_output_section,
5842 0, 0, relax, check_regions);
5843 }
5844
5845 static bfd_boolean
5846 lang_size_segment (seg_align_type *seg)
5847 {
5848 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
5849 a page could be saved in the data segment. */
5850 bfd_vma first, last;
5851
5852 first = -seg->base & (seg->pagesize - 1);
5853 last = seg->end & (seg->pagesize - 1);
5854 if (first && last
5855 && ((seg->base & ~(seg->pagesize - 1))
5856 != (seg->end & ~(seg->pagesize - 1)))
5857 && first + last <= seg->pagesize)
5858 {
5859 seg->phase = exp_seg_adjust;
5860 return TRUE;
5861 }
5862
5863 seg->phase = exp_seg_done;
5864 return FALSE;
5865 }
5866
5867 static bfd_vma
5868 lang_size_relro_segment_1 (seg_align_type *seg)
5869 {
5870 bfd_vma relro_end, desired_end;
5871 asection *sec;
5872
5873 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
5874 relro_end = ((seg->relro_end + seg->pagesize - 1)
5875 & ~(seg->pagesize - 1));
5876
5877 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
5878 desired_end = relro_end - seg->relro_offset;
5879
5880 /* For sections in the relro segment.. */
5881 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5882 if ((sec->flags & SEC_ALLOC) != 0
5883 && sec->vma >= seg->base
5884 && sec->vma < seg->relro_end - seg->relro_offset)
5885 {
5886 /* Where do we want to put this section so that it ends as
5887 desired? */
5888 bfd_vma start, end, bump;
5889
5890 end = start = sec->vma;
5891 if (!IS_TBSS (sec))
5892 end += TO_ADDR (sec->size);
5893 bump = desired_end - end;
5894 /* We'd like to increase START by BUMP, but we must heed
5895 alignment so the increase might be less than optimum. */
5896 start += bump;
5897 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5898 /* This is now the desired end for the previous section. */
5899 desired_end = start;
5900 }
5901
5902 seg->phase = exp_seg_relro_adjust;
5903 ASSERT (desired_end >= seg->base);
5904 seg->base = desired_end;
5905 return relro_end;
5906 }
5907
5908 static bfd_boolean
5909 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
5910 {
5911 bfd_boolean do_reset = FALSE;
5912 bfd_boolean do_data_relro;
5913 bfd_vma data_initial_base, data_relro_end;
5914
5915 if (link_info.relro && expld.dataseg.relro_end)
5916 {
5917 do_data_relro = TRUE;
5918 data_initial_base = expld.dataseg.base;
5919 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
5920 }
5921 else
5922 {
5923 do_data_relro = FALSE;
5924 data_initial_base = data_relro_end = 0;
5925 }
5926
5927 if (do_data_relro)
5928 {
5929 lang_reset_memory_regions ();
5930 one_lang_size_sections_pass (relax, check_regions);
5931
5932 /* Assignments to dot, or to output section address in a user
5933 script have increased padding over the original. Revert. */
5934 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
5935 {
5936 expld.dataseg.base = data_initial_base;;
5937 do_reset = TRUE;
5938 }
5939 }
5940
5941 if (!do_data_relro && lang_size_segment (&expld.dataseg))
5942 do_reset = TRUE;
5943
5944 return do_reset;
5945 }
5946
5947 void
5948 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5949 {
5950 expld.phase = lang_allocating_phase_enum;
5951 expld.dataseg.phase = exp_seg_none;
5952
5953 one_lang_size_sections_pass (relax, check_regions);
5954
5955 if (expld.dataseg.phase != exp_seg_end_seen)
5956 expld.dataseg.phase = exp_seg_done;
5957
5958 if (expld.dataseg.phase == exp_seg_end_seen)
5959 {
5960 bfd_boolean do_reset
5961 = lang_size_relro_segment (relax, check_regions);
5962
5963 if (do_reset)
5964 {
5965 lang_reset_memory_regions ();
5966 one_lang_size_sections_pass (relax, check_regions);
5967 }
5968
5969 if (link_info.relro && expld.dataseg.relro_end)
5970 {
5971 link_info.relro_start = expld.dataseg.base;
5972 link_info.relro_end = expld.dataseg.relro_end;
5973 }
5974 }
5975 }
5976
5977 static lang_output_section_statement_type *current_section;
5978 static lang_assignment_statement_type *current_assign;
5979 static bfd_boolean prefer_next_section;
5980
5981 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5982
5983 static bfd_vma
5984 lang_do_assignments_1 (lang_statement_union_type *s,
5985 lang_output_section_statement_type *current_os,
5986 fill_type *fill,
5987 bfd_vma dot,
5988 bfd_boolean *found_end)
5989 {
5990 for (; s != NULL; s = s->header.next)
5991 {
5992 switch (s->header.type)
5993 {
5994 case lang_constructors_statement_enum:
5995 dot = lang_do_assignments_1 (constructor_list.head,
5996 current_os, fill, dot, found_end);
5997 break;
5998
5999 case lang_output_section_statement_enum:
6000 {
6001 lang_output_section_statement_type *os;
6002 bfd_vma newdot;
6003
6004 os = &(s->output_section_statement);
6005 os->after_end = *found_end;
6006 if (os->bfd_section != NULL && !os->ignored)
6007 {
6008 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6009 {
6010 current_section = os;
6011 prefer_next_section = FALSE;
6012 }
6013 dot = os->bfd_section->vma;
6014 }
6015 newdot = lang_do_assignments_1 (os->children.head,
6016 os, os->fill, dot, found_end);
6017 if (!os->ignored)
6018 {
6019 if (os->bfd_section != NULL)
6020 {
6021 /* .tbss sections effectively have zero size. */
6022 if (!IS_TBSS (os->bfd_section)
6023 || bfd_link_relocatable (&link_info))
6024 dot += TO_ADDR (os->bfd_section->size);
6025
6026 if (os->update_dot_tree != NULL)
6027 exp_fold_tree (os->update_dot_tree,
6028 bfd_abs_section_ptr, &dot);
6029 }
6030 else
6031 dot = newdot;
6032 }
6033 }
6034 break;
6035
6036 case lang_wild_statement_enum:
6037
6038 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6039 current_os, fill, dot, found_end);
6040 break;
6041
6042 case lang_object_symbols_statement_enum:
6043 case lang_output_statement_enum:
6044 case lang_target_statement_enum:
6045 break;
6046
6047 case lang_data_statement_enum:
6048 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6049 if (expld.result.valid_p)
6050 {
6051 s->data_statement.value = expld.result.value;
6052 if (expld.result.section != NULL)
6053 s->data_statement.value += expld.result.section->vma;
6054 }
6055 else if (expld.phase == lang_final_phase_enum)
6056 einfo (_("%F%P: invalid data statement\n"));
6057 {
6058 unsigned int size;
6059 switch (s->data_statement.type)
6060 {
6061 default:
6062 abort ();
6063 case QUAD:
6064 case SQUAD:
6065 size = QUAD_SIZE;
6066 break;
6067 case LONG:
6068 size = LONG_SIZE;
6069 break;
6070 case SHORT:
6071 size = SHORT_SIZE;
6072 break;
6073 case BYTE:
6074 size = BYTE_SIZE;
6075 break;
6076 }
6077 if (size < TO_SIZE ((unsigned) 1))
6078 size = TO_SIZE ((unsigned) 1);
6079 dot += TO_ADDR (size);
6080 }
6081 break;
6082
6083 case lang_reloc_statement_enum:
6084 exp_fold_tree (s->reloc_statement.addend_exp,
6085 bfd_abs_section_ptr, &dot);
6086 if (expld.result.valid_p)
6087 s->reloc_statement.addend_value = expld.result.value;
6088 else if (expld.phase == lang_final_phase_enum)
6089 einfo (_("%F%P: invalid reloc statement\n"));
6090 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6091 break;
6092
6093 case lang_input_section_enum:
6094 {
6095 asection *in = s->input_section.section;
6096
6097 if ((in->flags & SEC_EXCLUDE) == 0)
6098 dot += TO_ADDR (in->size);
6099 }
6100 break;
6101
6102 case lang_input_statement_enum:
6103 break;
6104
6105 case lang_fill_statement_enum:
6106 fill = s->fill_statement.fill;
6107 break;
6108
6109 case lang_assignment_statement_enum:
6110 current_assign = &s->assignment_statement;
6111 if (current_assign->exp->type.node_class != etree_assert)
6112 {
6113 const char *p = current_assign->exp->assign.dst;
6114
6115 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6116 prefer_next_section = TRUE;
6117
6118 while (*p == '_')
6119 ++p;
6120 if (strcmp (p, "end") == 0)
6121 *found_end = TRUE;
6122 }
6123 exp_fold_tree (s->assignment_statement.exp,
6124 (current_os->bfd_section != NULL
6125 ? current_os->bfd_section : bfd_und_section_ptr),
6126 &dot);
6127 break;
6128
6129 case lang_padding_statement_enum:
6130 dot += TO_ADDR (s->padding_statement.size);
6131 break;
6132
6133 case lang_group_statement_enum:
6134 dot = lang_do_assignments_1 (s->group_statement.children.head,
6135 current_os, fill, dot, found_end);
6136 break;
6137
6138 case lang_insert_statement_enum:
6139 break;
6140
6141 case lang_address_statement_enum:
6142 break;
6143
6144 default:
6145 FAIL ();
6146 break;
6147 }
6148 }
6149 return dot;
6150 }
6151
6152 void
6153 lang_do_assignments (lang_phase_type phase)
6154 {
6155 bfd_boolean found_end = FALSE;
6156
6157 current_section = NULL;
6158 prefer_next_section = FALSE;
6159 expld.phase = phase;
6160 lang_statement_iteration++;
6161 lang_do_assignments_1 (statement_list.head,
6162 abs_output_section, NULL, 0, &found_end);
6163 }
6164
6165 /* For an assignment statement outside of an output section statement,
6166 choose the best of neighbouring output sections to use for values
6167 of "dot". */
6168
6169 asection *
6170 section_for_dot (void)
6171 {
6172 asection *s;
6173
6174 /* Assignments belong to the previous output section, unless there
6175 has been an assignment to "dot", in which case following
6176 assignments belong to the next output section. (The assumption
6177 is that an assignment to "dot" is setting up the address for the
6178 next output section.) Except that past the assignment to "_end"
6179 we always associate with the previous section. This exception is
6180 for targets like SH that define an alloc .stack or other
6181 weirdness after non-alloc sections. */
6182 if (current_section == NULL || prefer_next_section)
6183 {
6184 lang_statement_union_type *stmt;
6185 lang_output_section_statement_type *os;
6186
6187 for (stmt = (lang_statement_union_type *) current_assign;
6188 stmt != NULL;
6189 stmt = stmt->header.next)
6190 if (stmt->header.type == lang_output_section_statement_enum)
6191 break;
6192
6193 os = &stmt->output_section_statement;
6194 while (os != NULL
6195 && !os->after_end
6196 && (os->bfd_section == NULL
6197 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6198 || bfd_section_removed_from_list (link_info.output_bfd,
6199 os->bfd_section)))
6200 os = os->next;
6201
6202 if (current_section == NULL || os == NULL || !os->after_end)
6203 {
6204 if (os != NULL)
6205 s = os->bfd_section;
6206 else
6207 s = link_info.output_bfd->section_last;
6208 while (s != NULL
6209 && ((s->flags & SEC_ALLOC) == 0
6210 || (s->flags & SEC_THREAD_LOCAL) != 0))
6211 s = s->prev;
6212 if (s != NULL)
6213 return s;
6214
6215 return bfd_abs_section_ptr;
6216 }
6217 }
6218
6219 s = current_section->bfd_section;
6220
6221 /* The section may have been stripped. */
6222 while (s != NULL
6223 && ((s->flags & SEC_EXCLUDE) != 0
6224 || (s->flags & SEC_ALLOC) == 0
6225 || (s->flags & SEC_THREAD_LOCAL) != 0
6226 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6227 s = s->prev;
6228 if (s == NULL)
6229 s = link_info.output_bfd->sections;
6230 while (s != NULL
6231 && ((s->flags & SEC_ALLOC) == 0
6232 || (s->flags & SEC_THREAD_LOCAL) != 0))
6233 s = s->next;
6234 if (s != NULL)
6235 return s;
6236
6237 return bfd_abs_section_ptr;
6238 }
6239
6240 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6241
6242 static struct bfd_link_hash_entry **start_stop_syms;
6243 static size_t start_stop_count = 0;
6244 static size_t start_stop_alloc = 0;
6245
6246 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6247 to start_stop_syms. */
6248
6249 static void
6250 lang_define_start_stop (const char *symbol, asection *sec)
6251 {
6252 struct bfd_link_hash_entry *h;
6253
6254 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6255 if (h != NULL)
6256 {
6257 if (start_stop_count == start_stop_alloc)
6258 {
6259 start_stop_alloc = 2 * start_stop_alloc + 10;
6260 start_stop_syms
6261 = xrealloc (start_stop_syms,
6262 start_stop_alloc * sizeof (*start_stop_syms));
6263 }
6264 start_stop_syms[start_stop_count++] = h;
6265 }
6266 }
6267
6268 /* Check for input sections whose names match references to
6269 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6270 preliminary definitions. */
6271
6272 static void
6273 lang_init_start_stop (void)
6274 {
6275 bfd *abfd;
6276 asection *s;
6277 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6278
6279 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6280 for (s = abfd->sections; s != NULL; s = s->next)
6281 {
6282 const char *ps;
6283 const char *secname = s->name;
6284
6285 for (ps = secname; *ps != '\0'; ps++)
6286 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6287 break;
6288 if (*ps == '\0')
6289 {
6290 char *symbol = (char *) xmalloc (10 + strlen (secname));
6291
6292 symbol[0] = leading_char;
6293 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6294 lang_define_start_stop (symbol, s);
6295
6296 symbol[1] = leading_char;
6297 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6298 lang_define_start_stop (symbol + 1, s);
6299
6300 free (symbol);
6301 }
6302 }
6303 }
6304
6305 /* Iterate over start_stop_syms. */
6306
6307 static void
6308 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6309 {
6310 size_t i;
6311
6312 for (i = 0; i < start_stop_count; ++i)
6313 func (start_stop_syms[i]);
6314 }
6315
6316 /* __start and __stop symbols are only supposed to be defined by the
6317 linker for orphan sections, but we now extend that to sections that
6318 map to an output section of the same name. The symbols were
6319 defined early for --gc-sections, before we mapped input to output
6320 sections, so undo those that don't satisfy this rule. */
6321
6322 static void
6323 undef_start_stop (struct bfd_link_hash_entry *h)
6324 {
6325 if (h->ldscript_def)
6326 return;
6327
6328 if (h->u.def.section->output_section == NULL
6329 || h->u.def.section->output_section->owner != link_info.output_bfd
6330 || strcmp (h->u.def.section->name,
6331 h->u.def.section->output_section->name) != 0)
6332 {
6333 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6334 h->u.def.section->name);
6335 if (sec != NULL)
6336 {
6337 /* When there are more than one input sections with the same
6338 section name, SECNAME, linker picks the first one to define
6339 __start_SECNAME and __stop_SECNAME symbols. When the first
6340 input section is removed by comdat group, we need to check
6341 if there is still an output section with section name
6342 SECNAME. */
6343 asection *i;
6344 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6345 if (strcmp (h->u.def.section->name, i->name) == 0)
6346 {
6347 h->u.def.section = i;
6348 return;
6349 }
6350 }
6351 h->type = bfd_link_hash_undefined;
6352 h->u.undef.abfd = NULL;
6353 }
6354 }
6355
6356 static void
6357 lang_undef_start_stop (void)
6358 {
6359 foreach_start_stop (undef_start_stop);
6360 }
6361
6362 /* Check for output sections whose names match references to
6363 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6364 preliminary definitions. */
6365
6366 static void
6367 lang_init_startof_sizeof (void)
6368 {
6369 asection *s;
6370
6371 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6372 {
6373 const char *secname = s->name;
6374 char *symbol = (char *) xmalloc (10 + strlen (secname));
6375
6376 sprintf (symbol, ".startof.%s", secname);
6377 lang_define_start_stop (symbol, s);
6378
6379 memcpy (symbol + 1, ".size", 5);
6380 lang_define_start_stop (symbol + 1, s);
6381 free (symbol);
6382 }
6383 }
6384
6385 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6386
6387 static void
6388 set_start_stop (struct bfd_link_hash_entry *h)
6389 {
6390 if (h->ldscript_def
6391 || h->type != bfd_link_hash_defined)
6392 return;
6393
6394 if (h->root.string[0] == '.')
6395 {
6396 /* .startof. or .sizeof. symbol.
6397 .startof. already has final value. */
6398 if (h->root.string[2] == 'i')
6399 {
6400 /* .sizeof. */
6401 h->u.def.value = TO_ADDR (h->u.def.section->size);
6402 h->u.def.section = bfd_abs_section_ptr;
6403 }
6404 }
6405 else
6406 {
6407 /* __start or __stop symbol. */
6408 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6409
6410 h->u.def.section = h->u.def.section->output_section;
6411 if (h->root.string[4 + has_lead] == 'o')
6412 {
6413 /* __stop_ */
6414 h->u.def.value = TO_ADDR (h->u.def.section->size);
6415 }
6416 }
6417 }
6418
6419 static void
6420 lang_finalize_start_stop (void)
6421 {
6422 foreach_start_stop (set_start_stop);
6423 }
6424
6425 static void
6426 lang_end (void)
6427 {
6428 struct bfd_link_hash_entry *h;
6429 bfd_boolean warn;
6430
6431 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6432 || bfd_link_dll (&link_info))
6433 warn = entry_from_cmdline;
6434 else
6435 warn = TRUE;
6436
6437 /* Force the user to specify a root when generating a relocatable with
6438 --gc-sections, unless --gc-keep-exported was also given. */
6439 if (bfd_link_relocatable (&link_info)
6440 && link_info.gc_sections
6441 && !link_info.gc_keep_exported
6442 && !(entry_from_cmdline || undef_from_cmdline))
6443 einfo (_("%F%P: gc-sections requires either an entry or "
6444 "an undefined symbol\n"));
6445
6446 if (entry_symbol.name == NULL)
6447 {
6448 /* No entry has been specified. Look for the default entry, but
6449 don't warn if we don't find it. */
6450 entry_symbol.name = entry_symbol_default;
6451 warn = FALSE;
6452 }
6453
6454 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6455 FALSE, FALSE, TRUE);
6456 if (h != NULL
6457 && (h->type == bfd_link_hash_defined
6458 || h->type == bfd_link_hash_defweak)
6459 && h->u.def.section->output_section != NULL)
6460 {
6461 bfd_vma val;
6462
6463 val = (h->u.def.value
6464 + bfd_get_section_vma (link_info.output_bfd,
6465 h->u.def.section->output_section)
6466 + h->u.def.section->output_offset);
6467 if (!bfd_set_start_address (link_info.output_bfd, val))
6468 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6469 }
6470 else
6471 {
6472 bfd_vma val;
6473 const char *send;
6474
6475 /* We couldn't find the entry symbol. Try parsing it as a
6476 number. */
6477 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6478 if (*send == '\0')
6479 {
6480 if (!bfd_set_start_address (link_info.output_bfd, val))
6481 einfo (_("%F%P: can't set start address\n"));
6482 }
6483 else
6484 {
6485 asection *ts;
6486
6487 /* Can't find the entry symbol, and it's not a number. Use
6488 the first address in the text section. */
6489 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6490 if (ts != NULL)
6491 {
6492 if (warn)
6493 einfo (_("%P: warning: cannot find entry symbol %s;"
6494 " defaulting to %V\n"),
6495 entry_symbol.name,
6496 bfd_get_section_vma (link_info.output_bfd, ts));
6497 if (!(bfd_set_start_address
6498 (link_info.output_bfd,
6499 bfd_get_section_vma (link_info.output_bfd, ts))))
6500 einfo (_("%F%P: can't set start address\n"));
6501 }
6502 else
6503 {
6504 if (warn)
6505 einfo (_("%P: warning: cannot find entry symbol %s;"
6506 " not setting start address\n"),
6507 entry_symbol.name);
6508 }
6509 }
6510 }
6511 }
6512
6513 /* This is a small function used when we want to ignore errors from
6514 BFD. */
6515
6516 static void
6517 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6518 va_list ap ATTRIBUTE_UNUSED)
6519 {
6520 /* Don't do anything. */
6521 }
6522
6523 /* Check that the architecture of all the input files is compatible
6524 with the output file. Also call the backend to let it do any
6525 other checking that is needed. */
6526
6527 static void
6528 lang_check (void)
6529 {
6530 lang_input_statement_type *file;
6531 bfd *input_bfd;
6532 const bfd_arch_info_type *compatible;
6533
6534 for (file = &file_chain.head->input_statement;
6535 file != NULL;
6536 file = file->next)
6537 {
6538 #ifdef ENABLE_PLUGINS
6539 /* Don't check format of files claimed by plugin. */
6540 if (file->flags.claimed)
6541 continue;
6542 #endif /* ENABLE_PLUGINS */
6543 input_bfd = file->the_bfd;
6544 compatible
6545 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6546 command_line.accept_unknown_input_arch);
6547
6548 /* In general it is not possible to perform a relocatable
6549 link between differing object formats when the input
6550 file has relocations, because the relocations in the
6551 input format may not have equivalent representations in
6552 the output format (and besides BFD does not translate
6553 relocs for other link purposes than a final link). */
6554 if ((bfd_link_relocatable (&link_info)
6555 || link_info.emitrelocations)
6556 && (compatible == NULL
6557 || (bfd_get_flavour (input_bfd)
6558 != bfd_get_flavour (link_info.output_bfd)))
6559 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6560 {
6561 einfo (_("%F%P: relocatable linking with relocations from"
6562 " format %s (%pB) to format %s (%pB) is not supported\n"),
6563 bfd_get_target (input_bfd), input_bfd,
6564 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6565 /* einfo with %F exits. */
6566 }
6567
6568 if (compatible == NULL)
6569 {
6570 if (command_line.warn_mismatch)
6571 einfo (_("%X%P: %s architecture of input file `%pB'"
6572 " is incompatible with %s output\n"),
6573 bfd_printable_name (input_bfd), input_bfd,
6574 bfd_printable_name (link_info.output_bfd));
6575 }
6576 else if (bfd_count_sections (input_bfd))
6577 {
6578 /* If the input bfd has no contents, it shouldn't set the
6579 private data of the output bfd. */
6580
6581 bfd_error_handler_type pfn = NULL;
6582
6583 /* If we aren't supposed to warn about mismatched input
6584 files, temporarily set the BFD error handler to a
6585 function which will do nothing. We still want to call
6586 bfd_merge_private_bfd_data, since it may set up
6587 information which is needed in the output file. */
6588 if (!command_line.warn_mismatch)
6589 pfn = bfd_set_error_handler (ignore_bfd_errors);
6590 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6591 {
6592 if (command_line.warn_mismatch)
6593 einfo (_("%X%P: failed to merge target specific data"
6594 " of file %pB\n"), input_bfd);
6595 }
6596 if (!command_line.warn_mismatch)
6597 bfd_set_error_handler (pfn);
6598 }
6599 }
6600 }
6601
6602 /* Look through all the global common symbols and attach them to the
6603 correct section. The -sort-common command line switch may be used
6604 to roughly sort the entries by alignment. */
6605
6606 static void
6607 lang_common (void)
6608 {
6609 if (link_info.inhibit_common_definition)
6610 return;
6611 if (bfd_link_relocatable (&link_info)
6612 && !command_line.force_common_definition)
6613 return;
6614
6615 if (!config.sort_common)
6616 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6617 else
6618 {
6619 unsigned int power;
6620
6621 if (config.sort_common == sort_descending)
6622 {
6623 for (power = 4; power > 0; power--)
6624 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6625
6626 power = 0;
6627 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6628 }
6629 else
6630 {
6631 for (power = 0; power <= 4; power++)
6632 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6633
6634 power = (unsigned int) -1;
6635 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6636 }
6637 }
6638 }
6639
6640 /* Place one common symbol in the correct section. */
6641
6642 static bfd_boolean
6643 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6644 {
6645 unsigned int power_of_two;
6646 bfd_vma size;
6647 asection *section;
6648
6649 if (h->type != bfd_link_hash_common)
6650 return TRUE;
6651
6652 size = h->u.c.size;
6653 power_of_two = h->u.c.p->alignment_power;
6654
6655 if (config.sort_common == sort_descending
6656 && power_of_two < *(unsigned int *) info)
6657 return TRUE;
6658 else if (config.sort_common == sort_ascending
6659 && power_of_two > *(unsigned int *) info)
6660 return TRUE;
6661
6662 section = h->u.c.p->section;
6663 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6664 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
6665 h->root.string);
6666
6667 if (config.map_file != NULL)
6668 {
6669 static bfd_boolean header_printed;
6670 int len;
6671 char *name;
6672 char buf[50];
6673
6674 if (!header_printed)
6675 {
6676 minfo (_("\nAllocating common symbols\n"));
6677 minfo (_("Common symbol size file\n\n"));
6678 header_printed = TRUE;
6679 }
6680
6681 name = bfd_demangle (link_info.output_bfd, h->root.string,
6682 DMGL_ANSI | DMGL_PARAMS);
6683 if (name == NULL)
6684 {
6685 minfo ("%s", h->root.string);
6686 len = strlen (h->root.string);
6687 }
6688 else
6689 {
6690 minfo ("%s", name);
6691 len = strlen (name);
6692 free (name);
6693 }
6694
6695 if (len >= 19)
6696 {
6697 print_nl ();
6698 len = 0;
6699 }
6700 while (len < 20)
6701 {
6702 print_space ();
6703 ++len;
6704 }
6705
6706 minfo ("0x");
6707 if (size <= 0xffffffff)
6708 sprintf (buf, "%lx", (unsigned long) size);
6709 else
6710 sprintf_vma (buf, size);
6711 minfo ("%s", buf);
6712 len = strlen (buf);
6713
6714 while (len < 16)
6715 {
6716 print_space ();
6717 ++len;
6718 }
6719
6720 minfo ("%pB\n", section->owner);
6721 }
6722
6723 return TRUE;
6724 }
6725
6726 /* Handle a single orphan section S, placing the orphan into an appropriate
6727 output section. The effects of the --orphan-handling command line
6728 option are handled here. */
6729
6730 static void
6731 ldlang_place_orphan (asection *s)
6732 {
6733 if (config.orphan_handling == orphan_handling_discard)
6734 {
6735 lang_output_section_statement_type *os;
6736 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6737 TRUE);
6738 if (os->addr_tree == NULL
6739 && (bfd_link_relocatable (&link_info)
6740 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6741 os->addr_tree = exp_intop (0);
6742 lang_add_section (&os->children, s, NULL, os);
6743 }
6744 else
6745 {
6746 lang_output_section_statement_type *os;
6747 const char *name = s->name;
6748 int constraint = 0;
6749
6750 if (config.orphan_handling == orphan_handling_error)
6751 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
6752 s, s->owner);
6753
6754 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6755 constraint = SPECIAL;
6756
6757 os = ldemul_place_orphan (s, name, constraint);
6758 if (os == NULL)
6759 {
6760 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6761 if (os->addr_tree == NULL
6762 && (bfd_link_relocatable (&link_info)
6763 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6764 os->addr_tree = exp_intop (0);
6765 lang_add_section (&os->children, s, NULL, os);
6766 }
6767
6768 if (config.orphan_handling == orphan_handling_warn)
6769 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
6770 "placed in section `%s'\n"),
6771 s, s->owner, os->name);
6772 }
6773 }
6774
6775 /* Run through the input files and ensure that every input section has
6776 somewhere to go. If one is found without a destination then create
6777 an input request and place it into the statement tree. */
6778
6779 static void
6780 lang_place_orphans (void)
6781 {
6782 LANG_FOR_EACH_INPUT_STATEMENT (file)
6783 {
6784 asection *s;
6785
6786 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6787 {
6788 if (s->output_section == NULL)
6789 {
6790 /* This section of the file is not attached, root
6791 around for a sensible place for it to go. */
6792
6793 if (file->flags.just_syms)
6794 bfd_link_just_syms (file->the_bfd, s, &link_info);
6795 else if (lang_discard_section_p (s))
6796 s->output_section = bfd_abs_section_ptr;
6797 else if (strcmp (s->name, "COMMON") == 0)
6798 {
6799 /* This is a lonely common section which must have
6800 come from an archive. We attach to the section
6801 with the wildcard. */
6802 if (!bfd_link_relocatable (&link_info)
6803 || command_line.force_common_definition)
6804 {
6805 if (default_common_section == NULL)
6806 default_common_section
6807 = lang_output_section_statement_lookup (".bss", 0,
6808 TRUE);
6809 lang_add_section (&default_common_section->children, s,
6810 NULL, default_common_section);
6811 }
6812 }
6813 else
6814 ldlang_place_orphan (s);
6815 }
6816 }
6817 }
6818 }
6819
6820 void
6821 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6822 {
6823 flagword *ptr_flags;
6824
6825 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6826
6827 while (*flags)
6828 {
6829 switch (*flags)
6830 {
6831 /* PR 17900: An exclamation mark in the attributes reverses
6832 the sense of any of the attributes that follow. */
6833 case '!':
6834 invert = !invert;
6835 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6836 break;
6837
6838 case 'A': case 'a':
6839 *ptr_flags |= SEC_ALLOC;
6840 break;
6841
6842 case 'R': case 'r':
6843 *ptr_flags |= SEC_READONLY;
6844 break;
6845
6846 case 'W': case 'w':
6847 *ptr_flags |= SEC_DATA;
6848 break;
6849
6850 case 'X': case 'x':
6851 *ptr_flags |= SEC_CODE;
6852 break;
6853
6854 case 'L': case 'l':
6855 case 'I': case 'i':
6856 *ptr_flags |= SEC_LOAD;
6857 break;
6858
6859 default:
6860 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
6861 *flags, *flags);
6862 break;
6863 }
6864 flags++;
6865 }
6866 }
6867
6868 /* Call a function on each input file. This function will be called
6869 on an archive, but not on the elements. */
6870
6871 void
6872 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6873 {
6874 lang_input_statement_type *f;
6875
6876 for (f = &input_file_chain.head->input_statement;
6877 f != NULL;
6878 f = f->next_real_file)
6879 func (f);
6880 }
6881
6882 /* Call a function on each file. The function will be called on all
6883 the elements of an archive which are included in the link, but will
6884 not be called on the archive file itself. */
6885
6886 void
6887 lang_for_each_file (void (*func) (lang_input_statement_type *))
6888 {
6889 LANG_FOR_EACH_INPUT_STATEMENT (f)
6890 {
6891 func (f);
6892 }
6893 }
6894
6895 void
6896 ldlang_add_file (lang_input_statement_type *entry)
6897 {
6898 lang_statement_append (&file_chain, entry, &entry->next);
6899
6900 /* The BFD linker needs to have a list of all input BFDs involved in
6901 a link. */
6902 ASSERT (entry->the_bfd->link.next == NULL);
6903 ASSERT (entry->the_bfd != link_info.output_bfd);
6904
6905 *link_info.input_bfds_tail = entry->the_bfd;
6906 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6907 entry->the_bfd->usrdata = entry;
6908 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6909
6910 /* Look through the sections and check for any which should not be
6911 included in the link. We need to do this now, so that we can
6912 notice when the backend linker tries to report multiple
6913 definition errors for symbols which are in sections we aren't
6914 going to link. FIXME: It might be better to entirely ignore
6915 symbols which are defined in sections which are going to be
6916 discarded. This would require modifying the backend linker for
6917 each backend which might set the SEC_LINK_ONCE flag. If we do
6918 this, we should probably handle SEC_EXCLUDE in the same way. */
6919
6920 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6921 }
6922
6923 void
6924 lang_add_output (const char *name, int from_script)
6925 {
6926 /* Make -o on command line override OUTPUT in script. */
6927 if (!had_output_filename || !from_script)
6928 {
6929 output_filename = name;
6930 had_output_filename = TRUE;
6931 }
6932 }
6933
6934 lang_output_section_statement_type *
6935 lang_enter_output_section_statement (const char *output_section_statement_name,
6936 etree_type *address_exp,
6937 enum section_type sectype,
6938 etree_type *align,
6939 etree_type *subalign,
6940 etree_type *ebase,
6941 int constraint,
6942 int align_with_input)
6943 {
6944 lang_output_section_statement_type *os;
6945
6946 os = lang_output_section_statement_lookup (output_section_statement_name,
6947 constraint, TRUE);
6948 current_section = os;
6949
6950 if (os->addr_tree == NULL)
6951 {
6952 os->addr_tree = address_exp;
6953 }
6954 os->sectype = sectype;
6955 if (sectype != noload_section)
6956 os->flags = SEC_NO_FLAGS;
6957 else
6958 os->flags = SEC_NEVER_LOAD;
6959 os->block_value = 1;
6960
6961 /* Make next things chain into subchain of this. */
6962 push_stat_ptr (&os->children);
6963
6964 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6965 if (os->align_lma_with_input && align != NULL)
6966 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
6967 NULL);
6968
6969 os->subsection_alignment = subalign;
6970 os->section_alignment = align;
6971
6972 os->load_base = ebase;
6973 return os;
6974 }
6975
6976 void
6977 lang_final (void)
6978 {
6979 lang_output_statement_type *new_stmt;
6980
6981 new_stmt = new_stat (lang_output_statement, stat_ptr);
6982 new_stmt->name = output_filename;
6983 }
6984
6985 /* Reset the current counters in the regions. */
6986
6987 void
6988 lang_reset_memory_regions (void)
6989 {
6990 lang_memory_region_type *p = lang_memory_region_list;
6991 asection *o;
6992 lang_output_section_statement_type *os;
6993
6994 for (p = lang_memory_region_list; p != NULL; p = p->next)
6995 {
6996 p->current = p->origin;
6997 p->last_os = NULL;
6998 }
6999
7000 for (os = &lang_os_list.head->output_section_statement;
7001 os != NULL;
7002 os = os->next)
7003 {
7004 os->processed_vma = FALSE;
7005 os->processed_lma = FALSE;
7006 }
7007
7008 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7009 {
7010 /* Save the last size for possible use by bfd_relax_section. */
7011 o->rawsize = o->size;
7012 if (!(o->flags & SEC_FIXED_SIZE))
7013 o->size = 0;
7014 }
7015 }
7016
7017 /* Worker for lang_gc_sections_1. */
7018
7019 static void
7020 gc_section_callback (lang_wild_statement_type *ptr,
7021 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7022 asection *section,
7023 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7024 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7025 void *data ATTRIBUTE_UNUSED)
7026 {
7027 /* If the wild pattern was marked KEEP, the member sections
7028 should be as well. */
7029 if (ptr->keep_sections)
7030 section->flags |= SEC_KEEP;
7031 }
7032
7033 /* Iterate over sections marking them against GC. */
7034
7035 static void
7036 lang_gc_sections_1 (lang_statement_union_type *s)
7037 {
7038 for (; s != NULL; s = s->header.next)
7039 {
7040 switch (s->header.type)
7041 {
7042 case lang_wild_statement_enum:
7043 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7044 break;
7045 case lang_constructors_statement_enum:
7046 lang_gc_sections_1 (constructor_list.head);
7047 break;
7048 case lang_output_section_statement_enum:
7049 lang_gc_sections_1 (s->output_section_statement.children.head);
7050 break;
7051 case lang_group_statement_enum:
7052 lang_gc_sections_1 (s->group_statement.children.head);
7053 break;
7054 default:
7055 break;
7056 }
7057 }
7058 }
7059
7060 static void
7061 lang_gc_sections (void)
7062 {
7063 /* Keep all sections so marked in the link script. */
7064 lang_gc_sections_1 (statement_list.head);
7065
7066 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7067 the special case of debug info. (See bfd/stabs.c)
7068 Twiddle the flag here, to simplify later linker code. */
7069 if (bfd_link_relocatable (&link_info))
7070 {
7071 LANG_FOR_EACH_INPUT_STATEMENT (f)
7072 {
7073 asection *sec;
7074 #ifdef ENABLE_PLUGINS
7075 if (f->flags.claimed)
7076 continue;
7077 #endif
7078 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7079 if ((sec->flags & SEC_DEBUGGING) == 0)
7080 sec->flags &= ~SEC_EXCLUDE;
7081 }
7082 }
7083
7084 if (link_info.gc_sections)
7085 bfd_gc_sections (link_info.output_bfd, &link_info);
7086 }
7087
7088 /* Worker for lang_find_relro_sections_1. */
7089
7090 static void
7091 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7092 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7093 asection *section,
7094 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7095 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7096 void *data)
7097 {
7098 /* Discarded, excluded and ignored sections effectively have zero
7099 size. */
7100 if (section->output_section != NULL
7101 && section->output_section->owner == link_info.output_bfd
7102 && (section->output_section->flags & SEC_EXCLUDE) == 0
7103 && !IGNORE_SECTION (section)
7104 && section->size != 0)
7105 {
7106 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7107 *has_relro_section = TRUE;
7108 }
7109 }
7110
7111 /* Iterate over sections for relro sections. */
7112
7113 static void
7114 lang_find_relro_sections_1 (lang_statement_union_type *s,
7115 seg_align_type *seg,
7116 bfd_boolean *has_relro_section)
7117 {
7118 if (*has_relro_section)
7119 return;
7120
7121 for (; s != NULL; s = s->header.next)
7122 {
7123 if (s == seg->relro_end_stat)
7124 break;
7125
7126 switch (s->header.type)
7127 {
7128 case lang_wild_statement_enum:
7129 walk_wild (&s->wild_statement,
7130 find_relro_section_callback,
7131 has_relro_section);
7132 break;
7133 case lang_constructors_statement_enum:
7134 lang_find_relro_sections_1 (constructor_list.head,
7135 seg, has_relro_section);
7136 break;
7137 case lang_output_section_statement_enum:
7138 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7139 seg, has_relro_section);
7140 break;
7141 case lang_group_statement_enum:
7142 lang_find_relro_sections_1 (s->group_statement.children.head,
7143 seg, has_relro_section);
7144 break;
7145 default:
7146 break;
7147 }
7148 }
7149 }
7150
7151 static void
7152 lang_find_relro_sections (void)
7153 {
7154 bfd_boolean has_relro_section = FALSE;
7155
7156 /* Check all sections in the link script. */
7157
7158 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7159 &expld.dataseg, &has_relro_section);
7160
7161 if (!has_relro_section)
7162 link_info.relro = FALSE;
7163 }
7164
7165 /* Relax all sections until bfd_relax_section gives up. */
7166
7167 void
7168 lang_relax_sections (bfd_boolean need_layout)
7169 {
7170 if (RELAXATION_ENABLED)
7171 {
7172 /* We may need more than one relaxation pass. */
7173 int i = link_info.relax_pass;
7174
7175 /* The backend can use it to determine the current pass. */
7176 link_info.relax_pass = 0;
7177
7178 while (i--)
7179 {
7180 /* Keep relaxing until bfd_relax_section gives up. */
7181 bfd_boolean relax_again;
7182
7183 link_info.relax_trip = -1;
7184 do
7185 {
7186 link_info.relax_trip++;
7187
7188 /* Note: pe-dll.c does something like this also. If you find
7189 you need to change this code, you probably need to change
7190 pe-dll.c also. DJ */
7191
7192 /* Do all the assignments with our current guesses as to
7193 section sizes. */
7194 lang_do_assignments (lang_assigning_phase_enum);
7195
7196 /* We must do this after lang_do_assignments, because it uses
7197 size. */
7198 lang_reset_memory_regions ();
7199
7200 /* Perform another relax pass - this time we know where the
7201 globals are, so can make a better guess. */
7202 relax_again = FALSE;
7203 lang_size_sections (&relax_again, FALSE);
7204 }
7205 while (relax_again);
7206
7207 link_info.relax_pass++;
7208 }
7209 need_layout = TRUE;
7210 }
7211
7212 if (need_layout)
7213 {
7214 /* Final extra sizing to report errors. */
7215 lang_do_assignments (lang_assigning_phase_enum);
7216 lang_reset_memory_regions ();
7217 lang_size_sections (NULL, TRUE);
7218 }
7219 }
7220
7221 #ifdef ENABLE_PLUGINS
7222 /* Find the insert point for the plugin's replacement files. We
7223 place them after the first claimed real object file, or if the
7224 first claimed object is an archive member, after the last real
7225 object file immediately preceding the archive. In the event
7226 no objects have been claimed at all, we return the first dummy
7227 object file on the list as the insert point; that works, but
7228 the callee must be careful when relinking the file_chain as it
7229 is not actually on that chain, only the statement_list and the
7230 input_file list; in that case, the replacement files must be
7231 inserted at the head of the file_chain. */
7232
7233 static lang_input_statement_type *
7234 find_replacements_insert_point (bfd_boolean *before)
7235 {
7236 lang_input_statement_type *claim1, *lastobject;
7237 lastobject = &input_file_chain.head->input_statement;
7238 for (claim1 = &file_chain.head->input_statement;
7239 claim1 != NULL;
7240 claim1 = claim1->next)
7241 {
7242 if (claim1->flags.claimed)
7243 {
7244 *before = claim1->flags.claim_archive;
7245 return claim1->flags.claim_archive ? lastobject : claim1;
7246 }
7247 /* Update lastobject if this is a real object file. */
7248 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7249 lastobject = claim1;
7250 }
7251 /* No files were claimed by the plugin. Choose the last object
7252 file found on the list (maybe the first, dummy entry) as the
7253 insert point. */
7254 *before = FALSE;
7255 return lastobject;
7256 }
7257
7258 /* Find where to insert ADD, an archive element or shared library
7259 added during a rescan. */
7260
7261 static lang_input_statement_type **
7262 find_rescan_insertion (lang_input_statement_type *add)
7263 {
7264 bfd *add_bfd = add->the_bfd;
7265 lang_input_statement_type *f;
7266 lang_input_statement_type *last_loaded = NULL;
7267 lang_input_statement_type *before = NULL;
7268 lang_input_statement_type **iter = NULL;
7269
7270 if (add_bfd->my_archive != NULL)
7271 add_bfd = add_bfd->my_archive;
7272
7273 /* First look through the input file chain, to find an object file
7274 before the one we've rescanned. Normal object files always
7275 appear on both the input file chain and the file chain, so this
7276 lets us get quickly to somewhere near the correct place on the
7277 file chain if it is full of archive elements. Archives don't
7278 appear on the file chain, but if an element has been extracted
7279 then their input_statement->next points at it. */
7280 for (f = &input_file_chain.head->input_statement;
7281 f != NULL;
7282 f = f->next_real_file)
7283 {
7284 if (f->the_bfd == add_bfd)
7285 {
7286 before = last_loaded;
7287 if (f->next != NULL)
7288 return &f->next->next;
7289 }
7290 if (f->the_bfd != NULL && f->next != NULL)
7291 last_loaded = f;
7292 }
7293
7294 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7295 *iter != NULL;
7296 iter = &(*iter)->next)
7297 if (!(*iter)->flags.claim_archive
7298 && (*iter)->the_bfd->my_archive == NULL)
7299 break;
7300
7301 return iter;
7302 }
7303
7304 /* Insert SRCLIST into DESTLIST after given element by chaining
7305 on FIELD as the next-pointer. (Counterintuitively does not need
7306 a pointer to the actual after-node itself, just its chain field.) */
7307
7308 static void
7309 lang_list_insert_after (lang_statement_list_type *destlist,
7310 lang_statement_list_type *srclist,
7311 lang_statement_union_type **field)
7312 {
7313 *(srclist->tail) = *field;
7314 *field = srclist->head;
7315 if (destlist->tail == field)
7316 destlist->tail = srclist->tail;
7317 }
7318
7319 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7320 was taken as a copy of it and leave them in ORIGLIST. */
7321
7322 static void
7323 lang_list_remove_tail (lang_statement_list_type *destlist,
7324 lang_statement_list_type *origlist)
7325 {
7326 union lang_statement_union **savetail;
7327 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7328 ASSERT (origlist->head == destlist->head);
7329 savetail = origlist->tail;
7330 origlist->head = *(savetail);
7331 origlist->tail = destlist->tail;
7332 destlist->tail = savetail;
7333 *savetail = NULL;
7334 }
7335
7336 static lang_statement_union_type **
7337 find_next_input_statement (lang_statement_union_type **s)
7338 {
7339 for ( ; *s; s = &(*s)->header.next)
7340 {
7341 lang_statement_union_type **t;
7342 switch ((*s)->header.type)
7343 {
7344 case lang_input_statement_enum:
7345 return s;
7346 case lang_wild_statement_enum:
7347 t = &(*s)->wild_statement.children.head;
7348 break;
7349 case lang_group_statement_enum:
7350 t = &(*s)->group_statement.children.head;
7351 break;
7352 case lang_output_section_statement_enum:
7353 t = &(*s)->output_section_statement.children.head;
7354 break;
7355 default:
7356 continue;
7357 }
7358 t = find_next_input_statement (t);
7359 if (*t)
7360 return t;
7361 }
7362 return s;
7363 }
7364 #endif /* ENABLE_PLUGINS */
7365
7366 /* Add NAME to the list of garbage collection entry points. */
7367
7368 void
7369 lang_add_gc_name (const char *name)
7370 {
7371 struct bfd_sym_chain *sym;
7372
7373 if (name == NULL)
7374 return;
7375
7376 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
7377
7378 sym->next = link_info.gc_sym_list;
7379 sym->name = name;
7380 link_info.gc_sym_list = sym;
7381 }
7382
7383 /* Check relocations. */
7384
7385 static void
7386 lang_check_relocs (void)
7387 {
7388 if (link_info.check_relocs_after_open_input)
7389 {
7390 bfd *abfd;
7391
7392 for (abfd = link_info.input_bfds;
7393 abfd != (bfd *) NULL; abfd = abfd->link.next)
7394 if (!bfd_link_check_relocs (abfd, &link_info))
7395 {
7396 /* No object output, fail return. */
7397 config.make_executable = FALSE;
7398 /* Note: we do not abort the loop, but rather
7399 continue the scan in case there are other
7400 bad relocations to report. */
7401 }
7402 }
7403 }
7404
7405 /* Look through all output sections looking for places where we can
7406 propagate forward the lma region. */
7407
7408 static void
7409 lang_propagate_lma_regions (void)
7410 {
7411 lang_output_section_statement_type *os;
7412
7413 for (os = &lang_os_list.head->output_section_statement;
7414 os != NULL;
7415 os = os->next)
7416 {
7417 if (os->prev != NULL
7418 && os->lma_region == NULL
7419 && os->load_base == NULL
7420 && os->addr_tree == NULL
7421 && os->region == os->prev->region)
7422 os->lma_region = os->prev->lma_region;
7423 }
7424 }
7425
7426 void
7427 lang_process (void)
7428 {
7429 /* Finalize dynamic list. */
7430 if (link_info.dynamic_list)
7431 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7432
7433 current_target = default_target;
7434
7435 /* Open the output file. */
7436 lang_for_each_statement (ldlang_open_output);
7437 init_opb ();
7438
7439 ldemul_create_output_section_statements ();
7440
7441 /* Add to the hash table all undefineds on the command line. */
7442 lang_place_undefineds ();
7443
7444 if (!bfd_section_already_linked_table_init ())
7445 einfo (_("%F%P: can not create hash table: %E\n"));
7446
7447 /* Create a bfd for each input file. */
7448 current_target = default_target;
7449 lang_statement_iteration++;
7450 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7451 /* open_input_bfds also handles assignments, so we can give values
7452 to symbolic origin/length now. */
7453 lang_do_memory_regions ();
7454
7455 #ifdef ENABLE_PLUGINS
7456 if (link_info.lto_plugin_active)
7457 {
7458 lang_statement_list_type added;
7459 lang_statement_list_type files, inputfiles;
7460
7461 /* Now all files are read, let the plugin(s) decide if there
7462 are any more to be added to the link before we call the
7463 emulation's after_open hook. We create a private list of
7464 input statements for this purpose, which we will eventually
7465 insert into the global statement list after the first claimed
7466 file. */
7467 added = *stat_ptr;
7468 /* We need to manipulate all three chains in synchrony. */
7469 files = file_chain;
7470 inputfiles = input_file_chain;
7471 if (plugin_call_all_symbols_read ())
7472 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7473 plugin_error_plugin ());
7474 /* Open any newly added files, updating the file chains. */
7475 plugin_undefs = link_info.hash->undefs_tail;
7476 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7477 if (plugin_undefs == link_info.hash->undefs_tail)
7478 plugin_undefs = NULL;
7479 /* Restore the global list pointer now they have all been added. */
7480 lang_list_remove_tail (stat_ptr, &added);
7481 /* And detach the fresh ends of the file lists. */
7482 lang_list_remove_tail (&file_chain, &files);
7483 lang_list_remove_tail (&input_file_chain, &inputfiles);
7484 /* Were any new files added? */
7485 if (added.head != NULL)
7486 {
7487 /* If so, we will insert them into the statement list immediately
7488 after the first input file that was claimed by the plugin,
7489 unless that file was an archive in which case it is inserted
7490 immediately before. */
7491 bfd_boolean before;
7492 lang_statement_union_type **prev;
7493 plugin_insert = find_replacements_insert_point (&before);
7494 /* If a plugin adds input files without having claimed any, we
7495 don't really have a good idea where to place them. Just putting
7496 them at the start or end of the list is liable to leave them
7497 outside the crtbegin...crtend range. */
7498 ASSERT (plugin_insert != NULL);
7499 /* Splice the new statement list into the old one. */
7500 prev = &plugin_insert->header.next;
7501 if (before)
7502 {
7503 prev = find_next_input_statement (prev);
7504 if (*prev != (void *) plugin_insert->next_real_file)
7505 {
7506 /* Huh? We didn't find the expected input statement. */
7507 ASSERT (0);
7508 prev = &plugin_insert->header.next;
7509 }
7510 }
7511 lang_list_insert_after (stat_ptr, &added, prev);
7512 /* Likewise for the file chains. */
7513 lang_list_insert_after (&input_file_chain, &inputfiles,
7514 (void *) &plugin_insert->next_real_file);
7515 /* We must be careful when relinking file_chain; we may need to
7516 insert the new files at the head of the list if the insert
7517 point chosen is the dummy first input file. */
7518 if (plugin_insert->filename)
7519 lang_list_insert_after (&file_chain, &files,
7520 (void *) &plugin_insert->next);
7521 else
7522 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7523
7524 /* Rescan archives in case new undefined symbols have appeared. */
7525 files = file_chain;
7526 lang_statement_iteration++;
7527 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7528 lang_list_remove_tail (&file_chain, &files);
7529 while (files.head != NULL)
7530 {
7531 lang_input_statement_type **insert;
7532 lang_input_statement_type **iter, *temp;
7533 bfd *my_arch;
7534
7535 insert = find_rescan_insertion (&files.head->input_statement);
7536 /* All elements from an archive can be added at once. */
7537 iter = &files.head->input_statement.next;
7538 my_arch = files.head->input_statement.the_bfd->my_archive;
7539 if (my_arch != NULL)
7540 for (; *iter != NULL; iter = &(*iter)->next)
7541 if ((*iter)->the_bfd->my_archive != my_arch)
7542 break;
7543 temp = *insert;
7544 *insert = &files.head->input_statement;
7545 files.head = (lang_statement_union_type *) *iter;
7546 *iter = temp;
7547 if (my_arch != NULL)
7548 {
7549 lang_input_statement_type *parent = my_arch->usrdata;
7550 if (parent != NULL)
7551 parent->next = (lang_input_statement_type *)
7552 ((char *) iter
7553 - offsetof (lang_input_statement_type, next));
7554 }
7555 }
7556 }
7557 }
7558 #endif /* ENABLE_PLUGINS */
7559
7560 /* Make sure that nobody has tried to add a symbol to this list
7561 before now. */
7562 ASSERT (link_info.gc_sym_list == NULL);
7563
7564 link_info.gc_sym_list = &entry_symbol;
7565
7566 if (entry_symbol.name == NULL)
7567 {
7568 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7569
7570 /* entry_symbol is normally initialied by a ENTRY definition in the
7571 linker script or the -e command line option. But if neither of
7572 these have been used, the target specific backend may still have
7573 provided an entry symbol via a call to lang_default_entry().
7574 Unfortunately this value will not be processed until lang_end()
7575 is called, long after this function has finished. So detect this
7576 case here and add the target's entry symbol to the list of starting
7577 points for garbage collection resolution. */
7578 lang_add_gc_name (entry_symbol_default);
7579 }
7580
7581 lang_add_gc_name (link_info.init_function);
7582 lang_add_gc_name (link_info.fini_function);
7583
7584 ldemul_after_open ();
7585 if (config.map_file != NULL)
7586 lang_print_asneeded ();
7587
7588 bfd_section_already_linked_table_free ();
7589
7590 /* Make sure that we're not mixing architectures. We call this
7591 after all the input files have been opened, but before we do any
7592 other processing, so that any operations merge_private_bfd_data
7593 does on the output file will be known during the rest of the
7594 link. */
7595 lang_check ();
7596
7597 /* Handle .exports instead of a version script if we're told to do so. */
7598 if (command_line.version_exports_section)
7599 lang_do_version_exports_section ();
7600
7601 /* Build all sets based on the information gathered from the input
7602 files. */
7603 ldctor_build_sets ();
7604
7605 /* Give initial values for __start and __stop symbols, so that ELF
7606 gc_sections will keep sections referenced by these symbols. Must
7607 be done before lang_do_assignments below. */
7608 if (config.build_constructors)
7609 lang_init_start_stop ();
7610
7611 /* PR 13683: We must rerun the assignments prior to running garbage
7612 collection in order to make sure that all symbol aliases are resolved. */
7613 lang_do_assignments (lang_mark_phase_enum);
7614 expld.phase = lang_first_phase_enum;
7615
7616 /* Size up the common data. */
7617 lang_common ();
7618
7619 /* Remove unreferenced sections if asked to. */
7620 lang_gc_sections ();
7621
7622 /* Check relocations. */
7623 lang_check_relocs ();
7624
7625 ldemul_after_check_relocs ();
7626
7627 /* Update wild statements. */
7628 update_wild_statements (statement_list.head);
7629
7630 /* Run through the contours of the script and attach input sections
7631 to the correct output sections. */
7632 lang_statement_iteration++;
7633 map_input_to_output_sections (statement_list.head, NULL, NULL);
7634
7635 /* Start at the statement immediately after the special abs_section
7636 output statement, so that it isn't reordered. */
7637 process_insert_statements (&lang_os_list.head->header.next);
7638
7639 /* Find any sections not attached explicitly and handle them. */
7640 lang_place_orphans ();
7641
7642 if (!bfd_link_relocatable (&link_info))
7643 {
7644 asection *found;
7645
7646 /* Merge SEC_MERGE sections. This has to be done after GC of
7647 sections, so that GCed sections are not merged, but before
7648 assigning dynamic symbols, since removing whole input sections
7649 is hard then. */
7650 bfd_merge_sections (link_info.output_bfd, &link_info);
7651
7652 /* Look for a text section and set the readonly attribute in it. */
7653 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7654
7655 if (found != NULL)
7656 {
7657 if (config.text_read_only)
7658 found->flags |= SEC_READONLY;
7659 else
7660 found->flags &= ~SEC_READONLY;
7661 }
7662 }
7663
7664 /* Copy forward lma regions for output sections in same lma region. */
7665 lang_propagate_lma_regions ();
7666
7667 /* Defining __start/__stop symbols early for --gc-sections to work
7668 around a glibc build problem can result in these symbols being
7669 defined when they should not be. Fix them now. */
7670 if (config.build_constructors)
7671 lang_undef_start_stop ();
7672
7673 /* Define .startof./.sizeof. symbols with preliminary values before
7674 dynamic symbols are created. */
7675 if (!bfd_link_relocatable (&link_info))
7676 lang_init_startof_sizeof ();
7677
7678 /* Do anything special before sizing sections. This is where ELF
7679 and other back-ends size dynamic sections. */
7680 ldemul_before_allocation ();
7681
7682 /* We must record the program headers before we try to fix the
7683 section positions, since they will affect SIZEOF_HEADERS. */
7684 lang_record_phdrs ();
7685
7686 /* Check relro sections. */
7687 if (link_info.relro && !bfd_link_relocatable (&link_info))
7688 lang_find_relro_sections ();
7689
7690 /* Size up the sections. */
7691 lang_size_sections (NULL, !RELAXATION_ENABLED);
7692
7693 /* See if anything special should be done now we know how big
7694 everything is. This is where relaxation is done. */
7695 ldemul_after_allocation ();
7696
7697 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
7698 lang_finalize_start_stop ();
7699
7700 /* Do all the assignments again, to report errors. Assignment
7701 statements are processed multiple times, updating symbols; In
7702 open_input_bfds, lang_do_assignments, and lang_size_sections.
7703 Since lang_relax_sections calls lang_do_assignments, symbols are
7704 also updated in ldemul_after_allocation. */
7705 lang_do_assignments (lang_final_phase_enum);
7706
7707 ldemul_finish ();
7708
7709 /* Convert absolute symbols to section relative. */
7710 ldexp_finalize_syms ();
7711
7712 /* Make sure that the section addresses make sense. */
7713 if (command_line.check_section_addresses)
7714 lang_check_section_addresses ();
7715
7716 /* Check any required symbols are known. */
7717 ldlang_check_require_defined_symbols ();
7718
7719 lang_end ();
7720 }
7721
7722 /* EXPORTED TO YACC */
7723
7724 void
7725 lang_add_wild (struct wildcard_spec *filespec,
7726 struct wildcard_list *section_list,
7727 bfd_boolean keep_sections)
7728 {
7729 struct wildcard_list *curr, *next;
7730 lang_wild_statement_type *new_stmt;
7731
7732 /* Reverse the list as the parser puts it back to front. */
7733 for (curr = section_list, section_list = NULL;
7734 curr != NULL;
7735 section_list = curr, curr = next)
7736 {
7737 next = curr->next;
7738 curr->next = section_list;
7739 }
7740
7741 if (filespec != NULL && filespec->name != NULL)
7742 {
7743 if (strcmp (filespec->name, "*") == 0)
7744 filespec->name = NULL;
7745 else if (!wildcardp (filespec->name))
7746 lang_has_input_file = TRUE;
7747 }
7748
7749 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7750 new_stmt->filename = NULL;
7751 new_stmt->filenames_sorted = FALSE;
7752 new_stmt->section_flag_list = NULL;
7753 new_stmt->exclude_name_list = NULL;
7754 if (filespec != NULL)
7755 {
7756 new_stmt->filename = filespec->name;
7757 new_stmt->filenames_sorted = filespec->sorted == by_name;
7758 new_stmt->section_flag_list = filespec->section_flag_list;
7759 new_stmt->exclude_name_list = filespec->exclude_name_list;
7760 }
7761 new_stmt->section_list = section_list;
7762 new_stmt->keep_sections = keep_sections;
7763 lang_list_init (&new_stmt->children);
7764 analyze_walk_wild_section_handler (new_stmt);
7765 }
7766
7767 void
7768 lang_section_start (const char *name, etree_type *address,
7769 const segment_type *segment)
7770 {
7771 lang_address_statement_type *ad;
7772
7773 ad = new_stat (lang_address_statement, stat_ptr);
7774 ad->section_name = name;
7775 ad->address = address;
7776 ad->segment = segment;
7777 }
7778
7779 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7780 because of a -e argument on the command line, or zero if this is
7781 called by ENTRY in a linker script. Command line arguments take
7782 precedence. */
7783
7784 void
7785 lang_add_entry (const char *name, bfd_boolean cmdline)
7786 {
7787 if (entry_symbol.name == NULL
7788 || cmdline
7789 || !entry_from_cmdline)
7790 {
7791 entry_symbol.name = name;
7792 entry_from_cmdline = cmdline;
7793 }
7794 }
7795
7796 /* Set the default start symbol to NAME. .em files should use this,
7797 not lang_add_entry, to override the use of "start" if neither the
7798 linker script nor the command line specifies an entry point. NAME
7799 must be permanently allocated. */
7800 void
7801 lang_default_entry (const char *name)
7802 {
7803 entry_symbol_default = name;
7804 }
7805
7806 void
7807 lang_add_target (const char *name)
7808 {
7809 lang_target_statement_type *new_stmt;
7810
7811 new_stmt = new_stat (lang_target_statement, stat_ptr);
7812 new_stmt->target = name;
7813 }
7814
7815 void
7816 lang_add_map (const char *name)
7817 {
7818 while (*name)
7819 {
7820 switch (*name)
7821 {
7822 case 'F':
7823 map_option_f = TRUE;
7824 break;
7825 }
7826 name++;
7827 }
7828 }
7829
7830 void
7831 lang_add_fill (fill_type *fill)
7832 {
7833 lang_fill_statement_type *new_stmt;
7834
7835 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7836 new_stmt->fill = fill;
7837 }
7838
7839 void
7840 lang_add_data (int type, union etree_union *exp)
7841 {
7842 lang_data_statement_type *new_stmt;
7843
7844 new_stmt = new_stat (lang_data_statement, stat_ptr);
7845 new_stmt->exp = exp;
7846 new_stmt->type = type;
7847 }
7848
7849 /* Create a new reloc statement. RELOC is the BFD relocation type to
7850 generate. HOWTO is the corresponding howto structure (we could
7851 look this up, but the caller has already done so). SECTION is the
7852 section to generate a reloc against, or NAME is the name of the
7853 symbol to generate a reloc against. Exactly one of SECTION and
7854 NAME must be NULL. ADDEND is an expression for the addend. */
7855
7856 void
7857 lang_add_reloc (bfd_reloc_code_real_type reloc,
7858 reloc_howto_type *howto,
7859 asection *section,
7860 const char *name,
7861 union etree_union *addend)
7862 {
7863 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7864
7865 p->reloc = reloc;
7866 p->howto = howto;
7867 p->section = section;
7868 p->name = name;
7869 p->addend_exp = addend;
7870
7871 p->addend_value = 0;
7872 p->output_section = NULL;
7873 p->output_offset = 0;
7874 }
7875
7876 lang_assignment_statement_type *
7877 lang_add_assignment (etree_type *exp)
7878 {
7879 lang_assignment_statement_type *new_stmt;
7880
7881 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7882 new_stmt->exp = exp;
7883 return new_stmt;
7884 }
7885
7886 void
7887 lang_add_attribute (enum statement_enum attribute)
7888 {
7889 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7890 }
7891
7892 void
7893 lang_startup (const char *name)
7894 {
7895 if (first_file->filename != NULL)
7896 {
7897 einfo (_("%F%P: multiple STARTUP files\n"));
7898 }
7899 first_file->filename = name;
7900 first_file->local_sym_name = name;
7901 first_file->flags.real = TRUE;
7902 }
7903
7904 void
7905 lang_float (bfd_boolean maybe)
7906 {
7907 lang_float_flag = maybe;
7908 }
7909
7910
7911 /* Work out the load- and run-time regions from a script statement, and
7912 store them in *LMA_REGION and *REGION respectively.
7913
7914 MEMSPEC is the name of the run-time region, or the value of
7915 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7916 LMA_MEMSPEC is the name of the load-time region, or null if the
7917 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7918 had an explicit load address.
7919
7920 It is an error to specify both a load region and a load address. */
7921
7922 static void
7923 lang_get_regions (lang_memory_region_type **region,
7924 lang_memory_region_type **lma_region,
7925 const char *memspec,
7926 const char *lma_memspec,
7927 bfd_boolean have_lma,
7928 bfd_boolean have_vma)
7929 {
7930 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7931
7932 /* If no runtime region or VMA has been specified, but the load region
7933 has been specified, then use the load region for the runtime region
7934 as well. */
7935 if (lma_memspec != NULL
7936 && !have_vma
7937 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7938 *region = *lma_region;
7939 else
7940 *region = lang_memory_region_lookup (memspec, FALSE);
7941
7942 if (have_lma && lma_memspec != 0)
7943 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
7944 NULL);
7945 }
7946
7947 void
7948 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7949 lang_output_section_phdr_list *phdrs,
7950 const char *lma_memspec)
7951 {
7952 lang_get_regions (&current_section->region,
7953 &current_section->lma_region,
7954 memspec, lma_memspec,
7955 current_section->load_base != NULL,
7956 current_section->addr_tree != NULL);
7957
7958 current_section->fill = fill;
7959 current_section->phdrs = phdrs;
7960 pop_stat_ptr ();
7961 }
7962
7963 /* Set the output format type. -oformat overrides scripts. */
7964
7965 void
7966 lang_add_output_format (const char *format,
7967 const char *big,
7968 const char *little,
7969 int from_script)
7970 {
7971 if (output_target == NULL || !from_script)
7972 {
7973 if (command_line.endian == ENDIAN_BIG
7974 && big != NULL)
7975 format = big;
7976 else if (command_line.endian == ENDIAN_LITTLE
7977 && little != NULL)
7978 format = little;
7979
7980 output_target = format;
7981 }
7982 }
7983
7984 void
7985 lang_add_insert (const char *where, int is_before)
7986 {
7987 lang_insert_statement_type *new_stmt;
7988
7989 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7990 new_stmt->where = where;
7991 new_stmt->is_before = is_before;
7992 saved_script_handle = previous_script_handle;
7993 }
7994
7995 /* Enter a group. This creates a new lang_group_statement, and sets
7996 stat_ptr to build new statements within the group. */
7997
7998 void
7999 lang_enter_group (void)
8000 {
8001 lang_group_statement_type *g;
8002
8003 g = new_stat (lang_group_statement, stat_ptr);
8004 lang_list_init (&g->children);
8005 push_stat_ptr (&g->children);
8006 }
8007
8008 /* Leave a group. This just resets stat_ptr to start writing to the
8009 regular list of statements again. Note that this will not work if
8010 groups can occur inside anything else which can adjust stat_ptr,
8011 but currently they can't. */
8012
8013 void
8014 lang_leave_group (void)
8015 {
8016 pop_stat_ptr ();
8017 }
8018
8019 /* Add a new program header. This is called for each entry in a PHDRS
8020 command in a linker script. */
8021
8022 void
8023 lang_new_phdr (const char *name,
8024 etree_type *type,
8025 bfd_boolean filehdr,
8026 bfd_boolean phdrs,
8027 etree_type *at,
8028 etree_type *flags)
8029 {
8030 struct lang_phdr *n, **pp;
8031 bfd_boolean hdrs;
8032
8033 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
8034 n->next = NULL;
8035 n->name = name;
8036 n->type = exp_get_vma (type, 0, "program header type");
8037 n->filehdr = filehdr;
8038 n->phdrs = phdrs;
8039 n->at = at;
8040 n->flags = flags;
8041
8042 hdrs = n->type == 1 && (phdrs || filehdr);
8043
8044 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8045 if (hdrs
8046 && (*pp)->type == 1
8047 && !((*pp)->filehdr || (*pp)->phdrs))
8048 {
8049 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8050 " when prior PT_LOAD headers lack them\n"), NULL);
8051 hdrs = FALSE;
8052 }
8053
8054 *pp = n;
8055 }
8056
8057 /* Record the program header information in the output BFD. FIXME: We
8058 should not be calling an ELF specific function here. */
8059
8060 static void
8061 lang_record_phdrs (void)
8062 {
8063 unsigned int alc;
8064 asection **secs;
8065 lang_output_section_phdr_list *last;
8066 struct lang_phdr *l;
8067 lang_output_section_statement_type *os;
8068
8069 alc = 10;
8070 secs = (asection **) xmalloc (alc * sizeof (asection *));
8071 last = NULL;
8072
8073 for (l = lang_phdr_list; l != NULL; l = l->next)
8074 {
8075 unsigned int c;
8076 flagword flags;
8077 bfd_vma at;
8078
8079 c = 0;
8080 for (os = &lang_os_list.head->output_section_statement;
8081 os != NULL;
8082 os = os->next)
8083 {
8084 lang_output_section_phdr_list *pl;
8085
8086 if (os->constraint < 0)
8087 continue;
8088
8089 pl = os->phdrs;
8090 if (pl != NULL)
8091 last = pl;
8092 else
8093 {
8094 if (os->sectype == noload_section
8095 || os->bfd_section == NULL
8096 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8097 continue;
8098
8099 /* Don't add orphans to PT_INTERP header. */
8100 if (l->type == 3)
8101 continue;
8102
8103 if (last == NULL)
8104 {
8105 lang_output_section_statement_type *tmp_os;
8106
8107 /* If we have not run across a section with a program
8108 header assigned to it yet, then scan forwards to find
8109 one. This prevents inconsistencies in the linker's
8110 behaviour when a script has specified just a single
8111 header and there are sections in that script which are
8112 not assigned to it, and which occur before the first
8113 use of that header. See here for more details:
8114 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8115 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8116 if (tmp_os->phdrs)
8117 {
8118 last = tmp_os->phdrs;
8119 break;
8120 }
8121 if (last == NULL)
8122 einfo (_("%F%P: no sections assigned to phdrs\n"));
8123 }
8124 pl = last;
8125 }
8126
8127 if (os->bfd_section == NULL)
8128 continue;
8129
8130 for (; pl != NULL; pl = pl->next)
8131 {
8132 if (strcmp (pl->name, l->name) == 0)
8133 {
8134 if (c >= alc)
8135 {
8136 alc *= 2;
8137 secs = (asection **) xrealloc (secs,
8138 alc * sizeof (asection *));
8139 }
8140 secs[c] = os->bfd_section;
8141 ++c;
8142 pl->used = TRUE;
8143 }
8144 }
8145 }
8146
8147 if (l->flags == NULL)
8148 flags = 0;
8149 else
8150 flags = exp_get_vma (l->flags, 0, "phdr flags");
8151
8152 if (l->at == NULL)
8153 at = 0;
8154 else
8155 at = exp_get_vma (l->at, 0, "phdr load address");
8156
8157 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8158 l->flags != NULL, flags, l->at != NULL,
8159 at, l->filehdr, l->phdrs, c, secs))
8160 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8161 }
8162
8163 free (secs);
8164
8165 /* Make sure all the phdr assignments succeeded. */
8166 for (os = &lang_os_list.head->output_section_statement;
8167 os != NULL;
8168 os = os->next)
8169 {
8170 lang_output_section_phdr_list *pl;
8171
8172 if (os->constraint < 0
8173 || os->bfd_section == NULL)
8174 continue;
8175
8176 for (pl = os->phdrs;
8177 pl != NULL;
8178 pl = pl->next)
8179 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8180 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8181 os->name, pl->name);
8182 }
8183 }
8184
8185 /* Record a list of sections which may not be cross referenced. */
8186
8187 void
8188 lang_add_nocrossref (lang_nocrossref_type *l)
8189 {
8190 struct lang_nocrossrefs *n;
8191
8192 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8193 n->next = nocrossref_list;
8194 n->list = l;
8195 n->onlyfirst = FALSE;
8196 nocrossref_list = n;
8197
8198 /* Set notice_all so that we get informed about all symbols. */
8199 link_info.notice_all = TRUE;
8200 }
8201
8202 /* Record a section that cannot be referenced from a list of sections. */
8203
8204 void
8205 lang_add_nocrossref_to (lang_nocrossref_type *l)
8206 {
8207 lang_add_nocrossref (l);
8208 nocrossref_list->onlyfirst = TRUE;
8209 }
8210 \f
8211 /* Overlay handling. We handle overlays with some static variables. */
8212
8213 /* The overlay virtual address. */
8214 static etree_type *overlay_vma;
8215 /* And subsection alignment. */
8216 static etree_type *overlay_subalign;
8217
8218 /* An expression for the maximum section size seen so far. */
8219 static etree_type *overlay_max;
8220
8221 /* A list of all the sections in this overlay. */
8222
8223 struct overlay_list {
8224 struct overlay_list *next;
8225 lang_output_section_statement_type *os;
8226 };
8227
8228 static struct overlay_list *overlay_list;
8229
8230 /* Start handling an overlay. */
8231
8232 void
8233 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8234 {
8235 /* The grammar should prevent nested overlays from occurring. */
8236 ASSERT (overlay_vma == NULL
8237 && overlay_subalign == NULL
8238 && overlay_max == NULL);
8239
8240 overlay_vma = vma_expr;
8241 overlay_subalign = subalign;
8242 }
8243
8244 /* Start a section in an overlay. We handle this by calling
8245 lang_enter_output_section_statement with the correct VMA.
8246 lang_leave_overlay sets up the LMA and memory regions. */
8247
8248 void
8249 lang_enter_overlay_section (const char *name)
8250 {
8251 struct overlay_list *n;
8252 etree_type *size;
8253
8254 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8255 0, overlay_subalign, 0, 0, 0);
8256
8257 /* If this is the first section, then base the VMA of future
8258 sections on this one. This will work correctly even if `.' is
8259 used in the addresses. */
8260 if (overlay_list == NULL)
8261 overlay_vma = exp_nameop (ADDR, name);
8262
8263 /* Remember the section. */
8264 n = (struct overlay_list *) xmalloc (sizeof *n);
8265 n->os = current_section;
8266 n->next = overlay_list;
8267 overlay_list = n;
8268
8269 size = exp_nameop (SIZEOF, name);
8270
8271 /* Arrange to work out the maximum section end address. */
8272 if (overlay_max == NULL)
8273 overlay_max = size;
8274 else
8275 overlay_max = exp_binop (MAX_K, overlay_max, size);
8276 }
8277
8278 /* Finish a section in an overlay. There isn't any special to do
8279 here. */
8280
8281 void
8282 lang_leave_overlay_section (fill_type *fill,
8283 lang_output_section_phdr_list *phdrs)
8284 {
8285 const char *name;
8286 char *clean, *s2;
8287 const char *s1;
8288 char *buf;
8289
8290 name = current_section->name;
8291
8292 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8293 region and that no load-time region has been specified. It doesn't
8294 really matter what we say here, since lang_leave_overlay will
8295 override it. */
8296 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8297
8298 /* Define the magic symbols. */
8299
8300 clean = (char *) xmalloc (strlen (name) + 1);
8301 s2 = clean;
8302 for (s1 = name; *s1 != '\0'; s1++)
8303 if (ISALNUM (*s1) || *s1 == '_')
8304 *s2++ = *s1;
8305 *s2 = '\0';
8306
8307 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8308 sprintf (buf, "__load_start_%s", clean);
8309 lang_add_assignment (exp_provide (buf,
8310 exp_nameop (LOADADDR, name),
8311 FALSE));
8312
8313 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8314 sprintf (buf, "__load_stop_%s", clean);
8315 lang_add_assignment (exp_provide (buf,
8316 exp_binop ('+',
8317 exp_nameop (LOADADDR, name),
8318 exp_nameop (SIZEOF, name)),
8319 FALSE));
8320
8321 free (clean);
8322 }
8323
8324 /* Finish an overlay. If there are any overlay wide settings, this
8325 looks through all the sections in the overlay and sets them. */
8326
8327 void
8328 lang_leave_overlay (etree_type *lma_expr,
8329 int nocrossrefs,
8330 fill_type *fill,
8331 const char *memspec,
8332 lang_output_section_phdr_list *phdrs,
8333 const char *lma_memspec)
8334 {
8335 lang_memory_region_type *region;
8336 lang_memory_region_type *lma_region;
8337 struct overlay_list *l;
8338 lang_nocrossref_type *nocrossref;
8339
8340 lang_get_regions (&region, &lma_region,
8341 memspec, lma_memspec,
8342 lma_expr != NULL, FALSE);
8343
8344 nocrossref = NULL;
8345
8346 /* After setting the size of the last section, set '.' to end of the
8347 overlay region. */
8348 if (overlay_list != NULL)
8349 {
8350 overlay_list->os->update_dot = 1;
8351 overlay_list->os->update_dot_tree
8352 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8353 }
8354
8355 l = overlay_list;
8356 while (l != NULL)
8357 {
8358 struct overlay_list *next;
8359
8360 if (fill != NULL && l->os->fill == NULL)
8361 l->os->fill = fill;
8362
8363 l->os->region = region;
8364 l->os->lma_region = lma_region;
8365
8366 /* The first section has the load address specified in the
8367 OVERLAY statement. The rest are worked out from that.
8368 The base address is not needed (and should be null) if
8369 an LMA region was specified. */
8370 if (l->next == 0)
8371 {
8372 l->os->load_base = lma_expr;
8373 l->os->sectype = first_overlay_section;
8374 }
8375 if (phdrs != NULL && l->os->phdrs == NULL)
8376 l->os->phdrs = phdrs;
8377
8378 if (nocrossrefs)
8379 {
8380 lang_nocrossref_type *nc;
8381
8382 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8383 nc->name = l->os->name;
8384 nc->next = nocrossref;
8385 nocrossref = nc;
8386 }
8387
8388 next = l->next;
8389 free (l);
8390 l = next;
8391 }
8392
8393 if (nocrossref != NULL)
8394 lang_add_nocrossref (nocrossref);
8395
8396 overlay_vma = NULL;
8397 overlay_list = NULL;
8398 overlay_max = NULL;
8399 overlay_subalign = NULL;
8400 }
8401 \f
8402 /* Version handling. This is only useful for ELF. */
8403
8404 /* If PREV is NULL, return first version pattern matching particular symbol.
8405 If PREV is non-NULL, return first version pattern matching particular
8406 symbol after PREV (previously returned by lang_vers_match). */
8407
8408 static struct bfd_elf_version_expr *
8409 lang_vers_match (struct bfd_elf_version_expr_head *head,
8410 struct bfd_elf_version_expr *prev,
8411 const char *sym)
8412 {
8413 const char *c_sym;
8414 const char *cxx_sym = sym;
8415 const char *java_sym = sym;
8416 struct bfd_elf_version_expr *expr = NULL;
8417 enum demangling_styles curr_style;
8418
8419 curr_style = CURRENT_DEMANGLING_STYLE;
8420 cplus_demangle_set_style (no_demangling);
8421 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8422 if (!c_sym)
8423 c_sym = sym;
8424 cplus_demangle_set_style (curr_style);
8425
8426 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8427 {
8428 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8429 DMGL_PARAMS | DMGL_ANSI);
8430 if (!cxx_sym)
8431 cxx_sym = sym;
8432 }
8433 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8434 {
8435 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8436 if (!java_sym)
8437 java_sym = sym;
8438 }
8439
8440 if (head->htab && (prev == NULL || prev->literal))
8441 {
8442 struct bfd_elf_version_expr e;
8443
8444 switch (prev ? prev->mask : 0)
8445 {
8446 case 0:
8447 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8448 {
8449 e.pattern = c_sym;
8450 expr = (struct bfd_elf_version_expr *)
8451 htab_find ((htab_t) head->htab, &e);
8452 while (expr && strcmp (expr->pattern, c_sym) == 0)
8453 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8454 goto out_ret;
8455 else
8456 expr = expr->next;
8457 }
8458 /* Fallthrough */
8459 case BFD_ELF_VERSION_C_TYPE:
8460 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8461 {
8462 e.pattern = cxx_sym;
8463 expr = (struct bfd_elf_version_expr *)
8464 htab_find ((htab_t) head->htab, &e);
8465 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8466 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8467 goto out_ret;
8468 else
8469 expr = expr->next;
8470 }
8471 /* Fallthrough */
8472 case BFD_ELF_VERSION_CXX_TYPE:
8473 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8474 {
8475 e.pattern = java_sym;
8476 expr = (struct bfd_elf_version_expr *)
8477 htab_find ((htab_t) head->htab, &e);
8478 while (expr && strcmp (expr->pattern, java_sym) == 0)
8479 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8480 goto out_ret;
8481 else
8482 expr = expr->next;
8483 }
8484 /* Fallthrough */
8485 default:
8486 break;
8487 }
8488 }
8489
8490 /* Finally, try the wildcards. */
8491 if (prev == NULL || prev->literal)
8492 expr = head->remaining;
8493 else
8494 expr = prev->next;
8495 for (; expr; expr = expr->next)
8496 {
8497 const char *s;
8498
8499 if (!expr->pattern)
8500 continue;
8501
8502 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8503 break;
8504
8505 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8506 s = java_sym;
8507 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8508 s = cxx_sym;
8509 else
8510 s = c_sym;
8511 if (fnmatch (expr->pattern, s, 0) == 0)
8512 break;
8513 }
8514
8515 out_ret:
8516 if (c_sym != sym)
8517 free ((char *) c_sym);
8518 if (cxx_sym != sym)
8519 free ((char *) cxx_sym);
8520 if (java_sym != sym)
8521 free ((char *) java_sym);
8522 return expr;
8523 }
8524
8525 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8526 return a pointer to the symbol name with any backslash quotes removed. */
8527
8528 static const char *
8529 realsymbol (const char *pattern)
8530 {
8531 const char *p;
8532 bfd_boolean changed = FALSE, backslash = FALSE;
8533 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8534
8535 for (p = pattern, s = symbol; *p != '\0'; ++p)
8536 {
8537 /* It is a glob pattern only if there is no preceding
8538 backslash. */
8539 if (backslash)
8540 {
8541 /* Remove the preceding backslash. */
8542 *(s - 1) = *p;
8543 backslash = FALSE;
8544 changed = TRUE;
8545 }
8546 else
8547 {
8548 if (*p == '?' || *p == '*' || *p == '[')
8549 {
8550 free (symbol);
8551 return NULL;
8552 }
8553
8554 *s++ = *p;
8555 backslash = *p == '\\';
8556 }
8557 }
8558
8559 if (changed)
8560 {
8561 *s = '\0';
8562 return symbol;
8563 }
8564 else
8565 {
8566 free (symbol);
8567 return pattern;
8568 }
8569 }
8570
8571 /* This is called for each variable name or match expression. NEW_NAME is
8572 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
8573 pattern to be matched against symbol names. */
8574
8575 struct bfd_elf_version_expr *
8576 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
8577 const char *new_name,
8578 const char *lang,
8579 bfd_boolean literal_p)
8580 {
8581 struct bfd_elf_version_expr *ret;
8582
8583 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
8584 ret->next = orig;
8585 ret->symver = 0;
8586 ret->script = 0;
8587 ret->literal = TRUE;
8588 ret->pattern = literal_p ? new_name : realsymbol (new_name);
8589 if (ret->pattern == NULL)
8590 {
8591 ret->pattern = new_name;
8592 ret->literal = FALSE;
8593 }
8594
8595 if (lang == NULL || strcasecmp (lang, "C") == 0)
8596 ret->mask = BFD_ELF_VERSION_C_TYPE;
8597 else if (strcasecmp (lang, "C++") == 0)
8598 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
8599 else if (strcasecmp (lang, "Java") == 0)
8600 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
8601 else
8602 {
8603 einfo (_("%X%P: unknown language `%s' in version information\n"),
8604 lang);
8605 ret->mask = BFD_ELF_VERSION_C_TYPE;
8606 }
8607
8608 return ldemul_new_vers_pattern (ret);
8609 }
8610
8611 /* This is called for each set of variable names and match
8612 expressions. */
8613
8614 struct bfd_elf_version_tree *
8615 lang_new_vers_node (struct bfd_elf_version_expr *globals,
8616 struct bfd_elf_version_expr *locals)
8617 {
8618 struct bfd_elf_version_tree *ret;
8619
8620 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
8621 ret->globals.list = globals;
8622 ret->locals.list = locals;
8623 ret->match = lang_vers_match;
8624 ret->name_indx = (unsigned int) -1;
8625 return ret;
8626 }
8627
8628 /* This static variable keeps track of version indices. */
8629
8630 static int version_index;
8631
8632 static hashval_t
8633 version_expr_head_hash (const void *p)
8634 {
8635 const struct bfd_elf_version_expr *e =
8636 (const struct bfd_elf_version_expr *) p;
8637
8638 return htab_hash_string (e->pattern);
8639 }
8640
8641 static int
8642 version_expr_head_eq (const void *p1, const void *p2)
8643 {
8644 const struct bfd_elf_version_expr *e1 =
8645 (const struct bfd_elf_version_expr *) p1;
8646 const struct bfd_elf_version_expr *e2 =
8647 (const struct bfd_elf_version_expr *) p2;
8648
8649 return strcmp (e1->pattern, e2->pattern) == 0;
8650 }
8651
8652 static void
8653 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8654 {
8655 size_t count = 0;
8656 struct bfd_elf_version_expr *e, *next;
8657 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8658
8659 for (e = head->list; e; e = e->next)
8660 {
8661 if (e->literal)
8662 count++;
8663 head->mask |= e->mask;
8664 }
8665
8666 if (count)
8667 {
8668 head->htab = htab_create (count * 2, version_expr_head_hash,
8669 version_expr_head_eq, NULL);
8670 list_loc = &head->list;
8671 remaining_loc = &head->remaining;
8672 for (e = head->list; e; e = next)
8673 {
8674 next = e->next;
8675 if (!e->literal)
8676 {
8677 *remaining_loc = e;
8678 remaining_loc = &e->next;
8679 }
8680 else
8681 {
8682 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8683
8684 if (*loc)
8685 {
8686 struct bfd_elf_version_expr *e1, *last;
8687
8688 e1 = (struct bfd_elf_version_expr *) *loc;
8689 last = NULL;
8690 do
8691 {
8692 if (e1->mask == e->mask)
8693 {
8694 last = NULL;
8695 break;
8696 }
8697 last = e1;
8698 e1 = e1->next;
8699 }
8700 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8701
8702 if (last == NULL)
8703 {
8704 /* This is a duplicate. */
8705 /* FIXME: Memory leak. Sometimes pattern is not
8706 xmalloced alone, but in larger chunk of memory. */
8707 /* free (e->pattern); */
8708 free (e);
8709 }
8710 else
8711 {
8712 e->next = last->next;
8713 last->next = e;
8714 }
8715 }
8716 else
8717 {
8718 *loc = e;
8719 *list_loc = e;
8720 list_loc = &e->next;
8721 }
8722 }
8723 }
8724 *remaining_loc = NULL;
8725 *list_loc = head->remaining;
8726 }
8727 else
8728 head->remaining = head->list;
8729 }
8730
8731 /* This is called when we know the name and dependencies of the
8732 version. */
8733
8734 void
8735 lang_register_vers_node (const char *name,
8736 struct bfd_elf_version_tree *version,
8737 struct bfd_elf_version_deps *deps)
8738 {
8739 struct bfd_elf_version_tree *t, **pp;
8740 struct bfd_elf_version_expr *e1;
8741
8742 if (name == NULL)
8743 name = "";
8744
8745 if (link_info.version_info != NULL
8746 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8747 {
8748 einfo (_("%X%P: anonymous version tag cannot be combined"
8749 " with other version tags\n"));
8750 free (version);
8751 return;
8752 }
8753
8754 /* Make sure this node has a unique name. */
8755 for (t = link_info.version_info; t != NULL; t = t->next)
8756 if (strcmp (t->name, name) == 0)
8757 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8758
8759 lang_finalize_version_expr_head (&version->globals);
8760 lang_finalize_version_expr_head (&version->locals);
8761
8762 /* Check the global and local match names, and make sure there
8763 aren't any duplicates. */
8764
8765 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8766 {
8767 for (t = link_info.version_info; t != NULL; t = t->next)
8768 {
8769 struct bfd_elf_version_expr *e2;
8770
8771 if (t->locals.htab && e1->literal)
8772 {
8773 e2 = (struct bfd_elf_version_expr *)
8774 htab_find ((htab_t) t->locals.htab, e1);
8775 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8776 {
8777 if (e1->mask == e2->mask)
8778 einfo (_("%X%P: duplicate expression `%s'"
8779 " in version information\n"), e1->pattern);
8780 e2 = e2->next;
8781 }
8782 }
8783 else if (!e1->literal)
8784 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8785 if (strcmp (e1->pattern, e2->pattern) == 0
8786 && e1->mask == e2->mask)
8787 einfo (_("%X%P: duplicate expression `%s'"
8788 " in version information\n"), e1->pattern);
8789 }
8790 }
8791
8792 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8793 {
8794 for (t = link_info.version_info; t != NULL; t = t->next)
8795 {
8796 struct bfd_elf_version_expr *e2;
8797
8798 if (t->globals.htab && e1->literal)
8799 {
8800 e2 = (struct bfd_elf_version_expr *)
8801 htab_find ((htab_t) t->globals.htab, e1);
8802 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8803 {
8804 if (e1->mask == e2->mask)
8805 einfo (_("%X%P: duplicate expression `%s'"
8806 " in version information\n"),
8807 e1->pattern);
8808 e2 = e2->next;
8809 }
8810 }
8811 else if (!e1->literal)
8812 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8813 if (strcmp (e1->pattern, e2->pattern) == 0
8814 && e1->mask == e2->mask)
8815 einfo (_("%X%P: duplicate expression `%s'"
8816 " in version information\n"), e1->pattern);
8817 }
8818 }
8819
8820 version->deps = deps;
8821 version->name = name;
8822 if (name[0] != '\0')
8823 {
8824 ++version_index;
8825 version->vernum = version_index;
8826 }
8827 else
8828 version->vernum = 0;
8829
8830 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8831 ;
8832 *pp = version;
8833 }
8834
8835 /* This is called when we see a version dependency. */
8836
8837 struct bfd_elf_version_deps *
8838 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8839 {
8840 struct bfd_elf_version_deps *ret;
8841 struct bfd_elf_version_tree *t;
8842
8843 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8844 ret->next = list;
8845
8846 for (t = link_info.version_info; t != NULL; t = t->next)
8847 {
8848 if (strcmp (t->name, name) == 0)
8849 {
8850 ret->version_needed = t;
8851 return ret;
8852 }
8853 }
8854
8855 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8856
8857 ret->version_needed = NULL;
8858 return ret;
8859 }
8860
8861 static void
8862 lang_do_version_exports_section (void)
8863 {
8864 struct bfd_elf_version_expr *greg = NULL, *lreg;
8865
8866 LANG_FOR_EACH_INPUT_STATEMENT (is)
8867 {
8868 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8869 char *contents, *p;
8870 bfd_size_type len;
8871
8872 if (sec == NULL)
8873 continue;
8874
8875 len = sec->size;
8876 contents = (char *) xmalloc (len);
8877 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8878 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8879
8880 p = contents;
8881 while (p < contents + len)
8882 {
8883 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8884 p = strchr (p, '\0') + 1;
8885 }
8886
8887 /* Do not free the contents, as we used them creating the regex. */
8888
8889 /* Do not include this section in the link. */
8890 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8891 }
8892
8893 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8894 lang_register_vers_node (command_line.version_exports_section,
8895 lang_new_vers_node (greg, lreg), NULL);
8896 }
8897
8898 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8899
8900 static void
8901 lang_do_memory_regions (void)
8902 {
8903 lang_memory_region_type *r = lang_memory_region_list;
8904
8905 for (; r != NULL; r = r->next)
8906 {
8907 if (r->origin_exp)
8908 {
8909 exp_fold_tree_no_dot (r->origin_exp);
8910 if (expld.result.valid_p)
8911 {
8912 r->origin = expld.result.value;
8913 r->current = r->origin;
8914 }
8915 else
8916 einfo (_("%F%P: invalid origin for memory region %s\n"),
8917 r->name_list.name);
8918 }
8919 if (r->length_exp)
8920 {
8921 exp_fold_tree_no_dot (r->length_exp);
8922 if (expld.result.valid_p)
8923 r->length = expld.result.value;
8924 else
8925 einfo (_("%F%P: invalid length for memory region %s\n"),
8926 r->name_list.name);
8927 }
8928 }
8929 }
8930
8931 void
8932 lang_add_unique (const char *name)
8933 {
8934 struct unique_sections *ent;
8935
8936 for (ent = unique_section_list; ent; ent = ent->next)
8937 if (strcmp (ent->name, name) == 0)
8938 return;
8939
8940 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8941 ent->name = xstrdup (name);
8942 ent->next = unique_section_list;
8943 unique_section_list = ent;
8944 }
8945
8946 /* Append the list of dynamic symbols to the existing one. */
8947
8948 void
8949 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8950 {
8951 if (link_info.dynamic_list)
8952 {
8953 struct bfd_elf_version_expr *tail;
8954 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8955 ;
8956 tail->next = link_info.dynamic_list->head.list;
8957 link_info.dynamic_list->head.list = dynamic;
8958 }
8959 else
8960 {
8961 struct bfd_elf_dynamic_list *d;
8962
8963 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8964 d->head.list = dynamic;
8965 d->match = lang_vers_match;
8966 link_info.dynamic_list = d;
8967 }
8968 }
8969
8970 /* Append the list of C++ typeinfo dynamic symbols to the existing
8971 one. */
8972
8973 void
8974 lang_append_dynamic_list_cpp_typeinfo (void)
8975 {
8976 const char *symbols[] =
8977 {
8978 "typeinfo name for*",
8979 "typeinfo for*"
8980 };
8981 struct bfd_elf_version_expr *dynamic = NULL;
8982 unsigned int i;
8983
8984 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8985 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8986 FALSE);
8987
8988 lang_append_dynamic_list (dynamic);
8989 }
8990
8991 /* Append the list of C++ operator new and delete dynamic symbols to the
8992 existing one. */
8993
8994 void
8995 lang_append_dynamic_list_cpp_new (void)
8996 {
8997 const char *symbols[] =
8998 {
8999 "operator new*",
9000 "operator delete*"
9001 };
9002 struct bfd_elf_version_expr *dynamic = NULL;
9003 unsigned int i;
9004
9005 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9006 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9007 FALSE);
9008
9009 lang_append_dynamic_list (dynamic);
9010 }
9011
9012 /* Scan a space and/or comma separated string of features. */
9013
9014 void
9015 lang_ld_feature (char *str)
9016 {
9017 char *p, *q;
9018
9019 p = str;
9020 while (*p)
9021 {
9022 char sep;
9023 while (*p == ',' || ISSPACE (*p))
9024 ++p;
9025 if (!*p)
9026 break;
9027 q = p + 1;
9028 while (*q && *q != ',' && !ISSPACE (*q))
9029 ++q;
9030 sep = *q;
9031 *q = 0;
9032 if (strcasecmp (p, "SANE_EXPR") == 0)
9033 config.sane_expr = TRUE;
9034 else
9035 einfo (_("%X%P: unknown feature `%s'\n"), p);
9036 *q = sep;
9037 p = q;
9038 }
9039 }
9040
9041 /* Pretty print memory amount. */
9042
9043 static void
9044 lang_print_memory_size (bfd_vma sz)
9045 {
9046 if ((sz & 0x3fffffff) == 0)
9047 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9048 else if ((sz & 0xfffff) == 0)
9049 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9050 else if ((sz & 0x3ff) == 0)
9051 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9052 else
9053 printf (" %10" BFD_VMA_FMT "u B", sz);
9054 }
9055
9056 /* Implement --print-memory-usage: disply per region memory usage. */
9057
9058 void
9059 lang_print_memory_usage (void)
9060 {
9061 lang_memory_region_type *r;
9062
9063 printf ("Memory region Used Size Region Size %%age Used\n");
9064 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9065 {
9066 bfd_vma used_length = r->current - r->origin;
9067 double percent;
9068
9069 printf ("%16s: ",r->name_list.name);
9070 lang_print_memory_size (used_length);
9071 lang_print_memory_size ((bfd_vma) r->length);
9072
9073 percent = used_length * 100.0 / r->length;
9074
9075 printf (" %6.2f%%\n", percent);
9076 }
9077 }