]> git.ipfire.org Git - thirdparty/util-linux.git/blob - libfdisk/src/gpt.c
libfdisk: (gpt) use generic 'created partition' message
[thirdparty/util-linux.git] / libfdisk / src / gpt.c
1 /*
2 * Copyright (C) 2007 Karel Zak <kzak@redhat.com>
3 * Copyright (C) 2012 Davidlohr Bueso <dave@gnu.org>
4 *
5 * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1
6 * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012).
7 * Some ideas and inspiration from GNU parted and gptfdisk.
8 */
9 #include <stdio.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <inttypes.h>
13 #include <sys/stat.h>
14 #include <sys/utsname.h>
15 #include <sys/types.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 #include <errno.h>
19 #include <ctype.h>
20 #include <uuid.h>
21
22 #include "fdiskP.h"
23
24 #include "nls.h"
25 #include "crc32.h"
26 #include "blkdev.h"
27 #include "bitops.h"
28 #include "strutils.h"
29 #include "all-io.h"
30
31 #define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */
32 #define GPT_HEADER_REVISION_V1_02 0x00010200
33 #define GPT_HEADER_REVISION_V1_00 0x00010000
34 #define GPT_HEADER_REVISION_V0_99 0x00009900
35 #define GPT_HEADER_MINSZ 92 /* bytes */
36
37 #define GPT_PMBR_LBA 0
38 #define GPT_MBR_PROTECTIVE 1
39 #define GPT_MBR_HYBRID 2
40
41 #define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001
42
43 #define EFI_PMBR_OSTYPE 0xEE
44 #define MSDOS_MBR_SIGNATURE 0xAA55
45 #define GPT_PART_NAME_LEN 72 / sizeof(uint16_t)
46 #define GPT_NPARTITIONS 128
47
48 /* Globally unique identifier */
49 struct gpt_guid {
50 uint32_t time_low;
51 uint16_t time_mid;
52 uint16_t time_hi_and_version;
53 uint8_t clock_seq_hi;
54 uint8_t clock_seq_low;
55 uint8_t node[6];
56 };
57
58
59 /* only checking that the GUID is 0 is enough to verify an empty partition. */
60 #define GPT_UNUSED_ENTRY_GUID \
61 ((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, \
62 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }})
63
64 /* Linux native partition type */
65 #define GPT_DEFAULT_ENTRY_TYPE "0FC63DAF-8483-4772-8E79-3D69D8477DE4"
66
67 /*
68 * Attribute bits
69 */
70 struct gpt_attr {
71 uint64_t required_to_function:1;
72 uint64_t no_blockio_protocol:1;
73 uint64_t legacy_bios_bootable:1;
74 uint64_t reserved:45;
75 uint64_t guid_secific:16;
76 } __attribute__ ((packed));
77
78 /* The GPT Partition entry array contains an array of GPT entries. */
79 struct gpt_entry {
80 struct gpt_guid type; /* purpose and type of the partition */
81 struct gpt_guid partition_guid;
82 uint64_t lba_start;
83 uint64_t lba_end;
84 struct gpt_attr attr;
85 uint16_t name[GPT_PART_NAME_LEN];
86 } __attribute__ ((packed));
87
88 /* GPT header */
89 struct gpt_header {
90 uint64_t signature; /* header identification */
91 uint32_t revision; /* header version */
92 uint32_t size; /* in bytes */
93 uint32_t crc32; /* header CRC checksum */
94 uint32_t reserved1; /* must be 0 */
95 uint64_t my_lba; /* LBA that contains this struct (LBA 1) */
96 uint64_t alternative_lba; /* backup GPT header */
97 uint64_t first_usable_lba; /* first usable logical block for partitions */
98 uint64_t last_usable_lba; /* last usable logical block for partitions */
99 struct gpt_guid disk_guid; /* unique disk identifier */
100 uint64_t partition_entry_lba; /* stat LBA of the partition entry array */
101 uint32_t npartition_entries; /* total partition entries - normally 128 */
102 uint32_t sizeof_partition_entry; /* bytes for each GUID pt */
103 uint32_t partition_entry_array_crc32; /* partition CRC checksum */
104 uint8_t reserved2[512 - 92]; /* must be 0 */
105 } __attribute__ ((packed));
106
107 struct gpt_record {
108 uint8_t boot_indicator; /* unused by EFI, set to 0x80 for bootable */
109 uint8_t start_head; /* unused by EFI, pt start in CHS */
110 uint8_t start_sector; /* unused by EFI, pt start in CHS */
111 uint8_t start_track;
112 uint8_t os_type; /* EFI and legacy non-EFI OS types */
113 uint8_t end_head; /* unused by EFI, pt end in CHS */
114 uint8_t end_sector; /* unused by EFI, pt end in CHS */
115 uint8_t end_track; /* unused by EFI, pt end in CHS */
116 uint32_t starting_lba; /* used by EFI - start addr of the on disk pt */
117 uint32_t size_in_lba; /* used by EFI - size of pt in LBA */
118 } __attribute__ ((packed));
119
120 /* Protected MBR and legacy MBR share same structure */
121 struct gpt_legacy_mbr {
122 uint8_t boot_code[440];
123 uint32_t unique_mbr_signature;
124 uint16_t unknown;
125 struct gpt_record partition_record[4];
126 uint16_t signature;
127 } __attribute__ ((packed));
128
129 /*
130 * Here be dragons!
131 * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
132 */
133 #define DEF_GUID(_u, _n) \
134 { \
135 .typestr = (_u), \
136 .name = (_n), \
137 }
138
139 static struct fdisk_parttype gpt_parttypes[] =
140 {
141 /* Generic OS */
142 DEF_GUID("C12A7328-F81F-11D2-BA4B-00A0C93EC93B", N_("EFI System")),
143
144 DEF_GUID("024DEE41-33E7-11D3-9D69-0008C781F39F", N_("MBR partition scheme")),
145 /* Hah!IdontneedEFI */
146 DEF_GUID("21686148-6449-6E6F-744E-656564454649", N_("BIOS boot partition")),
147
148 /* Windows */
149 DEF_GUID("E3C9E316-0B5C-4DB8-817D-F92DF00215AE", N_("Microsoft reserved")),
150 DEF_GUID("EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", N_("Microsoft basic data")),
151 DEF_GUID("5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", N_("Microsoft LDM metadata")),
152 DEF_GUID("AF9B60A0-1431-4F62-BC68-3311714A69AD", N_("Microsoft LDM data")),
153 DEF_GUID("DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", N_("Windows recovery evironment")),
154 DEF_GUID("37AFFC90-EF7D-4E96-91C3-2D7AE055B174", N_("IBM General Parallel Fs")),
155
156 /* HP-UX */
157 DEF_GUID("75894C1E-3AEB-11D3-B7C1-7B03A0000000", N_("HP-UX data partition")),
158 DEF_GUID("E2A1E728-32E3-11D6-A682-7B03A0000000", N_("HP-UX service partition")),
159
160 /* Linux */
161 DEF_GUID("0FC63DAF-8483-4772-8E79-3D69D8477DE4", N_("Linux filesystem")),
162 DEF_GUID("A19D880F-05FC-4D3B-A006-743F0F84911E", N_("Linux RAID")),
163 DEF_GUID("0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", N_("Linux swap")),
164 DEF_GUID("E6D6D379-F507-44C2-A23C-238F2A3DF928", N_("Linux LVM")),
165 DEF_GUID("8DA63339-0007-60C0-C436-083AC8230908", N_("Linux reserved")),
166
167 /* FreeBSD */
168 DEF_GUID("516E7CB4-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD data")),
169 DEF_GUID("83BD6B9D-7F41-11DC-BE0B-001560B84F0F", N_("FreeBSD boot")),
170 DEF_GUID("516E7CB5-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD swap")),
171 DEF_GUID("516E7CB6-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD UFS")),
172 DEF_GUID("516E7CBA-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD ZFS")),
173 DEF_GUID("516E7CB8-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD Vinum")),
174
175 /* Apple OSX */
176 DEF_GUID("48465300-0000-11AA-AA11-00306543ECAC", N_("Apple HFS/HFS+")),
177 DEF_GUID("55465300-0000-11AA-AA11-00306543ECAC", N_("Apple UFS")),
178 DEF_GUID("52414944-0000-11AA-AA11-00306543ECAC", N_("Apple RAID")),
179 DEF_GUID("52414944-5F4F-11AA-AA11-00306543ECAC", N_("Apple RAID offline")),
180 DEF_GUID("426F6F74-0000-11AA-AA11-00306543ECAC", N_("Apple boot")),
181 DEF_GUID("4C616265-6C00-11AA-AA11-00306543ECAC", N_("Apple label")),
182 DEF_GUID("5265636F-7665-11AA-AA11-00306543ECAC", N_("Apple TV recovery")),
183 DEF_GUID("53746F72-6167-11AA-AA11-00306543ECAC", N_("Apple Core storage")),
184
185 /* Solaris */
186 DEF_GUID("6A82CB45-1DD2-11B2-99A6-080020736631", N_("Solaris boot")),
187 DEF_GUID("6A85CF4D-1DD2-11B2-99A6-080020736631", N_("Solaris root")),
188 /* same as Apple ZFS */
189 DEF_GUID("6A898CC3-1DD2-11B2-99A6-080020736631", N_("Solaris /usr & Apple ZFS")),
190 DEF_GUID("6A87C46F-1DD2-11B2-99A6-080020736631", N_("Solaris swap")),
191 DEF_GUID("6A8B642B-1DD2-11B2-99A6-080020736631", N_("Solaris backup")),
192 DEF_GUID("6A8EF2E9-1DD2-11B2-99A6-080020736631", N_("Solaris /var")),
193 DEF_GUID("6A90BA39-1DD2-11B2-99A6-080020736631", N_("Solaris /home")),
194 DEF_GUID("6A9283A5-1DD2-11B2-99A6-080020736631", N_("Solaris alternate sector")),
195 DEF_GUID("6A945A3B-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 1")),
196 DEF_GUID("6A9630D1-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 2")),
197 DEF_GUID("6A980767-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 3")),
198 DEF_GUID("6A96237F-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 4")),
199 DEF_GUID("6A8D2AC7-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 5")),
200
201 /* NetBSD */
202 DEF_GUID("49F48D32-B10E-11DC-B99B-0019D1879648", N_("NetBSD swap")),
203 DEF_GUID("49F48D5A-B10E-11DC-B99B-0019D1879648", N_("NetBSD FFS")),
204 DEF_GUID("49F48D82-B10E-11DC-B99B-0019D1879648", N_("NetBSD LFS")),
205 DEF_GUID("2DB519C4-B10E-11DC-B99B-0019D1879648", N_("NetBSD concatenated")),
206 DEF_GUID("2DB519EC-B10E-11DC-B99B-0019D1879648", N_("NetBSD encrypted")),
207 DEF_GUID("49F48DAA-B10E-11DC-B99B-0019D1879648", N_("NetBSD RAID")),
208
209 /* ChromeOS */
210 DEF_GUID("FE3A2A5D-4F32-41A7-B725-ACCC3285A309", N_("ChromeOS kernel")),
211 DEF_GUID("3CB8E202-3B7E-47DD-8A3C-7FF2A13CFCEC", N_("ChromeOS root fs")),
212 DEF_GUID("2E0A753D-9E48-43B0-8337-B15192CB1B5E", N_("ChromeOS reserved")),
213
214 /* MidnightBSD */
215 DEF_GUID("85D5E45A-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD data")),
216 DEF_GUID("85D5E45E-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD boot")),
217 DEF_GUID("85D5E45B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD swap")),
218 DEF_GUID("0394Ef8B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD UFS")),
219 DEF_GUID("85D5E45D-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD ZFS")),
220 DEF_GUID("85D5E45C-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD Vinum")),
221 };
222
223 /* gpt_entry macros */
224 #define gpt_partition_start(_e) le64_to_cpu((_e)->lba_start)
225 #define gpt_partition_end(_e) le64_to_cpu((_e)->lba_end)
226
227 /*
228 * in-memory fdisk GPT stuff
229 */
230 struct fdisk_gpt_label {
231 struct fdisk_label head; /* generic part */
232
233 /* gpt specific part */
234 struct gpt_header *pheader; /* primary header */
235 struct gpt_header *bheader; /* backup header */
236 struct gpt_entry *ents; /* entries (partitions) */
237 };
238
239 static void gpt_deinit(struct fdisk_label *lb);
240 static struct fdisk_parttype *gpt_get_partition_type(struct fdisk_context *cxt, size_t i);
241
242 static inline struct fdisk_gpt_label *self_label(struct fdisk_context *cxt)
243 {
244 return (struct fdisk_gpt_label *) cxt->label;
245 }
246
247 /*
248 * Returns the partition length, or 0 if end is before beginning.
249 */
250 static uint64_t gpt_partition_size(const struct gpt_entry *e)
251 {
252 uint64_t start = gpt_partition_start(e);
253 uint64_t end = gpt_partition_end(e);
254
255 return start > end ? 0 : end - start + 1ULL;
256 }
257
258 #ifdef CONFIG_LIBFDISK_DEBUG
259 /* prints UUID in the real byte order! */
260 static void dbgprint_uuid(const char *mesg, struct gpt_guid *guid)
261 {
262 const unsigned char *uuid = (unsigned char *) guid;
263
264 fprintf(stderr, "%s: "
265 "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x\n",
266 mesg,
267 uuid[0], uuid[1], uuid[2], uuid[3],
268 uuid[4], uuid[5],
269 uuid[6], uuid[7],
270 uuid[8], uuid[9],
271 uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],uuid[15]);
272 }
273 #endif
274
275 /*
276 * UUID is traditionally 16 byte big-endian array, except Intel EFI
277 * specification where the UUID is a structure of little-endian fields.
278 */
279 static void swap_efi_guid(struct gpt_guid *uid)
280 {
281 uid->time_low = swab32(uid->time_low);
282 uid->time_mid = swab16(uid->time_mid);
283 uid->time_hi_and_version = swab16(uid->time_hi_and_version);
284 }
285
286 static int string_to_guid(const char *in, struct gpt_guid *guid)
287 {
288 if (uuid_parse(in, (unsigned char *) guid)) /* BE */
289 return -1;
290 swap_efi_guid(guid); /* LE */
291 return 0;
292 }
293
294 static char *guid_to_string(struct gpt_guid *guid, char *out)
295 {
296 struct gpt_guid u = *guid; /* LE */
297
298 swap_efi_guid(&u); /* BE */
299 uuid_unparse_upper((unsigned char *) &u, out);
300
301 return out;
302 }
303
304 static const char *gpt_get_header_revstr(struct gpt_header *header)
305 {
306 if (!header)
307 goto unknown;
308
309 switch (header->revision) {
310 case GPT_HEADER_REVISION_V1_02:
311 return "1.2";
312 case GPT_HEADER_REVISION_V1_00:
313 return "1.0";
314 case GPT_HEADER_REVISION_V0_99:
315 return "0.99";
316 default:
317 goto unknown;
318 }
319
320 unknown:
321 return "unknown";
322 }
323
324 static inline int partition_unused(const struct gpt_entry *e)
325 {
326 return !memcmp(&e->type, &GPT_UNUSED_ENTRY_GUID,
327 sizeof(struct gpt_guid));
328 }
329
330 /*
331 * Builds a clean new valid protective MBR - will wipe out any existing data.
332 * Returns 0 on success, otherwise < 0 on error.
333 */
334 static int gpt_mknew_pmbr(struct fdisk_context *cxt)
335 {
336 struct gpt_legacy_mbr *pmbr = NULL;
337
338 if (!cxt || !cxt->firstsector)
339 return -ENOSYS;
340
341 fdisk_zeroize_firstsector(cxt);
342
343 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
344
345 pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
346 pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE;
347 pmbr->partition_record[0].start_sector = 1;
348 pmbr->partition_record[0].end_head = 0xFE;
349 pmbr->partition_record[0].end_sector = 0xFF;
350 pmbr->partition_record[0].end_track = 0xFF;
351 pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
352 pmbr->partition_record[0].size_in_lba =
353 cpu_to_le32(min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF));
354
355 return 0;
356 }
357
358 /* some universal differences between the headers */
359 static void gpt_mknew_header_common(struct fdisk_context *cxt,
360 struct gpt_header *header, uint64_t lba)
361 {
362 if (!cxt || !header)
363 return;
364
365 header->my_lba = cpu_to_le64(lba);
366
367 if (lba == GPT_PRIMARY_PARTITION_TABLE_LBA) { /* primary */
368 header->alternative_lba = cpu_to_le64(cxt->total_sectors - 1);
369 header->partition_entry_lba = cpu_to_le64(2);
370 } else { /* backup */
371 uint64_t esz = le32_to_cpu(header->npartition_entries) * sizeof(struct gpt_entry);
372 uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size;
373
374 header->alternative_lba = cpu_to_le64(GPT_PRIMARY_PARTITION_TABLE_LBA);
375 header->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects);
376 }
377 }
378
379 /*
380 * Builds a new GPT header (at sector lba) from a backup header2.
381 * If building a primary header, then backup is the secondary, and vice versa.
382 *
383 * Always pass a new (zeroized) header to build upon as we don't
384 * explicitly zero-set some values such as CRCs and reserved.
385 *
386 * Returns 0 on success, otherwise < 0 on error.
387 */
388 static int gpt_mknew_header_from_bkp(struct fdisk_context *cxt,
389 struct gpt_header *header,
390 uint64_t lba,
391 struct gpt_header *header2)
392 {
393 if (!cxt || !header || !header2)
394 return -ENOSYS;
395
396 header->signature = header2->signature;
397 header->revision = header2->revision;
398 header->size = header2->size;
399 header->npartition_entries = header2->npartition_entries;
400 header->sizeof_partition_entry = header2->sizeof_partition_entry;
401 header->first_usable_lba = header2->first_usable_lba;
402 header->last_usable_lba = header2->last_usable_lba;
403
404 memcpy(&header->disk_guid,
405 &header2->disk_guid, sizeof(header2->disk_guid));
406 gpt_mknew_header_common(cxt, header, lba);
407
408 return 0;
409 }
410
411 /*
412 * Builds a clean new GPT header (currently under revision 1.0).
413 *
414 * Always pass a new (zeroized) header to build upon as we don't
415 * explicitly zero-set some values such as CRCs and reserved.
416 *
417 * Returns 0 on success, otherwise < 0 on error.
418 */
419 static int gpt_mknew_header(struct fdisk_context *cxt,
420 struct gpt_header *header, uint64_t lba)
421 {
422 uint64_t esz = 0, first, last;
423
424 if (!cxt || !header)
425 return -ENOSYS;
426
427 esz = sizeof(struct gpt_entry) * GPT_NPARTITIONS / cxt->sector_size;
428
429 header->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
430 header->revision = cpu_to_le32(GPT_HEADER_REVISION_V1_00);
431 header->size = cpu_to_le32(sizeof(struct gpt_header));
432
433 /*
434 * 128 partitions is the default. It can go behond this, however,
435 * we're creating a de facto header here, so no funny business.
436 */
437 header->npartition_entries = cpu_to_le32(GPT_NPARTITIONS);
438 header->sizeof_partition_entry = cpu_to_le32(sizeof(struct gpt_entry));
439
440 last = cxt->total_sectors - 2 - esz;
441 first = esz + 2;
442
443 if (first < cxt->first_lba && cxt->first_lba < last)
444 /* Align according to topology */
445 first = cxt->first_lba;
446
447 header->first_usable_lba = cpu_to_le64(first);
448 header->last_usable_lba = cpu_to_le64(last);
449
450 gpt_mknew_header_common(cxt, header, lba);
451 uuid_generate_random((unsigned char *) &header->disk_guid);
452 swap_efi_guid(&header->disk_guid);
453
454 return 0;
455 }
456
457 /*
458 * Checks if there is a valid protective MBR partition table.
459 * Returns 0 if it is invalid or failure. Otherwise, return
460 * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depeding on the detection.
461 */
462 static int valid_pmbr(struct fdisk_context *cxt)
463 {
464 int i, part = 0, ret = 0; /* invalid by default */
465 struct gpt_legacy_mbr *pmbr = NULL;
466
467 if (!cxt->firstsector)
468 goto done;
469
470 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
471
472 if (le16_to_cpu(pmbr->signature) != MSDOS_MBR_SIGNATURE)
473 goto done;
474
475 /* LBA of the GPT partition header */
476 if (pmbr->partition_record[0].starting_lba !=
477 cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA))
478 goto done;
479
480 /* seems like a valid MBR was found, check DOS primary partitions */
481 for (i = 0; i < 4; i++) {
482 if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) {
483 /*
484 * Ok, we at least know that there's a protective MBR,
485 * now check if there are other partition types for
486 * hybrid MBR.
487 */
488 part = i;
489 ret = GPT_MBR_PROTECTIVE;
490 goto check_hybrid;
491 }
492 }
493 check_hybrid:
494 if (ret != GPT_MBR_PROTECTIVE)
495 goto done;
496 for (i = 0 ; i < 4; i++) {
497 if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) &&
498 (pmbr->partition_record[i].os_type != 0x00))
499 ret = GPT_MBR_HYBRID;
500 }
501
502 /*
503 * Protective MBRs take up the lesser of the whole disk
504 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
505 *
506 * Hybrid MBRs do not necessarily comply with this.
507 */
508 if (ret == GPT_MBR_PROTECTIVE) {
509 if (le32_to_cpu(pmbr->partition_record[part].size_in_lba) !=
510 min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF))
511 ret = 0;
512 }
513 done:
514 return ret;
515 }
516
517 static uint64_t last_lba(struct fdisk_context *cxt)
518 {
519 struct stat s;
520
521 memset(&s, 0, sizeof(s));
522 if (fstat(cxt->dev_fd, &s) == -1) {
523 fdisk_warn(cxt, _("gpt: stat() failed"));
524 return 0;
525 }
526
527 if (S_ISBLK(s.st_mode))
528 return cxt->total_sectors - 1;
529 else if (S_ISREG(s.st_mode)) {
530 uint64_t sectors = s.st_size >> cxt->sector_size;
531 return (sectors / cxt->sector_size) - 1ULL;
532 } else
533 fdisk_warnx(cxt, _("gpt: cannot handle files with mode %o"), s.st_mode);
534 return 0;
535 }
536
537 static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba,
538 void *buffer, const size_t bytes)
539 {
540 off_t offset = lba * cxt->sector_size;
541
542 if (lseek(cxt->dev_fd, offset, SEEK_SET) == (off_t) -1)
543 return -1;
544 return read(cxt->dev_fd, buffer, bytes) != bytes;
545 }
546
547
548 /* Returns the GPT entry array */
549 static struct gpt_entry *gpt_read_entries(struct fdisk_context *cxt,
550 struct gpt_header *header)
551 {
552 ssize_t sz;
553 struct gpt_entry *ret = NULL;
554 off_t offset;
555
556 assert(cxt);
557 assert(header);
558
559 sz = le32_to_cpu(header->npartition_entries) *
560 le32_to_cpu(header->sizeof_partition_entry);
561
562 ret = calloc(1, sz);
563 if (!ret)
564 return NULL;
565 offset = le64_to_cpu(header->partition_entry_lba) *
566 cxt->sector_size;
567
568 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
569 goto fail;
570 if (sz != read(cxt->dev_fd, ret, sz))
571 goto fail;
572
573 return ret;
574
575 fail:
576 free(ret);
577 return NULL;
578 }
579
580 static inline uint32_t count_crc32(const unsigned char *buf, size_t len)
581 {
582 return (crc32(~0L, buf, len) ^ ~0L);
583 }
584
585 /*
586 * Recompute header and partition array 32bit CRC checksums.
587 * This function does not fail - if there's corruption, then it
588 * will be reported when checksuming it again (ie: probing or verify).
589 */
590 static void gpt_recompute_crc(struct gpt_header *header, struct gpt_entry *ents)
591 {
592 uint32_t crc = 0;
593 size_t entry_sz = 0;
594
595 if (!header)
596 return;
597
598 /* header CRC */
599 header->crc32 = 0;
600 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
601 header->crc32 = cpu_to_le32(crc);
602
603 /* partition entry array CRC */
604 header->partition_entry_array_crc32 = 0;
605 entry_sz = le32_to_cpu(header->npartition_entries) *
606 le32_to_cpu(header->sizeof_partition_entry);
607
608 crc = count_crc32((unsigned char *) ents, entry_sz);
609 header->partition_entry_array_crc32 = cpu_to_le32(crc);
610 }
611
612 /*
613 * Compute the 32bit CRC checksum of the partition table header.
614 * Returns 1 if it is valid, otherwise 0.
615 */
616 static int gpt_check_header_crc(struct gpt_header *header, struct gpt_entry *ents)
617 {
618 uint32_t crc, orgcrc = le32_to_cpu(header->crc32);
619
620 header->crc32 = 0;
621 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
622 header->crc32 = cpu_to_le32(orgcrc);
623
624 if (crc == le32_to_cpu(header->crc32))
625 return 1;
626
627 /*
628 * If we have checksum mismatch it may be due to stale data,
629 * like a partition being added or deleted. Recompute the CRC again
630 * and make sure this is not the case.
631 */
632 if (ents) {
633 gpt_recompute_crc(header, ents);
634 orgcrc = le32_to_cpu(header->crc32);
635 header->crc32 = 0;
636 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
637 header->crc32 = cpu_to_le32(orgcrc);
638
639 return crc == le32_to_cpu(header->crc32);
640 }
641
642 return 0;
643 }
644
645 /*
646 * It initializes the partition entry array.
647 * Returns 1 if the checksum is valid, otherwise 0.
648 */
649 static int gpt_check_entryarr_crc(struct gpt_header *header,
650 struct gpt_entry *ents)
651 {
652 int ret = 0;
653 ssize_t entry_sz;
654 uint32_t crc;
655
656 if (!header || !ents)
657 goto done;
658
659 entry_sz = le32_to_cpu(header->npartition_entries) *
660 le32_to_cpu(header->sizeof_partition_entry);
661
662 if (!entry_sz)
663 goto done;
664
665 crc = count_crc32((unsigned char *) ents, entry_sz);
666 ret = (crc == le32_to_cpu(header->partition_entry_array_crc32));
667 done:
668 return ret;
669 }
670
671 static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header)
672 {
673 int ret = 0;
674 uint64_t lu, fu, lastlba = last_lba(cxt);
675
676 fu = le64_to_cpu(header->first_usable_lba);
677 lu = le64_to_cpu(header->last_usable_lba);
678
679 /* check if first and last usable LBA make sense */
680 if (lu < fu) {
681 DBG(LABEL, dbgprint("error: header last LBA is before first LBA"));
682 goto done;
683 }
684
685 /* check if first and last usable LBAs with the disk's last LBA */
686 if (fu > lastlba || lu > lastlba) {
687 DBG(LABEL, dbgprint("error: header LBAs are after the disk's last LBA"));
688 goto done;
689 }
690
691 /* the header has to be outside usable range */
692 if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA &&
693 GPT_PRIMARY_PARTITION_TABLE_LBA < lu) {
694 DBG(LABEL, dbgprint("error: header outside of usable range"));
695 goto done;
696 }
697
698 ret = 1; /* sane */
699 done:
700 return ret;
701 }
702
703 /* Check if there is a valid header signature */
704 static int gpt_check_signature(struct gpt_header *header)
705 {
706 return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE);
707 }
708
709 /*
710 * Return the specified GPT Header, or NULL upon failure/invalid.
711 * Note that all tests must pass to ensure a valid header,
712 * we do not rely on only testing the signature for a valid probe.
713 */
714 static struct gpt_header *gpt_read_header(struct fdisk_context *cxt,
715 uint64_t lba,
716 struct gpt_entry **_ents)
717 {
718 struct gpt_header *header = NULL;
719 struct gpt_entry *ents = NULL;
720 uint32_t hsz;
721
722 if (!cxt)
723 return NULL;
724
725 header = calloc(1, sizeof(*header));
726 if (!header)
727 return NULL;
728
729 /* read and verify header */
730 if (read_lba(cxt, lba, header, sizeof(struct gpt_header)) != 0)
731 goto invalid;
732
733 if (!gpt_check_signature(header))
734 goto invalid;
735
736 if (!gpt_check_header_crc(header, NULL))
737 goto invalid;
738
739 /* read and verify entries */
740 ents = gpt_read_entries(cxt, header);
741 if (!ents)
742 goto invalid;
743
744 if (!gpt_check_entryarr_crc(header, ents))
745 goto invalid;
746
747 if (!gpt_check_lba_sanity(cxt, header))
748 goto invalid;
749
750 /* valid header must be at MyLBA */
751 if (le64_to_cpu(header->my_lba) != lba)
752 goto invalid;
753
754 /* make sure header size is between 92 and sector size bytes */
755 hsz = le32_to_cpu(header->size);
756 if (hsz < GPT_HEADER_MINSZ || hsz > cxt->sector_size)
757 goto invalid;
758
759 if (_ents)
760 *_ents = ents;
761 else
762 free(ents);
763
764 return header;
765 invalid:
766 free(header);
767 free(ents);
768 return NULL;
769 }
770
771 /*
772 * Returns the number of partitions that are in use.
773 */
774 static unsigned partitions_in_use(struct gpt_header *header, struct gpt_entry *e)
775 {
776 uint32_t i, used = 0;
777
778 if (!header || ! e)
779 return 0;
780
781 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
782 if (!partition_unused(&e[i]))
783 used++;
784 return used;
785 }
786
787
788 /*
789 * Check if a partition is too big for the disk (sectors).
790 * Returns the faulting partition number, otherwise 0.
791 */
792 static uint32_t partition_check_too_big(struct gpt_header *header,
793 struct gpt_entry *e, uint64_t sectors)
794 {
795 uint32_t i;
796
797 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
798 if (partition_unused(&e[i]))
799 continue;
800 if (gpt_partition_end(&e[i]) >= sectors)
801 return i + 1;
802 }
803
804 return 0;
805 }
806
807 /*
808 * Check if a partition ends before it begins
809 * Returns the faulting partition number, otherwise 0.
810 */
811 static uint32_t partition_start_after_end(struct gpt_header *header, struct gpt_entry *e)
812 {
813 uint32_t i;
814
815 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
816 if (partition_unused(&e[i]))
817 continue;
818 if (gpt_partition_start(&e[i]) > gpt_partition_end(&e[i]))
819 return i + 1;
820 }
821
822 return 0;
823 }
824
825 /*
826 * Check if partition e1 overlaps with partition e2
827 */
828 static inline int partition_overlap(struct gpt_entry *e1, struct gpt_entry *e2)
829 {
830 uint64_t start1 = gpt_partition_start(e1);
831 uint64_t end1 = gpt_partition_end(e1);
832 uint64_t start2 = gpt_partition_start(e2);
833 uint64_t end2 = gpt_partition_end(e2);
834
835 return (start1 && start2 && (start1 <= end2) != (end1 < start2));
836 }
837
838 /*
839 * Find any paritions that overlap.
840 */
841 static uint32_t partition_check_overlaps(struct gpt_header *header, struct gpt_entry *e)
842 {
843 uint32_t i, j;
844
845 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
846 for (j = 0; j < i; j++) {
847 if (partition_unused(&e[i]) ||
848 partition_unused(&e[j]))
849 continue;
850 if (partition_overlap(&e[i], &e[j])) {
851 DBG(LABEL, dbgprint("GPT partitions overlap detected [%u vs. %u]", i, j));
852 return i + 1;
853 }
854 }
855
856 return 0;
857 }
858
859 /*
860 * Find the first available block after the starting point; returns 0 if
861 * there are no available blocks left, or error. From gdisk.
862 */
863 static uint64_t find_first_available(struct gpt_header *header,
864 struct gpt_entry *e, uint64_t start)
865 {
866 uint64_t first;
867 uint32_t i, first_moved = 0;
868
869 uint64_t fu, lu;
870
871 if (!header || !e)
872 return 0;
873
874 fu = le64_to_cpu(header->first_usable_lba);
875 lu = le64_to_cpu(header->last_usable_lba);
876
877 /*
878 * Begin from the specified starting point or from the first usable
879 * LBA, whichever is greater...
880 */
881 first = start < fu ? fu : start;
882
883 /*
884 * Now search through all partitions; if first is within an
885 * existing partition, move it to the next sector after that
886 * partition and repeat. If first was moved, set firstMoved
887 * flag; repeat until firstMoved is not set, so as to catch
888 * cases where partitions are out of sequential order....
889 */
890 do {
891 first_moved = 0;
892 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
893 if (partition_unused(&e[i]))
894 continue;
895 if (first < gpt_partition_start(&e[i]))
896 continue;
897 if (first <= gpt_partition_end(&e[i])) {
898 first = gpt_partition_end(&e[i]) + 1;
899 first_moved = 1;
900 }
901 }
902 } while (first_moved == 1);
903
904 if (first > lu)
905 first = 0;
906
907 return first;
908 }
909
910
911 /* Returns last available sector in the free space pointed to by start. From gdisk. */
912 static uint64_t find_last_free(struct gpt_header *header,
913 struct gpt_entry *e, uint64_t start)
914 {
915 uint32_t i;
916 uint64_t nearest_start;
917
918 if (!header || !e)
919 return 0;
920
921 nearest_start = le64_to_cpu(header->last_usable_lba);
922
923 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
924 uint64_t ps = gpt_partition_start(&e[i]);
925
926 if (nearest_start > ps && ps > start)
927 nearest_start = ps - 1;
928 }
929
930 return nearest_start;
931 }
932
933 /* Returns the last free sector on the disk. From gdisk. */
934 static uint64_t find_last_free_sector(struct gpt_header *header,
935 struct gpt_entry *e)
936 {
937 uint32_t i, last_moved;
938 uint64_t last = 0;
939
940 if (!header || !e)
941 goto done;
942
943 /* start by assuming the last usable LBA is available */
944 last = le64_to_cpu(header->last_usable_lba);
945 do {
946 last_moved = 0;
947 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
948 if ((last >= gpt_partition_start(&e[i])) &&
949 (last <= gpt_partition_end(&e[i]))) {
950 last = gpt_partition_start(&e[i]) - 1;
951 last_moved = 1;
952 }
953 }
954 } while (last_moved == 1);
955 done:
956 return last;
957 }
958
959 /*
960 * Finds the first available sector in the largest block of unallocated
961 * space on the disk. Returns 0 if there are no available blocks left.
962 * From gdisk.
963 */
964 static uint64_t find_first_in_largest(struct gpt_header *header, struct gpt_entry *e)
965 {
966 uint64_t start = 0, first_sect, last_sect;
967 uint64_t segment_size, selected_size = 0, selected_segment = 0;
968
969 if (!header || !e)
970 goto done;
971
972 do {
973 first_sect = find_first_available(header, e, start);
974 if (first_sect != 0) {
975 last_sect = find_last_free(header, e, first_sect);
976 segment_size = last_sect - first_sect + 1;
977
978 if (segment_size > selected_size) {
979 selected_size = segment_size;
980 selected_segment = first_sect;
981 }
982 start = last_sect + 1;
983 }
984 } while (first_sect != 0);
985
986 done:
987 return selected_segment;
988 }
989
990 /*
991 * Find the total number of free sectors, the number of segments in which
992 * they reside, and the size of the largest of those segments. From gdisk.
993 */
994 static uint64_t get_free_sectors(struct fdisk_context *cxt, struct gpt_header *header,
995 struct gpt_entry *e, uint32_t *nsegments,
996 uint64_t *largest_segment)
997 {
998 uint32_t num = 0;
999 uint64_t first_sect, last_sect;
1000 uint64_t largest_seg = 0, segment_sz;
1001 uint64_t totfound = 0, start = 0; /* starting point for each search */
1002
1003 if (!cxt->total_sectors)
1004 goto done;
1005
1006 do {
1007 first_sect = find_first_available(header, e, start);
1008 if (first_sect) {
1009 last_sect = find_last_free(header, e, first_sect);
1010 segment_sz = last_sect - first_sect + 1;
1011
1012 if (segment_sz > largest_seg)
1013 largest_seg = segment_sz;
1014 totfound += segment_sz;
1015 num++;
1016 start = last_sect + 1;
1017 }
1018 } while (first_sect);
1019
1020 done:
1021 if (nsegments)
1022 *nsegments = num;
1023 if (largest_segment)
1024 *largest_segment = largest_seg;
1025
1026 return totfound;
1027 }
1028
1029 static int gpt_probe_label(struct fdisk_context *cxt)
1030 {
1031 int mbr_type;
1032 struct fdisk_gpt_label *gpt;
1033
1034 assert(cxt);
1035 assert(cxt->label);
1036 assert(fdisk_is_disklabel(cxt, GPT));
1037
1038 gpt = self_label(cxt);
1039
1040 mbr_type = valid_pmbr(cxt);
1041 if (!mbr_type)
1042 goto failed;
1043
1044 DBG(LABEL, dbgprint("found a %s MBR", mbr_type == GPT_MBR_PROTECTIVE ?
1045 "protective" : "hybrid"));
1046
1047 /* primary header */
1048 gpt->pheader = gpt_read_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA,
1049 &gpt->ents);
1050
1051 /*
1052 * TODO: If the primary GPT is corrupt, we must check the last LBA of the
1053 * device to see if it has a valid GPT Header and point to a valid GPT
1054 * Partition Entry Array.
1055 * If it points to a valid GPT Partition Entry Array, then software should
1056 * restore the primary GPT if allowed by platform policy settings.
1057 *
1058 * For now we just abort GPT probing!
1059 */
1060 if (!gpt->pheader || !gpt->ents)
1061 goto failed;
1062
1063 /* OK, probing passed, now initialize backup header and fdisk variables. */
1064 gpt->bheader = gpt_read_header(cxt, last_lba(cxt), NULL);
1065
1066 cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
1067 cxt->label->nparts_cur = partitions_in_use(gpt->pheader, gpt->ents);
1068
1069 fdisk_warnx(cxt, _("WARNING: fdisk GPT support is currently new, and therefore "
1070 "in an experimental phase. Use at your own discretion."));
1071
1072 return 1;
1073 failed:
1074 DBG(LABEL, dbgprint("GPT probe failed"));
1075 gpt_deinit(cxt->label);
1076 return 0;
1077 }
1078
1079 /*
1080 * Stolen from libblkid - can be removed once partition semantics
1081 * are added to the fdisk API.
1082 */
1083 static char *encode_to_utf8(unsigned char *src, size_t count)
1084 {
1085 uint16_t c;
1086 char *dest;
1087 size_t i, j, len = count;
1088
1089 dest = calloc(1, count);
1090 if (!dest)
1091 return NULL;
1092
1093 for (j = i = 0; i + 2 <= count; i += 2) {
1094 /* always little endian */
1095 c = (src[i+1] << 8) | src[i];
1096 if (c == 0) {
1097 dest[j] = '\0';
1098 break;
1099 } else if (c < 0x80) {
1100 if (j+1 >= len)
1101 break;
1102 dest[j++] = (uint8_t) c;
1103 } else if (c < 0x800) {
1104 if (j+2 >= len)
1105 break;
1106 dest[j++] = (uint8_t) (0xc0 | (c >> 6));
1107 dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
1108 } else {
1109 if (j+3 >= len)
1110 break;
1111 dest[j++] = (uint8_t) (0xe0 | (c >> 12));
1112 dest[j++] = (uint8_t) (0x80 | ((c >> 6) & 0x3f));
1113 dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
1114 }
1115 }
1116 dest[j] = '\0';
1117
1118 return dest;
1119 }
1120
1121 /*
1122 * List label partitions.
1123 * This function must currently exist to comply with standard fdisk
1124 * requirements, but once partition semantics are added to the fdisk
1125 * API it can be removed for custom implementation (see gpt_label struct).
1126 */
1127 static int gpt_list_disklabel(struct fdisk_context *cxt)
1128 {
1129 int rc, trunc = TT_FL_TRUNC;
1130 uint32_t i;
1131 struct fdisk_gpt_label *gpt;
1132 struct gpt_header *h;
1133 uint64_t fu;
1134 uint64_t lu;
1135 struct tt *tb = NULL;
1136
1137 assert(cxt);
1138 assert(cxt->label);
1139 assert(fdisk_is_disklabel(cxt, GPT));
1140
1141 gpt = self_label(cxt);
1142 h = gpt->pheader;
1143 fu = le64_to_cpu(gpt->pheader->first_usable_lba);
1144 lu = le64_to_cpu(gpt->pheader->last_usable_lba);
1145
1146 tb = tt_new_table(TT_FL_FREEDATA);
1147 if (!tb)
1148 return -ENOMEM;
1149
1150 /* don't trunc anything in expert mode */
1151 if (fdisk_context_display_details(cxt)) {
1152 trunc = 0;
1153 fdisk_colon(cxt, _("First LBA: %ju"), h->first_usable_lba);
1154 fdisk_colon(cxt, _("Last LBA: %ju"), h->last_usable_lba);
1155 fdisk_colon(cxt, _("Alternative LBA: %ju"), h->alternative_lba);
1156 fdisk_colon(cxt, _("Partitions entries LBA: %ju"), h->partition_entry_lba);
1157 fdisk_colon(cxt, _("Allocated partition entries: %ju"), h->npartition_entries);
1158 }
1159 tt_define_column(tb, _("Device"), 0.1, 0);
1160 tt_define_column(tb, _("Start"), 12, TT_FL_RIGHT);
1161 tt_define_column(tb, _("End"), 12, TT_FL_RIGHT);
1162 tt_define_column(tb, _("Size"), 6, TT_FL_RIGHT);
1163 tt_define_column(tb, _("Type"), 0.1, trunc);
1164
1165 if (fdisk_context_display_details(cxt)) {
1166 tt_define_column(tb, _("UUID"), 36, 0);
1167 tt_define_column(tb, _("Name"), 0.2, trunc);
1168 }
1169
1170 for (i = 0; i < le32_to_cpu(h->npartition_entries); i++) {
1171 struct gpt_entry *e = &gpt->ents[i];
1172 char *sizestr = NULL, *p;
1173 uint64_t start = gpt_partition_start(e);
1174 uint64_t size = gpt_partition_size(e);
1175 struct fdisk_parttype *t;
1176 struct tt_line *ln;
1177 char u_str[37];
1178
1179 if (partition_unused(&gpt->ents[i]) || start == 0)
1180 continue;
1181 /* the partition has to inside usable range */
1182 if (start < fu || start + size - 1 > lu)
1183 continue;
1184 ln = tt_add_line(tb, NULL);
1185 if (!ln)
1186 continue;
1187
1188 if (fdisk_context_display_details(cxt) &&
1189 asprintf(&p, "%ju", size * cxt->sector_size) > 0)
1190 sizestr = p;
1191 else
1192 sizestr = size_to_human_string(SIZE_SUFFIX_1LETTER,
1193 size * cxt->sector_size);
1194 t = fdisk_get_partition_type(cxt, i);
1195
1196 /* basic columns */
1197 p = fdisk_partname(cxt->dev_path, i + 1);
1198 if (p)
1199 tt_line_set_data(ln, 0, p);
1200 if (asprintf(&p, "%ju", start) > 0)
1201 tt_line_set_data(ln, 1, p);
1202 if (asprintf(&p, "%ju", gpt_partition_end(e)) > 0)
1203 tt_line_set_data(ln, 2, p);
1204 if (sizestr)
1205 tt_line_set_data(ln, 3, sizestr);
1206 if (t && t->name)
1207 tt_line_set_data(ln, 4, strdup(t->name));
1208
1209 /* expert menu column(s) */
1210 if (fdisk_context_display_details(cxt)) {
1211 char *name = encode_to_utf8(
1212 (unsigned char *)e->name,
1213 sizeof(e->name));
1214
1215 if (guid_to_string(&e->partition_guid, u_str))
1216 tt_line_set_data(ln, 5, strdup(u_str));
1217 if (name)
1218 tt_line_set_data(ln, 6, name);
1219 }
1220
1221 fdisk_warn_alignment(cxt, start, i);
1222 fdisk_free_parttype(t);
1223 }
1224
1225 rc = fdisk_print_table(cxt, tb);
1226 tt_free_table(tb);
1227
1228 return rc;
1229 }
1230
1231 /*
1232 * Write partitions.
1233 * Returns 0 on success, or corresponding error otherwise.
1234 */
1235 static int gpt_write_partitions(struct fdisk_context *cxt,
1236 struct gpt_header *header, struct gpt_entry *ents)
1237 {
1238 off_t offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size;
1239 uint32_t nparts = le32_to_cpu(header->npartition_entries);
1240 uint32_t totwrite = nparts * le32_to_cpu(header->sizeof_partition_entry);
1241 ssize_t rc;
1242
1243 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1244 goto fail;
1245
1246 rc = write(cxt->dev_fd, ents, totwrite);
1247 if (rc > 0 && totwrite == (uint32_t) rc)
1248 return 0;
1249 fail:
1250 return -errno;
1251 }
1252
1253 /*
1254 * Write a GPT header to a specified LBA
1255 * Returns 0 on success, or corresponding error otherwise.
1256 */
1257 static int gpt_write_header(struct fdisk_context *cxt,
1258 struct gpt_header *header, uint64_t lba)
1259 {
1260 off_t offset = lba * cxt->sector_size;
1261
1262 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1263 goto fail;
1264 if (cxt->sector_size ==
1265 (size_t) write(cxt->dev_fd, header, cxt->sector_size))
1266 return 0;
1267 fail:
1268 return -errno;
1269 }
1270
1271 /*
1272 * Write the protective MBR.
1273 * Returns 0 on success, or corresponding error otherwise.
1274 */
1275 static int gpt_write_pmbr(struct fdisk_context *cxt)
1276 {
1277 off_t offset;
1278 struct gpt_legacy_mbr *pmbr = NULL;
1279
1280 assert(cxt);
1281 assert(cxt->firstsector);
1282
1283 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
1284
1285 /* zero out the legacy partitions */
1286 memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record));
1287
1288 pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
1289 pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE;
1290 pmbr->partition_record[0].start_sector = 1;
1291 pmbr->partition_record[0].end_head = 0xFE;
1292 pmbr->partition_record[0].end_sector = 0xFF;
1293 pmbr->partition_record[0].end_track = 0xFF;
1294 pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
1295
1296 /*
1297 * Set size_in_lba to the size of the disk minus one. If the size of the disk
1298 * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF.
1299 */
1300 if (cxt->total_sectors - 1 > 0xFFFFFFFFULL)
1301 pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF);
1302 else
1303 pmbr->partition_record[0].size_in_lba =
1304 cpu_to_le32(cxt->total_sectors - 1UL);
1305
1306 offset = GPT_PMBR_LBA * cxt->sector_size;
1307 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1308 goto fail;
1309
1310 /* pMBR covers the first sector (LBA) of the disk */
1311 if (write_all(cxt->dev_fd, pmbr, cxt->sector_size))
1312 goto fail;
1313 return 0;
1314 fail:
1315 return -errno;
1316 }
1317
1318 /*
1319 * Writes in-memory GPT and pMBR data to disk.
1320 * Returns 0 if successful write, otherwise, a corresponding error.
1321 * Any indication of error will abort the operation.
1322 */
1323 static int gpt_write_disklabel(struct fdisk_context *cxt)
1324 {
1325 struct fdisk_gpt_label *gpt;
1326
1327 assert(cxt);
1328 assert(cxt->label);
1329 assert(fdisk_is_disklabel(cxt, GPT));
1330
1331 gpt = self_label(cxt);
1332
1333 /* we do not want to mess up hybrid MBRs by creating a valid pmbr */
1334 if (valid_pmbr(cxt) == GPT_MBR_HYBRID)
1335 goto err0;
1336
1337 /* check that disk is big enough to handle the backup header */
1338 if (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors)
1339 goto err0;
1340
1341 /* check that the backup header is properly placed */
1342 if (le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1)
1343 /* TODO: correct this (with user authorization) and write */
1344 goto err0;
1345
1346 if (partition_check_overlaps(gpt->pheader, gpt->ents))
1347 goto err0;
1348
1349 /* recompute CRCs for both headers */
1350 gpt_recompute_crc(gpt->pheader, gpt->ents);
1351 gpt_recompute_crc(gpt->bheader, gpt->ents);
1352
1353 /*
1354 * UEFI requires writing in this specific order:
1355 * 1) backup partition tables
1356 * 2) backup GPT header
1357 * 3) primary partition tables
1358 * 4) primary GPT header
1359 * 5) protective MBR
1360 *
1361 * If any write fails, we abort the rest.
1362 */
1363 if (gpt_write_partitions(cxt, gpt->bheader, gpt->ents) != 0)
1364 goto err1;
1365 if (gpt_write_header(cxt, gpt->bheader,
1366 le64_to_cpu(gpt->pheader->alternative_lba)) != 0)
1367 goto err1;
1368 if (gpt_write_partitions(cxt, gpt->pheader, gpt->ents) != 0)
1369 goto err1;
1370 if (gpt_write_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0)
1371 goto err1;
1372 if (gpt_write_pmbr(cxt) != 0)
1373 goto err1;
1374
1375 DBG(LABEL, dbgprint("GPT write success"));
1376 return 0;
1377 err0:
1378 DBG(LABEL, dbgprint("GPT write failed: incorrect input"));
1379 errno = EINVAL;
1380 return -EINVAL;
1381 err1:
1382 DBG(LABEL, dbgprint("GPT write failed: %m"));
1383 return -errno;
1384 }
1385
1386 /*
1387 * Verify data integrity and report any found problems for:
1388 * - primary and backup header validations
1389 * - paritition validations
1390 */
1391 static int gpt_verify_disklabel(struct fdisk_context *cxt)
1392 {
1393 int nerror = 0;
1394 unsigned int ptnum;
1395 struct fdisk_gpt_label *gpt;
1396
1397 assert(cxt);
1398 assert(cxt->label);
1399 assert(fdisk_is_disklabel(cxt, GPT));
1400
1401 gpt = self_label(cxt);
1402
1403 if (!gpt || !gpt->bheader) {
1404 nerror++;
1405 fdisk_warnx(cxt, _("Disk does not contain a valid backup header."));
1406 }
1407
1408 if (!gpt_check_header_crc(gpt->pheader, gpt->ents)) {
1409 nerror++;
1410 fdisk_warnx(cxt, _("Invalid primary header CRC checksum."));
1411 }
1412 if (gpt->bheader && !gpt_check_header_crc(gpt->bheader, gpt->ents)) {
1413 nerror++;
1414 fdisk_warnx(cxt, _("Invalid backup header CRC checksum."));
1415 }
1416
1417 if (!gpt_check_entryarr_crc(gpt->pheader, gpt->ents)) {
1418 nerror++;
1419 fdisk_warnx(cxt, _("Invalid partition entry checksum."));
1420 }
1421
1422 if (!gpt_check_lba_sanity(cxt, gpt->pheader)) {
1423 nerror++;
1424 fdisk_warnx(cxt, _("Invalid primary header LBA sanity checks."));
1425 }
1426 if (gpt->bheader && !gpt_check_lba_sanity(cxt, gpt->bheader)) {
1427 nerror++;
1428 fdisk_warnx(cxt, _("Invalid backup header LBA sanity checks."));
1429 }
1430
1431 if (le64_to_cpu(gpt->pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) {
1432 nerror++;
1433 fdisk_warnx(cxt, _("MyLBA mismatch with real position at primary header."));
1434 }
1435 if (gpt->bheader && le64_to_cpu(gpt->bheader->my_lba) != last_lba(cxt)) {
1436 nerror++;
1437 fdisk_warnx(cxt, _("MyLBA mismatch with real position at backup header."));
1438
1439 }
1440 if (le64_to_cpu(gpt->pheader->alternative_lba) >= cxt->total_sectors) {
1441 nerror++;
1442 fdisk_warnx(cxt, _("Disk is to small to hold all data."));
1443 }
1444
1445 /*
1446 * if the GPT is the primary table, check the alternateLBA
1447 * to see if it is a valid GPT
1448 */
1449 if (gpt->bheader && (le64_to_cpu(gpt->pheader->my_lba) !=
1450 le64_to_cpu(gpt->bheader->alternative_lba))) {
1451 nerror++;
1452 fdisk_warnx(cxt, _("Primary and backup header mismatch."));
1453 }
1454
1455 ptnum = partition_check_overlaps(gpt->pheader, gpt->ents);
1456 if (ptnum) {
1457 nerror++;
1458 fdisk_warnx(cxt, _("Partition %u overlaps with partition %u."),
1459 ptnum, ptnum+1);
1460 }
1461
1462 ptnum = partition_check_too_big(gpt->pheader, gpt->ents, cxt->total_sectors);
1463 if (ptnum) {
1464 nerror++;
1465 fdisk_warnx(cxt, _("Partition %u is too big for the disk."),
1466 ptnum);
1467 }
1468
1469 ptnum = partition_start_after_end(gpt->pheader, gpt->ents);
1470 if (ptnum) {
1471 nerror++;
1472 fdisk_warnx(cxt, _("Partition %u ends before it starts."),
1473 ptnum);
1474 }
1475
1476 if (!nerror) { /* yay :-) */
1477 uint32_t nsegments = 0;
1478 uint64_t free_sectors = 0, largest_segment = 0;
1479
1480 fdisk_info(cxt, _("No errors detected."));
1481 fdisk_info(cxt, _("Header version: %s"), gpt_get_header_revstr(gpt->pheader));
1482 fdisk_info(cxt, _("Using %u out of %d partitions."),
1483 partitions_in_use(gpt->pheader, gpt->ents),
1484 le32_to_cpu(gpt->pheader->npartition_entries));
1485
1486 free_sectors = get_free_sectors(cxt, gpt->pheader, gpt->ents,
1487 &nsegments, &largest_segment);
1488 fdisk_info(cxt, _("A total of %ld free sectors available in %d segment(s) "
1489 "(largest %ld)."),
1490 free_sectors, nsegments, largest_segment);
1491 } else
1492 fdisk_warnx(cxt, _("Detected %d error(s)."), nerror);
1493
1494 return 0;
1495 }
1496
1497 /* Delete a single GPT partition, specified by partnum. */
1498 static int gpt_delete_partition(struct fdisk_context *cxt,
1499 size_t partnum)
1500 {
1501 struct fdisk_gpt_label *gpt;
1502
1503 assert(cxt);
1504 assert(cxt->label);
1505 assert(fdisk_is_disklabel(cxt, GPT));
1506
1507 gpt = self_label(cxt);
1508
1509 if (partnum >= cxt->label->nparts_max
1510 || partition_unused(&gpt->ents[partnum]))
1511 return -EINVAL;
1512
1513 /* hasta la vista, baby! */
1514 memset(&gpt->ents[partnum], 0, sizeof(struct gpt_entry));
1515 if (!partition_unused(&gpt->ents[partnum]))
1516 return -EINVAL;
1517 else {
1518 gpt_recompute_crc(gpt->pheader, gpt->ents);
1519 gpt_recompute_crc(gpt->bheader, gpt->ents);
1520 cxt->label->nparts_cur--;
1521 fdisk_label_set_changed(cxt->label, 1);
1522 }
1523
1524 return 0;
1525 }
1526
1527 static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *uuid)
1528 {
1529 e->type = *uuid;
1530 DBG(LABEL, dbgprint_uuid("new type", &(e->type)));
1531 }
1532
1533 /*
1534 * Create a new GPT partition entry, specified by partnum, and with a range
1535 * of fsect to lsenct sectors, of type t.
1536 * Returns 0 on success, or negative upon failure.
1537 */
1538 static int gpt_create_new_partition(struct fdisk_context *cxt,
1539 size_t partnum, uint64_t fsect, uint64_t lsect,
1540 struct gpt_guid *type,
1541 struct gpt_entry *entries)
1542 {
1543 struct gpt_entry *e = NULL;
1544 struct fdisk_gpt_label *gpt;
1545
1546 assert(cxt);
1547 assert(cxt->label);
1548 assert(fdisk_is_disklabel(cxt, GPT));
1549
1550 gpt = self_label(cxt);
1551
1552 if (fsect > lsect || partnum >= cxt->label->nparts_max)
1553 return -EINVAL;
1554
1555 e = calloc(1, sizeof(*e));
1556 if (!e)
1557 return -ENOMEM;
1558 e->lba_end = cpu_to_le64(lsect);
1559 e->lba_start = cpu_to_le64(fsect);
1560
1561 gpt_entry_set_type(e, type);
1562
1563 /*
1564 * Any time a new partition entry is created a new GUID must be
1565 * generated for that partition, and every partition is guaranteed
1566 * to have a unique GUID.
1567 */
1568 uuid_generate_random((unsigned char *) &e->partition_guid);
1569 swap_efi_guid(&e->partition_guid);
1570
1571 memcpy(&entries[partnum], e, sizeof(*e));
1572
1573 gpt_recompute_crc(gpt->pheader, entries);
1574 gpt_recompute_crc(gpt->bheader, entries);
1575
1576 free(e);
1577 return 0;
1578 }
1579
1580 /* Performs logical checks to add a new partition entry */
1581 static int gpt_add_partition(
1582 struct fdisk_context *cxt,
1583 size_t partnum,
1584 struct fdisk_parttype *t)
1585 {
1586 uint64_t user_f, user_l; /* user input ranges for first and last sectors */
1587 uint64_t disk_f, disk_l; /* first and last available sector ranges on device*/
1588 uint64_t dflt_f, dflt_l; /* largest segment (default) */
1589 struct gpt_guid typeid;
1590 struct fdisk_gpt_label *gpt;
1591 struct gpt_header *pheader;
1592 struct gpt_entry *ents;
1593 struct fdisk_ask *ask = NULL;
1594 int rc;
1595
1596 assert(cxt);
1597 assert(cxt->label);
1598 assert(fdisk_is_disklabel(cxt, GPT));
1599
1600 gpt = self_label(cxt);
1601
1602 if (partnum >= cxt->label->nparts_max)
1603 return -EINVAL;
1604
1605 pheader = gpt->pheader;
1606 ents = gpt->ents;
1607
1608 if (!partition_unused(&ents[partnum])) {
1609 fdisk_warnx(cxt, _("Partition %zd is already defined. "
1610 "Delete it before re-adding it."), partnum +1);
1611 return -EINVAL;
1612 }
1613 if (le32_to_cpu(pheader->npartition_entries) ==
1614 partitions_in_use(pheader, ents)) {
1615 fdisk_warnx(cxt, _("All partitions are already in use."));
1616 return -EINVAL;
1617 }
1618
1619 if (!get_free_sectors(cxt, pheader, ents, NULL, NULL)) {
1620 fdisk_warnx(cxt, _("No free sectors available."));
1621 return -ENOSPC;
1622 }
1623
1624 disk_f = find_first_available(pheader, ents, 0);
1625 disk_l = find_last_free_sector(pheader, ents);
1626
1627 /* the default is the largest free space */
1628 dflt_f = find_first_in_largest(pheader, ents);
1629 dflt_l = find_last_free(pheader, ents, dflt_f);
1630
1631 /* align the default in range <dflt_f,dflt_l>*/
1632 dflt_f = fdisk_align_lba_in_range(cxt, dflt_f, dflt_f, dflt_l);
1633
1634 string_to_guid(t && t->typestr ? t->typestr : GPT_DEFAULT_ENTRY_TYPE, &typeid);
1635
1636 /* get user input for first and last sectors of the new partition */
1637 for (;;) {
1638 if (!ask)
1639 ask = fdisk_new_ask();
1640 else
1641 fdisk_reset_ask(ask);
1642
1643 /* First sector */
1644 fdisk_ask_set_query(ask, _("First sector"));
1645 fdisk_ask_set_type(ask, FDISK_ASKTYPE_NUMBER);
1646 fdisk_ask_number_set_low(ask, disk_f); /* minimal */
1647 fdisk_ask_number_set_default(ask, dflt_f); /* default */
1648 fdisk_ask_number_set_high(ask, disk_l); /* maximal */
1649
1650 rc = fdisk_do_ask(cxt, ask);
1651 if (rc)
1652 goto done;
1653
1654 user_f = fdisk_ask_number_get_result(ask);
1655 if (user_f != find_first_available(pheader, ents, user_f)) {
1656 fdisk_warnx(cxt, _("Sector %ju already used."), user_f);
1657 continue;
1658 }
1659
1660 fdisk_reset_ask(ask);
1661
1662 /* Last sector */
1663 dflt_l = find_last_free(pheader, ents, user_f);
1664
1665 fdisk_ask_set_query(ask, _("Last sector, +sectors or +size{K,M,G,T,P}"));
1666 fdisk_ask_set_type(ask, FDISK_ASKTYPE_OFFSET);
1667 fdisk_ask_number_set_low(ask, user_f); /* minimal */
1668 fdisk_ask_number_set_default(ask, dflt_l); /* default */
1669 fdisk_ask_number_set_high(ask, dflt_l); /* maximal */
1670 fdisk_ask_number_set_base(ask, user_f); /* base for relative input */
1671 fdisk_ask_number_set_unit(ask, cxt->sector_size);
1672
1673 rc = fdisk_do_ask(cxt, ask);
1674 if (rc)
1675 goto done;
1676
1677 user_l = fdisk_ask_number_get_result(ask);
1678 if (fdisk_ask_number_is_relative(ask))
1679 user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1;
1680 if (user_l > user_f && user_l <= disk_l)
1681 break;
1682 }
1683
1684 if (gpt_create_new_partition(cxt, partnum,
1685 user_f, user_l, &typeid, ents) != 0)
1686 fdisk_warnx(cxt, _("Could not create partition %zd"), partnum + 1);
1687 else {
1688 cxt->label->nparts_cur++;
1689 fdisk_label_set_changed(cxt->label, 1);
1690 fdisk_info_new_partition(cxt, partnum + 1,
1691 user_f, user_l,
1692 gpt_get_partition_type(cxt, partnum));
1693 }
1694
1695 rc = 0;
1696 done:
1697 fdisk_free_ask(ask);
1698 return rc;
1699 }
1700
1701 /*
1702 * Create a new GPT disklabel - destroys any previous data.
1703 */
1704 static int gpt_create_disklabel(struct fdisk_context *cxt)
1705 {
1706 int rc = 0;
1707 ssize_t esz = 0;
1708 char str[37];
1709 struct fdisk_gpt_label *gpt;
1710
1711 assert(cxt);
1712 assert(cxt->label);
1713 assert(fdisk_is_disklabel(cxt, GPT));
1714
1715 gpt = self_label(cxt);
1716
1717 /* label private stuff has to be empty, see gpt_deinit() */
1718 assert(gpt->pheader == NULL);
1719 assert(gpt->bheader == NULL);
1720
1721 /*
1722 * When no header, entries or pmbr is set, we're probably
1723 * dealing with a new, empty disk - so always allocate memory
1724 * to deal with the data structures whatever the case is.
1725 */
1726 rc = gpt_mknew_pmbr(cxt);
1727 if (rc < 0)
1728 goto done;
1729
1730 /* primary */
1731 gpt->pheader = calloc(1, sizeof(*gpt->pheader));
1732 if (!gpt->pheader) {
1733 rc = -ENOMEM;
1734 goto done;
1735 }
1736 rc = gpt_mknew_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA);
1737 if (rc < 0)
1738 goto done;
1739
1740 /* backup ("copy" primary) */
1741 gpt->bheader = calloc(1, sizeof(*gpt->bheader));
1742 if (!gpt->bheader) {
1743 rc = -ENOMEM;
1744 goto done;
1745 }
1746 rc = gpt_mknew_header_from_bkp(cxt, gpt->bheader,
1747 last_lba(cxt), gpt->pheader);
1748 if (rc < 0)
1749 goto done;
1750
1751 esz = le32_to_cpu(gpt->pheader->npartition_entries) *
1752 le32_to_cpu(gpt->pheader->sizeof_partition_entry);
1753 gpt->ents = calloc(1, esz);
1754 if (!gpt->ents) {
1755 rc = -ENOMEM;
1756 goto done;
1757 }
1758 gpt_recompute_crc(gpt->pheader, gpt->ents);
1759 gpt_recompute_crc(gpt->bheader, gpt->ents);
1760
1761 cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
1762 cxt->label->nparts_cur = 0;
1763
1764 guid_to_string(&gpt->pheader->disk_guid, str);
1765 fdisk_label_set_changed(cxt->label, 1);
1766 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1767 _("Created a new GPT disklabel (GUID: %s)"), str);
1768 done:
1769 return rc;
1770 }
1771
1772 static int gpt_get_disklabel_id(struct fdisk_context *cxt, char **id)
1773 {
1774 struct fdisk_gpt_label *gpt;
1775 char str[37];
1776
1777 assert(cxt);
1778 assert(id);
1779 assert(cxt->label);
1780 assert(fdisk_is_disklabel(cxt, GPT));
1781
1782 gpt = self_label(cxt);
1783 guid_to_string(&gpt->pheader->disk_guid, str);
1784
1785 *id = strdup(str);
1786 if (!*id)
1787 return -ENOMEM;
1788 return 0;
1789 }
1790
1791 static int gpt_set_disklabel_id(struct fdisk_context *cxt)
1792 {
1793 struct fdisk_gpt_label *gpt;
1794 struct gpt_guid uuid;
1795 char *str, *old, *new;
1796 int rc;
1797
1798 assert(cxt);
1799 assert(cxt->label);
1800 assert(fdisk_is_disklabel(cxt, GPT));
1801
1802 gpt = self_label(cxt);
1803 if (fdisk_ask_string(cxt,
1804 _("Enter new disk UUID (in 8-4-4-4-12 format)"), &str))
1805 return -EINVAL;
1806
1807 rc = string_to_guid(str, &uuid);
1808 free(str);
1809
1810 if (rc) {
1811 fdisk_warnx(cxt, _("Failed to parse your UUID."));
1812 return rc;
1813 }
1814
1815 gpt_get_disklabel_id(cxt, &old);
1816
1817 gpt->pheader->disk_guid = uuid;
1818 gpt->bheader->disk_guid = uuid;
1819
1820 gpt_recompute_crc(gpt->pheader, gpt->ents);
1821 gpt_recompute_crc(gpt->bheader, gpt->ents);
1822
1823 gpt_get_disklabel_id(cxt, &new);
1824
1825 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1826 _("Disk identifier changed from %s to %s."), old, new);
1827
1828 free(old);
1829 free(new);
1830 fdisk_label_set_changed(cxt->label, 1);
1831 return 0;
1832 }
1833
1834
1835 static struct fdisk_parttype *gpt_get_partition_type(
1836 struct fdisk_context *cxt,
1837 size_t i)
1838 {
1839 struct fdisk_parttype *t;
1840 char str[37];
1841 struct fdisk_gpt_label *gpt;
1842
1843 assert(cxt);
1844 assert(cxt->label);
1845 assert(fdisk_is_disklabel(cxt, GPT));
1846
1847 gpt = self_label(cxt);
1848
1849 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1850 return NULL;
1851
1852 guid_to_string(&gpt->ents[i].type, str);
1853 t = fdisk_get_parttype_from_string(cxt, str);
1854 if (!t)
1855 t = fdisk_new_unknown_parttype(0, str);
1856
1857 return t;
1858 }
1859
1860
1861 static int gpt_set_partition_type(
1862 struct fdisk_context *cxt,
1863 size_t i,
1864 struct fdisk_parttype *t)
1865 {
1866 struct gpt_guid uuid;
1867 struct fdisk_gpt_label *gpt;
1868
1869 assert(cxt);
1870 assert(cxt->label);
1871 assert(fdisk_is_disklabel(cxt, GPT));
1872
1873 gpt = self_label(cxt);
1874 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)
1875 || !t || !t->typestr || string_to_guid(t->typestr, &uuid) != 0)
1876 return -EINVAL;
1877
1878 gpt_entry_set_type(&gpt->ents[i], &uuid);
1879 gpt_recompute_crc(gpt->pheader, gpt->ents);
1880 gpt_recompute_crc(gpt->bheader, gpt->ents);
1881
1882 fdisk_label_set_changed(cxt->label, 1);
1883 return 0;
1884 }
1885
1886 static int gpt_get_partition_status(
1887 struct fdisk_context *cxt,
1888 size_t i,
1889 int *status)
1890 {
1891 struct fdisk_gpt_label *gpt;
1892 struct gpt_entry *e;
1893
1894 assert(cxt);
1895 assert(cxt->label);
1896 assert(fdisk_is_disklabel(cxt, GPT));
1897
1898 gpt = self_label(cxt);
1899
1900 if (!status || (uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1901 return -EINVAL;
1902
1903 e = &gpt->ents[i];
1904 *status = FDISK_PARTSTAT_NONE;
1905
1906 if (!partition_unused(e) || gpt_partition_start(e))
1907 *status = FDISK_PARTSTAT_USED;
1908
1909 return 0;
1910 }
1911
1912 int fdisk_gpt_partition_set_uuid(struct fdisk_context *cxt, size_t i)
1913 {
1914 struct fdisk_gpt_label *gpt;
1915 struct gpt_entry *e;
1916 struct gpt_guid uuid;
1917 char *str, new_u[37], old_u[37];
1918 int rc;
1919
1920 assert(cxt);
1921 assert(cxt->label);
1922 assert(fdisk_is_disklabel(cxt, GPT));
1923
1924 DBG(LABEL, dbgprint("UUID change requested partno=%zd", i));
1925
1926 gpt = self_label(cxt);
1927
1928 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1929 return -EINVAL;
1930
1931 if (fdisk_ask_string(cxt,
1932 _("New UUID (in 8-4-4-4-12 format)"), &str))
1933 return -EINVAL;
1934
1935 rc = string_to_guid(str, &uuid);
1936 free(str);
1937
1938 if (rc) {
1939 fdisk_warnx(cxt, _("Failed to parse your UUID."));
1940 return rc;
1941 }
1942
1943 e = &gpt->ents[i];
1944
1945 guid_to_string(&e->partition_guid, old_u);
1946 guid_to_string(&uuid, new_u);
1947
1948 e->partition_guid = uuid;
1949 gpt_recompute_crc(gpt->pheader, gpt->ents);
1950 gpt_recompute_crc(gpt->bheader, gpt->ents);
1951 fdisk_label_set_changed(cxt->label, 1);
1952
1953 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1954 _("Partition UUID changed from %s to %s"),
1955 old_u, new_u);
1956 return 0;
1957 }
1958
1959 int fdisk_gpt_partition_set_name(struct fdisk_context *cxt, size_t i)
1960 {
1961 struct fdisk_gpt_label *gpt;
1962 struct gpt_entry *e;
1963 char *str, *old, name[GPT_PART_NAME_LEN] = { 0 };
1964 size_t sz;
1965
1966 assert(cxt);
1967 assert(cxt->label);
1968 assert(fdisk_is_disklabel(cxt, GPT));
1969
1970 DBG(LABEL, dbgprint("NAME change requested partno=%zd", i));
1971
1972 gpt = self_label(cxt);
1973
1974 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1975 return -EINVAL;
1976
1977 if (fdisk_ask_string(cxt, _("New name"), &str))
1978 return -EINVAL;
1979
1980 e = &gpt->ents[i];
1981 old = encode_to_utf8((unsigned char *)e->name, sizeof(e->name));
1982
1983 sz = strlen(str);
1984 if (sz) {
1985 if (sz > GPT_PART_NAME_LEN)
1986 sz = GPT_PART_NAME_LEN;
1987 memcpy(name, str, sz);
1988 }
1989
1990 for (i = 0; i < GPT_PART_NAME_LEN; i++)
1991 e->name[i] = cpu_to_le16((uint16_t) name[i]);
1992
1993 gpt_recompute_crc(gpt->pheader, gpt->ents);
1994 gpt_recompute_crc(gpt->bheader, gpt->ents);
1995
1996 fdisk_label_set_changed(cxt->label, 1);
1997
1998 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1999 _("Partition name changed from '%s' to '%.*s'"),
2000 old, GPT_PART_NAME_LEN, str);
2001 free(str);
2002 free(old);
2003
2004 return 0;
2005 }
2006
2007
2008 /*
2009 * Deinitialize fdisk-specific variables
2010 */
2011 static void gpt_deinit(struct fdisk_label *lb)
2012 {
2013 struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb;
2014
2015 if (!gpt)
2016 return;
2017
2018 free(gpt->ents);
2019 free(gpt->pheader);
2020 free(gpt->bheader);
2021
2022 gpt->ents = NULL;
2023 gpt->pheader = NULL;
2024 gpt->bheader = NULL;
2025 }
2026
2027 static const struct fdisk_label_operations gpt_operations =
2028 {
2029 .probe = gpt_probe_label,
2030 .write = gpt_write_disklabel,
2031 .verify = gpt_verify_disklabel,
2032 .create = gpt_create_disklabel,
2033 .list = gpt_list_disklabel,
2034 .get_id = gpt_get_disklabel_id,
2035 .set_id = gpt_set_disklabel_id,
2036
2037 .part_add = gpt_add_partition,
2038 .part_delete = gpt_delete_partition,
2039 .part_get_type = gpt_get_partition_type,
2040 .part_set_type = gpt_set_partition_type,
2041
2042 .part_get_status = gpt_get_partition_status,
2043
2044 .deinit = gpt_deinit
2045 };
2046
2047 /*
2048 * allocates GPT in-memory stuff
2049 */
2050 struct fdisk_label *fdisk_new_gpt_label(struct fdisk_context *cxt)
2051 {
2052 struct fdisk_label *lb;
2053 struct fdisk_gpt_label *gpt;
2054
2055 assert(cxt);
2056
2057 gpt = calloc(1, sizeof(*gpt));
2058 if (!gpt)
2059 return NULL;
2060
2061 /* initialize generic part of the driver */
2062 lb = (struct fdisk_label *) gpt;
2063 lb->name = "gpt";
2064 lb->id = FDISK_DISKLABEL_GPT;
2065 lb->op = &gpt_operations;
2066 lb->parttypes = gpt_parttypes;
2067 lb->nparttypes = ARRAY_SIZE(gpt_parttypes);
2068
2069 return lb;
2070 }