]> git.ipfire.org Git - thirdparty/util-linux.git/blob - libfdisk/src/gpt.c
libfdisk: use fdisk_colon() and fdisk_sinfo()
[thirdparty/util-linux.git] / libfdisk / src / gpt.c
1 /*
2 * Copyright (C) 2007 Karel Zak <kzak@redhat.com>
3 * Copyright (C) 2012 Davidlohr Bueso <dave@gnu.org>
4 *
5 * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1
6 * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012).
7 * Some ideas and inspiration from GNU parted and gptfdisk.
8 */
9 #include <stdio.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <inttypes.h>
13 #include <sys/stat.h>
14 #include <sys/utsname.h>
15 #include <sys/types.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 #include <errno.h>
19 #include <ctype.h>
20 #include <uuid.h>
21
22 #include "fdiskP.h"
23
24 #include "nls.h"
25 #include "crc32.h"
26 #include "blkdev.h"
27 #include "bitops.h"
28 #include "strutils.h"
29 #include "all-io.h"
30
31 #define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */
32 #define GPT_HEADER_REVISION_V1_02 0x00010200
33 #define GPT_HEADER_REVISION_V1_00 0x00010000
34 #define GPT_HEADER_REVISION_V0_99 0x00009900
35 #define GPT_HEADER_MINSZ 92 /* bytes */
36
37 #define GPT_PMBR_LBA 0
38 #define GPT_MBR_PROTECTIVE 1
39 #define GPT_MBR_HYBRID 2
40
41 #define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001
42
43 #define EFI_PMBR_OSTYPE 0xEE
44 #define MSDOS_MBR_SIGNATURE 0xAA55
45 #define GPT_PART_NAME_LEN 72 / sizeof(uint16_t)
46 #define GPT_NPARTITIONS 128
47
48 /* Globally unique identifier */
49 struct gpt_guid {
50 uint32_t time_low;
51 uint16_t time_mid;
52 uint16_t time_hi_and_version;
53 uint8_t clock_seq_hi;
54 uint8_t clock_seq_low;
55 uint8_t node[6];
56 };
57
58
59 /* only checking that the GUID is 0 is enough to verify an empty partition. */
60 #define GPT_UNUSED_ENTRY_GUID \
61 ((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, \
62 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }})
63
64 /* Linux native partition type */
65 #define GPT_DEFAULT_ENTRY_TYPE "0FC63DAF-8483-4772-8E79-3D69D8477DE4"
66
67 /*
68 * Attribute bits
69 */
70 struct gpt_attr {
71 uint64_t required_to_function:1;
72 uint64_t no_blockio_protocol:1;
73 uint64_t legacy_bios_bootable:1;
74 uint64_t reserved:45;
75 uint64_t guid_secific:16;
76 } __attribute__ ((packed));
77
78 /* The GPT Partition entry array contains an array of GPT entries. */
79 struct gpt_entry {
80 struct gpt_guid type; /* purpose and type of the partition */
81 struct gpt_guid partition_guid;
82 uint64_t lba_start;
83 uint64_t lba_end;
84 struct gpt_attr attr;
85 uint16_t name[GPT_PART_NAME_LEN];
86 } __attribute__ ((packed));
87
88 /* GPT header */
89 struct gpt_header {
90 uint64_t signature; /* header identification */
91 uint32_t revision; /* header version */
92 uint32_t size; /* in bytes */
93 uint32_t crc32; /* header CRC checksum */
94 uint32_t reserved1; /* must be 0 */
95 uint64_t my_lba; /* LBA that contains this struct (LBA 1) */
96 uint64_t alternative_lba; /* backup GPT header */
97 uint64_t first_usable_lba; /* first usable logical block for partitions */
98 uint64_t last_usable_lba; /* last usable logical block for partitions */
99 struct gpt_guid disk_guid; /* unique disk identifier */
100 uint64_t partition_entry_lba; /* stat LBA of the partition entry array */
101 uint32_t npartition_entries; /* total partition entries - normally 128 */
102 uint32_t sizeof_partition_entry; /* bytes for each GUID pt */
103 uint32_t partition_entry_array_crc32; /* partition CRC checksum */
104 uint8_t reserved2[512 - 92]; /* must be 0 */
105 } __attribute__ ((packed));
106
107 struct gpt_record {
108 uint8_t boot_indicator; /* unused by EFI, set to 0x80 for bootable */
109 uint8_t start_head; /* unused by EFI, pt start in CHS */
110 uint8_t start_sector; /* unused by EFI, pt start in CHS */
111 uint8_t start_track;
112 uint8_t os_type; /* EFI and legacy non-EFI OS types */
113 uint8_t end_head; /* unused by EFI, pt end in CHS */
114 uint8_t end_sector; /* unused by EFI, pt end in CHS */
115 uint8_t end_track; /* unused by EFI, pt end in CHS */
116 uint32_t starting_lba; /* used by EFI - start addr of the on disk pt */
117 uint32_t size_in_lba; /* used by EFI - size of pt in LBA */
118 } __attribute__ ((packed));
119
120 /* Protected MBR and legacy MBR share same structure */
121 struct gpt_legacy_mbr {
122 uint8_t boot_code[440];
123 uint32_t unique_mbr_signature;
124 uint16_t unknown;
125 struct gpt_record partition_record[4];
126 uint16_t signature;
127 } __attribute__ ((packed));
128
129 /*
130 * Here be dragons!
131 * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
132 */
133 #define DEF_GUID(_u, _n) \
134 { \
135 .typestr = (_u), \
136 .name = (_n), \
137 }
138
139 static struct fdisk_parttype gpt_parttypes[] =
140 {
141 /* Generic OS */
142 DEF_GUID("C12A7328-F81F-11D2-BA4B-00A0C93EC93B", N_("EFI System")),
143
144 DEF_GUID("024DEE41-33E7-11D3-9D69-0008C781F39F", N_("MBR partition scheme")),
145 /* Hah!IdontneedEFI */
146 DEF_GUID("21686148-6449-6E6F-744E-656564454649", N_("BIOS boot partition")),
147
148 /* Windows */
149 DEF_GUID("E3C9E316-0B5C-4DB8-817D-F92DF00215AE", N_("Microsoft reserved")),
150 DEF_GUID("EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", N_("Microsoft basic data")),
151 DEF_GUID("5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", N_("Microsoft LDM metadata")),
152 DEF_GUID("AF9B60A0-1431-4F62-BC68-3311714A69AD", N_("Microsoft LDM data")),
153 DEF_GUID("DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", N_("Windows recovery evironment")),
154 DEF_GUID("37AFFC90-EF7D-4E96-91C3-2D7AE055B174", N_("IBM General Parallel Fs")),
155
156 /* HP-UX */
157 DEF_GUID("75894C1E-3AEB-11D3-B7C1-7B03A0000000", N_("HP-UX data partition")),
158 DEF_GUID("E2A1E728-32E3-11D6-A682-7B03A0000000", N_("HP-UX service partition")),
159
160 /* Linux */
161 DEF_GUID("0FC63DAF-8483-4772-8E79-3D69D8477DE4", N_("Linux filesystem")),
162 DEF_GUID("A19D880F-05FC-4D3B-A006-743F0F84911E", N_("Linux RAID")),
163 DEF_GUID("0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", N_("Linux swap")),
164 DEF_GUID("E6D6D379-F507-44C2-A23C-238F2A3DF928", N_("Linux LVM")),
165 DEF_GUID("8DA63339-0007-60C0-C436-083AC8230908", N_("Linux reserved")),
166
167 /* FreeBSD */
168 DEF_GUID("516E7CB4-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD data")),
169 DEF_GUID("83BD6B9D-7F41-11DC-BE0B-001560B84F0F", N_("FreeBSD boot")),
170 DEF_GUID("516E7CB5-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD swap")),
171 DEF_GUID("516E7CB6-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD UFS")),
172 DEF_GUID("516E7CBA-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD ZFS")),
173 DEF_GUID("516E7CB8-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD Vinum")),
174
175 /* Apple OSX */
176 DEF_GUID("48465300-0000-11AA-AA11-00306543ECAC", N_("Apple HFS/HFS+")),
177 DEF_GUID("55465300-0000-11AA-AA11-00306543ECAC", N_("Apple UFS")),
178 DEF_GUID("52414944-0000-11AA-AA11-00306543ECAC", N_("Apple RAID")),
179 DEF_GUID("52414944-5F4F-11AA-AA11-00306543ECAC", N_("Apple RAID offline")),
180 DEF_GUID("426F6F74-0000-11AA-AA11-00306543ECAC", N_("Apple boot")),
181 DEF_GUID("4C616265-6C00-11AA-AA11-00306543ECAC", N_("Apple label")),
182 DEF_GUID("5265636F-7665-11AA-AA11-00306543ECAC", N_("Apple TV recovery")),
183 DEF_GUID("53746F72-6167-11AA-AA11-00306543ECAC", N_("Apple Core storage")),
184
185 /* Solaris */
186 DEF_GUID("6A82CB45-1DD2-11B2-99A6-080020736631", N_("Solaris boot")),
187 DEF_GUID("6A85CF4D-1DD2-11B2-99A6-080020736631", N_("Solaris root")),
188 /* same as Apple ZFS */
189 DEF_GUID("6A898CC3-1DD2-11B2-99A6-080020736631", N_("Solaris /usr & Apple ZFS")),
190 DEF_GUID("6A87C46F-1DD2-11B2-99A6-080020736631", N_("Solaris swap")),
191 DEF_GUID("6A8B642B-1DD2-11B2-99A6-080020736631", N_("Solaris backup")),
192 DEF_GUID("6A8EF2E9-1DD2-11B2-99A6-080020736631", N_("Solaris /var")),
193 DEF_GUID("6A90BA39-1DD2-11B2-99A6-080020736631", N_("Solaris /home")),
194 DEF_GUID("6A9283A5-1DD2-11B2-99A6-080020736631", N_("Solaris alternate sector")),
195 DEF_GUID("6A945A3B-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 1")),
196 DEF_GUID("6A9630D1-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 2")),
197 DEF_GUID("6A980767-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 3")),
198 DEF_GUID("6A96237F-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 4")),
199 DEF_GUID("6A8D2AC7-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 5")),
200
201 /* NetBSD */
202 DEF_GUID("49F48D32-B10E-11DC-B99B-0019D1879648", N_("NetBSD swap")),
203 DEF_GUID("49F48D5A-B10E-11DC-B99B-0019D1879648", N_("NetBSD FFS")),
204 DEF_GUID("49F48D82-B10E-11DC-B99B-0019D1879648", N_("NetBSD LFS")),
205 DEF_GUID("2DB519C4-B10E-11DC-B99B-0019D1879648", N_("NetBSD concatenated")),
206 DEF_GUID("2DB519EC-B10E-11DC-B99B-0019D1879648", N_("NetBSD encrypted")),
207 DEF_GUID("49F48DAA-B10E-11DC-B99B-0019D1879648", N_("NetBSD RAID")),
208
209 /* ChromeOS */
210 DEF_GUID("FE3A2A5D-4F32-41A7-B725-ACCC3285A309", N_("ChromeOS kernel")),
211 DEF_GUID("3CB8E202-3B7E-47DD-8A3C-7FF2A13CFCEC", N_("ChromeOS root fs")),
212 DEF_GUID("2E0A753D-9E48-43B0-8337-B15192CB1B5E", N_("ChromeOS reserved")),
213
214 /* MidnightBSD */
215 DEF_GUID("85D5E45A-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD data")),
216 DEF_GUID("85D5E45E-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD boot")),
217 DEF_GUID("85D5E45B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD swap")),
218 DEF_GUID("0394Ef8B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD UFS")),
219 DEF_GUID("85D5E45D-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD ZFS")),
220 DEF_GUID("85D5E45C-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD Vinum")),
221 };
222
223 /* gpt_entry macros */
224 #define gpt_partition_start(_e) le64_to_cpu((_e)->lba_start)
225 #define gpt_partition_end(_e) le64_to_cpu((_e)->lba_end)
226
227 /*
228 * in-memory fdisk GPT stuff
229 */
230 struct fdisk_gpt_label {
231 struct fdisk_label head; /* generic part */
232
233 /* gpt specific part */
234 struct gpt_header *pheader; /* primary header */
235 struct gpt_header *bheader; /* backup header */
236 struct gpt_entry *ents; /* entries (partitions) */
237 };
238
239 static void gpt_deinit(struct fdisk_label *lb);
240
241 static inline struct fdisk_gpt_label *self_label(struct fdisk_context *cxt)
242 {
243 return (struct fdisk_gpt_label *) cxt->label;
244 }
245
246 /*
247 * Returns the partition length, or 0 if end is before beginning.
248 */
249 static uint64_t gpt_partition_size(const struct gpt_entry *e)
250 {
251 uint64_t start = gpt_partition_start(e);
252 uint64_t end = gpt_partition_end(e);
253
254 return start > end ? 0 : end - start + 1ULL;
255 }
256
257 #ifdef CONFIG_LIBFDISK_DEBUG
258 /* prints UUID in the real byte order! */
259 static void dbgprint_uuid(const char *mesg, struct gpt_guid *guid)
260 {
261 const unsigned char *uuid = (unsigned char *) guid;
262
263 fprintf(stderr, "%s: "
264 "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x\n",
265 mesg,
266 uuid[0], uuid[1], uuid[2], uuid[3],
267 uuid[4], uuid[5],
268 uuid[6], uuid[7],
269 uuid[8], uuid[9],
270 uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],uuid[15]);
271 }
272 #endif
273
274 /*
275 * UUID is traditionally 16 byte big-endian array, except Intel EFI
276 * specification where the UUID is a structure of little-endian fields.
277 */
278 static void swap_efi_guid(struct gpt_guid *uid)
279 {
280 uid->time_low = swab32(uid->time_low);
281 uid->time_mid = swab16(uid->time_mid);
282 uid->time_hi_and_version = swab16(uid->time_hi_and_version);
283 }
284
285 static int string_to_guid(const char *in, struct gpt_guid *guid)
286 {
287 if (uuid_parse(in, (unsigned char *) guid)) /* BE */
288 return -1;
289 swap_efi_guid(guid); /* LE */
290 return 0;
291 }
292
293 static char *guid_to_string(struct gpt_guid *guid, char *out)
294 {
295 struct gpt_guid u = *guid; /* LE */
296
297 swap_efi_guid(&u); /* BE */
298 uuid_unparse_upper((unsigned char *) &u, out);
299
300 return out;
301 }
302
303 static const char *gpt_get_header_revstr(struct gpt_header *header)
304 {
305 if (!header)
306 goto unknown;
307
308 switch (header->revision) {
309 case GPT_HEADER_REVISION_V1_02:
310 return "1.2";
311 case GPT_HEADER_REVISION_V1_00:
312 return "1.0";
313 case GPT_HEADER_REVISION_V0_99:
314 return "0.99";
315 default:
316 goto unknown;
317 }
318
319 unknown:
320 return "unknown";
321 }
322
323 static inline int partition_unused(const struct gpt_entry *e)
324 {
325 return !memcmp(&e->type, &GPT_UNUSED_ENTRY_GUID,
326 sizeof(struct gpt_guid));
327 }
328
329 /*
330 * Builds a clean new valid protective MBR - will wipe out any existing data.
331 * Returns 0 on success, otherwise < 0 on error.
332 */
333 static int gpt_mknew_pmbr(struct fdisk_context *cxt)
334 {
335 struct gpt_legacy_mbr *pmbr = NULL;
336
337 if (!cxt || !cxt->firstsector)
338 return -ENOSYS;
339
340 fdisk_zeroize_firstsector(cxt);
341
342 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
343
344 pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
345 pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE;
346 pmbr->partition_record[0].start_sector = 1;
347 pmbr->partition_record[0].end_head = 0xFE;
348 pmbr->partition_record[0].end_sector = 0xFF;
349 pmbr->partition_record[0].end_track = 0xFF;
350 pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
351 pmbr->partition_record[0].size_in_lba =
352 cpu_to_le32(min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF));
353
354 return 0;
355 }
356
357 /* some universal differences between the headers */
358 static void gpt_mknew_header_common(struct fdisk_context *cxt,
359 struct gpt_header *header, uint64_t lba)
360 {
361 if (!cxt || !header)
362 return;
363
364 header->my_lba = cpu_to_le64(lba);
365
366 if (lba == GPT_PRIMARY_PARTITION_TABLE_LBA) { /* primary */
367 header->alternative_lba = cpu_to_le64(cxt->total_sectors - 1);
368 header->partition_entry_lba = cpu_to_le64(2);
369 } else { /* backup */
370 uint64_t esz = le32_to_cpu(header->npartition_entries) * sizeof(struct gpt_entry);
371 uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size;
372
373 header->alternative_lba = cpu_to_le64(GPT_PRIMARY_PARTITION_TABLE_LBA);
374 header->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects);
375 }
376 }
377
378 /*
379 * Builds a new GPT header (at sector lba) from a backup header2.
380 * If building a primary header, then backup is the secondary, and vice versa.
381 *
382 * Always pass a new (zeroized) header to build upon as we don't
383 * explicitly zero-set some values such as CRCs and reserved.
384 *
385 * Returns 0 on success, otherwise < 0 on error.
386 */
387 static int gpt_mknew_header_from_bkp(struct fdisk_context *cxt,
388 struct gpt_header *header,
389 uint64_t lba,
390 struct gpt_header *header2)
391 {
392 if (!cxt || !header || !header2)
393 return -ENOSYS;
394
395 header->signature = header2->signature;
396 header->revision = header2->revision;
397 header->size = header2->size;
398 header->npartition_entries = header2->npartition_entries;
399 header->sizeof_partition_entry = header2->sizeof_partition_entry;
400 header->first_usable_lba = header2->first_usable_lba;
401 header->last_usable_lba = header2->last_usable_lba;
402
403 memcpy(&header->disk_guid,
404 &header2->disk_guid, sizeof(header2->disk_guid));
405 gpt_mknew_header_common(cxt, header, lba);
406
407 return 0;
408 }
409
410 /*
411 * Builds a clean new GPT header (currently under revision 1.0).
412 *
413 * Always pass a new (zeroized) header to build upon as we don't
414 * explicitly zero-set some values such as CRCs and reserved.
415 *
416 * Returns 0 on success, otherwise < 0 on error.
417 */
418 static int gpt_mknew_header(struct fdisk_context *cxt,
419 struct gpt_header *header, uint64_t lba)
420 {
421 uint64_t esz = 0, first, last;
422
423 if (!cxt || !header)
424 return -ENOSYS;
425
426 esz = sizeof(struct gpt_entry) * GPT_NPARTITIONS / cxt->sector_size;
427
428 header->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
429 header->revision = cpu_to_le32(GPT_HEADER_REVISION_V1_00);
430 header->size = cpu_to_le32(sizeof(struct gpt_header));
431
432 /*
433 * 128 partitions is the default. It can go behond this, however,
434 * we're creating a de facto header here, so no funny business.
435 */
436 header->npartition_entries = cpu_to_le32(GPT_NPARTITIONS);
437 header->sizeof_partition_entry = cpu_to_le32(sizeof(struct gpt_entry));
438
439 last = cxt->total_sectors - 2 - esz;
440 first = esz + 2;
441
442 if (first < cxt->first_lba && cxt->first_lba < last)
443 /* Align according to topology */
444 first = cxt->first_lba;
445
446 header->first_usable_lba = cpu_to_le64(first);
447 header->last_usable_lba = cpu_to_le64(last);
448
449 gpt_mknew_header_common(cxt, header, lba);
450 uuid_generate_random((unsigned char *) &header->disk_guid);
451 swap_efi_guid(&header->disk_guid);
452
453 return 0;
454 }
455
456 /*
457 * Checks if there is a valid protective MBR partition table.
458 * Returns 0 if it is invalid or failure. Otherwise, return
459 * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depeding on the detection.
460 */
461 static int valid_pmbr(struct fdisk_context *cxt)
462 {
463 int i, part = 0, ret = 0; /* invalid by default */
464 struct gpt_legacy_mbr *pmbr = NULL;
465
466 if (!cxt->firstsector)
467 goto done;
468
469 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
470
471 if (le16_to_cpu(pmbr->signature) != MSDOS_MBR_SIGNATURE)
472 goto done;
473
474 /* LBA of the GPT partition header */
475 if (pmbr->partition_record[0].starting_lba !=
476 cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA))
477 goto done;
478
479 /* seems like a valid MBR was found, check DOS primary partitions */
480 for (i = 0; i < 4; i++) {
481 if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) {
482 /*
483 * Ok, we at least know that there's a protective MBR,
484 * now check if there are other partition types for
485 * hybrid MBR.
486 */
487 part = i;
488 ret = GPT_MBR_PROTECTIVE;
489 goto check_hybrid;
490 }
491 }
492 check_hybrid:
493 if (ret != GPT_MBR_PROTECTIVE)
494 goto done;
495 for (i = 0 ; i < 4; i++) {
496 if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) &&
497 (pmbr->partition_record[i].os_type != 0x00))
498 ret = GPT_MBR_HYBRID;
499 }
500
501 /*
502 * Protective MBRs take up the lesser of the whole disk
503 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
504 *
505 * Hybrid MBRs do not necessarily comply with this.
506 */
507 if (ret == GPT_MBR_PROTECTIVE) {
508 if (le32_to_cpu(pmbr->partition_record[part].size_in_lba) !=
509 min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF))
510 ret = 0;
511 }
512 done:
513 return ret;
514 }
515
516 static uint64_t last_lba(struct fdisk_context *cxt)
517 {
518 struct stat s;
519
520 memset(&s, 0, sizeof(s));
521 if (fstat(cxt->dev_fd, &s) == -1) {
522 fdisk_warn(cxt, _("gpt: stat() failed"));
523 return 0;
524 }
525
526 if (S_ISBLK(s.st_mode))
527 return cxt->total_sectors - 1;
528 else if (S_ISREG(s.st_mode)) {
529 uint64_t sectors = s.st_size >> cxt->sector_size;
530 return (sectors / cxt->sector_size) - 1ULL;
531 } else
532 fdisk_warnx(cxt, _("gpt: cannot handle files with mode %o"), s.st_mode);
533 return 0;
534 }
535
536 static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba,
537 void *buffer, const size_t bytes)
538 {
539 off_t offset = lba * cxt->sector_size;
540
541 if (lseek(cxt->dev_fd, offset, SEEK_SET) == (off_t) -1)
542 return -1;
543 return read(cxt->dev_fd, buffer, bytes) != bytes;
544 }
545
546
547 /* Returns the GPT entry array */
548 static struct gpt_entry *gpt_read_entries(struct fdisk_context *cxt,
549 struct gpt_header *header)
550 {
551 ssize_t sz;
552 struct gpt_entry *ret = NULL;
553 off_t offset;
554
555 assert(cxt);
556 assert(header);
557
558 sz = le32_to_cpu(header->npartition_entries) *
559 le32_to_cpu(header->sizeof_partition_entry);
560
561 ret = calloc(1, sz);
562 if (!ret)
563 return NULL;
564 offset = le64_to_cpu(header->partition_entry_lba) *
565 cxt->sector_size;
566
567 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
568 goto fail;
569 if (sz != read(cxt->dev_fd, ret, sz))
570 goto fail;
571
572 return ret;
573
574 fail:
575 free(ret);
576 return NULL;
577 }
578
579 static inline uint32_t count_crc32(const unsigned char *buf, size_t len)
580 {
581 return (crc32(~0L, buf, len) ^ ~0L);
582 }
583
584 /*
585 * Recompute header and partition array 32bit CRC checksums.
586 * This function does not fail - if there's corruption, then it
587 * will be reported when checksuming it again (ie: probing or verify).
588 */
589 static void gpt_recompute_crc(struct gpt_header *header, struct gpt_entry *ents)
590 {
591 uint32_t crc = 0;
592 size_t entry_sz = 0;
593
594 if (!header)
595 return;
596
597 /* header CRC */
598 header->crc32 = 0;
599 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
600 header->crc32 = cpu_to_le32(crc);
601
602 /* partition entry array CRC */
603 header->partition_entry_array_crc32 = 0;
604 entry_sz = le32_to_cpu(header->npartition_entries) *
605 le32_to_cpu(header->sizeof_partition_entry);
606
607 crc = count_crc32((unsigned char *) ents, entry_sz);
608 header->partition_entry_array_crc32 = cpu_to_le32(crc);
609 }
610
611 /*
612 * Compute the 32bit CRC checksum of the partition table header.
613 * Returns 1 if it is valid, otherwise 0.
614 */
615 static int gpt_check_header_crc(struct gpt_header *header, struct gpt_entry *ents)
616 {
617 uint32_t crc, orgcrc = le32_to_cpu(header->crc32);
618
619 header->crc32 = 0;
620 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
621 header->crc32 = cpu_to_le32(orgcrc);
622
623 if (crc == le32_to_cpu(header->crc32))
624 return 1;
625
626 /*
627 * If we have checksum mismatch it may be due to stale data,
628 * like a partition being added or deleted. Recompute the CRC again
629 * and make sure this is not the case.
630 */
631 if (ents) {
632 gpt_recompute_crc(header, ents);
633 orgcrc = le32_to_cpu(header->crc32);
634 header->crc32 = 0;
635 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
636 header->crc32 = cpu_to_le32(orgcrc);
637
638 return crc == le32_to_cpu(header->crc32);
639 }
640
641 return 0;
642 }
643
644 /*
645 * It initializes the partition entry array.
646 * Returns 1 if the checksum is valid, otherwise 0.
647 */
648 static int gpt_check_entryarr_crc(struct gpt_header *header,
649 struct gpt_entry *ents)
650 {
651 int ret = 0;
652 ssize_t entry_sz;
653 uint32_t crc;
654
655 if (!header || !ents)
656 goto done;
657
658 entry_sz = le32_to_cpu(header->npartition_entries) *
659 le32_to_cpu(header->sizeof_partition_entry);
660
661 if (!entry_sz)
662 goto done;
663
664 crc = count_crc32((unsigned char *) ents, entry_sz);
665 ret = (crc == le32_to_cpu(header->partition_entry_array_crc32));
666 done:
667 return ret;
668 }
669
670 static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header)
671 {
672 int ret = 0;
673 uint64_t lu, fu, lastlba = last_lba(cxt);
674
675 fu = le64_to_cpu(header->first_usable_lba);
676 lu = le64_to_cpu(header->last_usable_lba);
677
678 /* check if first and last usable LBA make sense */
679 if (lu < fu) {
680 DBG(LABEL, dbgprint("error: header last LBA is before first LBA"));
681 goto done;
682 }
683
684 /* check if first and last usable LBAs with the disk's last LBA */
685 if (fu > lastlba || lu > lastlba) {
686 DBG(LABEL, dbgprint("error: header LBAs are after the disk's last LBA"));
687 goto done;
688 }
689
690 /* the header has to be outside usable range */
691 if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA &&
692 GPT_PRIMARY_PARTITION_TABLE_LBA < lu) {
693 DBG(LABEL, dbgprint("error: header outside of usable range"));
694 goto done;
695 }
696
697 ret = 1; /* sane */
698 done:
699 return ret;
700 }
701
702 /* Check if there is a valid header signature */
703 static int gpt_check_signature(struct gpt_header *header)
704 {
705 return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE);
706 }
707
708 /*
709 * Return the specified GPT Header, or NULL upon failure/invalid.
710 * Note that all tests must pass to ensure a valid header,
711 * we do not rely on only testing the signature for a valid probe.
712 */
713 static struct gpt_header *gpt_read_header(struct fdisk_context *cxt,
714 uint64_t lba,
715 struct gpt_entry **_ents)
716 {
717 struct gpt_header *header = NULL;
718 struct gpt_entry *ents = NULL;
719 uint32_t hsz;
720
721 if (!cxt)
722 return NULL;
723
724 header = calloc(1, sizeof(*header));
725 if (!header)
726 return NULL;
727
728 /* read and verify header */
729 if (read_lba(cxt, lba, header, sizeof(struct gpt_header)) != 0)
730 goto invalid;
731
732 if (!gpt_check_signature(header))
733 goto invalid;
734
735 if (!gpt_check_header_crc(header, NULL))
736 goto invalid;
737
738 /* read and verify entries */
739 ents = gpt_read_entries(cxt, header);
740 if (!ents)
741 goto invalid;
742
743 if (!gpt_check_entryarr_crc(header, ents))
744 goto invalid;
745
746 if (!gpt_check_lba_sanity(cxt, header))
747 goto invalid;
748
749 /* valid header must be at MyLBA */
750 if (le64_to_cpu(header->my_lba) != lba)
751 goto invalid;
752
753 /* make sure header size is between 92 and sector size bytes */
754 hsz = le32_to_cpu(header->size);
755 if (hsz < GPT_HEADER_MINSZ || hsz > cxt->sector_size)
756 goto invalid;
757
758 if (_ents)
759 *_ents = ents;
760 else
761 free(ents);
762
763 return header;
764 invalid:
765 free(header);
766 free(ents);
767 return NULL;
768 }
769
770 /*
771 * Returns the number of partitions that are in use.
772 */
773 static unsigned partitions_in_use(struct gpt_header *header, struct gpt_entry *e)
774 {
775 uint32_t i, used = 0;
776
777 if (!header || ! e)
778 return 0;
779
780 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
781 if (!partition_unused(&e[i]))
782 used++;
783 return used;
784 }
785
786
787 /*
788 * Check if a partition is too big for the disk (sectors).
789 * Returns the faulting partition number, otherwise 0.
790 */
791 static uint32_t partition_check_too_big(struct gpt_header *header,
792 struct gpt_entry *e, uint64_t sectors)
793 {
794 uint32_t i;
795
796 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
797 if (partition_unused(&e[i]))
798 continue;
799 if (gpt_partition_end(&e[i]) >= sectors)
800 return i + 1;
801 }
802
803 return 0;
804 }
805
806 /*
807 * Check if a partition ends before it begins
808 * Returns the faulting partition number, otherwise 0.
809 */
810 static uint32_t partition_start_after_end(struct gpt_header *header, struct gpt_entry *e)
811 {
812 uint32_t i;
813
814 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
815 if (partition_unused(&e[i]))
816 continue;
817 if (gpt_partition_start(&e[i]) > gpt_partition_end(&e[i]))
818 return i + 1;
819 }
820
821 return 0;
822 }
823
824 /*
825 * Check if partition e1 overlaps with partition e2
826 */
827 static inline int partition_overlap(struct gpt_entry *e1, struct gpt_entry *e2)
828 {
829 uint64_t start1 = gpt_partition_start(e1);
830 uint64_t end1 = gpt_partition_end(e1);
831 uint64_t start2 = gpt_partition_start(e2);
832 uint64_t end2 = gpt_partition_end(e2);
833
834 return (start1 && start2 && (start1 <= end2) != (end1 < start2));
835 }
836
837 /*
838 * Find any paritions that overlap.
839 */
840 static uint32_t partition_check_overlaps(struct gpt_header *header, struct gpt_entry *e)
841 {
842 uint32_t i, j;
843
844 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
845 for (j = 0; j < i; j++) {
846 if (partition_unused(&e[i]) ||
847 partition_unused(&e[j]))
848 continue;
849 if (partition_overlap(&e[i], &e[j])) {
850 DBG(LABEL, dbgprint("GPT partitions overlap detected [%u vs. %u]", i, j));
851 return i + 1;
852 }
853 }
854
855 return 0;
856 }
857
858 /*
859 * Find the first available block after the starting point; returns 0 if
860 * there are no available blocks left, or error. From gdisk.
861 */
862 static uint64_t find_first_available(struct gpt_header *header,
863 struct gpt_entry *e, uint64_t start)
864 {
865 uint64_t first;
866 uint32_t i, first_moved = 0;
867
868 uint64_t fu, lu;
869
870 if (!header || !e)
871 return 0;
872
873 fu = le64_to_cpu(header->first_usable_lba);
874 lu = le64_to_cpu(header->last_usable_lba);
875
876 /*
877 * Begin from the specified starting point or from the first usable
878 * LBA, whichever is greater...
879 */
880 first = start < fu ? fu : start;
881
882 /*
883 * Now search through all partitions; if first is within an
884 * existing partition, move it to the next sector after that
885 * partition and repeat. If first was moved, set firstMoved
886 * flag; repeat until firstMoved is not set, so as to catch
887 * cases where partitions are out of sequential order....
888 */
889 do {
890 first_moved = 0;
891 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
892 if (partition_unused(&e[i]))
893 continue;
894 if (first < gpt_partition_start(&e[i]))
895 continue;
896 if (first <= gpt_partition_end(&e[i])) {
897 first = gpt_partition_end(&e[i]) + 1;
898 first_moved = 1;
899 }
900 }
901 } while (first_moved == 1);
902
903 if (first > lu)
904 first = 0;
905
906 return first;
907 }
908
909
910 /* Returns last available sector in the free space pointed to by start. From gdisk. */
911 static uint64_t find_last_free(struct gpt_header *header,
912 struct gpt_entry *e, uint64_t start)
913 {
914 uint32_t i;
915 uint64_t nearest_start;
916
917 if (!header || !e)
918 return 0;
919
920 nearest_start = le64_to_cpu(header->last_usable_lba);
921
922 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
923 uint64_t ps = gpt_partition_start(&e[i]);
924
925 if (nearest_start > ps && ps > start)
926 nearest_start = ps - 1;
927 }
928
929 return nearest_start;
930 }
931
932 /* Returns the last free sector on the disk. From gdisk. */
933 static uint64_t find_last_free_sector(struct gpt_header *header,
934 struct gpt_entry *e)
935 {
936 uint32_t i, last_moved;
937 uint64_t last = 0;
938
939 if (!header || !e)
940 goto done;
941
942 /* start by assuming the last usable LBA is available */
943 last = le64_to_cpu(header->last_usable_lba);
944 do {
945 last_moved = 0;
946 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
947 if ((last >= gpt_partition_start(&e[i])) &&
948 (last <= gpt_partition_end(&e[i]))) {
949 last = gpt_partition_start(&e[i]) - 1;
950 last_moved = 1;
951 }
952 }
953 } while (last_moved == 1);
954 done:
955 return last;
956 }
957
958 /*
959 * Finds the first available sector in the largest block of unallocated
960 * space on the disk. Returns 0 if there are no available blocks left.
961 * From gdisk.
962 */
963 static uint64_t find_first_in_largest(struct gpt_header *header, struct gpt_entry *e)
964 {
965 uint64_t start = 0, first_sect, last_sect;
966 uint64_t segment_size, selected_size = 0, selected_segment = 0;
967
968 if (!header || !e)
969 goto done;
970
971 do {
972 first_sect = find_first_available(header, e, start);
973 if (first_sect != 0) {
974 last_sect = find_last_free(header, e, first_sect);
975 segment_size = last_sect - first_sect + 1;
976
977 if (segment_size > selected_size) {
978 selected_size = segment_size;
979 selected_segment = first_sect;
980 }
981 start = last_sect + 1;
982 }
983 } while (first_sect != 0);
984
985 done:
986 return selected_segment;
987 }
988
989 /*
990 * Find the total number of free sectors, the number of segments in which
991 * they reside, and the size of the largest of those segments. From gdisk.
992 */
993 static uint64_t get_free_sectors(struct fdisk_context *cxt, struct gpt_header *header,
994 struct gpt_entry *e, uint32_t *nsegments,
995 uint64_t *largest_segment)
996 {
997 uint32_t num = 0;
998 uint64_t first_sect, last_sect;
999 uint64_t largest_seg = 0, segment_sz;
1000 uint64_t totfound = 0, start = 0; /* starting point for each search */
1001
1002 if (!cxt->total_sectors)
1003 goto done;
1004
1005 do {
1006 first_sect = find_first_available(header, e, start);
1007 if (first_sect) {
1008 last_sect = find_last_free(header, e, first_sect);
1009 segment_sz = last_sect - first_sect + 1;
1010
1011 if (segment_sz > largest_seg)
1012 largest_seg = segment_sz;
1013 totfound += segment_sz;
1014 num++;
1015 start = last_sect + 1;
1016 }
1017 } while (first_sect);
1018
1019 done:
1020 if (nsegments)
1021 *nsegments = num;
1022 if (largest_segment)
1023 *largest_segment = largest_seg;
1024
1025 return totfound;
1026 }
1027
1028 static int gpt_probe_label(struct fdisk_context *cxt)
1029 {
1030 int mbr_type;
1031 struct fdisk_gpt_label *gpt;
1032
1033 assert(cxt);
1034 assert(cxt->label);
1035 assert(fdisk_is_disklabel(cxt, GPT));
1036
1037 gpt = self_label(cxt);
1038
1039 mbr_type = valid_pmbr(cxt);
1040 if (!mbr_type)
1041 goto failed;
1042
1043 DBG(LABEL, dbgprint("found a %s MBR", mbr_type == GPT_MBR_PROTECTIVE ?
1044 "protective" : "hybrid"));
1045
1046 /* primary header */
1047 gpt->pheader = gpt_read_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA,
1048 &gpt->ents);
1049
1050 /*
1051 * TODO: If the primary GPT is corrupt, we must check the last LBA of the
1052 * device to see if it has a valid GPT Header and point to a valid GPT
1053 * Partition Entry Array.
1054 * If it points to a valid GPT Partition Entry Array, then software should
1055 * restore the primary GPT if allowed by platform policy settings.
1056 *
1057 * For now we just abort GPT probing!
1058 */
1059 if (!gpt->pheader || !gpt->ents)
1060 goto failed;
1061
1062 /* OK, probing passed, now initialize backup header and fdisk variables. */
1063 gpt->bheader = gpt_read_header(cxt, last_lba(cxt), NULL);
1064
1065 cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
1066 cxt->label->nparts_cur = partitions_in_use(gpt->pheader, gpt->ents);
1067
1068 fdisk_warnx(cxt, _("WARNING: fdisk GPT support is currently new, and therefore "
1069 "in an experimental phase. Use at your own discretion."));
1070
1071 return 1;
1072 failed:
1073 DBG(LABEL, dbgprint("GPT probe failed"));
1074 gpt_deinit(cxt->label);
1075 return 0;
1076 }
1077
1078 /*
1079 * Stolen from libblkid - can be removed once partition semantics
1080 * are added to the fdisk API.
1081 */
1082 static char *encode_to_utf8(unsigned char *src, size_t count)
1083 {
1084 uint16_t c;
1085 char *dest;
1086 size_t i, j, len = count;
1087
1088 dest = calloc(1, count);
1089 if (!dest)
1090 return NULL;
1091
1092 for (j = i = 0; i + 2 <= count; i += 2) {
1093 /* always little endian */
1094 c = (src[i+1] << 8) | src[i];
1095 if (c == 0) {
1096 dest[j] = '\0';
1097 break;
1098 } else if (c < 0x80) {
1099 if (j+1 >= len)
1100 break;
1101 dest[j++] = (uint8_t) c;
1102 } else if (c < 0x800) {
1103 if (j+2 >= len)
1104 break;
1105 dest[j++] = (uint8_t) (0xc0 | (c >> 6));
1106 dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
1107 } else {
1108 if (j+3 >= len)
1109 break;
1110 dest[j++] = (uint8_t) (0xe0 | (c >> 12));
1111 dest[j++] = (uint8_t) (0x80 | ((c >> 6) & 0x3f));
1112 dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
1113 }
1114 }
1115 dest[j] = '\0';
1116
1117 return dest;
1118 }
1119
1120 /*
1121 * List label partitions.
1122 * This function must currently exist to comply with standard fdisk
1123 * requirements, but once partition semantics are added to the fdisk
1124 * API it can be removed for custom implementation (see gpt_label struct).
1125 */
1126 static int gpt_list_disklabel(struct fdisk_context *cxt)
1127 {
1128 int rc, trunc = TT_FL_TRUNC;
1129 uint32_t i;
1130 struct fdisk_gpt_label *gpt;
1131 struct gpt_header *h;
1132 uint64_t fu;
1133 uint64_t lu;
1134 struct tt *tb = NULL;
1135
1136 assert(cxt);
1137 assert(cxt->label);
1138 assert(fdisk_is_disklabel(cxt, GPT));
1139
1140 gpt = self_label(cxt);
1141 h = gpt->pheader;
1142 fu = le64_to_cpu(gpt->pheader->first_usable_lba);
1143 lu = le64_to_cpu(gpt->pheader->last_usable_lba);
1144
1145 tb = tt_new_table(TT_FL_FREEDATA);
1146 if (!tb)
1147 return -ENOMEM;
1148
1149 /* don't trunc anything in expert mode */
1150 if (fdisk_context_display_details(cxt)) {
1151 trunc = 0;
1152 fdisk_colon(cxt, _("First LBA: %ju"), h->first_usable_lba);
1153 fdisk_colon(cxt, _("Last LBA: %ju"), h->last_usable_lba);
1154 fdisk_colon(cxt, _("Alternative LBA: %ju"), h->alternative_lba);
1155 fdisk_colon(cxt, _("Partitions entries LBA: %ju"), h->partition_entry_lba);
1156 fdisk_colon(cxt, _("Allocated partition entries: %ju"), h->npartition_entries);
1157 }
1158 tt_define_column(tb, _("Device"), 0.1, 0);
1159 tt_define_column(tb, _("Start"), 12, TT_FL_RIGHT);
1160 tt_define_column(tb, _("End"), 12, TT_FL_RIGHT);
1161 tt_define_column(tb, _("Size"), 6, TT_FL_RIGHT);
1162 tt_define_column(tb, _("Type"), 0.1, trunc);
1163
1164 if (fdisk_context_display_details(cxt)) {
1165 tt_define_column(tb, _("UUID"), 36, 0);
1166 tt_define_column(tb, _("Name"), 0.2, trunc);
1167 }
1168
1169 for (i = 0; i < le32_to_cpu(h->npartition_entries); i++) {
1170 struct gpt_entry *e = &gpt->ents[i];
1171 char *sizestr = NULL, *p;
1172 uint64_t start = gpt_partition_start(e);
1173 uint64_t size = gpt_partition_size(e);
1174 struct fdisk_parttype *t;
1175 struct tt_line *ln;
1176 char u_str[37];
1177
1178 if (partition_unused(&gpt->ents[i]) || start == 0)
1179 continue;
1180 /* the partition has to inside usable range */
1181 if (start < fu || start + size - 1 > lu)
1182 continue;
1183 ln = tt_add_line(tb, NULL);
1184 if (!ln)
1185 continue;
1186
1187 if (fdisk_context_display_details(cxt) &&
1188 asprintf(&p, "%ju", size * cxt->sector_size) > 0)
1189 sizestr = p;
1190 else
1191 sizestr = size_to_human_string(SIZE_SUFFIX_1LETTER,
1192 size * cxt->sector_size);
1193 t = fdisk_get_partition_type(cxt, i);
1194
1195 /* basic columns */
1196 p = fdisk_partname(cxt->dev_path, i + 1);
1197 if (p)
1198 tt_line_set_data(ln, 0, p);
1199 if (asprintf(&p, "%ju", start) > 0)
1200 tt_line_set_data(ln, 1, p);
1201 if (asprintf(&p, "%ju", gpt_partition_end(e)) > 0)
1202 tt_line_set_data(ln, 2, p);
1203 if (sizestr)
1204 tt_line_set_data(ln, 3, sizestr);
1205 if (t && t->name)
1206 tt_line_set_data(ln, 4, strdup(t->name));
1207
1208 /* expert menu column(s) */
1209 if (fdisk_context_display_details(cxt)) {
1210 char *name = encode_to_utf8(
1211 (unsigned char *)e->name,
1212 sizeof(e->name));
1213
1214 if (guid_to_string(&e->partition_guid, u_str))
1215 tt_line_set_data(ln, 5, strdup(u_str));
1216 if (name)
1217 tt_line_set_data(ln, 6, name);
1218 }
1219
1220 fdisk_warn_alignment(cxt, start, i);
1221 fdisk_free_parttype(t);
1222 }
1223
1224 rc = fdisk_print_table(cxt, tb);
1225 tt_free_table(tb);
1226
1227 return rc;
1228 }
1229
1230 /*
1231 * Write partitions.
1232 * Returns 0 on success, or corresponding error otherwise.
1233 */
1234 static int gpt_write_partitions(struct fdisk_context *cxt,
1235 struct gpt_header *header, struct gpt_entry *ents)
1236 {
1237 off_t offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size;
1238 uint32_t nparts = le32_to_cpu(header->npartition_entries);
1239 uint32_t totwrite = nparts * le32_to_cpu(header->sizeof_partition_entry);
1240 ssize_t rc;
1241
1242 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1243 goto fail;
1244
1245 rc = write(cxt->dev_fd, ents, totwrite);
1246 if (rc > 0 && totwrite == (uint32_t) rc)
1247 return 0;
1248 fail:
1249 return -errno;
1250 }
1251
1252 /*
1253 * Write a GPT header to a specified LBA
1254 * Returns 0 on success, or corresponding error otherwise.
1255 */
1256 static int gpt_write_header(struct fdisk_context *cxt,
1257 struct gpt_header *header, uint64_t lba)
1258 {
1259 off_t offset = lba * cxt->sector_size;
1260
1261 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1262 goto fail;
1263 if (cxt->sector_size ==
1264 (size_t) write(cxt->dev_fd, header, cxt->sector_size))
1265 return 0;
1266 fail:
1267 return -errno;
1268 }
1269
1270 /*
1271 * Write the protective MBR.
1272 * Returns 0 on success, or corresponding error otherwise.
1273 */
1274 static int gpt_write_pmbr(struct fdisk_context *cxt)
1275 {
1276 off_t offset;
1277 struct gpt_legacy_mbr *pmbr = NULL;
1278
1279 assert(cxt);
1280 assert(cxt->firstsector);
1281
1282 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
1283
1284 /* zero out the legacy partitions */
1285 memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record));
1286
1287 pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
1288 pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE;
1289 pmbr->partition_record[0].start_sector = 1;
1290 pmbr->partition_record[0].end_head = 0xFE;
1291 pmbr->partition_record[0].end_sector = 0xFF;
1292 pmbr->partition_record[0].end_track = 0xFF;
1293 pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
1294
1295 /*
1296 * Set size_in_lba to the size of the disk minus one. If the size of the disk
1297 * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF.
1298 */
1299 if (cxt->total_sectors - 1 > 0xFFFFFFFFULL)
1300 pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF);
1301 else
1302 pmbr->partition_record[0].size_in_lba =
1303 cpu_to_le32(cxt->total_sectors - 1UL);
1304
1305 offset = GPT_PMBR_LBA * cxt->sector_size;
1306 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1307 goto fail;
1308
1309 /* pMBR covers the first sector (LBA) of the disk */
1310 if (write_all(cxt->dev_fd, pmbr, cxt->sector_size))
1311 goto fail;
1312 return 0;
1313 fail:
1314 return -errno;
1315 }
1316
1317 /*
1318 * Writes in-memory GPT and pMBR data to disk.
1319 * Returns 0 if successful write, otherwise, a corresponding error.
1320 * Any indication of error will abort the operation.
1321 */
1322 static int gpt_write_disklabel(struct fdisk_context *cxt)
1323 {
1324 struct fdisk_gpt_label *gpt;
1325
1326 assert(cxt);
1327 assert(cxt->label);
1328 assert(fdisk_is_disklabel(cxt, GPT));
1329
1330 gpt = self_label(cxt);
1331
1332 /* we do not want to mess up hybrid MBRs by creating a valid pmbr */
1333 if (valid_pmbr(cxt) == GPT_MBR_HYBRID)
1334 goto err0;
1335
1336 /* check that disk is big enough to handle the backup header */
1337 if (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors)
1338 goto err0;
1339
1340 /* check that the backup header is properly placed */
1341 if (le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1)
1342 /* TODO: correct this (with user authorization) and write */
1343 goto err0;
1344
1345 if (partition_check_overlaps(gpt->pheader, gpt->ents))
1346 goto err0;
1347
1348 /* recompute CRCs for both headers */
1349 gpt_recompute_crc(gpt->pheader, gpt->ents);
1350 gpt_recompute_crc(gpt->bheader, gpt->ents);
1351
1352 /*
1353 * UEFI requires writing in this specific order:
1354 * 1) backup partition tables
1355 * 2) backup GPT header
1356 * 3) primary partition tables
1357 * 4) primary GPT header
1358 * 5) protective MBR
1359 *
1360 * If any write fails, we abort the rest.
1361 */
1362 if (gpt_write_partitions(cxt, gpt->bheader, gpt->ents) != 0)
1363 goto err1;
1364 if (gpt_write_header(cxt, gpt->bheader,
1365 le64_to_cpu(gpt->pheader->alternative_lba)) != 0)
1366 goto err1;
1367 if (gpt_write_partitions(cxt, gpt->pheader, gpt->ents) != 0)
1368 goto err1;
1369 if (gpt_write_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0)
1370 goto err1;
1371 if (gpt_write_pmbr(cxt) != 0)
1372 goto err1;
1373
1374 DBG(LABEL, dbgprint("GPT write success"));
1375 return 0;
1376 err0:
1377 DBG(LABEL, dbgprint("GPT write failed: incorrect input"));
1378 errno = EINVAL;
1379 return -EINVAL;
1380 err1:
1381 DBG(LABEL, dbgprint("GPT write failed: %m"));
1382 return -errno;
1383 }
1384
1385 /*
1386 * Verify data integrity and report any found problems for:
1387 * - primary and backup header validations
1388 * - paritition validations
1389 */
1390 static int gpt_verify_disklabel(struct fdisk_context *cxt)
1391 {
1392 int nerror = 0;
1393 unsigned int ptnum;
1394 struct fdisk_gpt_label *gpt;
1395
1396 assert(cxt);
1397 assert(cxt->label);
1398 assert(fdisk_is_disklabel(cxt, GPT));
1399
1400 gpt = self_label(cxt);
1401
1402 if (!gpt || !gpt->bheader) {
1403 nerror++;
1404 fdisk_warnx(cxt, _("Disk does not contain a valid backup header."));
1405 }
1406
1407 if (!gpt_check_header_crc(gpt->pheader, gpt->ents)) {
1408 nerror++;
1409 fdisk_warnx(cxt, _("Invalid primary header CRC checksum."));
1410 }
1411 if (gpt->bheader && !gpt_check_header_crc(gpt->bheader, gpt->ents)) {
1412 nerror++;
1413 fdisk_warnx(cxt, _("Invalid backup header CRC checksum."));
1414 }
1415
1416 if (!gpt_check_entryarr_crc(gpt->pheader, gpt->ents)) {
1417 nerror++;
1418 fdisk_warnx(cxt, _("Invalid partition entry checksum."));
1419 }
1420
1421 if (!gpt_check_lba_sanity(cxt, gpt->pheader)) {
1422 nerror++;
1423 fdisk_warnx(cxt, _("Invalid primary header LBA sanity checks."));
1424 }
1425 if (gpt->bheader && !gpt_check_lba_sanity(cxt, gpt->bheader)) {
1426 nerror++;
1427 fdisk_warnx(cxt, _("Invalid backup header LBA sanity checks."));
1428 }
1429
1430 if (le64_to_cpu(gpt->pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) {
1431 nerror++;
1432 fdisk_warnx(cxt, _("MyLBA mismatch with real position at primary header."));
1433 }
1434 if (gpt->bheader && le64_to_cpu(gpt->bheader->my_lba) != last_lba(cxt)) {
1435 nerror++;
1436 fdisk_warnx(cxt, _("MyLBA mismatch with real position at backup header."));
1437
1438 }
1439 if (le64_to_cpu(gpt->pheader->alternative_lba) >= cxt->total_sectors) {
1440 nerror++;
1441 fdisk_warnx(cxt, _("Disk is to small to hold all data."));
1442 }
1443
1444 /*
1445 * if the GPT is the primary table, check the alternateLBA
1446 * to see if it is a valid GPT
1447 */
1448 if (gpt->bheader && (le64_to_cpu(gpt->pheader->my_lba) !=
1449 le64_to_cpu(gpt->bheader->alternative_lba))) {
1450 nerror++;
1451 fdisk_warnx(cxt, _("Primary and backup header mismatch."));
1452 }
1453
1454 ptnum = partition_check_overlaps(gpt->pheader, gpt->ents);
1455 if (ptnum) {
1456 nerror++;
1457 fdisk_warnx(cxt, _("Partition %u overlaps with partition %u."),
1458 ptnum, ptnum+1);
1459 }
1460
1461 ptnum = partition_check_too_big(gpt->pheader, gpt->ents, cxt->total_sectors);
1462 if (ptnum) {
1463 nerror++;
1464 fdisk_warnx(cxt, _("Partition %u is too big for the disk."),
1465 ptnum);
1466 }
1467
1468 ptnum = partition_start_after_end(gpt->pheader, gpt->ents);
1469 if (ptnum) {
1470 nerror++;
1471 fdisk_warnx(cxt, _("Partition %u ends before it starts."),
1472 ptnum);
1473 }
1474
1475 if (!nerror) { /* yay :-) */
1476 uint32_t nsegments = 0;
1477 uint64_t free_sectors = 0, largest_segment = 0;
1478
1479 fdisk_info(cxt, _("No errors detected."));
1480 fdisk_info(cxt, _("Header version: %s"), gpt_get_header_revstr(gpt->pheader));
1481 fdisk_info(cxt, _("Using %u out of %d partitions."),
1482 partitions_in_use(gpt->pheader, gpt->ents),
1483 le32_to_cpu(gpt->pheader->npartition_entries));
1484
1485 free_sectors = get_free_sectors(cxt, gpt->pheader, gpt->ents,
1486 &nsegments, &largest_segment);
1487 fdisk_info(cxt, _("A total of %ld free sectors available in %d segment(s) "
1488 "(largest %ld)."),
1489 free_sectors, nsegments, largest_segment);
1490 } else
1491 fdisk_warnx(cxt, _("Detected %d error(s)."), nerror);
1492
1493 return 0;
1494 }
1495
1496 /* Delete a single GPT partition, specified by partnum. */
1497 static int gpt_delete_partition(struct fdisk_context *cxt,
1498 size_t partnum)
1499 {
1500 struct fdisk_gpt_label *gpt;
1501
1502 assert(cxt);
1503 assert(cxt->label);
1504 assert(fdisk_is_disklabel(cxt, GPT));
1505
1506 gpt = self_label(cxt);
1507
1508 if (partnum >= cxt->label->nparts_max
1509 || partition_unused(&gpt->ents[partnum]))
1510 return -EINVAL;
1511
1512 /* hasta la vista, baby! */
1513 memset(&gpt->ents[partnum], 0, sizeof(struct gpt_entry));
1514 if (!partition_unused(&gpt->ents[partnum]))
1515 return -EINVAL;
1516 else {
1517 gpt_recompute_crc(gpt->pheader, gpt->ents);
1518 gpt_recompute_crc(gpt->bheader, gpt->ents);
1519 cxt->label->nparts_cur--;
1520 fdisk_label_set_changed(cxt->label, 1);
1521 }
1522
1523 return 0;
1524 }
1525
1526 static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *uuid)
1527 {
1528 e->type = *uuid;
1529 DBG(LABEL, dbgprint_uuid("new type", &(e->type)));
1530 }
1531
1532 /*
1533 * Create a new GPT partition entry, specified by partnum, and with a range
1534 * of fsect to lsenct sectors, of type t.
1535 * Returns 0 on success, or negative upon failure.
1536 */
1537 static int gpt_create_new_partition(struct fdisk_context *cxt,
1538 size_t partnum, uint64_t fsect, uint64_t lsect,
1539 struct gpt_guid *type,
1540 struct gpt_entry *entries)
1541 {
1542 struct gpt_entry *e = NULL;
1543 struct fdisk_gpt_label *gpt;
1544
1545 assert(cxt);
1546 assert(cxt->label);
1547 assert(fdisk_is_disklabel(cxt, GPT));
1548
1549 gpt = self_label(cxt);
1550
1551 if (fsect > lsect || partnum >= cxt->label->nparts_max)
1552 return -EINVAL;
1553
1554 e = calloc(1, sizeof(*e));
1555 if (!e)
1556 return -ENOMEM;
1557 e->lba_end = cpu_to_le64(lsect);
1558 e->lba_start = cpu_to_le64(fsect);
1559
1560 gpt_entry_set_type(e, type);
1561
1562 /*
1563 * Any time a new partition entry is created a new GUID must be
1564 * generated for that partition, and every partition is guaranteed
1565 * to have a unique GUID.
1566 */
1567 uuid_generate_random((unsigned char *) &e->partition_guid);
1568 swap_efi_guid(&e->partition_guid);
1569
1570 memcpy(&entries[partnum], e, sizeof(*e));
1571
1572 gpt_recompute_crc(gpt->pheader, entries);
1573 gpt_recompute_crc(gpt->bheader, entries);
1574
1575 free(e);
1576 return 0;
1577 }
1578
1579 /* Performs logical checks to add a new partition entry */
1580 static int gpt_add_partition(
1581 struct fdisk_context *cxt,
1582 size_t partnum,
1583 struct fdisk_parttype *t)
1584 {
1585 uint64_t user_f, user_l; /* user input ranges for first and last sectors */
1586 uint64_t disk_f, disk_l; /* first and last available sector ranges on device*/
1587 uint64_t dflt_f, dflt_l; /* largest segment (default) */
1588 struct gpt_guid typeid;
1589 struct fdisk_gpt_label *gpt;
1590 struct gpt_header *pheader;
1591 struct gpt_entry *ents;
1592 struct fdisk_ask *ask = NULL;
1593 int rc;
1594
1595 assert(cxt);
1596 assert(cxt->label);
1597 assert(fdisk_is_disklabel(cxt, GPT));
1598
1599 gpt = self_label(cxt);
1600
1601 if (partnum >= cxt->label->nparts_max)
1602 return -EINVAL;
1603
1604 pheader = gpt->pheader;
1605 ents = gpt->ents;
1606
1607 if (!partition_unused(&ents[partnum])) {
1608 fdisk_warnx(cxt, _("Partition %zd is already defined. "
1609 "Delete it before re-adding it."), partnum +1);
1610 return -EINVAL;
1611 }
1612 if (le32_to_cpu(pheader->npartition_entries) ==
1613 partitions_in_use(pheader, ents)) {
1614 fdisk_warnx(cxt, _("All partitions are already in use."));
1615 return -EINVAL;
1616 }
1617
1618 if (!get_free_sectors(cxt, pheader, ents, NULL, NULL)) {
1619 fdisk_warnx(cxt, _("No free sectors available."));
1620 return -ENOSPC;
1621 }
1622
1623 disk_f = find_first_available(pheader, ents, 0);
1624 disk_l = find_last_free_sector(pheader, ents);
1625
1626 /* the default is the largest free space */
1627 dflt_f = find_first_in_largest(pheader, ents);
1628 dflt_l = find_last_free(pheader, ents, dflt_f);
1629
1630 /* align the default in range <dflt_f,dflt_l>*/
1631 dflt_f = fdisk_align_lba_in_range(cxt, dflt_f, dflt_f, dflt_l);
1632
1633 string_to_guid(t && t->typestr ? t->typestr : GPT_DEFAULT_ENTRY_TYPE, &typeid);
1634
1635 /* get user input for first and last sectors of the new partition */
1636 for (;;) {
1637 if (!ask)
1638 ask = fdisk_new_ask();
1639 else
1640 fdisk_reset_ask(ask);
1641
1642 /* First sector */
1643 fdisk_ask_set_query(ask, _("First sector"));
1644 fdisk_ask_set_type(ask, FDISK_ASKTYPE_NUMBER);
1645 fdisk_ask_number_set_low(ask, disk_f); /* minimal */
1646 fdisk_ask_number_set_default(ask, dflt_f); /* default */
1647 fdisk_ask_number_set_high(ask, disk_l); /* maximal */
1648
1649 rc = fdisk_do_ask(cxt, ask);
1650 if (rc)
1651 goto done;
1652
1653 user_f = fdisk_ask_number_get_result(ask);
1654 if (user_f != find_first_available(pheader, ents, user_f)) {
1655 fdisk_warnx(cxt, _("Sector %ju already used."), user_f);
1656 continue;
1657 }
1658
1659 fdisk_reset_ask(ask);
1660
1661 /* Last sector */
1662 dflt_l = find_last_free(pheader, ents, user_f);
1663
1664 fdisk_ask_set_query(ask, _("Last sector, +sectors or +size{K,M,G,T,P}"));
1665 fdisk_ask_set_type(ask, FDISK_ASKTYPE_OFFSET);
1666 fdisk_ask_number_set_low(ask, user_f); /* minimal */
1667 fdisk_ask_number_set_default(ask, dflt_l); /* default */
1668 fdisk_ask_number_set_high(ask, dflt_l); /* maximal */
1669 fdisk_ask_number_set_base(ask, user_f); /* base for relative input */
1670 fdisk_ask_number_set_unit(ask, cxt->sector_size);
1671
1672 rc = fdisk_do_ask(cxt, ask);
1673 if (rc)
1674 goto done;
1675
1676 user_l = fdisk_ask_number_get_result(ask);
1677 if (fdisk_ask_number_is_relative(ask))
1678 user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1;
1679 if (user_l > user_f && user_l <= disk_l)
1680 break;
1681 }
1682
1683 if (gpt_create_new_partition(cxt, partnum,
1684 user_f, user_l, &typeid, ents) != 0)
1685 fdisk_warnx(cxt, _("Could not create partition %zd"), partnum + 1);
1686 else {
1687 fdisk_info(cxt, _("Created partition %zd\n"), partnum + 1);
1688 cxt->label->nparts_cur++;
1689 fdisk_label_set_changed(cxt->label, 1);
1690 }
1691
1692 rc = 0;
1693 done:
1694 fdisk_free_ask(ask);
1695 return rc;
1696 }
1697
1698 /*
1699 * Create a new GPT disklabel - destroys any previous data.
1700 */
1701 static int gpt_create_disklabel(struct fdisk_context *cxt)
1702 {
1703 int rc = 0;
1704 ssize_t esz = 0;
1705 char str[37];
1706 struct fdisk_gpt_label *gpt;
1707
1708 assert(cxt);
1709 assert(cxt->label);
1710 assert(fdisk_is_disklabel(cxt, GPT));
1711
1712 gpt = self_label(cxt);
1713
1714 /* label private stuff has to be empty, see gpt_deinit() */
1715 assert(gpt->pheader == NULL);
1716 assert(gpt->bheader == NULL);
1717
1718 /*
1719 * When no header, entries or pmbr is set, we're probably
1720 * dealing with a new, empty disk - so always allocate memory
1721 * to deal with the data structures whatever the case is.
1722 */
1723 rc = gpt_mknew_pmbr(cxt);
1724 if (rc < 0)
1725 goto done;
1726
1727 /* primary */
1728 gpt->pheader = calloc(1, sizeof(*gpt->pheader));
1729 if (!gpt->pheader) {
1730 rc = -ENOMEM;
1731 goto done;
1732 }
1733 rc = gpt_mknew_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA);
1734 if (rc < 0)
1735 goto done;
1736
1737 /* backup ("copy" primary) */
1738 gpt->bheader = calloc(1, sizeof(*gpt->bheader));
1739 if (!gpt->bheader) {
1740 rc = -ENOMEM;
1741 goto done;
1742 }
1743 rc = gpt_mknew_header_from_bkp(cxt, gpt->bheader,
1744 last_lba(cxt), gpt->pheader);
1745 if (rc < 0)
1746 goto done;
1747
1748 esz = le32_to_cpu(gpt->pheader->npartition_entries) *
1749 le32_to_cpu(gpt->pheader->sizeof_partition_entry);
1750 gpt->ents = calloc(1, esz);
1751 if (!gpt->ents) {
1752 rc = -ENOMEM;
1753 goto done;
1754 }
1755 gpt_recompute_crc(gpt->pheader, gpt->ents);
1756 gpt_recompute_crc(gpt->bheader, gpt->ents);
1757
1758 cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
1759 cxt->label->nparts_cur = 0;
1760
1761 guid_to_string(&gpt->pheader->disk_guid, str);
1762 fdisk_label_set_changed(cxt->label, 1);
1763 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1764 _("Created a new GPT disklabel (GUID: %s)"), str);
1765 done:
1766 return rc;
1767 }
1768
1769 static int gpt_get_disklabel_id(struct fdisk_context *cxt, char **id)
1770 {
1771 struct fdisk_gpt_label *gpt;
1772 char str[37];
1773
1774 assert(cxt);
1775 assert(id);
1776 assert(cxt->label);
1777 assert(fdisk_is_disklabel(cxt, GPT));
1778
1779 gpt = self_label(cxt);
1780 guid_to_string(&gpt->pheader->disk_guid, str);
1781
1782 *id = strdup(str);
1783 if (!*id)
1784 return -ENOMEM;
1785 return 0;
1786 }
1787
1788 static int gpt_set_disklabel_id(struct fdisk_context *cxt)
1789 {
1790 struct fdisk_gpt_label *gpt;
1791 struct gpt_guid uuid;
1792 char *str, *old, *new;
1793 int rc;
1794
1795 assert(cxt);
1796 assert(cxt->label);
1797 assert(fdisk_is_disklabel(cxt, GPT));
1798
1799 gpt = self_label(cxt);
1800 if (fdisk_ask_string(cxt,
1801 _("Enter new disk UUID (in 8-4-4-4-12 format)"), &str))
1802 return -EINVAL;
1803
1804 rc = string_to_guid(str, &uuid);
1805 free(str);
1806
1807 if (rc) {
1808 fdisk_warnx(cxt, _("Failed to parse your UUID."));
1809 return rc;
1810 }
1811
1812 gpt_get_disklabel_id(cxt, &old);
1813
1814 gpt->pheader->disk_guid = uuid;
1815 gpt->bheader->disk_guid = uuid;
1816
1817 gpt_recompute_crc(gpt->pheader, gpt->ents);
1818 gpt_recompute_crc(gpt->bheader, gpt->ents);
1819
1820 gpt_get_disklabel_id(cxt, &new);
1821
1822 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1823 _("Disk identifier changed from %s to %s."), old, new);
1824
1825 free(old);
1826 free(new);
1827 fdisk_label_set_changed(cxt->label, 1);
1828 return 0;
1829 }
1830
1831
1832 static struct fdisk_parttype *gpt_get_partition_type(
1833 struct fdisk_context *cxt,
1834 size_t i)
1835 {
1836 struct fdisk_parttype *t;
1837 char str[37];
1838 struct fdisk_gpt_label *gpt;
1839
1840 assert(cxt);
1841 assert(cxt->label);
1842 assert(fdisk_is_disklabel(cxt, GPT));
1843
1844 gpt = self_label(cxt);
1845
1846 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1847 return NULL;
1848
1849 guid_to_string(&gpt->ents[i].type, str);
1850 t = fdisk_get_parttype_from_string(cxt, str);
1851 if (!t)
1852 t = fdisk_new_unknown_parttype(0, str);
1853
1854 return t;
1855 }
1856
1857
1858 static int gpt_set_partition_type(
1859 struct fdisk_context *cxt,
1860 size_t i,
1861 struct fdisk_parttype *t)
1862 {
1863 struct gpt_guid uuid;
1864 struct fdisk_gpt_label *gpt;
1865
1866 assert(cxt);
1867 assert(cxt->label);
1868 assert(fdisk_is_disklabel(cxt, GPT));
1869
1870 gpt = self_label(cxt);
1871 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)
1872 || !t || !t->typestr || string_to_guid(t->typestr, &uuid) != 0)
1873 return -EINVAL;
1874
1875 gpt_entry_set_type(&gpt->ents[i], &uuid);
1876 gpt_recompute_crc(gpt->pheader, gpt->ents);
1877 gpt_recompute_crc(gpt->bheader, gpt->ents);
1878
1879 fdisk_label_set_changed(cxt->label, 1);
1880 return 0;
1881 }
1882
1883 static int gpt_get_partition_status(
1884 struct fdisk_context *cxt,
1885 size_t i,
1886 int *status)
1887 {
1888 struct fdisk_gpt_label *gpt;
1889 struct gpt_entry *e;
1890
1891 assert(cxt);
1892 assert(cxt->label);
1893 assert(fdisk_is_disklabel(cxt, GPT));
1894
1895 gpt = self_label(cxt);
1896
1897 if (!status || (uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1898 return -EINVAL;
1899
1900 e = &gpt->ents[i];
1901 *status = FDISK_PARTSTAT_NONE;
1902
1903 if (!partition_unused(e) || gpt_partition_start(e))
1904 *status = FDISK_PARTSTAT_USED;
1905
1906 return 0;
1907 }
1908
1909 int fdisk_gpt_partition_set_uuid(struct fdisk_context *cxt, size_t i)
1910 {
1911 struct fdisk_gpt_label *gpt;
1912 struct gpt_entry *e;
1913 struct gpt_guid uuid;
1914 char *str, new_u[37], old_u[37];
1915 int rc;
1916
1917 assert(cxt);
1918 assert(cxt->label);
1919 assert(fdisk_is_disklabel(cxt, GPT));
1920
1921 DBG(LABEL, dbgprint("UUID change requested partno=%zd", i));
1922
1923 gpt = self_label(cxt);
1924
1925 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1926 return -EINVAL;
1927
1928 if (fdisk_ask_string(cxt,
1929 _("New UUID (in 8-4-4-4-12 format)"), &str))
1930 return -EINVAL;
1931
1932 rc = string_to_guid(str, &uuid);
1933 free(str);
1934
1935 if (rc) {
1936 fdisk_warnx(cxt, _("Failed to parse your UUID."));
1937 return rc;
1938 }
1939
1940 e = &gpt->ents[i];
1941
1942 guid_to_string(&e->partition_guid, old_u);
1943 guid_to_string(&uuid, new_u);
1944
1945 e->partition_guid = uuid;
1946 gpt_recompute_crc(gpt->pheader, gpt->ents);
1947 gpt_recompute_crc(gpt->bheader, gpt->ents);
1948 fdisk_label_set_changed(cxt->label, 1);
1949
1950 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1951 _("Partition UUID changed from %s to %s"),
1952 old_u, new_u);
1953 return 0;
1954 }
1955
1956 int fdisk_gpt_partition_set_name(struct fdisk_context *cxt, size_t i)
1957 {
1958 struct fdisk_gpt_label *gpt;
1959 struct gpt_entry *e;
1960 char *str, *old, name[GPT_PART_NAME_LEN] = { 0 };
1961 size_t sz;
1962
1963 assert(cxt);
1964 assert(cxt->label);
1965 assert(fdisk_is_disklabel(cxt, GPT));
1966
1967 DBG(LABEL, dbgprint("NAME change requested partno=%zd", i));
1968
1969 gpt = self_label(cxt);
1970
1971 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1972 return -EINVAL;
1973
1974 if (fdisk_ask_string(cxt, _("New name"), &str))
1975 return -EINVAL;
1976
1977 e = &gpt->ents[i];
1978 old = encode_to_utf8((unsigned char *)e->name, sizeof(e->name));
1979
1980 sz = strlen(str);
1981 if (sz) {
1982 if (sz > GPT_PART_NAME_LEN)
1983 sz = GPT_PART_NAME_LEN;
1984 memcpy(name, str, sz);
1985 }
1986
1987 for (i = 0; i < GPT_PART_NAME_LEN; i++)
1988 e->name[i] = cpu_to_le16((uint16_t) name[i]);
1989
1990 gpt_recompute_crc(gpt->pheader, gpt->ents);
1991 gpt_recompute_crc(gpt->bheader, gpt->ents);
1992
1993 fdisk_label_set_changed(cxt->label, 1);
1994
1995 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1996 _("Partition name changed from '%s' to '%.*s'"),
1997 old, GPT_PART_NAME_LEN, str);
1998 free(str);
1999 free(old);
2000
2001 return 0;
2002 }
2003
2004
2005 /*
2006 * Deinitialize fdisk-specific variables
2007 */
2008 static void gpt_deinit(struct fdisk_label *lb)
2009 {
2010 struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb;
2011
2012 if (!gpt)
2013 return;
2014
2015 free(gpt->ents);
2016 free(gpt->pheader);
2017 free(gpt->bheader);
2018
2019 gpt->ents = NULL;
2020 gpt->pheader = NULL;
2021 gpt->bheader = NULL;
2022 }
2023
2024 static const struct fdisk_label_operations gpt_operations =
2025 {
2026 .probe = gpt_probe_label,
2027 .write = gpt_write_disklabel,
2028 .verify = gpt_verify_disklabel,
2029 .create = gpt_create_disklabel,
2030 .list = gpt_list_disklabel,
2031 .get_id = gpt_get_disklabel_id,
2032 .set_id = gpt_set_disklabel_id,
2033
2034 .part_add = gpt_add_partition,
2035 .part_delete = gpt_delete_partition,
2036 .part_get_type = gpt_get_partition_type,
2037 .part_set_type = gpt_set_partition_type,
2038
2039 .part_get_status = gpt_get_partition_status,
2040
2041 .deinit = gpt_deinit
2042 };
2043
2044 /*
2045 * allocates GPT in-memory stuff
2046 */
2047 struct fdisk_label *fdisk_new_gpt_label(struct fdisk_context *cxt)
2048 {
2049 struct fdisk_label *lb;
2050 struct fdisk_gpt_label *gpt;
2051
2052 assert(cxt);
2053
2054 gpt = calloc(1, sizeof(*gpt));
2055 if (!gpt)
2056 return NULL;
2057
2058 /* initialize generic part of the driver */
2059 lb = (struct fdisk_label *) gpt;
2060 lb->name = "gpt";
2061 lb->id = FDISK_DISKLABEL_GPT;
2062 lb->op = &gpt_operations;
2063 lb->parttypes = gpt_parttypes;
2064 lb->nparttypes = ARRAY_SIZE(gpt_parttypes);
2065
2066 return lb;
2067 }