1 /* Opcode table for TI TMS320C80 (MVP).
2 Copyright 1996 Free Software Foundation, Inc.
4 This file is part of GDB, GAS, and the GNU binutils.
6 GDB, GAS, and the GNU binutils are free software; you can redistribute
7 them and/or modify them under the terms of the GNU General Public
8 License as published by the Free Software Foundation; either version
9 1, or (at your option) any later version.
11 GDB, GAS, and the GNU binutils are distributed in the hope that they
12 will be useful, but WITHOUT ANY WARRANTY; without even the implied
13 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
14 the GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this file; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "opcode/tic80.h"
24 /* This file holds various tables for the TMS320C80 (MVP).
26 The opcode table is strictly constant data, so the compiler should
27 be able to put it in the .text section.
29 This file also holds the operand table. All knowledge about
30 inserting operands into instructions and vice-versa is kept in this
33 The predefined register table maps from register names to register
37 /* Table of predefined symbol names, such as general purpose registers,
38 floating point registers, condition codes, control registers, and bit
41 The table is sorted case independently by name so that it is suitable for
42 searching via a binary search using a case independent comparison
45 Note that the type of the symbol is stored in the upper bits of the value
46 field, which allows the value and type to be passed around as a unit in a
47 single int. The types have to be masked off before using the numeric
51 const struct predefined_symbol tic80_predefined_symbols
[] =
53 { "a0", TIC80_OPERAND_FPA
| 0 },
54 { "a1", TIC80_OPERAND_FPA
| 1 },
55 { "alw.b", TIC80_OPERAND_CC
| 7 },
56 { "alw.h", TIC80_OPERAND_CC
| 15 },
57 { "alw.w", TIC80_OPERAND_CC
| 23 },
58 { "ANASTAT", TIC80_OPERAND_CR
| 0x34 },
59 { "BRK1", TIC80_OPERAND_CR
| 0x39 },
60 { "BRK2", TIC80_OPERAND_CR
| 0x3A },
61 { "CONFIG", TIC80_OPERAND_CR
| 2 },
62 { "DLRU", TIC80_OPERAND_CR
| 0x500 },
63 { "DTAG0", TIC80_OPERAND_CR
| 0x400 },
64 { "DTAG1", TIC80_OPERAND_CR
| 0x401 },
65 { "DTAG10", TIC80_OPERAND_CR
| 0x40A },
66 { "DTAG11", TIC80_OPERAND_CR
| 0x40B },
67 { "DTAG12", TIC80_OPERAND_CR
| 0x40C },
68 { "DTAG13", TIC80_OPERAND_CR
| 0x40D },
69 { "DTAG14", TIC80_OPERAND_CR
| 0x40E },
70 { "DTAG15", TIC80_OPERAND_CR
| 0x40F },
71 { "DTAG2", TIC80_OPERAND_CR
| 0x402 },
72 { "DTAG3", TIC80_OPERAND_CR
| 0x403 },
73 { "DTAG4", TIC80_OPERAND_CR
| 0x404 },
74 { "DTAG5", TIC80_OPERAND_CR
| 0x405 },
75 { "DTAG6", TIC80_OPERAND_CR
| 0x406 },
76 { "DTAG7", TIC80_OPERAND_CR
| 0x407 },
77 { "DTAG8", TIC80_OPERAND_CR
| 0x408 },
78 { "DTAG9", TIC80_OPERAND_CR
| 0x409 },
79 { "ECOMCNTL", TIC80_OPERAND_CR
| 0x33 },
80 { "EIP", TIC80_OPERAND_CR
| 1 },
81 { "EPC", TIC80_OPERAND_CR
| 0 },
82 { "eq.b", TIC80_OPERAND_BITNUM
| 0 },
83 { "eq.f", TIC80_OPERAND_BITNUM
| 20 },
84 { "eq.h", TIC80_OPERAND_BITNUM
| 10 },
85 { "eq.w", TIC80_OPERAND_BITNUM
| 20 },
86 { "eq0.b", TIC80_OPERAND_CC
| 2 },
87 { "eq0.h", TIC80_OPERAND_CC
| 10 },
88 { "eq0.w", TIC80_OPERAND_CC
| 18 },
89 { "FLTADR", TIC80_OPERAND_CR
| 0x11 },
90 { "FLTDTH", TIC80_OPERAND_CR
| 0x14 },
91 { "FLTDTL", TIC80_OPERAND_CR
| 0x13 },
92 { "FLTOP", TIC80_OPERAND_CR
| 0x10 },
93 { "FLTTAG", TIC80_OPERAND_CR
| 0x12 },
94 { "FPST", TIC80_OPERAND_CR
| 8 },
95 { "ge.b", TIC80_OPERAND_BITNUM
| 5 },
96 { "ge.f", TIC80_OPERAND_BITNUM
| 25 },
97 { "ge.h", TIC80_OPERAND_BITNUM
| 15 },
98 { "ge.w", TIC80_OPERAND_BITNUM
| 25 },
99 { "ge0.b", TIC80_OPERAND_CC
| 3 },
100 { "ge0.h", TIC80_OPERAND_CC
| 11 },
101 { "ge0.w", TIC80_OPERAND_CC
| 19 },
102 { "gt.b", TIC80_OPERAND_BITNUM
| 2 },
103 { "gt.f", TIC80_OPERAND_BITNUM
| 22 },
104 { "gt.h", TIC80_OPERAND_BITNUM
| 12 },
105 { "gt.w", TIC80_OPERAND_BITNUM
| 22 },
106 { "gt0.b", TIC80_OPERAND_CC
| 1 },
107 { "gt0.h", TIC80_OPERAND_CC
| 9 },
108 { "gt0.w", TIC80_OPERAND_CC
| 17 },
109 { "hi.b", TIC80_OPERAND_BITNUM
| 6 },
110 { "hi.h", TIC80_OPERAND_BITNUM
| 16 },
111 { "hi.w", TIC80_OPERAND_BITNUM
| 26 },
112 { "hs.b", TIC80_OPERAND_BITNUM
| 9 },
113 { "hs.h", TIC80_OPERAND_BITNUM
| 19 },
114 { "hs.w", TIC80_OPERAND_BITNUM
| 29 },
115 { "ib.f", TIC80_OPERAND_BITNUM
| 28 },
116 { "IE", TIC80_OPERAND_CR
| 6 },
117 { "ILRU", TIC80_OPERAND_CR
| 0x300 },
118 { "in.f", TIC80_OPERAND_BITNUM
| 27 },
119 { "IN0P", TIC80_OPERAND_CR
| 0x4000 },
120 { "IN1P", TIC80_OPERAND_CR
| 0x4001 },
121 { "INTPEN", TIC80_OPERAND_CR
| 4 },
122 { "ITAG0", TIC80_OPERAND_CR
| 0x200 },
123 { "ITAG1", TIC80_OPERAND_CR
| 0x201 },
124 { "ITAG10", TIC80_OPERAND_CR
| 0x20A },
125 { "ITAG11", TIC80_OPERAND_CR
| 0x20B },
126 { "ITAG12", TIC80_OPERAND_CR
| 0x20C },
127 { "ITAG13", TIC80_OPERAND_CR
| 0x20D },
128 { "ITAG14", TIC80_OPERAND_CR
| 0x20E },
129 { "ITAG15", TIC80_OPERAND_CR
| 0x20F },
130 { "ITAG2", TIC80_OPERAND_CR
| 0x202 },
131 { "ITAG3", TIC80_OPERAND_CR
| 0x203 },
132 { "ITAG4", TIC80_OPERAND_CR
| 0x204 },
133 { "ITAG5", TIC80_OPERAND_CR
| 0x205 },
134 { "ITAG6", TIC80_OPERAND_CR
| 0x206 },
135 { "ITAG7", TIC80_OPERAND_CR
| 0x207 },
136 { "ITAG8", TIC80_OPERAND_CR
| 0x208 },
137 { "ITAG9", TIC80_OPERAND_CR
| 0x209 },
138 { "le.b", TIC80_OPERAND_BITNUM
| 3 },
139 { "le.f", TIC80_OPERAND_BITNUM
| 23 },
140 { "le.h", TIC80_OPERAND_BITNUM
| 13 },
141 { "le.w", TIC80_OPERAND_BITNUM
| 23 },
142 { "le0.b", TIC80_OPERAND_CC
| 6 },
143 { "le0.h", TIC80_OPERAND_CC
| 14 },
144 { "le0.w", TIC80_OPERAND_CC
| 22 },
145 { "lo.b", TIC80_OPERAND_BITNUM
| 8 },
146 { "lo.h", TIC80_OPERAND_BITNUM
| 18 },
147 { "lo.w", TIC80_OPERAND_BITNUM
| 28 },
148 { "ls.b", TIC80_OPERAND_BITNUM
| 7 },
149 { "ls.h", TIC80_OPERAND_BITNUM
| 17 },
150 { "ls.w", TIC80_OPERAND_BITNUM
| 27 },
151 { "lt.b", TIC80_OPERAND_BITNUM
| 4 },
152 { "lt.f", TIC80_OPERAND_BITNUM
| 24 },
153 { "lt.h", TIC80_OPERAND_BITNUM
| 14 },
154 { "lt.w", TIC80_OPERAND_BITNUM
| 24 },
155 { "lt0.b", TIC80_OPERAND_CC
| 4 },
156 { "lt0.h", TIC80_OPERAND_CC
| 12 },
157 { "lt0.w", TIC80_OPERAND_CC
| 20 },
158 { "MIP", TIC80_OPERAND_CR
| 0x31 },
159 { "MPC", TIC80_OPERAND_CR
| 0x30 },
160 { "ne.b", TIC80_OPERAND_BITNUM
| 1 },
161 { "ne.f", TIC80_OPERAND_BITNUM
| 21 },
162 { "ne.h", TIC80_OPERAND_BITNUM
| 11 },
163 { "ne.w", TIC80_OPERAND_BITNUM
| 21 },
164 { "ne0.b", TIC80_OPERAND_CC
| 5 },
165 { "ne0.h", TIC80_OPERAND_CC
| 13 },
166 { "ne0.w", TIC80_OPERAND_CC
| 21 },
167 { "nev.b", TIC80_OPERAND_CC
| 0 },
168 { "nev.h", TIC80_OPERAND_CC
| 8 },
169 { "nev.w", TIC80_OPERAND_CC
| 16 },
170 { "ob.f", TIC80_OPERAND_BITNUM
| 29 },
171 { "or.f", TIC80_OPERAND_BITNUM
| 31 },
172 { "ou.f", TIC80_OPERAND_BITNUM
| 26 },
173 { "OUTP", TIC80_OPERAND_CR
| 0x4002 },
174 { "PKTREQ", TIC80_OPERAND_CR
| 0xD },
175 { "PPERROR", TIC80_OPERAND_CR
| 0xA },
176 { "r0", TIC80_OPERAND_GPR
| 0 },
177 { "r1", TIC80_OPERAND_GPR
| 1 },
178 { "r10", TIC80_OPERAND_GPR
| 10 },
179 { "r11", TIC80_OPERAND_GPR
| 11 },
180 { "r12", TIC80_OPERAND_GPR
| 12 },
181 { "r13", TIC80_OPERAND_GPR
| 13 },
182 { "r14", TIC80_OPERAND_GPR
| 14 },
183 { "r15", TIC80_OPERAND_GPR
| 15 },
184 { "r16", TIC80_OPERAND_GPR
| 16 },
185 { "r17", TIC80_OPERAND_GPR
| 17 },
186 { "r18", TIC80_OPERAND_GPR
| 18 },
187 { "r19", TIC80_OPERAND_GPR
| 19 },
188 { "r2", TIC80_OPERAND_GPR
| 2 },
189 { "r20", TIC80_OPERAND_GPR
| 20 },
190 { "r21", TIC80_OPERAND_GPR
| 21 },
191 { "r22", TIC80_OPERAND_GPR
| 22 },
192 { "r23", TIC80_OPERAND_GPR
| 23 },
193 { "r24", TIC80_OPERAND_GPR
| 24 },
194 { "r25", TIC80_OPERAND_GPR
| 25 },
195 { "r26", TIC80_OPERAND_GPR
| 26 },
196 { "r27", TIC80_OPERAND_GPR
| 27 },
197 { "r28", TIC80_OPERAND_GPR
| 28 },
198 { "r29", TIC80_OPERAND_GPR
| 29 },
199 { "r3", TIC80_OPERAND_GPR
| 3 },
200 { "r30", TIC80_OPERAND_GPR
| 30 },
201 { "r31", TIC80_OPERAND_GPR
| 31 },
202 { "r4", TIC80_OPERAND_GPR
| 4 },
203 { "r5", TIC80_OPERAND_GPR
| 5 },
204 { "r6", TIC80_OPERAND_GPR
| 6 },
205 { "r7", TIC80_OPERAND_GPR
| 7 },
206 { "r8", TIC80_OPERAND_GPR
| 8 },
207 { "r9", TIC80_OPERAND_GPR
| 9 },
208 { "SYSSTK", TIC80_OPERAND_CR
| 0x20 },
209 { "SYSTMP", TIC80_OPERAND_CR
| 0x21 },
210 { "TCOUNT", TIC80_OPERAND_CR
| 0xE },
211 { "TSCALE", TIC80_OPERAND_CR
| 0xF },
212 { "uo.f", TIC80_OPERAND_BITNUM
| 30 },
215 const int tic80_num_predefined_symbols
= sizeof (tic80_predefined_symbols
) / sizeof (struct predefined_symbol
);
217 /* This function takes a predefined symbol name in NAME, symbol class
218 in CLASS, and translates it to a numeric value, which it returns.
220 If CLASS is zero, any symbol that matches NAME is translated. If
221 CLASS is non-zero, then only a symbol that has class CLASS is
224 If no translation is possible, it returns -1, a value not used by
225 any predefined symbol. Note that the predefined symbol array is
226 presorted case independently by name.
228 This function is implemented with the assumption that there are no
229 duplicate names in the predefined symbol array, which happens to be
235 tic80_symbol_to_value (name
, class)
239 const struct predefined_symbol
*pdsp
;
242 int high
= tic80_num_predefined_symbols
- 1;
248 middle
= (low
+ high
) / 2;
249 cmp
= strcasecmp (name
, tic80_predefined_symbols
[middle
].name
);
260 pdsp
= &tic80_predefined_symbols
[middle
];
261 if ((class == 0) || (class & PDS_VALUE (pdsp
)))
263 rtnval
= PDS_VALUE (pdsp
);
265 /* For now we assume that there are no duplicate names */
272 /* This function takes a value VAL and finds a matching predefined
273 symbol that is in the operand class specified by CLASS. If CLASS
274 is zero, the first matching symbol is returned. */
277 tic80_value_to_symbol (val
, class)
281 const struct predefined_symbol
*pdsp
;
286 for (pdsp
= tic80_predefined_symbols
;
287 pdsp
< tic80_predefined_symbols
+ tic80_num_predefined_symbols
;
290 ival
= PDS_VALUE (pdsp
) & ~TIC80_OPERAND_MASK
;
293 if ((class == 0) || (class & PDS_VALUE (pdsp
)))
295 /* Found the desired match */
296 name
= PDS_NAME (pdsp
);
304 /* This function returns a pointer to the next symbol in the predefined
305 symbol table after PDSP, or NULL if PDSP points to the last symbol. If
306 PDSP is NULL, it returns the first symbol in the table. Thus it can be
307 used to walk through the table by first calling it with NULL and then
308 calling it with each value it returned on the previous call, until it
311 const struct predefined_symbol
*
312 tic80_next_predefined_symbol (pdsp
)
313 const struct predefined_symbol
*pdsp
;
317 pdsp
= tic80_predefined_symbols
;
319 else if (pdsp
>= tic80_predefined_symbols
&&
320 pdsp
< tic80_predefined_symbols
+ tic80_num_predefined_symbols
- 1)
333 /* The operands table. The fields are:
335 bits, shift, insertion function, extraction function, flags
338 const struct tic80_operand tic80_operands
[] =
341 /* The zero index is used to indicate the end of the list of operands. */
346 /* Short signed immediate value in bits 14-0. */
348 #define SSI (UNUSED + 1)
349 { 15, 0, NULL
, NULL
, TIC80_OPERAND_SIGNED
},
351 /* Short unsigned immediate value in bits 14-0 */
353 #define SUI (SSI + 1)
354 { 15, 0, NULL
, NULL
, 0 },
356 /* Short unsigned bitfield in bits 14-0. We distinguish this
357 from a regular unsigned immediate value only for the convenience
358 of the disassembler and the user. */
360 #define SUBF (SUI + 1)
361 { 15, 0, NULL
, NULL
, TIC80_OPERAND_BITFIELD
},
363 /* Long signed immediate in following 32 bit word */
365 #define LSI (SUBF + 1)
366 { 32, 0, NULL
, NULL
, TIC80_OPERAND_SIGNED
},
368 /* Long unsigned immediate in following 32 bit word */
370 #define LUI (LSI + 1)
371 { 32, 0, NULL
, NULL
, 0 },
373 /* Long unsigned bitfield in following 32 bit word. We distinguish
374 this from a regular unsigned immediate value only for the
375 convenience of the disassembler and the user. */
377 #define LUBF (LUI + 1)
378 { 32, 0, NULL
, NULL
, TIC80_OPERAND_BITFIELD
},
380 /* Single precision floating point immediate in following 32 bit
383 #define SPFI (LUBF + 1)
384 { 32, 0, NULL
, NULL
, TIC80_OPERAND_FLOAT
},
386 /* Register in bits 4-0 */
388 #define REG_0 (SPFI + 1)
389 { 5, 0, NULL
, NULL
, TIC80_OPERAND_GPR
},
391 /* Even register in bits 4-0 */
393 #define REG_0_E (REG_0 + 1)
394 { 5, 0, NULL
, NULL
, TIC80_OPERAND_GPR
| TIC80_OPERAND_EVEN
},
396 /* Register in bits 26-22 */
398 #define REG_22 (REG_0_E + 1)
399 { 5, 22, NULL
, NULL
, TIC80_OPERAND_GPR
},
401 /* Even register in bits 26-22 */
403 #define REG_22_E (REG_22 + 1)
404 { 5, 22, NULL
, NULL
, TIC80_OPERAND_GPR
| TIC80_OPERAND_EVEN
},
406 /* Register in bits 31-27 */
408 #define REG_DEST (REG_22_E + 1)
409 { 5, 27, NULL
, NULL
, TIC80_OPERAND_GPR
},
411 /* Even register in bits 31-27 */
413 #define REG_DEST_E (REG_DEST + 1)
414 { 5, 27, NULL
, NULL
, TIC80_OPERAND_GPR
| TIC80_OPERAND_EVEN
},
416 /* Floating point accumulator register (a0-a3) specified by bit 16 (MSB)
418 /* FIXME! Needs to use functions to insert and extract the register
419 number in bits 16 and 11. */
421 #define REG_FPA (REG_DEST_E + 1)
422 { 0, 0, NULL
, NULL
, TIC80_OPERAND_FPA
},
424 /* Short signed PC word offset in bits 14-0 */
426 #define OFF_SS_PC (REG_FPA + 1)
427 { 15, 0, NULL
, NULL
, TIC80_OPERAND_PCREL
| TIC80_OPERAND_SIGNED
},
429 /* Long signed PC word offset in following 32 bit word */
431 #define OFF_SL_PC (OFF_SS_PC + 1)
432 { 32, 0, NULL
, NULL
, TIC80_OPERAND_PCREL
| TIC80_OPERAND_SIGNED
},
434 /* Short signed base relative byte offset in bits 14-0 */
436 #define OFF_SS_BR (OFF_SL_PC + 1)
437 { 15, 0, NULL
, NULL
, TIC80_OPERAND_BASEREL
| TIC80_OPERAND_SIGNED
},
439 /* Long signed base relative byte offset in following 32 bit word */
441 #define OFF_SL_BR (OFF_SS_BR + 1)
442 { 32, 0, NULL
, NULL
, TIC80_OPERAND_BASEREL
| TIC80_OPERAND_SIGNED
},
444 /* Long signed base relative byte offset in following 32 bit word
445 with optional ":s" modifier flag in bit 11 */
447 #define OFF_SL_BR_SCALED (OFF_SL_BR + 1)
448 { 32, 0, NULL
, NULL
, TIC80_OPERAND_BASEREL
| TIC80_OPERAND_SIGNED
| TIC80_OPERAND_SCALED
},
450 /* BITNUM in bits 31-27 */
452 #define BITNUM (OFF_SL_BR_SCALED + 1)
453 { 5, 27, NULL
, NULL
, TIC80_OPERAND_BITNUM
},
455 /* Condition code in bits 31-27 */
457 #define CC (BITNUM + 1)
458 { 5, 27, NULL
, NULL
, TIC80_OPERAND_CC
},
460 /* Control register number in bits 14-0 */
462 #define CR_SI (CC + 1)
463 { 15, 0, NULL
, NULL
, TIC80_OPERAND_CR
},
465 /* Control register number in next 32 bit word */
467 #define CR_LI (CR_SI + 1)
468 { 32, 0, NULL
, NULL
, TIC80_OPERAND_CR
},
470 /* A base register in bits 26-22, enclosed in parens */
472 #define REG_BASE (CR_LI + 1)
473 { 5, 22, NULL
, NULL
, TIC80_OPERAND_GPR
| TIC80_OPERAND_PARENS
},
475 /* A base register in bits 26-22, enclosed in parens, with optional ":m"
476 flag in bit 17 (short immediate instructions only) */
478 #define REG_BASE_M_SI (REG_BASE + 1)
479 { 5, 22, NULL
, NULL
, TIC80_OPERAND_GPR
| TIC80_OPERAND_PARENS
| TIC80_OPERAND_M_SI
},
481 /* A base register in bits 26-22, enclosed in parens, with optional ":m"
482 flag in bit 15 (long immediate and register instructions only) */
484 #define REG_BASE_M_LI (REG_BASE_M_SI + 1)
485 { 5, 22, NULL
, NULL
, TIC80_OPERAND_GPR
| TIC80_OPERAND_PARENS
| TIC80_OPERAND_M_LI
},
487 /* Scaled register in bits 4-0, with optional ":s" modifier flag in bit 11 */
489 #define REG_SCALED (REG_BASE_M_LI + 1)
490 { 5, 0, NULL
, NULL
, TIC80_OPERAND_GPR
| TIC80_OPERAND_SCALED
},
492 /* Unsigned immediate in bits 4-0, used only for shift instructions */
494 #define ROTATE (REG_SCALED + 1)
495 { 5, 0, NULL
, NULL
, 0 },
497 /* Unsigned immediate in bits 9-5, used only for shift instructions */
498 #define ENDMASK (ROTATE + 1)
499 { 5, 5, NULL
, NULL
, TIC80_OPERAND_ENDMASK
},
503 const int tic80_num_operands
= sizeof (tic80_operands
)/sizeof(*tic80_operands
);
506 /* Macros used to generate entries for the opcodes table. */
510 /* Short-Immediate Format Instructions - basic opcode */
511 #define OP_SI(x) (((x) & 0x7F) << 15)
512 #define MASK_SI OP_SI(0x7F)
514 /* Long-Immediate Format Instructions - basic opcode */
515 #define OP_LI(x) (((x) & 0x3FF) << 12)
516 #define MASK_LI OP_LI(0x3FF)
518 /* Register Format Instructions - basic opcode */
519 #define OP_REG(x) OP_LI(x) /* For readability */
520 #define MASK_REG MASK_LI /* For readability */
522 /* The 'n' bit at bit 10 */
523 #define n(x) ((x) << 10)
525 /* The 'i' bit at bit 11 */
526 #define i(x) ((x) << 11)
528 /* The 'F' bit at bit 27 */
529 #define F(x) ((x) << 27)
531 /* The 'E' bit at bit 27 */
532 #define E(x) ((x) << 27)
534 /* The 'M' bit at bit 15 in register and long immediate opcodes */
535 #define M_REG(x) ((x) << 15)
536 #define M_LI(x) ((x) << 15)
538 /* The 'M' bit at bit 17 in short immediate opcodes */
539 #define M_SI(x) ((x) << 17)
541 /* The 'SZ' field at bits 14-13 in register and long immediate opcodes */
542 #define SZ_REG(x) ((x) << 13)
543 #define SZ_LI(x) ((x) << 13)
545 /* The 'SZ' field at bits 16-15 in short immediate opcodes */
546 #define SZ_SI(x) ((x) << 15)
548 /* The 'D' (direct external memory access) bit at bit 10 in long immediate
549 and register opcodes. */
550 #define D(x) ((x) << 10)
552 /* The 'S' (scale offset by data size) bit at bit 11 in long immediate
553 and register opcodes. */
554 #define S(x) ((x) << 11)
556 /* The 'PD' field at bits 10-9 in floating point instructions */
557 #define PD(x) ((x) << 9)
559 /* The 'P2' field at bits 8-7 in floating point instructions */
560 #define P2(x) ((x) << 7)
562 /* The 'P1' field at bits 6-5 in floating point instructions */
563 #define P1(x) ((x) << 5)
565 /* The 'a' field at bit 16 in vector instructions */
566 #define V_a1(x) ((x) << 16)
568 /* The 'a' field at bit 11 in vector instructions */
569 #define V_a0(x) ((x) << 11)
571 /* The 'm' field at bit 10 in vector instructions */
572 #define V_m(x) ((x) << 10)
574 /* The 'S' field at bit 9 in vector instructions */
575 #define V_S(x) ((x) << 9)
577 /* The 'Z' field at bit 8 in vector instructions */
578 #define V_Z(x) ((x) << 8)
580 /* The 'p' field at bit 6 in vector instructions */
581 #define V_p(x) ((x) << 6)
583 /* The opcode field at bits 21-17 for vector instructions */
584 #define OP_V(x) ((x) << 17)
585 #define MASK_V OP_V(0x1F)
588 /* The opcode table. Formatted for better readability on a wide screen. Also, all
589 entries with the same mnemonic are sorted so that they are adjacent in the table,
590 allowing the use of a hash table to locate the first of a sequence of opcodes that have
591 a particular name. The short immediate forms also come before the long immediate forms
592 so that the assembler will pick the "best fit" for the size of the operand, except for
593 the case of the PC relative forms, where the long forms come first and are the default
596 const struct tic80_opcode tic80_opcodes
[] = {
598 /* The "nop" instruction is really "rdcr 0,r0". We put it first so that this
599 specific bit pattern will get disassembled as a nop rather than an rdcr. The
600 mask of all ones ensures that this will happen. */
602 {"nop", OP_SI(0x4), ~0, 0, {0} },
604 /* The "br" instruction is really "bbz target,r0,31". We put it first so that
605 this specific bit pattern will get disassembled as a br rather than bbz. */
607 {"br", OP_LI(0x391), 0xFFFFF000, 0, {OFF_SL_PC
} },
608 {"br", OP_SI(0x48), 0xFFFF8000, 0, {OFF_SS_PC
} },
609 {"br", OP_REG(0x390), 0xFFFFF000, 0, {REG_0
} },
610 {"br.a", OP_LI(0x393), 0xFFFFF000, 0, {OFF_SL_PC
} },
611 {"br.a", OP_SI(0x49), 0xFFFF8000, 0, {OFF_SS_PC
} },
612 {"br.a", OP_REG(0x392), 0xFFFFF000, 0, {REG_0
} },
614 /* Signed integer ADD */
616 {"add", OP_SI(0x58), MASK_SI
, 0, {SSI
, REG_22
, REG_DEST
} },
617 {"add", OP_LI(0x3B1), MASK_LI
, 0, {LSI
, REG_22
, REG_DEST
} },
618 {"add", OP_REG(0x3B0), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
620 /* Unsigned integer ADD */
622 {"addu", OP_SI(0x59), MASK_SI
, 0, {SSI
, REG_22
, REG_DEST
} },
623 {"addu", OP_LI(0x3B3), MASK_LI
, 0, {LSI
, REG_22
, REG_DEST
} },
624 {"addu", OP_REG(0x3B2), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
628 {"and", OP_SI(0x11), MASK_SI
, 0, {SUBF
, REG_22
, REG_DEST
} },
629 {"and", OP_LI(0x323), MASK_LI
, 0, {LUBF
, REG_22
, REG_DEST
} },
630 {"and", OP_REG(0x322), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
631 {"and.tt", OP_SI(0x11), MASK_SI
, 0, {SUBF
, REG_22
, REG_DEST
} },
632 {"and.tt", OP_LI(0x323), MASK_LI
, 0, {LUBF
, REG_22
, REG_DEST
} },
633 {"and.tt", OP_REG(0x322), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
635 /* Bitwise AND with ones complement of both sources */
637 {"and.ff", OP_SI(0x18), MASK_SI
, 0, {SUBF
, REG_22
, REG_DEST
} },
638 {"and.ff", OP_LI(0x331), MASK_LI
, 0, {LUBF
, REG_22
, REG_DEST
} },
639 {"and.ff", OP_REG(0x330), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
641 /* Bitwise AND with ones complement of source 1 */
643 {"and.ft", OP_SI(0x14), MASK_SI
, 0, {SUBF
, REG_22
, REG_DEST
} },
644 {"and.ft", OP_LI(0x329), MASK_LI
, 0, {LUBF
, REG_22
, REG_DEST
} },
645 {"and.ft", OP_REG(0x328), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
647 /* Bitwise AND with ones complement of source 2 */
649 {"and.tf", OP_SI(0x12), MASK_SI
, 0, {SUBF
, REG_22
, REG_DEST
} },
650 {"and.tf", OP_LI(0x325), MASK_LI
, 0, {LUBF
, REG_22
, REG_DEST
} },
651 {"and.tf", OP_REG(0x324), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
653 /* Branch Bit One - nonannulled */
655 {"bbo", OP_LI(0x395), MASK_LI
, 0, {OFF_SL_PC
, REG_22
, BITNUM
} },
656 {"bbo", OP_SI(0x4A), MASK_SI
, 0, {OFF_SS_PC
, REG_22
, BITNUM
} },
657 {"bbo", OP_REG(0x394), MASK_REG
, 0, {REG_0
, REG_22
, BITNUM
} },
659 /* Branch Bit One - annulled */
661 {"bbo.a", OP_LI(0x397), MASK_LI
, 0, {OFF_SL_PC
, REG_22
, BITNUM
} },
662 {"bbo.a", OP_SI(0x4B), MASK_SI
, 0, {OFF_SS_PC
, REG_22
, BITNUM
} },
663 {"bbo.a", OP_REG(0x396), MASK_REG
, 0, {REG_0
, REG_22
, BITNUM
} },
665 /* Branch Bit Zero - nonannulled */
667 {"bbz", OP_LI(0x391), MASK_LI
, 0, {OFF_SL_PC
, REG_22
, BITNUM
} },
668 {"bbz", OP_SI(0x48), MASK_SI
, 0, {OFF_SS_PC
, REG_22
, BITNUM
} },
669 {"bbz", OP_REG(0x390), MASK_REG
, 0, {REG_0
, REG_22
, BITNUM
} },
671 /* Branch Bit Zero - annulled */
673 {"bbz.a", OP_LI(0x393), MASK_LI
, 0, {OFF_SL_PC
, REG_22
, BITNUM
} },
674 {"bbz.a", OP_SI(0x49), MASK_SI
, 0, {OFF_SS_PC
, REG_22
, BITNUM
} },
675 {"bbz.a", OP_REG(0x392), MASK_REG
, 0, {REG_0
, REG_22
, BITNUM
} },
677 /* Branch Conditional - nonannulled */
679 {"bcnd", OP_LI(0x399), MASK_LI
, 0, {OFF_SL_PC
, REG_22
, CC
} },
680 {"bcnd", OP_SI(0x4C), MASK_SI
, 0, {OFF_SS_PC
, REG_22
, CC
} },
681 {"bcnd", OP_REG(0x398), MASK_REG
, 0, {REG_0
, REG_22
, CC
} },
683 /* Branch Conditional - annulled */
685 {"bcnd.a", OP_LI(0x39B), MASK_LI
, 0, {OFF_SL_PC
, REG_22
, CC
} },
686 {"bcnd.a", OP_SI(0x4D), MASK_SI
, 0, {OFF_SS_PC
, REG_22
, CC
} },
687 {"bcnd.a", OP_REG(0x39A), MASK_REG
, 0, {REG_0
, REG_22
, CC
} },
689 /* Branch Control Register */
691 {"brcr", OP_SI(0x6), MASK_SI
, 0, {CR_SI
} },
692 {"brcr", OP_LI(0x30D), MASK_LI
, 0, {CR_LI
} },
693 {"brcr", OP_REG(0x30C), MASK_REG
, 0, {REG_0
} },
695 /* Branch and save return - nonannulled */
697 {"bsr", OP_LI(0x381), MASK_LI
, 0, {OFF_SL_PC
, REG_DEST
} },
698 {"bsr", OP_SI(0x40), MASK_SI
, 0, {OFF_SS_PC
, REG_DEST
} },
699 {"bsr", OP_REG(0x380), MASK_REG
, 0, {REG_0
, REG_DEST
} },
701 /* Branch and save return - annulled */
703 {"bsr.a", OP_LI(0x383), MASK_LI
, 0, {OFF_SL_PC
, REG_DEST
} },
704 {"bsr.a", OP_SI(0x41), MASK_SI
, 0, {OFF_SS_PC
, REG_DEST
} },
705 {"bsr.a", OP_REG(0x382), MASK_REG
, 0, {REG_0
, REG_DEST
} },
709 {"cmnd", OP_SI(0x2), MASK_SI
, 0, {SUI
} },
710 {"cmnd", OP_LI(0x305), MASK_LI
, 0, {LUI
} },
711 {"cmnd", OP_REG(0x304), MASK_REG
, 0, {REG_0
} },
713 /* Integer compare */
715 {"cmp", OP_SI(0x50), MASK_SI
, 0, {SSI
, REG_22
, REG_DEST
} },
716 {"cmp", OP_LI(0x3A1), MASK_LI
, 0, {LSI
, REG_22
, REG_DEST
} },
717 {"cmp", OP_REG(0x3A0), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
719 /* Flush data cache subblock - don't clear subblock preset flag */
721 {"dcachec", OP_SI(0x38), F(1) | (MASK_SI
& ~M_SI(1)), 0, {SSI
, REG_BASE_M_SI
} },
722 {"dcachec", OP_LI(0x371), F(1) | (MASK_LI
& ~M_LI(1)) | S(1) | D(1), 0, {LSI
, REG_BASE_M_LI
} },
723 {"dcachec", OP_REG(0x370), F(1) | (MASK_REG
& ~M_REG(1)) | S(1) | D(1), 0, {REG_0
, REG_BASE_M_LI
} },
725 /* Flush data cache subblock - clear subblock preset flag */
727 {"dcachef", OP_SI(0x38) | F(1), F(1) | (MASK_SI
& ~M_SI(1)), 0, {SSI
, REG_BASE_M_SI
} },
728 {"dcachef", OP_LI(0x371) | F(1), F(1) | (MASK_LI
& ~M_LI(1)) | S(1) | D(1), 0, {LSI
, REG_BASE_M_LI
} },
729 {"dcachef", OP_REG(0x370) | F(1), F(1) | (MASK_REG
& ~M_REG(1)) | S(1) | D(1), 0, {REG_0
, REG_BASE_M_LI
} },
731 /* Direct load signed data into register */
733 {"dld", OP_LI(0x345) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
734 {"dld", OP_REG(0x344) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
735 {"dld.b", OP_LI(0x341) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
736 {"dld.b", OP_REG(0x340) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
737 {"dld.d", OP_LI(0x347) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
738 {"dld.d", OP_REG(0x346) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
739 {"dld.h", OP_LI(0x343) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
740 {"dld.h", OP_REG(0x342) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
742 /* Direct load unsigned data into register */
744 {"dld.ub", OP_LI(0x351) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
745 {"dld.ub", OP_REG(0x350) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
746 {"dld.uh", OP_LI(0x353) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
747 {"dld.uh", OP_REG(0x352) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
749 /* Direct store data into memory */
751 {"dst", OP_LI(0x365) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
752 {"dst", OP_REG(0x364) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
753 {"dst.b", OP_LI(0x361) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
754 {"dst.b", OP_REG(0x360) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
755 {"dst.d", OP_LI(0x367) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
756 {"dst.d", OP_REG(0x366) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
757 {"dst.h", OP_LI(0x363) | D(1), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
758 {"dst.h", OP_REG(0x362) | D(1), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
762 {"estop", OP_LI(0x3FC), MASK_LI
, 0, {0} },
766 {"etrap", OP_SI(0x1) | E(1), MASK_SI
| E(1), 0, {SUI
} },
767 {"etrap", OP_LI(0x303) | E(1), MASK_LI
| E(1), 0, {LUI
} },
768 {"etrap", OP_REG(0x302) | E(1), MASK_REG
| E(1), 0, {REG_0
} },
770 /* Floating-point addition */
772 {"fadd.ddd", OP_REG(0x3E0) | PD(1) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22_E
, REG_DEST_E
} },
773 {"fadd.dsd", OP_REG(0x3E0) | PD(1) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22
, REG_DEST_E
} },
774 {"fadd.sdd", OP_LI(0x3E1) | PD(1) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22_E
, REG_DEST_E
} },
775 {"fadd.sdd", OP_REG(0x3E0) | PD(1) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22_E
, REG_DEST_E
} },
776 {"fadd.ssd", OP_LI(0x3E1) | PD(1) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST_E
} },
777 {"fadd.ssd", OP_REG(0x3E0) | PD(1) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST_E
} },
778 {"fadd.sss", OP_LI(0x3E1) | PD(0) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST
} },
779 {"fadd.sss", OP_REG(0x3E0) | PD(0) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST
} },
781 /* Floating point compare */
783 {"fcmp.dd", OP_REG(0x3EA) | PD(0) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22_E
, REG_DEST
} },
784 {"fcmp.ds", OP_REG(0x3EA) | PD(0) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22
, REG_DEST
} },
785 {"fcmp.sd", OP_LI(0x3EB) | PD(0) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22_E
, REG_DEST
} },
786 {"fcmp.sd", OP_REG(0x3EA) | PD(0) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22_E
, REG_DEST
} },
787 {"fcmp.ss", OP_LI(0x3EB) | PD(0) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST
} },
788 {"fcmp.ss", OP_REG(0x3EA) | PD(0) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST
} },
790 /* Floating point divide */
792 {"fdiv.ddd", OP_REG(0x3E6) | PD(1) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22_E
, REG_DEST_E
} },
793 {"fdiv.dsd", OP_REG(0x3E6) | PD(1) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22
, REG_DEST_E
} },
794 {"fdiv.sdd", OP_LI(0x3E7) | PD(1) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22_E
, REG_DEST_E
} },
795 {"fdiv.sdd", OP_REG(0x3E6) | PD(1) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22_E
, REG_DEST_E
} },
796 {"fdiv.ssd", OP_LI(0x3E7) | PD(1) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST_E
} },
797 {"fdiv.ssd", OP_REG(0x3E6) | PD(1) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST_E
} },
798 {"fdiv.sss", OP_LI(0x3E7) | PD(0) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST
} },
799 {"fdiv.sss", OP_REG(0x3E6) | PD(0) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST
} },
801 /* Floating point multiply */
803 {"fmpy.ddd", OP_REG(0x3E4) | PD(1) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22_E
, REG_DEST_E
} },
804 {"fmpy.dsd", OP_REG(0x3E4) | PD(1) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22
, REG_DEST_E
} },
805 {"fmpy.iii", OP_LI(0x3E5) | PD(2) | P2(2) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_22
, REG_DEST
} },
806 {"fmpy.iii", OP_REG(0x3E4) | PD(2) | P2(2) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST
} },
807 {"fmpy.sdd", OP_LI(0x3E5) | PD(1) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22_E
, REG_DEST_E
} },
808 {"fmpy.sdd", OP_REG(0x3E4) | PD(1) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22_E
, REG_DEST_E
} },
809 {"fmpy.ssd", OP_LI(0x3E5) | PD(1) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST_E
} },
810 {"fmpy.ssd", OP_REG(0x3E4) | PD(1) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST_E
} },
811 {"fmpy.sss", OP_LI(0x3E5) | PD(0) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST
} },
812 {"fmpy.sss", OP_REG(0x3E4) | PD(0) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST
} },
813 {"fmpy.uuu", OP_LI(0x3E5) | PD(3) | P2(3) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LUI
, REG_22
, REG_DEST
} },
814 {"fmpy.uuu", OP_REG(0x3E4) | PD(3) | P2(3) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST
} },
816 /* Convert/Round to Minus Infinity */
818 {"frndm.dd", OP_REG(0x3E8) | PD(1) | P2(3) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST_E
} },
819 {"frndm.di", OP_REG(0x3E8) | PD(2) | P2(3) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
820 {"frndm.ds", OP_REG(0x3E8) | PD(0) | P2(3) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
821 {"frndm.du", OP_REG(0x3E8) | PD(3) | P2(3) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
822 {"frndm.id", OP_LI(0x3E9) | PD(1) | P2(3) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
823 {"frndm.id", OP_REG(0x3E8) | PD(1) | P2(3) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
824 {"frndm.is", OP_LI(0x3E9) | PD(0) | P2(3) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
825 {"frndm.is", OP_REG(0x3E8) | PD(0) | P2(3) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
826 {"frndm.sd", OP_LI(0x3E9) | PD(1) | P2(3) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST_E
} },
827 {"frndm.sd", OP_REG(0x3E8) | PD(1) | P2(3) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
828 {"frndm.si", OP_LI(0x3E9) | PD(2) | P2(3) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
829 {"frndm.si", OP_REG(0x3E8) | PD(2) | P2(3) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
830 {"frndm.ss", OP_LI(0x3E9) | PD(0) | P2(3) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
831 {"frndm.ss", OP_REG(0x3E8) | PD(0) | P2(3) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
832 {"frndm.su", OP_LI(0x3E9) | PD(3) | P2(3) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
833 {"frndm.su", OP_REG(0x3E8) | PD(3) | P2(3) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
834 {"frndm.ud", OP_LI(0x3E9) | PD(1) | P2(3) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
835 {"frndm.ud", OP_REG(0x3E8) | PD(1) | P2(3) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
836 {"frndm.us", OP_LI(0x3E9) | PD(0) | P2(3) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
837 {"frndm.us", OP_REG(0x3E8) | PD(0) | P2(3) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
839 /* Convert/Round to Nearest */
841 {"frndn.dd", OP_REG(0x3E8) | PD(1) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST_E
} },
842 {"frndn.di", OP_REG(0x3E8) | PD(2) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
843 {"frndn.ds", OP_REG(0x3E8) | PD(0) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
844 {"frndn.du", OP_REG(0x3E8) | PD(3) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
845 {"frndn.id", OP_LI(0x3E9) | PD(1) | P2(0) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
846 {"frndn.id", OP_REG(0x3E8) | PD(1) | P2(0) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
847 {"frndn.is", OP_LI(0x3E9) | PD(0) | P2(0) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
848 {"frndn.is", OP_REG(0x3E8) | PD(0) | P2(0) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
849 {"frndn.sd", OP_LI(0x3E9) | PD(1) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST_E
} },
850 {"frndn.sd", OP_REG(0x3E8) | PD(1) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
851 {"frndn.si", OP_LI(0x3E9) | PD(2) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
852 {"frndn.si", OP_REG(0x3E8) | PD(2) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
853 {"frndn.ss", OP_LI(0x3E9) | PD(0) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
854 {"frndn.ss", OP_REG(0x3E8) | PD(0) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
855 {"frndn.su", OP_LI(0x3E9) | PD(3) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
856 {"frndn.su", OP_REG(0x3E8) | PD(3) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
857 {"frndn.ud", OP_LI(0x3E9) | PD(1) | P2(0) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
858 {"frndn.ud", OP_REG(0x3E8) | PD(1) | P2(0) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
859 {"frndn.us", OP_LI(0x3E9) | PD(0) | P2(0) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
860 {"frndn.us", OP_REG(0x3E8) | PD(0) | P2(0) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
862 /* Convert/Round to Positive Infinity */
864 {"frndp.dd", OP_REG(0x3E8) | PD(1) | P2(2) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST_E
} },
865 {"frndp.di", OP_REG(0x3E8) | PD(2) | P2(2) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
866 {"frndp.ds", OP_REG(0x3E8) | PD(0) | P2(2) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
867 {"frndp.du", OP_REG(0x3E8) | PD(3) | P2(2) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
868 {"frndp.id", OP_LI(0x3E9) | PD(1) | P2(2) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
869 {"frndp.id", OP_REG(0x3E8) | PD(1) | P2(2) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
870 {"frndp.is", OP_LI(0x3E9) | PD(0) | P2(2) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
871 {"frndp.is", OP_REG(0x3E8) | PD(0) | P2(2) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
872 {"frndp.sd", OP_LI(0x3E9) | PD(1) | P2(2) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST_E
} },
873 {"frndp.sd", OP_REG(0x3E8) | PD(1) | P2(2) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
874 {"frndp.si", OP_LI(0x3E9) | PD(2) | P2(2) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
875 {"frndp.si", OP_REG(0x3E8) | PD(2) | P2(2) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
876 {"frndp.ss", OP_LI(0x3E9) | PD(0) | P2(2) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
877 {"frndp.ss", OP_REG(0x3E8) | PD(0) | P2(2) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
878 {"frndp.su", OP_LI(0x3E9) | PD(3) | P2(2) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
879 {"frndp.su", OP_REG(0x3E8) | PD(3) | P2(2) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
880 {"frndp.ud", OP_LI(0x3E9) | PD(1) | P2(2) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
881 {"frndp.ud", OP_REG(0x3E8) | PD(1) | P2(2) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
882 {"frndp.us", OP_LI(0x3E9) | PD(0) | P2(2) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
883 {"frndp.us", OP_REG(0x3E8) | PD(0) | P2(2) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
885 /* Convert/Round to Zero */
887 {"frndz.dd", OP_REG(0x3E8) | PD(1) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST_E
} },
888 {"frndz.di", OP_REG(0x3E8) | PD(2) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
889 {"frndz.ds", OP_REG(0x3E8) | PD(0) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
890 {"frndz.du", OP_REG(0x3E8) | PD(3) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST
} },
891 {"frndz.id", OP_LI(0x3E9) | PD(1) | P2(1) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
892 {"frndz.id", OP_REG(0x3E8) | PD(1) | P2(1) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
893 {"frndz.is", OP_LI(0x3E9) | PD(0) | P2(1) | P1(2), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
894 {"frndz.is", OP_REG(0x3E8) | PD(0) | P2(1) | P1(2), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
895 {"frndz.sd", OP_LI(0x3E9) | PD(1) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST_E
} },
896 {"frndz.sd", OP_REG(0x3E8) | PD(1) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
897 {"frndz.si", OP_LI(0x3E9) | PD(2) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
898 {"frndz.si", OP_REG(0x3E8) | PD(2) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
899 {"frndz.ss", OP_LI(0x3E9) | PD(0) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
900 {"frndz.ss", OP_REG(0x3E8) | PD(0) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
901 {"frndz.su", OP_LI(0x3E9) | PD(3) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
902 {"frndz.su", OP_REG(0x3E8) | PD(3) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
903 {"frndz.ud", OP_LI(0x3E9) | PD(1) | P2(1) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST_E
} },
904 {"frndz.ud", OP_REG(0x3E8) | PD(1) | P2(1) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
905 {"frndz.us", OP_LI(0x3E9) | PD(0) | P2(1) | P1(3), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {LSI
, REG_DEST
} },
906 {"frndz.us", OP_REG(0x3E8) | PD(0) | P2(1) | P1(3), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
908 /* Floating point square root */
910 {"fsqrt.dd", OP_REG(0x3EE) | PD(1) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_DEST_E
} },
911 {"fsqrt.sd", OP_LI(0x3EF) | PD(1) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST_E
} },
912 {"fsqrt.sd", OP_REG(0x3EE) | PD(1) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST_E
} },
913 {"fsqrt.ss", OP_LI(0x3EF) | PD(0) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_DEST
} },
914 {"fsqrt.ss", OP_REG(0x3EE) | PD(0) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_DEST
} },
916 /* Floating point subtraction */
918 { "fsub.ddd", OP_REG(0x3E2) | PD(1) | P2(1) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22_E
, REG_DEST_E
} },
919 { "fsub.dsd", OP_REG(0x3E2) | PD(1) | P2(0) | P1(1), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0_E
, REG_22
, REG_DEST_E
} },
920 { "fsub.sdd", OP_LI(0x3E3) | PD(1) | P2(1) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22_E
, REG_DEST_E
} },
921 { "fsub.sdd", OP_REG(0x3E2) | PD(1) | P2(1) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22_E
, REG_DEST_E
} },
922 { "fsub.ssd", OP_LI(0x3E3) | PD(1) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST_E
} },
923 { "fsub.ssd", OP_REG(0x3E2) | PD(1) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST_E
} },
924 { "fsub.sss", OP_LI(0x3E3) | PD(0) | P2(0) | P1(0), MASK_LI
| PD(3) | P2(3) | P1(3), 0, {SPFI
, REG_22
, REG_DEST
} },
925 { "fsub.sss", OP_REG(0x3E2) | PD(0) | P2(0) | P1(0), MASK_REG
| PD(3) | P2(3) | P1(3), 0, {REG_0
, REG_22
, REG_DEST
} },
927 /* Illegal instructions */
929 {"illop0", OP_SI(0x0), MASK_SI
, 0, {0} },
930 {"illopF", 0x1FF << 13, 0x1FF << 13, 0, {0} },
932 /* Jump and save return */
934 {"jsr", OP_SI(0x44), MASK_SI
, 0, {OFF_SS_BR
, REG_BASE
, REG_DEST
} },
935 {"jsr", OP_LI(0x389), MASK_LI
, 0, {OFF_SL_BR
, REG_BASE
, REG_DEST
} },
936 {"jsr", OP_REG(0x388), MASK_REG
, 0, {REG_0
, REG_BASE
, REG_DEST
} },
937 {"jsr.a", OP_SI(0x45), MASK_SI
, 0, {OFF_SS_BR
, REG_BASE
, REG_DEST
} },
938 {"jsr.a", OP_LI(0x38B), MASK_LI
, 0, {OFF_SL_BR
, REG_BASE
, REG_DEST
} },
939 {"jsr.a", OP_REG(0x38A), MASK_REG
, 0, {REG_0
, REG_BASE
, REG_DEST
} },
941 /* Load Signed Data Into Register */
943 {"ld", OP_SI(0x22), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
944 {"ld", OP_LI(0x345) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
945 {"ld", OP_REG(0x344) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
946 {"ld.b", OP_SI(0x20), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
947 {"ld.b", OP_LI(0x341) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
948 {"ld.b", OP_REG(0x340) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
949 {"ld.d", OP_SI(0x23), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST_E
} },
950 {"ld.d", OP_LI(0x347) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
951 {"ld.d", OP_REG(0x346) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
952 {"ld.h", OP_SI(0x21), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
953 {"ld.h", OP_LI(0x343) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
954 {"ld.h", OP_REG(0x342) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
956 /* Load Unsigned Data Into Register */
958 {"ld.ub", OP_SI(0x28), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
959 {"ld.ub", OP_LI(0x351) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
960 {"ld.ub", OP_REG(0x350) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
961 {"ld.uh", OP_SI(0x29), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
962 {"ld.uh", OP_LI(0x353) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
963 {"ld.uh", OP_REG(0x352) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
967 {"lmo", OP_LI(0x3F0), MASK_LI
, 0, {REG_22
, REG_DEST
} },
969 /* Bitwise logical OR. Note that "or.tt" and "or" are the same instructions. */
971 {"or.ff", OP_SI(0x1E), MASK_SI
, 0, {SUI
, REG_22
, REG_DEST
} },
972 {"or.ff", OP_LI(0x33D), MASK_LI
, 0, {LUI
, REG_22
, REG_DEST
} },
973 {"or.ff", OP_REG(0x33C), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
974 {"or.ft", OP_SI(0x1D), MASK_SI
, 0, {SUI
, REG_22
, REG_DEST
} },
975 {"or.ft", OP_LI(0x33B), MASK_LI
, 0, {LUI
, REG_22
, REG_DEST
} },
976 {"or.ft", OP_REG(0x33A), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
977 {"or.tf", OP_SI(0x1B), MASK_SI
, 0, {SUI
, REG_22
, REG_DEST
} },
978 {"or.tf", OP_LI(0x337), MASK_LI
, 0, {LUI
, REG_22
, REG_DEST
} },
979 {"or.tf", OP_REG(0x336), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
980 {"or.tt", OP_SI(0x17), MASK_SI
, 0, {SUI
, REG_22
, REG_DEST
} },
981 {"or.tt", OP_LI(0x32F), MASK_LI
, 0, {LUI
, REG_22
, REG_DEST
} },
982 {"or.tt", OP_REG(0x32E), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
983 {"or", OP_SI(0x17), MASK_SI
, 0, {SUI
, REG_22
, REG_DEST
} },
984 {"or", OP_LI(0x32F), MASK_LI
, 0, {LUI
, REG_22
, REG_DEST
} },
985 {"or", OP_REG(0x32E), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
987 /* Read Control Register */
989 {"rdcr", OP_SI(0x4), MASK_SI
| (0x1F << 22), 0, {CR_SI
, REG_DEST
} },
990 {"rdcr", OP_LI(0x309), MASK_LI
| (0x1F << 22), 0, {CR_LI
, REG_DEST
} },
991 {"rdcr", OP_REG(0x308), MASK_REG
| (0x1F << 22), 0, {REG_0
, REG_DEST
} },
995 {"rmo", OP_LI(0x3F2), MASK_LI
, 0, {REG_22
, REG_DEST
} },
997 /* Shift Register Left - note that rotl, shl, and ins are all alternate names for one of the shift instructions.
998 They appear prior to their sl equivalent so that they will be diassembled as the alternate name. */
1001 {"ins", OP_REG(0x31E) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1002 {"ins", OP_SI(0xF) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1003 {"rotl", OP_REG(0x310) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1004 {"rotl", OP_SI(0x8) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1005 {"shl", OP_REG(0x31C) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1006 {"shl", OP_SI(0xE) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1007 {"sl.dm", OP_REG(0x312) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1008 {"sl.dm", OP_SI(0x9) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1009 {"sl.ds", OP_REG(0x314) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1010 {"sl.ds", OP_SI(0xA) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1011 {"sl.dz", OP_REG(0x310) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1012 {"sl.dz", OP_SI(0x8) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1013 {"sl.em", OP_REG(0x318) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1014 {"sl.em", OP_SI(0xC) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1015 {"sl.es", OP_REG(0x31A) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1016 {"sl.es", OP_SI(0xD) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1017 {"sl.ez", OP_REG(0x316) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1018 {"sl.ez", OP_SI(0xB) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1019 {"sl.im", OP_REG(0x31E) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1020 {"sl.im", OP_SI(0xF) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1021 {"sl.iz", OP_REG(0x31C) | i(0) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1022 {"sl.iz", OP_SI(0xE) | i(0) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1024 /* Shift Register Left With Inverted Endmask */
1026 {"sli.dm", OP_REG(0x312) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1027 {"sli.dm", OP_SI(0x9) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1028 {"sli.ds", OP_REG(0x314) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1029 {"sli.ds", OP_SI(0xA) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1030 {"sli.dz", OP_REG(0x310) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1031 {"sli.dz", OP_SI(0x8) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1032 {"sli.em", OP_REG(0x318) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1033 {"sli.em", OP_SI(0xC) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1034 {"sli.es", OP_REG(0x31A) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1035 {"sli.es", OP_SI(0xD) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1036 {"sli.ez", OP_REG(0x316) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1037 {"sli.ez", OP_SI(0xB) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1038 {"sli.im", OP_REG(0x31E) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1039 {"sli.im", OP_SI(0xF) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1040 {"sli.iz", OP_REG(0x31C) | i(1) | n(0), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1041 {"sli.iz", OP_SI(0xE) | i(1) | n(0), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1043 /* Shift Register Right - note that exts, extu, rotr, sra, and srl are all alternate names for one of the shift instructions.
1044 They appear prior to their sr equivalent so that they will be diassembled as the alternate name. */
1046 {"exts", OP_REG(0x314) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1047 {"exts", OP_SI(0xA) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1048 {"extu", OP_REG(0x310) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1049 {"extu", OP_SI(0x8) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1050 {"rotr", OP_REG(0x310) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1051 {"rotr", OP_SI(0x8) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1052 {"sra", OP_REG(0x31A) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1053 {"sra", OP_SI(0xD) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1054 {"srl", OP_REG(0x316) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1055 {"srl", OP_SI(0xB) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1056 {"sr.dm", OP_REG(0x312) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1057 {"sr.dm", OP_SI(0x9) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1058 {"sr.ds", OP_REG(0x314) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1059 {"sr.ds", OP_SI(0xA) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1060 {"sr.dz", OP_REG(0x310) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1061 {"sr.dz", OP_SI(0x8) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1062 {"sr.em", OP_REG(0x318) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1063 {"sr.em", OP_SI(0xC) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1064 {"sr.es", OP_REG(0x31A) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1065 {"sr.es", OP_SI(0xD) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1066 {"sr.ez", OP_REG(0x316) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1067 {"sr.ez", OP_SI(0xB) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1068 {"sr.im", OP_REG(0x31E) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1069 {"sr.im", OP_SI(0xF) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1070 {"sr.iz", OP_REG(0x31C) | i(0) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1071 {"sr.iz", OP_SI(0xE) | i(0) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1073 /* Shift Register Right With Inverted Endmask */
1075 {"sri.dm", OP_REG(0x312) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1076 {"sri.dm", OP_SI(0x9) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1077 {"sri.ds", OP_REG(0x314) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1078 {"sri.ds", OP_SI(0xA) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1079 {"sri.dz", OP_REG(0x310) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1080 {"sri.dz", OP_SI(0x8) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1081 {"sri.em", OP_REG(0x318) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1082 {"sri.em", OP_SI(0xC) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1083 {"sri.es", OP_REG(0x31A) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1084 {"sri.es", OP_SI(0xD) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1085 {"sri.ez", OP_REG(0x316) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1086 {"sri.ez", OP_SI(0xB) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1087 {"sri.im", OP_REG(0x31E) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1088 {"sri.im", OP_SI(0xF) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1089 {"sri.iz", OP_REG(0x31C) | i(1) | n(1), MASK_REG
| i(1) | n(1), 0, {REG_0
, ENDMASK
, REG_22
, REG_DEST
} },
1090 {"sri.iz", OP_SI(0xE) | i(1) | n(1), MASK_SI
| i(1) | n(1), 0, {ROTATE
, ENDMASK
, REG_22
, REG_DEST
} },
1092 /* Store Data into Memory */
1094 {"st", OP_SI(0x32), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
1095 {"st", OP_LI(0x365) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
1096 {"st", OP_REG(0x364) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
1097 {"st.b", OP_SI(0x30), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
1098 {"st.b", OP_LI(0x361) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
1099 {"st.b", OP_REG(0x360) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
1100 {"st.d", OP_SI(0x33), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST_E
} },
1101 {"st.d", OP_LI(0x367) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
1102 {"st.d", OP_REG(0x366) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST_E
} },
1103 {"st.h", OP_SI(0x31), (MASK_SI
& ~M_SI(1)), 0, {OFF_SS_BR
, REG_BASE_M_SI
, REG_DEST
} },
1104 {"st.h", OP_LI(0x363) | D(0), (MASK_LI
& ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
1105 {"st.h", OP_REG(0x362) | D(0), (MASK_REG
& ~M_REG(1)) | D(1), 0, {REG_SCALED
, REG_BASE_M_LI
, REG_DEST
} },
1107 /* Signed Integer Subtract */
1109 {"sub", OP_SI(0x5A), MASK_SI
, 0, {SSI
, REG_22
, REG_DEST
} },
1110 {"sub", OP_LI(0x3B5), MASK_LI
, 0, {LSI
, REG_22
, REG_DEST
} },
1111 {"sub", OP_REG(0x3B4), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
1113 /* Unsigned Integer Subtract */
1115 {"subu", OP_SI(0x5B), MASK_SI
, 0, {SSI
, REG_22
, REG_DEST
} },
1116 {"subu", OP_LI(0x3B7), MASK_LI
, 0, {LSI
, REG_22
, REG_DEST
} },
1117 {"subu", OP_REG(0x3B6), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
1119 /* Write Control Register
1120 Is a special form of the "swcr" instruction so comes before it in the table. */
1122 {"wrcr", OP_SI(0x5), MASK_SI
| (0x1F << 27), 0, {CR_SI
, REG_22
} },
1123 {"wrcr", OP_LI(0x30B), MASK_LI
| (0x1F << 27), 0, {CR_LI
, REG_22
} },
1124 {"wrcr", OP_REG(0x30A), MASK_REG
| (0x1F << 27), 0, {REG_0
, REG_22
} },
1126 /* Swap Control Register */
1128 {"swcr", OP_SI(0x5), MASK_SI
, 0, {CR_SI
, REG_22
, REG_DEST
} },
1129 {"swcr", OP_LI(0x30B), MASK_LI
, 0, {CR_LI
, REG_22
, REG_DEST
} },
1130 {"swcr", OP_REG(0x30A), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
1134 {"trap", OP_SI(0x1) | E(0), MASK_SI
| E(1), 0, {SUI
} },
1135 {"trap", OP_LI(0x303) | E(0), MASK_LI
| E(1), 0, {LUI
} },
1136 {"trap", OP_REG(0x302) | E(0), MASK_REG
| E(1), 0, {REG_0
} },
1138 /* Vector Floating-Point Add */
1140 {"vadd.dd", OP_REG(0x3C0) | P2(1) | P1(1), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0_E
, REG_22_E
, REG_22_E
} },
1141 {"vadd.sd", OP_LI(0x3C1) | P2(1) | P1(0), MASK_LI
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {SPFI
, REG_22_E
, REG_22_E
} },
1142 {"vadd.sd", OP_REG(0x3C0) | P2(1) | P1(0), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22_E
, REG_22_E
} },
1143 {"vadd.ss", OP_LI(0x3C1) | P2(0) | P1(0), MASK_LI
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {SPFI
, REG_22
, REG_22
} },
1144 {"vadd.ss", OP_REG(0x3C0) | P2(0) | P1(0), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22
, REG_22
} },
1146 /* Vector Floating-Point Multiply and Add to Accumulator FIXME! This is not yet fully implemented.
1147 From the documentation there appears to be no way to tell the difference between the opcodes for
1148 instructions that have register destinations and instructions that have accumulator destinations.
1149 Further investigation is necessary. Since this isn't critical to getting a TIC80 toolchain up
1150 and running, it is defered until later. */
1152 /* Vector Floating-Point Multiply
1153 Note: If r0 is in the destination reg, then this is a "vector nop" instruction. */
1155 {"vmpy.dd", OP_REG(0x3C4) | P2(1) | P1(1), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
| TIC80_NO_R0_DEST
, {REG_0_E
, REG_22_E
, REG_22_E
} },
1156 {"vmpy.sd", OP_LI(0x3C5) | P2(1) | P1(0), MASK_LI
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
| TIC80_NO_R0_DEST
, {SPFI
, REG_22_E
, REG_22_E
} },
1157 {"vmpy.sd", OP_REG(0x3C4) | P2(1) | P1(0), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
| TIC80_NO_R0_DEST
, {REG_0
, REG_22_E
, REG_22_E
} },
1158 {"vmpy.ss", OP_LI(0x3C5) | P2(0) | P1(0), MASK_LI
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
| TIC80_NO_R0_DEST
, {SPFI
, REG_22
, REG_22
} },
1159 {"vmpy.ss", OP_REG(0x3C4) | P2(0) | P1(0), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
| TIC80_NO_R0_DEST
, {REG_0
, REG_22
, REG_22
} },
1161 /* Vector Floating-Point Multiply and Subtract from Accumulator
1162 FIXME: See note above for vmac instruction */
1164 /* Vector Floating-Point Subtract Accumulator From Source
1165 FIXME: See note above for vmac instruction */
1167 /* Vector Round With Floating-Point Input
1168 FIXME: See note above for vmac instruction */
1170 /* Vector Round with Integer Input */
1172 {"vrnd.id", OP_LI (0x3CB) | P2(1) | P1(0), MASK_LI
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {LSI
, REG_22_E
}},
1173 {"vrnd.id", OP_REG (0x3CA) | P2(1) | P1(0), MASK_REG
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22_E
}},
1174 {"vrnd.is", OP_LI (0x3CB) | P2(0) | P1(0), MASK_LI
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {LSI
, REG_22
}},
1175 {"vrnd.is", OP_REG (0x3CA) | P2(0) | P1(0), MASK_REG
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22
}},
1176 {"vrnd.ud", OP_LI (0x3CB) | P2(1) | P1(1), MASK_LI
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {LUI
, REG_22_E
}},
1177 {"vrnd.ud", OP_REG (0x3CA) | P2(1) | P1(1), MASK_REG
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22_E
}},
1178 {"vrnd.us", OP_LI (0x3CB) | P2(0) | P1(1), MASK_LI
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {LUI
, REG_22
}},
1179 {"vrnd.us", OP_REG (0x3CA) | P2(0) | P1(1), MASK_REG
| V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22
}},
1181 /* Vector Floating-Point Subtract */
1183 {"vsub.dd", OP_REG(0x3C2) | P2(1) | P1(1), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0_E
, REG_22_E
, REG_22_E
} },
1184 {"vsub.sd", OP_LI(0x3C3) | P2(1) | P1(0), MASK_LI
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {SPFI
, REG_22_E
, REG_22_E
} },
1185 {"vsub.sd", OP_REG(0x3C2) | P2(1) | P1(0), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22_E
, REG_22_E
} },
1186 {"vsub.ss", OP_LI(0x3C3) | P2(0) | P1(0), MASK_LI
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {SPFI
, REG_22
, REG_22
} },
1187 {"vsub.ss", OP_REG(0x3C2) | P2(0) | P1(0), MASK_REG
| V_a1(1) | P2(1) | P1(1), TIC80_VECTOR
, {REG_0
, REG_22
, REG_22
} },
1189 /* Vector Load Data Into Register - Note that the vector load/store instructions come after the other
1190 vector instructions so that the disassembler will always print the load/store instruction second for
1191 vector instructions that have two instructions in the same opcode. */
1193 {"vld0.d", OP_V(0x1E) | V_m(1) | V_S(1) | V_p(0), MASK_V
| V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR
, {REG_DEST_E
} },
1194 {"vld0.s", OP_V(0x1E) | V_m(1) | V_S(0) | V_p(0), MASK_V
| V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR
, {REG_DEST
} },
1195 {"vld1.d", OP_V(0x1E) | V_m(1) | V_S(1) | V_p(1), MASK_V
| V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR
, {REG_DEST_E
} },
1196 {"vld1.s", OP_V(0x1E) | V_m(1) | V_S(0) | V_p(1), MASK_V
| V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR
, {REG_DEST
} },
1198 /* Vector Store Data Into Memory - Note that the vector load/store instructions come after the other
1199 vector instructions so that the disassembler will always print the load/store instruction second for
1200 vector instructions that have two instructions in the same opcode. */
1202 {"vst.d", OP_V(0x1E) | V_m(0) | V_S(1) | V_p(1), MASK_V
| V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR
, {REG_DEST_E
} },
1203 {"vst.s", OP_V(0x1E) | V_m(0) | V_S(0) | V_p(1), MASK_V
| V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR
, {REG_DEST
} },
1205 {"xnor", OP_SI(0x19), MASK_SI
, 0, {SUBF
, REG_22
, REG_DEST
} },
1206 {"xnor", OP_LI(0x333), MASK_LI
, 0, {LUBF
, REG_22
, REG_DEST
} },
1207 {"xnor", OP_REG(0x332), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
1209 {"xor", OP_SI(0x16), MASK_SI
, 0, {SUBF
, REG_22
, REG_DEST
} },
1210 {"xor", OP_LI(0x32D), MASK_LI
, 0, {LUBF
, REG_22
, REG_DEST
} },
1211 {"xor", OP_REG(0x32C), MASK_REG
, 0, {REG_0
, REG_22
, REG_DEST
} },
1215 const int tic80_num_opcodes
= sizeof (tic80_opcodes
) / sizeof (tic80_opcodes
[0]);