]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/m32r/m32r.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / sim / m32r / m32r.c
1 /* m32r simulator support code
2 Copyright (C) 1996-2024 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This must come before any other includes. */
21 #include "defs.h"
22
23 #define WANT_CPU m32rbf
24 #define WANT_CPU_M32RBF
25
26 #include "sim-main.h"
27 #include "cgen-mem.h"
28 #include "cgen-ops.h"
29 #include <stdlib.h>
30
31 #include "m32r-sim.h"
32
33 /* Return the size of REGNO in bytes. */
34
35 static int
36 m32rbf_register_size (int regno)
37 {
38 return 4;
39 }
40
41 /* Decode gdb ctrl register number. */
42
43 int
44 m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
45 {
46 switch (gdb_regnum)
47 {
48 case PSW_REGNUM : return H_CR_PSW;
49 case CBR_REGNUM : return H_CR_CBR;
50 case SPI_REGNUM : return H_CR_SPI;
51 case SPU_REGNUM : return H_CR_SPU;
52 case BPC_REGNUM : return H_CR_BPC;
53 case BBPSW_REGNUM : return H_CR_BBPSW;
54 case BBPC_REGNUM : return H_CR_BBPC;
55 case EVB_REGNUM : return H_CR_CR5;
56 }
57 abort ();
58 }
59
60 /* The contents of BUF are in target byte order. */
61
62 int
63 m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, void *buf, int len)
64 {
65 int size = m32rbf_register_size (rn);
66 if (len != size)
67 return -1;
68
69 if (rn < 16)
70 SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn));
71 else
72 switch (rn)
73 {
74 case PSW_REGNUM :
75 case CBR_REGNUM :
76 case SPI_REGNUM :
77 case SPU_REGNUM :
78 case BPC_REGNUM :
79 case BBPSW_REGNUM :
80 case BBPC_REGNUM :
81 SETTWI (buf, m32rbf_h_cr_get (current_cpu,
82 m32r_decode_gdb_ctrl_regnum (rn)));
83 break;
84 case PC_REGNUM :
85 SETTWI (buf, m32rbf_h_pc_get (current_cpu));
86 break;
87 case ACCL_REGNUM :
88 SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
89 break;
90 case ACCH_REGNUM :
91 SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
92 break;
93 default :
94 return 0;
95 }
96
97 return size;
98 }
99
100 /* The contents of BUF are in target byte order. */
101
102 int
103 m32rbf_store_register (SIM_CPU *current_cpu, int rn, const void *buf, int len)
104 {
105 int size = m32rbf_register_size (rn);
106 if (len != size)
107 return -1;
108
109 if (rn < 16)
110 m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf));
111 else
112 switch (rn)
113 {
114 case PSW_REGNUM :
115 case CBR_REGNUM :
116 case SPI_REGNUM :
117 case SPU_REGNUM :
118 case BPC_REGNUM :
119 case BBPSW_REGNUM :
120 case BBPC_REGNUM :
121 m32rbf_h_cr_set (current_cpu,
122 m32r_decode_gdb_ctrl_regnum (rn),
123 GETTWI (buf));
124 break;
125 case PC_REGNUM :
126 m32rbf_h_pc_set (current_cpu, GETTWI (buf));
127 break;
128 case ACCL_REGNUM :
129 {
130 DI val = m32rbf_h_accum_get (current_cpu);
131 SETLODI (val, GETTWI (buf));
132 m32rbf_h_accum_set (current_cpu, val);
133 break;
134 }
135 case ACCH_REGNUM :
136 {
137 DI val = m32rbf_h_accum_get (current_cpu);
138 SETHIDI (val, GETTWI (buf));
139 m32rbf_h_accum_set (current_cpu, val);
140 break;
141 }
142 default :
143 return 0;
144 }
145
146 return size;
147 }
148 \f
149 USI
150 m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
151 {
152 switch (cr)
153 {
154 case H_CR_PSW : /* psw */
155 return (((CPU (h_bpsw) & 0xc1) << 8)
156 | ((CPU (h_psw) & 0xc0) << 0)
157 | GET_H_COND ());
158 case H_CR_BBPSW : /* backup backup psw */
159 return CPU (h_bbpsw) & 0xc1;
160 case H_CR_CBR : /* condition bit */
161 return GET_H_COND ();
162 case H_CR_SPI : /* interrupt stack pointer */
163 if (! GET_H_SM ())
164 return CPU (h_gr[H_GR_SP]);
165 else
166 return CPU (h_cr[H_CR_SPI]);
167 case H_CR_SPU : /* user stack pointer */
168 if (GET_H_SM ())
169 return CPU (h_gr[H_GR_SP]);
170 else
171 return CPU (h_cr[H_CR_SPU]);
172 case H_CR_BPC : /* backup pc */
173 return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
174 case H_CR_BBPC : /* backup backup pc */
175 return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
176 case 4 : /* ??? unspecified, but apparently available */
177 case 5 : /* ??? unspecified, but apparently available */
178 return CPU (h_cr[cr]);
179 default :
180 return 0;
181 }
182 }
183
184 void
185 m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
186 {
187 switch (cr)
188 {
189 case H_CR_PSW : /* psw */
190 {
191 int old_sm = (CPU (h_psw) & 0x80) != 0;
192 int new_sm = (newval & 0x80) != 0;
193 CPU (h_bpsw) = (newval >> 8) & 0xff;
194 CPU (h_psw) = newval & 0xff;
195 SET_H_COND (newval & 1);
196 /* When switching stack modes, update the registers. */
197 if (old_sm != new_sm)
198 {
199 if (old_sm)
200 {
201 /* Switching user -> system. */
202 CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
203 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
204 }
205 else
206 {
207 /* Switching system -> user. */
208 CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
209 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
210 }
211 }
212 break;
213 }
214 case H_CR_BBPSW : /* backup backup psw */
215 CPU (h_bbpsw) = newval & 0xff;
216 break;
217 case H_CR_CBR : /* condition bit */
218 SET_H_COND (newval & 1);
219 break;
220 case H_CR_SPI : /* interrupt stack pointer */
221 if (! GET_H_SM ())
222 CPU (h_gr[H_GR_SP]) = newval;
223 else
224 CPU (h_cr[H_CR_SPI]) = newval;
225 break;
226 case H_CR_SPU : /* user stack pointer */
227 if (GET_H_SM ())
228 CPU (h_gr[H_GR_SP]) = newval;
229 else
230 CPU (h_cr[H_CR_SPU]) = newval;
231 break;
232 case H_CR_BPC : /* backup pc */
233 CPU (h_cr[H_CR_BPC]) = newval;
234 break;
235 case H_CR_BBPC : /* backup backup pc */
236 CPU (h_cr[H_CR_BBPC]) = newval;
237 break;
238 case 4 : /* ??? unspecified, but apparently available */
239 case 5 : /* ??? unspecified, but apparently available */
240 CPU (h_cr[cr]) = newval;
241 break;
242 default :
243 /* ignore */
244 break;
245 }
246 }
247
248 /* Cover fns to access h-psw. */
249
250 UQI
251 m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
252 {
253 return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
254 }
255
256 void
257 m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
258 {
259 CPU (h_psw) = newval;
260 CPU (h_cond) = newval & 1;
261 }
262
263 /* Cover fns to access h-accum. */
264
265 DI
266 m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
267 {
268 /* Sign extend the top 8 bits. */
269 DI r;
270 #if 1
271 r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
272 r = XORDI (r, MAKEDI (0x800000, 0));
273 r = SUBDI (r, MAKEDI (0x800000, 0));
274 #else
275 SI hi,lo;
276 r = CPU (h_accum);
277 hi = GETHIDI (r);
278 lo = GETLODI (r);
279 hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
280 r = MAKEDI (hi, lo);
281 #endif
282 return r;
283 }
284
285 void
286 m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
287 {
288 CPU (h_accum) = newval;
289 }
290 \f
291 #if WITH_PROFILE_MODEL_P
292
293 /* FIXME: Some of these should be inline or macros. Later. */
294
295 /* Initialize cycle counting for an insn.
296 FIRST_P is non-zero if this is the first insn in a set of parallel
297 insns. */
298
299 void
300 m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
301 {
302 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
303 mp->cti_stall = 0;
304 mp->load_stall = 0;
305 if (first_p)
306 {
307 mp->load_regs_pending = 0;
308 mp->biggest_cycles = 0;
309 }
310 }
311
312 /* Record the cycles computed for an insn.
313 LAST_P is non-zero if this is the last insn in a set of parallel insns,
314 and we update the total cycle count.
315 CYCLES is the cycle count of the insn. */
316
317 void
318 m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
319 {
320 PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
321 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
322 unsigned long total = cycles + mp->cti_stall + mp->load_stall;
323
324 if (last_p)
325 {
326 unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
327 PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
328 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
329 }
330 else
331 {
332 /* Here we take advantage of the fact that !last_p -> first_p. */
333 mp->biggest_cycles = total;
334 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
335 }
336
337 /* Branch and load stall counts are recorded independently of the
338 total cycle count. */
339 PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
340 PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
341
342 mp->load_regs = mp->load_regs_pending;
343 }
344
345 static INLINE void
346 check_load_stall (SIM_CPU *cpu, int regno)
347 {
348 UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
349
350 if (regno != -1
351 && (h_gr & (1 << regno)) != 0)
352 {
353 CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
354 if (TRACE_INSN_P (cpu))
355 cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
356 }
357 }
358
359 int
360 m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
361 int unit_num, int referenced,
362 INT sr, INT sr2, INT dr)
363 {
364 check_load_stall (cpu, sr);
365 check_load_stall (cpu, sr2);
366 return idesc->timing->units[unit_num].done;
367 }
368
369 int
370 m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
371 int unit_num, int referenced,
372 INT src1, INT src2)
373 {
374 check_load_stall (cpu, src1);
375 check_load_stall (cpu, src2);
376 return idesc->timing->units[unit_num].done;
377 }
378
379 int
380 m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
381 int unit_num, int referenced,
382 INT src1, INT src2)
383 {
384 check_load_stall (cpu, src1);
385 check_load_stall (cpu, src2);
386 return idesc->timing->units[unit_num].done;
387 }
388
389 int
390 m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
391 int unit_num, int referenced,
392 INT sr)
393 {
394 PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
395 int taken_p = (referenced & (1 << 1)) != 0;
396
397 check_load_stall (cpu, sr);
398 if (taken_p)
399 {
400 CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
401 PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
402 }
403 else
404 PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
405 return idesc->timing->units[unit_num].done;
406 }
407
408 int
409 m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
410 int unit_num, int referenced,
411 INT sr, INT dr)
412 {
413 CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
414 check_load_stall (cpu, sr);
415 return idesc->timing->units[unit_num].done;
416 }
417
418 int
419 m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
420 int unit_num, int referenced,
421 INT src1, INT src2)
422 {
423 check_load_stall (cpu, src1);
424 check_load_stall (cpu, src2);
425 return idesc->timing->units[unit_num].done;
426 }
427
428 int
429 m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
430 int unit_num, int referenced)
431 {
432 return idesc->timing->units[unit_num].done;
433 }
434
435 #endif /* WITH_PROFILE_MODEL_P */