]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix: add support for OLCE and migration to imsm_count_failed
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* RAID map configuration infos. */
110 struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116 #define IMSM_T_STATE_NORMAL 0
117 #define IMSM_T_STATE_UNINITIALIZED 1
118 #define IMSM_T_STATE_DEGRADED 2
119 #define IMSM_T_STATE_FAILED 3
120 __u8 raid_level;
121 #define IMSM_T_RAID0 0
122 #define IMSM_T_RAID1 1
123 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
127 __u8 ddf;
128 __u32 filler[7]; /* expansion area */
129 #define IMSM_ORD_REBUILD (1 << 24)
130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
131 * top byte contains some flags
132 */
133 } __attribute__ ((packed));
134
135 struct imsm_vol {
136 __u32 curr_migr_unit;
137 __u32 checkpoint_id; /* id to access curr_migr_unit */
138 __u8 migr_state; /* Normal or Migrating */
139 #define MIGR_INIT 0
140 #define MIGR_REBUILD 1
141 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142 #define MIGR_GEN_MIGR 3
143 #define MIGR_STATE_CHANGE 4
144 #define MIGR_REPAIR 5
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153 } __attribute__ ((packed));
154
155 struct imsm_dev {
156 __u8 volume[MAX_RAID_SERIAL_LEN];
157 __u32 size_low;
158 __u32 size_high;
159 #define DEV_BOOTABLE __cpu_to_le32(0x01)
160 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
162 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181 #define IMSM_DEV_FILLERS 10
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184 } __attribute__ ((packed));
185
186 struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202 #define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
206 /* here comes BBM logs */
207 } __attribute__ ((packed));
208
209 #define BBM_LOG_MAX_ENTRIES 254
210
211 struct bbm_log_entry {
212 __u64 defective_block_start;
213 #define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217 } __attribute__ ((__packed__));
218
219 struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226 } __attribute__ ((__packed__));
227
228
229 #ifndef MDASSEMBLE
230 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231 #endif
232
233 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242 struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266 } __attribute__ ((__packed__));
267
268 static __u8 migr_type(struct imsm_dev *dev)
269 {
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275 }
276
277 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278 {
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289 }
290
291 static unsigned int sector_count(__u32 bytes)
292 {
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294 }
295
296 static unsigned int mpb_sectors(struct imsm_super *mpb)
297 {
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
299 }
300
301 struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
304 unsigned index;
305 };
306
307 struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312 };
313
314 enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317 };
318 /* internal representation of IMSM metadata */
319 struct intel_super {
320 union {
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
323 };
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
328 size_t len; /* size of the 'buf' allocation */
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
331 int updates_pending; /* count of pending updates for mdmon */
332 int current_vol; /* index of raid device undergoing creation */
333 __u32 create_offset; /* common start for 'current_vol' */
334 __u32 random; /* random data for seeding new family numbers */
335 struct intel_dev *devlist;
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
342 struct imsm_disk disk;
343 int fd;
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
346 int raiddisk; /* slot to fill in autolayout */
347 enum action action;
348 } *disks, *current_disk;
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
351 struct dl *missing; /* disks removed while we weren't looking */
352 struct bbm_log *bbm_log;
353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
354 const struct imsm_orom *orom; /* platform firmware support */
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356 };
357
358 struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
363 };
364
365 struct extent {
366 unsigned long long start, size;
367 };
368
369 /* definitions of reshape process types */
370 enum imsm_reshape_type {
371 CH_TAKEOVER,
372 CH_MIGRATION,
373 };
374
375 /* definition of messages passed to imsm_process_update */
376 enum imsm_update_type {
377 update_activate_spare,
378 update_create_array,
379 update_kill_array,
380 update_rename_array,
381 update_add_remove_disk,
382 update_reshape_container_disks,
383 update_reshape_migration,
384 update_takeover,
385 update_general_migration_checkpoint,
386 };
387
388 struct imsm_update_activate_spare {
389 enum imsm_update_type type;
390 struct dl *dl;
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394 };
395
396 struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404 };
405
406 enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409 };
410 struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414 };
415
416 struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422 };
423
424 struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
433 int new_chunksize;
434
435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
436 };
437
438 struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441 };
442
443 struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445 };
446
447 struct imsm_update_create_array {
448 enum imsm_update_type type;
449 int dev_idx;
450 struct imsm_dev dev;
451 };
452
453 struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456 };
457
458 struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462 };
463
464 struct imsm_update_add_remove_disk {
465 enum imsm_update_type type;
466 };
467
468
469 static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473 };
474
475 const char *get_sys_dev_type(enum sys_dev_type type)
476 {
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481 }
482
483 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484 {
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494 }
495
496 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497 {
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504 }
505
506 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
507 {
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532 }
533
534 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535 {
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570 }
571
572
573 static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
575
576 static struct supertype *match_metadata_desc_imsm(char *arg)
577 {
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
586 if (!st)
587 return NULL;
588 memset(st, 0, sizeof(*st));
589 st->container_dev = NoMdDev;
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595 }
596
597 #ifndef MDASSEMBLE
598 static __u8 *get_imsm_version(struct imsm_super *mpb)
599 {
600 return &mpb->sig[MPB_SIG_LEN];
601 }
602 #endif
603
604 /* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
608 {
609 if (index >= mpb->num_disks)
610 return NULL;
611 return &mpb->disk[index];
612 }
613
614 /* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
618 {
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
623 return d;
624
625 return NULL;
626 }
627 /* retrieve a disk from the parsed metadata */
628 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629 {
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
636 return NULL;
637 }
638
639 /* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
643 {
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654 }
655
656 static size_t sizeof_imsm_map(struct imsm_map *map)
657 {
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659 }
660
661 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
662 {
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
669 struct imsm_map *map = &dev->vol.map[0];
670
671 if (second_map == 1 && !dev->vol.migr_state)
672 return NULL;
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
680
681 }
682
683 /* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
687 {
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
690
691 /* migrating means an additional map */
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
696
697 return size;
698 }
699
700 #ifndef MDASSEMBLE
701 /* retrieve disk serial number list from a metadata update */
702 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703 {
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711 }
712 #endif
713
714 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
715 {
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
720 if (index >= mpb->num_raid_devs)
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
730 offset += sizeof_imsm_dev(_mpb + offset, 0);
731
732 return NULL;
733 }
734
735 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736 {
737 struct intel_dev *dv;
738
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
745 }
746
747 /*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
756 {
757 struct imsm_map *map;
758
759 map = get_imsm_map(dev, second_map);
760
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763 }
764
765 #define ord_to_idx(ord) (((ord) << 8) >> 8)
766 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
767 {
768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
769
770 return ord_to_idx(ord);
771 }
772
773 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774 {
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776 }
777
778 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
779 {
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790 }
791
792 static int get_imsm_raid_level(struct imsm_map *map)
793 {
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802 }
803
804 static int cmp_extent(const void *av, const void *bv)
805 {
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813 }
814
815 static int count_memberships(struct dl *dl, struct intel_super *super)
816 {
817 int memberships = 0;
818 int i;
819
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
822 struct imsm_map *map = get_imsm_map(dev, 0);
823
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
826 }
827
828 return memberships;
829 }
830
831 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
833 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834 {
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
837 int i;
838 int memberships = count_memberships(dl, super);
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
846 reservation = imsm_min_reserved_sectors(super);
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
849
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
857 struct imsm_map *map = get_imsm_map(dev, 0);
858
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
884 remainder = ROUND_UP(super->len, 512) >> 9;
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
889 e->size = 0;
890 return rv;
891 }
892
893 /* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898 {
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922 }
923
924 static int is_spare(struct imsm_disk *disk)
925 {
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927 }
928
929 static int is_configured(struct imsm_disk *disk)
930 {
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932 }
933
934 static int is_failed(struct imsm_disk *disk)
935 {
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937 }
938
939 /* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944 {
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982 }
983
984 /* Return minimum size of a spare that can be used in this array*/
985 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986 {
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
992
993 if (!super)
994 return rv;
995 /* find first active disk in array */
996 dl = super->disks;
997 while (dl && (is_failed(&dl->disk) || dl->index == -1))
998 dl = dl->next;
999 if (!dl)
1000 return rv;
1001 /* find last lba used by subarrays */
1002 e = get_extents(super, dl);
1003 if (!e)
1004 return rv;
1005 for (i = 0; e[i].size; i++)
1006 continue;
1007 if (i > 0)
1008 rv = e[i-1].start + e[i-1].size;
1009 free(e);
1010
1011 /* add the amount of space needed for metadata */
1012 rv = rv + imsm_min_reserved_sectors(super);
1013
1014 return rv * 512;
1015 }
1016
1017 #ifndef MDASSEMBLE
1018 static __u64 blocks_per_migr_unit(struct intel_super *super,
1019 struct imsm_dev *dev);
1020
1021 static void print_imsm_dev(struct intel_super *super,
1022 struct imsm_dev *dev,
1023 char *uuid,
1024 int disk_idx)
1025 {
1026 __u64 sz;
1027 int slot, i;
1028 struct imsm_map *map = get_imsm_map(dev, 0);
1029 struct imsm_map *map2 = get_imsm_map(dev, 1);
1030 __u32 ord;
1031
1032 printf("\n");
1033 printf("[%.16s]:\n", dev->volume);
1034 printf(" UUID : %s\n", uuid);
1035 printf(" RAID Level : %d", get_imsm_raid_level(map));
1036 if (map2)
1037 printf(" <-- %d", get_imsm_raid_level(map2));
1038 printf("\n");
1039 printf(" Members : %d", map->num_members);
1040 if (map2)
1041 printf(" <-- %d", map2->num_members);
1042 printf("\n");
1043 printf(" Slots : [");
1044 for (i = 0; i < map->num_members; i++) {
1045 ord = get_imsm_ord_tbl_ent(dev, i, 0);
1046 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1047 }
1048 printf("]");
1049 if (map2) {
1050 printf(" <-- [");
1051 for (i = 0; i < map2->num_members; i++) {
1052 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1053 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1054 }
1055 printf("]");
1056 }
1057 printf("\n");
1058 printf(" Failed disk : ");
1059 if (map->failed_disk_num == 0xff)
1060 printf("none");
1061 else
1062 printf("%i", map->failed_disk_num);
1063 printf("\n");
1064 slot = get_imsm_disk_slot(map, disk_idx);
1065 if (slot >= 0) {
1066 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1067 printf(" This Slot : %d%s\n", slot,
1068 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1069 } else
1070 printf(" This Slot : ?\n");
1071 sz = __le32_to_cpu(dev->size_high);
1072 sz <<= 32;
1073 sz += __le32_to_cpu(dev->size_low);
1074 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1075 human_size(sz * 512));
1076 sz = __le32_to_cpu(map->blocks_per_member);
1077 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1078 human_size(sz * 512));
1079 printf(" Sector Offset : %u\n",
1080 __le32_to_cpu(map->pba_of_lba0));
1081 printf(" Num Stripes : %u\n",
1082 __le32_to_cpu(map->num_data_stripes));
1083 printf(" Chunk Size : %u KiB",
1084 __le16_to_cpu(map->blocks_per_strip) / 2);
1085 if (map2)
1086 printf(" <-- %u KiB",
1087 __le16_to_cpu(map2->blocks_per_strip) / 2);
1088 printf("\n");
1089 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1090 printf(" Migrate State : ");
1091 if (dev->vol.migr_state) {
1092 if (migr_type(dev) == MIGR_INIT)
1093 printf("initialize\n");
1094 else if (migr_type(dev) == MIGR_REBUILD)
1095 printf("rebuild\n");
1096 else if (migr_type(dev) == MIGR_VERIFY)
1097 printf("check\n");
1098 else if (migr_type(dev) == MIGR_GEN_MIGR)
1099 printf("general migration\n");
1100 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1101 printf("state change\n");
1102 else if (migr_type(dev) == MIGR_REPAIR)
1103 printf("repair\n");
1104 else
1105 printf("<unknown:%d>\n", migr_type(dev));
1106 } else
1107 printf("idle\n");
1108 printf(" Map State : %s", map_state_str[map->map_state]);
1109 if (dev->vol.migr_state) {
1110 struct imsm_map *map = get_imsm_map(dev, 1);
1111
1112 printf(" <-- %s", map_state_str[map->map_state]);
1113 printf("\n Checkpoint : %u (%llu)",
1114 __le32_to_cpu(dev->vol.curr_migr_unit),
1115 (unsigned long long)blocks_per_migr_unit(super, dev));
1116 }
1117 printf("\n");
1118 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1119 }
1120
1121 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1122 {
1123 char str[MAX_RAID_SERIAL_LEN + 1];
1124 __u64 sz;
1125
1126 if (index < -1 || !disk)
1127 return;
1128
1129 printf("\n");
1130 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1131 if (index >= 0)
1132 printf(" Disk%02d Serial : %s\n", index, str);
1133 else
1134 printf(" Disk Serial : %s\n", str);
1135 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1136 is_configured(disk) ? " active" : "",
1137 is_failed(disk) ? " failed" : "");
1138 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1139 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1140 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1141 human_size(sz * 512));
1142 }
1143
1144 static int is_gen_migration(struct imsm_dev *dev);
1145
1146 void examine_migr_rec_imsm(struct intel_super *super)
1147 {
1148 struct migr_record *migr_rec = super->migr_rec;
1149 struct imsm_super *mpb = super->anchor;
1150 int i;
1151
1152 for (i = 0; i < mpb->num_raid_devs; i++) {
1153 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1154 if (is_gen_migration(dev) == 0)
1155 continue;
1156
1157 printf("\nMigration Record Information:");
1158 if (super->disks->index > 1) {
1159 printf(" Empty\n ");
1160 printf("Examine one of first two disks in array\n");
1161 break;
1162 }
1163 printf("\n Status : ");
1164 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1165 printf("Normal\n");
1166 else
1167 printf("Contains Data\n");
1168 printf(" Current Unit : %u\n",
1169 __le32_to_cpu(migr_rec->curr_migr_unit));
1170 printf(" Family : %u\n",
1171 __le32_to_cpu(migr_rec->family_num));
1172 printf(" Ascending : %u\n",
1173 __le32_to_cpu(migr_rec->ascending_migr));
1174 printf(" Blocks Per Unit : %u\n",
1175 __le32_to_cpu(migr_rec->blocks_per_unit));
1176 printf(" Dest. Depth Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1178 printf(" Checkpoint Area pba : %u\n",
1179 __le32_to_cpu(migr_rec->ckpt_area_pba));
1180 printf(" First member lba : %u\n",
1181 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1182 printf(" Total Number of Units : %u\n",
1183 __le32_to_cpu(migr_rec->num_migr_units));
1184 printf(" Size of volume : %u\n",
1185 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1186 printf(" Expansion space for LBA64 : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1188 printf(" Record was read from : %u\n",
1189 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1190
1191 break;
1192 }
1193 }
1194 #endif /* MDASSEMBLE */
1195 /*******************************************************************************
1196 * function: imsm_check_attributes
1197 * Description: Function checks if features represented by attributes flags
1198 * are supported by mdadm.
1199 * Parameters:
1200 * attributes - Attributes read from metadata
1201 * Returns:
1202 * 0 - passed attributes contains unsupported features flags
1203 * 1 - all features are supported
1204 ******************************************************************************/
1205 static int imsm_check_attributes(__u32 attributes)
1206 {
1207 int ret_val = 1;
1208 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1209
1210 not_supported &= ~MPB_ATTRIB_IGNORED;
1211
1212 not_supported &= attributes;
1213 if (not_supported) {
1214 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1215 (unsigned)__le32_to_cpu(not_supported));
1216 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1217 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1218 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1219 }
1220 if (not_supported & MPB_ATTRIB_2TB) {
1221 dprintf("\t\tMPB_ATTRIB_2TB\n");
1222 not_supported ^= MPB_ATTRIB_2TB;
1223 }
1224 if (not_supported & MPB_ATTRIB_RAID0) {
1225 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1226 not_supported ^= MPB_ATTRIB_RAID0;
1227 }
1228 if (not_supported & MPB_ATTRIB_RAID1) {
1229 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1230 not_supported ^= MPB_ATTRIB_RAID1;
1231 }
1232 if (not_supported & MPB_ATTRIB_RAID10) {
1233 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1234 not_supported ^= MPB_ATTRIB_RAID10;
1235 }
1236 if (not_supported & MPB_ATTRIB_RAID1E) {
1237 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1238 not_supported ^= MPB_ATTRIB_RAID1E;
1239 }
1240 if (not_supported & MPB_ATTRIB_RAID5) {
1241 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1242 not_supported ^= MPB_ATTRIB_RAID5;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1245 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1246 not_supported ^= MPB_ATTRIB_RAIDCNG;
1247 }
1248 if (not_supported & MPB_ATTRIB_BBM) {
1249 dprintf("\t\tMPB_ATTRIB_BBM\n");
1250 not_supported ^= MPB_ATTRIB_BBM;
1251 }
1252 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1253 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1254 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1255 }
1256 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1257 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1258 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1259 }
1260 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1261 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1262 not_supported ^= MPB_ATTRIB_2TB_DISK;
1263 }
1264 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1265 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1266 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1267 }
1268 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1269 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1270 not_supported ^= MPB_ATTRIB_NEVER_USE;
1271 }
1272
1273 if (not_supported)
1274 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1275
1276 ret_val = 0;
1277 }
1278
1279 return ret_val;
1280 }
1281
1282 #ifndef MDASSEMBLE
1283 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1284
1285 static void examine_super_imsm(struct supertype *st, char *homehost)
1286 {
1287 struct intel_super *super = st->sb;
1288 struct imsm_super *mpb = super->anchor;
1289 char str[MAX_SIGNATURE_LENGTH];
1290 int i;
1291 struct mdinfo info;
1292 char nbuf[64];
1293 __u32 sum;
1294 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1295 struct dl *dl;
1296
1297 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1298 printf(" Magic : %s\n", str);
1299 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1300 printf(" Version : %s\n", get_imsm_version(mpb));
1301 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1302 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1303 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1304 printf(" Attributes : ");
1305 if (imsm_check_attributes(mpb->attributes))
1306 printf("All supported\n");
1307 else
1308 printf("not supported\n");
1309 getinfo_super_imsm(st, &info, NULL);
1310 fname_from_uuid(st, &info, nbuf, ':');
1311 printf(" UUID : %s\n", nbuf + 5);
1312 sum = __le32_to_cpu(mpb->check_sum);
1313 printf(" Checksum : %08x %s\n", sum,
1314 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1315 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1316 printf(" Disks : %d\n", mpb->num_disks);
1317 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1318 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1319 if (super->bbm_log) {
1320 struct bbm_log *log = super->bbm_log;
1321
1322 printf("\n");
1323 printf("Bad Block Management Log:\n");
1324 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1325 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1326 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1327 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1328 printf(" First Spare : %llx\n",
1329 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1330 }
1331 for (i = 0; i < mpb->num_raid_devs; i++) {
1332 struct mdinfo info;
1333 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1334
1335 super->current_vol = i;
1336 getinfo_super_imsm(st, &info, NULL);
1337 fname_from_uuid(st, &info, nbuf, ':');
1338 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1339 }
1340 for (i = 0; i < mpb->num_disks; i++) {
1341 if (i == super->disks->index)
1342 continue;
1343 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1344 }
1345
1346 for (dl = super->disks; dl; dl = dl->next)
1347 if (dl->index == -1)
1348 print_imsm_disk(&dl->disk, -1, reserved);
1349
1350 examine_migr_rec_imsm(super);
1351 }
1352
1353 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1354 {
1355 /* We just write a generic IMSM ARRAY entry */
1356 struct mdinfo info;
1357 char nbuf[64];
1358 struct intel_super *super = st->sb;
1359
1360 if (!super->anchor->num_raid_devs) {
1361 printf("ARRAY metadata=imsm\n");
1362 return;
1363 }
1364
1365 getinfo_super_imsm(st, &info, NULL);
1366 fname_from_uuid(st, &info, nbuf, ':');
1367 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1368 }
1369
1370 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1371 {
1372 /* We just write a generic IMSM ARRAY entry */
1373 struct mdinfo info;
1374 char nbuf[64];
1375 char nbuf1[64];
1376 struct intel_super *super = st->sb;
1377 int i;
1378
1379 if (!super->anchor->num_raid_devs)
1380 return;
1381
1382 getinfo_super_imsm(st, &info, NULL);
1383 fname_from_uuid(st, &info, nbuf, ':');
1384 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1385 struct imsm_dev *dev = get_imsm_dev(super, i);
1386
1387 super->current_vol = i;
1388 getinfo_super_imsm(st, &info, NULL);
1389 fname_from_uuid(st, &info, nbuf1, ':');
1390 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1391 dev->volume, nbuf + 5, i, nbuf1 + 5);
1392 }
1393 }
1394
1395 static void export_examine_super_imsm(struct supertype *st)
1396 {
1397 struct intel_super *super = st->sb;
1398 struct imsm_super *mpb = super->anchor;
1399 struct mdinfo info;
1400 char nbuf[64];
1401
1402 getinfo_super_imsm(st, &info, NULL);
1403 fname_from_uuid(st, &info, nbuf, ':');
1404 printf("MD_METADATA=imsm\n");
1405 printf("MD_LEVEL=container\n");
1406 printf("MD_UUID=%s\n", nbuf+5);
1407 printf("MD_DEVICES=%u\n", mpb->num_disks);
1408 }
1409
1410 static void detail_super_imsm(struct supertype *st, char *homehost)
1411 {
1412 struct mdinfo info;
1413 char nbuf[64];
1414
1415 getinfo_super_imsm(st, &info, NULL);
1416 fname_from_uuid(st, &info, nbuf, ':');
1417 printf("\n UUID : %s\n", nbuf + 5);
1418 }
1419
1420 static void brief_detail_super_imsm(struct supertype *st)
1421 {
1422 struct mdinfo info;
1423 char nbuf[64];
1424 getinfo_super_imsm(st, &info, NULL);
1425 fname_from_uuid(st, &info, nbuf, ':');
1426 printf(" UUID=%s", nbuf + 5);
1427 }
1428
1429 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1430 static void fd2devname(int fd, char *name);
1431
1432 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1433 {
1434 /* dump an unsorted list of devices attached to AHCI Intel storage
1435 * controller, as well as non-connected ports
1436 */
1437 int hba_len = strlen(hba_path) + 1;
1438 struct dirent *ent;
1439 DIR *dir;
1440 char *path = NULL;
1441 int err = 0;
1442 unsigned long port_mask = (1 << port_count) - 1;
1443
1444 if (port_count > (int)sizeof(port_mask) * 8) {
1445 if (verbose)
1446 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1447 return 2;
1448 }
1449
1450 /* scroll through /sys/dev/block looking for devices attached to
1451 * this hba
1452 */
1453 dir = opendir("/sys/dev/block");
1454 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1455 int fd;
1456 char model[64];
1457 char vendor[64];
1458 char buf[1024];
1459 int major, minor;
1460 char *device;
1461 char *c;
1462 int port;
1463 int type;
1464
1465 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1466 continue;
1467 path = devt_to_devpath(makedev(major, minor));
1468 if (!path)
1469 continue;
1470 if (!path_attached_to_hba(path, hba_path)) {
1471 free(path);
1472 path = NULL;
1473 continue;
1474 }
1475
1476 /* retrieve the scsi device type */
1477 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1478 if (verbose)
1479 fprintf(stderr, Name ": failed to allocate 'device'\n");
1480 err = 2;
1481 break;
1482 }
1483 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1484 if (load_sys(device, buf) != 0) {
1485 if (verbose)
1486 fprintf(stderr, Name ": failed to read device type for %s\n",
1487 path);
1488 err = 2;
1489 free(device);
1490 break;
1491 }
1492 type = strtoul(buf, NULL, 10);
1493
1494 /* if it's not a disk print the vendor and model */
1495 if (!(type == 0 || type == 7 || type == 14)) {
1496 vendor[0] = '\0';
1497 model[0] = '\0';
1498 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1499 if (load_sys(device, buf) == 0) {
1500 strncpy(vendor, buf, sizeof(vendor));
1501 vendor[sizeof(vendor) - 1] = '\0';
1502 c = (char *) &vendor[sizeof(vendor) - 1];
1503 while (isspace(*c) || *c == '\0')
1504 *c-- = '\0';
1505
1506 }
1507 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1508 if (load_sys(device, buf) == 0) {
1509 strncpy(model, buf, sizeof(model));
1510 model[sizeof(model) - 1] = '\0';
1511 c = (char *) &model[sizeof(model) - 1];
1512 while (isspace(*c) || *c == '\0')
1513 *c-- = '\0';
1514 }
1515
1516 if (vendor[0] && model[0])
1517 sprintf(buf, "%.64s %.64s", vendor, model);
1518 else
1519 switch (type) { /* numbers from hald/linux/device.c */
1520 case 1: sprintf(buf, "tape"); break;
1521 case 2: sprintf(buf, "printer"); break;
1522 case 3: sprintf(buf, "processor"); break;
1523 case 4:
1524 case 5: sprintf(buf, "cdrom"); break;
1525 case 6: sprintf(buf, "scanner"); break;
1526 case 8: sprintf(buf, "media_changer"); break;
1527 case 9: sprintf(buf, "comm"); break;
1528 case 12: sprintf(buf, "raid"); break;
1529 default: sprintf(buf, "unknown");
1530 }
1531 } else
1532 buf[0] = '\0';
1533 free(device);
1534
1535 /* chop device path to 'host%d' and calculate the port number */
1536 c = strchr(&path[hba_len], '/');
1537 if (!c) {
1538 if (verbose)
1539 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1540 err = 2;
1541 break;
1542 }
1543 *c = '\0';
1544 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1545 port -= host_base;
1546 else {
1547 if (verbose) {
1548 *c = '/'; /* repair the full string */
1549 fprintf(stderr, Name ": failed to determine port number for %s\n",
1550 path);
1551 }
1552 err = 2;
1553 break;
1554 }
1555
1556 /* mark this port as used */
1557 port_mask &= ~(1 << port);
1558
1559 /* print out the device information */
1560 if (buf[0]) {
1561 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1562 continue;
1563 }
1564
1565 fd = dev_open(ent->d_name, O_RDONLY);
1566 if (fd < 0)
1567 printf(" Port%d : - disk info unavailable -\n", port);
1568 else {
1569 fd2devname(fd, buf);
1570 printf(" Port%d : %s", port, buf);
1571 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1572 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1573 else
1574 printf(" ()\n");
1575 close(fd);
1576 }
1577 free(path);
1578 path = NULL;
1579 }
1580 if (path)
1581 free(path);
1582 if (dir)
1583 closedir(dir);
1584 if (err == 0) {
1585 int i;
1586
1587 for (i = 0; i < port_count; i++)
1588 if (port_mask & (1 << i))
1589 printf(" Port%d : - no device attached -\n", i);
1590 }
1591
1592 return err;
1593 }
1594
1595 static void print_found_intel_controllers(struct sys_dev *elem)
1596 {
1597 for (; elem; elem = elem->next) {
1598 fprintf(stderr, Name ": found Intel(R) ");
1599 if (elem->type == SYS_DEV_SATA)
1600 fprintf(stderr, "SATA ");
1601 else if (elem->type == SYS_DEV_SAS)
1602 fprintf(stderr, "SAS ");
1603 fprintf(stderr, "RAID controller");
1604 if (elem->pci_id)
1605 fprintf(stderr, " at %s", elem->pci_id);
1606 fprintf(stderr, ".\n");
1607 }
1608 fflush(stderr);
1609 }
1610
1611 static int ahci_get_port_count(const char *hba_path, int *port_count)
1612 {
1613 struct dirent *ent;
1614 DIR *dir;
1615 int host_base = -1;
1616
1617 *port_count = 0;
1618 if ((dir = opendir(hba_path)) == NULL)
1619 return -1;
1620
1621 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1622 int host;
1623
1624 if (sscanf(ent->d_name, "host%d", &host) != 1)
1625 continue;
1626 if (*port_count == 0)
1627 host_base = host;
1628 else if (host < host_base)
1629 host_base = host;
1630
1631 if (host + 1 > *port_count + host_base)
1632 *port_count = host + 1 - host_base;
1633 }
1634 closedir(dir);
1635 return host_base;
1636 }
1637
1638 static void print_imsm_capability(const struct imsm_orom *orom)
1639 {
1640 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1641 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1642 orom->hotfix_ver, orom->build);
1643 printf(" RAID Levels :%s%s%s%s%s\n",
1644 imsm_orom_has_raid0(orom) ? " raid0" : "",
1645 imsm_orom_has_raid1(orom) ? " raid1" : "",
1646 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1647 imsm_orom_has_raid10(orom) ? " raid10" : "",
1648 imsm_orom_has_raid5(orom) ? " raid5" : "");
1649 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1650 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1651 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1652 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1653 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1654 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1655 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1656 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1657 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1658 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1659 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1660 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1661 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1662 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1663 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1664 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1665 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1666 printf(" Max Disks : %d\n", orom->tds);
1667 printf(" Max Volumes : %d\n", orom->vpa);
1668 return;
1669 }
1670
1671 static int detail_platform_imsm(int verbose, int enumerate_only)
1672 {
1673 /* There are two components to imsm platform support, the ahci SATA
1674 * controller and the option-rom. To find the SATA controller we
1675 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1676 * controller with the Intel vendor id is present. This approach
1677 * allows mdadm to leverage the kernel's ahci detection logic, with the
1678 * caveat that if ahci.ko is not loaded mdadm will not be able to
1679 * detect platform raid capabilities. The option-rom resides in a
1680 * platform "Adapter ROM". We scan for its signature to retrieve the
1681 * platform capabilities. If raid support is disabled in the BIOS the
1682 * option-rom capability structure will not be available.
1683 */
1684 const struct imsm_orom *orom;
1685 struct sys_dev *list, *hba;
1686 int host_base = 0;
1687 int port_count = 0;
1688 int result=0;
1689
1690 if (enumerate_only) {
1691 if (check_env("IMSM_NO_PLATFORM"))
1692 return 0;
1693 list = find_intel_devices();
1694 if (!list)
1695 return 2;
1696 for (hba = list; hba; hba = hba->next) {
1697 orom = find_imsm_capability(hba->type);
1698 if (!orom) {
1699 result = 2;
1700 break;
1701 }
1702 }
1703 free_sys_dev(&list);
1704 return result;
1705 }
1706
1707 list = find_intel_devices();
1708 if (!list) {
1709 if (verbose)
1710 fprintf(stderr, Name ": no active Intel(R) RAID "
1711 "controller found.\n");
1712 free_sys_dev(&list);
1713 return 2;
1714 } else if (verbose)
1715 print_found_intel_controllers(list);
1716
1717 for (hba = list; hba; hba = hba->next) {
1718 orom = find_imsm_capability(hba->type);
1719 if (!orom)
1720 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1721 hba->path, get_sys_dev_type(hba->type));
1722 else
1723 print_imsm_capability(orom);
1724 }
1725
1726 for (hba = list; hba; hba = hba->next) {
1727 printf(" I/O Controller : %s (%s)\n",
1728 hba->path, get_sys_dev_type(hba->type));
1729
1730 if (hba->type == SYS_DEV_SATA) {
1731 host_base = ahci_get_port_count(hba->path, &port_count);
1732 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1733 if (verbose)
1734 fprintf(stderr, Name ": failed to enumerate "
1735 "ports on SATA controller at %s.", hba->pci_id);
1736 result |= 2;
1737 }
1738 }
1739 }
1740
1741 free_sys_dev(&list);
1742 return result;
1743 }
1744 #endif
1745
1746 static int match_home_imsm(struct supertype *st, char *homehost)
1747 {
1748 /* the imsm metadata format does not specify any host
1749 * identification information. We return -1 since we can never
1750 * confirm nor deny whether a given array is "meant" for this
1751 * host. We rely on compare_super and the 'family_num' fields to
1752 * exclude member disks that do not belong, and we rely on
1753 * mdadm.conf to specify the arrays that should be assembled.
1754 * Auto-assembly may still pick up "foreign" arrays.
1755 */
1756
1757 return -1;
1758 }
1759
1760 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1761 {
1762 /* The uuid returned here is used for:
1763 * uuid to put into bitmap file (Create, Grow)
1764 * uuid for backup header when saving critical section (Grow)
1765 * comparing uuids when re-adding a device into an array
1766 * In these cases the uuid required is that of the data-array,
1767 * not the device-set.
1768 * uuid to recognise same set when adding a missing device back
1769 * to an array. This is a uuid for the device-set.
1770 *
1771 * For each of these we can make do with a truncated
1772 * or hashed uuid rather than the original, as long as
1773 * everyone agrees.
1774 * In each case the uuid required is that of the data-array,
1775 * not the device-set.
1776 */
1777 /* imsm does not track uuid's so we synthesis one using sha1 on
1778 * - The signature (Which is constant for all imsm array, but no matter)
1779 * - the orig_family_num of the container
1780 * - the index number of the volume
1781 * - the 'serial' number of the volume.
1782 * Hopefully these are all constant.
1783 */
1784 struct intel_super *super = st->sb;
1785
1786 char buf[20];
1787 struct sha1_ctx ctx;
1788 struct imsm_dev *dev = NULL;
1789 __u32 family_num;
1790
1791 /* some mdadm versions failed to set ->orig_family_num, in which
1792 * case fall back to ->family_num. orig_family_num will be
1793 * fixed up with the first metadata update.
1794 */
1795 family_num = super->anchor->orig_family_num;
1796 if (family_num == 0)
1797 family_num = super->anchor->family_num;
1798 sha1_init_ctx(&ctx);
1799 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1800 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1801 if (super->current_vol >= 0)
1802 dev = get_imsm_dev(super, super->current_vol);
1803 if (dev) {
1804 __u32 vol = super->current_vol;
1805 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1806 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1807 }
1808 sha1_finish_ctx(&ctx, buf);
1809 memcpy(uuid, buf, 4*4);
1810 }
1811
1812 #if 0
1813 static void
1814 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1815 {
1816 __u8 *v = get_imsm_version(mpb);
1817 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1818 char major[] = { 0, 0, 0 };
1819 char minor[] = { 0 ,0, 0 };
1820 char patch[] = { 0, 0, 0 };
1821 char *ver_parse[] = { major, minor, patch };
1822 int i, j;
1823
1824 i = j = 0;
1825 while (*v != '\0' && v < end) {
1826 if (*v != '.' && j < 2)
1827 ver_parse[i][j++] = *v;
1828 else {
1829 i++;
1830 j = 0;
1831 }
1832 v++;
1833 }
1834
1835 *m = strtol(minor, NULL, 0);
1836 *p = strtol(patch, NULL, 0);
1837 }
1838 #endif
1839
1840 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1841 {
1842 /* migr_strip_size when repairing or initializing parity */
1843 struct imsm_map *map = get_imsm_map(dev, 0);
1844 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1845
1846 switch (get_imsm_raid_level(map)) {
1847 case 5:
1848 case 10:
1849 return chunk;
1850 default:
1851 return 128*1024 >> 9;
1852 }
1853 }
1854
1855 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1856 {
1857 /* migr_strip_size when rebuilding a degraded disk, no idea why
1858 * this is different than migr_strip_size_resync(), but it's good
1859 * to be compatible
1860 */
1861 struct imsm_map *map = get_imsm_map(dev, 1);
1862 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1863
1864 switch (get_imsm_raid_level(map)) {
1865 case 1:
1866 case 10:
1867 if (map->num_members % map->num_domains == 0)
1868 return 128*1024 >> 9;
1869 else
1870 return chunk;
1871 case 5:
1872 return max((__u32) 64*1024 >> 9, chunk);
1873 default:
1874 return 128*1024 >> 9;
1875 }
1876 }
1877
1878 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1879 {
1880 struct imsm_map *lo = get_imsm_map(dev, 0);
1881 struct imsm_map *hi = get_imsm_map(dev, 1);
1882 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1883 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1884
1885 return max((__u32) 1, hi_chunk / lo_chunk);
1886 }
1887
1888 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1889 {
1890 struct imsm_map *lo = get_imsm_map(dev, 0);
1891 int level = get_imsm_raid_level(lo);
1892
1893 if (level == 1 || level == 10) {
1894 struct imsm_map *hi = get_imsm_map(dev, 1);
1895
1896 return hi->num_domains;
1897 } else
1898 return num_stripes_per_unit_resync(dev);
1899 }
1900
1901 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1902 {
1903 /* named 'imsm_' because raid0, raid1 and raid10
1904 * counter-intuitively have the same number of data disks
1905 */
1906 struct imsm_map *map = get_imsm_map(dev, second_map);
1907
1908 switch (get_imsm_raid_level(map)) {
1909 case 0:
1910 case 1:
1911 case 10:
1912 return map->num_members;
1913 case 5:
1914 return map->num_members - 1;
1915 default:
1916 dprintf("%s: unsupported raid level\n", __func__);
1917 return 0;
1918 }
1919 }
1920
1921 static __u32 parity_segment_depth(struct imsm_dev *dev)
1922 {
1923 struct imsm_map *map = get_imsm_map(dev, 0);
1924 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1925
1926 switch(get_imsm_raid_level(map)) {
1927 case 1:
1928 case 10:
1929 return chunk * map->num_domains;
1930 case 5:
1931 return chunk * map->num_members;
1932 default:
1933 return chunk;
1934 }
1935 }
1936
1937 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1938 {
1939 struct imsm_map *map = get_imsm_map(dev, 1);
1940 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1941 __u32 strip = block / chunk;
1942
1943 switch (get_imsm_raid_level(map)) {
1944 case 1:
1945 case 10: {
1946 __u32 vol_strip = (strip * map->num_domains) + 1;
1947 __u32 vol_stripe = vol_strip / map->num_members;
1948
1949 return vol_stripe * chunk + block % chunk;
1950 } case 5: {
1951 __u32 stripe = strip / (map->num_members - 1);
1952
1953 return stripe * chunk + block % chunk;
1954 }
1955 default:
1956 return 0;
1957 }
1958 }
1959
1960 static __u64 blocks_per_migr_unit(struct intel_super *super,
1961 struct imsm_dev *dev)
1962 {
1963 /* calculate the conversion factor between per member 'blocks'
1964 * (md/{resync,rebuild}_start) and imsm migration units, return
1965 * 0 for the 'not migrating' and 'unsupported migration' cases
1966 */
1967 if (!dev->vol.migr_state)
1968 return 0;
1969
1970 switch (migr_type(dev)) {
1971 case MIGR_GEN_MIGR: {
1972 struct migr_record *migr_rec = super->migr_rec;
1973 return __le32_to_cpu(migr_rec->blocks_per_unit);
1974 }
1975 case MIGR_VERIFY:
1976 case MIGR_REPAIR:
1977 case MIGR_INIT: {
1978 struct imsm_map *map = get_imsm_map(dev, 0);
1979 __u32 stripes_per_unit;
1980 __u32 blocks_per_unit;
1981 __u32 parity_depth;
1982 __u32 migr_chunk;
1983 __u32 block_map;
1984 __u32 block_rel;
1985 __u32 segment;
1986 __u32 stripe;
1987 __u8 disks;
1988
1989 /* yes, this is really the translation of migr_units to
1990 * per-member blocks in the 'resync' case
1991 */
1992 stripes_per_unit = num_stripes_per_unit_resync(dev);
1993 migr_chunk = migr_strip_blocks_resync(dev);
1994 disks = imsm_num_data_members(dev, 0);
1995 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1996 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1997 segment = blocks_per_unit / stripe;
1998 block_rel = blocks_per_unit - segment * stripe;
1999 parity_depth = parity_segment_depth(dev);
2000 block_map = map_migr_block(dev, block_rel);
2001 return block_map + parity_depth * segment;
2002 }
2003 case MIGR_REBUILD: {
2004 __u32 stripes_per_unit;
2005 __u32 migr_chunk;
2006
2007 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2008 migr_chunk = migr_strip_blocks_rebuild(dev);
2009 return migr_chunk * stripes_per_unit;
2010 }
2011 case MIGR_STATE_CHANGE:
2012 default:
2013 return 0;
2014 }
2015 }
2016
2017 static int imsm_level_to_layout(int level)
2018 {
2019 switch (level) {
2020 case 0:
2021 case 1:
2022 return 0;
2023 case 5:
2024 case 6:
2025 return ALGORITHM_LEFT_ASYMMETRIC;
2026 case 10:
2027 return 0x102;
2028 }
2029 return UnSet;
2030 }
2031
2032 /*******************************************************************************
2033 * Function: read_imsm_migr_rec
2034 * Description: Function reads imsm migration record from last sector of disk
2035 * Parameters:
2036 * fd : disk descriptor
2037 * super : metadata info
2038 * Returns:
2039 * 0 : success,
2040 * -1 : fail
2041 ******************************************************************************/
2042 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2043 {
2044 int ret_val = -1;
2045 unsigned long long dsize;
2046
2047 get_dev_size(fd, NULL, &dsize);
2048 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2049 fprintf(stderr,
2050 Name ": Cannot seek to anchor block: %s\n",
2051 strerror(errno));
2052 goto out;
2053 }
2054 if (read(fd, super->migr_rec_buf, 512) != 512) {
2055 fprintf(stderr,
2056 Name ": Cannot read migr record block: %s\n",
2057 strerror(errno));
2058 goto out;
2059 }
2060 ret_val = 0;
2061
2062 out:
2063 return ret_val;
2064 }
2065
2066 /*******************************************************************************
2067 * Function: load_imsm_migr_rec
2068 * Description: Function reads imsm migration record (it is stored at the last
2069 * sector of disk)
2070 * Parameters:
2071 * super : imsm internal array info
2072 * info : general array info
2073 * Returns:
2074 * 0 : success
2075 * -1 : fail
2076 ******************************************************************************/
2077 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2078 {
2079 struct mdinfo *sd;
2080 struct dl *dl = NULL;
2081 char nm[30];
2082 int retval = -1;
2083 int fd = -1;
2084
2085 if (info) {
2086 for (sd = info->devs ; sd ; sd = sd->next) {
2087 /* read only from one of the first two slots */
2088 if ((sd->disk.raid_disk > 1) ||
2089 (sd->disk.raid_disk < 0))
2090 continue;
2091 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2092 fd = dev_open(nm, O_RDONLY);
2093 if (fd >= 0)
2094 break;
2095 }
2096 }
2097 if (fd < 0) {
2098 for (dl = super->disks; dl; dl = dl->next) {
2099 /* read only from one of the first two slots */
2100 if (dl->index > 1)
2101 continue;
2102 sprintf(nm, "%d:%d", dl->major, dl->minor);
2103 fd = dev_open(nm, O_RDONLY);
2104 if (fd >= 0)
2105 break;
2106 }
2107 }
2108 if (fd < 0)
2109 goto out;
2110 retval = read_imsm_migr_rec(fd, super);
2111
2112 out:
2113 if (fd >= 0)
2114 close(fd);
2115 return retval;
2116 }
2117
2118 #ifndef MDASSEMBLE
2119 /*******************************************************************************
2120 * function: imsm_create_metadata_checkpoint_update
2121 * Description: It creates update for checkpoint change.
2122 * Parameters:
2123 * super : imsm internal array info
2124 * u : pointer to prepared update
2125 * Returns:
2126 * Uptate length.
2127 * If length is equal to 0, input pointer u contains no update
2128 ******************************************************************************/
2129 static int imsm_create_metadata_checkpoint_update(
2130 struct intel_super *super,
2131 struct imsm_update_general_migration_checkpoint **u)
2132 {
2133
2134 int update_memory_size = 0;
2135
2136 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2137
2138 if (u == NULL)
2139 return 0;
2140 *u = NULL;
2141
2142 /* size of all update data without anchor */
2143 update_memory_size =
2144 sizeof(struct imsm_update_general_migration_checkpoint);
2145
2146 *u = calloc(1, update_memory_size);
2147 if (*u == NULL) {
2148 dprintf("error: cannot get memory for "
2149 "imsm_create_metadata_checkpoint_update update\n");
2150 return 0;
2151 }
2152 (*u)->type = update_general_migration_checkpoint;
2153 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2154 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2155 (*u)->curr_migr_unit);
2156
2157 return update_memory_size;
2158 }
2159
2160
2161 static void imsm_update_metadata_locally(struct supertype *st,
2162 void *buf, int len);
2163
2164 /*******************************************************************************
2165 * Function: write_imsm_migr_rec
2166 * Description: Function writes imsm migration record
2167 * (at the last sector of disk)
2168 * Parameters:
2169 * super : imsm internal array info
2170 * Returns:
2171 * 0 : success
2172 * -1 : if fail
2173 ******************************************************************************/
2174 static int write_imsm_migr_rec(struct supertype *st)
2175 {
2176 struct intel_super *super = st->sb;
2177 unsigned long long dsize;
2178 char nm[30];
2179 int fd = -1;
2180 int retval = -1;
2181 struct dl *sd;
2182 int len;
2183 struct imsm_update_general_migration_checkpoint *u;
2184
2185 for (sd = super->disks ; sd ; sd = sd->next) {
2186 /* write to 2 first slots only */
2187 if ((sd->index < 0) || (sd->index > 1))
2188 continue;
2189 sprintf(nm, "%d:%d", sd->major, sd->minor);
2190 fd = dev_open(nm, O_RDWR);
2191 if (fd < 0)
2192 continue;
2193 get_dev_size(fd, NULL, &dsize);
2194 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2195 fprintf(stderr,
2196 Name ": Cannot seek to anchor block: %s\n",
2197 strerror(errno));
2198 goto out;
2199 }
2200 if (write(fd, super->migr_rec_buf, 512) != 512) {
2201 fprintf(stderr,
2202 Name ": Cannot write migr record block: %s\n",
2203 strerror(errno));
2204 goto out;
2205 }
2206 close(fd);
2207 fd = -1;
2208 }
2209 /* update checkpoint information in metadata */
2210 len = imsm_create_metadata_checkpoint_update(super, &u);
2211
2212 if (len <= 0) {
2213 dprintf("imsm: Cannot prepare update\n");
2214 goto out;
2215 }
2216 /* update metadata locally */
2217 imsm_update_metadata_locally(st, u, len);
2218 /* and possibly remotely */
2219 if (st->update_tail) {
2220 append_metadata_update(st, u, len);
2221 /* during reshape we do all work inside metadata handler
2222 * manage_reshape(), so metadata update has to be triggered
2223 * insida it
2224 */
2225 flush_metadata_updates(st);
2226 st->update_tail = &st->updates;
2227 } else
2228 free(u);
2229
2230 retval = 0;
2231 out:
2232 if (fd >= 0)
2233 close(fd);
2234 return retval;
2235 }
2236 #endif /* MDASSEMBLE */
2237
2238 /* spare/missing disks activations are not allowe when
2239 * array/container performs reshape operation, because
2240 * all arrays in container works on the same disks set
2241 */
2242 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2243 {
2244 int rv = 0;
2245 struct intel_dev *i_dev;
2246 struct imsm_dev *dev;
2247
2248 /* check whole container
2249 */
2250 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2251 dev = i_dev->dev;
2252 if (is_gen_migration(dev)) {
2253 /* No repair during any migration in container
2254 */
2255 rv = 1;
2256 break;
2257 }
2258 }
2259 return rv;
2260 }
2261
2262 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2263 {
2264 struct intel_super *super = st->sb;
2265 struct migr_record *migr_rec = super->migr_rec;
2266 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2267 struct imsm_map *map = get_imsm_map(dev, 0);
2268 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2269 struct imsm_map *map_to_analyse = map;
2270 struct dl *dl;
2271 char *devname;
2272 unsigned int component_size_alligment;
2273 int map_disks = info->array.raid_disks;
2274
2275 memset(info, 0, sizeof(*info));
2276 if (prev_map)
2277 map_to_analyse = prev_map;
2278
2279 dl = super->current_disk;
2280
2281 info->container_member = super->current_vol;
2282 info->array.raid_disks = map->num_members;
2283 info->array.level = get_imsm_raid_level(map_to_analyse);
2284 info->array.layout = imsm_level_to_layout(info->array.level);
2285 info->array.md_minor = -1;
2286 info->array.ctime = 0;
2287 info->array.utime = 0;
2288 info->array.chunk_size =
2289 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2290 info->array.state = !dev->vol.dirty;
2291 info->custom_array_size = __le32_to_cpu(dev->size_high);
2292 info->custom_array_size <<= 32;
2293 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2294 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2295
2296 if (prev_map && map->map_state == prev_map->map_state &&
2297 (migr_type(dev) == MIGR_GEN_MIGR)) {
2298 info->reshape_active = 1;
2299 info->new_level = get_imsm_raid_level(map);
2300 info->new_layout = imsm_level_to_layout(info->new_level);
2301 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2302 info->delta_disks = map->num_members - prev_map->num_members;
2303 if (info->delta_disks) {
2304 /* this needs to be applied to every array
2305 * in the container.
2306 */
2307 info->reshape_active = CONTAINER_RESHAPE;
2308 }
2309 /* We shape information that we give to md might have to be
2310 * modify to cope with md's requirement for reshaping arrays.
2311 * For example, when reshaping a RAID0, md requires it to be
2312 * presented as a degraded RAID4.
2313 * Also if a RAID0 is migrating to a RAID5 we need to specify
2314 * the array as already being RAID5, but the 'before' layout
2315 * is a RAID4-like layout.
2316 */
2317 switch (info->array.level) {
2318 case 0:
2319 switch(info->new_level) {
2320 case 0:
2321 /* conversion is happening as RAID4 */
2322 info->array.level = 4;
2323 info->array.raid_disks += 1;
2324 break;
2325 case 5:
2326 /* conversion is happening as RAID5 */
2327 info->array.level = 5;
2328 info->array.layout = ALGORITHM_PARITY_N;
2329 info->delta_disks -= 1;
2330 break;
2331 default:
2332 /* FIXME error message */
2333 info->array.level = UnSet;
2334 break;
2335 }
2336 break;
2337 }
2338 } else {
2339 info->new_level = UnSet;
2340 info->new_layout = UnSet;
2341 info->new_chunk = info->array.chunk_size;
2342 info->delta_disks = 0;
2343 }
2344
2345 if (dl) {
2346 info->disk.major = dl->major;
2347 info->disk.minor = dl->minor;
2348 info->disk.number = dl->index;
2349 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2350 dl->index);
2351 }
2352
2353 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2354 info->component_size =
2355 __le32_to_cpu(map_to_analyse->blocks_per_member);
2356
2357 /* check component size aligment
2358 */
2359 component_size_alligment =
2360 info->component_size % (info->array.chunk_size/512);
2361
2362 if (component_size_alligment &&
2363 (info->array.level != 1) && (info->array.level != UnSet)) {
2364 dprintf("imsm: reported component size alligned from %llu ",
2365 info->component_size);
2366 info->component_size -= component_size_alligment;
2367 dprintf("to %llu (%i).\n",
2368 info->component_size, component_size_alligment);
2369 }
2370
2371 memset(info->uuid, 0, sizeof(info->uuid));
2372 info->recovery_start = MaxSector;
2373
2374 info->reshape_progress = 0;
2375 info->resync_start = MaxSector;
2376 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2377 dev->vol.dirty) &&
2378 imsm_reshape_blocks_arrays_changes(super) == 0) {
2379 info->resync_start = 0;
2380 }
2381 if (dev->vol.migr_state) {
2382 switch (migr_type(dev)) {
2383 case MIGR_REPAIR:
2384 case MIGR_INIT: {
2385 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2386 dev);
2387 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2388
2389 info->resync_start = blocks_per_unit * units;
2390 break;
2391 }
2392 case MIGR_GEN_MIGR: {
2393 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2394 dev);
2395 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2396 unsigned long long array_blocks;
2397 int used_disks;
2398
2399 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2400 (units <
2401 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2402 (super->migr_rec->rec_status ==
2403 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2404 units++;
2405
2406 info->reshape_progress = blocks_per_unit * units;
2407
2408 dprintf("IMSM: General Migration checkpoint : %llu "
2409 "(%llu) -> read reshape progress : %llu\n",
2410 (unsigned long long)units,
2411 (unsigned long long)blocks_per_unit,
2412 info->reshape_progress);
2413
2414 used_disks = imsm_num_data_members(dev, 1);
2415 if (used_disks > 0) {
2416 array_blocks = map->blocks_per_member *
2417 used_disks;
2418 /* round array size down to closest MB
2419 */
2420 info->custom_array_size = (array_blocks
2421 >> SECT_PER_MB_SHIFT)
2422 << SECT_PER_MB_SHIFT;
2423 }
2424 }
2425 case MIGR_VERIFY:
2426 /* we could emulate the checkpointing of
2427 * 'sync_action=check' migrations, but for now
2428 * we just immediately complete them
2429 */
2430 case MIGR_REBUILD:
2431 /* this is handled by container_content_imsm() */
2432 case MIGR_STATE_CHANGE:
2433 /* FIXME handle other migrations */
2434 default:
2435 /* we are not dirty, so... */
2436 info->resync_start = MaxSector;
2437 }
2438 }
2439
2440 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2441 info->name[MAX_RAID_SERIAL_LEN] = 0;
2442
2443 info->array.major_version = -1;
2444 info->array.minor_version = -2;
2445 devname = devnum2devname(st->container_dev);
2446 *info->text_version = '\0';
2447 if (devname)
2448 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2449 free(devname);
2450 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2451 uuid_from_super_imsm(st, info->uuid);
2452
2453 if (dmap) {
2454 int i, j;
2455 for (i=0; i<map_disks; i++) {
2456 dmap[i] = 0;
2457 if (i < info->array.raid_disks) {
2458 struct imsm_disk *dsk;
2459 j = get_imsm_disk_idx(dev, i, -1);
2460 dsk = get_imsm_disk(super, j);
2461 if (dsk && (dsk->status & CONFIGURED_DISK))
2462 dmap[i] = 1;
2463 }
2464 }
2465 }
2466 }
2467
2468 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2469 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2470
2471 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2472 {
2473 struct dl *d;
2474
2475 for (d = super->missing; d; d = d->next)
2476 if (d->index == index)
2477 return &d->disk;
2478 return NULL;
2479 }
2480
2481 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2482 {
2483 struct intel_super *super = st->sb;
2484 struct imsm_disk *disk;
2485 int map_disks = info->array.raid_disks;
2486 int max_enough = -1;
2487 int i;
2488 struct imsm_super *mpb;
2489
2490 if (super->current_vol >= 0) {
2491 getinfo_super_imsm_volume(st, info, map);
2492 return;
2493 }
2494 memset(info, 0, sizeof(*info));
2495
2496 /* Set raid_disks to zero so that Assemble will always pull in valid
2497 * spares
2498 */
2499 info->array.raid_disks = 0;
2500 info->array.level = LEVEL_CONTAINER;
2501 info->array.layout = 0;
2502 info->array.md_minor = -1;
2503 info->array.ctime = 0; /* N/A for imsm */
2504 info->array.utime = 0;
2505 info->array.chunk_size = 0;
2506
2507 info->disk.major = 0;
2508 info->disk.minor = 0;
2509 info->disk.raid_disk = -1;
2510 info->reshape_active = 0;
2511 info->array.major_version = -1;
2512 info->array.minor_version = -2;
2513 strcpy(info->text_version, "imsm");
2514 info->safe_mode_delay = 0;
2515 info->disk.number = -1;
2516 info->disk.state = 0;
2517 info->name[0] = 0;
2518 info->recovery_start = MaxSector;
2519 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2520
2521 /* do we have the all the insync disks that we expect? */
2522 mpb = super->anchor;
2523
2524 for (i = 0; i < mpb->num_raid_devs; i++) {
2525 struct imsm_dev *dev = get_imsm_dev(super, i);
2526 int failed, enough, j, missing = 0;
2527 struct imsm_map *map;
2528 __u8 state;
2529
2530 failed = imsm_count_failed(super, dev);
2531 state = imsm_check_degraded(super, dev, failed);
2532 map = get_imsm_map(dev, dev->vol.migr_state);
2533
2534 /* any newly missing disks?
2535 * (catches single-degraded vs double-degraded)
2536 */
2537 for (j = 0; j < map->num_members; j++) {
2538 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2539 __u32 idx = ord_to_idx(ord);
2540
2541 if (!(ord & IMSM_ORD_REBUILD) &&
2542 get_imsm_missing(super, idx)) {
2543 missing = 1;
2544 break;
2545 }
2546 }
2547
2548 if (state == IMSM_T_STATE_FAILED)
2549 enough = -1;
2550 else if (state == IMSM_T_STATE_DEGRADED &&
2551 (state != map->map_state || missing))
2552 enough = 0;
2553 else /* we're normal, or already degraded */
2554 enough = 1;
2555
2556 /* in the missing/failed disk case check to see
2557 * if at least one array is runnable
2558 */
2559 max_enough = max(max_enough, enough);
2560 }
2561 dprintf("%s: enough: %d\n", __func__, max_enough);
2562 info->container_enough = max_enough;
2563
2564 if (super->disks) {
2565 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2566
2567 disk = &super->disks->disk;
2568 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2569 info->component_size = reserved;
2570 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2571 /* we don't change info->disk.raid_disk here because
2572 * this state will be finalized in mdmon after we have
2573 * found the 'most fresh' version of the metadata
2574 */
2575 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2576 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2577 }
2578
2579 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2580 * ->compare_super may have updated the 'num_raid_devs' field for spares
2581 */
2582 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2583 uuid_from_super_imsm(st, info->uuid);
2584 else
2585 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2586
2587 /* I don't know how to compute 'map' on imsm, so use safe default */
2588 if (map) {
2589 int i;
2590 for (i = 0; i < map_disks; i++)
2591 map[i] = 1;
2592 }
2593
2594 }
2595
2596 /* allocates memory and fills disk in mdinfo structure
2597 * for each disk in array */
2598 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2599 {
2600 struct mdinfo *mddev = NULL;
2601 struct intel_super *super = st->sb;
2602 struct imsm_disk *disk;
2603 int count = 0;
2604 struct dl *dl;
2605 if (!super || !super->disks)
2606 return NULL;
2607 dl = super->disks;
2608 mddev = malloc(sizeof(*mddev));
2609 if (!mddev) {
2610 fprintf(stderr, Name ": Failed to allocate memory.\n");
2611 return NULL;
2612 }
2613 memset(mddev, 0, sizeof(*mddev));
2614 while (dl) {
2615 struct mdinfo *tmp;
2616 disk = &dl->disk;
2617 tmp = malloc(sizeof(*tmp));
2618 if (!tmp) {
2619 fprintf(stderr, Name ": Failed to allocate memory.\n");
2620 if (mddev)
2621 sysfs_free(mddev);
2622 return NULL;
2623 }
2624 memset(tmp, 0, sizeof(*tmp));
2625 if (mddev->devs)
2626 tmp->next = mddev->devs;
2627 mddev->devs = tmp;
2628 tmp->disk.number = count++;
2629 tmp->disk.major = dl->major;
2630 tmp->disk.minor = dl->minor;
2631 tmp->disk.state = is_configured(disk) ?
2632 (1 << MD_DISK_ACTIVE) : 0;
2633 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2634 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2635 tmp->disk.raid_disk = -1;
2636 dl = dl->next;
2637 }
2638 return mddev;
2639 }
2640
2641 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2642 char *update, char *devname, int verbose,
2643 int uuid_set, char *homehost)
2644 {
2645 /* For 'assemble' and 'force' we need to return non-zero if any
2646 * change was made. For others, the return value is ignored.
2647 * Update options are:
2648 * force-one : This device looks a bit old but needs to be included,
2649 * update age info appropriately.
2650 * assemble: clear any 'faulty' flag to allow this device to
2651 * be assembled.
2652 * force-array: Array is degraded but being forced, mark it clean
2653 * if that will be needed to assemble it.
2654 *
2655 * newdev: not used ????
2656 * grow: Array has gained a new device - this is currently for
2657 * linear only
2658 * resync: mark as dirty so a resync will happen.
2659 * name: update the name - preserving the homehost
2660 * uuid: Change the uuid of the array to match watch is given
2661 *
2662 * Following are not relevant for this imsm:
2663 * sparc2.2 : update from old dodgey metadata
2664 * super-minor: change the preferred_minor number
2665 * summaries: update redundant counters.
2666 * homehost: update the recorded homehost
2667 * _reshape_progress: record new reshape_progress position.
2668 */
2669 int rv = 1;
2670 struct intel_super *super = st->sb;
2671 struct imsm_super *mpb;
2672
2673 /* we can only update container info */
2674 if (!super || super->current_vol >= 0 || !super->anchor)
2675 return 1;
2676
2677 mpb = super->anchor;
2678
2679 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2680 rv = -1;
2681 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2682 mpb->orig_family_num = *((__u32 *) info->update_private);
2683 rv = 0;
2684 } else if (strcmp(update, "uuid") == 0) {
2685 __u32 *new_family = malloc(sizeof(*new_family));
2686
2687 /* update orig_family_number with the incoming random
2688 * data, report the new effective uuid, and store the
2689 * new orig_family_num for future updates.
2690 */
2691 if (new_family) {
2692 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2693 uuid_from_super_imsm(st, info->uuid);
2694 *new_family = mpb->orig_family_num;
2695 info->update_private = new_family;
2696 rv = 0;
2697 }
2698 } else if (strcmp(update, "assemble") == 0)
2699 rv = 0;
2700 else
2701 rv = -1;
2702
2703 /* successful update? recompute checksum */
2704 if (rv == 0)
2705 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2706
2707 return rv;
2708 }
2709
2710 static size_t disks_to_mpb_size(int disks)
2711 {
2712 size_t size;
2713
2714 size = sizeof(struct imsm_super);
2715 size += (disks - 1) * sizeof(struct imsm_disk);
2716 size += 2 * sizeof(struct imsm_dev);
2717 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2718 size += (4 - 2) * sizeof(struct imsm_map);
2719 /* 4 possible disk_ord_tbl's */
2720 size += 4 * (disks - 1) * sizeof(__u32);
2721
2722 return size;
2723 }
2724
2725 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2726 {
2727 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2728 return 0;
2729
2730 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2731 }
2732
2733 static void free_devlist(struct intel_super *super)
2734 {
2735 struct intel_dev *dv;
2736
2737 while (super->devlist) {
2738 dv = super->devlist->next;
2739 free(super->devlist->dev);
2740 free(super->devlist);
2741 super->devlist = dv;
2742 }
2743 }
2744
2745 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2746 {
2747 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2748 }
2749
2750 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2751 {
2752 /*
2753 * return:
2754 * 0 same, or first was empty, and second was copied
2755 * 1 second had wrong number
2756 * 2 wrong uuid
2757 * 3 wrong other info
2758 */
2759 struct intel_super *first = st->sb;
2760 struct intel_super *sec = tst->sb;
2761
2762 if (!first) {
2763 st->sb = tst->sb;
2764 tst->sb = NULL;
2765 return 0;
2766 }
2767 /* in platform dependent environment test if the disks
2768 * use the same Intel hba
2769 */
2770 if (!check_env("IMSM_NO_PLATFORM")) {
2771 if (!first->hba || !sec->hba ||
2772 (first->hba->type != sec->hba->type)) {
2773 fprintf(stderr,
2774 "HBAs of devices does not match %s != %s\n",
2775 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2776 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2777 return 3;
2778 }
2779 }
2780
2781 /* if an anchor does not have num_raid_devs set then it is a free
2782 * floating spare
2783 */
2784 if (first->anchor->num_raid_devs > 0 &&
2785 sec->anchor->num_raid_devs > 0) {
2786 /* Determine if these disks might ever have been
2787 * related. Further disambiguation can only take place
2788 * in load_super_imsm_all
2789 */
2790 __u32 first_family = first->anchor->orig_family_num;
2791 __u32 sec_family = sec->anchor->orig_family_num;
2792
2793 if (memcmp(first->anchor->sig, sec->anchor->sig,
2794 MAX_SIGNATURE_LENGTH) != 0)
2795 return 3;
2796
2797 if (first_family == 0)
2798 first_family = first->anchor->family_num;
2799 if (sec_family == 0)
2800 sec_family = sec->anchor->family_num;
2801
2802 if (first_family != sec_family)
2803 return 3;
2804
2805 }
2806
2807
2808 /* if 'first' is a spare promote it to a populated mpb with sec's
2809 * family number
2810 */
2811 if (first->anchor->num_raid_devs == 0 &&
2812 sec->anchor->num_raid_devs > 0) {
2813 int i;
2814 struct intel_dev *dv;
2815 struct imsm_dev *dev;
2816
2817 /* we need to copy raid device info from sec if an allocation
2818 * fails here we don't associate the spare
2819 */
2820 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2821 dv = malloc(sizeof(*dv));
2822 if (!dv)
2823 break;
2824 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2825 if (!dev) {
2826 free(dv);
2827 break;
2828 }
2829 dv->dev = dev;
2830 dv->index = i;
2831 dv->next = first->devlist;
2832 first->devlist = dv;
2833 }
2834 if (i < sec->anchor->num_raid_devs) {
2835 /* allocation failure */
2836 free_devlist(first);
2837 fprintf(stderr, "imsm: failed to associate spare\n");
2838 return 3;
2839 }
2840 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2841 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2842 first->anchor->family_num = sec->anchor->family_num;
2843 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2844 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2845 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2846 }
2847
2848 return 0;
2849 }
2850
2851 static void fd2devname(int fd, char *name)
2852 {
2853 struct stat st;
2854 char path[256];
2855 char dname[PATH_MAX];
2856 char *nm;
2857 int rv;
2858
2859 name[0] = '\0';
2860 if (fstat(fd, &st) != 0)
2861 return;
2862 sprintf(path, "/sys/dev/block/%d:%d",
2863 major(st.st_rdev), minor(st.st_rdev));
2864
2865 rv = readlink(path, dname, sizeof(dname)-1);
2866 if (rv <= 0)
2867 return;
2868
2869 dname[rv] = '\0';
2870 nm = strrchr(dname, '/');
2871 if (nm) {
2872 nm++;
2873 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2874 }
2875 }
2876
2877 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2878
2879 static int imsm_read_serial(int fd, char *devname,
2880 __u8 serial[MAX_RAID_SERIAL_LEN])
2881 {
2882 unsigned char scsi_serial[255];
2883 int rv;
2884 int rsp_len;
2885 int len;
2886 char *dest;
2887 char *src;
2888 char *rsp_buf;
2889 int i;
2890
2891 memset(scsi_serial, 0, sizeof(scsi_serial));
2892
2893 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2894
2895 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2896 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2897 fd2devname(fd, (char *) serial);
2898 return 0;
2899 }
2900
2901 if (rv != 0) {
2902 if (devname)
2903 fprintf(stderr,
2904 Name ": Failed to retrieve serial for %s\n",
2905 devname);
2906 return rv;
2907 }
2908
2909 rsp_len = scsi_serial[3];
2910 if (!rsp_len) {
2911 if (devname)
2912 fprintf(stderr,
2913 Name ": Failed to retrieve serial for %s\n",
2914 devname);
2915 return 2;
2916 }
2917 rsp_buf = (char *) &scsi_serial[4];
2918
2919 /* trim all whitespace and non-printable characters and convert
2920 * ':' to ';'
2921 */
2922 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2923 src = &rsp_buf[i];
2924 if (*src > 0x20) {
2925 /* ':' is reserved for use in placeholder serial
2926 * numbers for missing disks
2927 */
2928 if (*src == ':')
2929 *dest++ = ';';
2930 else
2931 *dest++ = *src;
2932 }
2933 }
2934 len = dest - rsp_buf;
2935 dest = rsp_buf;
2936
2937 /* truncate leading characters */
2938 if (len > MAX_RAID_SERIAL_LEN) {
2939 dest += len - MAX_RAID_SERIAL_LEN;
2940 len = MAX_RAID_SERIAL_LEN;
2941 }
2942
2943 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2944 memcpy(serial, dest, len);
2945
2946 return 0;
2947 }
2948
2949 static int serialcmp(__u8 *s1, __u8 *s2)
2950 {
2951 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2952 }
2953
2954 static void serialcpy(__u8 *dest, __u8 *src)
2955 {
2956 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2957 }
2958
2959 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2960 {
2961 struct dl *dl;
2962
2963 for (dl = super->disks; dl; dl = dl->next)
2964 if (serialcmp(dl->serial, serial) == 0)
2965 break;
2966
2967 return dl;
2968 }
2969
2970 static struct imsm_disk *
2971 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2972 {
2973 int i;
2974
2975 for (i = 0; i < mpb->num_disks; i++) {
2976 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2977
2978 if (serialcmp(disk->serial, serial) == 0) {
2979 if (idx)
2980 *idx = i;
2981 return disk;
2982 }
2983 }
2984
2985 return NULL;
2986 }
2987
2988 static int
2989 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2990 {
2991 struct imsm_disk *disk;
2992 struct dl *dl;
2993 struct stat stb;
2994 int rv;
2995 char name[40];
2996 __u8 serial[MAX_RAID_SERIAL_LEN];
2997
2998 rv = imsm_read_serial(fd, devname, serial);
2999
3000 if (rv != 0)
3001 return 2;
3002
3003 dl = calloc(1, sizeof(*dl));
3004 if (!dl) {
3005 if (devname)
3006 fprintf(stderr,
3007 Name ": failed to allocate disk buffer for %s\n",
3008 devname);
3009 return 2;
3010 }
3011
3012 fstat(fd, &stb);
3013 dl->major = major(stb.st_rdev);
3014 dl->minor = minor(stb.st_rdev);
3015 dl->next = super->disks;
3016 dl->fd = keep_fd ? fd : -1;
3017 assert(super->disks == NULL);
3018 super->disks = dl;
3019 serialcpy(dl->serial, serial);
3020 dl->index = -2;
3021 dl->e = NULL;
3022 fd2devname(fd, name);
3023 if (devname)
3024 dl->devname = strdup(devname);
3025 else
3026 dl->devname = strdup(name);
3027
3028 /* look up this disk's index in the current anchor */
3029 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3030 if (disk) {
3031 dl->disk = *disk;
3032 /* only set index on disks that are a member of a
3033 * populated contianer, i.e. one with raid_devs
3034 */
3035 if (is_failed(&dl->disk))
3036 dl->index = -2;
3037 else if (is_spare(&dl->disk))
3038 dl->index = -1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 #ifndef MDASSEMBLE
3045 /* When migrating map0 contains the 'destination' state while map1
3046 * contains the current state. When not migrating map0 contains the
3047 * current state. This routine assumes that map[0].map_state is set to
3048 * the current array state before being called.
3049 *
3050 * Migration is indicated by one of the following states
3051 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3052 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3053 * map1state=unitialized)
3054 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3055 * map1state=normal)
3056 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3057 * map1state=degraded)
3058 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3059 * map1state=normal)
3060 */
3061 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3062 __u8 to_state, int migr_type)
3063 {
3064 struct imsm_map *dest;
3065 struct imsm_map *src = get_imsm_map(dev, 0);
3066
3067 dev->vol.migr_state = 1;
3068 set_migr_type(dev, migr_type);
3069 dev->vol.curr_migr_unit = 0;
3070 dest = get_imsm_map(dev, 1);
3071
3072 /* duplicate and then set the target end state in map[0] */
3073 memcpy(dest, src, sizeof_imsm_map(src));
3074 if ((migr_type == MIGR_REBUILD) ||
3075 (migr_type == MIGR_GEN_MIGR)) {
3076 __u32 ord;
3077 int i;
3078
3079 for (i = 0; i < src->num_members; i++) {
3080 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3081 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3082 }
3083 }
3084
3085 if (migr_type == MIGR_GEN_MIGR)
3086 /* Clear migration record */
3087 memset(super->migr_rec, 0, sizeof(struct migr_record));
3088
3089 src->map_state = to_state;
3090 }
3091
3092 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3093 {
3094 struct imsm_map *map = get_imsm_map(dev, 0);
3095 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3096 int i, j;
3097
3098 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3099 * completed in the last migration.
3100 *
3101 * FIXME add support for raid-level-migration
3102 */
3103 for (i = 0; i < prev->num_members; i++)
3104 for (j = 0; j < map->num_members; j++)
3105 /* during online capacity expansion
3106 * disks position can be changed if takeover is used
3107 */
3108 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3109 ord_to_idx(prev->disk_ord_tbl[i])) {
3110 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3111 break;
3112 }
3113
3114 dev->vol.migr_state = 0;
3115 set_migr_type(dev, 0);
3116 dev->vol.curr_migr_unit = 0;
3117 map->map_state = map_state;
3118 }
3119 #endif
3120
3121 static int parse_raid_devices(struct intel_super *super)
3122 {
3123 int i;
3124 struct imsm_dev *dev_new;
3125 size_t len, len_migr;
3126 size_t max_len = 0;
3127 size_t space_needed = 0;
3128 struct imsm_super *mpb = super->anchor;
3129
3130 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3131 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3132 struct intel_dev *dv;
3133
3134 len = sizeof_imsm_dev(dev_iter, 0);
3135 len_migr = sizeof_imsm_dev(dev_iter, 1);
3136 if (len_migr > len)
3137 space_needed += len_migr - len;
3138
3139 dv = malloc(sizeof(*dv));
3140 if (!dv)
3141 return 1;
3142 if (max_len < len_migr)
3143 max_len = len_migr;
3144 if (max_len > len_migr)
3145 space_needed += max_len - len_migr;
3146 dev_new = malloc(max_len);
3147 if (!dev_new) {
3148 free(dv);
3149 return 1;
3150 }
3151 imsm_copy_dev(dev_new, dev_iter);
3152 dv->dev = dev_new;
3153 dv->index = i;
3154 dv->next = super->devlist;
3155 super->devlist = dv;
3156 }
3157
3158 /* ensure that super->buf is large enough when all raid devices
3159 * are migrating
3160 */
3161 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3162 void *buf;
3163
3164 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3165 if (posix_memalign(&buf, 512, len) != 0)
3166 return 1;
3167
3168 memcpy(buf, super->buf, super->len);
3169 memset(buf + super->len, 0, len - super->len);
3170 free(super->buf);
3171 super->buf = buf;
3172 super->len = len;
3173 }
3174
3175 return 0;
3176 }
3177
3178 /* retrieve a pointer to the bbm log which starts after all raid devices */
3179 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3180 {
3181 void *ptr = NULL;
3182
3183 if (__le32_to_cpu(mpb->bbm_log_size)) {
3184 ptr = mpb;
3185 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3186 }
3187
3188 return ptr;
3189 }
3190
3191 /*******************************************************************************
3192 * Function: check_mpb_migr_compatibility
3193 * Description: Function checks for unsupported migration features:
3194 * - migration optimization area (pba_of_lba0)
3195 * - descending reshape (ascending_migr)
3196 * Parameters:
3197 * super : imsm metadata information
3198 * Returns:
3199 * 0 : migration is compatible
3200 * -1 : migration is not compatible
3201 ******************************************************************************/
3202 int check_mpb_migr_compatibility(struct intel_super *super)
3203 {
3204 struct imsm_map *map0, *map1;
3205 struct migr_record *migr_rec = super->migr_rec;
3206 int i;
3207
3208 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3209 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3210
3211 if (dev_iter &&
3212 dev_iter->vol.migr_state == 1 &&
3213 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3214 /* This device is migrating */
3215 map0 = get_imsm_map(dev_iter, 0);
3216 map1 = get_imsm_map(dev_iter, 1);
3217 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3218 /* migration optimization area was used */
3219 return -1;
3220 if (migr_rec->ascending_migr == 0
3221 && migr_rec->dest_depth_per_unit > 0)
3222 /* descending reshape not supported yet */
3223 return -1;
3224 }
3225 }
3226 return 0;
3227 }
3228
3229 static void __free_imsm(struct intel_super *super, int free_disks);
3230
3231 /* load_imsm_mpb - read matrix metadata
3232 * allocates super->mpb to be freed by free_imsm
3233 */
3234 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3235 {
3236 unsigned long long dsize;
3237 unsigned long long sectors;
3238 struct stat;
3239 struct imsm_super *anchor;
3240 __u32 check_sum;
3241
3242 get_dev_size(fd, NULL, &dsize);
3243 if (dsize < 1024) {
3244 if (devname)
3245 fprintf(stderr,
3246 Name ": %s: device to small for imsm\n",
3247 devname);
3248 return 1;
3249 }
3250
3251 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3252 if (devname)
3253 fprintf(stderr, Name
3254 ": Cannot seek to anchor block on %s: %s\n",
3255 devname, strerror(errno));
3256 return 1;
3257 }
3258
3259 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3260 if (devname)
3261 fprintf(stderr,
3262 Name ": Failed to allocate imsm anchor buffer"
3263 " on %s\n", devname);
3264 return 1;
3265 }
3266 if (read(fd, anchor, 512) != 512) {
3267 if (devname)
3268 fprintf(stderr,
3269 Name ": Cannot read anchor block on %s: %s\n",
3270 devname, strerror(errno));
3271 free(anchor);
3272 return 1;
3273 }
3274
3275 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3276 if (devname)
3277 fprintf(stderr,
3278 Name ": no IMSM anchor on %s\n", devname);
3279 free(anchor);
3280 return 2;
3281 }
3282
3283 __free_imsm(super, 0);
3284 /* reload capability and hba */
3285
3286 /* capability and hba must be updated with new super allocation */
3287 find_intel_hba_capability(fd, super, devname);
3288 super->len = ROUND_UP(anchor->mpb_size, 512);
3289 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3290 if (devname)
3291 fprintf(stderr,
3292 Name ": unable to allocate %zu byte mpb buffer\n",
3293 super->len);
3294 free(anchor);
3295 return 2;
3296 }
3297 memcpy(super->buf, anchor, 512);
3298
3299 sectors = mpb_sectors(anchor) - 1;
3300 free(anchor);
3301
3302 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3303 fprintf(stderr, Name
3304 ": %s could not allocate migr_rec buffer\n", __func__);
3305 free(super->buf);
3306 return 2;
3307 }
3308
3309 if (!sectors) {
3310 check_sum = __gen_imsm_checksum(super->anchor);
3311 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3312 if (devname)
3313 fprintf(stderr,
3314 Name ": IMSM checksum %x != %x on %s\n",
3315 check_sum,
3316 __le32_to_cpu(super->anchor->check_sum),
3317 devname);
3318 return 2;
3319 }
3320
3321 return 0;
3322 }
3323
3324 /* read the extended mpb */
3325 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3326 if (devname)
3327 fprintf(stderr,
3328 Name ": Cannot seek to extended mpb on %s: %s\n",
3329 devname, strerror(errno));
3330 return 1;
3331 }
3332
3333 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3334 if (devname)
3335 fprintf(stderr,
3336 Name ": Cannot read extended mpb on %s: %s\n",
3337 devname, strerror(errno));
3338 return 2;
3339 }
3340
3341 check_sum = __gen_imsm_checksum(super->anchor);
3342 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3343 if (devname)
3344 fprintf(stderr,
3345 Name ": IMSM checksum %x != %x on %s\n",
3346 check_sum, __le32_to_cpu(super->anchor->check_sum),
3347 devname);
3348 return 3;
3349 }
3350
3351 /* FIXME the BBM log is disk specific so we cannot use this global
3352 * buffer for all disks. Ok for now since we only look at the global
3353 * bbm_log_size parameter to gate assembly
3354 */
3355 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3356
3357 return 0;
3358 }
3359
3360 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3361
3362 static int
3363 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3364 {
3365 int err;
3366
3367 err = load_imsm_mpb(fd, super, devname);
3368 if (err)
3369 return err;
3370 err = load_imsm_disk(fd, super, devname, keep_fd);
3371 if (err)
3372 return err;
3373 err = parse_raid_devices(super);
3374
3375 return err;
3376 }
3377
3378 static void __free_imsm_disk(struct dl *d)
3379 {
3380 if (d->fd >= 0)
3381 close(d->fd);
3382 if (d->devname)
3383 free(d->devname);
3384 if (d->e)
3385 free(d->e);
3386 free(d);
3387
3388 }
3389
3390 static void free_imsm_disks(struct intel_super *super)
3391 {
3392 struct dl *d;
3393
3394 while (super->disks) {
3395 d = super->disks;
3396 super->disks = d->next;
3397 __free_imsm_disk(d);
3398 }
3399 while (super->disk_mgmt_list) {
3400 d = super->disk_mgmt_list;
3401 super->disk_mgmt_list = d->next;
3402 __free_imsm_disk(d);
3403 }
3404 while (super->missing) {
3405 d = super->missing;
3406 super->missing = d->next;
3407 __free_imsm_disk(d);
3408 }
3409
3410 }
3411
3412 /* free all the pieces hanging off of a super pointer */
3413 static void __free_imsm(struct intel_super *super, int free_disks)
3414 {
3415 struct intel_hba *elem, *next;
3416
3417 if (super->buf) {
3418 free(super->buf);
3419 super->buf = NULL;
3420 }
3421 /* unlink capability description */
3422 super->orom = NULL;
3423 if (super->migr_rec_buf) {
3424 free(super->migr_rec_buf);
3425 super->migr_rec_buf = NULL;
3426 }
3427 if (free_disks)
3428 free_imsm_disks(super);
3429 free_devlist(super);
3430 elem = super->hba;
3431 while (elem) {
3432 if (elem->path)
3433 free((void *)elem->path);
3434 next = elem->next;
3435 free(elem);
3436 elem = next;
3437 }
3438 super->hba = NULL;
3439 }
3440
3441 static void free_imsm(struct intel_super *super)
3442 {
3443 __free_imsm(super, 1);
3444 free(super);
3445 }
3446
3447 static void free_super_imsm(struct supertype *st)
3448 {
3449 struct intel_super *super = st->sb;
3450
3451 if (!super)
3452 return;
3453
3454 free_imsm(super);
3455 st->sb = NULL;
3456 }
3457
3458 static struct intel_super *alloc_super(void)
3459 {
3460 struct intel_super *super = malloc(sizeof(*super));
3461
3462 if (super) {
3463 memset(super, 0, sizeof(*super));
3464 super->current_vol = -1;
3465 super->create_offset = ~((__u32 ) 0);
3466 }
3467 return super;
3468 }
3469
3470 /*
3471 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3472 */
3473 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3474 {
3475 struct sys_dev *hba_name;
3476 int rv = 0;
3477
3478 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3479 super->orom = NULL;
3480 super->hba = NULL;
3481 return 0;
3482 }
3483 hba_name = find_disk_attached_hba(fd, NULL);
3484 if (!hba_name) {
3485 if (devname)
3486 fprintf(stderr,
3487 Name ": %s is not attached to Intel(R) RAID controller.\n",
3488 devname);
3489 return 1;
3490 }
3491 rv = attach_hba_to_super(super, hba_name);
3492 if (rv == 2) {
3493 if (devname) {
3494 struct intel_hba *hba = super->hba;
3495
3496 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3497 "controller (%s),\n"
3498 " but the container is assigned to Intel(R) "
3499 "%s RAID controller (",
3500 devname,
3501 hba_name->path,
3502 hba_name->pci_id ? : "Err!",
3503 get_sys_dev_type(hba_name->type));
3504
3505 while (hba) {
3506 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3507 if (hba->next)
3508 fprintf(stderr, ", ");
3509 hba = hba->next;
3510 }
3511
3512 fprintf(stderr, ").\n"
3513 " Mixing devices attached to different controllers "
3514 "is not allowed.\n");
3515 }
3516 free_sys_dev(&hba_name);
3517 return 2;
3518 }
3519 super->orom = find_imsm_capability(hba_name->type);
3520 free_sys_dev(&hba_name);
3521 if (!super->orom)
3522 return 3;
3523 return 0;
3524 }
3525
3526 /* find_missing - helper routine for load_super_imsm_all that identifies
3527 * disks that have disappeared from the system. This routine relies on
3528 * the mpb being uptodate, which it is at load time.
3529 */
3530 static int find_missing(struct intel_super *super)
3531 {
3532 int i;
3533 struct imsm_super *mpb = super->anchor;
3534 struct dl *dl;
3535 struct imsm_disk *disk;
3536
3537 for (i = 0; i < mpb->num_disks; i++) {
3538 disk = __get_imsm_disk(mpb, i);
3539 dl = serial_to_dl(disk->serial, super);
3540 if (dl)
3541 continue;
3542
3543 dl = malloc(sizeof(*dl));
3544 if (!dl)
3545 return 1;
3546 dl->major = 0;
3547 dl->minor = 0;
3548 dl->fd = -1;
3549 dl->devname = strdup("missing");
3550 dl->index = i;
3551 serialcpy(dl->serial, disk->serial);
3552 dl->disk = *disk;
3553 dl->e = NULL;
3554 dl->next = super->missing;
3555 super->missing = dl;
3556 }
3557
3558 return 0;
3559 }
3560
3561 #ifndef MDASSEMBLE
3562 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3563 {
3564 struct intel_disk *idisk = disk_list;
3565
3566 while (idisk) {
3567 if (serialcmp(idisk->disk.serial, serial) == 0)
3568 break;
3569 idisk = idisk->next;
3570 }
3571
3572 return idisk;
3573 }
3574
3575 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3576 struct intel_super *super,
3577 struct intel_disk **disk_list)
3578 {
3579 struct imsm_disk *d = &super->disks->disk;
3580 struct imsm_super *mpb = super->anchor;
3581 int i, j;
3582
3583 for (i = 0; i < tbl_size; i++) {
3584 struct imsm_super *tbl_mpb = table[i]->anchor;
3585 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3586
3587 if (tbl_mpb->family_num == mpb->family_num) {
3588 if (tbl_mpb->check_sum == mpb->check_sum) {
3589 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3590 __func__, super->disks->major,
3591 super->disks->minor,
3592 table[i]->disks->major,
3593 table[i]->disks->minor);
3594 break;
3595 }
3596
3597 if (((is_configured(d) && !is_configured(tbl_d)) ||
3598 is_configured(d) == is_configured(tbl_d)) &&
3599 tbl_mpb->generation_num < mpb->generation_num) {
3600 /* current version of the mpb is a
3601 * better candidate than the one in
3602 * super_table, but copy over "cross
3603 * generational" status
3604 */
3605 struct intel_disk *idisk;
3606
3607 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3608 __func__, super->disks->major,
3609 super->disks->minor,
3610 table[i]->disks->major,
3611 table[i]->disks->minor);
3612
3613 idisk = disk_list_get(tbl_d->serial, *disk_list);
3614 if (idisk && is_failed(&idisk->disk))
3615 tbl_d->status |= FAILED_DISK;
3616 break;
3617 } else {
3618 struct intel_disk *idisk;
3619 struct imsm_disk *disk;
3620
3621 /* tbl_mpb is more up to date, but copy
3622 * over cross generational status before
3623 * returning
3624 */
3625 disk = __serial_to_disk(d->serial, mpb, NULL);
3626 if (disk && is_failed(disk))
3627 d->status |= FAILED_DISK;
3628
3629 idisk = disk_list_get(d->serial, *disk_list);
3630 if (idisk) {
3631 idisk->owner = i;
3632 if (disk && is_configured(disk))
3633 idisk->disk.status |= CONFIGURED_DISK;
3634 }
3635
3636 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3637 __func__, super->disks->major,
3638 super->disks->minor,
3639 table[i]->disks->major,
3640 table[i]->disks->minor);
3641
3642 return tbl_size;
3643 }
3644 }
3645 }
3646
3647 if (i >= tbl_size)
3648 table[tbl_size++] = super;
3649 else
3650 table[i] = super;
3651
3652 /* update/extend the merged list of imsm_disk records */
3653 for (j = 0; j < mpb->num_disks; j++) {
3654 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3655 struct intel_disk *idisk;
3656
3657 idisk = disk_list_get(disk->serial, *disk_list);
3658 if (idisk) {
3659 idisk->disk.status |= disk->status;
3660 if (is_configured(&idisk->disk) ||
3661 is_failed(&idisk->disk))
3662 idisk->disk.status &= ~(SPARE_DISK);
3663 } else {
3664 idisk = calloc(1, sizeof(*idisk));
3665 if (!idisk)
3666 return -1;
3667 idisk->owner = IMSM_UNKNOWN_OWNER;
3668 idisk->disk = *disk;
3669 idisk->next = *disk_list;
3670 *disk_list = idisk;
3671 }
3672
3673 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3674 idisk->owner = i;
3675 }
3676
3677 return tbl_size;
3678 }
3679
3680 static struct intel_super *
3681 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3682 const int owner)
3683 {
3684 struct imsm_super *mpb = super->anchor;
3685 int ok_count = 0;
3686 int i;
3687
3688 for (i = 0; i < mpb->num_disks; i++) {
3689 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3690 struct intel_disk *idisk;
3691
3692 idisk = disk_list_get(disk->serial, disk_list);
3693 if (idisk) {
3694 if (idisk->owner == owner ||
3695 idisk->owner == IMSM_UNKNOWN_OWNER)
3696 ok_count++;
3697 else
3698 dprintf("%s: '%.16s' owner %d != %d\n",
3699 __func__, disk->serial, idisk->owner,
3700 owner);
3701 } else {
3702 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3703 __func__, __le32_to_cpu(mpb->family_num), i,
3704 disk->serial);
3705 break;
3706 }
3707 }
3708
3709 if (ok_count == mpb->num_disks)
3710 return super;
3711 return NULL;
3712 }
3713
3714 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3715 {
3716 struct intel_super *s;
3717
3718 for (s = super_list; s; s = s->next) {
3719 if (family_num != s->anchor->family_num)
3720 continue;
3721 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3722 __le32_to_cpu(family_num), s->disks->devname);
3723 }
3724 }
3725
3726 static struct intel_super *
3727 imsm_thunderdome(struct intel_super **super_list, int len)
3728 {
3729 struct intel_super *super_table[len];
3730 struct intel_disk *disk_list = NULL;
3731 struct intel_super *champion, *spare;
3732 struct intel_super *s, **del;
3733 int tbl_size = 0;
3734 int conflict;
3735 int i;
3736
3737 memset(super_table, 0, sizeof(super_table));
3738 for (s = *super_list; s; s = s->next)
3739 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3740
3741 for (i = 0; i < tbl_size; i++) {
3742 struct imsm_disk *d;
3743 struct intel_disk *idisk;
3744 struct imsm_super *mpb = super_table[i]->anchor;
3745
3746 s = super_table[i];
3747 d = &s->disks->disk;
3748
3749 /* 'd' must appear in merged disk list for its
3750 * configuration to be valid
3751 */
3752 idisk = disk_list_get(d->serial, disk_list);
3753 if (idisk && idisk->owner == i)
3754 s = validate_members(s, disk_list, i);
3755 else
3756 s = NULL;
3757
3758 if (!s)
3759 dprintf("%s: marking family: %#x from %d:%d offline\n",
3760 __func__, mpb->family_num,
3761 super_table[i]->disks->major,
3762 super_table[i]->disks->minor);
3763 super_table[i] = s;
3764 }
3765
3766 /* This is where the mdadm implementation differs from the Windows
3767 * driver which has no strict concept of a container. We can only
3768 * assemble one family from a container, so when returning a prodigal
3769 * array member to this system the code will not be able to disambiguate
3770 * the container contents that should be assembled ("foreign" versus
3771 * "local"). It requires user intervention to set the orig_family_num
3772 * to a new value to establish a new container. The Windows driver in
3773 * this situation fixes up the volume name in place and manages the
3774 * foreign array as an independent entity.
3775 */
3776 s = NULL;
3777 spare = NULL;
3778 conflict = 0;
3779 for (i = 0; i < tbl_size; i++) {
3780 struct intel_super *tbl_ent = super_table[i];
3781 int is_spare = 0;
3782
3783 if (!tbl_ent)
3784 continue;
3785
3786 if (tbl_ent->anchor->num_raid_devs == 0) {
3787 spare = tbl_ent;
3788 is_spare = 1;
3789 }
3790
3791 if (s && !is_spare) {
3792 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3793 conflict++;
3794 } else if (!s && !is_spare)
3795 s = tbl_ent;
3796 }
3797
3798 if (!s)
3799 s = spare;
3800 if (!s) {
3801 champion = NULL;
3802 goto out;
3803 }
3804 champion = s;
3805
3806 if (conflict)
3807 fprintf(stderr, "Chose family %#x on '%s', "
3808 "assemble conflicts to new container with '--update=uuid'\n",
3809 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3810
3811 /* collect all dl's onto 'champion', and update them to
3812 * champion's version of the status
3813 */
3814 for (s = *super_list; s; s = s->next) {
3815 struct imsm_super *mpb = champion->anchor;
3816 struct dl *dl = s->disks;
3817
3818 if (s == champion)
3819 continue;
3820
3821 for (i = 0; i < mpb->num_disks; i++) {
3822 struct imsm_disk *disk;
3823
3824 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3825 if (disk) {
3826 dl->disk = *disk;
3827 /* only set index on disks that are a member of
3828 * a populated contianer, i.e. one with
3829 * raid_devs
3830 */
3831 if (is_failed(&dl->disk))
3832 dl->index = -2;
3833 else if (is_spare(&dl->disk))
3834 dl->index = -1;
3835 break;
3836 }
3837 }
3838
3839 if (i >= mpb->num_disks) {
3840 struct intel_disk *idisk;
3841
3842 idisk = disk_list_get(dl->serial, disk_list);
3843 if (idisk && is_spare(&idisk->disk) &&
3844 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3845 dl->index = -1;
3846 else {
3847 dl->index = -2;
3848 continue;
3849 }
3850 }
3851
3852 dl->next = champion->disks;
3853 champion->disks = dl;
3854 s->disks = NULL;
3855 }
3856
3857 /* delete 'champion' from super_list */
3858 for (del = super_list; *del; ) {
3859 if (*del == champion) {
3860 *del = (*del)->next;
3861 break;
3862 } else
3863 del = &(*del)->next;
3864 }
3865 champion->next = NULL;
3866
3867 out:
3868 while (disk_list) {
3869 struct intel_disk *idisk = disk_list;
3870
3871 disk_list = disk_list->next;
3872 free(idisk);
3873 }
3874
3875 return champion;
3876 }
3877
3878 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3879 char *devname)
3880 {
3881 struct mdinfo *sra;
3882 struct intel_super *super_list = NULL;
3883 struct intel_super *super = NULL;
3884 int devnum = fd2devnum(fd);
3885 struct mdinfo *sd;
3886 int retry;
3887 int err = 0;
3888 int i;
3889
3890 /* check if 'fd' an opened container */
3891 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3892 if (!sra)
3893 return 1;
3894
3895 if (sra->array.major_version != -1 ||
3896 sra->array.minor_version != -2 ||
3897 strcmp(sra->text_version, "imsm") != 0) {
3898 err = 1;
3899 goto error;
3900 }
3901 /* load all mpbs */
3902 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3903 struct intel_super *s = alloc_super();
3904 char nm[32];
3905 int dfd;
3906 int rv;
3907
3908 err = 1;
3909 if (!s)
3910 goto error;
3911 s->next = super_list;
3912 super_list = s;
3913
3914 err = 2;
3915 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3916 dfd = dev_open(nm, O_RDWR);
3917 if (dfd < 0)
3918 goto error;
3919
3920 rv = find_intel_hba_capability(dfd, s, devname);
3921 /* no orom/efi or non-intel hba of the disk */
3922 if (rv != 0)
3923 goto error;
3924
3925 err = load_and_parse_mpb(dfd, s, NULL, 1);
3926
3927 /* retry the load if we might have raced against mdmon */
3928 if (err == 3 && mdmon_running(devnum))
3929 for (retry = 0; retry < 3; retry++) {
3930 usleep(3000);
3931 err = load_and_parse_mpb(dfd, s, NULL, 1);
3932 if (err != 3)
3933 break;
3934 }
3935 if (err)
3936 goto error;
3937 }
3938
3939 /* all mpbs enter, maybe one leaves */
3940 super = imsm_thunderdome(&super_list, i);
3941 if (!super) {
3942 err = 1;
3943 goto error;
3944 }
3945
3946 if (find_missing(super) != 0) {
3947 free_imsm(super);
3948 err = 2;
3949 goto error;
3950 }
3951
3952 /* load migration record */
3953 err = load_imsm_migr_rec(super, NULL);
3954 if (err) {
3955 err = 4;
3956 goto error;
3957 }
3958
3959 /* Check migration compatibility */
3960 if (check_mpb_migr_compatibility(super) != 0) {
3961 fprintf(stderr, Name ": Unsupported migration detected");
3962 if (devname)
3963 fprintf(stderr, " on %s\n", devname);
3964 else
3965 fprintf(stderr, " (IMSM).\n");
3966
3967 err = 5;
3968 goto error;
3969 }
3970
3971 err = 0;
3972
3973 error:
3974 while (super_list) {
3975 struct intel_super *s = super_list;
3976
3977 super_list = super_list->next;
3978 free_imsm(s);
3979 }
3980 sysfs_free(sra);
3981
3982 if (err)
3983 return err;
3984
3985 *sbp = super;
3986 st->container_dev = devnum;
3987 if (err == 0 && st->ss == NULL) {
3988 st->ss = &super_imsm;
3989 st->minor_version = 0;
3990 st->max_devs = IMSM_MAX_DEVICES;
3991 }
3992 return 0;
3993 }
3994
3995 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3996 {
3997 return load_super_imsm_all(st, fd, &st->sb, devname);
3998 }
3999 #endif
4000
4001 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4002 {
4003 struct intel_super *super;
4004 int rv;
4005
4006 if (test_partition(fd))
4007 /* IMSM not allowed on partitions */
4008 return 1;
4009
4010 free_super_imsm(st);
4011
4012 super = alloc_super();
4013 if (!super) {
4014 fprintf(stderr,
4015 Name ": malloc of %zu failed.\n",
4016 sizeof(*super));
4017 return 1;
4018 }
4019 /* Load hba and capabilities if they exist.
4020 * But do not preclude loading metadata in case capabilities or hba are
4021 * non-compliant and ignore_hw_compat is set.
4022 */
4023 rv = find_intel_hba_capability(fd, super, devname);
4024 /* no orom/efi or non-intel hba of the disk */
4025 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4026 if (devname)
4027 fprintf(stderr,
4028 Name ": No OROM/EFI properties for %s\n", devname);
4029 free_imsm(super);
4030 return 2;
4031 }
4032 rv = load_and_parse_mpb(fd, super, devname, 0);
4033
4034 if (rv) {
4035 if (devname)
4036 fprintf(stderr,
4037 Name ": Failed to load all information "
4038 "sections on %s\n", devname);
4039 free_imsm(super);
4040 return rv;
4041 }
4042
4043 st->sb = super;
4044 if (st->ss == NULL) {
4045 st->ss = &super_imsm;
4046 st->minor_version = 0;
4047 st->max_devs = IMSM_MAX_DEVICES;
4048 }
4049
4050 /* load migration record */
4051 if (load_imsm_migr_rec(super, NULL) == 0) {
4052 /* Check for unsupported migration features */
4053 if (check_mpb_migr_compatibility(super) != 0) {
4054 fprintf(stderr,
4055 Name ": Unsupported migration detected");
4056 if (devname)
4057 fprintf(stderr, " on %s\n", devname);
4058 else
4059 fprintf(stderr, " (IMSM).\n");
4060 return 3;
4061 }
4062 }
4063
4064 return 0;
4065 }
4066
4067 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4068 {
4069 if (info->level == 1)
4070 return 128;
4071 return info->chunk_size >> 9;
4072 }
4073
4074 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4075 {
4076 __u32 num_stripes;
4077
4078 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4079 num_stripes /= num_domains;
4080
4081 return num_stripes;
4082 }
4083
4084 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4085 {
4086 if (info->level == 1)
4087 return info->size * 2;
4088 else
4089 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4090 }
4091
4092 static void imsm_update_version_info(struct intel_super *super)
4093 {
4094 /* update the version and attributes */
4095 struct imsm_super *mpb = super->anchor;
4096 char *version;
4097 struct imsm_dev *dev;
4098 struct imsm_map *map;
4099 int i;
4100
4101 for (i = 0; i < mpb->num_raid_devs; i++) {
4102 dev = get_imsm_dev(super, i);
4103 map = get_imsm_map(dev, 0);
4104 if (__le32_to_cpu(dev->size_high) > 0)
4105 mpb->attributes |= MPB_ATTRIB_2TB;
4106
4107 /* FIXME detect when an array spans a port multiplier */
4108 #if 0
4109 mpb->attributes |= MPB_ATTRIB_PM;
4110 #endif
4111
4112 if (mpb->num_raid_devs > 1 ||
4113 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4114 version = MPB_VERSION_ATTRIBS;
4115 switch (get_imsm_raid_level(map)) {
4116 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4117 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4118 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4119 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4120 }
4121 } else {
4122 if (map->num_members >= 5)
4123 version = MPB_VERSION_5OR6_DISK_ARRAY;
4124 else if (dev->status == DEV_CLONE_N_GO)
4125 version = MPB_VERSION_CNG;
4126 else if (get_imsm_raid_level(map) == 5)
4127 version = MPB_VERSION_RAID5;
4128 else if (map->num_members >= 3)
4129 version = MPB_VERSION_3OR4_DISK_ARRAY;
4130 else if (get_imsm_raid_level(map) == 1)
4131 version = MPB_VERSION_RAID1;
4132 else
4133 version = MPB_VERSION_RAID0;
4134 }
4135 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4136 }
4137 }
4138
4139 static int check_name(struct intel_super *super, char *name, int quiet)
4140 {
4141 struct imsm_super *mpb = super->anchor;
4142 char *reason = NULL;
4143 int i;
4144
4145 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4146 reason = "must be 16 characters or less";
4147
4148 for (i = 0; i < mpb->num_raid_devs; i++) {
4149 struct imsm_dev *dev = get_imsm_dev(super, i);
4150
4151 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4152 reason = "already exists";
4153 break;
4154 }
4155 }
4156
4157 if (reason && !quiet)
4158 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4159
4160 return !reason;
4161 }
4162
4163 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4164 unsigned long long size, char *name,
4165 char *homehost, int *uuid)
4166 {
4167 /* We are creating a volume inside a pre-existing container.
4168 * so st->sb is already set.
4169 */
4170 struct intel_super *super = st->sb;
4171 struct imsm_super *mpb = super->anchor;
4172 struct intel_dev *dv;
4173 struct imsm_dev *dev;
4174 struct imsm_vol *vol;
4175 struct imsm_map *map;
4176 int idx = mpb->num_raid_devs;
4177 int i;
4178 unsigned long long array_blocks;
4179 size_t size_old, size_new;
4180 __u32 num_data_stripes;
4181
4182 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4183 fprintf(stderr, Name": This imsm-container already has the "
4184 "maximum of %d volumes\n", super->orom->vpa);
4185 return 0;
4186 }
4187
4188 /* ensure the mpb is large enough for the new data */
4189 size_old = __le32_to_cpu(mpb->mpb_size);
4190 size_new = disks_to_mpb_size(info->nr_disks);
4191 if (size_new > size_old) {
4192 void *mpb_new;
4193 size_t size_round = ROUND_UP(size_new, 512);
4194
4195 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4196 fprintf(stderr, Name": could not allocate new mpb\n");
4197 return 0;
4198 }
4199 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4200 fprintf(stderr, Name
4201 ": %s could not allocate migr_rec buffer\n",
4202 __func__);
4203 free(super->buf);
4204 free(super);
4205 free(mpb_new);
4206 return 0;
4207 }
4208 memcpy(mpb_new, mpb, size_old);
4209 free(mpb);
4210 mpb = mpb_new;
4211 super->anchor = mpb_new;
4212 mpb->mpb_size = __cpu_to_le32(size_new);
4213 memset(mpb_new + size_old, 0, size_round - size_old);
4214 }
4215 super->current_vol = idx;
4216
4217 /* handle 'failed_disks' by either:
4218 * a) create dummy disk entries in the table if this the first
4219 * volume in the array. We add them here as this is the only
4220 * opportunity to add them. add_to_super_imsm_volume()
4221 * handles the non-failed disks and continues incrementing
4222 * mpb->num_disks.
4223 * b) validate that 'failed_disks' matches the current number
4224 * of missing disks if the container is populated
4225 */
4226 if (super->current_vol == 0) {
4227 mpb->num_disks = 0;
4228 for (i = 0; i < info->failed_disks; i++) {
4229 struct imsm_disk *disk;
4230
4231 mpb->num_disks++;
4232 disk = __get_imsm_disk(mpb, i);
4233 disk->status = CONFIGURED_DISK | FAILED_DISK;
4234 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4235 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4236 "missing:%d", i);
4237 }
4238 find_missing(super);
4239 } else {
4240 int missing = 0;
4241 struct dl *d;
4242
4243 for (d = super->missing; d; d = d->next)
4244 missing++;
4245 if (info->failed_disks > missing) {
4246 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4247 return 0;
4248 }
4249 }
4250
4251 if (!check_name(super, name, 0))
4252 return 0;
4253 dv = malloc(sizeof(*dv));
4254 if (!dv) {
4255 fprintf(stderr, Name ": failed to allocate device list entry\n");
4256 return 0;
4257 }
4258 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4259 if (!dev) {
4260 free(dv);
4261 fprintf(stderr, Name": could not allocate raid device\n");
4262 return 0;
4263 }
4264
4265 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4266 if (info->level == 1)
4267 array_blocks = info_to_blocks_per_member(info);
4268 else
4269 array_blocks = calc_array_size(info->level, info->raid_disks,
4270 info->layout, info->chunk_size,
4271 info->size*2);
4272 /* round array size down to closest MB */
4273 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4274
4275 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4276 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4277 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4278 vol = &dev->vol;
4279 vol->migr_state = 0;
4280 set_migr_type(dev, MIGR_INIT);
4281 vol->dirty = !info->state;
4282 vol->curr_migr_unit = 0;
4283 map = get_imsm_map(dev, 0);
4284 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4285 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4286 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4287 map->failed_disk_num = ~0;
4288 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
4289 map->ddf = 1;
4290
4291 if (info->level == 1 && info->raid_disks > 2) {
4292 free(dev);
4293 free(dv);
4294 fprintf(stderr, Name": imsm does not support more than 2 disks"
4295 "in a raid1 volume\n");
4296 return 0;
4297 }
4298
4299 map->raid_level = info->level;
4300 if (info->level == 10) {
4301 map->raid_level = 1;
4302 map->num_domains = info->raid_disks / 2;
4303 } else if (info->level == 1)
4304 map->num_domains = info->raid_disks;
4305 else
4306 map->num_domains = 1;
4307
4308 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4309 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4310
4311 map->num_members = info->raid_disks;
4312 for (i = 0; i < map->num_members; i++) {
4313 /* initialized in add_to_super */
4314 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4315 }
4316 mpb->num_raid_devs++;
4317
4318 dv->dev = dev;
4319 dv->index = super->current_vol;
4320 dv->next = super->devlist;
4321 super->devlist = dv;
4322
4323 imsm_update_version_info(super);
4324
4325 return 1;
4326 }
4327
4328 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4329 unsigned long long size, char *name,
4330 char *homehost, int *uuid)
4331 {
4332 /* This is primarily called by Create when creating a new array.
4333 * We will then get add_to_super called for each component, and then
4334 * write_init_super called to write it out to each device.
4335 * For IMSM, Create can create on fresh devices or on a pre-existing
4336 * array.
4337 * To create on a pre-existing array a different method will be called.
4338 * This one is just for fresh drives.
4339 */
4340 struct intel_super *super;
4341 struct imsm_super *mpb;
4342 size_t mpb_size;
4343 char *version;
4344
4345 if (st->sb)
4346 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4347
4348 if (info)
4349 mpb_size = disks_to_mpb_size(info->nr_disks);
4350 else
4351 mpb_size = 512;
4352
4353 super = alloc_super();
4354 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4355 free(super);
4356 super = NULL;
4357 }
4358 if (!super) {
4359 fprintf(stderr, Name
4360 ": %s could not allocate superblock\n", __func__);
4361 return 0;
4362 }
4363 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4364 fprintf(stderr, Name
4365 ": %s could not allocate migr_rec buffer\n", __func__);
4366 free(super->buf);
4367 free(super);
4368 return 0;
4369 }
4370 memset(super->buf, 0, mpb_size);
4371 mpb = super->buf;
4372 mpb->mpb_size = __cpu_to_le32(mpb_size);
4373 st->sb = super;
4374
4375 if (info == NULL) {
4376 /* zeroing superblock */
4377 return 0;
4378 }
4379
4380 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4381
4382 version = (char *) mpb->sig;
4383 strcpy(version, MPB_SIGNATURE);
4384 version += strlen(MPB_SIGNATURE);
4385 strcpy(version, MPB_VERSION_RAID0);
4386
4387 return 1;
4388 }
4389
4390 #ifndef MDASSEMBLE
4391 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4392 int fd, char *devname)
4393 {
4394 struct intel_super *super = st->sb;
4395 struct imsm_super *mpb = super->anchor;
4396 struct imsm_disk *_disk;
4397 struct imsm_dev *dev;
4398 struct imsm_map *map;
4399 struct dl *dl, *df;
4400 int slot;
4401
4402 dev = get_imsm_dev(super, super->current_vol);
4403 map = get_imsm_map(dev, 0);
4404
4405 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4406 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4407 devname);
4408 return 1;
4409 }
4410
4411 if (fd == -1) {
4412 /* we're doing autolayout so grab the pre-marked (in
4413 * validate_geometry) raid_disk
4414 */
4415 for (dl = super->disks; dl; dl = dl->next)
4416 if (dl->raiddisk == dk->raid_disk)
4417 break;
4418 } else {
4419 for (dl = super->disks; dl ; dl = dl->next)
4420 if (dl->major == dk->major &&
4421 dl->minor == dk->minor)
4422 break;
4423 }
4424
4425 if (!dl) {
4426 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4427 return 1;
4428 }
4429
4430 /* add a pristine spare to the metadata */
4431 if (dl->index < 0) {
4432 dl->index = super->anchor->num_disks;
4433 super->anchor->num_disks++;
4434 }
4435 /* Check the device has not already been added */
4436 slot = get_imsm_disk_slot(map, dl->index);
4437 if (slot >= 0 &&
4438 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4439 fprintf(stderr, Name ": %s has been included in this array twice\n",
4440 devname);
4441 return 1;
4442 }
4443 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4444 dl->disk.status = CONFIGURED_DISK;
4445
4446 /* update size of 'missing' disks to be at least as large as the
4447 * largest acitve member (we only have dummy missing disks when
4448 * creating the first volume)
4449 */
4450 if (super->current_vol == 0) {
4451 for (df = super->missing; df; df = df->next) {
4452 if (dl->disk.total_blocks > df->disk.total_blocks)
4453 df->disk.total_blocks = dl->disk.total_blocks;
4454 _disk = __get_imsm_disk(mpb, df->index);
4455 *_disk = df->disk;
4456 }
4457 }
4458
4459 /* refresh unset/failed slots to point to valid 'missing' entries */
4460 for (df = super->missing; df; df = df->next)
4461 for (slot = 0; slot < mpb->num_disks; slot++) {
4462 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4463
4464 if ((ord & IMSM_ORD_REBUILD) == 0)
4465 continue;
4466 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4467 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4468 break;
4469 }
4470
4471 /* if we are creating the first raid device update the family number */
4472 if (super->current_vol == 0) {
4473 __u32 sum;
4474 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4475
4476 _disk = __get_imsm_disk(mpb, dl->index);
4477 if (!_dev || !_disk) {
4478 fprintf(stderr, Name ": BUG mpb setup error\n");
4479 return 1;
4480 }
4481 *_dev = *dev;
4482 *_disk = dl->disk;
4483 sum = random32();
4484 sum += __gen_imsm_checksum(mpb);
4485 mpb->family_num = __cpu_to_le32(sum);
4486 mpb->orig_family_num = mpb->family_num;
4487 }
4488 super->current_disk = dl;
4489 return 0;
4490 }
4491
4492 /* mark_spare()
4493 * Function marks disk as spare and restores disk serial
4494 * in case it was previously marked as failed by takeover operation
4495 * reruns:
4496 * -1 : critical error
4497 * 0 : disk is marked as spare but serial is not set
4498 * 1 : success
4499 */
4500 int mark_spare(struct dl *disk)
4501 {
4502 __u8 serial[MAX_RAID_SERIAL_LEN];
4503 int ret_val = -1;
4504
4505 if (!disk)
4506 return ret_val;
4507
4508 ret_val = 0;
4509 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4510 /* Restore disk serial number, because takeover marks disk
4511 * as failed and adds to serial ':0' before it becomes
4512 * a spare disk.
4513 */
4514 serialcpy(disk->serial, serial);
4515 serialcpy(disk->disk.serial, serial);
4516 ret_val = 1;
4517 }
4518 disk->disk.status = SPARE_DISK;
4519 disk->index = -1;
4520
4521 return ret_val;
4522 }
4523
4524 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4525 int fd, char *devname)
4526 {
4527 struct intel_super *super = st->sb;
4528 struct dl *dd;
4529 unsigned long long size;
4530 __u32 id;
4531 int rv;
4532 struct stat stb;
4533
4534 /* If we are on an RAID enabled platform check that the disk is
4535 * attached to the raid controller.
4536 * We do not need to test disks attachment for container based additions,
4537 * they shall be already tested when container was created/assembled.
4538 */
4539 rv = find_intel_hba_capability(fd, super, devname);
4540 /* no orom/efi or non-intel hba of the disk */
4541 if (rv != 0) {
4542 dprintf("capability: %p fd: %d ret: %d\n",
4543 super->orom, fd, rv);
4544 return 1;
4545 }
4546
4547 if (super->current_vol >= 0)
4548 return add_to_super_imsm_volume(st, dk, fd, devname);
4549
4550 fstat(fd, &stb);
4551 dd = malloc(sizeof(*dd));
4552 if (!dd) {
4553 fprintf(stderr,
4554 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4555 return 1;
4556 }
4557 memset(dd, 0, sizeof(*dd));
4558 dd->major = major(stb.st_rdev);
4559 dd->minor = minor(stb.st_rdev);
4560 dd->devname = devname ? strdup(devname) : NULL;
4561 dd->fd = fd;
4562 dd->e = NULL;
4563 dd->action = DISK_ADD;
4564 rv = imsm_read_serial(fd, devname, dd->serial);
4565 if (rv) {
4566 fprintf(stderr,
4567 Name ": failed to retrieve scsi serial, aborting\n");
4568 free(dd);
4569 abort();
4570 }
4571
4572 get_dev_size(fd, NULL, &size);
4573 size /= 512;
4574 serialcpy(dd->disk.serial, dd->serial);
4575 dd->disk.total_blocks = __cpu_to_le32(size);
4576 mark_spare(dd);
4577 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4578 dd->disk.scsi_id = __cpu_to_le32(id);
4579 else
4580 dd->disk.scsi_id = __cpu_to_le32(0);
4581
4582 if (st->update_tail) {
4583 dd->next = super->disk_mgmt_list;
4584 super->disk_mgmt_list = dd;
4585 } else {
4586 dd->next = super->disks;
4587 super->disks = dd;
4588 super->updates_pending++;
4589 }
4590
4591 return 0;
4592 }
4593
4594
4595 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4596 {
4597 struct intel_super *super = st->sb;
4598 struct dl *dd;
4599
4600 /* remove from super works only in mdmon - for communication
4601 * manager - monitor. Check if communication memory buffer
4602 * is prepared.
4603 */
4604 if (!st->update_tail) {
4605 fprintf(stderr,
4606 Name ": %s shall be used in mdmon context only"
4607 "(line %d).\n", __func__, __LINE__);
4608 return 1;
4609 }
4610 dd = malloc(sizeof(*dd));
4611 if (!dd) {
4612 fprintf(stderr,
4613 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4614 return 1;
4615 }
4616 memset(dd, 0, sizeof(*dd));
4617 dd->major = dk->major;
4618 dd->minor = dk->minor;
4619 dd->fd = -1;
4620 mark_spare(dd);
4621 dd->action = DISK_REMOVE;
4622
4623 dd->next = super->disk_mgmt_list;
4624 super->disk_mgmt_list = dd;
4625
4626
4627 return 0;
4628 }
4629
4630 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4631
4632 static union {
4633 char buf[512];
4634 struct imsm_super anchor;
4635 } spare_record __attribute__ ((aligned(512)));
4636
4637 /* spare records have their own family number and do not have any defined raid
4638 * devices
4639 */
4640 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4641 {
4642 struct imsm_super *mpb = super->anchor;
4643 struct imsm_super *spare = &spare_record.anchor;
4644 __u32 sum;
4645 struct dl *d;
4646
4647 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4648 spare->generation_num = __cpu_to_le32(1UL),
4649 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4650 spare->num_disks = 1,
4651 spare->num_raid_devs = 0,
4652 spare->cache_size = mpb->cache_size,
4653 spare->pwr_cycle_count = __cpu_to_le32(1),
4654
4655 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4656 MPB_SIGNATURE MPB_VERSION_RAID0);
4657
4658 for (d = super->disks; d; d = d->next) {
4659 if (d->index != -1)
4660 continue;
4661
4662 spare->disk[0] = d->disk;
4663 sum = __gen_imsm_checksum(spare);
4664 spare->family_num = __cpu_to_le32(sum);
4665 spare->orig_family_num = 0;
4666 sum = __gen_imsm_checksum(spare);
4667 spare->check_sum = __cpu_to_le32(sum);
4668
4669 if (store_imsm_mpb(d->fd, spare)) {
4670 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4671 __func__, d->major, d->minor, strerror(errno));
4672 return 1;
4673 }
4674 if (doclose) {
4675 close(d->fd);
4676 d->fd = -1;
4677 }
4678 }
4679
4680 return 0;
4681 }
4682
4683 static int write_super_imsm(struct supertype *st, int doclose)
4684 {
4685 struct intel_super *super = st->sb;
4686 struct imsm_super *mpb = super->anchor;
4687 struct dl *d;
4688 __u32 generation;
4689 __u32 sum;
4690 int spares = 0;
4691 int i;
4692 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4693 int num_disks = 0;
4694 int clear_migration_record = 1;
4695
4696 /* 'generation' is incremented everytime the metadata is written */
4697 generation = __le32_to_cpu(mpb->generation_num);
4698 generation++;
4699 mpb->generation_num = __cpu_to_le32(generation);
4700
4701 /* fix up cases where previous mdadm releases failed to set
4702 * orig_family_num
4703 */
4704 if (mpb->orig_family_num == 0)
4705 mpb->orig_family_num = mpb->family_num;
4706
4707 for (d = super->disks; d; d = d->next) {
4708 if (d->index == -1)
4709 spares++;
4710 else {
4711 mpb->disk[d->index] = d->disk;
4712 num_disks++;
4713 }
4714 }
4715 for (d = super->missing; d; d = d->next) {
4716 mpb->disk[d->index] = d->disk;
4717 num_disks++;
4718 }
4719 mpb->num_disks = num_disks;
4720 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4721
4722 for (i = 0; i < mpb->num_raid_devs; i++) {
4723 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4724 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4725 if (dev && dev2) {
4726 imsm_copy_dev(dev, dev2);
4727 mpb_size += sizeof_imsm_dev(dev, 0);
4728 }
4729 if (is_gen_migration(dev2))
4730 clear_migration_record = 0;
4731 }
4732 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4733 mpb->mpb_size = __cpu_to_le32(mpb_size);
4734
4735 /* recalculate checksum */
4736 sum = __gen_imsm_checksum(mpb);
4737 mpb->check_sum = __cpu_to_le32(sum);
4738
4739 if (clear_migration_record)
4740 memset(super->migr_rec_buf, 0, 512);
4741
4742 /* write the mpb for disks that compose raid devices */
4743 for (d = super->disks; d ; d = d->next) {
4744 if (d->index < 0 || is_failed(&d->disk))
4745 continue;
4746 if (store_imsm_mpb(d->fd, mpb))
4747 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4748 __func__, d->major, d->minor, strerror(errno));
4749 if (clear_migration_record) {
4750 unsigned long long dsize;
4751
4752 get_dev_size(d->fd, NULL, &dsize);
4753 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4754 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4755 perror("Write migr_rec failed");
4756 }
4757 }
4758 if (doclose) {
4759 close(d->fd);
4760 d->fd = -1;
4761 }
4762 }
4763
4764 if (spares)
4765 return write_super_imsm_spares(super, doclose);
4766
4767 return 0;
4768 }
4769
4770
4771 static int create_array(struct supertype *st, int dev_idx)
4772 {
4773 size_t len;
4774 struct imsm_update_create_array *u;
4775 struct intel_super *super = st->sb;
4776 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4777 struct imsm_map *map = get_imsm_map(dev, 0);
4778 struct disk_info *inf;
4779 struct imsm_disk *disk;
4780 int i;
4781
4782 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4783 sizeof(*inf) * map->num_members;
4784 u = malloc(len);
4785 if (!u) {
4786 fprintf(stderr, "%s: failed to allocate update buffer\n",
4787 __func__);
4788 return 1;
4789 }
4790
4791 u->type = update_create_array;
4792 u->dev_idx = dev_idx;
4793 imsm_copy_dev(&u->dev, dev);
4794 inf = get_disk_info(u);
4795 for (i = 0; i < map->num_members; i++) {
4796 int idx = get_imsm_disk_idx(dev, i, -1);
4797
4798 disk = get_imsm_disk(super, idx);
4799 serialcpy(inf[i].serial, disk->serial);
4800 }
4801 append_metadata_update(st, u, len);
4802
4803 return 0;
4804 }
4805
4806 static int mgmt_disk(struct supertype *st)
4807 {
4808 struct intel_super *super = st->sb;
4809 size_t len;
4810 struct imsm_update_add_remove_disk *u;
4811
4812 if (!super->disk_mgmt_list)
4813 return 0;
4814
4815 len = sizeof(*u);
4816 u = malloc(len);
4817 if (!u) {
4818 fprintf(stderr, "%s: failed to allocate update buffer\n",
4819 __func__);
4820 return 1;
4821 }
4822
4823 u->type = update_add_remove_disk;
4824 append_metadata_update(st, u, len);
4825
4826 return 0;
4827 }
4828
4829 static int write_init_super_imsm(struct supertype *st)
4830 {
4831 struct intel_super *super = st->sb;
4832 int current_vol = super->current_vol;
4833
4834 /* we are done with current_vol reset it to point st at the container */
4835 super->current_vol = -1;
4836
4837 if (st->update_tail) {
4838 /* queue the recently created array / added disk
4839 * as a metadata update */
4840 int rv;
4841
4842 /* determine if we are creating a volume or adding a disk */
4843 if (current_vol < 0) {
4844 /* in the mgmt (add/remove) disk case we are running
4845 * in mdmon context, so don't close fd's
4846 */
4847 return mgmt_disk(st);
4848 } else
4849 rv = create_array(st, current_vol);
4850
4851 return rv;
4852 } else {
4853 struct dl *d;
4854 for (d = super->disks; d; d = d->next)
4855 Kill(d->devname, NULL, 0, 1, 1);
4856 return write_super_imsm(st, 1);
4857 }
4858 }
4859 #endif
4860
4861 static int store_super_imsm(struct supertype *st, int fd)
4862 {
4863 struct intel_super *super = st->sb;
4864 struct imsm_super *mpb = super ? super->anchor : NULL;
4865
4866 if (!mpb)
4867 return 1;
4868
4869 #ifndef MDASSEMBLE
4870 return store_imsm_mpb(fd, mpb);
4871 #else
4872 return 1;
4873 #endif
4874 }
4875
4876 static int imsm_bbm_log_size(struct imsm_super *mpb)
4877 {
4878 return __le32_to_cpu(mpb->bbm_log_size);
4879 }
4880
4881 #ifndef MDASSEMBLE
4882 static int validate_geometry_imsm_container(struct supertype *st, int level,
4883 int layout, int raiddisks, int chunk,
4884 unsigned long long size, char *dev,
4885 unsigned long long *freesize,
4886 int verbose)
4887 {
4888 int fd;
4889 unsigned long long ldsize;
4890 struct intel_super *super=NULL;
4891 int rv = 0;
4892
4893 if (level != LEVEL_CONTAINER)
4894 return 0;
4895 if (!dev)
4896 return 1;
4897
4898 fd = open(dev, O_RDONLY|O_EXCL, 0);
4899 if (fd < 0) {
4900 if (verbose)
4901 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4902 dev, strerror(errno));
4903 return 0;
4904 }
4905 if (!get_dev_size(fd, dev, &ldsize)) {
4906 close(fd);
4907 return 0;
4908 }
4909
4910 /* capabilities retrieve could be possible
4911 * note that there is no fd for the disks in array.
4912 */
4913 super = alloc_super();
4914 if (!super) {
4915 fprintf(stderr,
4916 Name ": malloc of %zu failed.\n",
4917 sizeof(*super));
4918 close(fd);
4919 return 0;
4920 }
4921
4922 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4923 if (rv != 0) {
4924 #if DEBUG
4925 char str[256];
4926 fd2devname(fd, str);
4927 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4928 fd, str, super->orom, rv, raiddisks);
4929 #endif
4930 /* no orom/efi or non-intel hba of the disk */
4931 close(fd);
4932 free_imsm(super);
4933 return 0;
4934 }
4935 close(fd);
4936 if (super->orom && raiddisks > super->orom->tds) {
4937 if (verbose)
4938 fprintf(stderr, Name ": %d exceeds maximum number of"
4939 " platform supported disks: %d\n",
4940 raiddisks, super->orom->tds);
4941
4942 free_imsm(super);
4943 return 0;
4944 }
4945
4946 *freesize = avail_size_imsm(st, ldsize >> 9);
4947 free_imsm(super);
4948
4949 return 1;
4950 }
4951
4952 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4953 {
4954 const unsigned long long base_start = e[*idx].start;
4955 unsigned long long end = base_start + e[*idx].size;
4956 int i;
4957
4958 if (base_start == end)
4959 return 0;
4960
4961 *idx = *idx + 1;
4962 for (i = *idx; i < num_extents; i++) {
4963 /* extend overlapping extents */
4964 if (e[i].start >= base_start &&
4965 e[i].start <= end) {
4966 if (e[i].size == 0)
4967 return 0;
4968 if (e[i].start + e[i].size > end)
4969 end = e[i].start + e[i].size;
4970 } else if (e[i].start > end) {
4971 *idx = i;
4972 break;
4973 }
4974 }
4975
4976 return end - base_start;
4977 }
4978
4979 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4980 {
4981 /* build a composite disk with all known extents and generate a new
4982 * 'maxsize' given the "all disks in an array must share a common start
4983 * offset" constraint
4984 */
4985 struct extent *e = calloc(sum_extents, sizeof(*e));
4986 struct dl *dl;
4987 int i, j;
4988 int start_extent;
4989 unsigned long long pos;
4990 unsigned long long start = 0;
4991 unsigned long long maxsize;
4992 unsigned long reserve;
4993
4994 if (!e)
4995 return 0;
4996
4997 /* coalesce and sort all extents. also, check to see if we need to
4998 * reserve space between member arrays
4999 */
5000 j = 0;
5001 for (dl = super->disks; dl; dl = dl->next) {
5002 if (!dl->e)
5003 continue;
5004 for (i = 0; i < dl->extent_cnt; i++)
5005 e[j++] = dl->e[i];
5006 }
5007 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5008
5009 /* merge extents */
5010 i = 0;
5011 j = 0;
5012 while (i < sum_extents) {
5013 e[j].start = e[i].start;
5014 e[j].size = find_size(e, &i, sum_extents);
5015 j++;
5016 if (e[j-1].size == 0)
5017 break;
5018 }
5019
5020 pos = 0;
5021 maxsize = 0;
5022 start_extent = 0;
5023 i = 0;
5024 do {
5025 unsigned long long esize;
5026
5027 esize = e[i].start - pos;
5028 if (esize >= maxsize) {
5029 maxsize = esize;
5030 start = pos;
5031 start_extent = i;
5032 }
5033 pos = e[i].start + e[i].size;
5034 i++;
5035 } while (e[i-1].size);
5036 free(e);
5037
5038 if (maxsize == 0)
5039 return 0;
5040
5041 /* FIXME assumes volume at offset 0 is the first volume in a
5042 * container
5043 */
5044 if (start_extent > 0)
5045 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5046 else
5047 reserve = 0;
5048
5049 if (maxsize < reserve)
5050 return 0;
5051
5052 super->create_offset = ~((__u32) 0);
5053 if (start + reserve > super->create_offset)
5054 return 0; /* start overflows create_offset */
5055 super->create_offset = start + reserve;
5056
5057 return maxsize - reserve;
5058 }
5059
5060 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5061 {
5062 if (level < 0 || level == 6 || level == 4)
5063 return 0;
5064
5065 /* if we have an orom prevent invalid raid levels */
5066 if (orom)
5067 switch (level) {
5068 case 0: return imsm_orom_has_raid0(orom);
5069 case 1:
5070 if (raiddisks > 2)
5071 return imsm_orom_has_raid1e(orom);
5072 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5073 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5074 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5075 }
5076 else
5077 return 1; /* not on an Intel RAID platform so anything goes */
5078
5079 return 0;
5080 }
5081
5082 static int imsm_default_chunk(const struct imsm_orom *orom)
5083 {
5084 /* up to 512 if the plaform supports it, otherwise the platform max.
5085 * 128 if no platform detected
5086 */
5087 int fs = max(7, orom ? fls(orom->sss) : 0);
5088
5089 return min(512, (1 << fs));
5090 }
5091
5092 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5093 static int
5094 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5095 int raiddisks, int *chunk, int verbose)
5096 {
5097 /* check/set platform and metadata limits/defaults */
5098 if (super->orom && raiddisks > super->orom->dpa) {
5099 pr_vrb(": platform supports a maximum of %d disks per array\n",
5100 super->orom->dpa);
5101 return 0;
5102 }
5103
5104 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5105 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5106 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5107 level, raiddisks, raiddisks > 1 ? "s" : "");
5108 return 0;
5109 }
5110
5111 if (chunk && (*chunk == 0 || *chunk == UnSet))
5112 *chunk = imsm_default_chunk(super->orom);
5113
5114 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5115 pr_vrb(": platform does not support a chunk size of: "
5116 "%d\n", *chunk);
5117 return 0;
5118 }
5119
5120 if (layout != imsm_level_to_layout(level)) {
5121 if (level == 5)
5122 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5123 else if (level == 10)
5124 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5125 else
5126 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5127 layout, level);
5128 return 0;
5129 }
5130 return 1;
5131 }
5132
5133 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5134 * FIX ME add ahci details
5135 */
5136 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5137 int layout, int raiddisks, int *chunk,
5138 unsigned long long size, char *dev,
5139 unsigned long long *freesize,
5140 int verbose)
5141 {
5142 struct stat stb;
5143 struct intel_super *super = st->sb;
5144 struct imsm_super *mpb;
5145 struct dl *dl;
5146 unsigned long long pos = 0;
5147 unsigned long long maxsize;
5148 struct extent *e;
5149 int i;
5150
5151 /* We must have the container info already read in. */
5152 if (!super)
5153 return 0;
5154
5155 mpb = super->anchor;
5156
5157 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5158 fprintf(stderr, Name ": the option-rom requires all "
5159 "member disks to be a member of all volumes.\n");
5160 return 0;
5161 }
5162
5163 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5164 fprintf(stderr, Name ": RAID gemetry validation failed. "
5165 "Cannot proceed with the action(s).\n");
5166 return 0;
5167 }
5168 if (!dev) {
5169 /* General test: make sure there is space for
5170 * 'raiddisks' device extents of size 'size' at a given
5171 * offset
5172 */
5173 unsigned long long minsize = size;
5174 unsigned long long start_offset = MaxSector;
5175 int dcnt = 0;
5176 if (minsize == 0)
5177 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5178 for (dl = super->disks; dl ; dl = dl->next) {
5179 int found = 0;
5180
5181 pos = 0;
5182 i = 0;
5183 e = get_extents(super, dl);
5184 if (!e) continue;
5185 do {
5186 unsigned long long esize;
5187 esize = e[i].start - pos;
5188 if (esize >= minsize)
5189 found = 1;
5190 if (found && start_offset == MaxSector) {
5191 start_offset = pos;
5192 break;
5193 } else if (found && pos != start_offset) {
5194 found = 0;
5195 break;
5196 }
5197 pos = e[i].start + e[i].size;
5198 i++;
5199 } while (e[i-1].size);
5200 if (found)
5201 dcnt++;
5202 free(e);
5203 }
5204 if (dcnt < raiddisks) {
5205 if (verbose)
5206 fprintf(stderr, Name ": imsm: Not enough "
5207 "devices with space for this array "
5208 "(%d < %d)\n",
5209 dcnt, raiddisks);
5210 return 0;
5211 }
5212 return 1;
5213 }
5214
5215 /* This device must be a member of the set */
5216 if (stat(dev, &stb) < 0)
5217 return 0;
5218 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5219 return 0;
5220 for (dl = super->disks ; dl ; dl = dl->next) {
5221 if (dl->major == (int)major(stb.st_rdev) &&
5222 dl->minor == (int)minor(stb.st_rdev))
5223 break;
5224 }
5225 if (!dl) {
5226 if (verbose)
5227 fprintf(stderr, Name ": %s is not in the "
5228 "same imsm set\n", dev);
5229 return 0;
5230 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5231 /* If a volume is present then the current creation attempt
5232 * cannot incorporate new spares because the orom may not
5233 * understand this configuration (all member disks must be
5234 * members of each array in the container).
5235 */
5236 fprintf(stderr, Name ": %s is a spare and a volume"
5237 " is already defined for this container\n", dev);
5238 fprintf(stderr, Name ": The option-rom requires all member"
5239 " disks to be a member of all volumes\n");
5240 return 0;
5241 }
5242
5243 /* retrieve the largest free space block */
5244 e = get_extents(super, dl);
5245 maxsize = 0;
5246 i = 0;
5247 if (e) {
5248 do {
5249 unsigned long long esize;
5250
5251 esize = e[i].start - pos;
5252 if (esize >= maxsize)
5253 maxsize = esize;
5254 pos = e[i].start + e[i].size;
5255 i++;
5256 } while (e[i-1].size);
5257 dl->e = e;
5258 dl->extent_cnt = i;
5259 } else {
5260 if (verbose)
5261 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5262 dev);
5263 return 0;
5264 }
5265 if (maxsize < size) {
5266 if (verbose)
5267 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5268 dev, maxsize, size);
5269 return 0;
5270 }
5271
5272 /* count total number of extents for merge */
5273 i = 0;
5274 for (dl = super->disks; dl; dl = dl->next)
5275 if (dl->e)
5276 i += dl->extent_cnt;
5277
5278 maxsize = merge_extents(super, i);
5279 if (maxsize < size || maxsize == 0) {
5280 if (verbose)
5281 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5282 maxsize, size);
5283 return 0;
5284 }
5285
5286 *freesize = maxsize;
5287
5288 return 1;
5289 }
5290
5291 static int reserve_space(struct supertype *st, int raiddisks,
5292 unsigned long long size, int chunk,
5293 unsigned long long *freesize)
5294 {
5295 struct intel_super *super = st->sb;
5296 struct imsm_super *mpb = super->anchor;
5297 struct dl *dl;
5298 int i;
5299 int extent_cnt;
5300 struct extent *e;
5301 unsigned long long maxsize;
5302 unsigned long long minsize;
5303 int cnt;
5304 int used;
5305
5306 /* find the largest common start free region of the possible disks */
5307 used = 0;
5308 extent_cnt = 0;
5309 cnt = 0;
5310 for (dl = super->disks; dl; dl = dl->next) {
5311 dl->raiddisk = -1;
5312
5313 if (dl->index >= 0)
5314 used++;
5315
5316 /* don't activate new spares if we are orom constrained
5317 * and there is already a volume active in the container
5318 */
5319 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5320 continue;
5321
5322 e = get_extents(super, dl);
5323 if (!e)
5324 continue;
5325 for (i = 1; e[i-1].size; i++)
5326 ;
5327 dl->e = e;
5328 dl->extent_cnt = i;
5329 extent_cnt += i;
5330 cnt++;
5331 }
5332
5333 maxsize = merge_extents(super, extent_cnt);
5334 minsize = size;
5335 if (size == 0)
5336 /* chunk is in K */
5337 minsize = chunk * 2;
5338
5339 if (cnt < raiddisks ||
5340 (super->orom && used && used != raiddisks) ||
5341 maxsize < minsize ||
5342 maxsize == 0) {
5343 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5344 return 0; /* No enough free spaces large enough */
5345 }
5346
5347 if (size == 0) {
5348 size = maxsize;
5349 if (chunk) {
5350 size /= 2 * chunk;
5351 size *= 2 * chunk;
5352 }
5353 }
5354
5355 cnt = 0;
5356 for (dl = super->disks; dl; dl = dl->next)
5357 if (dl->e)
5358 dl->raiddisk = cnt++;
5359
5360 *freesize = size;
5361
5362 return 1;
5363 }
5364
5365 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5366 int raiddisks, int *chunk, unsigned long long size,
5367 char *dev, unsigned long long *freesize,
5368 int verbose)
5369 {
5370 int fd, cfd;
5371 struct mdinfo *sra;
5372 int is_member = 0;
5373
5374 /* load capability
5375 * if given unused devices create a container
5376 * if given given devices in a container create a member volume
5377 */
5378 if (level == LEVEL_CONTAINER) {
5379 /* Must be a fresh device to add to a container */
5380 return validate_geometry_imsm_container(st, level, layout,
5381 raiddisks,
5382 chunk?*chunk:0, size,
5383 dev, freesize,
5384 verbose);
5385 }
5386
5387 if (!dev) {
5388 if (st->sb && freesize) {
5389 /* we are being asked to automatically layout a
5390 * new volume based on the current contents of
5391 * the container. If the the parameters can be
5392 * satisfied reserve_space will record the disks,
5393 * start offset, and size of the volume to be
5394 * created. add_to_super and getinfo_super
5395 * detect when autolayout is in progress.
5396 */
5397 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5398 raiddisks, chunk,
5399 verbose))
5400 return 0;
5401 return reserve_space(st, raiddisks, size,
5402 chunk?*chunk:0, freesize);
5403 }
5404 return 1;
5405 }
5406 if (st->sb) {
5407 /* creating in a given container */
5408 return validate_geometry_imsm_volume(st, level, layout,
5409 raiddisks, chunk, size,
5410 dev, freesize, verbose);
5411 }
5412
5413 /* This device needs to be a device in an 'imsm' container */
5414 fd = open(dev, O_RDONLY|O_EXCL, 0);
5415 if (fd >= 0) {
5416 if (verbose)
5417 fprintf(stderr,
5418 Name ": Cannot create this array on device %s\n",
5419 dev);
5420 close(fd);
5421 return 0;
5422 }
5423 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5424 if (verbose)
5425 fprintf(stderr, Name ": Cannot open %s: %s\n",
5426 dev, strerror(errno));
5427 return 0;
5428 }
5429 /* Well, it is in use by someone, maybe an 'imsm' container. */
5430 cfd = open_container(fd);
5431 close(fd);
5432 if (cfd < 0) {
5433 if (verbose)
5434 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5435 dev);
5436 return 0;
5437 }
5438 sra = sysfs_read(cfd, 0, GET_VERSION);
5439 if (sra && sra->array.major_version == -1 &&
5440 strcmp(sra->text_version, "imsm") == 0)
5441 is_member = 1;
5442 sysfs_free(sra);
5443 if (is_member) {
5444 /* This is a member of a imsm container. Load the container
5445 * and try to create a volume
5446 */
5447 struct intel_super *super;
5448
5449 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5450 st->sb = super;
5451 st->container_dev = fd2devnum(cfd);
5452 close(cfd);
5453 return validate_geometry_imsm_volume(st, level, layout,
5454 raiddisks, chunk,
5455 size, dev,
5456 freesize, 1)
5457 ? 1 : -1;
5458 }
5459 }
5460
5461 if (verbose)
5462 fprintf(stderr, Name ": failed container membership check\n");
5463
5464 close(cfd);
5465 return 0;
5466 }
5467
5468 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5469 {
5470 struct intel_super *super = st->sb;
5471
5472 if (level && *level == UnSet)
5473 *level = LEVEL_CONTAINER;
5474
5475 if (level && layout && *layout == UnSet)
5476 *layout = imsm_level_to_layout(*level);
5477
5478 if (chunk && (*chunk == UnSet || *chunk == 0))
5479 *chunk = imsm_default_chunk(super->orom);
5480 }
5481
5482 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5483
5484 static int kill_subarray_imsm(struct supertype *st)
5485 {
5486 /* remove the subarray currently referenced by ->current_vol */
5487 __u8 i;
5488 struct intel_dev **dp;
5489 struct intel_super *super = st->sb;
5490 __u8 current_vol = super->current_vol;
5491 struct imsm_super *mpb = super->anchor;
5492
5493 if (super->current_vol < 0)
5494 return 2;
5495 super->current_vol = -1; /* invalidate subarray cursor */
5496
5497 /* block deletions that would change the uuid of active subarrays
5498 *
5499 * FIXME when immutable ids are available, but note that we'll
5500 * also need to fixup the invalidated/active subarray indexes in
5501 * mdstat
5502 */
5503 for (i = 0; i < mpb->num_raid_devs; i++) {
5504 char subarray[4];
5505
5506 if (i < current_vol)
5507 continue;
5508 sprintf(subarray, "%u", i);
5509 if (is_subarray_active(subarray, st->devname)) {
5510 fprintf(stderr,
5511 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5512 current_vol, i);
5513
5514 return 2;
5515 }
5516 }
5517
5518 if (st->update_tail) {
5519 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5520
5521 if (!u)
5522 return 2;
5523 u->type = update_kill_array;
5524 u->dev_idx = current_vol;
5525 append_metadata_update(st, u, sizeof(*u));
5526
5527 return 0;
5528 }
5529
5530 for (dp = &super->devlist; *dp;)
5531 if ((*dp)->index == current_vol) {
5532 *dp = (*dp)->next;
5533 } else {
5534 handle_missing(super, (*dp)->dev);
5535 if ((*dp)->index > current_vol)
5536 (*dp)->index--;
5537 dp = &(*dp)->next;
5538 }
5539
5540 /* no more raid devices, all active components are now spares,
5541 * but of course failed are still failed
5542 */
5543 if (--mpb->num_raid_devs == 0) {
5544 struct dl *d;
5545
5546 for (d = super->disks; d; d = d->next)
5547 if (d->index > -2)
5548 mark_spare(d);
5549 }
5550
5551 super->updates_pending++;
5552
5553 return 0;
5554 }
5555
5556 static int update_subarray_imsm(struct supertype *st, char *subarray,
5557 char *update, struct mddev_ident *ident)
5558 {
5559 /* update the subarray currently referenced by ->current_vol */
5560 struct intel_super *super = st->sb;
5561 struct imsm_super *mpb = super->anchor;
5562
5563 if (strcmp(update, "name") == 0) {
5564 char *name = ident->name;
5565 char *ep;
5566 int vol;
5567
5568 if (is_subarray_active(subarray, st->devname)) {
5569 fprintf(stderr,
5570 Name ": Unable to update name of active subarray\n");
5571 return 2;
5572 }
5573
5574 if (!check_name(super, name, 0))
5575 return 2;
5576
5577 vol = strtoul(subarray, &ep, 10);
5578 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5579 return 2;
5580
5581 if (st->update_tail) {
5582 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5583
5584 if (!u)
5585 return 2;
5586 u->type = update_rename_array;
5587 u->dev_idx = vol;
5588 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5589 append_metadata_update(st, u, sizeof(*u));
5590 } else {
5591 struct imsm_dev *dev;
5592 int i;
5593
5594 dev = get_imsm_dev(super, vol);
5595 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5596 for (i = 0; i < mpb->num_raid_devs; i++) {
5597 dev = get_imsm_dev(super, i);
5598 handle_missing(super, dev);
5599 }
5600 super->updates_pending++;
5601 }
5602 } else
5603 return 2;
5604
5605 return 0;
5606 }
5607
5608 static int is_gen_migration(struct imsm_dev *dev)
5609 {
5610 if (dev == NULL)
5611 return 0;
5612
5613 if (!dev->vol.migr_state)
5614 return 0;
5615
5616 if (migr_type(dev) == MIGR_GEN_MIGR)
5617 return 1;
5618
5619 return 0;
5620 }
5621 #endif /* MDASSEMBLE */
5622
5623 static int is_rebuilding(struct imsm_dev *dev)
5624 {
5625 struct imsm_map *migr_map;
5626
5627 if (!dev->vol.migr_state)
5628 return 0;
5629
5630 if (migr_type(dev) != MIGR_REBUILD)
5631 return 0;
5632
5633 migr_map = get_imsm_map(dev, 1);
5634
5635 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5636 return 1;
5637 else
5638 return 0;
5639 }
5640
5641 static void update_recovery_start(struct intel_super *super,
5642 struct imsm_dev *dev,
5643 struct mdinfo *array)
5644 {
5645 struct mdinfo *rebuild = NULL;
5646 struct mdinfo *d;
5647 __u32 units;
5648
5649 if (!is_rebuilding(dev))
5650 return;
5651
5652 /* Find the rebuild target, but punt on the dual rebuild case */
5653 for (d = array->devs; d; d = d->next)
5654 if (d->recovery_start == 0) {
5655 if (rebuild)
5656 return;
5657 rebuild = d;
5658 }
5659
5660 if (!rebuild) {
5661 /* (?) none of the disks are marked with
5662 * IMSM_ORD_REBUILD, so assume they are missing and the
5663 * disk_ord_tbl was not correctly updated
5664 */
5665 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5666 return;
5667 }
5668
5669 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5670 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5671 }
5672
5673 #ifndef MDASSEMBLE
5674 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5675 #endif
5676
5677 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5678 {
5679 /* Given a container loaded by load_super_imsm_all,
5680 * extract information about all the arrays into
5681 * an mdinfo tree.
5682 * If 'subarray' is given, just extract info about that array.
5683 *
5684 * For each imsm_dev create an mdinfo, fill it in,
5685 * then look for matching devices in super->disks
5686 * and create appropriate device mdinfo.
5687 */
5688 struct intel_super *super = st->sb;
5689 struct imsm_super *mpb = super->anchor;
5690 struct mdinfo *rest = NULL;
5691 unsigned int i;
5692 int sb_errors = 0;
5693 struct dl *d;
5694 int spare_disks = 0;
5695
5696 /* do not assemble arrays when not all attributes are supported */
5697 if (imsm_check_attributes(mpb->attributes) == 0) {
5698 sb_errors = 1;
5699 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5700 "Arrays activation is blocked.\n");
5701 }
5702
5703 /* check for bad blocks */
5704 if (imsm_bbm_log_size(super->anchor)) {
5705 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5706 "Arrays activation is blocked.\n");
5707 sb_errors = 1;
5708 }
5709
5710
5711 /* count spare devices, not used in maps
5712 */
5713 for (d = super->disks; d; d = d->next)
5714 if (d->index == -1)
5715 spare_disks++;
5716
5717 for (i = 0; i < mpb->num_raid_devs; i++) {
5718 struct imsm_dev *dev;
5719 struct imsm_map *map;
5720 struct imsm_map *map2;
5721 struct mdinfo *this;
5722 int slot, chunk;
5723 char *ep;
5724
5725 if (subarray &&
5726 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5727 continue;
5728
5729 dev = get_imsm_dev(super, i);
5730 map = get_imsm_map(dev, 0);
5731 map2 = get_imsm_map(dev, 1);
5732
5733 /* do not publish arrays that are in the middle of an
5734 * unsupported migration
5735 */
5736 if (dev->vol.migr_state &&
5737 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5738 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5739 " unsupported migration in progress\n",
5740 dev->volume);
5741 continue;
5742 }
5743 /* do not publish arrays that are not support by controller's
5744 * OROM/EFI
5745 */
5746
5747 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5748 this = malloc(sizeof(*this));
5749 if (!this) {
5750 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5751 sizeof(*this));
5752 break;
5753 }
5754
5755 super->current_vol = i;
5756 getinfo_super_imsm_volume(st, this, NULL);
5757 this->next = rest;
5758 #ifndef MDASSEMBLE
5759 /* mdadm does not support all metadata features- set the bit in all arrays state */
5760 if (!validate_geometry_imsm_orom(super,
5761 get_imsm_raid_level(map), /* RAID level */
5762 imsm_level_to_layout(get_imsm_raid_level(map)),
5763 map->num_members, /* raid disks */
5764 &chunk,
5765 1 /* verbose */)) {
5766 fprintf(stderr, Name ": IMSM RAID geometry validation"
5767 " failed. Array %s activation is blocked.\n",
5768 dev->volume);
5769 this->array.state |=
5770 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5771 (1<<MD_SB_BLOCK_VOLUME);
5772 }
5773 #endif
5774
5775 /* if array has bad blocks, set suitable bit in all arrays state */
5776 if (sb_errors)
5777 this->array.state |=
5778 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5779 (1<<MD_SB_BLOCK_VOLUME);
5780
5781 for (slot = 0 ; slot < map->num_members; slot++) {
5782 unsigned long long recovery_start;
5783 struct mdinfo *info_d;
5784 struct dl *d;
5785 int idx;
5786 int skip;
5787 __u32 ord;
5788
5789 skip = 0;
5790 idx = get_imsm_disk_idx(dev, slot, 0);
5791 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5792 for (d = super->disks; d ; d = d->next)
5793 if (d->index == idx)
5794 break;
5795
5796 recovery_start = MaxSector;
5797 if (d == NULL)
5798 skip = 1;
5799 if (d && is_failed(&d->disk))
5800 skip = 1;
5801 if (ord & IMSM_ORD_REBUILD)
5802 recovery_start = 0;
5803
5804 /*
5805 * if we skip some disks the array will be assmebled degraded;
5806 * reset resync start to avoid a dirty-degraded
5807 * situation when performing the intial sync
5808 *
5809 * FIXME handle dirty degraded
5810 */
5811 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5812 this->resync_start = MaxSector;
5813 if (skip)
5814 continue;
5815
5816 info_d = calloc(1, sizeof(*info_d));
5817 if (!info_d) {
5818 fprintf(stderr, Name ": failed to allocate disk"
5819 " for volume %.16s\n", dev->volume);
5820 info_d = this->devs;
5821 while (info_d) {
5822 struct mdinfo *d = info_d->next;
5823
5824 free(info_d);
5825 info_d = d;
5826 }
5827 free(this);
5828 this = rest;
5829 break;
5830 }
5831 info_d->next = this->devs;
5832 this->devs = info_d;
5833
5834 info_d->disk.number = d->index;
5835 info_d->disk.major = d->major;
5836 info_d->disk.minor = d->minor;
5837 info_d->disk.raid_disk = slot;
5838 info_d->recovery_start = recovery_start;
5839 if (map2) {
5840 if (slot < map2->num_members)
5841 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5842 else
5843 this->array.spare_disks++;
5844 } else {
5845 if (slot < map->num_members)
5846 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5847 else
5848 this->array.spare_disks++;
5849 }
5850 if (info_d->recovery_start == MaxSector)
5851 this->array.working_disks++;
5852
5853 info_d->events = __le32_to_cpu(mpb->generation_num);
5854 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5855 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5856 }
5857 /* now that the disk list is up-to-date fixup recovery_start */
5858 update_recovery_start(super, dev, this);
5859 this->array.spare_disks += spare_disks;
5860
5861 #ifndef MDASSEMBLE
5862 /* check for reshape */
5863 if (this->reshape_active == 1)
5864 recover_backup_imsm(st, this);
5865 #endif
5866 rest = this;
5867 }
5868
5869 return rest;
5870 }
5871
5872
5873 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5874 {
5875 struct imsm_map *map = get_imsm_map(dev, 0);
5876
5877 if (!failed)
5878 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5879 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5880
5881 switch (get_imsm_raid_level(map)) {
5882 case 0:
5883 return IMSM_T_STATE_FAILED;
5884 break;
5885 case 1:
5886 if (failed < map->num_members)
5887 return IMSM_T_STATE_DEGRADED;
5888 else
5889 return IMSM_T_STATE_FAILED;
5890 break;
5891 case 10:
5892 {
5893 /**
5894 * check to see if any mirrors have failed, otherwise we
5895 * are degraded. Even numbered slots are mirrored on
5896 * slot+1
5897 */
5898 int i;
5899 /* gcc -Os complains that this is unused */
5900 int insync = insync;
5901
5902 for (i = 0; i < map->num_members; i++) {
5903 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5904 int idx = ord_to_idx(ord);
5905 struct imsm_disk *disk;
5906
5907 /* reset the potential in-sync count on even-numbered
5908 * slots. num_copies is always 2 for imsm raid10
5909 */
5910 if ((i & 1) == 0)
5911 insync = 2;
5912
5913 disk = get_imsm_disk(super, idx);
5914 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5915 insync--;
5916
5917 /* no in-sync disks left in this mirror the
5918 * array has failed
5919 */
5920 if (insync == 0)
5921 return IMSM_T_STATE_FAILED;
5922 }
5923
5924 return IMSM_T_STATE_DEGRADED;
5925 }
5926 case 5:
5927 if (failed < 2)
5928 return IMSM_T_STATE_DEGRADED;
5929 else
5930 return IMSM_T_STATE_FAILED;
5931 break;
5932 default:
5933 break;
5934 }
5935
5936 return map->map_state;
5937 }
5938
5939 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5940 {
5941 int i;
5942 int failed = 0;
5943 struct imsm_disk *disk;
5944 struct imsm_map *map = get_imsm_map(dev, 0);
5945 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5946 struct imsm_map *map_for_loop;
5947 __u32 ord;
5948 int idx;
5949
5950 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5951 * disks that are being rebuilt. New failures are recorded to
5952 * map[0]. So we look through all the disks we started with and
5953 * see if any failures are still present, or if any new ones
5954 * have arrived
5955 */
5956 map_for_loop = prev;
5957 if (is_gen_migration(dev))
5958 if (prev && (map->num_members > prev->num_members))
5959 map_for_loop = map;
5960
5961 for (i = 0; i < map_for_loop->num_members; i++) {
5962 ord = 0;
5963 if (i < prev->num_members)
5964 ord |= __le32_to_cpu(prev->disk_ord_tbl[i]);
5965 if (i < map->num_members)
5966 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5967 idx = ord_to_idx(ord);
5968
5969 disk = get_imsm_disk(super, idx);
5970 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5971 failed++;
5972 }
5973
5974 return failed;
5975 }
5976
5977 #ifndef MDASSEMBLE
5978 static int imsm_open_new(struct supertype *c, struct active_array *a,
5979 char *inst)
5980 {
5981 struct intel_super *super = c->sb;
5982 struct imsm_super *mpb = super->anchor;
5983
5984 if (atoi(inst) >= mpb->num_raid_devs) {
5985 fprintf(stderr, "%s: subarry index %d, out of range\n",
5986 __func__, atoi(inst));
5987 return -ENODEV;
5988 }
5989
5990 dprintf("imsm: open_new %s\n", inst);
5991 a->info.container_member = atoi(inst);
5992 return 0;
5993 }
5994
5995 static int is_resyncing(struct imsm_dev *dev)
5996 {
5997 struct imsm_map *migr_map;
5998
5999 if (!dev->vol.migr_state)
6000 return 0;
6001
6002 if (migr_type(dev) == MIGR_INIT ||
6003 migr_type(dev) == MIGR_REPAIR)
6004 return 1;
6005
6006 if (migr_type(dev) == MIGR_GEN_MIGR)
6007 return 0;
6008
6009 migr_map = get_imsm_map(dev, 1);
6010
6011 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6012 (dev->vol.migr_type != MIGR_GEN_MIGR))
6013 return 1;
6014 else
6015 return 0;
6016 }
6017
6018 /* return true if we recorded new information */
6019 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6020 {
6021 __u32 ord;
6022 int slot;
6023 struct imsm_map *map;
6024 char buf[MAX_RAID_SERIAL_LEN+3];
6025 unsigned int len, shift = 0;
6026
6027 /* new failures are always set in map[0] */
6028 map = get_imsm_map(dev, 0);
6029
6030 slot = get_imsm_disk_slot(map, idx);
6031 if (slot < 0)
6032 return 0;
6033
6034 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6035 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6036 return 0;
6037
6038 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6039 buf[MAX_RAID_SERIAL_LEN] = '\000';
6040 strcat(buf, ":0");
6041 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6042 shift = len - MAX_RAID_SERIAL_LEN + 1;
6043 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6044
6045 disk->status |= FAILED_DISK;
6046 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6047 if (map->failed_disk_num == 0xff)
6048 map->failed_disk_num = slot;
6049 return 1;
6050 }
6051
6052 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6053 {
6054 mark_failure(dev, disk, idx);
6055
6056 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6057 return;
6058
6059 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6060 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6061 }
6062
6063 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6064 {
6065 __u8 map_state;
6066 struct dl *dl;
6067 int failed;
6068
6069 if (!super->missing)
6070 return;
6071 failed = imsm_count_failed(super, dev);
6072 map_state = imsm_check_degraded(super, dev, failed);
6073
6074 dprintf("imsm: mark missing\n");
6075 end_migration(dev, map_state);
6076 for (dl = super->missing; dl; dl = dl->next)
6077 mark_missing(dev, &dl->disk, dl->index);
6078 super->updates_pending++;
6079 }
6080
6081 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6082 {
6083 int used_disks = imsm_num_data_members(dev, 0);
6084 unsigned long long array_blocks;
6085 struct imsm_map *map;
6086
6087 if (used_disks == 0) {
6088 /* when problems occures
6089 * return current array_blocks value
6090 */
6091 array_blocks = __le32_to_cpu(dev->size_high);
6092 array_blocks = array_blocks << 32;
6093 array_blocks += __le32_to_cpu(dev->size_low);
6094
6095 return array_blocks;
6096 }
6097
6098 /* set array size in metadata
6099 */
6100 map = get_imsm_map(dev, 0);
6101 array_blocks = map->blocks_per_member * used_disks;
6102
6103 /* round array size down to closest MB
6104 */
6105 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6106 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6107 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6108
6109 return array_blocks;
6110 }
6111
6112 static void imsm_set_disk(struct active_array *a, int n, int state);
6113
6114 static void imsm_progress_container_reshape(struct intel_super *super)
6115 {
6116 /* if no device has a migr_state, but some device has a
6117 * different number of members than the previous device, start
6118 * changing the number of devices in this device to match
6119 * previous.
6120 */
6121 struct imsm_super *mpb = super->anchor;
6122 int prev_disks = -1;
6123 int i;
6124 int copy_map_size;
6125
6126 for (i = 0; i < mpb->num_raid_devs; i++) {
6127 struct imsm_dev *dev = get_imsm_dev(super, i);
6128 struct imsm_map *map = get_imsm_map(dev, 0);
6129 struct imsm_map *map2;
6130 int prev_num_members;
6131
6132 if (dev->vol.migr_state)
6133 return;
6134
6135 if (prev_disks == -1)
6136 prev_disks = map->num_members;
6137 if (prev_disks == map->num_members)
6138 continue;
6139
6140 /* OK, this array needs to enter reshape mode.
6141 * i.e it needs a migr_state
6142 */
6143
6144 copy_map_size = sizeof_imsm_map(map);
6145 prev_num_members = map->num_members;
6146 map->num_members = prev_disks;
6147 dev->vol.migr_state = 1;
6148 dev->vol.curr_migr_unit = 0;
6149 set_migr_type(dev, MIGR_GEN_MIGR);
6150 for (i = prev_num_members;
6151 i < map->num_members; i++)
6152 set_imsm_ord_tbl_ent(map, i, i);
6153 map2 = get_imsm_map(dev, 1);
6154 /* Copy the current map */
6155 memcpy(map2, map, copy_map_size);
6156 map2->num_members = prev_num_members;
6157
6158 imsm_set_array_size(dev);
6159 super->updates_pending++;
6160 }
6161 }
6162
6163 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6164 * states are handled in imsm_set_disk() with one exception, when a
6165 * resync is stopped due to a new failure this routine will set the
6166 * 'degraded' state for the array.
6167 */
6168 static int imsm_set_array_state(struct active_array *a, int consistent)
6169 {
6170 int inst = a->info.container_member;
6171 struct intel_super *super = a->container->sb;
6172 struct imsm_dev *dev = get_imsm_dev(super, inst);
6173 struct imsm_map *map = get_imsm_map(dev, 0);
6174 int failed = imsm_count_failed(super, dev);
6175 __u8 map_state = imsm_check_degraded(super, dev, failed);
6176 __u32 blocks_per_unit;
6177
6178 if (dev->vol.migr_state &&
6179 dev->vol.migr_type == MIGR_GEN_MIGR) {
6180 /* array state change is blocked due to reshape action
6181 * We might need to
6182 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6183 * - finish the reshape (if last_checkpoint is big and action != reshape)
6184 * - update curr_migr_unit
6185 */
6186 if (a->curr_action == reshape) {
6187 /* still reshaping, maybe update curr_migr_unit */
6188 goto mark_checkpoint;
6189 } else {
6190 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6191 /* for some reason we aborted the reshape.
6192 *
6193 * disable automatic metadata rollback
6194 * user action is required to recover process
6195 */
6196 if (0) {
6197 struct imsm_map *map2 = get_imsm_map(dev, 1);
6198 dev->vol.migr_state = 0;
6199 set_migr_type(dev, 0);
6200 dev->vol.curr_migr_unit = 0;
6201 memcpy(map, map2, sizeof_imsm_map(map2));
6202 super->updates_pending++;
6203 }
6204 }
6205 if (a->last_checkpoint >= a->info.component_size) {
6206 unsigned long long array_blocks;
6207 int used_disks;
6208 struct mdinfo *mdi;
6209
6210 used_disks = imsm_num_data_members(dev, 0);
6211 if (used_disks > 0) {
6212 array_blocks =
6213 map->blocks_per_member *
6214 used_disks;
6215 /* round array size down to closest MB
6216 */
6217 array_blocks = (array_blocks
6218 >> SECT_PER_MB_SHIFT)
6219 << SECT_PER_MB_SHIFT;
6220 a->info.custom_array_size = array_blocks;
6221 /* encourage manager to update array
6222 * size
6223 */
6224
6225 a->check_reshape = 1;
6226 }
6227 /* finalize online capacity expansion/reshape */
6228 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6229 imsm_set_disk(a,
6230 mdi->disk.raid_disk,
6231 mdi->curr_state);
6232
6233 imsm_progress_container_reshape(super);
6234 }
6235 }
6236 }
6237
6238 /* before we activate this array handle any missing disks */
6239 if (consistent == 2)
6240 handle_missing(super, dev);
6241
6242 if (consistent == 2 &&
6243 (!is_resync_complete(&a->info) ||
6244 map_state != IMSM_T_STATE_NORMAL ||
6245 dev->vol.migr_state))
6246 consistent = 0;
6247
6248 if (is_resync_complete(&a->info)) {
6249 /* complete intialization / resync,
6250 * recovery and interrupted recovery is completed in
6251 * ->set_disk
6252 */
6253 if (is_resyncing(dev)) {
6254 dprintf("imsm: mark resync done\n");
6255 end_migration(dev, map_state);
6256 super->updates_pending++;
6257 a->last_checkpoint = 0;
6258 }
6259 } else if ((!is_resyncing(dev) && !failed) &&
6260 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6261 /* mark the start of the init process if nothing is failed */
6262 dprintf("imsm: mark resync start\n");
6263 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6264 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6265 else
6266 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6267 super->updates_pending++;
6268 }
6269
6270 mark_checkpoint:
6271 /* skip checkpointing for general migration,
6272 * it is controlled in mdadm
6273 */
6274 if (is_gen_migration(dev))
6275 goto skip_mark_checkpoint;
6276
6277 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6278 blocks_per_unit = blocks_per_migr_unit(super, dev);
6279 if (blocks_per_unit) {
6280 __u32 units32;
6281 __u64 units;
6282
6283 units = a->last_checkpoint / blocks_per_unit;
6284 units32 = units;
6285
6286 /* check that we did not overflow 32-bits, and that
6287 * curr_migr_unit needs updating
6288 */
6289 if (units32 == units &&
6290 units32 != 0 &&
6291 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6292 dprintf("imsm: mark checkpoint (%u)\n", units32);
6293 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6294 super->updates_pending++;
6295 }
6296 }
6297
6298 skip_mark_checkpoint:
6299 /* mark dirty / clean */
6300 if (dev->vol.dirty != !consistent) {
6301 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6302 if (consistent)
6303 dev->vol.dirty = 0;
6304 else
6305 dev->vol.dirty = 1;
6306 super->updates_pending++;
6307 }
6308
6309 return consistent;
6310 }
6311
6312 static void imsm_set_disk(struct active_array *a, int n, int state)
6313 {
6314 int inst = a->info.container_member;
6315 struct intel_super *super = a->container->sb;
6316 struct imsm_dev *dev = get_imsm_dev(super, inst);
6317 struct imsm_map *map = get_imsm_map(dev, 0);
6318 struct imsm_disk *disk;
6319 int failed;
6320 __u32 ord;
6321 __u8 map_state;
6322
6323 if (n > map->num_members)
6324 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6325 n, map->num_members - 1);
6326
6327 if (n < 0)
6328 return;
6329
6330 dprintf("imsm: set_disk %d:%x\n", n, state);
6331
6332 ord = get_imsm_ord_tbl_ent(dev, n, -1);
6333 disk = get_imsm_disk(super, ord_to_idx(ord));
6334
6335 /* check for new failures */
6336 if (state & DS_FAULTY) {
6337 if (mark_failure(dev, disk, ord_to_idx(ord)))
6338 super->updates_pending++;
6339 }
6340
6341 /* check if in_sync */
6342 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6343 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6344
6345 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6346 super->updates_pending++;
6347 }
6348
6349 failed = imsm_count_failed(super, dev);
6350 map_state = imsm_check_degraded(super, dev, failed);
6351
6352 /* check if recovery complete, newly degraded, or failed */
6353 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6354 end_migration(dev, map_state);
6355 map = get_imsm_map(dev, 0);
6356 map->failed_disk_num = ~0;
6357 super->updates_pending++;
6358 a->last_checkpoint = 0;
6359 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6360 map->map_state != map_state &&
6361 !dev->vol.migr_state) {
6362 dprintf("imsm: mark degraded\n");
6363 map->map_state = map_state;
6364 super->updates_pending++;
6365 a->last_checkpoint = 0;
6366 } else if (map_state == IMSM_T_STATE_FAILED &&
6367 map->map_state != map_state) {
6368 dprintf("imsm: mark failed\n");
6369 end_migration(dev, map_state);
6370 super->updates_pending++;
6371 a->last_checkpoint = 0;
6372 } else if (is_gen_migration(dev)) {
6373 dprintf("imsm: Detected General Migration in state: ");
6374 if (map_state == IMSM_T_STATE_NORMAL) {
6375 end_migration(dev, map_state);
6376 map = get_imsm_map(dev, 0);
6377 map->failed_disk_num = ~0;
6378 dprintf("normal\n");
6379 } else {
6380 if (map_state == IMSM_T_STATE_DEGRADED) {
6381 printf("degraded\n");
6382 end_migration(dev, map_state);
6383 } else {
6384 dprintf("failed\n");
6385 }
6386 map->map_state = map_state;
6387 }
6388 super->updates_pending++;
6389 }
6390 }
6391
6392 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6393 {
6394 void *buf = mpb;
6395 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6396 unsigned long long dsize;
6397 unsigned long long sectors;
6398
6399 get_dev_size(fd, NULL, &dsize);
6400
6401 if (mpb_size > 512) {
6402 /* -1 to account for anchor */
6403 sectors = mpb_sectors(mpb) - 1;
6404
6405 /* write the extended mpb to the sectors preceeding the anchor */
6406 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6407 return 1;
6408
6409 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6410 != 512 * sectors)
6411 return 1;
6412 }
6413
6414 /* first block is stored on second to last sector of the disk */
6415 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6416 return 1;
6417
6418 if (write(fd, buf, 512) != 512)
6419 return 1;
6420
6421 return 0;
6422 }
6423
6424 static void imsm_sync_metadata(struct supertype *container)
6425 {
6426 struct intel_super *super = container->sb;
6427
6428 dprintf("sync metadata: %d\n", super->updates_pending);
6429 if (!super->updates_pending)
6430 return;
6431
6432 write_super_imsm(container, 0);
6433
6434 super->updates_pending = 0;
6435 }
6436
6437 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6438 {
6439 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6440 int i = get_imsm_disk_idx(dev, idx, -1);
6441 struct dl *dl;
6442
6443 for (dl = super->disks; dl; dl = dl->next)
6444 if (dl->index == i)
6445 break;
6446
6447 if (dl && is_failed(&dl->disk))
6448 dl = NULL;
6449
6450 if (dl)
6451 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6452
6453 return dl;
6454 }
6455
6456 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6457 struct active_array *a, int activate_new,
6458 struct mdinfo *additional_test_list)
6459 {
6460 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6461 int idx = get_imsm_disk_idx(dev, slot, -1);
6462 struct imsm_super *mpb = super->anchor;
6463 struct imsm_map *map;
6464 unsigned long long pos;
6465 struct mdinfo *d;
6466 struct extent *ex;
6467 int i, j;
6468 int found;
6469 __u32 array_start = 0;
6470 __u32 array_end = 0;
6471 struct dl *dl;
6472 struct mdinfo *test_list;
6473
6474 for (dl = super->disks; dl; dl = dl->next) {
6475 /* If in this array, skip */
6476 for (d = a->info.devs ; d ; d = d->next)
6477 if (d->state_fd >= 0 &&
6478 d->disk.major == dl->major &&
6479 d->disk.minor == dl->minor) {
6480 dprintf("%x:%x already in array\n",
6481 dl->major, dl->minor);
6482 break;
6483 }
6484 if (d)
6485 continue;
6486 test_list = additional_test_list;
6487 while (test_list) {
6488 if (test_list->disk.major == dl->major &&
6489 test_list->disk.minor == dl->minor) {
6490 dprintf("%x:%x already in additional test list\n",
6491 dl->major, dl->minor);
6492 break;
6493 }
6494 test_list = test_list->next;
6495 }
6496 if (test_list)
6497 continue;
6498
6499 /* skip in use or failed drives */
6500 if (is_failed(&dl->disk) || idx == dl->index ||
6501 dl->index == -2) {
6502 dprintf("%x:%x status (failed: %d index: %d)\n",
6503 dl->major, dl->minor, is_failed(&dl->disk), idx);
6504 continue;
6505 }
6506
6507 /* skip pure spares when we are looking for partially
6508 * assimilated drives
6509 */
6510 if (dl->index == -1 && !activate_new)
6511 continue;
6512
6513 /* Does this unused device have the requisite free space?
6514 * It needs to be able to cover all member volumes
6515 */
6516 ex = get_extents(super, dl);
6517 if (!ex) {
6518 dprintf("cannot get extents\n");
6519 continue;
6520 }
6521 for (i = 0; i < mpb->num_raid_devs; i++) {
6522 dev = get_imsm_dev(super, i);
6523 map = get_imsm_map(dev, 0);
6524
6525 /* check if this disk is already a member of
6526 * this array
6527 */
6528 if (get_imsm_disk_slot(map, dl->index) >= 0)
6529 continue;
6530
6531 found = 0;
6532 j = 0;
6533 pos = 0;
6534 array_start = __le32_to_cpu(map->pba_of_lba0);
6535 array_end = array_start +
6536 __le32_to_cpu(map->blocks_per_member) - 1;
6537
6538 do {
6539 /* check that we can start at pba_of_lba0 with
6540 * blocks_per_member of space
6541 */
6542 if (array_start >= pos && array_end < ex[j].start) {
6543 found = 1;
6544 break;
6545 }
6546 pos = ex[j].start + ex[j].size;
6547 j++;
6548 } while (ex[j-1].size);
6549
6550 if (!found)
6551 break;
6552 }
6553
6554 free(ex);
6555 if (i < mpb->num_raid_devs) {
6556 dprintf("%x:%x does not have %u to %u available\n",
6557 dl->major, dl->minor, array_start, array_end);
6558 /* No room */
6559 continue;
6560 }
6561 return dl;
6562 }
6563
6564 return dl;
6565 }
6566
6567
6568 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6569 {
6570 struct imsm_dev *dev2;
6571 struct imsm_map *map;
6572 struct dl *idisk;
6573 int slot;
6574 int idx;
6575 __u8 state;
6576
6577 dev2 = get_imsm_dev(cont->sb, dev_idx);
6578 if (dev2) {
6579 state = imsm_check_degraded(cont->sb, dev2, failed);
6580 if (state == IMSM_T_STATE_FAILED) {
6581 map = get_imsm_map(dev2, 0);
6582 if (!map)
6583 return 1;
6584 for (slot = 0; slot < map->num_members; slot++) {
6585 /*
6586 * Check if failed disks are deleted from intel
6587 * disk list or are marked to be deleted
6588 */
6589 idx = get_imsm_disk_idx(dev2, slot, -1);
6590 idisk = get_imsm_dl_disk(cont->sb, idx);
6591 /*
6592 * Do not rebuild the array if failed disks
6593 * from failed sub-array are not removed from
6594 * container.
6595 */
6596 if (idisk &&
6597 is_failed(&idisk->disk) &&
6598 (idisk->action != DISK_REMOVE))
6599 return 0;
6600 }
6601 }
6602 }
6603 return 1;
6604 }
6605
6606 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6607 struct metadata_update **updates)
6608 {
6609 /**
6610 * Find a device with unused free space and use it to replace a
6611 * failed/vacant region in an array. We replace failed regions one a
6612 * array at a time. The result is that a new spare disk will be added
6613 * to the first failed array and after the monitor has finished
6614 * propagating failures the remainder will be consumed.
6615 *
6616 * FIXME add a capability for mdmon to request spares from another
6617 * container.
6618 */
6619
6620 struct intel_super *super = a->container->sb;
6621 int inst = a->info.container_member;
6622 struct imsm_dev *dev = get_imsm_dev(super, inst);
6623 struct imsm_map *map = get_imsm_map(dev, 0);
6624 int failed = a->info.array.raid_disks;
6625 struct mdinfo *rv = NULL;
6626 struct mdinfo *d;
6627 struct mdinfo *di;
6628 struct metadata_update *mu;
6629 struct dl *dl;
6630 struct imsm_update_activate_spare *u;
6631 int num_spares = 0;
6632 int i;
6633 int allowed;
6634
6635 for (d = a->info.devs ; d ; d = d->next) {
6636 if ((d->curr_state & DS_FAULTY) &&
6637 d->state_fd >= 0)
6638 /* wait for Removal to happen */
6639 return NULL;
6640 if (d->state_fd >= 0)
6641 failed--;
6642 }
6643
6644 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6645 inst, failed, a->info.array.raid_disks, a->info.array.level);
6646
6647 if (imsm_reshape_blocks_arrays_changes(super))
6648 return NULL;
6649
6650 if (a->info.array.level == 4)
6651 /* No repair for takeovered array
6652 * imsm doesn't support raid4
6653 */
6654 return NULL;
6655
6656 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6657 return NULL;
6658
6659 /*
6660 * If there are any failed disks check state of the other volume.
6661 * Block rebuild if the another one is failed until failed disks
6662 * are removed from container.
6663 */
6664 if (failed) {
6665 dprintf("found failed disks in %.*s, check if there another"
6666 "failed sub-array.\n",
6667 MAX_RAID_SERIAL_LEN, dev->volume);
6668 /* check if states of the other volumes allow for rebuild */
6669 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6670 if (i != inst) {
6671 allowed = imsm_rebuild_allowed(a->container,
6672 i, failed);
6673 if (!allowed)
6674 return NULL;
6675 }
6676 }
6677 }
6678
6679 /* For each slot, if it is not working, find a spare */
6680 for (i = 0; i < a->info.array.raid_disks; i++) {
6681 for (d = a->info.devs ; d ; d = d->next)
6682 if (d->disk.raid_disk == i)
6683 break;
6684 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6685 if (d && (d->state_fd >= 0))
6686 continue;
6687
6688 /*
6689 * OK, this device needs recovery. Try to re-add the
6690 * previous occupant of this slot, if this fails see if
6691 * we can continue the assimilation of a spare that was
6692 * partially assimilated, finally try to activate a new
6693 * spare.
6694 */
6695 dl = imsm_readd(super, i, a);
6696 if (!dl)
6697 dl = imsm_add_spare(super, i, a, 0, rv);
6698 if (!dl)
6699 dl = imsm_add_spare(super, i, a, 1, rv);
6700 if (!dl)
6701 continue;
6702
6703 /* found a usable disk with enough space */
6704 di = malloc(sizeof(*di));
6705 if (!di)
6706 continue;
6707 memset(di, 0, sizeof(*di));
6708
6709 /* dl->index will be -1 in the case we are activating a
6710 * pristine spare. imsm_process_update() will create a
6711 * new index in this case. Once a disk is found to be
6712 * failed in all member arrays it is kicked from the
6713 * metadata
6714 */
6715 di->disk.number = dl->index;
6716
6717 /* (ab)use di->devs to store a pointer to the device
6718 * we chose
6719 */
6720 di->devs = (struct mdinfo *) dl;
6721
6722 di->disk.raid_disk = i;
6723 di->disk.major = dl->major;
6724 di->disk.minor = dl->minor;
6725 di->disk.state = 0;
6726 di->recovery_start = 0;
6727 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6728 di->component_size = a->info.component_size;
6729 di->container_member = inst;
6730 super->random = random32();
6731 di->next = rv;
6732 rv = di;
6733 num_spares++;
6734 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6735 i, di->data_offset);
6736 }
6737
6738 if (!rv)
6739 /* No spares found */
6740 return rv;
6741 /* Now 'rv' has a list of devices to return.
6742 * Create a metadata_update record to update the
6743 * disk_ord_tbl for the array
6744 */
6745 mu = malloc(sizeof(*mu));
6746 if (mu) {
6747 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6748 if (mu->buf == NULL) {
6749 free(mu);
6750 mu = NULL;
6751 }
6752 }
6753 if (!mu) {
6754 while (rv) {
6755 struct mdinfo *n = rv->next;
6756
6757 free(rv);
6758 rv = n;
6759 }
6760 return NULL;
6761 }
6762
6763 mu->space = NULL;
6764 mu->space_list = NULL;
6765 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6766 mu->next = *updates;
6767 u = (struct imsm_update_activate_spare *) mu->buf;
6768
6769 for (di = rv ; di ; di = di->next) {
6770 u->type = update_activate_spare;
6771 u->dl = (struct dl *) di->devs;
6772 di->devs = NULL;
6773 u->slot = di->disk.raid_disk;
6774 u->array = inst;
6775 u->next = u + 1;
6776 u++;
6777 }
6778 (u-1)->next = NULL;
6779 *updates = mu;
6780
6781 return rv;
6782 }
6783
6784 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6785 {
6786 struct imsm_dev *dev = get_imsm_dev(super, idx);
6787 struct imsm_map *map = get_imsm_map(dev, 0);
6788 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6789 struct disk_info *inf = get_disk_info(u);
6790 struct imsm_disk *disk;
6791 int i;
6792 int j;
6793
6794 for (i = 0; i < map->num_members; i++) {
6795 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6796 for (j = 0; j < new_map->num_members; j++)
6797 if (serialcmp(disk->serial, inf[j].serial) == 0)
6798 return 1;
6799 }
6800
6801 return 0;
6802 }
6803
6804
6805 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6806 {
6807 struct dl *dl = NULL;
6808 for (dl = super->disks; dl; dl = dl->next)
6809 if ((dl->major == major) && (dl->minor == minor))
6810 return dl;
6811 return NULL;
6812 }
6813
6814 static int remove_disk_super(struct intel_super *super, int major, int minor)
6815 {
6816 struct dl *prev = NULL;
6817 struct dl *dl;
6818
6819 prev = NULL;
6820 for (dl = super->disks; dl; dl = dl->next) {
6821 if ((dl->major == major) && (dl->minor == minor)) {
6822 /* remove */
6823 if (prev)
6824 prev->next = dl->next;
6825 else
6826 super->disks = dl->next;
6827 dl->next = NULL;
6828 __free_imsm_disk(dl);
6829 dprintf("%s: removed %x:%x\n",
6830 __func__, major, minor);
6831 break;
6832 }
6833 prev = dl;
6834 }
6835 return 0;
6836 }
6837
6838 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6839
6840 static int add_remove_disk_update(struct intel_super *super)
6841 {
6842 int check_degraded = 0;
6843 struct dl *disk = NULL;
6844 /* add/remove some spares to/from the metadata/contrainer */
6845 while (super->disk_mgmt_list) {
6846 struct dl *disk_cfg;
6847
6848 disk_cfg = super->disk_mgmt_list;
6849 super->disk_mgmt_list = disk_cfg->next;
6850 disk_cfg->next = NULL;
6851
6852 if (disk_cfg->action == DISK_ADD) {
6853 disk_cfg->next = super->disks;
6854 super->disks = disk_cfg;
6855 check_degraded = 1;
6856 dprintf("%s: added %x:%x\n",
6857 __func__, disk_cfg->major,
6858 disk_cfg->minor);
6859 } else if (disk_cfg->action == DISK_REMOVE) {
6860 dprintf("Disk remove action processed: %x.%x\n",
6861 disk_cfg->major, disk_cfg->minor);
6862 disk = get_disk_super(super,
6863 disk_cfg->major,
6864 disk_cfg->minor);
6865 if (disk) {
6866 /* store action status */
6867 disk->action = DISK_REMOVE;
6868 /* remove spare disks only */
6869 if (disk->index == -1) {
6870 remove_disk_super(super,
6871 disk_cfg->major,
6872 disk_cfg->minor);
6873 }
6874 }
6875 /* release allocate disk structure */
6876 __free_imsm_disk(disk_cfg);
6877 }
6878 }
6879 return check_degraded;
6880 }
6881
6882
6883 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6884 struct intel_super *super,
6885 void ***space_list)
6886 {
6887 struct intel_dev *id;
6888 void **tofree = NULL;
6889 int ret_val = 0;
6890
6891 dprintf("apply_reshape_migration_update()\n");
6892 if ((u->subdev < 0) ||
6893 (u->subdev > 1)) {
6894 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6895 return ret_val;
6896 }
6897 if ((space_list == NULL) || (*space_list == NULL)) {
6898 dprintf("imsm: Error: Memory is not allocated\n");
6899 return ret_val;
6900 }
6901
6902 for (id = super->devlist ; id; id = id->next) {
6903 if (id->index == (unsigned)u->subdev) {
6904 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6905 struct imsm_map *map;
6906 struct imsm_dev *new_dev =
6907 (struct imsm_dev *)*space_list;
6908 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6909 int to_state;
6910 struct dl *new_disk;
6911
6912 if (new_dev == NULL)
6913 return ret_val;
6914 *space_list = **space_list;
6915 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6916 map = get_imsm_map(new_dev, 0);
6917 if (migr_map) {
6918 dprintf("imsm: Error: migration in progress");
6919 return ret_val;
6920 }
6921
6922 to_state = map->map_state;
6923 if ((u->new_level == 5) && (map->raid_level == 0)) {
6924 map->num_members++;
6925 /* this should not happen */
6926 if (u->new_disks[0] < 0) {
6927 map->failed_disk_num =
6928 map->num_members - 1;
6929 to_state = IMSM_T_STATE_DEGRADED;
6930 } else
6931 to_state = IMSM_T_STATE_NORMAL;
6932 }
6933 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6934 if (u->new_level > -1)
6935 map->raid_level = u->new_level;
6936 migr_map = get_imsm_map(new_dev, 1);
6937 if ((u->new_level == 5) &&
6938 (migr_map->raid_level == 0)) {
6939 int ord = map->num_members - 1;
6940 migr_map->num_members--;
6941 if (u->new_disks[0] < 0)
6942 ord |= IMSM_ORD_REBUILD;
6943 set_imsm_ord_tbl_ent(map,
6944 map->num_members - 1,
6945 ord);
6946 }
6947 id->dev = new_dev;
6948 tofree = (void **)dev;
6949
6950 /* update chunk size
6951 */
6952 if (u->new_chunksize > 0)
6953 map->blocks_per_strip =
6954 __cpu_to_le16(u->new_chunksize * 2);
6955
6956 /* add disk
6957 */
6958 if ((u->new_level != 5) ||
6959 (migr_map->raid_level != 0) ||
6960 (migr_map->raid_level == map->raid_level))
6961 goto skip_disk_add;
6962
6963 if (u->new_disks[0] >= 0) {
6964 /* use passes spare
6965 */
6966 new_disk = get_disk_super(super,
6967 major(u->new_disks[0]),
6968 minor(u->new_disks[0]));
6969 dprintf("imsm: new disk for reshape is: %i:%i "
6970 "(%p, index = %i)\n",
6971 major(u->new_disks[0]),
6972 minor(u->new_disks[0]),
6973 new_disk, new_disk->index);
6974 if (new_disk == NULL)
6975 goto error_disk_add;
6976
6977 new_disk->index = map->num_members - 1;
6978 /* slot to fill in autolayout
6979 */
6980 new_disk->raiddisk = new_disk->index;
6981 new_disk->disk.status |= CONFIGURED_DISK;
6982 new_disk->disk.status &= ~SPARE_DISK;
6983 } else
6984 goto error_disk_add;
6985
6986 skip_disk_add:
6987 *tofree = *space_list;
6988 /* calculate new size
6989 */
6990 imsm_set_array_size(new_dev);
6991
6992 ret_val = 1;
6993 }
6994 }
6995
6996 if (tofree)
6997 *space_list = tofree;
6998 return ret_val;
6999
7000 error_disk_add:
7001 dprintf("Error: imsm: Cannot find disk.\n");
7002 return ret_val;
7003 }
7004
7005 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7006 struct intel_super *super,
7007 struct active_array *active_array)
7008 {
7009 struct imsm_super *mpb = super->anchor;
7010 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7011 struct imsm_map *map = get_imsm_map(dev, 0);
7012 struct imsm_map *migr_map;
7013 struct active_array *a;
7014 struct imsm_disk *disk;
7015 __u8 to_state;
7016 struct dl *dl;
7017 unsigned int found;
7018 int failed;
7019 int victim;
7020 int i;
7021 int second_map_created = 0;
7022
7023 for (; u; u = u->next) {
7024 victim = get_imsm_disk_idx(dev, u->slot, -1);
7025
7026 if (victim < 0)
7027 return 0;
7028
7029 for (dl = super->disks; dl; dl = dl->next)
7030 if (dl == u->dl)
7031 break;
7032
7033 if (!dl) {
7034 fprintf(stderr, "error: imsm_activate_spare passed "
7035 "an unknown disk (index: %d)\n",
7036 u->dl->index);
7037 return 0;
7038 }
7039
7040 /* count failures (excluding rebuilds and the victim)
7041 * to determine map[0] state
7042 */
7043 failed = 0;
7044 for (i = 0; i < map->num_members; i++) {
7045 if (i == u->slot)
7046 continue;
7047 disk = get_imsm_disk(super,
7048 get_imsm_disk_idx(dev, i, -1));
7049 if (!disk || is_failed(disk))
7050 failed++;
7051 }
7052
7053 /* adding a pristine spare, assign a new index */
7054 if (dl->index < 0) {
7055 dl->index = super->anchor->num_disks;
7056 super->anchor->num_disks++;
7057 }
7058 disk = &dl->disk;
7059 disk->status |= CONFIGURED_DISK;
7060 disk->status &= ~SPARE_DISK;
7061
7062 /* mark rebuild */
7063 to_state = imsm_check_degraded(super, dev, failed);
7064 if (!second_map_created) {
7065 second_map_created = 1;
7066 map->map_state = IMSM_T_STATE_DEGRADED;
7067 migrate(dev, super, to_state, MIGR_REBUILD);
7068 } else
7069 map->map_state = to_state;
7070 migr_map = get_imsm_map(dev, 1);
7071 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7072 set_imsm_ord_tbl_ent(migr_map, u->slot,
7073 dl->index | IMSM_ORD_REBUILD);
7074
7075 /* update the family_num to mark a new container
7076 * generation, being careful to record the existing
7077 * family_num in orig_family_num to clean up after
7078 * earlier mdadm versions that neglected to set it.
7079 */
7080 if (mpb->orig_family_num == 0)
7081 mpb->orig_family_num = mpb->family_num;
7082 mpb->family_num += super->random;
7083
7084 /* count arrays using the victim in the metadata */
7085 found = 0;
7086 for (a = active_array; a ; a = a->next) {
7087 dev = get_imsm_dev(super, a->info.container_member);
7088 map = get_imsm_map(dev, 0);
7089
7090 if (get_imsm_disk_slot(map, victim) >= 0)
7091 found++;
7092 }
7093
7094 /* delete the victim if it is no longer being
7095 * utilized anywhere
7096 */
7097 if (!found) {
7098 struct dl **dlp;
7099
7100 /* We know that 'manager' isn't touching anything,
7101 * so it is safe to delete
7102 */
7103 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7104 if ((*dlp)->index == victim)
7105 break;
7106
7107 /* victim may be on the missing list */
7108 if (!*dlp)
7109 for (dlp = &super->missing; *dlp;
7110 dlp = &(*dlp)->next)
7111 if ((*dlp)->index == victim)
7112 break;
7113 imsm_delete(super, dlp, victim);
7114 }
7115 }
7116
7117 return 1;
7118 }
7119
7120 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7121 struct intel_super *super,
7122 void ***space_list)
7123 {
7124 struct dl *new_disk;
7125 struct intel_dev *id;
7126 int i;
7127 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7128 int disk_count = u->old_raid_disks;
7129 void **tofree = NULL;
7130 int devices_to_reshape = 1;
7131 struct imsm_super *mpb = super->anchor;
7132 int ret_val = 0;
7133 unsigned int dev_id;
7134
7135 dprintf("imsm: apply_reshape_container_disks_update()\n");
7136
7137 /* enable spares to use in array */
7138 for (i = 0; i < delta_disks; i++) {
7139 new_disk = get_disk_super(super,
7140 major(u->new_disks[i]),
7141 minor(u->new_disks[i]));
7142 dprintf("imsm: new disk for reshape is: %i:%i "
7143 "(%p, index = %i)\n",
7144 major(u->new_disks[i]), minor(u->new_disks[i]),
7145 new_disk, new_disk->index);
7146 if ((new_disk == NULL) ||
7147 ((new_disk->index >= 0) &&
7148 (new_disk->index < u->old_raid_disks)))
7149 goto update_reshape_exit;
7150 new_disk->index = disk_count++;
7151 /* slot to fill in autolayout
7152 */
7153 new_disk->raiddisk = new_disk->index;
7154 new_disk->disk.status |=
7155 CONFIGURED_DISK;
7156 new_disk->disk.status &= ~SPARE_DISK;
7157 }
7158
7159 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7160 mpb->num_raid_devs);
7161 /* manage changes in volume
7162 */
7163 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7164 void **sp = *space_list;
7165 struct imsm_dev *newdev;
7166 struct imsm_map *newmap, *oldmap;
7167
7168 for (id = super->devlist ; id; id = id->next) {
7169 if (id->index == dev_id)
7170 break;
7171 }
7172 if (id == NULL)
7173 break;
7174 if (!sp)
7175 continue;
7176 *space_list = *sp;
7177 newdev = (void*)sp;
7178 /* Copy the dev, but not (all of) the map */
7179 memcpy(newdev, id->dev, sizeof(*newdev));
7180 oldmap = get_imsm_map(id->dev, 0);
7181 newmap = get_imsm_map(newdev, 0);
7182 /* Copy the current map */
7183 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7184 /* update one device only
7185 */
7186 if (devices_to_reshape) {
7187 dprintf("imsm: modifying subdev: %i\n",
7188 id->index);
7189 devices_to_reshape--;
7190 newdev->vol.migr_state = 1;
7191 newdev->vol.curr_migr_unit = 0;
7192 set_migr_type(newdev, MIGR_GEN_MIGR);
7193 newmap->num_members = u->new_raid_disks;
7194 for (i = 0; i < delta_disks; i++) {
7195 set_imsm_ord_tbl_ent(newmap,
7196 u->old_raid_disks + i,
7197 u->old_raid_disks + i);
7198 }
7199 /* New map is correct, now need to save old map
7200 */
7201 newmap = get_imsm_map(newdev, 1);
7202 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7203
7204 imsm_set_array_size(newdev);
7205 }
7206
7207 sp = (void **)id->dev;
7208 id->dev = newdev;
7209 *sp = tofree;
7210 tofree = sp;
7211
7212 /* Clear migration record */
7213 memset(super->migr_rec, 0, sizeof(struct migr_record));
7214 }
7215 if (tofree)
7216 *space_list = tofree;
7217 ret_val = 1;
7218
7219 update_reshape_exit:
7220
7221 return ret_val;
7222 }
7223
7224 static int apply_takeover_update(struct imsm_update_takeover *u,
7225 struct intel_super *super,
7226 void ***space_list)
7227 {
7228 struct imsm_dev *dev = NULL;
7229 struct intel_dev *dv;
7230 struct imsm_dev *dev_new;
7231 struct imsm_map *map;
7232 struct dl *dm, *du;
7233 int i;
7234
7235 for (dv = super->devlist; dv; dv = dv->next)
7236 if (dv->index == (unsigned int)u->subarray) {
7237 dev = dv->dev;
7238 break;
7239 }
7240
7241 if (dev == NULL)
7242 return 0;
7243
7244 map = get_imsm_map(dev, 0);
7245
7246 if (u->direction == R10_TO_R0) {
7247 /* Number of failed disks must be half of initial disk number */
7248 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7249 return 0;
7250
7251 /* iterate through devices to mark removed disks as spare */
7252 for (dm = super->disks; dm; dm = dm->next) {
7253 if (dm->disk.status & FAILED_DISK) {
7254 int idx = dm->index;
7255 /* update indexes on the disk list */
7256 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7257 the index values will end up being correct.... NB */
7258 for (du = super->disks; du; du = du->next)
7259 if (du->index > idx)
7260 du->index--;
7261 /* mark as spare disk */
7262 mark_spare(dm);
7263 }
7264 }
7265 /* update map */
7266 map->num_members = map->num_members / 2;
7267 map->map_state = IMSM_T_STATE_NORMAL;
7268 map->num_domains = 1;
7269 map->raid_level = 0;
7270 map->failed_disk_num = -1;
7271 }
7272
7273 if (u->direction == R0_TO_R10) {
7274 void **space;
7275 /* update slots in current disk list */
7276 for (dm = super->disks; dm; dm = dm->next) {
7277 if (dm->index >= 0)
7278 dm->index *= 2;
7279 }
7280 /* create new *missing* disks */
7281 for (i = 0; i < map->num_members; i++) {
7282 space = *space_list;
7283 if (!space)
7284 continue;
7285 *space_list = *space;
7286 du = (void *)space;
7287 memcpy(du, super->disks, sizeof(*du));
7288 du->fd = -1;
7289 du->minor = 0;
7290 du->major = 0;
7291 du->index = (i * 2) + 1;
7292 sprintf((char *)du->disk.serial,
7293 " MISSING_%d", du->index);
7294 sprintf((char *)du->serial,
7295 "MISSING_%d", du->index);
7296 du->next = super->missing;
7297 super->missing = du;
7298 }
7299 /* create new dev and map */
7300 space = *space_list;
7301 if (!space)
7302 return 0;
7303 *space_list = *space;
7304 dev_new = (void *)space;
7305 memcpy(dev_new, dev, sizeof(*dev));
7306 /* update new map */
7307 map = get_imsm_map(dev_new, 0);
7308 map->num_members = map->num_members * 2;
7309 map->map_state = IMSM_T_STATE_DEGRADED;
7310 map->num_domains = 2;
7311 map->raid_level = 1;
7312 /* replace dev<->dev_new */
7313 dv->dev = dev_new;
7314 }
7315 /* update disk order table */
7316 for (du = super->disks; du; du = du->next)
7317 if (du->index >= 0)
7318 set_imsm_ord_tbl_ent(map, du->index, du->index);
7319 for (du = super->missing; du; du = du->next)
7320 if (du->index >= 0) {
7321 set_imsm_ord_tbl_ent(map, du->index, du->index);
7322 mark_missing(dv->dev, &du->disk, du->index);
7323 }
7324
7325 return 1;
7326 }
7327
7328 static void imsm_process_update(struct supertype *st,
7329 struct metadata_update *update)
7330 {
7331 /**
7332 * crack open the metadata_update envelope to find the update record
7333 * update can be one of:
7334 * update_reshape_container_disks - all the arrays in the container
7335 * are being reshaped to have more devices. We need to mark
7336 * the arrays for general migration and convert selected spares
7337 * into active devices.
7338 * update_activate_spare - a spare device has replaced a failed
7339 * device in an array, update the disk_ord_tbl. If this disk is
7340 * present in all member arrays then also clear the SPARE_DISK
7341 * flag
7342 * update_create_array
7343 * update_kill_array
7344 * update_rename_array
7345 * update_add_remove_disk
7346 */
7347 struct intel_super *super = st->sb;
7348 struct imsm_super *mpb;
7349 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7350
7351 /* update requires a larger buf but the allocation failed */
7352 if (super->next_len && !super->next_buf) {
7353 super->next_len = 0;
7354 return;
7355 }
7356
7357 if (super->next_buf) {
7358 memcpy(super->next_buf, super->buf, super->len);
7359 free(super->buf);
7360 super->len = super->next_len;
7361 super->buf = super->next_buf;
7362
7363 super->next_len = 0;
7364 super->next_buf = NULL;
7365 }
7366
7367 mpb = super->anchor;
7368
7369 switch (type) {
7370 case update_general_migration_checkpoint: {
7371 struct intel_dev *id;
7372 struct imsm_update_general_migration_checkpoint *u =
7373 (void *)update->buf;
7374
7375 dprintf("imsm: process_update() "
7376 "for update_general_migration_checkpoint called\n");
7377
7378 /* find device under general migration */
7379 for (id = super->devlist ; id; id = id->next) {
7380 if (is_gen_migration(id->dev)) {
7381 id->dev->vol.curr_migr_unit =
7382 __cpu_to_le32(u->curr_migr_unit);
7383 super->updates_pending++;
7384 }
7385 }
7386 break;
7387 }
7388 case update_takeover: {
7389 struct imsm_update_takeover *u = (void *)update->buf;
7390 if (apply_takeover_update(u, super, &update->space_list)) {
7391 imsm_update_version_info(super);
7392 super->updates_pending++;
7393 }
7394 break;
7395 }
7396
7397 case update_reshape_container_disks: {
7398 struct imsm_update_reshape *u = (void *)update->buf;
7399 if (apply_reshape_container_disks_update(
7400 u, super, &update->space_list))
7401 super->updates_pending++;
7402 break;
7403 }
7404 case update_reshape_migration: {
7405 struct imsm_update_reshape_migration *u = (void *)update->buf;
7406 if (apply_reshape_migration_update(
7407 u, super, &update->space_list))
7408 super->updates_pending++;
7409 break;
7410 }
7411 case update_activate_spare: {
7412 struct imsm_update_activate_spare *u = (void *) update->buf;
7413 if (apply_update_activate_spare(u, super, st->arrays))
7414 super->updates_pending++;
7415 break;
7416 }
7417 case update_create_array: {
7418 /* someone wants to create a new array, we need to be aware of
7419 * a few races/collisions:
7420 * 1/ 'Create' called by two separate instances of mdadm
7421 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7422 * devices that have since been assimilated via
7423 * activate_spare.
7424 * In the event this update can not be carried out mdadm will
7425 * (FIX ME) notice that its update did not take hold.
7426 */
7427 struct imsm_update_create_array *u = (void *) update->buf;
7428 struct intel_dev *dv;
7429 struct imsm_dev *dev;
7430 struct imsm_map *map, *new_map;
7431 unsigned long long start, end;
7432 unsigned long long new_start, new_end;
7433 int i;
7434 struct disk_info *inf;
7435 struct dl *dl;
7436
7437 /* handle racing creates: first come first serve */
7438 if (u->dev_idx < mpb->num_raid_devs) {
7439 dprintf("%s: subarray %d already defined\n",
7440 __func__, u->dev_idx);
7441 goto create_error;
7442 }
7443
7444 /* check update is next in sequence */
7445 if (u->dev_idx != mpb->num_raid_devs) {
7446 dprintf("%s: can not create array %d expected index %d\n",
7447 __func__, u->dev_idx, mpb->num_raid_devs);
7448 goto create_error;
7449 }
7450
7451 new_map = get_imsm_map(&u->dev, 0);
7452 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7453 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7454 inf = get_disk_info(u);
7455
7456 /* handle activate_spare versus create race:
7457 * check to make sure that overlapping arrays do not include
7458 * overalpping disks
7459 */
7460 for (i = 0; i < mpb->num_raid_devs; i++) {
7461 dev = get_imsm_dev(super, i);
7462 map = get_imsm_map(dev, 0);
7463 start = __le32_to_cpu(map->pba_of_lba0);
7464 end = start + __le32_to_cpu(map->blocks_per_member);
7465 if ((new_start >= start && new_start <= end) ||
7466 (start >= new_start && start <= new_end))
7467 /* overlap */;
7468 else
7469 continue;
7470
7471 if (disks_overlap(super, i, u)) {
7472 dprintf("%s: arrays overlap\n", __func__);
7473 goto create_error;
7474 }
7475 }
7476
7477 /* check that prepare update was successful */
7478 if (!update->space) {
7479 dprintf("%s: prepare update failed\n", __func__);
7480 goto create_error;
7481 }
7482
7483 /* check that all disks are still active before committing
7484 * changes. FIXME: could we instead handle this by creating a
7485 * degraded array? That's probably not what the user expects,
7486 * so better to drop this update on the floor.
7487 */
7488 for (i = 0; i < new_map->num_members; i++) {
7489 dl = serial_to_dl(inf[i].serial, super);
7490 if (!dl) {
7491 dprintf("%s: disk disappeared\n", __func__);
7492 goto create_error;
7493 }
7494 }
7495
7496 super->updates_pending++;
7497
7498 /* convert spares to members and fixup ord_tbl */
7499 for (i = 0; i < new_map->num_members; i++) {
7500 dl = serial_to_dl(inf[i].serial, super);
7501 if (dl->index == -1) {
7502 dl->index = mpb->num_disks;
7503 mpb->num_disks++;
7504 dl->disk.status |= CONFIGURED_DISK;
7505 dl->disk.status &= ~SPARE_DISK;
7506 }
7507 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7508 }
7509
7510 dv = update->space;
7511 dev = dv->dev;
7512 update->space = NULL;
7513 imsm_copy_dev(dev, &u->dev);
7514 dv->index = u->dev_idx;
7515 dv->next = super->devlist;
7516 super->devlist = dv;
7517 mpb->num_raid_devs++;
7518
7519 imsm_update_version_info(super);
7520 break;
7521 create_error:
7522 /* mdmon knows how to release update->space, but not
7523 * ((struct intel_dev *) update->space)->dev
7524 */
7525 if (update->space) {
7526 dv = update->space;
7527 free(dv->dev);
7528 }
7529 break;
7530 }
7531 case update_kill_array: {
7532 struct imsm_update_kill_array *u = (void *) update->buf;
7533 int victim = u->dev_idx;
7534 struct active_array *a;
7535 struct intel_dev **dp;
7536 struct imsm_dev *dev;
7537
7538 /* sanity check that we are not affecting the uuid of
7539 * active arrays, or deleting an active array
7540 *
7541 * FIXME when immutable ids are available, but note that
7542 * we'll also need to fixup the invalidated/active
7543 * subarray indexes in mdstat
7544 */
7545 for (a = st->arrays; a; a = a->next)
7546 if (a->info.container_member >= victim)
7547 break;
7548 /* by definition if mdmon is running at least one array
7549 * is active in the container, so checking
7550 * mpb->num_raid_devs is just extra paranoia
7551 */
7552 dev = get_imsm_dev(super, victim);
7553 if (a || !dev || mpb->num_raid_devs == 1) {
7554 dprintf("failed to delete subarray-%d\n", victim);
7555 break;
7556 }
7557
7558 for (dp = &super->devlist; *dp;)
7559 if ((*dp)->index == (unsigned)super->current_vol) {
7560 *dp = (*dp)->next;
7561 } else {
7562 if ((*dp)->index > (unsigned)victim)
7563 (*dp)->index--;
7564 dp = &(*dp)->next;
7565 }
7566 mpb->num_raid_devs--;
7567 super->updates_pending++;
7568 break;
7569 }
7570 case update_rename_array: {
7571 struct imsm_update_rename_array *u = (void *) update->buf;
7572 char name[MAX_RAID_SERIAL_LEN+1];
7573 int target = u->dev_idx;
7574 struct active_array *a;
7575 struct imsm_dev *dev;
7576
7577 /* sanity check that we are not affecting the uuid of
7578 * an active array
7579 */
7580 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7581 name[MAX_RAID_SERIAL_LEN] = '\0';
7582 for (a = st->arrays; a; a = a->next)
7583 if (a->info.container_member == target)
7584 break;
7585 dev = get_imsm_dev(super, u->dev_idx);
7586 if (a || !dev || !check_name(super, name, 1)) {
7587 dprintf("failed to rename subarray-%d\n", target);
7588 break;
7589 }
7590
7591 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7592 super->updates_pending++;
7593 break;
7594 }
7595 case update_add_remove_disk: {
7596 /* we may be able to repair some arrays if disks are
7597 * being added, check teh status of add_remove_disk
7598 * if discs has been added.
7599 */
7600 if (add_remove_disk_update(super)) {
7601 struct active_array *a;
7602
7603 super->updates_pending++;
7604 for (a = st->arrays; a; a = a->next)
7605 a->check_degraded = 1;
7606 }
7607 break;
7608 }
7609 default:
7610 fprintf(stderr, "error: unsuported process update type:"
7611 "(type: %d)\n", type);
7612 }
7613 }
7614
7615 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7616
7617 static void imsm_prepare_update(struct supertype *st,
7618 struct metadata_update *update)
7619 {
7620 /**
7621 * Allocate space to hold new disk entries, raid-device entries or a new
7622 * mpb if necessary. The manager synchronously waits for updates to
7623 * complete in the monitor, so new mpb buffers allocated here can be
7624 * integrated by the monitor thread without worrying about live pointers
7625 * in the manager thread.
7626 */
7627 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7628 struct intel_super *super = st->sb;
7629 struct imsm_super *mpb = super->anchor;
7630 size_t buf_len;
7631 size_t len = 0;
7632
7633 switch (type) {
7634 case update_general_migration_checkpoint:
7635 dprintf("imsm: prepare_update() "
7636 "for update_general_migration_checkpoint called\n");
7637 break;
7638 case update_takeover: {
7639 struct imsm_update_takeover *u = (void *)update->buf;
7640 if (u->direction == R0_TO_R10) {
7641 void **tail = (void **)&update->space_list;
7642 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7643 struct imsm_map *map = get_imsm_map(dev, 0);
7644 int num_members = map->num_members;
7645 void *space;
7646 int size, i;
7647 int err = 0;
7648 /* allocate memory for added disks */
7649 for (i = 0; i < num_members; i++) {
7650 size = sizeof(struct dl);
7651 space = malloc(size);
7652 if (!space) {
7653 err++;
7654 break;
7655 }
7656 *tail = space;
7657 tail = space;
7658 *tail = NULL;
7659 }
7660 /* allocate memory for new device */
7661 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7662 (num_members * sizeof(__u32));
7663 space = malloc(size);
7664 if (!space)
7665 err++;
7666 else {
7667 *tail = space;
7668 tail = space;
7669 *tail = NULL;
7670 }
7671 if (!err) {
7672 len = disks_to_mpb_size(num_members * 2);
7673 } else {
7674 /* if allocation didn't success, free buffer */
7675 while (update->space_list) {
7676 void **sp = update->space_list;
7677 update->space_list = *sp;
7678 free(sp);
7679 }
7680 }
7681 }
7682
7683 break;
7684 }
7685 case update_reshape_container_disks: {
7686 /* Every raid device in the container is about to
7687 * gain some more devices, and we will enter a
7688 * reconfiguration.
7689 * So each 'imsm_map' will be bigger, and the imsm_vol
7690 * will now hold 2 of them.
7691 * Thus we need new 'struct imsm_dev' allocations sized
7692 * as sizeof_imsm_dev but with more devices in both maps.
7693 */
7694 struct imsm_update_reshape *u = (void *)update->buf;
7695 struct intel_dev *dl;
7696 void **space_tail = (void**)&update->space_list;
7697
7698 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7699
7700 for (dl = super->devlist; dl; dl = dl->next) {
7701 int size = sizeof_imsm_dev(dl->dev, 1);
7702 void *s;
7703 if (u->new_raid_disks > u->old_raid_disks)
7704 size += sizeof(__u32)*2*
7705 (u->new_raid_disks - u->old_raid_disks);
7706 s = malloc(size);
7707 if (!s)
7708 break;
7709 *space_tail = s;
7710 space_tail = s;
7711 *space_tail = NULL;
7712 }
7713
7714 len = disks_to_mpb_size(u->new_raid_disks);
7715 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7716 break;
7717 }
7718 case update_reshape_migration: {
7719 /* for migration level 0->5 we need to add disks
7720 * so the same as for container operation we will copy
7721 * device to the bigger location.
7722 * in memory prepared device and new disk area are prepared
7723 * for usage in process update
7724 */
7725 struct imsm_update_reshape_migration *u = (void *)update->buf;
7726 struct intel_dev *id;
7727 void **space_tail = (void **)&update->space_list;
7728 int size;
7729 void *s;
7730 int current_level = -1;
7731
7732 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7733
7734 /* add space for bigger array in update
7735 */
7736 for (id = super->devlist; id; id = id->next) {
7737 if (id->index == (unsigned)u->subdev) {
7738 size = sizeof_imsm_dev(id->dev, 1);
7739 if (u->new_raid_disks > u->old_raid_disks)
7740 size += sizeof(__u32)*2*
7741 (u->new_raid_disks - u->old_raid_disks);
7742 s = malloc(size);
7743 if (!s)
7744 break;
7745 *space_tail = s;
7746 space_tail = s;
7747 *space_tail = NULL;
7748 break;
7749 }
7750 }
7751 if (update->space_list == NULL)
7752 break;
7753
7754 /* add space for disk in update
7755 */
7756 size = sizeof(struct dl);
7757 s = malloc(size);
7758 if (!s) {
7759 free(update->space_list);
7760 update->space_list = NULL;
7761 break;
7762 }
7763 *space_tail = s;
7764 space_tail = s;
7765 *space_tail = NULL;
7766
7767 /* add spare device to update
7768 */
7769 for (id = super->devlist ; id; id = id->next)
7770 if (id->index == (unsigned)u->subdev) {
7771 struct imsm_dev *dev;
7772 struct imsm_map *map;
7773
7774 dev = get_imsm_dev(super, u->subdev);
7775 map = get_imsm_map(dev, 0);
7776 current_level = map->raid_level;
7777 break;
7778 }
7779 if ((u->new_level == 5) && (u->new_level != current_level)) {
7780 struct mdinfo *spares;
7781
7782 spares = get_spares_for_grow(st);
7783 if (spares) {
7784 struct dl *dl;
7785 struct mdinfo *dev;
7786
7787 dev = spares->devs;
7788 if (dev) {
7789 u->new_disks[0] =
7790 makedev(dev->disk.major,
7791 dev->disk.minor);
7792 dl = get_disk_super(super,
7793 dev->disk.major,
7794 dev->disk.minor);
7795 dl->index = u->old_raid_disks;
7796 dev = dev->next;
7797 }
7798 sysfs_free(spares);
7799 }
7800 }
7801 len = disks_to_mpb_size(u->new_raid_disks);
7802 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7803 break;
7804 }
7805 case update_create_array: {
7806 struct imsm_update_create_array *u = (void *) update->buf;
7807 struct intel_dev *dv;
7808 struct imsm_dev *dev = &u->dev;
7809 struct imsm_map *map = get_imsm_map(dev, 0);
7810 struct dl *dl;
7811 struct disk_info *inf;
7812 int i;
7813 int activate = 0;
7814
7815 inf = get_disk_info(u);
7816 len = sizeof_imsm_dev(dev, 1);
7817 /* allocate a new super->devlist entry */
7818 dv = malloc(sizeof(*dv));
7819 if (dv) {
7820 dv->dev = malloc(len);
7821 if (dv->dev)
7822 update->space = dv;
7823 else {
7824 free(dv);
7825 update->space = NULL;
7826 }
7827 }
7828
7829 /* count how many spares will be converted to members */
7830 for (i = 0; i < map->num_members; i++) {
7831 dl = serial_to_dl(inf[i].serial, super);
7832 if (!dl) {
7833 /* hmm maybe it failed?, nothing we can do about
7834 * it here
7835 */
7836 continue;
7837 }
7838 if (count_memberships(dl, super) == 0)
7839 activate++;
7840 }
7841 len += activate * sizeof(struct imsm_disk);
7842 break;
7843 default:
7844 break;
7845 }
7846 }
7847
7848 /* check if we need a larger metadata buffer */
7849 if (super->next_buf)
7850 buf_len = super->next_len;
7851 else
7852 buf_len = super->len;
7853
7854 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7855 /* ok we need a larger buf than what is currently allocated
7856 * if this allocation fails process_update will notice that
7857 * ->next_len is set and ->next_buf is NULL
7858 */
7859 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7860 if (super->next_buf)
7861 free(super->next_buf);
7862
7863 super->next_len = buf_len;
7864 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7865 memset(super->next_buf, 0, buf_len);
7866 else
7867 super->next_buf = NULL;
7868 }
7869 }
7870
7871 /* must be called while manager is quiesced */
7872 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7873 {
7874 struct imsm_super *mpb = super->anchor;
7875 struct dl *iter;
7876 struct imsm_dev *dev;
7877 struct imsm_map *map;
7878 int i, j, num_members;
7879 __u32 ord;
7880
7881 dprintf("%s: deleting device[%d] from imsm_super\n",
7882 __func__, index);
7883
7884 /* shift all indexes down one */
7885 for (iter = super->disks; iter; iter = iter->next)
7886 if (iter->index > (int)index)
7887 iter->index--;
7888 for (iter = super->missing; iter; iter = iter->next)
7889 if (iter->index > (int)index)
7890 iter->index--;
7891
7892 for (i = 0; i < mpb->num_raid_devs; i++) {
7893 dev = get_imsm_dev(super, i);
7894 map = get_imsm_map(dev, 0);
7895 num_members = map->num_members;
7896 for (j = 0; j < num_members; j++) {
7897 /* update ord entries being careful not to propagate
7898 * ord-flags to the first map
7899 */
7900 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7901
7902 if (ord_to_idx(ord) <= index)
7903 continue;
7904
7905 map = get_imsm_map(dev, 0);
7906 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7907 map = get_imsm_map(dev, 1);
7908 if (map)
7909 set_imsm_ord_tbl_ent(map, j, ord - 1);
7910 }
7911 }
7912
7913 mpb->num_disks--;
7914 super->updates_pending++;
7915 if (*dlp) {
7916 struct dl *dl = *dlp;
7917
7918 *dlp = (*dlp)->next;
7919 __free_imsm_disk(dl);
7920 }
7921 }
7922 #endif /* MDASSEMBLE */
7923 /*******************************************************************************
7924 * Function: open_backup_targets
7925 * Description: Function opens file descriptors for all devices given in
7926 * info->devs
7927 * Parameters:
7928 * info : general array info
7929 * raid_disks : number of disks
7930 * raid_fds : table of device's file descriptors
7931 * Returns:
7932 * 0 : success
7933 * -1 : fail
7934 ******************************************************************************/
7935 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7936 {
7937 struct mdinfo *sd;
7938
7939 for (sd = info->devs ; sd ; sd = sd->next) {
7940 char *dn;
7941
7942 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7943 dprintf("disk is faulty!!\n");
7944 continue;
7945 }
7946
7947 if ((sd->disk.raid_disk >= raid_disks) ||
7948 (sd->disk.raid_disk < 0))
7949 continue;
7950
7951 dn = map_dev(sd->disk.major,
7952 sd->disk.minor, 1);
7953 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7954 if (raid_fds[sd->disk.raid_disk] < 0) {
7955 fprintf(stderr, "cannot open component\n");
7956 return -1;
7957 }
7958 }
7959 return 0;
7960 }
7961
7962 #ifndef MDASSEMBLE
7963 /*******************************************************************************
7964 * Function: init_migr_record_imsm
7965 * Description: Function inits imsm migration record
7966 * Parameters:
7967 * super : imsm internal array info
7968 * dev : device under migration
7969 * info : general array info to find the smallest device
7970 * Returns:
7971 * none
7972 ******************************************************************************/
7973 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7974 struct mdinfo *info)
7975 {
7976 struct intel_super *super = st->sb;
7977 struct migr_record *migr_rec = super->migr_rec;
7978 int new_data_disks;
7979 unsigned long long dsize, dev_sectors;
7980 long long unsigned min_dev_sectors = -1LLU;
7981 struct mdinfo *sd;
7982 char nm[30];
7983 int fd;
7984 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7985 struct imsm_map *map_src = get_imsm_map(dev, 1);
7986 unsigned long long num_migr_units;
7987 unsigned long long array_blocks;
7988
7989 memset(migr_rec, 0, sizeof(struct migr_record));
7990 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7991
7992 /* only ascending reshape supported now */
7993 migr_rec->ascending_migr = __cpu_to_le32(1);
7994
7995 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7996 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7997 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7998 new_data_disks = imsm_num_data_members(dev, 0);
7999 migr_rec->blocks_per_unit =
8000 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8001 migr_rec->dest_depth_per_unit =
8002 __cpu_to_le32(migr_rec->dest_depth_per_unit);
8003 array_blocks = info->component_size * new_data_disks;
8004 num_migr_units =
8005 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8006
8007 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8008 num_migr_units++;
8009 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8010
8011 migr_rec->post_migr_vol_cap = dev->size_low;
8012 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8013
8014
8015 /* Find the smallest dev */
8016 for (sd = info->devs ; sd ; sd = sd->next) {
8017 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8018 fd = dev_open(nm, O_RDONLY);
8019 if (fd < 0)
8020 continue;
8021 get_dev_size(fd, NULL, &dsize);
8022 dev_sectors = dsize / 512;
8023 if (dev_sectors < min_dev_sectors)
8024 min_dev_sectors = dev_sectors;
8025 close(fd);
8026 }
8027 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8028 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8029
8030 write_imsm_migr_rec(st);
8031
8032 return;
8033 }
8034
8035 /*******************************************************************************
8036 * Function: save_backup_imsm
8037 * Description: Function saves critical data stripes to Migration Copy Area
8038 * and updates the current migration unit status.
8039 * Use restore_stripes() to form a destination stripe,
8040 * and to write it to the Copy Area.
8041 * Parameters:
8042 * st : supertype information
8043 * dev : imsm device that backup is saved for
8044 * info : general array info
8045 * buf : input buffer
8046 * length : length of data to backup (blocks_per_unit)
8047 * Returns:
8048 * 0 : success
8049 *, -1 : fail
8050 ******************************************************************************/
8051 int save_backup_imsm(struct supertype *st,
8052 struct imsm_dev *dev,
8053 struct mdinfo *info,
8054 void *buf,
8055 int length)
8056 {
8057 int rv = -1;
8058 struct intel_super *super = st->sb;
8059 unsigned long long *target_offsets = NULL;
8060 int *targets = NULL;
8061 int i;
8062 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8063 int new_disks = map_dest->num_members;
8064 int dest_layout = 0;
8065 int dest_chunk;
8066 unsigned long long start;
8067 int data_disks = imsm_num_data_members(dev, 0);
8068
8069 targets = malloc(new_disks * sizeof(int));
8070 if (!targets)
8071 goto abort;
8072
8073 for (i = 0; i < new_disks; i++)
8074 targets[i] = -1;
8075
8076 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8077 if (!target_offsets)
8078 goto abort;
8079
8080 start = info->reshape_progress * 512;
8081 for (i = 0; i < new_disks; i++) {
8082 target_offsets[i] = (unsigned long long)
8083 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8084 /* move back copy area adderss, it will be moved forward
8085 * in restore_stripes() using start input variable
8086 */
8087 target_offsets[i] -= start/data_disks;
8088 }
8089
8090 if (open_backup_targets(info, new_disks, targets))
8091 goto abort;
8092
8093 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8094 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8095
8096 if (restore_stripes(targets, /* list of dest devices */
8097 target_offsets, /* migration record offsets */
8098 new_disks,
8099 dest_chunk,
8100 map_dest->raid_level,
8101 dest_layout,
8102 -1, /* source backup file descriptor */
8103 0, /* input buf offset
8104 * always 0 buf is already offseted */
8105 start,
8106 length,
8107 buf) != 0) {
8108 fprintf(stderr, Name ": Error restoring stripes\n");
8109 goto abort;
8110 }
8111
8112 rv = 0;
8113
8114 abort:
8115 if (targets) {
8116 for (i = 0; i < new_disks; i++)
8117 if (targets[i] >= 0)
8118 close(targets[i]);
8119 free(targets);
8120 }
8121 free(target_offsets);
8122
8123 return rv;
8124 }
8125
8126 /*******************************************************************************
8127 * Function: save_checkpoint_imsm
8128 * Description: Function called for current unit status update
8129 * in the migration record. It writes it to disk.
8130 * Parameters:
8131 * super : imsm internal array info
8132 * info : general array info
8133 * Returns:
8134 * 0: success
8135 * 1: failure
8136 * 2: failure, means no valid migration record
8137 * / no general migration in progress /
8138 ******************************************************************************/
8139 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8140 {
8141 struct intel_super *super = st->sb;
8142 unsigned long long blocks_per_unit;
8143 unsigned long long curr_migr_unit;
8144
8145 if (load_imsm_migr_rec(super, info) != 0) {
8146 dprintf("imsm: ERROR: Cannot read migration record "
8147 "for checkpoint save.\n");
8148 return 1;
8149 }
8150
8151 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8152 if (blocks_per_unit == 0) {
8153 dprintf("imsm: no migration in progress.\n");
8154 return 2;
8155 }
8156 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8157 /* check if array is alligned to copy area
8158 * if it is not alligned, add one to current migration unit value
8159 * this can happend on array reshape finish only
8160 */
8161 if (info->reshape_progress % blocks_per_unit)
8162 curr_migr_unit++;
8163
8164 super->migr_rec->curr_migr_unit =
8165 __cpu_to_le32(curr_migr_unit);
8166 super->migr_rec->rec_status = __cpu_to_le32(state);
8167 super->migr_rec->dest_1st_member_lba =
8168 __cpu_to_le32(curr_migr_unit *
8169 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8170 if (write_imsm_migr_rec(st) < 0) {
8171 dprintf("imsm: Cannot write migration record "
8172 "outside backup area\n");
8173 return 1;
8174 }
8175
8176 return 0;
8177 }
8178
8179 /*******************************************************************************
8180 * Function: recover_backup_imsm
8181 * Description: Function recovers critical data from the Migration Copy Area
8182 * while assembling an array.
8183 * Parameters:
8184 * super : imsm internal array info
8185 * info : general array info
8186 * Returns:
8187 * 0 : success (or there is no data to recover)
8188 * 1 : fail
8189 ******************************************************************************/
8190 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8191 {
8192 struct intel_super *super = st->sb;
8193 struct migr_record *migr_rec = super->migr_rec;
8194 struct imsm_map *map_dest = NULL;
8195 struct intel_dev *id = NULL;
8196 unsigned long long read_offset;
8197 unsigned long long write_offset;
8198 unsigned unit_len;
8199 int *targets = NULL;
8200 int new_disks, i, err;
8201 char *buf = NULL;
8202 int retval = 1;
8203 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8204 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8205 char buffer[20];
8206 int skipped_disks = 0;
8207 int max_degradation;
8208
8209 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8210 if (err < 1)
8211 return 1;
8212
8213 /* recover data only during assemblation */
8214 if (strncmp(buffer, "inactive", 8) != 0)
8215 return 0;
8216 /* no data to recover */
8217 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8218 return 0;
8219 if (curr_migr_unit >= num_migr_units)
8220 return 1;
8221
8222 /* find device during reshape */
8223 for (id = super->devlist; id; id = id->next)
8224 if (is_gen_migration(id->dev))
8225 break;
8226 if (id == NULL)
8227 return 1;
8228
8229 map_dest = get_imsm_map(id->dev, 0);
8230 new_disks = map_dest->num_members;
8231 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8232
8233 read_offset = (unsigned long long)
8234 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8235
8236 write_offset = ((unsigned long long)
8237 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8238 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8239
8240 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8241 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8242 goto abort;
8243 targets = malloc(new_disks * sizeof(int));
8244 if (!targets)
8245 goto abort;
8246
8247 open_backup_targets(info, new_disks, targets);
8248
8249 for (i = 0; i < new_disks; i++) {
8250 if (targets[i] < 0) {
8251 skipped_disks++;
8252 continue;
8253 }
8254 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8255 fprintf(stderr,
8256 Name ": Cannot seek to block: %s\n",
8257 strerror(errno));
8258 goto abort;
8259 }
8260 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8261 fprintf(stderr,
8262 Name ": Cannot read copy area block: %s\n",
8263 strerror(errno));
8264 goto abort;
8265 }
8266 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8267 fprintf(stderr,
8268 Name ": Cannot seek to block: %s\n",
8269 strerror(errno));
8270 goto abort;
8271 }
8272 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8273 fprintf(stderr,
8274 Name ": Cannot restore block: %s\n",
8275 strerror(errno));
8276 goto abort;
8277 }
8278 }
8279
8280 if (skipped_disks > max_degradation) {
8281 fprintf(stderr,
8282 Name ": Cannot restore data from backup."
8283 " Too many failed disks\n");
8284 goto abort;
8285 }
8286
8287 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8288 /* ignore error == 2, this can mean end of reshape here
8289 */
8290 dprintf("imsm: Cannot write checkpoint to "
8291 "migration record (UNIT_SRC_NORMAL) during restart\n");
8292 } else
8293 retval = 0;
8294
8295 abort:
8296 if (targets) {
8297 for (i = 0; i < new_disks; i++)
8298 if (targets[i])
8299 close(targets[i]);
8300 free(targets);
8301 }
8302 free(buf);
8303 return retval;
8304 }
8305
8306 static char disk_by_path[] = "/dev/disk/by-path/";
8307
8308 static const char *imsm_get_disk_controller_domain(const char *path)
8309 {
8310 char disk_path[PATH_MAX];
8311 char *drv=NULL;
8312 struct stat st;
8313
8314 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8315 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8316 if (stat(disk_path, &st) == 0) {
8317 struct sys_dev* hba;
8318 char *path=NULL;
8319
8320 path = devt_to_devpath(st.st_rdev);
8321 if (path == NULL)
8322 return "unknown";
8323 hba = find_disk_attached_hba(-1, path);
8324 if (hba && hba->type == SYS_DEV_SAS)
8325 drv = "isci";
8326 else if (hba && hba->type == SYS_DEV_SATA)
8327 drv = "ahci";
8328 else
8329 drv = "unknown";
8330 dprintf("path: %s hba: %s attached: %s\n",
8331 path, (hba) ? hba->path : "NULL", drv);
8332 free(path);
8333 if (hba)
8334 free_sys_dev(&hba);
8335 }
8336 return drv;
8337 }
8338
8339 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8340 {
8341 char subdev_name[20];
8342 struct mdstat_ent *mdstat;
8343
8344 sprintf(subdev_name, "%d", subdev);
8345 mdstat = mdstat_by_subdev(subdev_name, container);
8346 if (!mdstat)
8347 return -1;
8348
8349 *minor = mdstat->devnum;
8350 free_mdstat(mdstat);
8351 return 0;
8352 }
8353
8354 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8355 struct geo_params *geo,
8356 int *old_raid_disks)
8357 {
8358 /* currently we only support increasing the number of devices
8359 * for a container. This increases the number of device for each
8360 * member array. They must all be RAID0 or RAID5.
8361 */
8362 int ret_val = 0;
8363 struct mdinfo *info, *member;
8364 int devices_that_can_grow = 0;
8365
8366 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8367 "st->devnum = (%i)\n",
8368 st->devnum);
8369
8370 if (geo->size != -1 ||
8371 geo->level != UnSet ||
8372 geo->layout != UnSet ||
8373 geo->chunksize != 0 ||
8374 geo->raid_disks == UnSet) {
8375 dprintf("imsm: Container operation is allowed for "
8376 "raid disks number change only.\n");
8377 return ret_val;
8378 }
8379
8380 info = container_content_imsm(st, NULL);
8381 for (member = info; member; member = member->next) {
8382 int result;
8383 int minor;
8384
8385 dprintf("imsm: checking device_num: %i\n",
8386 member->container_member);
8387
8388 if (geo->raid_disks <= member->array.raid_disks) {
8389 /* we work on container for Online Capacity Expansion
8390 * only so raid_disks has to grow
8391 */
8392 dprintf("imsm: for container operation raid disks "
8393 "increase is required\n");
8394 break;
8395 }
8396
8397 if ((info->array.level != 0) &&
8398 (info->array.level != 5)) {
8399 /* we cannot use this container with other raid level
8400 */
8401 dprintf("imsm: for container operation wrong"
8402 " raid level (%i) detected\n",
8403 info->array.level);
8404 break;
8405 } else {
8406 /* check for platform support
8407 * for this raid level configuration
8408 */
8409 struct intel_super *super = st->sb;
8410 if (!is_raid_level_supported(super->orom,
8411 member->array.level,
8412 geo->raid_disks)) {
8413 dprintf("platform does not support raid%d with"
8414 " %d disk%s\n",
8415 info->array.level,
8416 geo->raid_disks,
8417 geo->raid_disks > 1 ? "s" : "");
8418 break;
8419 }
8420 /* check if component size is aligned to chunk size
8421 */
8422 if (info->component_size %
8423 (info->array.chunk_size/512)) {
8424 dprintf("Component size is not aligned to "
8425 "chunk size\n");
8426 break;
8427 }
8428 }
8429
8430 if (*old_raid_disks &&
8431 info->array.raid_disks != *old_raid_disks)
8432 break;
8433 *old_raid_disks = info->array.raid_disks;
8434
8435 /* All raid5 and raid0 volumes in container
8436 * have to be ready for Online Capacity Expansion
8437 * so they need to be assembled. We have already
8438 * checked that no recovery etc is happening.
8439 */
8440 result = imsm_find_array_minor_by_subdev(member->container_member,
8441 st->container_dev,
8442 &minor);
8443 if (result < 0) {
8444 dprintf("imsm: cannot find array\n");
8445 break;
8446 }
8447 devices_that_can_grow++;
8448 }
8449 sysfs_free(info);
8450 if (!member && devices_that_can_grow)
8451 ret_val = 1;
8452
8453 if (ret_val)
8454 dprintf("\tContainer operation allowed\n");
8455 else
8456 dprintf("\tError: %i\n", ret_val);
8457
8458 return ret_val;
8459 }
8460
8461 /* Function: get_spares_for_grow
8462 * Description: Allocates memory and creates list of spare devices
8463 * avaliable in container. Checks if spare drive size is acceptable.
8464 * Parameters: Pointer to the supertype structure
8465 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8466 * NULL if fail
8467 */
8468 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8469 {
8470 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8471 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8472 }
8473
8474 /******************************************************************************
8475 * function: imsm_create_metadata_update_for_reshape
8476 * Function creates update for whole IMSM container.
8477 *
8478 ******************************************************************************/
8479 static int imsm_create_metadata_update_for_reshape(
8480 struct supertype *st,
8481 struct geo_params *geo,
8482 int old_raid_disks,
8483 struct imsm_update_reshape **updatep)
8484 {
8485 struct intel_super *super = st->sb;
8486 struct imsm_super *mpb = super->anchor;
8487 int update_memory_size = 0;
8488 struct imsm_update_reshape *u = NULL;
8489 struct mdinfo *spares = NULL;
8490 int i;
8491 int delta_disks = 0;
8492 struct mdinfo *dev;
8493
8494 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8495 geo->raid_disks);
8496
8497 delta_disks = geo->raid_disks - old_raid_disks;
8498
8499 /* size of all update data without anchor */
8500 update_memory_size = sizeof(struct imsm_update_reshape);
8501
8502 /* now add space for spare disks that we need to add. */
8503 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8504
8505 u = calloc(1, update_memory_size);
8506 if (u == NULL) {
8507 dprintf("error: "
8508 "cannot get memory for imsm_update_reshape update\n");
8509 return 0;
8510 }
8511 u->type = update_reshape_container_disks;
8512 u->old_raid_disks = old_raid_disks;
8513 u->new_raid_disks = geo->raid_disks;
8514
8515 /* now get spare disks list
8516 */
8517 spares = get_spares_for_grow(st);
8518
8519 if (spares == NULL
8520 || delta_disks > spares->array.spare_disks) {
8521 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8522 "for %s.\n", geo->dev_name);
8523 i = -1;
8524 goto abort;
8525 }
8526
8527 /* we have got spares
8528 * update disk list in imsm_disk list table in anchor
8529 */
8530 dprintf("imsm: %i spares are available.\n\n",
8531 spares->array.spare_disks);
8532
8533 dev = spares->devs;
8534 for (i = 0; i < delta_disks; i++) {
8535 struct dl *dl;
8536
8537 if (dev == NULL)
8538 break;
8539 u->new_disks[i] = makedev(dev->disk.major,
8540 dev->disk.minor);
8541 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8542 dl->index = mpb->num_disks;
8543 mpb->num_disks++;
8544 dev = dev->next;
8545 }
8546
8547 abort:
8548 /* free spares
8549 */
8550 sysfs_free(spares);
8551
8552 dprintf("imsm: reshape update preparation :");
8553 if (i == delta_disks) {
8554 dprintf(" OK\n");
8555 *updatep = u;
8556 return update_memory_size;
8557 }
8558 free(u);
8559 dprintf(" Error\n");
8560
8561 return 0;
8562 }
8563
8564 /******************************************************************************
8565 * function: imsm_create_metadata_update_for_migration()
8566 * Creates update for IMSM array.
8567 *
8568 ******************************************************************************/
8569 static int imsm_create_metadata_update_for_migration(
8570 struct supertype *st,
8571 struct geo_params *geo,
8572 struct imsm_update_reshape_migration **updatep)
8573 {
8574 struct intel_super *super = st->sb;
8575 int update_memory_size = 0;
8576 struct imsm_update_reshape_migration *u = NULL;
8577 struct imsm_dev *dev;
8578 int previous_level = -1;
8579
8580 dprintf("imsm_create_metadata_update_for_migration(enter)"
8581 " New Level = %i\n", geo->level);
8582
8583 /* size of all update data without anchor */
8584 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8585
8586 u = calloc(1, update_memory_size);
8587 if (u == NULL) {
8588 dprintf("error: cannot get memory for "
8589 "imsm_create_metadata_update_for_migration\n");
8590 return 0;
8591 }
8592 u->type = update_reshape_migration;
8593 u->subdev = super->current_vol;
8594 u->new_level = geo->level;
8595 u->new_layout = geo->layout;
8596 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8597 u->new_disks[0] = -1;
8598 u->new_chunksize = -1;
8599
8600 dev = get_imsm_dev(super, u->subdev);
8601 if (dev) {
8602 struct imsm_map *map;
8603
8604 map = get_imsm_map(dev, 0);
8605 if (map) {
8606 int current_chunk_size =
8607 __le16_to_cpu(map->blocks_per_strip) / 2;
8608
8609 if (geo->chunksize != current_chunk_size) {
8610 u->new_chunksize = geo->chunksize / 1024;
8611 dprintf("imsm: "
8612 "chunk size change from %i to %i\n",
8613 current_chunk_size, u->new_chunksize);
8614 }
8615 previous_level = map->raid_level;
8616 }
8617 }
8618 if ((geo->level == 5) && (previous_level == 0)) {
8619 struct mdinfo *spares = NULL;
8620
8621 u->new_raid_disks++;
8622 spares = get_spares_for_grow(st);
8623 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8624 free(u);
8625 sysfs_free(spares);
8626 update_memory_size = 0;
8627 dprintf("error: cannot get spare device "
8628 "for requested migration");
8629 return 0;
8630 }
8631 sysfs_free(spares);
8632 }
8633 dprintf("imsm: reshape update preparation : OK\n");
8634 *updatep = u;
8635
8636 return update_memory_size;
8637 }
8638
8639 static void imsm_update_metadata_locally(struct supertype *st,
8640 void *buf, int len)
8641 {
8642 struct metadata_update mu;
8643
8644 mu.buf = buf;
8645 mu.len = len;
8646 mu.space = NULL;
8647 mu.space_list = NULL;
8648 mu.next = NULL;
8649 imsm_prepare_update(st, &mu);
8650 imsm_process_update(st, &mu);
8651
8652 while (mu.space_list) {
8653 void **space = mu.space_list;
8654 mu.space_list = *space;
8655 free(space);
8656 }
8657 }
8658
8659 /***************************************************************************
8660 * Function: imsm_analyze_change
8661 * Description: Function analyze change for single volume
8662 * and validate if transition is supported
8663 * Parameters: Geometry parameters, supertype structure
8664 * Returns: Operation type code on success, -1 if fail
8665 ****************************************************************************/
8666 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8667 struct geo_params *geo)
8668 {
8669 struct mdinfo info;
8670 int change = -1;
8671 int check_devs = 0;
8672 int chunk;
8673
8674 getinfo_super_imsm_volume(st, &info, NULL);
8675 if ((geo->level != info.array.level) &&
8676 (geo->level >= 0) &&
8677 (geo->level != UnSet)) {
8678 switch (info.array.level) {
8679 case 0:
8680 if (geo->level == 5) {
8681 change = CH_MIGRATION;
8682 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8683 fprintf(stderr,
8684 Name " Error. Requested Layout "
8685 "not supported (left-asymmetric layout "
8686 "is supported only)!\n");
8687 change = -1;
8688 goto analyse_change_exit;
8689 }
8690 check_devs = 1;
8691 }
8692 if (geo->level == 10) {
8693 change = CH_TAKEOVER;
8694 check_devs = 1;
8695 }
8696 break;
8697 case 1:
8698 if (geo->level == 0) {
8699 change = CH_TAKEOVER;
8700 check_devs = 1;
8701 }
8702 break;
8703 case 10:
8704 if (geo->level == 0) {
8705 change = CH_TAKEOVER;
8706 check_devs = 1;
8707 }
8708 break;
8709 }
8710 if (change == -1) {
8711 fprintf(stderr,
8712 Name " Error. Level Migration from %d to %d "
8713 "not supported!\n",
8714 info.array.level, geo->level);
8715 goto analyse_change_exit;
8716 }
8717 } else
8718 geo->level = info.array.level;
8719
8720 if ((geo->layout != info.array.layout)
8721 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8722 change = CH_MIGRATION;
8723 if ((info.array.layout == 0)
8724 && (info.array.level == 5)
8725 && (geo->layout == 5)) {
8726 /* reshape 5 -> 4 */
8727 } else if ((info.array.layout == 5)
8728 && (info.array.level == 5)
8729 && (geo->layout == 0)) {
8730 /* reshape 4 -> 5 */
8731 geo->layout = 0;
8732 geo->level = 5;
8733 } else {
8734 fprintf(stderr,
8735 Name " Error. Layout Migration from %d to %d "
8736 "not supported!\n",
8737 info.array.layout, geo->layout);
8738 change = -1;
8739 goto analyse_change_exit;
8740 }
8741 } else
8742 geo->layout = info.array.layout;
8743
8744 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8745 && (geo->chunksize != info.array.chunk_size))
8746 change = CH_MIGRATION;
8747 else
8748 geo->chunksize = info.array.chunk_size;
8749
8750 chunk = geo->chunksize / 1024;
8751 if (!validate_geometry_imsm(st,
8752 geo->level,
8753 geo->layout,
8754 geo->raid_disks,
8755 &chunk,
8756 geo->size,
8757 0, 0, 1))
8758 change = -1;
8759
8760 if (check_devs) {
8761 struct intel_super *super = st->sb;
8762 struct imsm_super *mpb = super->anchor;
8763
8764 if (mpb->num_raid_devs > 1) {
8765 fprintf(stderr,
8766 Name " Error. Cannot perform operation on %s"
8767 "- for this operation it MUST be single "
8768 "array in container\n",
8769 geo->dev_name);
8770 change = -1;
8771 }
8772 }
8773
8774 analyse_change_exit:
8775
8776 return change;
8777 }
8778
8779 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8780 {
8781 struct intel_super *super = st->sb;
8782 struct imsm_update_takeover *u;
8783
8784 u = malloc(sizeof(struct imsm_update_takeover));
8785 if (u == NULL)
8786 return 1;
8787
8788 u->type = update_takeover;
8789 u->subarray = super->current_vol;
8790
8791 /* 10->0 transition */
8792 if (geo->level == 0)
8793 u->direction = R10_TO_R0;
8794
8795 /* 0->10 transition */
8796 if (geo->level == 10)
8797 u->direction = R0_TO_R10;
8798
8799 /* update metadata locally */
8800 imsm_update_metadata_locally(st, u,
8801 sizeof(struct imsm_update_takeover));
8802 /* and possibly remotely */
8803 if (st->update_tail)
8804 append_metadata_update(st, u,
8805 sizeof(struct imsm_update_takeover));
8806 else
8807 free(u);
8808
8809 return 0;
8810 }
8811
8812 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8813 int layout, int chunksize, int raid_disks,
8814 int delta_disks, char *backup, char *dev,
8815 int verbose)
8816 {
8817 int ret_val = 1;
8818 struct geo_params geo;
8819
8820 dprintf("imsm: reshape_super called.\n");
8821
8822 memset(&geo, 0, sizeof(struct geo_params));
8823
8824 geo.dev_name = dev;
8825 geo.dev_id = st->devnum;
8826 geo.size = size;
8827 geo.level = level;
8828 geo.layout = layout;
8829 geo.chunksize = chunksize;
8830 geo.raid_disks = raid_disks;
8831 if (delta_disks != UnSet)
8832 geo.raid_disks += delta_disks;
8833
8834 dprintf("\tfor level : %i\n", geo.level);
8835 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8836
8837 if (experimental() == 0)
8838 return ret_val;
8839
8840 if (st->container_dev == st->devnum) {
8841 /* On container level we can only increase number of devices. */
8842 dprintf("imsm: info: Container operation\n");
8843 int old_raid_disks = 0;
8844
8845 if (imsm_reshape_is_allowed_on_container(
8846 st, &geo, &old_raid_disks)) {
8847 struct imsm_update_reshape *u = NULL;
8848 int len;
8849
8850 len = imsm_create_metadata_update_for_reshape(
8851 st, &geo, old_raid_disks, &u);
8852
8853 if (len <= 0) {
8854 dprintf("imsm: Cannot prepare update\n");
8855 goto exit_imsm_reshape_super;
8856 }
8857
8858 ret_val = 0;
8859 /* update metadata locally */
8860 imsm_update_metadata_locally(st, u, len);
8861 /* and possibly remotely */
8862 if (st->update_tail)
8863 append_metadata_update(st, u, len);
8864 else
8865 free(u);
8866
8867 } else {
8868 fprintf(stderr, Name ": (imsm) Operation "
8869 "is not allowed on this container\n");
8870 }
8871 } else {
8872 /* On volume level we support following operations
8873 * - takeover: raid10 -> raid0; raid0 -> raid10
8874 * - chunk size migration
8875 * - migration: raid5 -> raid0; raid0 -> raid5
8876 */
8877 struct intel_super *super = st->sb;
8878 struct intel_dev *dev = super->devlist;
8879 int change, devnum;
8880 dprintf("imsm: info: Volume operation\n");
8881 /* find requested device */
8882 while (dev) {
8883 if (imsm_find_array_minor_by_subdev(
8884 dev->index, st->container_dev, &devnum) == 0
8885 && devnum == geo.dev_id)
8886 break;
8887 dev = dev->next;
8888 }
8889 if (dev == NULL) {
8890 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8891 geo.dev_name, geo.dev_id);
8892 goto exit_imsm_reshape_super;
8893 }
8894 super->current_vol = dev->index;
8895 change = imsm_analyze_change(st, &geo);
8896 switch (change) {
8897 case CH_TAKEOVER:
8898 ret_val = imsm_takeover(st, &geo);
8899 break;
8900 case CH_MIGRATION: {
8901 struct imsm_update_reshape_migration *u = NULL;
8902 int len =
8903 imsm_create_metadata_update_for_migration(
8904 st, &geo, &u);
8905 if (len < 1) {
8906 dprintf("imsm: "
8907 "Cannot prepare update\n");
8908 break;
8909 }
8910 ret_val = 0;
8911 /* update metadata locally */
8912 imsm_update_metadata_locally(st, u, len);
8913 /* and possibly remotely */
8914 if (st->update_tail)
8915 append_metadata_update(st, u, len);
8916 else
8917 free(u);
8918 }
8919 break;
8920 default:
8921 ret_val = 1;
8922 }
8923 }
8924
8925 exit_imsm_reshape_super:
8926 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8927 return ret_val;
8928 }
8929
8930 /*******************************************************************************
8931 * Function: wait_for_reshape_imsm
8932 * Description: Function writes new sync_max value and waits until
8933 * reshape process reach new position
8934 * Parameters:
8935 * sra : general array info
8936 * ndata : number of disks in new array's layout
8937 * Returns:
8938 * 0 : success,
8939 * 1 : there is no reshape in progress,
8940 * -1 : fail
8941 ******************************************************************************/
8942 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8943 {
8944 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8945 unsigned long long completed;
8946 /* to_complete : new sync_max position */
8947 unsigned long long to_complete = sra->reshape_progress;
8948 unsigned long long position_to_set = to_complete / ndata;
8949
8950 if (fd < 0) {
8951 dprintf("imsm: wait_for_reshape_imsm() "
8952 "cannot open reshape_position\n");
8953 return 1;
8954 }
8955
8956 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8957 dprintf("imsm: wait_for_reshape_imsm() "
8958 "cannot read reshape_position (no reshape in progres)\n");
8959 close(fd);
8960 return 0;
8961 }
8962
8963 if (completed > to_complete) {
8964 dprintf("imsm: wait_for_reshape_imsm() "
8965 "wrong next position to set %llu (%llu)\n",
8966 to_complete, completed);
8967 close(fd);
8968 return -1;
8969 }
8970 dprintf("Position set: %llu\n", position_to_set);
8971 if (sysfs_set_num(sra, NULL, "sync_max",
8972 position_to_set) != 0) {
8973 dprintf("imsm: wait_for_reshape_imsm() "
8974 "cannot set reshape position to %llu\n",
8975 position_to_set);
8976 close(fd);
8977 return -1;
8978 }
8979
8980 do {
8981 char action[20];
8982 fd_set rfds;
8983 FD_ZERO(&rfds);
8984 FD_SET(fd, &rfds);
8985 select(fd+1, &rfds, NULL, NULL, NULL);
8986 if (sysfs_get_str(sra, NULL, "sync_action",
8987 action, 20) > 0 &&
8988 strncmp(action, "reshape", 7) != 0)
8989 break;
8990 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8991 dprintf("imsm: wait_for_reshape_imsm() "
8992 "cannot read reshape_position (in loop)\n");
8993 close(fd);
8994 return 1;
8995 }
8996 } while (completed < to_complete);
8997 close(fd);
8998 return 0;
8999
9000 }
9001
9002 /*******************************************************************************
9003 * Function: check_degradation_change
9004 * Description: Check that array hasn't become failed.
9005 * Parameters:
9006 * info : for sysfs access
9007 * sources : source disks descriptors
9008 * degraded: previous degradation level
9009 * Returns:
9010 * degradation level
9011 ******************************************************************************/
9012 int check_degradation_change(struct mdinfo *info,
9013 int *sources,
9014 int degraded)
9015 {
9016 unsigned long long new_degraded;
9017 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9018 if (new_degraded != (unsigned long long)degraded) {
9019 /* check each device to ensure it is still working */
9020 struct mdinfo *sd;
9021 new_degraded = 0;
9022 for (sd = info->devs ; sd ; sd = sd->next) {
9023 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9024 continue;
9025 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9026 char sbuf[20];
9027 if (sysfs_get_str(info,
9028 sd, "state", sbuf, 20) < 0 ||
9029 strstr(sbuf, "faulty") ||
9030 strstr(sbuf, "in_sync") == NULL) {
9031 /* this device is dead */
9032 sd->disk.state = (1<<MD_DISK_FAULTY);
9033 if (sd->disk.raid_disk >= 0 &&
9034 sources[sd->disk.raid_disk] >= 0) {
9035 close(sources[
9036 sd->disk.raid_disk]);
9037 sources[sd->disk.raid_disk] =
9038 -1;
9039 }
9040 new_degraded++;
9041 }
9042 }
9043 }
9044 }
9045
9046 return new_degraded;
9047 }
9048
9049 /*******************************************************************************
9050 * Function: imsm_manage_reshape
9051 * Description: Function finds array under reshape and it manages reshape
9052 * process. It creates stripes backups (if required) and sets
9053 * checheckpoits.
9054 * Parameters:
9055 * afd : Backup handle (nattive) - not used
9056 * sra : general array info
9057 * reshape : reshape parameters - not used
9058 * st : supertype structure
9059 * blocks : size of critical section [blocks]
9060 * fds : table of source device descriptor
9061 * offsets : start of array (offest per devices)
9062 * dests : not used
9063 * destfd : table of destination device descriptor
9064 * destoffsets : table of destination offsets (per device)
9065 * Returns:
9066 * 1 : success, reshape is done
9067 * 0 : fail
9068 ******************************************************************************/
9069 static int imsm_manage_reshape(
9070 int afd, struct mdinfo *sra, struct reshape *reshape,
9071 struct supertype *st, unsigned long backup_blocks,
9072 int *fds, unsigned long long *offsets,
9073 int dests, int *destfd, unsigned long long *destoffsets)
9074 {
9075 int ret_val = 0;
9076 struct intel_super *super = st->sb;
9077 struct intel_dev *dv = NULL;
9078 struct imsm_dev *dev = NULL;
9079 struct imsm_map *map_src;
9080 int migr_vol_qan = 0;
9081 int ndata, odata; /* [bytes] */
9082 int chunk; /* [bytes] */
9083 struct migr_record *migr_rec;
9084 char *buf = NULL;
9085 unsigned int buf_size; /* [bytes] */
9086 unsigned long long max_position; /* array size [bytes] */
9087 unsigned long long next_step; /* [blocks]/[bytes] */
9088 unsigned long long old_data_stripe_length;
9089 unsigned long long start_src; /* [bytes] */
9090 unsigned long long start; /* [bytes] */
9091 unsigned long long start_buf_shift; /* [bytes] */
9092 int degraded = 0;
9093 int source_layout = 0;
9094
9095 if (!fds || !offsets || !sra)
9096 goto abort;
9097
9098 /* Find volume during the reshape */
9099 for (dv = super->devlist; dv; dv = dv->next) {
9100 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9101 && dv->dev->vol.migr_state == 1) {
9102 dev = dv->dev;
9103 migr_vol_qan++;
9104 }
9105 }
9106 /* Only one volume can migrate at the same time */
9107 if (migr_vol_qan != 1) {
9108 fprintf(stderr, Name " : %s", migr_vol_qan ?
9109 "Number of migrating volumes greater than 1\n" :
9110 "There is no volume during migrationg\n");
9111 goto abort;
9112 }
9113
9114 map_src = get_imsm_map(dev, 1);
9115 if (map_src == NULL)
9116 goto abort;
9117
9118 ndata = imsm_num_data_members(dev, 0);
9119 odata = imsm_num_data_members(dev, 1);
9120
9121 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9122 old_data_stripe_length = odata * chunk;
9123
9124 migr_rec = super->migr_rec;
9125
9126 /* initialize migration record for start condition */
9127 if (sra->reshape_progress == 0)
9128 init_migr_record_imsm(st, dev, sra);
9129 else {
9130 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9131 dprintf("imsm: cannot restart migration when data "
9132 "are present in copy area.\n");
9133 goto abort;
9134 }
9135 }
9136
9137 /* size for data */
9138 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9139 /* extend buffer size for parity disk */
9140 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9141 /* add space for stripe aligment */
9142 buf_size += old_data_stripe_length;
9143 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9144 dprintf("imsm: Cannot allocate checpoint buffer\n");
9145 goto abort;
9146 }
9147
9148 max_position = sra->component_size * ndata;
9149 source_layout = imsm_level_to_layout(map_src->raid_level);
9150
9151 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9152 __le32_to_cpu(migr_rec->num_migr_units)) {
9153 /* current reshape position [blocks] */
9154 unsigned long long current_position =
9155 __le32_to_cpu(migr_rec->blocks_per_unit)
9156 * __le32_to_cpu(migr_rec->curr_migr_unit);
9157 unsigned long long border;
9158
9159 /* Check that array hasn't become failed.
9160 */
9161 degraded = check_degradation_change(sra, fds, degraded);
9162 if (degraded > 1) {
9163 dprintf("imsm: Abort reshape due to degradation"
9164 " level (%i)\n", degraded);
9165 goto abort;
9166 }
9167
9168 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9169
9170 if ((current_position + next_step) > max_position)
9171 next_step = max_position - current_position;
9172
9173 start = current_position * 512;
9174
9175 /* allign reading start to old geometry */
9176 start_buf_shift = start % old_data_stripe_length;
9177 start_src = start - start_buf_shift;
9178
9179 border = (start_src / odata) - (start / ndata);
9180 border /= 512;
9181 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9182 /* save critical stripes to buf
9183 * start - start address of current unit
9184 * to backup [bytes]
9185 * start_src - start address of current unit
9186 * to backup alligned to source array
9187 * [bytes]
9188 */
9189 unsigned long long next_step_filler = 0;
9190 unsigned long long copy_length = next_step * 512;
9191
9192 /* allign copy area length to stripe in old geometry */
9193 next_step_filler = ((copy_length + start_buf_shift)
9194 % old_data_stripe_length);
9195 if (next_step_filler)
9196 next_step_filler = (old_data_stripe_length
9197 - next_step_filler);
9198 dprintf("save_stripes() parameters: start = %llu,"
9199 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9200 "\tstart_in_buf_shift = %llu,"
9201 "\tnext_step_filler = %llu\n",
9202 start, start_src, copy_length,
9203 start_buf_shift, next_step_filler);
9204
9205 if (save_stripes(fds, offsets, map_src->num_members,
9206 chunk, map_src->raid_level,
9207 source_layout, 0, NULL, start_src,
9208 copy_length +
9209 next_step_filler + start_buf_shift,
9210 buf)) {
9211 dprintf("imsm: Cannot save stripes"
9212 " to buffer\n");
9213 goto abort;
9214 }
9215 /* Convert data to destination format and store it
9216 * in backup general migration area
9217 */
9218 if (save_backup_imsm(st, dev, sra,
9219 buf + start_buf_shift, copy_length)) {
9220 dprintf("imsm: Cannot save stripes to "
9221 "target devices\n");
9222 goto abort;
9223 }
9224 if (save_checkpoint_imsm(st, sra,
9225 UNIT_SRC_IN_CP_AREA)) {
9226 dprintf("imsm: Cannot write checkpoint to "
9227 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9228 goto abort;
9229 }
9230 } else {
9231 /* set next step to use whole border area */
9232 border /= next_step;
9233 if (border > 1)
9234 next_step *= border;
9235 }
9236 /* When data backed up, checkpoint stored,
9237 * kick the kernel to reshape unit of data
9238 */
9239 next_step = next_step + sra->reshape_progress;
9240 /* limit next step to array max position */
9241 if (next_step > max_position)
9242 next_step = max_position;
9243 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9244 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9245 sra->reshape_progress = next_step;
9246
9247 /* wait until reshape finish */
9248 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9249 dprintf("wait_for_reshape_imsm returned error!\n");
9250 goto abort;
9251 }
9252
9253 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9254 /* ignore error == 2, this can mean end of reshape here
9255 */
9256 dprintf("imsm: Cannot write checkpoint to "
9257 "migration record (UNIT_SRC_NORMAL)\n");
9258 goto abort;
9259 }
9260
9261 }
9262
9263 /* return '1' if done */
9264 ret_val = 1;
9265 abort:
9266 free(buf);
9267 abort_reshape(sra);
9268
9269 return ret_val;
9270 }
9271 #endif /* MDASSEMBLE */
9272
9273 struct superswitch super_imsm = {
9274 #ifndef MDASSEMBLE
9275 .examine_super = examine_super_imsm,
9276 .brief_examine_super = brief_examine_super_imsm,
9277 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9278 .export_examine_super = export_examine_super_imsm,
9279 .detail_super = detail_super_imsm,
9280 .brief_detail_super = brief_detail_super_imsm,
9281 .write_init_super = write_init_super_imsm,
9282 .validate_geometry = validate_geometry_imsm,
9283 .add_to_super = add_to_super_imsm,
9284 .remove_from_super = remove_from_super_imsm,
9285 .detail_platform = detail_platform_imsm,
9286 .kill_subarray = kill_subarray_imsm,
9287 .update_subarray = update_subarray_imsm,
9288 .load_container = load_container_imsm,
9289 .default_geometry = default_geometry_imsm,
9290 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9291 .reshape_super = imsm_reshape_super,
9292 .manage_reshape = imsm_manage_reshape,
9293 .recover_backup = recover_backup_imsm,
9294 #endif
9295 .match_home = match_home_imsm,
9296 .uuid_from_super= uuid_from_super_imsm,
9297 .getinfo_super = getinfo_super_imsm,
9298 .getinfo_super_disks = getinfo_super_disks_imsm,
9299 .update_super = update_super_imsm,
9300
9301 .avail_size = avail_size_imsm,
9302 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9303
9304 .compare_super = compare_super_imsm,
9305
9306 .load_super = load_super_imsm,
9307 .init_super = init_super_imsm,
9308 .store_super = store_super_imsm,
9309 .free_super = free_super_imsm,
9310 .match_metadata_desc = match_metadata_desc_imsm,
9311 .container_content = container_content_imsm,
9312
9313
9314 .external = 1,
9315 .name = "imsm",
9316
9317 #ifndef MDASSEMBLE
9318 /* for mdmon */
9319 .open_new = imsm_open_new,
9320 .set_array_state= imsm_set_array_state,
9321 .set_disk = imsm_set_disk,
9322 .sync_metadata = imsm_sync_metadata,
9323 .activate_spare = imsm_activate_spare,
9324 .process_update = imsm_process_update,
9325 .prepare_update = imsm_prepare_update,
9326 #endif /* MDASSEMBLE */
9327 };