]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
mdadm: fix grow segfault for IMSM
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "dlink.h"
24 #include "sha1.h"
25 #include "platform-intel.h"
26 #include <values.h>
27 #include <scsi/sg.h>
28 #include <ctype.h>
29 #include <dirent.h>
30
31 /* MPB == Metadata Parameter Block */
32 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
33 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
34 #define MPB_VERSION_RAID0 "1.0.00"
35 #define MPB_VERSION_RAID1 "1.1.00"
36 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
37 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
38 #define MPB_VERSION_RAID5 "1.2.02"
39 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
40 #define MPB_VERSION_CNG "1.2.06"
41 #define MPB_VERSION_ATTRIBS "1.3.00"
42 #define MAX_SIGNATURE_LENGTH 32
43 #define MAX_RAID_SERIAL_LEN 16
44
45 /* supports RAID0 */
46 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
47 /* supports RAID1 */
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 /* supports RAID10 */
50 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
51 /* supports RAID1E */
52 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
53 /* supports RAID5 */
54 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
55 /* supports RAID CNG */
56 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
57 /* supports expanded stripe sizes of 256K, 512K and 1MB */
58 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
59
60 /* The OROM Support RST Caching of Volumes */
61 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
62 /* The OROM supports creating disks greater than 2TB */
63 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
64 /* The OROM supports Bad Block Management */
65 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
66
67 /* THe OROM Supports NVM Caching of Volumes */
68 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
69 /* The OROM supports creating volumes greater than 2TB */
70 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
71 /* originally for PMP, now it's wasted b/c. Never use this bit! */
72 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
73 /* Verify MPB contents against checksum after reading MPB */
74 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
75
76 /* Define all supported attributes that have to be accepted by mdadm
77 */
78 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
79 MPB_ATTRIB_2TB | \
80 MPB_ATTRIB_2TB_DISK | \
81 MPB_ATTRIB_RAID0 | \
82 MPB_ATTRIB_RAID1 | \
83 MPB_ATTRIB_RAID10 | \
84 MPB_ATTRIB_RAID5 | \
85 MPB_ATTRIB_EXP_STRIPE_SIZE | \
86 MPB_ATTRIB_BBM)
87
88 /* Define attributes that are unused but not harmful */
89 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
90
91 #define MPB_SECTOR_CNT 2210
92 #define IMSM_RESERVED_SECTORS 8192
93 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
94 #define SECT_PER_MB_SHIFT 11
95 #define MAX_SECTOR_SIZE 4096
96 #define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
97 * mutliple PPL area
98 */
99
100 /*
101 * Internal Write-intent bitmap is stored in the same area where PPL.
102 * Both features are mutually exclusive, so it is not an issue.
103 * The first 8KiB of the area are reserved and shall not be used.
104 */
105 #define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
106
107 #define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
108 #define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
109
110 #define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
111 #define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
112 #define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
113
114 #define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
115 #define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
116
117 /*
118 * This macro let's us ensure that no-one accidentally
119 * changes the size of a struct
120 */
121 #define ASSERT_SIZE(_struct, size) \
122 static inline void __assert_size_##_struct(void) \
123 { \
124 switch (0) { \
125 case 0: break; \
126 case (sizeof(struct _struct) == size): break; \
127 } \
128 }
129
130 /* Disk configuration info. */
131 #define IMSM_MAX_DEVICES 255
132 struct imsm_disk {
133 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
134 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
135 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
136 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
137 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
138 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
139 #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
140 __u32 status; /* 0xF0 - 0xF3 */
141 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
142 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
143 #define IMSM_DISK_FILLERS 3
144 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
145 };
146 ASSERT_SIZE(imsm_disk, 48)
147
148 /* map selector for map managment
149 */
150 #define MAP_0 0
151 #define MAP_1 1
152 #define MAP_X -1
153
154 /* RAID map configuration infos. */
155 struct imsm_map {
156 __u32 pba_of_lba0_lo; /* start address of partition */
157 __u32 blocks_per_member_lo;/* blocks per member */
158 __u32 num_data_stripes_lo; /* number of data stripes */
159 __u16 blocks_per_strip;
160 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
161 #define IMSM_T_STATE_NORMAL 0
162 #define IMSM_T_STATE_UNINITIALIZED 1
163 #define IMSM_T_STATE_DEGRADED 2
164 #define IMSM_T_STATE_FAILED 3
165 __u8 raid_level;
166 #define IMSM_T_RAID0 0
167 #define IMSM_T_RAID1 1
168 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
169 __u8 num_members; /* number of member disks */
170 __u8 num_domains; /* number of parity domains */
171 __u8 failed_disk_num; /* valid only when state is degraded */
172 __u8 ddf;
173 __u32 pba_of_lba0_hi;
174 __u32 blocks_per_member_hi;
175 __u32 num_data_stripes_hi;
176 __u32 filler[4]; /* expansion area */
177 #define IMSM_ORD_REBUILD (1 << 24)
178 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
179 * top byte contains some flags
180 */
181 };
182 ASSERT_SIZE(imsm_map, 52)
183
184 struct imsm_vol {
185 __u32 curr_migr_unit_lo;
186 __u32 checkpoint_id; /* id to access curr_migr_unit */
187 __u8 migr_state; /* Normal or Migrating */
188 #define MIGR_INIT 0
189 #define MIGR_REBUILD 1
190 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
191 #define MIGR_GEN_MIGR 3
192 #define MIGR_STATE_CHANGE 4
193 #define MIGR_REPAIR 5
194 __u8 migr_type; /* Initializing, Rebuilding, ... */
195 #define RAIDVOL_CLEAN 0
196 #define RAIDVOL_DIRTY 1
197 #define RAIDVOL_DSRECORD_VALID 2
198 __u8 dirty;
199 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
200 __u16 verify_errors; /* number of mismatches */
201 __u16 bad_blocks; /* number of bad blocks during verify */
202 __u32 curr_migr_unit_hi;
203 __u32 filler[3];
204 struct imsm_map map[1];
205 /* here comes another one if migr_state */
206 };
207 ASSERT_SIZE(imsm_vol, 84)
208
209 struct imsm_dev {
210 __u8 volume[MAX_RAID_SERIAL_LEN];
211 __u32 size_low;
212 __u32 size_high;
213 #define DEV_BOOTABLE __cpu_to_le32(0x01)
214 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
215 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
216 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
217 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
218 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
219 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
220 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
221 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
222 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
223 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
224 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
225 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
226 __u32 status; /* Persistent RaidDev status */
227 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
228 __u8 migr_priority;
229 __u8 num_sub_vols;
230 __u8 tid;
231 __u8 cng_master_disk;
232 __u16 cache_policy;
233 __u8 cng_state;
234 __u8 cng_sub_state;
235 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
236
237 /* NVM_EN */
238 __u8 nv_cache_mode;
239 __u8 nv_cache_flags;
240
241 /* Unique Volume Id of the NvCache Volume associated with this volume */
242 __u32 nvc_vol_orig_family_num;
243 __u16 nvc_vol_raid_dev_num;
244
245 #define RWH_OFF 0
246 #define RWH_DISTRIBUTED 1
247 #define RWH_JOURNALING_DRIVE 2
248 #define RWH_MULTIPLE_DISTRIBUTED 3
249 #define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
250 #define RWH_MULTIPLE_OFF 5
251 #define RWH_BITMAP 6
252 __u8 rwh_policy; /* Raid Write Hole Policy */
253 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
254 __u8 filler1;
255
256 #define IMSM_DEV_FILLERS 3
257 __u32 filler[IMSM_DEV_FILLERS];
258 struct imsm_vol vol;
259 };
260 ASSERT_SIZE(imsm_dev, 164)
261
262 struct imsm_super {
263 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
264 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
265 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
266 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
267 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
268 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
269 __u32 attributes; /* 0x34 - 0x37 */
270 __u8 num_disks; /* 0x38 Number of configured disks */
271 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
272 __u8 error_log_pos; /* 0x3A */
273 __u8 fill[1]; /* 0x3B */
274 __u32 cache_size; /* 0x3c - 0x40 in mb */
275 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
276 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
277 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
278 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
279 * volume IDs for raid_dev created in this array
280 * (starts at 1)
281 */
282 __u16 filler1; /* 0x4E - 0x4F */
283 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
284 #define IMSM_FILLERS 32
285 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
286 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
287 /* here comes imsm_dev[num_raid_devs] */
288 /* here comes BBM logs */
289 };
290 ASSERT_SIZE(imsm_super, 264)
291
292 #define BBM_LOG_MAX_ENTRIES 254
293 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
294 #define BBM_LOG_SIGNATURE 0xabadb10c
295
296 struct bbm_log_block_addr {
297 __u16 w1;
298 __u32 dw1;
299 } __attribute__ ((__packed__));
300
301 struct bbm_log_entry {
302 __u8 marked_count; /* Number of blocks marked - 1 */
303 __u8 disk_ordinal; /* Disk entry within the imsm_super */
304 struct bbm_log_block_addr defective_block_start;
305 } __attribute__ ((__packed__));
306
307 struct bbm_log {
308 __u32 signature; /* 0xABADB10C */
309 __u32 entry_count;
310 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
311 };
312 ASSERT_SIZE(bbm_log, 2040)
313
314 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
315
316 #define BLOCKS_PER_KB (1024/512)
317
318 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
319
320 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
321
322 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
323 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
324 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
325 */
326
327 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
328 * be recovered using srcMap */
329 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
330 * already been migrated and must
331 * be recovered from checkpoint area */
332
333 #define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
334
335 struct migr_record {
336 __u32 rec_status; /* Status used to determine how to restart
337 * migration in case it aborts
338 * in some fashion */
339 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
340 __u32 family_num; /* Family number of MPB
341 * containing the RaidDev
342 * that is migrating */
343 __u32 ascending_migr; /* True if migrating in increasing
344 * order of lbas */
345 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
346 __u32 dest_depth_per_unit; /* Num member blocks each destMap
347 * member disk
348 * advances per unit-of-operation */
349 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
350 __u32 dest_1st_member_lba_lo; /* First member lba on first
351 * stripe of destination */
352 __u32 num_migr_units_lo; /* Total num migration units-of-op */
353 __u32 post_migr_vol_cap; /* Size of volume after
354 * migration completes */
355 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
356 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
357 * migration ckpt record was read from
358 * (for recovered migrations) */
359 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
360 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
361 * high order 32 bits */
362 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
363 * destination - high order 32 bits */
364 __u32 num_migr_units_hi; /* Total num migration units-of-op
365 * high order 32 bits */
366 __u32 filler[16];
367 };
368 ASSERT_SIZE(migr_record, 128)
369
370 /**
371 * enum imsm_status - internal IMSM return values representation.
372 * @STATUS_OK: function succeeded.
373 * @STATUS_ERROR: General error ocurred (not specified).
374 *
375 * Typedefed to imsm_status_t.
376 */
377 typedef enum imsm_status {
378 IMSM_STATUS_ERROR = -1,
379 IMSM_STATUS_OK = 0,
380 } imsm_status_t;
381
382 struct md_list {
383 /* usage marker:
384 * 1: load metadata
385 * 2: metadata does not match
386 * 4: already checked
387 */
388 int used;
389 char *devname;
390 int found;
391 int container;
392 dev_t st_rdev;
393 struct md_list *next;
394 };
395
396 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
397
398 static __u8 migr_type(struct imsm_dev *dev)
399 {
400 if (dev->vol.migr_type == MIGR_VERIFY &&
401 dev->status & DEV_VERIFY_AND_FIX)
402 return MIGR_REPAIR;
403 else
404 return dev->vol.migr_type;
405 }
406
407 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
408 {
409 /* for compatibility with older oroms convert MIGR_REPAIR, into
410 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
411 */
412 if (migr_type == MIGR_REPAIR) {
413 dev->vol.migr_type = MIGR_VERIFY;
414 dev->status |= DEV_VERIFY_AND_FIX;
415 } else {
416 dev->vol.migr_type = migr_type;
417 dev->status &= ~DEV_VERIFY_AND_FIX;
418 }
419 }
420
421 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
422 {
423 return ROUND_UP(bytes, sector_size) / sector_size;
424 }
425
426 static unsigned int mpb_sectors(struct imsm_super *mpb,
427 unsigned int sector_size)
428 {
429 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
430 }
431
432 struct intel_dev {
433 struct imsm_dev *dev;
434 struct intel_dev *next;
435 unsigned index;
436 };
437
438 struct intel_hba {
439 enum sys_dev_type type;
440 char *path;
441 char *pci_id;
442 struct intel_hba *next;
443 };
444
445 enum action {
446 DISK_REMOVE = 1,
447 DISK_ADD
448 };
449 /* internal representation of IMSM metadata */
450 struct intel_super {
451 union {
452 void *buf; /* O_DIRECT buffer for reading/writing metadata */
453 struct imsm_super *anchor; /* immovable parameters */
454 };
455 union {
456 void *migr_rec_buf; /* buffer for I/O operations */
457 struct migr_record *migr_rec; /* migration record */
458 };
459 int clean_migration_record_by_mdmon; /* when reshape is switched to next
460 array, it indicates that mdmon is allowed to clean migration
461 record */
462 size_t len; /* size of the 'buf' allocation */
463 size_t extra_space; /* extra space in 'buf' that is not used yet */
464 void *next_buf; /* for realloc'ing buf from the manager */
465 size_t next_len;
466 int updates_pending; /* count of pending updates for mdmon */
467 int current_vol; /* index of raid device undergoing creation */
468 unsigned long long create_offset; /* common start for 'current_vol' */
469 __u32 random; /* random data for seeding new family numbers */
470 struct intel_dev *devlist;
471 unsigned int sector_size; /* sector size of used member drives */
472 struct dl {
473 struct dl *next;
474 int index;
475 __u8 serial[MAX_RAID_SERIAL_LEN];
476 int major, minor;
477 char *devname;
478 struct imsm_disk disk;
479 int fd;
480 int extent_cnt;
481 struct extent *e; /* for determining freespace @ create */
482 int raiddisk; /* slot to fill in autolayout */
483 enum action action;
484 } *disks, *current_disk;
485 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
486 active */
487 struct dl *missing; /* disks removed while we weren't looking */
488 struct bbm_log *bbm_log;
489 struct intel_hba *hba; /* device path of the raid controller for this metadata */
490 const struct imsm_orom *orom; /* platform firmware support */
491 struct intel_super *next; /* (temp) list for disambiguating family_num */
492 struct md_bb bb; /* memory for get_bad_blocks call */
493 };
494
495 struct intel_disk {
496 struct imsm_disk disk;
497 #define IMSM_UNKNOWN_OWNER (-1)
498 int owner;
499 struct intel_disk *next;
500 };
501
502 /**
503 * struct extent - reserved space details.
504 * @start: start offset.
505 * @size: size of reservation, set to 0 for metadata reservation.
506 * @vol: index of the volume, meaningful if &size is set.
507 */
508 struct extent {
509 unsigned long long start, size;
510 int vol;
511 };
512
513 /* definitions of reshape process types */
514 enum imsm_reshape_type {
515 CH_TAKEOVER,
516 CH_MIGRATION,
517 CH_ARRAY_SIZE,
518 };
519
520 /* definition of messages passed to imsm_process_update */
521 enum imsm_update_type {
522 update_activate_spare,
523 update_create_array,
524 update_kill_array,
525 update_rename_array,
526 update_add_remove_disk,
527 update_reshape_container_disks,
528 update_reshape_migration,
529 update_takeover,
530 update_general_migration_checkpoint,
531 update_size_change,
532 update_prealloc_badblocks_mem,
533 update_rwh_policy,
534 };
535
536 struct imsm_update_activate_spare {
537 enum imsm_update_type type;
538 struct dl *dl;
539 int slot;
540 int array;
541 struct imsm_update_activate_spare *next;
542 };
543
544 struct geo_params {
545 char devnm[32];
546 char *dev_name;
547 unsigned long long size;
548 int level;
549 int layout;
550 int chunksize;
551 int raid_disks;
552 };
553
554 enum takeover_direction {
555 R10_TO_R0,
556 R0_TO_R10
557 };
558 struct imsm_update_takeover {
559 enum imsm_update_type type;
560 int subarray;
561 enum takeover_direction direction;
562 };
563
564 struct imsm_update_reshape {
565 enum imsm_update_type type;
566 int old_raid_disks;
567 int new_raid_disks;
568
569 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
570 };
571
572 struct imsm_update_reshape_migration {
573 enum imsm_update_type type;
574 int old_raid_disks;
575 int new_raid_disks;
576 /* fields for array migration changes
577 */
578 int subdev;
579 int new_level;
580 int new_layout;
581 int new_chunksize;
582
583 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
584 };
585
586 struct imsm_update_size_change {
587 enum imsm_update_type type;
588 int subdev;
589 long long new_size;
590 };
591
592 struct imsm_update_general_migration_checkpoint {
593 enum imsm_update_type type;
594 __u64 curr_migr_unit;
595 };
596
597 struct disk_info {
598 __u8 serial[MAX_RAID_SERIAL_LEN];
599 };
600
601 struct imsm_update_create_array {
602 enum imsm_update_type type;
603 int dev_idx;
604 struct imsm_dev dev;
605 };
606
607 struct imsm_update_kill_array {
608 enum imsm_update_type type;
609 int dev_idx;
610 };
611
612 struct imsm_update_rename_array {
613 enum imsm_update_type type;
614 __u8 name[MAX_RAID_SERIAL_LEN];
615 int dev_idx;
616 };
617
618 struct imsm_update_add_remove_disk {
619 enum imsm_update_type type;
620 };
621
622 struct imsm_update_prealloc_bb_mem {
623 enum imsm_update_type type;
624 };
625
626 struct imsm_update_rwh_policy {
627 enum imsm_update_type type;
628 int new_policy;
629 int dev_idx;
630 };
631
632 static const char *_sys_dev_type[] = {
633 [SYS_DEV_UNKNOWN] = "Unknown",
634 [SYS_DEV_SAS] = "SAS",
635 [SYS_DEV_SATA] = "SATA",
636 [SYS_DEV_NVME] = "NVMe",
637 [SYS_DEV_VMD] = "VMD",
638 [SYS_DEV_SATA_VMD] = "SATA VMD"
639 };
640
641 static int no_platform = -1;
642
643 static int check_no_platform(void)
644 {
645 static const char search[] = "mdadm.imsm.test=1";
646 FILE *fp;
647
648 if (no_platform >= 0)
649 return no_platform;
650
651 if (check_env("IMSM_NO_PLATFORM")) {
652 no_platform = 1;
653 return 1;
654 }
655 fp = fopen("/proc/cmdline", "r");
656 if (fp) {
657 char *l = conf_line(fp);
658 char *w = l;
659
660 if (l == NULL) {
661 fclose(fp);
662 return 0;
663 }
664
665 do {
666 if (strcmp(w, search) == 0)
667 no_platform = 1;
668 w = dl_next(w);
669 } while (w != l);
670 free_line(l);
671 fclose(fp);
672 if (no_platform >= 0)
673 return no_platform;
674 }
675 no_platform = 0;
676 return 0;
677 }
678
679 void imsm_set_no_platform(int v)
680 {
681 no_platform = v;
682 }
683
684 const char *get_sys_dev_type(enum sys_dev_type type)
685 {
686 if (type >= SYS_DEV_MAX)
687 type = SYS_DEV_UNKNOWN;
688
689 return _sys_dev_type[type];
690 }
691
692 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
693 {
694 struct intel_hba *result = xmalloc(sizeof(*result));
695
696 result->type = device->type;
697 result->path = xstrdup(device->path);
698 result->next = NULL;
699 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
700 result->pci_id++;
701
702 return result;
703 }
704
705 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
706 {
707 struct intel_hba *result;
708
709 for (result = hba; result; result = result->next) {
710 if (result->type == device->type && strcmp(result->path, device->path) == 0)
711 break;
712 }
713 return result;
714 }
715
716 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
717 {
718 struct intel_hba *hba;
719
720 /* check if disk attached to Intel HBA */
721 hba = find_intel_hba(super->hba, device);
722 if (hba != NULL)
723 return 1;
724 /* Check if HBA is already attached to super */
725 if (super->hba == NULL) {
726 super->hba = alloc_intel_hba(device);
727 return 1;
728 }
729
730 hba = super->hba;
731 /* Intel metadata allows for all disks attached to the same type HBA.
732 * Do not support HBA types mixing
733 */
734 if (device->type != hba->type)
735 return 2;
736
737 /* Multiple same type HBAs can be used if they share the same OROM */
738 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
739
740 if (device_orom != super->orom)
741 return 2;
742
743 while (hba->next)
744 hba = hba->next;
745
746 hba->next = alloc_intel_hba(device);
747 return 1;
748 }
749
750 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
751 {
752 struct sys_dev *list, *elem;
753 char *disk_path;
754
755 if ((list = find_intel_devices()) == NULL)
756 return 0;
757
758 if (!is_fd_valid(fd))
759 disk_path = (char *) devname;
760 else
761 disk_path = diskfd_to_devpath(fd, 1, NULL);
762
763 if (!disk_path)
764 return 0;
765
766 for (elem = list; elem; elem = elem->next)
767 if (path_attached_to_hba(disk_path, elem->path))
768 break;
769
770 if (disk_path != devname)
771 free(disk_path);
772
773 return elem;
774 }
775
776 static int find_intel_hba_capability(int fd, struct intel_super *super,
777 char *devname);
778
779 static struct supertype *match_metadata_desc_imsm(char *arg)
780 {
781 struct supertype *st;
782
783 if (strcmp(arg, "imsm") != 0 &&
784 strcmp(arg, "default") != 0
785 )
786 return NULL;
787
788 st = xcalloc(1, sizeof(*st));
789 st->ss = &super_imsm;
790 st->max_devs = IMSM_MAX_DEVICES;
791 st->minor_version = 0;
792 st->sb = NULL;
793 return st;
794 }
795
796 static __u8 *get_imsm_version(struct imsm_super *mpb)
797 {
798 return &mpb->sig[MPB_SIG_LEN];
799 }
800
801 /* retrieve a disk directly from the anchor when the anchor is known to be
802 * up-to-date, currently only at load time
803 */
804 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
805 {
806 if (index >= mpb->num_disks)
807 return NULL;
808 return &mpb->disk[index];
809 }
810
811 /* retrieve the disk description based on a index of the disk
812 * in the sub-array
813 */
814 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
815 {
816 struct dl *d;
817
818 for (d = super->disks; d; d = d->next)
819 if (d->index == index)
820 return d;
821
822 return NULL;
823 }
824 /* retrieve a disk from the parsed metadata */
825 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
826 {
827 struct dl *dl;
828
829 dl = get_imsm_dl_disk(super, index);
830 if (dl)
831 return &dl->disk;
832
833 return NULL;
834 }
835
836 /* generate a checksum directly from the anchor when the anchor is known to be
837 * up-to-date, currently only at load or write_super after coalescing
838 */
839 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
840 {
841 __u32 end = mpb->mpb_size / sizeof(end);
842 __u32 *p = (__u32 *) mpb;
843 __u32 sum = 0;
844
845 while (end--) {
846 sum += __le32_to_cpu(*p);
847 p++;
848 }
849
850 return sum - __le32_to_cpu(mpb->check_sum);
851 }
852
853 static size_t sizeof_imsm_map(struct imsm_map *map)
854 {
855 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
856 }
857
858 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
859 {
860 /* A device can have 2 maps if it is in the middle of a migration.
861 * If second_map is:
862 * MAP_0 - we return the first map
863 * MAP_1 - we return the second map if it exists, else NULL
864 * MAP_X - we return the second map if it exists, else the first
865 */
866 struct imsm_map *map = &dev->vol.map[0];
867 struct imsm_map *map2 = NULL;
868
869 if (dev->vol.migr_state)
870 map2 = (void *)map + sizeof_imsm_map(map);
871
872 switch (second_map) {
873 case MAP_0:
874 break;
875 case MAP_1:
876 map = map2;
877 break;
878 case MAP_X:
879 if (map2)
880 map = map2;
881 break;
882 default:
883 map = NULL;
884 }
885 return map;
886
887 }
888
889 /* return the size of the device.
890 * migr_state increases the returned size if map[0] were to be duplicated
891 */
892 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
893 {
894 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
895 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
896
897 /* migrating means an additional map */
898 if (dev->vol.migr_state)
899 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
900 else if (migr_state)
901 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
902
903 return size;
904 }
905
906 /* retrieve disk serial number list from a metadata update */
907 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
908 {
909 void *u = update;
910 struct disk_info *inf;
911
912 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
913 sizeof_imsm_dev(&update->dev, 0);
914
915 return inf;
916 }
917
918 /**
919 * __get_imsm_dev() - Get device with index from imsm_super.
920 * @mpb: &imsm_super pointer, not NULL.
921 * @index: Device index.
922 *
923 * Function works as non-NULL, aborting in such a case,
924 * when NULL would be returned.
925 *
926 * Device index should be in range 0 up to num_raid_devs.
927 * Function assumes the index was already verified.
928 * Index must be valid, otherwise abort() is called.
929 *
930 * Return: Pointer to corresponding imsm_dev.
931 *
932 */
933 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
934 {
935 int offset;
936 int i;
937 void *_mpb = mpb;
938
939 if (index >= mpb->num_raid_devs)
940 goto error;
941
942 /* devices start after all disks */
943 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
944
945 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
946 if (i == index)
947 return _mpb + offset;
948 error:
949 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
950 abort();
951 }
952
953 /**
954 * get_imsm_dev() - Get device with index from intel_super.
955 * @super: &intel_super pointer, not NULL.
956 * @index: Device index.
957 *
958 * Function works as non-NULL, aborting in such a case,
959 * when NULL would be returned.
960 *
961 * Device index should be in range 0 up to num_raid_devs.
962 * Function assumes the index was already verified.
963 * Index must be valid, otherwise abort() is called.
964 *
965 * Return: Pointer to corresponding imsm_dev.
966 *
967 */
968 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
969 {
970 struct intel_dev *dv;
971
972 if (index >= super->anchor->num_raid_devs)
973 goto error;
974
975 for (dv = super->devlist; dv; dv = dv->next)
976 if (dv->index == index)
977 return dv->dev;
978 error:
979 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
980 abort();
981 }
982
983 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
984 *addr)
985 {
986 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
987 __le16_to_cpu(addr->w1));
988 }
989
990 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
991 {
992 struct bbm_log_block_addr addr;
993
994 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
995 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
996 return addr;
997 }
998
999 /* get size of the bbm log */
1000 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
1001 {
1002 if (!log || log->entry_count == 0)
1003 return 0;
1004
1005 return sizeof(log->signature) +
1006 sizeof(log->entry_count) +
1007 log->entry_count * sizeof(struct bbm_log_entry);
1008 }
1009
1010 /* check if bad block is not partially stored in bbm log */
1011 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
1012 long long sector, const int length, __u32 *pos)
1013 {
1014 __u32 i;
1015
1016 for (i = *pos; i < log->entry_count; i++) {
1017 struct bbm_log_entry *entry = &log->marked_block_entries[i];
1018 unsigned long long bb_start;
1019 unsigned long long bb_end;
1020
1021 bb_start = __le48_to_cpu(&entry->defective_block_start);
1022 bb_end = bb_start + (entry->marked_count + 1);
1023
1024 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
1025 (bb_end <= sector + length)) {
1026 *pos = i;
1027 return 1;
1028 }
1029 }
1030 return 0;
1031 }
1032
1033 /* record new bad block in bbm log */
1034 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
1035 long long sector, int length)
1036 {
1037 int new_bb = 0;
1038 __u32 pos = 0;
1039 struct bbm_log_entry *entry = NULL;
1040
1041 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
1042 struct bbm_log_entry *e = &log->marked_block_entries[pos];
1043
1044 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
1045 (__le48_to_cpu(&e->defective_block_start) == sector)) {
1046 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
1047 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
1048 pos = pos + 1;
1049 continue;
1050 }
1051 entry = e;
1052 break;
1053 }
1054
1055 if (entry) {
1056 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1057 BBM_LOG_MAX_LBA_ENTRY_VAL;
1058 entry->defective_block_start = __cpu_to_le48(sector);
1059 entry->marked_count = cnt - 1;
1060 if (cnt == length)
1061 return 1;
1062 sector += cnt;
1063 length -= cnt;
1064 }
1065
1066 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1067 BBM_LOG_MAX_LBA_ENTRY_VAL;
1068 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1069 return 0;
1070
1071 while (length > 0) {
1072 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1073 BBM_LOG_MAX_LBA_ENTRY_VAL;
1074 struct bbm_log_entry *entry =
1075 &log->marked_block_entries[log->entry_count];
1076
1077 entry->defective_block_start = __cpu_to_le48(sector);
1078 entry->marked_count = cnt - 1;
1079 entry->disk_ordinal = idx;
1080
1081 sector += cnt;
1082 length -= cnt;
1083
1084 log->entry_count++;
1085 }
1086
1087 return new_bb;
1088 }
1089
1090 /* clear all bad blocks for given disk */
1091 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1092 {
1093 __u32 i = 0;
1094
1095 while (i < log->entry_count) {
1096 struct bbm_log_entry *entries = log->marked_block_entries;
1097
1098 if (entries[i].disk_ordinal == idx) {
1099 if (i < log->entry_count - 1)
1100 entries[i] = entries[log->entry_count - 1];
1101 log->entry_count--;
1102 } else {
1103 i++;
1104 }
1105 }
1106 }
1107
1108 /* clear given bad block */
1109 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1110 long long sector, const int length) {
1111 __u32 i = 0;
1112
1113 while (i < log->entry_count) {
1114 struct bbm_log_entry *entries = log->marked_block_entries;
1115
1116 if ((entries[i].disk_ordinal == idx) &&
1117 (__le48_to_cpu(&entries[i].defective_block_start) ==
1118 sector) && (entries[i].marked_count + 1 == length)) {
1119 if (i < log->entry_count - 1)
1120 entries[i] = entries[log->entry_count - 1];
1121 log->entry_count--;
1122 break;
1123 }
1124 i++;
1125 }
1126
1127 return 1;
1128 }
1129
1130 /* allocate and load BBM log from metadata */
1131 static int load_bbm_log(struct intel_super *super)
1132 {
1133 struct imsm_super *mpb = super->anchor;
1134 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1135
1136 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1137 if (!super->bbm_log)
1138 return 1;
1139
1140 if (bbm_log_size) {
1141 struct bbm_log *log = (void *)mpb +
1142 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1143
1144 __u32 entry_count;
1145
1146 if (bbm_log_size < sizeof(log->signature) +
1147 sizeof(log->entry_count))
1148 return 2;
1149
1150 entry_count = __le32_to_cpu(log->entry_count);
1151 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1152 (entry_count > BBM_LOG_MAX_ENTRIES))
1153 return 3;
1154
1155 if (bbm_log_size !=
1156 sizeof(log->signature) + sizeof(log->entry_count) +
1157 entry_count * sizeof(struct bbm_log_entry))
1158 return 4;
1159
1160 memcpy(super->bbm_log, log, bbm_log_size);
1161 } else {
1162 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1163 super->bbm_log->entry_count = 0;
1164 }
1165
1166 return 0;
1167 }
1168
1169 /* checks if bad block is within volume boundaries */
1170 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1171 const unsigned long long start_sector,
1172 const unsigned long long size)
1173 {
1174 unsigned long long bb_start;
1175 unsigned long long bb_end;
1176
1177 bb_start = __le48_to_cpu(&entry->defective_block_start);
1178 bb_end = bb_start + (entry->marked_count + 1);
1179
1180 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1181 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1182 return 1;
1183
1184 return 0;
1185 }
1186
1187 /* get list of bad blocks on a drive for a volume */
1188 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1189 const unsigned long long start_sector,
1190 const unsigned long long size,
1191 struct md_bb *bbs)
1192 {
1193 __u32 count = 0;
1194 __u32 i;
1195
1196 for (i = 0; i < log->entry_count; i++) {
1197 const struct bbm_log_entry *ent =
1198 &log->marked_block_entries[i];
1199 struct md_bb_entry *bb;
1200
1201 if ((ent->disk_ordinal == idx) &&
1202 is_bad_block_in_volume(ent, start_sector, size)) {
1203
1204 if (!bbs->entries) {
1205 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1206 sizeof(*bb));
1207 if (!bbs->entries)
1208 break;
1209 }
1210
1211 bb = &bbs->entries[count++];
1212 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1213 bb->length = ent->marked_count + 1;
1214 }
1215 }
1216 bbs->count = count;
1217 }
1218
1219 /*
1220 * for second_map:
1221 * == MAP_0 get first map
1222 * == MAP_1 get second map
1223 * == MAP_X than get map according to the current migr_state
1224 */
1225 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1226 int slot,
1227 int second_map)
1228 {
1229 struct imsm_map *map;
1230
1231 map = get_imsm_map(dev, second_map);
1232
1233 /* top byte identifies disk under rebuild */
1234 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1235 }
1236
1237 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1238 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1239 {
1240 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1241
1242 return ord_to_idx(ord);
1243 }
1244
1245 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1246 {
1247 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1248 }
1249
1250 static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
1251 {
1252 int slot;
1253 __u32 ord;
1254
1255 for (slot = 0; slot < map->num_members; slot++) {
1256 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1257 if (ord_to_idx(ord) == idx)
1258 return slot;
1259 }
1260
1261 return IMSM_STATUS_ERROR;
1262 }
1263
1264 static int get_imsm_raid_level(struct imsm_map *map)
1265 {
1266 if (map->raid_level == 1) {
1267 if (map->num_members == 2)
1268 return 1;
1269 else
1270 return 10;
1271 }
1272
1273 return map->raid_level;
1274 }
1275
1276 /**
1277 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1278 * @super: &intel_super pointer, not NULL.
1279 * @dev_idx: imsm device index.
1280 * @idx: disk index.
1281 *
1282 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1283 */
1284 static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1285 const unsigned int idx)
1286 {
1287 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1288 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1289
1290 return get_imsm_disk_slot(map, idx);
1291 }
1292
1293 static int cmp_extent(const void *av, const void *bv)
1294 {
1295 const struct extent *a = av;
1296 const struct extent *b = bv;
1297 if (a->start < b->start)
1298 return -1;
1299 if (a->start > b->start)
1300 return 1;
1301 return 0;
1302 }
1303
1304 static int count_memberships(struct dl *dl, struct intel_super *super)
1305 {
1306 int memberships = 0;
1307 int i;
1308
1309 for (i = 0; i < super->anchor->num_raid_devs; i++)
1310 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
1311 memberships++;
1312
1313 return memberships;
1314 }
1315
1316 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1317
1318 static int split_ull(unsigned long long n, void *lo, void *hi)
1319 {
1320 if (lo == 0 || hi == 0)
1321 return 1;
1322 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1323 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
1324 return 0;
1325 }
1326
1327 static unsigned long long join_u32(__u32 lo, __u32 hi)
1328 {
1329 return (unsigned long long)__le32_to_cpu(lo) |
1330 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1331 }
1332
1333 static unsigned long long total_blocks(struct imsm_disk *disk)
1334 {
1335 if (disk == NULL)
1336 return 0;
1337 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1338 }
1339
1340 /**
1341 * imsm_num_data_members() - get data drives count for an array.
1342 * @map: Map to analyze.
1343 *
1344 * num_data_members value represents minimal count of drives for level.
1345 * The name of the property could be misleading for RAID5 with asymmetric layout
1346 * because some data required to be calculated from parity.
1347 * The property is extracted from level and num_members value.
1348 *
1349 * Return: num_data_members value on success, zero otherwise.
1350 */
1351 static __u8 imsm_num_data_members(struct imsm_map *map)
1352 {
1353 switch (get_imsm_raid_level(map)) {
1354 case 0:
1355 return map->num_members;
1356 case 1:
1357 case 10:
1358 return map->num_members / 2;
1359 case 5:
1360 return map->num_members - 1;
1361 default:
1362 dprintf("unsupported raid level\n");
1363 return 0;
1364 }
1365 }
1366
1367 static unsigned long long pba_of_lba0(struct imsm_map *map)
1368 {
1369 if (map == NULL)
1370 return 0;
1371 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1372 }
1373
1374 static unsigned long long blocks_per_member(struct imsm_map *map)
1375 {
1376 if (map == NULL)
1377 return 0;
1378 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1379 }
1380
1381 static unsigned long long num_data_stripes(struct imsm_map *map)
1382 {
1383 if (map == NULL)
1384 return 0;
1385 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1386 }
1387
1388 static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1389 {
1390 if (dev == NULL)
1391 return 0;
1392
1393 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1394 }
1395
1396 static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1397 {
1398 if (dev == NULL)
1399 return 0;
1400 return join_u32(dev->size_low, dev->size_high);
1401 }
1402
1403 static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1404 {
1405 if (migr_rec == NULL)
1406 return 0;
1407 return join_u32(migr_rec->ckpt_area_pba_lo,
1408 migr_rec->ckpt_area_pba_hi);
1409 }
1410
1411 static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1412 {
1413 if (migr_rec == NULL)
1414 return 0;
1415 return join_u32(migr_rec->curr_migr_unit_lo,
1416 migr_rec->curr_migr_unit_hi);
1417 }
1418
1419 static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1420 {
1421 if (migr_rec == NULL)
1422 return 0;
1423 return join_u32(migr_rec->dest_1st_member_lba_lo,
1424 migr_rec->dest_1st_member_lba_hi);
1425 }
1426
1427 static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1428 {
1429 if (migr_rec == NULL)
1430 return 0;
1431 return join_u32(migr_rec->num_migr_units_lo,
1432 migr_rec->num_migr_units_hi);
1433 }
1434
1435 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1436 {
1437 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1438 }
1439
1440 /**
1441 * set_num_domains() - Set number of domains for an array.
1442 * @map: Map to be updated.
1443 *
1444 * num_domains property represents copies count of each data drive, thus make
1445 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1446 * raid1 and raid10.
1447 */
1448 static void set_num_domains(struct imsm_map *map)
1449 {
1450 int level = get_imsm_raid_level(map);
1451
1452 if (level == 1 || level == 10)
1453 map->num_domains = 2;
1454 else
1455 map->num_domains = 1;
1456 }
1457
1458 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1459 {
1460 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1461 }
1462
1463 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1464 {
1465 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1466 }
1467
1468 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1469 {
1470 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1471 }
1472
1473 /**
1474 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1475 * @map: map to be updated.
1476 * @dev_size: size of volume.
1477 *
1478 * num_data_stripes value is addictionally divided by num_domains, therefore for
1479 * levels where num_domains is not 1, nds is a part of real value.
1480 */
1481 static void update_num_data_stripes(struct imsm_map *map,
1482 unsigned long long dev_size)
1483 {
1484 unsigned long long nds = dev_size / imsm_num_data_members(map);
1485
1486 nds /= map->num_domains;
1487 nds /= map->blocks_per_strip;
1488 set_num_data_stripes(map, nds);
1489 }
1490
1491 static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1492 {
1493 if (dev == NULL)
1494 return;
1495
1496 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1497 }
1498
1499 static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1500 {
1501 split_ull(n, &dev->size_low, &dev->size_high);
1502 }
1503
1504 static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1505 unsigned long long n)
1506 {
1507 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1508 }
1509
1510 static void set_current_migr_unit(struct migr_record *migr_rec,
1511 unsigned long long n)
1512 {
1513 split_ull(n, &migr_rec->curr_migr_unit_lo,
1514 &migr_rec->curr_migr_unit_hi);
1515 }
1516
1517 static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1518 unsigned long long n)
1519 {
1520 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1521 &migr_rec->dest_1st_member_lba_hi);
1522 }
1523
1524 static void set_num_migr_units(struct migr_record *migr_rec,
1525 unsigned long long n)
1526 {
1527 split_ull(n, &migr_rec->num_migr_units_lo,
1528 &migr_rec->num_migr_units_hi);
1529 }
1530
1531 static unsigned long long per_dev_array_size(struct imsm_map *map)
1532 {
1533 unsigned long long array_size = 0;
1534
1535 if (map == NULL)
1536 return array_size;
1537
1538 array_size = num_data_stripes(map) * map->blocks_per_strip;
1539 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1540 array_size *= 2;
1541
1542 return array_size;
1543 }
1544
1545 static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1546 int get_minimal_reservation)
1547 {
1548 /* find a list of used extents on the given physical device */
1549 int memberships = count_memberships(dl, super);
1550 struct extent *rv = xcalloc(memberships + 1, sizeof(struct extent));
1551 struct extent *e = rv;
1552 int i;
1553 __u32 reservation;
1554
1555 /* trim the reserved area for spares, so they can join any array
1556 * regardless of whether the OROM has assigned sectors from the
1557 * IMSM_RESERVED_SECTORS region
1558 */
1559 if (dl->index == -1 || get_minimal_reservation)
1560 reservation = imsm_min_reserved_sectors(super);
1561 else
1562 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1563
1564 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1565 struct imsm_dev *dev = get_imsm_dev(super, i);
1566 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1567
1568 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1569 e->start = pba_of_lba0(map);
1570 e->size = per_dev_array_size(map);
1571 e->vol = i;
1572 e++;
1573 }
1574 }
1575 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1576
1577 /* determine the start of the metadata
1578 * when no raid devices are defined use the default
1579 * ...otherwise allow the metadata to truncate the value
1580 * as is the case with older versions of imsm
1581 */
1582 if (memberships) {
1583 struct extent *last = &rv[memberships - 1];
1584 unsigned long long remainder;
1585
1586 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1587 /* round down to 1k block to satisfy precision of the kernel
1588 * 'size' interface
1589 */
1590 remainder &= ~1UL;
1591 /* make sure remainder is still sane */
1592 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1593 remainder = ROUND_UP(super->len, 512) >> 9;
1594 if (reservation > remainder)
1595 reservation = remainder;
1596 }
1597 e->start = total_blocks(&dl->disk) - reservation;
1598 e->size = 0;
1599 return rv;
1600 }
1601
1602 /* try to determine how much space is reserved for metadata from
1603 * the last get_extents() entry, otherwise fallback to the
1604 * default
1605 */
1606 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1607 {
1608 struct extent *e;
1609 int i;
1610 __u32 rv;
1611
1612 /* for spares just return a minimal reservation which will grow
1613 * once the spare is picked up by an array
1614 */
1615 if (dl->index == -1)
1616 return MPB_SECTOR_CNT;
1617
1618 e = get_extents(super, dl, 0);
1619 if (!e)
1620 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1621
1622 /* scroll to last entry */
1623 for (i = 0; e[i].size; i++)
1624 continue;
1625
1626 rv = total_blocks(&dl->disk) - e[i].start;
1627
1628 free(e);
1629
1630 return rv;
1631 }
1632
1633 static int is_spare(struct imsm_disk *disk)
1634 {
1635 return (disk->status & SPARE_DISK) == SPARE_DISK;
1636 }
1637
1638 static int is_configured(struct imsm_disk *disk)
1639 {
1640 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1641 }
1642
1643 static int is_failed(struct imsm_disk *disk)
1644 {
1645 return (disk->status & FAILED_DISK) == FAILED_DISK;
1646 }
1647
1648 static int is_journal(struct imsm_disk *disk)
1649 {
1650 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1651 }
1652
1653 /**
1654 * round_member_size_to_mb()- Round given size to closest MiB.
1655 * @size: size to round in sectors.
1656 */
1657 static inline unsigned long long round_member_size_to_mb(unsigned long long size)
1658 {
1659 return (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1660 }
1661
1662 /**
1663 * round_size_to_mb()- Round given size.
1664 * @array_size: size to round in sectors.
1665 * @disk_count: count of data members.
1666 *
1667 * Get size per each data member and round it to closest MiB to ensure that data
1668 * splits evenly between members.
1669 *
1670 * Return: Array size, rounded down.
1671 */
1672 static inline unsigned long long round_size_to_mb(unsigned long long array_size,
1673 unsigned int disk_count)
1674 {
1675 return round_member_size_to_mb(array_size / disk_count) * disk_count;
1676 }
1677
1678 static int able_to_resync(int raid_level, int missing_disks)
1679 {
1680 int max_missing_disks = 0;
1681
1682 switch (raid_level) {
1683 case 10:
1684 max_missing_disks = 1;
1685 break;
1686 default:
1687 max_missing_disks = 0;
1688 }
1689 return missing_disks <= max_missing_disks;
1690 }
1691
1692 /* try to determine how much space is reserved for metadata from
1693 * the last get_extents() entry on the smallest active disk,
1694 * otherwise fallback to the default
1695 */
1696 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1697 {
1698 struct extent *e;
1699 int i;
1700 unsigned long long min_active;
1701 __u32 remainder;
1702 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1703 struct dl *dl, *dl_min = NULL;
1704
1705 if (!super)
1706 return rv;
1707
1708 min_active = 0;
1709 for (dl = super->disks; dl; dl = dl->next) {
1710 if (dl->index < 0)
1711 continue;
1712 unsigned long long blocks = total_blocks(&dl->disk);
1713 if (blocks < min_active || min_active == 0) {
1714 dl_min = dl;
1715 min_active = blocks;
1716 }
1717 }
1718 if (!dl_min)
1719 return rv;
1720
1721 /* find last lba used by subarrays on the smallest active disk */
1722 e = get_extents(super, dl_min, 0);
1723 if (!e)
1724 return rv;
1725 for (i = 0; e[i].size; i++)
1726 continue;
1727
1728 remainder = min_active - e[i].start;
1729 free(e);
1730
1731 /* to give priority to recovery we should not require full
1732 IMSM_RESERVED_SECTORS from the spare */
1733 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1734
1735 /* if real reservation is smaller use that value */
1736 return (remainder < rv) ? remainder : rv;
1737 }
1738
1739 static bool is_gen_migration(struct imsm_dev *dev);
1740
1741 #define IMSM_4K_DIV 8
1742
1743 static __u64 blocks_per_migr_unit(struct intel_super *super,
1744 struct imsm_dev *dev);
1745
1746 static void print_imsm_dev(struct intel_super *super,
1747 struct imsm_dev *dev,
1748 char *uuid,
1749 int disk_idx)
1750 {
1751 __u64 sz;
1752 int slot, i;
1753 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1754 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1755 __u32 ord;
1756
1757 printf("\n");
1758 printf("[%.16s]:\n", dev->volume);
1759 printf(" Subarray : %d\n", super->current_vol);
1760 printf(" UUID : %s\n", uuid);
1761 printf(" RAID Level : %d", get_imsm_raid_level(map));
1762 if (map2)
1763 printf(" <-- %d", get_imsm_raid_level(map2));
1764 printf("\n");
1765 printf(" Members : %d", map->num_members);
1766 if (map2)
1767 printf(" <-- %d", map2->num_members);
1768 printf("\n");
1769 printf(" Slots : [");
1770 for (i = 0; i < map->num_members; i++) {
1771 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1772 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1773 }
1774 printf("]");
1775 if (map2) {
1776 printf(" <-- [");
1777 for (i = 0; i < map2->num_members; i++) {
1778 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1779 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1780 }
1781 printf("]");
1782 }
1783 printf("\n");
1784 printf(" Failed disk : ");
1785 if (map->failed_disk_num == 0xff)
1786 printf(STR_COMMON_NONE);
1787 else
1788 printf("%i", map->failed_disk_num);
1789 printf("\n");
1790 slot = get_imsm_disk_slot(map, disk_idx);
1791 if (slot >= 0) {
1792 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1793 printf(" This Slot : %d%s\n", slot,
1794 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1795 } else
1796 printf(" This Slot : ?\n");
1797 printf(" Sector Size : %u\n", super->sector_size);
1798 sz = imsm_dev_size(dev);
1799 printf(" Array Size : %llu%s\n",
1800 (unsigned long long)sz * 512 / super->sector_size,
1801 human_size(sz * 512));
1802 sz = blocks_per_member(map);
1803 printf(" Per Dev Size : %llu%s\n",
1804 (unsigned long long)sz * 512 / super->sector_size,
1805 human_size(sz * 512));
1806 printf(" Sector Offset : %llu\n",
1807 pba_of_lba0(map) * 512 / super->sector_size);
1808 printf(" Num Stripes : %llu\n",
1809 num_data_stripes(map));
1810 printf(" Chunk Size : %u KiB",
1811 __le16_to_cpu(map->blocks_per_strip) / 2);
1812 if (map2)
1813 printf(" <-- %u KiB",
1814 __le16_to_cpu(map2->blocks_per_strip) / 2);
1815 printf("\n");
1816 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1817 printf(" Migrate State : ");
1818 if (dev->vol.migr_state) {
1819 if (migr_type(dev) == MIGR_INIT)
1820 printf("initialize\n");
1821 else if (migr_type(dev) == MIGR_REBUILD)
1822 printf("rebuild\n");
1823 else if (migr_type(dev) == MIGR_VERIFY)
1824 printf("check\n");
1825 else if (migr_type(dev) == MIGR_GEN_MIGR)
1826 printf("general migration\n");
1827 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1828 printf("state change\n");
1829 else if (migr_type(dev) == MIGR_REPAIR)
1830 printf("repair\n");
1831 else
1832 printf("<unknown:%d>\n", migr_type(dev));
1833 } else
1834 printf("idle\n");
1835 printf(" Map State : %s", map_state_str[map->map_state]);
1836 if (dev->vol.migr_state) {
1837 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1838
1839 printf(" <-- %s", map_state_str[map->map_state]);
1840 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
1841 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1842 printf("(N/A)");
1843 else
1844 printf("(%llu)", (unsigned long long)
1845 blocks_per_migr_unit(super, dev));
1846 }
1847 printf("\n");
1848 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1849 "dirty" : "clean");
1850 printf(" RWH Policy : ");
1851 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
1852 printf("off\n");
1853 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1854 printf("PPL distributed\n");
1855 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1856 printf("PPL journaling drive\n");
1857 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1858 printf("Multiple distributed PPLs\n");
1859 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1860 printf("Multiple PPLs on journaling drive\n");
1861 else if (dev->rwh_policy == RWH_BITMAP)
1862 printf("Write-intent bitmap\n");
1863 else
1864 printf("<unknown:%d>\n", dev->rwh_policy);
1865
1866 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
1867 }
1868
1869 static void print_imsm_disk(struct imsm_disk *disk,
1870 int index,
1871 __u32 reserved,
1872 unsigned int sector_size) {
1873 char str[MAX_RAID_SERIAL_LEN + 1];
1874 __u64 sz;
1875
1876 if (index < -1 || !disk)
1877 return;
1878
1879 printf("\n");
1880 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1881 if (index >= 0)
1882 printf(" Disk%02d Serial : %s\n", index, str);
1883 else
1884 printf(" Disk Serial : %s\n", str);
1885 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1886 is_configured(disk) ? " active" : "",
1887 is_failed(disk) ? " failed" : "",
1888 is_journal(disk) ? " journal" : "");
1889 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1890 sz = total_blocks(disk) - reserved;
1891 printf(" Usable Size : %llu%s\n",
1892 (unsigned long long)sz * 512 / sector_size,
1893 human_size(sz * 512));
1894 }
1895
1896 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1897 {
1898 struct migr_record *migr_rec = super->migr_rec;
1899
1900 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1901 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1902 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1903 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1904 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1905 set_migr_chkp_area_pba(migr_rec,
1906 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1907 set_migr_dest_1st_member_lba(migr_rec,
1908 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
1909 }
1910
1911 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1912 {
1913 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1914 }
1915
1916 void convert_to_4k(struct intel_super *super)
1917 {
1918 struct imsm_super *mpb = super->anchor;
1919 struct imsm_disk *disk;
1920 int i;
1921 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1922
1923 for (i = 0; i < mpb->num_disks ; i++) {
1924 disk = __get_imsm_disk(mpb, i);
1925 /* disk */
1926 convert_to_4k_imsm_disk(disk);
1927 }
1928 for (i = 0; i < mpb->num_raid_devs; i++) {
1929 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1930 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1931 /* dev */
1932 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
1933 set_vol_curr_migr_unit(dev,
1934 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
1935
1936 /* map0 */
1937 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1938 map->blocks_per_strip /= IMSM_4K_DIV;
1939 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1940
1941 if (dev->vol.migr_state) {
1942 /* map1 */
1943 map = get_imsm_map(dev, MAP_1);
1944 set_blocks_per_member(map,
1945 blocks_per_member(map)/IMSM_4K_DIV);
1946 map->blocks_per_strip /= IMSM_4K_DIV;
1947 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1948 }
1949 }
1950 if (bbm_log_size) {
1951 struct bbm_log *log = (void *)mpb +
1952 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1953 __u32 i;
1954
1955 for (i = 0; i < log->entry_count; i++) {
1956 struct bbm_log_entry *entry =
1957 &log->marked_block_entries[i];
1958
1959 __u8 count = entry->marked_count + 1;
1960 unsigned long long sector =
1961 __le48_to_cpu(&entry->defective_block_start);
1962
1963 entry->defective_block_start =
1964 __cpu_to_le48(sector/IMSM_4K_DIV);
1965 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1966 }
1967 }
1968
1969 mpb->check_sum = __gen_imsm_checksum(mpb);
1970 }
1971
1972 void examine_migr_rec_imsm(struct intel_super *super)
1973 {
1974 struct migr_record *migr_rec = super->migr_rec;
1975 struct imsm_super *mpb = super->anchor;
1976 int i;
1977
1978 for (i = 0; i < mpb->num_raid_devs; i++) {
1979 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1980 struct imsm_map *map;
1981 int slot = -1;
1982
1983 if (is_gen_migration(dev) == false)
1984 continue;
1985
1986 printf("\nMigration Record Information:");
1987
1988 /* first map under migration */
1989 map = get_imsm_map(dev, MAP_0);
1990
1991 if (map)
1992 slot = get_imsm_disk_slot(map, super->disks->index);
1993 if (map == NULL || slot > 1 || slot < 0) {
1994 printf(" Empty\n ");
1995 printf("Examine one of first two disks in array\n");
1996 break;
1997 }
1998 printf("\n Status : ");
1999 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
2000 printf("Normal\n");
2001 else
2002 printf("Contains Data\n");
2003 printf(" Current Unit : %llu\n",
2004 current_migr_unit(migr_rec));
2005 printf(" Family : %u\n",
2006 __le32_to_cpu(migr_rec->family_num));
2007 printf(" Ascending : %u\n",
2008 __le32_to_cpu(migr_rec->ascending_migr));
2009 printf(" Blocks Per Unit : %u\n",
2010 __le32_to_cpu(migr_rec->blocks_per_unit));
2011 printf(" Dest. Depth Per Unit : %u\n",
2012 __le32_to_cpu(migr_rec->dest_depth_per_unit));
2013 printf(" Checkpoint Area pba : %llu\n",
2014 migr_chkp_area_pba(migr_rec));
2015 printf(" First member lba : %llu\n",
2016 migr_dest_1st_member_lba(migr_rec));
2017 printf(" Total Number of Units : %llu\n",
2018 get_num_migr_units(migr_rec));
2019 printf(" Size of volume : %llu\n",
2020 join_u32(migr_rec->post_migr_vol_cap,
2021 migr_rec->post_migr_vol_cap_hi));
2022 printf(" Record was read from : %u\n",
2023 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2024
2025 break;
2026 }
2027 }
2028
2029 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2030 {
2031 struct migr_record *migr_rec = super->migr_rec;
2032
2033 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
2034 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2035 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2036 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2037 &migr_rec->post_migr_vol_cap,
2038 &migr_rec->post_migr_vol_cap_hi);
2039 set_migr_chkp_area_pba(migr_rec,
2040 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2041 set_migr_dest_1st_member_lba(migr_rec,
2042 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
2043 }
2044
2045 void convert_from_4k(struct intel_super *super)
2046 {
2047 struct imsm_super *mpb = super->anchor;
2048 struct imsm_disk *disk;
2049 int i;
2050 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
2051
2052 for (i = 0; i < mpb->num_disks ; i++) {
2053 disk = __get_imsm_disk(mpb, i);
2054 /* disk */
2055 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2056 }
2057
2058 for (i = 0; i < mpb->num_raid_devs; i++) {
2059 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2060 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2061 /* dev */
2062 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
2063 set_vol_curr_migr_unit(dev,
2064 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
2065
2066 /* map0 */
2067 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2068 map->blocks_per_strip *= IMSM_4K_DIV;
2069 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2070
2071 if (dev->vol.migr_state) {
2072 /* map1 */
2073 map = get_imsm_map(dev, MAP_1);
2074 set_blocks_per_member(map,
2075 blocks_per_member(map)*IMSM_4K_DIV);
2076 map->blocks_per_strip *= IMSM_4K_DIV;
2077 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2078 }
2079 }
2080 if (bbm_log_size) {
2081 struct bbm_log *log = (void *)mpb +
2082 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2083 __u32 i;
2084
2085 for (i = 0; i < log->entry_count; i++) {
2086 struct bbm_log_entry *entry =
2087 &log->marked_block_entries[i];
2088
2089 __u8 count = entry->marked_count + 1;
2090 unsigned long long sector =
2091 __le48_to_cpu(&entry->defective_block_start);
2092
2093 entry->defective_block_start =
2094 __cpu_to_le48(sector*IMSM_4K_DIV);
2095 entry->marked_count = count*IMSM_4K_DIV - 1;
2096 }
2097 }
2098
2099 mpb->check_sum = __gen_imsm_checksum(mpb);
2100 }
2101
2102 /*******************************************************************************
2103 * function: imsm_check_attributes
2104 * Description: Function checks if features represented by attributes flags
2105 * are supported by mdadm.
2106 * Parameters:
2107 * attributes - Attributes read from metadata
2108 * Returns:
2109 * 0 - passed attributes contains unsupported features flags
2110 * 1 - all features are supported
2111 ******************************************************************************/
2112 static int imsm_check_attributes(__u32 attributes)
2113 {
2114 int ret_val = 1;
2115 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2116
2117 not_supported &= ~MPB_ATTRIB_IGNORED;
2118
2119 not_supported &= attributes;
2120 if (not_supported) {
2121 pr_err("(IMSM): Unsupported attributes : %x\n",
2122 (unsigned)__le32_to_cpu(not_supported));
2123 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2124 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2125 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2126 }
2127 if (not_supported & MPB_ATTRIB_2TB) {
2128 dprintf("\t\tMPB_ATTRIB_2TB\n");
2129 not_supported ^= MPB_ATTRIB_2TB;
2130 }
2131 if (not_supported & MPB_ATTRIB_RAID0) {
2132 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2133 not_supported ^= MPB_ATTRIB_RAID0;
2134 }
2135 if (not_supported & MPB_ATTRIB_RAID1) {
2136 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2137 not_supported ^= MPB_ATTRIB_RAID1;
2138 }
2139 if (not_supported & MPB_ATTRIB_RAID10) {
2140 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2141 not_supported ^= MPB_ATTRIB_RAID10;
2142 }
2143 if (not_supported & MPB_ATTRIB_RAID1E) {
2144 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2145 not_supported ^= MPB_ATTRIB_RAID1E;
2146 }
2147 if (not_supported & MPB_ATTRIB_RAID5) {
2148 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2149 not_supported ^= MPB_ATTRIB_RAID5;
2150 }
2151 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2152 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2153 not_supported ^= MPB_ATTRIB_RAIDCNG;
2154 }
2155 if (not_supported & MPB_ATTRIB_BBM) {
2156 dprintf("\t\tMPB_ATTRIB_BBM\n");
2157 not_supported ^= MPB_ATTRIB_BBM;
2158 }
2159 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2160 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2161 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2162 }
2163 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2164 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2165 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2166 }
2167 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2168 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2169 not_supported ^= MPB_ATTRIB_2TB_DISK;
2170 }
2171 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2172 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2173 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2174 }
2175 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2176 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2177 not_supported ^= MPB_ATTRIB_NEVER_USE;
2178 }
2179
2180 if (not_supported)
2181 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
2182
2183 ret_val = 0;
2184 }
2185
2186 return ret_val;
2187 }
2188
2189 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
2190
2191 static void examine_super_imsm(struct supertype *st, char *homehost)
2192 {
2193 struct intel_super *super = st->sb;
2194 struct imsm_super *mpb = super->anchor;
2195 char str[MAX_SIGNATURE_LENGTH];
2196 int i;
2197 struct mdinfo info;
2198 char nbuf[64];
2199 __u32 sum;
2200 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2201 struct dl *dl;
2202 time_t creation_time;
2203
2204 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2205 str[MPB_SIG_LEN-1] = '\0';
2206 printf(" Magic : %s\n", str);
2207 printf(" Version : %s\n", get_imsm_version(mpb));
2208 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
2209 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2210 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
2211 creation_time = __le64_to_cpu(mpb->creation_time);
2212 printf(" Creation Time : %.24s\n",
2213 creation_time ? ctime(&creation_time) : "Unknown");
2214 printf(" Attributes : ");
2215 if (imsm_check_attributes(mpb->attributes))
2216 printf("All supported\n");
2217 else
2218 printf("not supported\n");
2219 getinfo_super_imsm(st, &info, NULL);
2220 fname_from_uuid(&info, nbuf);
2221 printf(" UUID : %s\n", nbuf + 5);
2222 sum = __le32_to_cpu(mpb->check_sum);
2223 printf(" Checksum : %08x %s\n", sum,
2224 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
2225 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
2226 printf(" Disks : %d\n", mpb->num_disks);
2227 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
2228 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2229 super->disks->index, reserved, super->sector_size);
2230 if (get_imsm_bbm_log_size(super->bbm_log)) {
2231 struct bbm_log *log = super->bbm_log;
2232
2233 printf("\n");
2234 printf("Bad Block Management Log:\n");
2235 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2236 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2237 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
2238 }
2239 for (i = 0; i < mpb->num_raid_devs; i++) {
2240 struct mdinfo info;
2241 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2242
2243 super->current_vol = i;
2244 getinfo_super_imsm(st, &info, NULL);
2245 fname_from_uuid(&info, nbuf);
2246 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
2247 }
2248 for (i = 0; i < mpb->num_disks; i++) {
2249 if (i == super->disks->index)
2250 continue;
2251 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2252 super->sector_size);
2253 }
2254
2255 for (dl = super->disks; dl; dl = dl->next)
2256 if (dl->index == -1)
2257 print_imsm_disk(&dl->disk, -1, reserved,
2258 super->sector_size);
2259
2260 examine_migr_rec_imsm(super);
2261 }
2262
2263 static void brief_examine_super_imsm(struct supertype *st, int verbose)
2264 {
2265 /* We just write a generic IMSM ARRAY entry */
2266 struct mdinfo info;
2267 char nbuf[64];
2268
2269 getinfo_super_imsm(st, &info, NULL);
2270 fname_from_uuid(&info, nbuf);
2271 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2272 }
2273
2274 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2275 {
2276 /* We just write a generic IMSM ARRAY entry */
2277 struct mdinfo info;
2278 char nbuf[64];
2279 char nbuf1[64];
2280 struct intel_super *super = st->sb;
2281 int i;
2282
2283 if (!super->anchor->num_raid_devs)
2284 return;
2285
2286 getinfo_super_imsm(st, &info, NULL);
2287 fname_from_uuid(&info, nbuf);
2288 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2289 struct imsm_dev *dev = get_imsm_dev(super, i);
2290
2291 super->current_vol = i;
2292 getinfo_super_imsm(st, &info, NULL);
2293 fname_from_uuid(&info, nbuf1);
2294 printf("ARRAY " DEV_MD_DIR "%.16s container=%s member=%d UUID=%s\n",
2295 dev->volume, nbuf + 5, i, nbuf1 + 5);
2296 }
2297 }
2298
2299 static void export_examine_super_imsm(struct supertype *st)
2300 {
2301 struct intel_super *super = st->sb;
2302 struct imsm_super *mpb = super->anchor;
2303 struct mdinfo info;
2304 char nbuf[64];
2305
2306 getinfo_super_imsm(st, &info, NULL);
2307 fname_from_uuid(&info, nbuf);
2308 printf("MD_METADATA=imsm\n");
2309 printf("MD_LEVEL=container\n");
2310 printf("MD_UUID=%s\n", nbuf+5);
2311 printf("MD_DEVICES=%u\n", mpb->num_disks);
2312 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
2313 }
2314
2315 static void detail_super_imsm(struct supertype *st, char *homehost,
2316 char *subarray)
2317 {
2318 struct mdinfo info;
2319 char nbuf[64];
2320 struct intel_super *super = st->sb;
2321 int temp_vol = super->current_vol;
2322
2323 if (subarray)
2324 super->current_vol = strtoul(subarray, NULL, 10);
2325
2326 getinfo_super_imsm(st, &info, NULL);
2327 fname_from_uuid(&info, nbuf);
2328 printf("\n UUID : %s\n", nbuf + 5);
2329
2330 super->current_vol = temp_vol;
2331 }
2332
2333 static void brief_detail_super_imsm(struct supertype *st, char *subarray)
2334 {
2335 struct mdinfo info;
2336 char nbuf[64];
2337 struct intel_super *super = st->sb;
2338 int temp_vol = super->current_vol;
2339
2340 if (subarray)
2341 super->current_vol = strtoul(subarray, NULL, 10);
2342
2343 getinfo_super_imsm(st, &info, NULL);
2344 fname_from_uuid(&info, nbuf);
2345 printf(" UUID=%s", nbuf + 5);
2346
2347 super->current_vol = temp_vol;
2348 }
2349
2350 static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2351 size_t serial_buf_len);
2352 static void fd2devname(int fd, char *name);
2353
2354 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
2355 {
2356 /* dump an unsorted list of devices attached to AHCI Intel storage
2357 * controller, as well as non-connected ports
2358 */
2359 int hba_len = strlen(hba_path) + 1;
2360 struct dirent *ent;
2361 DIR *dir;
2362 char *path = NULL;
2363 int err = 0;
2364 unsigned long port_mask = (1 << port_count) - 1;
2365
2366 if (port_count > (int)sizeof(port_mask) * 8) {
2367 if (verbose > 0)
2368 pr_err("port_count %d out of range\n", port_count);
2369 return 2;
2370 }
2371
2372 /* scroll through /sys/dev/block looking for devices attached to
2373 * this hba
2374 */
2375 dir = opendir("/sys/dev/block");
2376 if (!dir)
2377 return 1;
2378
2379 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2380 int fd;
2381 char model[64];
2382 char vendor[64];
2383 char buf[1024];
2384 int major, minor;
2385 char device[PATH_MAX];
2386 char *c;
2387 int port;
2388 int type;
2389
2390 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2391 continue;
2392 path = devt_to_devpath(makedev(major, minor), 1, NULL);
2393 if (!path)
2394 continue;
2395 if (!path_attached_to_hba(path, hba_path)) {
2396 free(path);
2397 path = NULL;
2398 continue;
2399 }
2400
2401 /* retrieve the scsi device */
2402 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
2403 if (verbose > 0)
2404 pr_err("failed to get device\n");
2405 err = 2;
2406 break;
2407 }
2408 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
2409 err = 2;
2410 break;
2411 }
2412 type = strtoul(buf, NULL, 10);
2413
2414 /* if it's not a disk print the vendor and model */
2415 if (!(type == 0 || type == 7 || type == 14)) {
2416 vendor[0] = '\0';
2417 model[0] = '\0';
2418
2419 if (devpath_to_char(device, "vendor", buf,
2420 sizeof(buf), 0) == 0) {
2421 strncpy(vendor, buf, sizeof(vendor));
2422 vendor[sizeof(vendor) - 1] = '\0';
2423 c = (char *) &vendor[sizeof(vendor) - 1];
2424 while (isspace(*c) || *c == '\0')
2425 *c-- = '\0';
2426
2427 }
2428
2429 if (devpath_to_char(device, "model", buf,
2430 sizeof(buf), 0) == 0) {
2431 strncpy(model, buf, sizeof(model));
2432 model[sizeof(model) - 1] = '\0';
2433 c = (char *) &model[sizeof(model) - 1];
2434 while (isspace(*c) || *c == '\0')
2435 *c-- = '\0';
2436 }
2437
2438 if (vendor[0] && model[0])
2439 sprintf(buf, "%.64s %.64s", vendor, model);
2440 else
2441 switch (type) { /* numbers from hald/linux/device.c */
2442 case 1: sprintf(buf, "tape"); break;
2443 case 2: sprintf(buf, "printer"); break;
2444 case 3: sprintf(buf, "processor"); break;
2445 case 4:
2446 case 5: sprintf(buf, "cdrom"); break;
2447 case 6: sprintf(buf, "scanner"); break;
2448 case 8: sprintf(buf, "media_changer"); break;
2449 case 9: sprintf(buf, "comm"); break;
2450 case 12: sprintf(buf, "raid"); break;
2451 default: sprintf(buf, "unknown");
2452 }
2453 } else
2454 buf[0] = '\0';
2455
2456 /* chop device path to 'host%d' and calculate the port number */
2457 c = strchr(&path[hba_len], '/');
2458 if (!c) {
2459 if (verbose > 0)
2460 pr_err("%s - invalid path name\n", path + hba_len);
2461 err = 2;
2462 break;
2463 }
2464 *c = '\0';
2465 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2466 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2467 port -= host_base;
2468 else {
2469 if (verbose > 0) {
2470 *c = '/'; /* repair the full string */
2471 pr_err("failed to determine port number for %s\n",
2472 path);
2473 }
2474 err = 2;
2475 break;
2476 }
2477
2478 /* mark this port as used */
2479 port_mask &= ~(1 << port);
2480
2481 /* print out the device information */
2482 if (buf[0]) {
2483 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2484 continue;
2485 }
2486
2487 fd = dev_open(ent->d_name, O_RDONLY);
2488 if (!is_fd_valid(fd))
2489 printf(" Port%d : - disk info unavailable -\n", port);
2490 else {
2491 fd2devname(fd, buf);
2492 printf(" Port%d : %s", port, buf);
2493 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2494 sizeof(buf)) == 0)
2495 printf(" (%s)\n", buf);
2496 else
2497 printf(" ()\n");
2498 close(fd);
2499 }
2500 free(path);
2501 path = NULL;
2502 }
2503 if (path)
2504 free(path);
2505 if (dir)
2506 closedir(dir);
2507 if (err == 0) {
2508 int i;
2509
2510 for (i = 0; i < port_count; i++)
2511 if (port_mask & (1 << i))
2512 printf(" Port%d : - no device attached -\n", i);
2513 }
2514
2515 return err;
2516 }
2517
2518 static int print_nvme_info(struct sys_dev *hba)
2519 {
2520 struct dirent *ent;
2521 DIR *dir;
2522
2523 dir = opendir("/sys/block/");
2524 if (!dir)
2525 return 1;
2526
2527 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2528 char ns_path[PATH_MAX];
2529 char cntrl_path[PATH_MAX];
2530 char buf[PATH_MAX];
2531 int fd = -1;
2532
2533 if (!strstr(ent->d_name, "nvme"))
2534 goto skip;
2535
2536 fd = open_dev(ent->d_name);
2537 if (!is_fd_valid(fd))
2538 goto skip;
2539
2540 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2541 !diskfd_to_devpath(fd, 1, cntrl_path))
2542 goto skip;
2543
2544 if (!path_attached_to_hba(cntrl_path, hba->path))
2545 goto skip;
2546
2547 if (!imsm_is_nvme_namespace_supported(fd, 0))
2548 goto skip;
2549
2550 fd2devname(fd, buf);
2551 if (hba->type == SYS_DEV_VMD)
2552 printf(" NVMe under VMD : %s", buf);
2553 else if (hba->type == SYS_DEV_NVME)
2554 printf(" NVMe Device : %s", buf);
2555
2556 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2557 sizeof(buf)))
2558 printf(" (%s)\n", buf);
2559 else
2560 printf("()\n");
2561
2562 skip:
2563 close_fd(&fd);
2564 }
2565
2566 closedir(dir);
2567 return 0;
2568 }
2569
2570 static void print_found_intel_controllers(struct sys_dev *elem)
2571 {
2572 for (; elem; elem = elem->next) {
2573 pr_err("found Intel(R) ");
2574 if (elem->type == SYS_DEV_SATA)
2575 fprintf(stderr, "SATA ");
2576 else if (elem->type == SYS_DEV_SAS)
2577 fprintf(stderr, "SAS ");
2578 else if (elem->type == SYS_DEV_NVME)
2579 fprintf(stderr, "NVMe ");
2580
2581 if (elem->type == SYS_DEV_VMD)
2582 fprintf(stderr, "VMD domain");
2583 else if (elem->type == SYS_DEV_SATA_VMD)
2584 fprintf(stderr, "SATA VMD domain");
2585 else
2586 fprintf(stderr, "RAID controller");
2587
2588 if (elem->pci_id)
2589 fprintf(stderr, " at %s", elem->pci_id);
2590 fprintf(stderr, ".\n");
2591 }
2592 fflush(stderr);
2593 }
2594
2595 static int ahci_get_port_count(const char *hba_path, int *port_count)
2596 {
2597 struct dirent *ent;
2598 DIR *dir;
2599 int host_base = -1;
2600
2601 *port_count = 0;
2602 if ((dir = opendir(hba_path)) == NULL)
2603 return -1;
2604
2605 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2606 int host;
2607
2608 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2609 ((sscanf(ent->d_name, "host%d", &host) != 1)))
2610 continue;
2611 if (*port_count == 0)
2612 host_base = host;
2613 else if (host < host_base)
2614 host_base = host;
2615
2616 if (host + 1 > *port_count + host_base)
2617 *port_count = host + 1 - host_base;
2618 }
2619 closedir(dir);
2620 return host_base;
2621 }
2622
2623 static void print_imsm_capability(const struct imsm_orom *orom)
2624 {
2625 printf(" Platform : Intel(R) ");
2626 if (orom->capabilities == 0 && orom->driver_features == 0)
2627 printf("Matrix Storage Manager\n");
2628 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2629 printf("Virtual RAID on CPU\n");
2630 else
2631 printf("Rapid Storage Technology%s\n",
2632 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2633 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build) {
2634 if (imsm_orom_is_vmd_without_efi(orom))
2635 printf(" Version : %d.%d\n", orom->major_ver,
2636 orom->minor_ver);
2637 else
2638 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2639 orom->minor_ver, orom->hotfix_ver, orom->build);
2640 }
2641 printf(" RAID Levels :%s%s%s%s%s\n",
2642 imsm_orom_has_raid0(orom) ? " raid0" : "",
2643 imsm_orom_has_raid1(orom) ? " raid1" : "",
2644 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2645 imsm_orom_has_raid10(orom) ? " raid10" : "",
2646 imsm_orom_has_raid5(orom) ? " raid5" : "");
2647 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2648 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2649 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2650 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2651 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2652 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2653 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2654 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2655 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2656 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2657 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2658 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2659 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2660 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2661 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2662 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2663 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2664 printf(" 2TB volumes :%s supported\n",
2665 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2666 printf(" 2TB disks :%s supported\n",
2667 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2668 printf(" Max Disks : %d\n", orom->tds);
2669 printf(" Max Volumes : %d per array, %d per %s\n",
2670 orom->vpa, orom->vphba,
2671 imsm_orom_is_nvme(orom) ? "platform" : "controller");
2672 return;
2673 }
2674
2675 static void print_imsm_capability_export(const struct imsm_orom *orom)
2676 {
2677 printf("MD_FIRMWARE_TYPE=imsm\n");
2678 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2679 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2680 orom->hotfix_ver, orom->build);
2681 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2682 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2683 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2684 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2685 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2686 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2687 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2688 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2689 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2690 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2691 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2692 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2693 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2694 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2695 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2696 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2697 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2698 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2699 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2700 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2701 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2702 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2703 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2704 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2705 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2706 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2707 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2708 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2709 }
2710
2711 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2712 {
2713 /* There are two components to imsm platform support, the ahci SATA
2714 * controller and the option-rom. To find the SATA controller we
2715 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2716 * controller with the Intel vendor id is present. This approach
2717 * allows mdadm to leverage the kernel's ahci detection logic, with the
2718 * caveat that if ahci.ko is not loaded mdadm will not be able to
2719 * detect platform raid capabilities. The option-rom resides in a
2720 * platform "Adapter ROM". We scan for its signature to retrieve the
2721 * platform capabilities. If raid support is disabled in the BIOS the
2722 * option-rom capability structure will not be available.
2723 */
2724 struct sys_dev *list, *hba;
2725 int host_base = 0;
2726 int port_count = 0;
2727 int result=1;
2728
2729 if (enumerate_only) {
2730 if (check_no_platform())
2731 return 0;
2732 list = find_intel_devices();
2733 if (!list)
2734 return 2;
2735 for (hba = list; hba; hba = hba->next) {
2736 if (find_imsm_capability(hba)) {
2737 result = 0;
2738 break;
2739 }
2740 else
2741 result = 2;
2742 }
2743 return result;
2744 }
2745
2746 list = find_intel_devices();
2747 if (!list) {
2748 if (verbose > 0)
2749 pr_err("no active Intel(R) RAID controller found.\n");
2750 return 2;
2751 } else if (verbose > 0)
2752 print_found_intel_controllers(list);
2753
2754 for (hba = list; hba; hba = hba->next) {
2755 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2756 continue;
2757 if (!find_imsm_capability(hba)) {
2758 char buf[PATH_MAX];
2759 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2760 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2761 vmd_domain_to_controller(hba, buf) :
2762 hba->path, get_sys_dev_type(hba->type));
2763 continue;
2764 }
2765 result = 0;
2766 }
2767
2768 if (controller_path && result == 1) {
2769 pr_err("no active Intel(R) RAID controller found under %s\n",
2770 controller_path);
2771 return result;
2772 }
2773
2774 const struct orom_entry *entry;
2775
2776 for (entry = orom_entries; entry; entry = entry->next) {
2777 if (entry->type == SYS_DEV_VMD) {
2778 print_imsm_capability(&entry->orom);
2779 printf(" 3rd party NVMe :%s supported\n",
2780 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2781 for (hba = list; hba; hba = hba->next) {
2782 if (hba->type == SYS_DEV_VMD) {
2783 char buf[PATH_MAX];
2784 printf(" I/O Controller : %s (%s)\n",
2785 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2786 if (print_nvme_info(hba)) {
2787 if (verbose > 0)
2788 pr_err("failed to get devices attached to VMD domain.\n");
2789 result |= 2;
2790 }
2791 }
2792 }
2793 printf("\n");
2794 continue;
2795 }
2796
2797 print_imsm_capability(&entry->orom);
2798 if (entry->type == SYS_DEV_NVME) {
2799 for (hba = list; hba; hba = hba->next) {
2800 if (hba->type == SYS_DEV_NVME)
2801 print_nvme_info(hba);
2802 }
2803 printf("\n");
2804 continue;
2805 }
2806
2807 struct devid_list *devid;
2808 for (devid = entry->devid_list; devid; devid = devid->next) {
2809 hba = device_by_id(devid->devid);
2810 if (!hba)
2811 continue;
2812
2813 printf(" I/O Controller : %s (%s)\n",
2814 hba->path, get_sys_dev_type(hba->type));
2815 if (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD) {
2816 host_base = ahci_get_port_count(hba->path, &port_count);
2817 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2818 if (verbose > 0)
2819 pr_err("failed to enumerate ports on %s controller at %s.\n",
2820 get_sys_dev_type(hba->type), hba->pci_id);
2821 result |= 2;
2822 }
2823 }
2824 }
2825 printf("\n");
2826 }
2827
2828 return result;
2829 }
2830
2831 static int export_detail_platform_imsm(int verbose, char *controller_path)
2832 {
2833 struct sys_dev *list, *hba;
2834 int result=1;
2835
2836 list = find_intel_devices();
2837 if (!list) {
2838 if (verbose > 0)
2839 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2840 result = 2;
2841 return result;
2842 }
2843
2844 for (hba = list; hba; hba = hba->next) {
2845 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2846 continue;
2847 if (!find_imsm_capability(hba) && verbose > 0) {
2848 char buf[PATH_MAX];
2849 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2850 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2851 vmd_domain_to_controller(hba, buf) : hba->path);
2852 }
2853 else
2854 result = 0;
2855 }
2856
2857 const struct orom_entry *entry;
2858
2859 for (entry = orom_entries; entry; entry = entry->next) {
2860 if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_SATA_VMD) {
2861 for (hba = list; hba; hba = hba->next)
2862 print_imsm_capability_export(&entry->orom);
2863 continue;
2864 }
2865 print_imsm_capability_export(&entry->orom);
2866 }
2867
2868 return result;
2869 }
2870
2871 static int match_home_imsm(struct supertype *st, char *homehost)
2872 {
2873 /* the imsm metadata format does not specify any host
2874 * identification information. We return -1 since we can never
2875 * confirm nor deny whether a given array is "meant" for this
2876 * host. We rely on compare_super and the 'family_num' fields to
2877 * exclude member disks that do not belong, and we rely on
2878 * mdadm.conf to specify the arrays that should be assembled.
2879 * Auto-assembly may still pick up "foreign" arrays.
2880 */
2881
2882 return -1;
2883 }
2884
2885 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2886 {
2887 /* The uuid returned here is used for:
2888 * uuid to put into bitmap file (Create, Grow)
2889 * uuid for backup header when saving critical section (Grow)
2890 * comparing uuids when re-adding a device into an array
2891 * In these cases the uuid required is that of the data-array,
2892 * not the device-set.
2893 * uuid to recognise same set when adding a missing device back
2894 * to an array. This is a uuid for the device-set.
2895 *
2896 * For each of these we can make do with a truncated
2897 * or hashed uuid rather than the original, as long as
2898 * everyone agrees.
2899 * In each case the uuid required is that of the data-array,
2900 * not the device-set.
2901 */
2902 /* imsm does not track uuid's so we synthesis one using sha1 on
2903 * - The signature (Which is constant for all imsm array, but no matter)
2904 * - the orig_family_num of the container
2905 * - the index number of the volume
2906 * - the 'serial' number of the volume.
2907 * Hopefully these are all constant.
2908 */
2909 struct intel_super *super = st->sb;
2910
2911 char buf[20];
2912 struct sha1_ctx ctx;
2913 struct imsm_dev *dev = NULL;
2914 __u32 family_num;
2915
2916 /* some mdadm versions failed to set ->orig_family_num, in which
2917 * case fall back to ->family_num. orig_family_num will be
2918 * fixed up with the first metadata update.
2919 */
2920 family_num = super->anchor->orig_family_num;
2921 if (family_num == 0)
2922 family_num = super->anchor->family_num;
2923 sha1_init_ctx(&ctx);
2924 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2925 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2926 if (super->current_vol >= 0)
2927 dev = get_imsm_dev(super, super->current_vol);
2928 if (dev) {
2929 __u32 vol = super->current_vol;
2930 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2931 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2932 }
2933 sha1_finish_ctx(&ctx, buf);
2934 memcpy(uuid, buf, 4*4);
2935 }
2936
2937 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2938 {
2939 /* migr_strip_size when repairing or initializing parity */
2940 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2941 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2942
2943 switch (get_imsm_raid_level(map)) {
2944 case 5:
2945 case 10:
2946 return chunk;
2947 default:
2948 return 128*1024 >> 9;
2949 }
2950 }
2951
2952 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2953 {
2954 /* migr_strip_size when rebuilding a degraded disk, no idea why
2955 * this is different than migr_strip_size_resync(), but it's good
2956 * to be compatible
2957 */
2958 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2959 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2960
2961 switch (get_imsm_raid_level(map)) {
2962 case 1:
2963 case 10:
2964 if (map->num_members % map->num_domains == 0)
2965 return 128*1024 >> 9;
2966 else
2967 return chunk;
2968 case 5:
2969 return max((__u32) 64*1024 >> 9, chunk);
2970 default:
2971 return 128*1024 >> 9;
2972 }
2973 }
2974
2975 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2976 {
2977 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2978 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2979 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2980 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2981
2982 return max((__u32) 1, hi_chunk / lo_chunk);
2983 }
2984
2985 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2986 {
2987 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2988 int level = get_imsm_raid_level(lo);
2989
2990 if (level == 1 || level == 10) {
2991 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2992
2993 return hi->num_domains;
2994 } else
2995 return num_stripes_per_unit_resync(dev);
2996 }
2997
2998 static unsigned long long calc_component_size(struct imsm_map *map,
2999 struct imsm_dev *dev)
3000 {
3001 unsigned long long component_size;
3002 unsigned long long dev_size = imsm_dev_size(dev);
3003 long long calc_dev_size = 0;
3004 unsigned int member_disks = imsm_num_data_members(map);
3005
3006 if (member_disks == 0)
3007 return 0;
3008
3009 component_size = per_dev_array_size(map);
3010 calc_dev_size = component_size * member_disks;
3011
3012 /* Component size is rounded to 1MB so difference between size from
3013 * metadata and size calculated from num_data_stripes equals up to
3014 * 2048 blocks per each device. If the difference is higher it means
3015 * that array size was expanded and num_data_stripes was not updated.
3016 */
3017 if (llabs(calc_dev_size - (long long)dev_size) >
3018 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3019 component_size = dev_size / member_disks;
3020 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3021 component_size / map->blocks_per_strip,
3022 num_data_stripes(map));
3023 }
3024
3025 return component_size;
3026 }
3027
3028 static __u32 parity_segment_depth(struct imsm_dev *dev)
3029 {
3030 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3031 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3032
3033 switch(get_imsm_raid_level(map)) {
3034 case 1:
3035 case 10:
3036 return chunk * map->num_domains;
3037 case 5:
3038 return chunk * map->num_members;
3039 default:
3040 return chunk;
3041 }
3042 }
3043
3044 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3045 {
3046 struct imsm_map *map = get_imsm_map(dev, MAP_1);
3047 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3048 __u32 strip = block / chunk;
3049
3050 switch (get_imsm_raid_level(map)) {
3051 case 1:
3052 case 10: {
3053 __u32 vol_strip = (strip * map->num_domains) + 1;
3054 __u32 vol_stripe = vol_strip / map->num_members;
3055
3056 return vol_stripe * chunk + block % chunk;
3057 } case 5: {
3058 __u32 stripe = strip / (map->num_members - 1);
3059
3060 return stripe * chunk + block % chunk;
3061 }
3062 default:
3063 return 0;
3064 }
3065 }
3066
3067 static __u64 blocks_per_migr_unit(struct intel_super *super,
3068 struct imsm_dev *dev)
3069 {
3070 /* calculate the conversion factor between per member 'blocks'
3071 * (md/{resync,rebuild}_start) and imsm migration units, return
3072 * 0 for the 'not migrating' and 'unsupported migration' cases
3073 */
3074 if (!dev->vol.migr_state)
3075 return 0;
3076
3077 switch (migr_type(dev)) {
3078 case MIGR_GEN_MIGR: {
3079 struct migr_record *migr_rec = super->migr_rec;
3080 return __le32_to_cpu(migr_rec->blocks_per_unit);
3081 }
3082 case MIGR_VERIFY:
3083 case MIGR_REPAIR:
3084 case MIGR_INIT: {
3085 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3086 __u32 stripes_per_unit;
3087 __u32 blocks_per_unit;
3088 __u32 parity_depth;
3089 __u32 migr_chunk;
3090 __u32 block_map;
3091 __u32 block_rel;
3092 __u32 segment;
3093 __u32 stripe;
3094 __u8 disks;
3095
3096 /* yes, this is really the translation of migr_units to
3097 * per-member blocks in the 'resync' case
3098 */
3099 stripes_per_unit = num_stripes_per_unit_resync(dev);
3100 migr_chunk = migr_strip_blocks_resync(dev);
3101 disks = imsm_num_data_members(map);
3102 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
3103 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
3104 segment = blocks_per_unit / stripe;
3105 block_rel = blocks_per_unit - segment * stripe;
3106 parity_depth = parity_segment_depth(dev);
3107 block_map = map_migr_block(dev, block_rel);
3108 return block_map + parity_depth * segment;
3109 }
3110 case MIGR_REBUILD: {
3111 __u32 stripes_per_unit;
3112 __u32 migr_chunk;
3113
3114 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3115 migr_chunk = migr_strip_blocks_rebuild(dev);
3116 return migr_chunk * stripes_per_unit;
3117 }
3118 case MIGR_STATE_CHANGE:
3119 default:
3120 return 0;
3121 }
3122 }
3123
3124 static int imsm_level_to_layout(int level)
3125 {
3126 switch (level) {
3127 case 0:
3128 case 1:
3129 return 0;
3130 case 5:
3131 case 6:
3132 return ALGORITHM_LEFT_ASYMMETRIC;
3133 case 10:
3134 return 0x102;
3135 }
3136 return UnSet;
3137 }
3138
3139 /*******************************************************************************
3140 * Function: read_imsm_migr_rec
3141 * Description: Function reads imsm migration record from last sector of disk
3142 * Parameters:
3143 * fd : disk descriptor
3144 * super : metadata info
3145 * Returns:
3146 * 0 : success,
3147 * -1 : fail
3148 ******************************************************************************/
3149 static int read_imsm_migr_rec(int fd, struct intel_super *super)
3150 {
3151 int ret_val = -1;
3152 unsigned int sector_size = super->sector_size;
3153 unsigned long long dsize;
3154
3155 get_dev_size(fd, NULL, &dsize);
3156 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3157 SEEK_SET) < 0) {
3158 pr_err("Cannot seek to anchor block: %s\n",
3159 strerror(errno));
3160 goto out;
3161 }
3162 if ((unsigned int)read(fd, super->migr_rec_buf,
3163 MIGR_REC_BUF_SECTORS*sector_size) !=
3164 MIGR_REC_BUF_SECTORS*sector_size) {
3165 pr_err("Cannot read migr record block: %s\n",
3166 strerror(errno));
3167 goto out;
3168 }
3169 ret_val = 0;
3170 if (sector_size == 4096)
3171 convert_from_4k_imsm_migr_rec(super);
3172
3173 out:
3174 return ret_val;
3175 }
3176
3177 static struct imsm_dev *imsm_get_device_during_migration(
3178 struct intel_super *super)
3179 {
3180
3181 struct intel_dev *dv;
3182
3183 for (dv = super->devlist; dv; dv = dv->next) {
3184 if (is_gen_migration(dv->dev))
3185 return dv->dev;
3186 }
3187 return NULL;
3188 }
3189
3190 /*******************************************************************************
3191 * Function: load_imsm_migr_rec
3192 * Description: Function reads imsm migration record (it is stored at the last
3193 * sector of disk)
3194 * Parameters:
3195 * super : imsm internal array info
3196 * Returns:
3197 * 0 : success
3198 * -1 : fail
3199 * -2 : no migration in progress
3200 ******************************************************************************/
3201 static int load_imsm_migr_rec(struct intel_super *super)
3202 {
3203 struct dl *dl;
3204 char nm[30];
3205 int retval = -1;
3206 int fd = -1;
3207 struct imsm_dev *dev;
3208 struct imsm_map *map;
3209 int slot = -1;
3210 int keep_fd = 1;
3211
3212 /* find map under migration */
3213 dev = imsm_get_device_during_migration(super);
3214 /* nothing to load,no migration in progress?
3215 */
3216 if (dev == NULL)
3217 return -2;
3218
3219 map = get_imsm_map(dev, MAP_0);
3220 if (!map)
3221 return -1;
3222
3223 for (dl = super->disks; dl; dl = dl->next) {
3224 /* skip spare and failed disks
3225 */
3226 if (dl->index < 0)
3227 continue;
3228 /* read only from one of the first two slots
3229 */
3230 slot = get_imsm_disk_slot(map, dl->index);
3231 if (slot > 1 || slot < 0)
3232 continue;
3233
3234 if (!is_fd_valid(dl->fd)) {
3235 sprintf(nm, "%d:%d", dl->major, dl->minor);
3236 fd = dev_open(nm, O_RDONLY);
3237
3238 if (is_fd_valid(fd)) {
3239 keep_fd = 0;
3240 break;
3241 }
3242 } else {
3243 fd = dl->fd;
3244 break;
3245 }
3246 }
3247
3248 if (!is_fd_valid(fd))
3249 return retval;
3250 retval = read_imsm_migr_rec(fd, super);
3251 if (!keep_fd)
3252 close(fd);
3253
3254 return retval;
3255 }
3256
3257 /*******************************************************************************
3258 * function: imsm_create_metadata_checkpoint_update
3259 * Description: It creates update for checkpoint change.
3260 * Parameters:
3261 * super : imsm internal array info
3262 * u : pointer to prepared update
3263 * Returns:
3264 * Uptate length.
3265 * If length is equal to 0, input pointer u contains no update
3266 ******************************************************************************/
3267 static int imsm_create_metadata_checkpoint_update(
3268 struct intel_super *super,
3269 struct imsm_update_general_migration_checkpoint **u)
3270 {
3271
3272 int update_memory_size = 0;
3273
3274 dprintf("(enter)\n");
3275
3276 if (u == NULL)
3277 return 0;
3278 *u = NULL;
3279
3280 /* size of all update data without anchor */
3281 update_memory_size =
3282 sizeof(struct imsm_update_general_migration_checkpoint);
3283
3284 *u = xcalloc(1, update_memory_size);
3285 if (*u == NULL) {
3286 dprintf("error: cannot get memory\n");
3287 return 0;
3288 }
3289 (*u)->type = update_general_migration_checkpoint;
3290 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
3291 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
3292
3293 return update_memory_size;
3294 }
3295
3296 static void imsm_update_metadata_locally(struct supertype *st,
3297 void *buf, int len);
3298
3299 /*******************************************************************************
3300 * Function: write_imsm_migr_rec
3301 * Description: Function writes imsm migration record
3302 * (at the last sector of disk)
3303 * Parameters:
3304 * super : imsm internal array info
3305 * Returns:
3306 * 0 : success
3307 * -1 : if fail
3308 ******************************************************************************/
3309 static int write_imsm_migr_rec(struct supertype *st)
3310 {
3311 struct intel_super *super = st->sb;
3312 unsigned int sector_size = super->sector_size;
3313 unsigned long long dsize;
3314 int retval = -1;
3315 struct dl *sd;
3316 int len;
3317 struct imsm_update_general_migration_checkpoint *u;
3318 struct imsm_dev *dev;
3319 struct imsm_map *map;
3320
3321 /* find map under migration */
3322 dev = imsm_get_device_during_migration(super);
3323 /* if no migration, write buffer anyway to clear migr_record
3324 * on disk based on first available device
3325 */
3326 if (dev == NULL)
3327 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3328 super->current_vol);
3329
3330 map = get_imsm_map(dev, MAP_0);
3331
3332 if (sector_size == 4096)
3333 convert_to_4k_imsm_migr_rec(super);
3334 for (sd = super->disks ; sd ; sd = sd->next) {
3335 int slot = -1;
3336
3337 /* skip failed and spare devices */
3338 if (sd->index < 0)
3339 continue;
3340 /* write to 2 first slots only */
3341 if (map)
3342 slot = get_imsm_disk_slot(map, sd->index);
3343 if (map == NULL || slot > 1 || slot < 0)
3344 continue;
3345
3346 get_dev_size(sd->fd, NULL, &dsize);
3347 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3348 sector_size),
3349 SEEK_SET) < 0) {
3350 pr_err("Cannot seek to anchor block: %s\n",
3351 strerror(errno));
3352 goto out;
3353 }
3354 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
3355 MIGR_REC_BUF_SECTORS*sector_size) !=
3356 MIGR_REC_BUF_SECTORS*sector_size) {
3357 pr_err("Cannot write migr record block: %s\n",
3358 strerror(errno));
3359 goto out;
3360 }
3361 }
3362 if (sector_size == 4096)
3363 convert_from_4k_imsm_migr_rec(super);
3364 /* update checkpoint information in metadata */
3365 len = imsm_create_metadata_checkpoint_update(super, &u);
3366 if (len <= 0) {
3367 dprintf("imsm: Cannot prepare update\n");
3368 goto out;
3369 }
3370 /* update metadata locally */
3371 imsm_update_metadata_locally(st, u, len);
3372 /* and possibly remotely */
3373 if (st->update_tail) {
3374 append_metadata_update(st, u, len);
3375 /* during reshape we do all work inside metadata handler
3376 * manage_reshape(), so metadata update has to be triggered
3377 * insida it
3378 */
3379 flush_metadata_updates(st);
3380 st->update_tail = &st->updates;
3381 } else
3382 free(u);
3383
3384 retval = 0;
3385 out:
3386 return retval;
3387 }
3388
3389 /* spare/missing disks activations are not allowe when
3390 * array/container performs reshape operation, because
3391 * all arrays in container works on the same disks set
3392 */
3393 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3394 {
3395 int rv = 0;
3396 struct intel_dev *i_dev;
3397 struct imsm_dev *dev;
3398
3399 /* check whole container
3400 */
3401 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3402 dev = i_dev->dev;
3403 if (is_gen_migration(dev)) {
3404 /* No repair during any migration in container
3405 */
3406 rv = 1;
3407 break;
3408 }
3409 }
3410 return rv;
3411 }
3412 static unsigned long long imsm_component_size_alignment_check(int level,
3413 int chunk_size,
3414 unsigned int sector_size,
3415 unsigned long long component_size)
3416 {
3417 unsigned int component_size_alignment;
3418
3419 /* check component size alignment
3420 */
3421 component_size_alignment = component_size % (chunk_size/sector_size);
3422
3423 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
3424 level, chunk_size, component_size,
3425 component_size_alignment);
3426
3427 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3428 dprintf("imsm: reported component size aligned from %llu ",
3429 component_size);
3430 component_size -= component_size_alignment;
3431 dprintf_cont("to %llu (%i).\n",
3432 component_size, component_size_alignment);
3433 }
3434
3435 return component_size;
3436 }
3437
3438 /*******************************************************************************
3439 * Function: get_bitmap_header_sector
3440 * Description: Returns the sector where the bitmap header is placed.
3441 * Parameters:
3442 * st : supertype information
3443 * dev_idx : index of the device with bitmap
3444 *
3445 * Returns:
3446 * The sector where the bitmap header is placed
3447 ******************************************************************************/
3448 static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3449 int dev_idx)
3450 {
3451 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3452 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3453
3454 if (!super->sector_size) {
3455 dprintf("sector size is not set\n");
3456 return 0;
3457 }
3458
3459 return pba_of_lba0(map) + calc_component_size(map, dev) +
3460 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3461 }
3462
3463 /*******************************************************************************
3464 * Function: get_bitmap_sector
3465 * Description: Returns the sector where the bitmap is placed.
3466 * Parameters:
3467 * st : supertype information
3468 * dev_idx : index of the device with bitmap
3469 *
3470 * Returns:
3471 * The sector where the bitmap is placed
3472 ******************************************************************************/
3473 static unsigned long long get_bitmap_sector(struct intel_super *super,
3474 int dev_idx)
3475 {
3476 if (!super->sector_size) {
3477 dprintf("sector size is not set\n");
3478 return 0;
3479 }
3480
3481 return get_bitmap_header_sector(super, dev_idx) +
3482 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3483 }
3484
3485 static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3486 {
3487 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3488 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3489
3490 return pba_of_lba0(map) +
3491 (num_data_stripes(map) * map->blocks_per_strip);
3492 }
3493
3494 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3495 {
3496 struct intel_super *super = st->sb;
3497 struct migr_record *migr_rec = super->migr_rec;
3498 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3499 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3500 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3501 struct imsm_map *map_to_analyse = map;
3502 struct dl *dl;
3503 int map_disks = info->array.raid_disks;
3504
3505 memset(info, 0, sizeof(*info));
3506 if (prev_map)
3507 map_to_analyse = prev_map;
3508
3509 dl = super->current_disk;
3510
3511 info->container_member = super->current_vol;
3512 info->array.raid_disks = map->num_members;
3513 info->array.level = get_imsm_raid_level(map_to_analyse);
3514 info->array.layout = imsm_level_to_layout(info->array.level);
3515 info->array.md_minor = -1;
3516 info->array.ctime = 0;
3517 info->array.utime = 0;
3518 info->array.chunk_size =
3519 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3520 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
3521 info->custom_array_size = imsm_dev_size(dev);
3522 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3523
3524 if (is_gen_migration(dev)) {
3525 /*
3526 * device prev_map should be added if it is in the middle
3527 * of migration
3528 */
3529 assert(prev_map);
3530
3531 info->reshape_active = 1;
3532 info->new_level = get_imsm_raid_level(map);
3533 info->new_layout = imsm_level_to_layout(info->new_level);
3534 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3535 info->delta_disks = map->num_members - prev_map->num_members;
3536 if (info->delta_disks) {
3537 /* this needs to be applied to every array
3538 * in the container.
3539 */
3540 info->reshape_active = CONTAINER_RESHAPE;
3541 }
3542 /* We shape information that we give to md might have to be
3543 * modify to cope with md's requirement for reshaping arrays.
3544 * For example, when reshaping a RAID0, md requires it to be
3545 * presented as a degraded RAID4.
3546 * Also if a RAID0 is migrating to a RAID5 we need to specify
3547 * the array as already being RAID5, but the 'before' layout
3548 * is a RAID4-like layout.
3549 */
3550 switch (info->array.level) {
3551 case 0:
3552 switch(info->new_level) {
3553 case 0:
3554 /* conversion is happening as RAID4 */
3555 info->array.level = 4;
3556 info->array.raid_disks += 1;
3557 break;
3558 case 5:
3559 /* conversion is happening as RAID5 */
3560 info->array.level = 5;
3561 info->array.layout = ALGORITHM_PARITY_N;
3562 info->delta_disks -= 1;
3563 break;
3564 default:
3565 /* FIXME error message */
3566 info->array.level = UnSet;
3567 break;
3568 }
3569 break;
3570 }
3571 } else {
3572 info->new_level = UnSet;
3573 info->new_layout = UnSet;
3574 info->new_chunk = info->array.chunk_size;
3575 info->delta_disks = 0;
3576 }
3577
3578 if (dl) {
3579 info->disk.major = dl->major;
3580 info->disk.minor = dl->minor;
3581 info->disk.number = dl->index;
3582 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3583 dl->index);
3584 }
3585
3586 info->data_offset = pba_of_lba0(map_to_analyse);
3587 info->component_size = calc_component_size(map, dev);
3588 info->component_size = imsm_component_size_alignment_check(
3589 info->array.level,
3590 info->array.chunk_size,
3591 super->sector_size,
3592 info->component_size);
3593 info->bb.supported = 1;
3594
3595 memset(info->uuid, 0, sizeof(info->uuid));
3596 info->recovery_start = MaxSector;
3597
3598 if (info->array.level == 5 &&
3599 (dev->rwh_policy == RWH_DISTRIBUTED ||
3600 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
3601 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3602 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3603 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3604 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3605 else
3606 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3607 >> 9;
3608 } else if (info->array.level <= 0) {
3609 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3610 } else {
3611 if (dev->rwh_policy == RWH_BITMAP) {
3612 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3613 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3614 } else {
3615 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3616 }
3617 }
3618
3619 info->reshape_progress = 0;
3620 info->resync_start = MaxSector;
3621 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3622 !(info->array.state & 1)) &&
3623 imsm_reshape_blocks_arrays_changes(super) == 0) {
3624 info->resync_start = 0;
3625 }
3626 if (dev->vol.migr_state) {
3627 switch (migr_type(dev)) {
3628 case MIGR_REPAIR:
3629 case MIGR_INIT: {
3630 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3631 dev);
3632 __u64 units = vol_curr_migr_unit(dev);
3633
3634 info->resync_start = blocks_per_unit * units;
3635 break;
3636 }
3637 case MIGR_GEN_MIGR: {
3638 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3639 dev);
3640 __u64 units = current_migr_unit(migr_rec);
3641 int used_disks;
3642
3643 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3644 (units <
3645 (get_num_migr_units(migr_rec)-1)) &&
3646 (super->migr_rec->rec_status ==
3647 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3648 units++;
3649
3650 info->reshape_progress = blocks_per_unit * units;
3651
3652 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3653 (unsigned long long)units,
3654 (unsigned long long)blocks_per_unit,
3655 info->reshape_progress);
3656
3657 used_disks = imsm_num_data_members(prev_map);
3658 if (used_disks > 0) {
3659 info->custom_array_size = per_dev_array_size(map) *
3660 used_disks;
3661 }
3662 }
3663 case MIGR_VERIFY:
3664 /* we could emulate the checkpointing of
3665 * 'sync_action=check' migrations, but for now
3666 * we just immediately complete them
3667 */
3668 case MIGR_REBUILD:
3669 /* this is handled by container_content_imsm() */
3670 case MIGR_STATE_CHANGE:
3671 /* FIXME handle other migrations */
3672 default:
3673 /* we are not dirty, so... */
3674 info->resync_start = MaxSector;
3675 }
3676 }
3677
3678 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3679 info->name[MAX_RAID_SERIAL_LEN] = 0;
3680
3681 info->array.major_version = -1;
3682 info->array.minor_version = -2;
3683 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3684 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
3685 uuid_from_super_imsm(st, info->uuid);
3686
3687 if (dmap) {
3688 int i, j;
3689 for (i=0; i<map_disks; i++) {
3690 dmap[i] = 0;
3691 if (i < info->array.raid_disks) {
3692 struct imsm_disk *dsk;
3693 j = get_imsm_disk_idx(dev, i, MAP_X);
3694 dsk = get_imsm_disk(super, j);
3695 if (dsk && (dsk->status & CONFIGURED_DISK))
3696 dmap[i] = 1;
3697 }
3698 }
3699 }
3700 }
3701
3702 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3703 int failed, int look_in_map);
3704
3705 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3706 int look_in_map);
3707
3708 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3709 {
3710 if (is_gen_migration(dev)) {
3711 int failed;
3712 __u8 map_state;
3713 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3714
3715 failed = imsm_count_failed(super, dev, MAP_1);
3716 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3717 if (map2->map_state != map_state) {
3718 map2->map_state = map_state;
3719 super->updates_pending++;
3720 }
3721 }
3722 }
3723
3724 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3725 {
3726 struct dl *d;
3727
3728 for (d = super->missing; d; d = d->next)
3729 if (d->index == index)
3730 return &d->disk;
3731 return NULL;
3732 }
3733
3734 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3735 {
3736 struct intel_super *super = st->sb;
3737 struct imsm_disk *disk;
3738 int map_disks = info->array.raid_disks;
3739 int max_enough = -1;
3740 int i;
3741 struct imsm_super *mpb;
3742
3743 if (super->current_vol >= 0) {
3744 getinfo_super_imsm_volume(st, info, map);
3745 return;
3746 }
3747 memset(info, 0, sizeof(*info));
3748
3749 /* Set raid_disks to zero so that Assemble will always pull in valid
3750 * spares
3751 */
3752 info->array.raid_disks = 0;
3753 info->array.level = LEVEL_CONTAINER;
3754 info->array.layout = 0;
3755 info->array.md_minor = -1;
3756 info->array.ctime = 0; /* N/A for imsm */
3757 info->array.utime = 0;
3758 info->array.chunk_size = 0;
3759
3760 info->disk.major = 0;
3761 info->disk.minor = 0;
3762 info->disk.raid_disk = -1;
3763 info->reshape_active = 0;
3764 info->array.major_version = -1;
3765 info->array.minor_version = -2;
3766 strcpy(info->text_version, "imsm");
3767 info->safe_mode_delay = 0;
3768 info->disk.number = -1;
3769 info->disk.state = 0;
3770 info->name[0] = 0;
3771 info->recovery_start = MaxSector;
3772 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3773 info->bb.supported = 1;
3774
3775 /* do we have the all the insync disks that we expect? */
3776 mpb = super->anchor;
3777 info->events = __le32_to_cpu(mpb->generation_num);
3778
3779 for (i = 0; i < mpb->num_raid_devs; i++) {
3780 struct imsm_dev *dev = get_imsm_dev(super, i);
3781 int failed, enough, j, missing = 0;
3782 struct imsm_map *map;
3783 __u8 state;
3784
3785 failed = imsm_count_failed(super, dev, MAP_0);
3786 state = imsm_check_degraded(super, dev, failed, MAP_0);
3787 map = get_imsm_map(dev, MAP_0);
3788
3789 /* any newly missing disks?
3790 * (catches single-degraded vs double-degraded)
3791 */
3792 for (j = 0; j < map->num_members; j++) {
3793 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3794 __u32 idx = ord_to_idx(ord);
3795
3796 if (super->disks && super->disks->index == (int)idx)
3797 info->disk.raid_disk = j;
3798
3799 if (!(ord & IMSM_ORD_REBUILD) &&
3800 get_imsm_missing(super, idx)) {
3801 missing = 1;
3802 break;
3803 }
3804 }
3805
3806 if (state == IMSM_T_STATE_FAILED)
3807 enough = -1;
3808 else if (state == IMSM_T_STATE_DEGRADED &&
3809 (state != map->map_state || missing))
3810 enough = 0;
3811 else /* we're normal, or already degraded */
3812 enough = 1;
3813 if (is_gen_migration(dev) && missing) {
3814 /* during general migration we need all disks
3815 * that process is running on.
3816 * No new missing disk is allowed.
3817 */
3818 max_enough = -1;
3819 enough = -1;
3820 /* no more checks necessary
3821 */
3822 break;
3823 }
3824 /* in the missing/failed disk case check to see
3825 * if at least one array is runnable
3826 */
3827 max_enough = max(max_enough, enough);
3828 }
3829
3830 info->container_enough = max_enough;
3831
3832 if (super->disks) {
3833 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3834
3835 disk = &super->disks->disk;
3836 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3837 info->component_size = reserved;
3838 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3839 /* we don't change info->disk.raid_disk here because
3840 * this state will be finalized in mdmon after we have
3841 * found the 'most fresh' version of the metadata
3842 */
3843 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3844 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3845 0 : (1 << MD_DISK_SYNC);
3846 }
3847
3848 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3849 * ->compare_super may have updated the 'num_raid_devs' field for spares
3850 */
3851 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3852 uuid_from_super_imsm(st, info->uuid);
3853 else
3854 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3855
3856 /* I don't know how to compute 'map' on imsm, so use safe default */
3857 if (map) {
3858 int i;
3859 for (i = 0; i < map_disks; i++)
3860 map[i] = 1;
3861 }
3862
3863 }
3864
3865 /* allocates memory and fills disk in mdinfo structure
3866 * for each disk in array */
3867 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3868 {
3869 struct mdinfo *mddev;
3870 struct intel_super *super = st->sb;
3871 struct imsm_disk *disk;
3872 int count = 0;
3873 struct dl *dl;
3874 if (!super || !super->disks)
3875 return NULL;
3876 dl = super->disks;
3877 mddev = xcalloc(1, sizeof(*mddev));
3878 while (dl) {
3879 struct mdinfo *tmp;
3880 disk = &dl->disk;
3881 tmp = xcalloc(1, sizeof(*tmp));
3882 if (mddev->devs)
3883 tmp->next = mddev->devs;
3884 mddev->devs = tmp;
3885 tmp->disk.number = count++;
3886 tmp->disk.major = dl->major;
3887 tmp->disk.minor = dl->minor;
3888 tmp->disk.state = is_configured(disk) ?
3889 (1 << MD_DISK_ACTIVE) : 0;
3890 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3891 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3892 tmp->disk.raid_disk = -1;
3893 dl = dl->next;
3894 }
3895 return mddev;
3896 }
3897
3898 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3899 enum update_opt update, char *devname,
3900 int verbose, int uuid_set, char *homehost)
3901 {
3902 /* For 'assemble' and 'force' we need to return non-zero if any
3903 * change was made. For others, the return value is ignored.
3904 * Update options are:
3905 * force-one : This device looks a bit old but needs to be included,
3906 * update age info appropriately.
3907 * assemble: clear any 'faulty' flag to allow this device to
3908 * be assembled.
3909 * force-array: Array is degraded but being forced, mark it clean
3910 * if that will be needed to assemble it.
3911 *
3912 * newdev: not used ????
3913 * grow: Array has gained a new device - this is currently for
3914 * linear only
3915 * resync: mark as dirty so a resync will happen.
3916 * name: update the name - preserving the homehost
3917 * uuid: Change the uuid of the array to match watch is given
3918 *
3919 * Following are not relevant for this imsm:
3920 * sparc2.2 : update from old dodgey metadata
3921 * super-minor: change the preferred_minor number
3922 * summaries: update redundant counters.
3923 * homehost: update the recorded homehost
3924 * _reshape_progress: record new reshape_progress position.
3925 */
3926 int rv = 1;
3927 struct intel_super *super = st->sb;
3928 struct imsm_super *mpb;
3929
3930 /* we can only update container info */
3931 if (!super || super->current_vol >= 0 || !super->anchor)
3932 return 1;
3933
3934 mpb = super->anchor;
3935
3936 switch (update) {
3937 case UOPT_UUID:
3938 /* We take this to mean that the family_num should be updated.
3939 * However that is much smaller than the uuid so we cannot really
3940 * allow an explicit uuid to be given. And it is hard to reliably
3941 * know if one was.
3942 * So if !uuid_set we know the current uuid is random and just used
3943 * the first 'int' and copy it to the other 3 positions.
3944 * Otherwise we require the 4 'int's to be the same as would be the
3945 * case if we are using a random uuid. So an explicit uuid will be
3946 * accepted as long as all for ints are the same... which shouldn't hurt
3947 */
3948 if (!uuid_set) {
3949 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3950 rv = 0;
3951 } else {
3952 if (info->uuid[0] != info->uuid[1] ||
3953 info->uuid[1] != info->uuid[2] ||
3954 info->uuid[2] != info->uuid[3])
3955 rv = -1;
3956 else
3957 rv = 0;
3958 }
3959 if (rv == 0)
3960 mpb->orig_family_num = info->uuid[0];
3961 break;
3962 case UOPT_SPEC_ASSEMBLE:
3963 rv = 0;
3964 break;
3965 default:
3966 rv = -1;
3967 break;
3968 }
3969
3970 /* successful update? recompute checksum */
3971 if (rv == 0)
3972 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3973
3974 return rv;
3975 }
3976
3977 static size_t disks_to_mpb_size(int disks)
3978 {
3979 size_t size;
3980
3981 size = sizeof(struct imsm_super);
3982 size += (disks - 1) * sizeof(struct imsm_disk);
3983 size += 2 * sizeof(struct imsm_dev);
3984 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3985 size += (4 - 2) * sizeof(struct imsm_map);
3986 /* 4 possible disk_ord_tbl's */
3987 size += 4 * (disks - 1) * sizeof(__u32);
3988 /* maximum bbm log */
3989 size += sizeof(struct bbm_log);
3990
3991 return size;
3992 }
3993
3994 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3995 unsigned long long data_offset)
3996 {
3997 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3998 return 0;
3999
4000 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
4001 }
4002
4003 static void free_devlist(struct intel_super *super)
4004 {
4005 struct intel_dev *dv;
4006
4007 while (super->devlist) {
4008 dv = super->devlist->next;
4009 free(super->devlist->dev);
4010 free(super->devlist);
4011 super->devlist = dv;
4012 }
4013 }
4014
4015 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4016 {
4017 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4018 }
4019
4020 static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4021 int verbose)
4022 {
4023 /* return:
4024 * 0 same, or first was empty, and second was copied
4025 * 1 sb are different
4026 */
4027 struct intel_super *first = st->sb;
4028 struct intel_super *sec = tst->sb;
4029
4030 if (!first) {
4031 st->sb = tst->sb;
4032 tst->sb = NULL;
4033 return 0;
4034 }
4035
4036 /* in platform dependent environment test if the disks
4037 * use the same Intel hba
4038 * if not on Intel hba at all, allow anything.
4039 * doesn't check HBAs if num_raid_devs is not set, as it means
4040 * it is a free floating spare, and all spares regardless of HBA type
4041 * will fall into separate container during the assembly
4042 */
4043 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
4044 if (first->hba->type != sec->hba->type) {
4045 if (verbose)
4046 pr_err("HBAs of devices do not match %s != %s\n",
4047 get_sys_dev_type(first->hba->type),
4048 get_sys_dev_type(sec->hba->type));
4049 return 1;
4050 }
4051 if (first->orom != sec->orom) {
4052 if (verbose)
4053 pr_err("HBAs of devices do not match %s != %s\n",
4054 first->hba->pci_id, sec->hba->pci_id);
4055 return 1;
4056 }
4057 }
4058
4059 if (first->anchor->num_raid_devs > 0 &&
4060 sec->anchor->num_raid_devs > 0) {
4061 /* Determine if these disks might ever have been
4062 * related. Further disambiguation can only take place
4063 * in load_super_imsm_all
4064 */
4065 __u32 first_family = first->anchor->orig_family_num;
4066 __u32 sec_family = sec->anchor->orig_family_num;
4067
4068 if (memcmp(first->anchor->sig, sec->anchor->sig,
4069 MAX_SIGNATURE_LENGTH) != 0)
4070 return 1;
4071
4072 if (first_family == 0)
4073 first_family = first->anchor->family_num;
4074 if (sec_family == 0)
4075 sec_family = sec->anchor->family_num;
4076
4077 if (first_family != sec_family)
4078 return 1;
4079
4080 }
4081
4082 /* if an anchor does not have num_raid_devs set then it is a free
4083 * floating spare. don't assosiate spare with any array, as during assembly
4084 * spares shall fall into separate container, from which they can be moved
4085 * when necessary
4086 */
4087 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4088 return 1;
4089
4090 return 0;
4091 }
4092
4093 static void fd2devname(int fd, char *name)
4094 {
4095 char *nm;
4096
4097 nm = fd2kname(fd);
4098 if (!nm)
4099 return;
4100
4101 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
4102 }
4103
4104 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4105 {
4106 char path[PATH_MAX];
4107 char *name = fd2kname(fd);
4108
4109 if (!name)
4110 return 1;
4111
4112 if (strncmp(name, "nvme", 4) != 0)
4113 return 1;
4114
4115 if (!diskfd_to_devpath(fd, 1, path))
4116 return 1;
4117
4118 return devpath_to_char(path, "serial", buf, buf_len, 0);
4119 }
4120
4121 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4122
4123 static int imsm_read_serial(int fd, char *devname,
4124 __u8 *serial, size_t serial_buf_len)
4125 {
4126 char buf[50];
4127 int rv;
4128 size_t len;
4129 char *dest;
4130 char *src;
4131 unsigned int i;
4132
4133 memset(buf, 0, sizeof(buf));
4134
4135 if (check_env("IMSM_DEVNAME_AS_SERIAL")) {
4136 memset(serial, 0, serial_buf_len);
4137 fd2devname(fd, (char *) serial);
4138 return 0;
4139 }
4140
4141 rv = nvme_get_serial(fd, buf, sizeof(buf));
4142
4143 if (rv)
4144 rv = scsi_get_serial(fd, buf, sizeof(buf));
4145
4146 if (rv != 0) {
4147 if (devname)
4148 pr_err("Failed to retrieve serial for %s\n",
4149 devname);
4150 return rv;
4151 }
4152
4153 /* trim all whitespace and non-printable characters and convert
4154 * ':' to ';'
4155 */
4156 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4157 src = &buf[i];
4158 if (*src > 0x20) {
4159 /* ':' is reserved for use in placeholder serial
4160 * numbers for missing disks
4161 */
4162 if (*src == ':')
4163 *dest++ = ';';
4164 else
4165 *dest++ = *src;
4166 }
4167 }
4168 len = dest - buf;
4169 dest = buf;
4170
4171 if (len > serial_buf_len) {
4172 /* truncate leading characters */
4173 dest += len - serial_buf_len;
4174 len = serial_buf_len;
4175 }
4176
4177 memset(serial, 0, serial_buf_len);
4178 memcpy(serial, dest, len);
4179
4180 return 0;
4181 }
4182
4183 static int serialcmp(__u8 *s1, __u8 *s2)
4184 {
4185 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4186 }
4187
4188 static void serialcpy(__u8 *dest, __u8 *src)
4189 {
4190 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4191 }
4192
4193 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4194 {
4195 struct dl *dl;
4196
4197 for (dl = super->disks; dl; dl = dl->next)
4198 if (serialcmp(dl->serial, serial) == 0)
4199 break;
4200
4201 return dl;
4202 }
4203
4204 static struct imsm_disk *
4205 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4206 {
4207 int i;
4208
4209 for (i = 0; i < mpb->num_disks; i++) {
4210 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4211
4212 if (serialcmp(disk->serial, serial) == 0) {
4213 if (idx)
4214 *idx = i;
4215 return disk;
4216 }
4217 }
4218
4219 return NULL;
4220 }
4221
4222 static int
4223 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4224 {
4225 struct imsm_disk *disk;
4226 struct dl *dl;
4227 struct stat stb;
4228 int rv;
4229 char name[40];
4230 __u8 serial[MAX_RAID_SERIAL_LEN];
4231
4232 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
4233
4234 if (rv != 0)
4235 return 2;
4236
4237 dl = xcalloc(1, sizeof(*dl));
4238
4239 fstat(fd, &stb);
4240 dl->major = major(stb.st_rdev);
4241 dl->minor = minor(stb.st_rdev);
4242 dl->next = super->disks;
4243 dl->fd = keep_fd ? fd : -1;
4244 assert(super->disks == NULL);
4245 super->disks = dl;
4246 serialcpy(dl->serial, serial);
4247 dl->index = -2;
4248 dl->e = NULL;
4249 fd2devname(fd, name);
4250 if (devname)
4251 dl->devname = xstrdup(devname);
4252 else
4253 dl->devname = xstrdup(name);
4254
4255 /* look up this disk's index in the current anchor */
4256 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4257 if (disk) {
4258 dl->disk = *disk;
4259 /* only set index on disks that are a member of a
4260 * populated contianer, i.e. one with raid_devs
4261 */
4262 if (is_failed(&dl->disk))
4263 dl->index = -2;
4264 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
4265 dl->index = -1;
4266 }
4267
4268 return 0;
4269 }
4270
4271 /* When migrating map0 contains the 'destination' state while map1
4272 * contains the current state. When not migrating map0 contains the
4273 * current state. This routine assumes that map[0].map_state is set to
4274 * the current array state before being called.
4275 *
4276 * Migration is indicated by one of the following states
4277 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
4278 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
4279 * map1state=unitialized)
4280 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
4281 * map1state=normal)
4282 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
4283 * map1state=degraded)
4284 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4285 * map1state=normal)
4286 */
4287 static void migrate(struct imsm_dev *dev, struct intel_super *super,
4288 __u8 to_state, int migr_type)
4289 {
4290 struct imsm_map *dest;
4291 struct imsm_map *src = get_imsm_map(dev, MAP_0);
4292
4293 dev->vol.migr_state = 1;
4294 set_migr_type(dev, migr_type);
4295 set_vol_curr_migr_unit(dev, 0);
4296 dest = get_imsm_map(dev, MAP_1);
4297
4298 /* duplicate and then set the target end state in map[0] */
4299 memcpy(dest, src, sizeof_imsm_map(src));
4300 if (migr_type == MIGR_GEN_MIGR) {
4301 __u32 ord;
4302 int i;
4303
4304 for (i = 0; i < src->num_members; i++) {
4305 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4306 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4307 }
4308 }
4309
4310 if (migr_type == MIGR_GEN_MIGR)
4311 /* Clear migration record */
4312 memset(super->migr_rec, 0, sizeof(struct migr_record));
4313
4314 src->map_state = to_state;
4315 }
4316
4317 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4318 __u8 map_state)
4319 {
4320 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4321 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4322 MAP_0 : MAP_1);
4323 int i, j;
4324
4325 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4326 * completed in the last migration.
4327 *
4328 * FIXME add support for raid-level-migration
4329 */
4330 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
4331 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
4332 /* when final map state is other than expected
4333 * merge maps (not for migration)
4334 */
4335 int failed;
4336
4337 for (i = 0; i < prev->num_members; i++)
4338 for (j = 0; j < map->num_members; j++)
4339 /* during online capacity expansion
4340 * disks position can be changed
4341 * if takeover is used
4342 */
4343 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4344 ord_to_idx(prev->disk_ord_tbl[i])) {
4345 map->disk_ord_tbl[j] |=
4346 prev->disk_ord_tbl[i];
4347 break;
4348 }
4349 failed = imsm_count_failed(super, dev, MAP_0);
4350 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4351 }
4352
4353 dev->vol.migr_state = 0;
4354 set_migr_type(dev, 0);
4355 set_vol_curr_migr_unit(dev, 0);
4356 map->map_state = map_state;
4357 }
4358
4359 static int parse_raid_devices(struct intel_super *super)
4360 {
4361 int i;
4362 struct imsm_dev *dev_new;
4363 size_t len, len_migr;
4364 size_t max_len = 0;
4365 size_t space_needed = 0;
4366 struct imsm_super *mpb = super->anchor;
4367
4368 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4369 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4370 struct intel_dev *dv;
4371
4372 len = sizeof_imsm_dev(dev_iter, 0);
4373 len_migr = sizeof_imsm_dev(dev_iter, 1);
4374 if (len_migr > len)
4375 space_needed += len_migr - len;
4376
4377 dv = xmalloc(sizeof(*dv));
4378 if (max_len < len_migr)
4379 max_len = len_migr;
4380 if (max_len > len_migr)
4381 space_needed += max_len - len_migr;
4382 dev_new = xmalloc(max_len);
4383 imsm_copy_dev(dev_new, dev_iter);
4384 dv->dev = dev_new;
4385 dv->index = i;
4386 dv->next = super->devlist;
4387 super->devlist = dv;
4388 }
4389
4390 /* ensure that super->buf is large enough when all raid devices
4391 * are migrating
4392 */
4393 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4394 void *buf;
4395
4396 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4397 super->sector_size);
4398 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4399 return 1;
4400
4401 memcpy(buf, super->buf, super->len);
4402 memset(buf + super->len, 0, len - super->len);
4403 free(super->buf);
4404 super->buf = buf;
4405 super->len = len;
4406 }
4407
4408 super->extra_space += space_needed;
4409
4410 return 0;
4411 }
4412
4413 /*******************************************************************************
4414 * Function: check_mpb_migr_compatibility
4415 * Description: Function checks for unsupported migration features:
4416 * - migration optimization area (pba_of_lba0)
4417 * - descending reshape (ascending_migr)
4418 * Parameters:
4419 * super : imsm metadata information
4420 * Returns:
4421 * 0 : migration is compatible
4422 * -1 : migration is not compatible
4423 ******************************************************************************/
4424 int check_mpb_migr_compatibility(struct intel_super *super)
4425 {
4426 struct imsm_map *map0, *map1;
4427 struct migr_record *migr_rec = super->migr_rec;
4428 int i;
4429
4430 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4431 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4432
4433 if (dev_iter->vol.migr_state == 1 &&
4434 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4435 /* This device is migrating */
4436 map0 = get_imsm_map(dev_iter, MAP_0);
4437 map1 = get_imsm_map(dev_iter, MAP_1);
4438 if (pba_of_lba0(map0) != pba_of_lba0(map1))
4439 /* migration optimization area was used */
4440 return -1;
4441 if (migr_rec->ascending_migr == 0 &&
4442 migr_rec->dest_depth_per_unit > 0)
4443 /* descending reshape not supported yet */
4444 return -1;
4445 }
4446 }
4447 return 0;
4448 }
4449
4450 static void __free_imsm(struct intel_super *super, int free_disks);
4451
4452 /* load_imsm_mpb - read matrix metadata
4453 * allocates super->mpb to be freed by free_imsm
4454 */
4455 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4456 {
4457 unsigned long long dsize;
4458 unsigned long long sectors;
4459 unsigned int sector_size = super->sector_size;
4460 struct stat;
4461 struct imsm_super *anchor;
4462 __u32 check_sum;
4463
4464 get_dev_size(fd, NULL, &dsize);
4465 if (dsize < 2*sector_size) {
4466 if (devname)
4467 pr_err("%s: device to small for imsm\n",
4468 devname);
4469 return 1;
4470 }
4471
4472 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4473 if (devname)
4474 pr_err("Cannot seek to anchor block on %s: %s\n",
4475 devname, strerror(errno));
4476 return 1;
4477 }
4478
4479 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4480 if (devname)
4481 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4482 return 1;
4483 }
4484 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
4485 if (devname)
4486 pr_err("Cannot read anchor block on %s: %s\n",
4487 devname, strerror(errno));
4488 free(anchor);
4489 return 1;
4490 }
4491
4492 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4493 if (devname)
4494 pr_err("no IMSM anchor on %s\n", devname);
4495 free(anchor);
4496 return 2;
4497 }
4498
4499 __free_imsm(super, 0);
4500 /* reload capability and hba */
4501
4502 /* capability and hba must be updated with new super allocation */
4503 find_intel_hba_capability(fd, super, devname);
4504 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4505 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4506 if (devname)
4507 pr_err("unable to allocate %zu byte mpb buffer\n",
4508 super->len);
4509 free(anchor);
4510 return 2;
4511 }
4512 memcpy(super->buf, anchor, sector_size);
4513
4514 sectors = mpb_sectors(anchor, sector_size) - 1;
4515 free(anchor);
4516
4517 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4518 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
4519 pr_err("could not allocate migr_rec buffer\n");
4520 free(super->buf);
4521 super->buf = NULL;
4522 return 2;
4523 }
4524 super->clean_migration_record_by_mdmon = 0;
4525
4526 if (!sectors) {
4527 check_sum = __gen_imsm_checksum(super->anchor);
4528 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4529 if (devname)
4530 pr_err("IMSM checksum %x != %x on %s\n",
4531 check_sum,
4532 __le32_to_cpu(super->anchor->check_sum),
4533 devname);
4534 return 2;
4535 }
4536
4537 return 0;
4538 }
4539
4540 /* read the extended mpb */
4541 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4542 if (devname)
4543 pr_err("Cannot seek to extended mpb on %s: %s\n",
4544 devname, strerror(errno));
4545 return 1;
4546 }
4547
4548 if ((unsigned int)read(fd, super->buf + sector_size,
4549 super->len - sector_size) != super->len - sector_size) {
4550 if (devname)
4551 pr_err("Cannot read extended mpb on %s: %s\n",
4552 devname, strerror(errno));
4553 return 2;
4554 }
4555
4556 check_sum = __gen_imsm_checksum(super->anchor);
4557 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4558 if (devname)
4559 pr_err("IMSM checksum %x != %x on %s\n",
4560 check_sum, __le32_to_cpu(super->anchor->check_sum),
4561 devname);
4562 return 3;
4563 }
4564
4565 return 0;
4566 }
4567
4568 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4569
4570 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4571 static void clear_hi(struct intel_super *super)
4572 {
4573 struct imsm_super *mpb = super->anchor;
4574 int i, n;
4575 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4576 return;
4577 for (i = 0; i < mpb->num_disks; ++i) {
4578 struct imsm_disk *disk = &mpb->disk[i];
4579 disk->total_blocks_hi = 0;
4580 }
4581 for (i = 0; i < mpb->num_raid_devs; ++i) {
4582 struct imsm_dev *dev = get_imsm_dev(super, i);
4583 for (n = 0; n < 2; ++n) {
4584 struct imsm_map *map = get_imsm_map(dev, n);
4585 if (!map)
4586 continue;
4587 map->pba_of_lba0_hi = 0;
4588 map->blocks_per_member_hi = 0;
4589 map->num_data_stripes_hi = 0;
4590 }
4591 }
4592 }
4593
4594 static int
4595 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4596 {
4597 int err;
4598
4599 err = load_imsm_mpb(fd, super, devname);
4600 if (err)
4601 return err;
4602 if (super->sector_size == 4096)
4603 convert_from_4k(super);
4604 err = load_imsm_disk(fd, super, devname, keep_fd);
4605 if (err)
4606 return err;
4607 err = parse_raid_devices(super);
4608 if (err)
4609 return err;
4610 err = load_bbm_log(super);
4611 clear_hi(super);
4612 return err;
4613 }
4614
4615 static void __free_imsm_disk(struct dl *d, int do_close)
4616 {
4617 if (do_close)
4618 close_fd(&d->fd);
4619 if (d->devname)
4620 free(d->devname);
4621 if (d->e)
4622 free(d->e);
4623 free(d);
4624
4625 }
4626
4627 static void free_imsm_disks(struct intel_super *super)
4628 {
4629 struct dl *d;
4630
4631 while (super->disks) {
4632 d = super->disks;
4633 super->disks = d->next;
4634 __free_imsm_disk(d, 1);
4635 }
4636 while (super->disk_mgmt_list) {
4637 d = super->disk_mgmt_list;
4638 super->disk_mgmt_list = d->next;
4639 __free_imsm_disk(d, 1);
4640 }
4641 while (super->missing) {
4642 d = super->missing;
4643 super->missing = d->next;
4644 __free_imsm_disk(d, 1);
4645 }
4646
4647 }
4648
4649 /* free all the pieces hanging off of a super pointer */
4650 static void __free_imsm(struct intel_super *super, int free_disks)
4651 {
4652 struct intel_hba *elem, *next;
4653
4654 if (super->buf) {
4655 free(super->buf);
4656 super->buf = NULL;
4657 }
4658 /* unlink capability description */
4659 super->orom = NULL;
4660 if (super->migr_rec_buf) {
4661 free(super->migr_rec_buf);
4662 super->migr_rec_buf = NULL;
4663 }
4664 if (free_disks)
4665 free_imsm_disks(super);
4666 free_devlist(super);
4667 elem = super->hba;
4668 while (elem) {
4669 if (elem->path)
4670 free((void *)elem->path);
4671 next = elem->next;
4672 free(elem);
4673 elem = next;
4674 }
4675 if (super->bbm_log)
4676 free(super->bbm_log);
4677 super->hba = NULL;
4678 }
4679
4680 static void free_imsm(struct intel_super *super)
4681 {
4682 __free_imsm(super, 1);
4683 free(super->bb.entries);
4684 free(super);
4685 }
4686
4687 static void free_super_imsm(struct supertype *st)
4688 {
4689 struct intel_super *super = st->sb;
4690
4691 if (!super)
4692 return;
4693
4694 free_imsm(super);
4695 st->sb = NULL;
4696 }
4697
4698 static struct intel_super *alloc_super(void)
4699 {
4700 struct intel_super *super = xcalloc(1, sizeof(*super));
4701
4702 super->current_vol = -1;
4703 super->create_offset = ~((unsigned long long) 0);
4704
4705 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4706 sizeof(struct md_bb_entry));
4707 if (!super->bb.entries) {
4708 free(super);
4709 return NULL;
4710 }
4711
4712 return super;
4713 }
4714
4715 /*
4716 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4717 */
4718 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4719 {
4720 struct sys_dev *hba_name;
4721 int rv = 0;
4722
4723 if (is_fd_valid(fd) && test_partition(fd)) {
4724 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4725 devname);
4726 return 1;
4727 }
4728 if (!is_fd_valid(fd) || check_no_platform()) {
4729 super->orom = NULL;
4730 super->hba = NULL;
4731 return 0;
4732 }
4733 hba_name = find_disk_attached_hba(fd, NULL);
4734 if (!hba_name) {
4735 if (devname)
4736 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4737 devname);
4738 return 1;
4739 }
4740 rv = attach_hba_to_super(super, hba_name);
4741 if (rv == 2) {
4742 if (devname) {
4743 struct intel_hba *hba = super->hba;
4744
4745 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4746 " but the container is assigned to Intel(R) %s %s (",
4747 devname,
4748 get_sys_dev_type(hba_name->type),
4749 hba_name->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4750 "domain" : "RAID controller",
4751 hba_name->pci_id ? : "Err!",
4752 get_sys_dev_type(super->hba->type),
4753 hba->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4754 "domain" : "RAID controller");
4755
4756 while (hba) {
4757 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4758 if (hba->next)
4759 fprintf(stderr, ", ");
4760 hba = hba->next;
4761 }
4762 fprintf(stderr, ").\n"
4763 " Mixing devices attached to different controllers is not allowed.\n");
4764 }
4765 return 2;
4766 }
4767 super->orom = find_imsm_capability(hba_name);
4768 if (!super->orom)
4769 return 3;
4770
4771 return 0;
4772 }
4773
4774 /* find_missing - helper routine for load_super_imsm_all that identifies
4775 * disks that have disappeared from the system. This routine relies on
4776 * the mpb being uptodate, which it is at load time.
4777 */
4778 static int find_missing(struct intel_super *super)
4779 {
4780 int i;
4781 struct imsm_super *mpb = super->anchor;
4782 struct dl *dl;
4783 struct imsm_disk *disk;
4784
4785 for (i = 0; i < mpb->num_disks; i++) {
4786 disk = __get_imsm_disk(mpb, i);
4787 dl = serial_to_dl(disk->serial, super);
4788 if (dl)
4789 continue;
4790
4791 dl = xmalloc(sizeof(*dl));
4792 dl->major = 0;
4793 dl->minor = 0;
4794 dl->fd = -1;
4795 dl->devname = xstrdup("missing");
4796 dl->index = i;
4797 serialcpy(dl->serial, disk->serial);
4798 dl->disk = *disk;
4799 dl->e = NULL;
4800 dl->next = super->missing;
4801 super->missing = dl;
4802 }
4803
4804 return 0;
4805 }
4806
4807 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4808 {
4809 struct intel_disk *idisk = disk_list;
4810
4811 while (idisk) {
4812 if (serialcmp(idisk->disk.serial, serial) == 0)
4813 break;
4814 idisk = idisk->next;
4815 }
4816
4817 return idisk;
4818 }
4819
4820 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4821 struct intel_super *super,
4822 struct intel_disk **disk_list)
4823 {
4824 struct imsm_disk *d = &super->disks->disk;
4825 struct imsm_super *mpb = super->anchor;
4826 int i, j;
4827
4828 for (i = 0; i < tbl_size; i++) {
4829 struct imsm_super *tbl_mpb = table[i]->anchor;
4830 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4831
4832 if (tbl_mpb->family_num == mpb->family_num) {
4833 if (tbl_mpb->check_sum == mpb->check_sum) {
4834 dprintf("mpb from %d:%d matches %d:%d\n",
4835 super->disks->major,
4836 super->disks->minor,
4837 table[i]->disks->major,
4838 table[i]->disks->minor);
4839 break;
4840 }
4841
4842 if (((is_configured(d) && !is_configured(tbl_d)) ||
4843 is_configured(d) == is_configured(tbl_d)) &&
4844 tbl_mpb->generation_num < mpb->generation_num) {
4845 /* current version of the mpb is a
4846 * better candidate than the one in
4847 * super_table, but copy over "cross
4848 * generational" status
4849 */
4850 struct intel_disk *idisk;
4851
4852 dprintf("mpb from %d:%d replaces %d:%d\n",
4853 super->disks->major,
4854 super->disks->minor,
4855 table[i]->disks->major,
4856 table[i]->disks->minor);
4857
4858 idisk = disk_list_get(tbl_d->serial, *disk_list);
4859 if (idisk && is_failed(&idisk->disk))
4860 tbl_d->status |= FAILED_DISK;
4861 break;
4862 } else {
4863 struct intel_disk *idisk;
4864 struct imsm_disk *disk;
4865
4866 /* tbl_mpb is more up to date, but copy
4867 * over cross generational status before
4868 * returning
4869 */
4870 disk = __serial_to_disk(d->serial, mpb, NULL);
4871 if (disk && is_failed(disk))
4872 d->status |= FAILED_DISK;
4873
4874 idisk = disk_list_get(d->serial, *disk_list);
4875 if (idisk) {
4876 idisk->owner = i;
4877 if (disk && is_configured(disk))
4878 idisk->disk.status |= CONFIGURED_DISK;
4879 }
4880
4881 dprintf("mpb from %d:%d prefer %d:%d\n",
4882 super->disks->major,
4883 super->disks->minor,
4884 table[i]->disks->major,
4885 table[i]->disks->minor);
4886
4887 return tbl_size;
4888 }
4889 }
4890 }
4891
4892 if (i >= tbl_size)
4893 table[tbl_size++] = super;
4894 else
4895 table[i] = super;
4896
4897 /* update/extend the merged list of imsm_disk records */
4898 for (j = 0; j < mpb->num_disks; j++) {
4899 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4900 struct intel_disk *idisk;
4901
4902 idisk = disk_list_get(disk->serial, *disk_list);
4903 if (idisk) {
4904 idisk->disk.status |= disk->status;
4905 if (is_configured(&idisk->disk) ||
4906 is_failed(&idisk->disk))
4907 idisk->disk.status &= ~(SPARE_DISK);
4908 } else {
4909 idisk = xcalloc(1, sizeof(*idisk));
4910 idisk->owner = IMSM_UNKNOWN_OWNER;
4911 idisk->disk = *disk;
4912 idisk->next = *disk_list;
4913 *disk_list = idisk;
4914 }
4915
4916 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4917 idisk->owner = i;
4918 }
4919
4920 return tbl_size;
4921 }
4922
4923 static struct intel_super *
4924 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4925 const int owner)
4926 {
4927 struct imsm_super *mpb = super->anchor;
4928 int ok_count = 0;
4929 int i;
4930
4931 for (i = 0; i < mpb->num_disks; i++) {
4932 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4933 struct intel_disk *idisk;
4934
4935 idisk = disk_list_get(disk->serial, disk_list);
4936 if (idisk) {
4937 if (idisk->owner == owner ||
4938 idisk->owner == IMSM_UNKNOWN_OWNER)
4939 ok_count++;
4940 else
4941 dprintf("'%.16s' owner %d != %d\n",
4942 disk->serial, idisk->owner,
4943 owner);
4944 } else {
4945 dprintf("unknown disk %x [%d]: %.16s\n",
4946 __le32_to_cpu(mpb->family_num), i,
4947 disk->serial);
4948 break;
4949 }
4950 }
4951
4952 if (ok_count == mpb->num_disks)
4953 return super;
4954 return NULL;
4955 }
4956
4957 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4958 {
4959 struct intel_super *s;
4960
4961 for (s = super_list; s; s = s->next) {
4962 if (family_num != s->anchor->family_num)
4963 continue;
4964 pr_err("Conflict, offlining family %#x on '%s'\n",
4965 __le32_to_cpu(family_num), s->disks->devname);
4966 }
4967 }
4968
4969 static struct intel_super *
4970 imsm_thunderdome(struct intel_super **super_list, int len)
4971 {
4972 struct intel_super *super_table[len];
4973 struct intel_disk *disk_list = NULL;
4974 struct intel_super *champion, *spare;
4975 struct intel_super *s, **del;
4976 int tbl_size = 0;
4977 int conflict;
4978 int i;
4979
4980 memset(super_table, 0, sizeof(super_table));
4981 for (s = *super_list; s; s = s->next)
4982 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4983
4984 for (i = 0; i < tbl_size; i++) {
4985 struct imsm_disk *d;
4986 struct intel_disk *idisk;
4987 struct imsm_super *mpb = super_table[i]->anchor;
4988
4989 s = super_table[i];
4990 d = &s->disks->disk;
4991
4992 /* 'd' must appear in merged disk list for its
4993 * configuration to be valid
4994 */
4995 idisk = disk_list_get(d->serial, disk_list);
4996 if (idisk && idisk->owner == i)
4997 s = validate_members(s, disk_list, i);
4998 else
4999 s = NULL;
5000
5001 if (!s)
5002 dprintf("marking family: %#x from %d:%d offline\n",
5003 mpb->family_num,
5004 super_table[i]->disks->major,
5005 super_table[i]->disks->minor);
5006 super_table[i] = s;
5007 }
5008
5009 /* This is where the mdadm implementation differs from the Windows
5010 * driver which has no strict concept of a container. We can only
5011 * assemble one family from a container, so when returning a prodigal
5012 * array member to this system the code will not be able to disambiguate
5013 * the container contents that should be assembled ("foreign" versus
5014 * "local"). It requires user intervention to set the orig_family_num
5015 * to a new value to establish a new container. The Windows driver in
5016 * this situation fixes up the volume name in place and manages the
5017 * foreign array as an independent entity.
5018 */
5019 s = NULL;
5020 spare = NULL;
5021 conflict = 0;
5022 for (i = 0; i < tbl_size; i++) {
5023 struct intel_super *tbl_ent = super_table[i];
5024 int is_spare = 0;
5025
5026 if (!tbl_ent)
5027 continue;
5028
5029 if (tbl_ent->anchor->num_raid_devs == 0) {
5030 spare = tbl_ent;
5031 is_spare = 1;
5032 }
5033
5034 if (s && !is_spare) {
5035 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5036 conflict++;
5037 } else if (!s && !is_spare)
5038 s = tbl_ent;
5039 }
5040
5041 if (!s)
5042 s = spare;
5043 if (!s) {
5044 champion = NULL;
5045 goto out;
5046 }
5047 champion = s;
5048
5049 if (conflict)
5050 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
5051 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5052
5053 /* collect all dl's onto 'champion', and update them to
5054 * champion's version of the status
5055 */
5056 for (s = *super_list; s; s = s->next) {
5057 struct imsm_super *mpb = champion->anchor;
5058 struct dl *dl = s->disks;
5059
5060 if (s == champion)
5061 continue;
5062
5063 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5064
5065 for (i = 0; i < mpb->num_disks; i++) {
5066 struct imsm_disk *disk;
5067
5068 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5069 if (disk) {
5070 dl->disk = *disk;
5071 /* only set index on disks that are a member of
5072 * a populated contianer, i.e. one with
5073 * raid_devs
5074 */
5075 if (is_failed(&dl->disk))
5076 dl->index = -2;
5077 else if (is_spare(&dl->disk))
5078 dl->index = -1;
5079 break;
5080 }
5081 }
5082
5083 if (i >= mpb->num_disks) {
5084 struct intel_disk *idisk;
5085
5086 idisk = disk_list_get(dl->serial, disk_list);
5087 if (idisk && is_spare(&idisk->disk) &&
5088 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5089 dl->index = -1;
5090 else {
5091 dl->index = -2;
5092 continue;
5093 }
5094 }
5095
5096 dl->next = champion->disks;
5097 champion->disks = dl;
5098 s->disks = NULL;
5099 }
5100
5101 /* delete 'champion' from super_list */
5102 for (del = super_list; *del; ) {
5103 if (*del == champion) {
5104 *del = (*del)->next;
5105 break;
5106 } else
5107 del = &(*del)->next;
5108 }
5109 champion->next = NULL;
5110
5111 out:
5112 while (disk_list) {
5113 struct intel_disk *idisk = disk_list;
5114
5115 disk_list = disk_list->next;
5116 free(idisk);
5117 }
5118
5119 return champion;
5120 }
5121
5122 static int
5123 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
5124 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5125 int major, int minor, int keep_fd);
5126 static int
5127 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5128 int *max, int keep_fd);
5129
5130 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
5131 char *devname, struct md_list *devlist,
5132 int keep_fd)
5133 {
5134 struct intel_super *super_list = NULL;
5135 struct intel_super *super = NULL;
5136 int err = 0;
5137 int i = 0;
5138
5139 if (is_fd_valid(fd))
5140 /* 'fd' is an opened container */
5141 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5142 else
5143 /* get super block from devlist devices */
5144 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
5145 if (err)
5146 goto error;
5147 /* all mpbs enter, maybe one leaves */
5148 super = imsm_thunderdome(&super_list, i);
5149 if (!super) {
5150 err = 1;
5151 goto error;
5152 }
5153
5154 if (find_missing(super) != 0) {
5155 free_imsm(super);
5156 err = 2;
5157 goto error;
5158 }
5159
5160 /* load migration record */
5161 err = load_imsm_migr_rec(super);
5162 if (err == -1) {
5163 /* migration is in progress,
5164 * but migr_rec cannot be loaded,
5165 */
5166 err = 4;
5167 goto error;
5168 }
5169
5170 /* Check migration compatibility */
5171 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
5172 pr_err("Unsupported migration detected");
5173 if (devname)
5174 fprintf(stderr, " on %s\n", devname);
5175 else
5176 fprintf(stderr, " (IMSM).\n");
5177
5178 err = 5;
5179 goto error;
5180 }
5181
5182 err = 0;
5183
5184 error:
5185 while (super_list) {
5186 struct intel_super *s = super_list;
5187
5188 super_list = super_list->next;
5189 free_imsm(s);
5190 }
5191
5192 if (err)
5193 return err;
5194
5195 *sbp = super;
5196 if (is_fd_valid(fd))
5197 strcpy(st->container_devnm, fd2devnm(fd));
5198 else
5199 st->container_devnm[0] = 0;
5200 if (err == 0 && st->ss == NULL) {
5201 st->ss = &super_imsm;
5202 st->minor_version = 0;
5203 st->max_devs = IMSM_MAX_DEVICES;
5204 }
5205 return 0;
5206 }
5207
5208 static int
5209 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5210 int *max, int keep_fd)
5211 {
5212 struct md_list *tmpdev;
5213 int err = 0;
5214 int i = 0;
5215
5216 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5217 if (tmpdev->used != 1)
5218 continue;
5219 if (tmpdev->container == 1) {
5220 int lmax = 0;
5221 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
5222 if (!is_fd_valid(fd)) {
5223 pr_err("cannot open device %s: %s\n",
5224 tmpdev->devname, strerror(errno));
5225 err = 8;
5226 goto error;
5227 }
5228 err = get_sra_super_block(fd, super_list,
5229 tmpdev->devname, &lmax,
5230 keep_fd);
5231 i += lmax;
5232 close(fd);
5233 if (err) {
5234 err = 7;
5235 goto error;
5236 }
5237 } else {
5238 int major = major(tmpdev->st_rdev);
5239 int minor = minor(tmpdev->st_rdev);
5240 err = get_super_block(super_list,
5241 NULL,
5242 tmpdev->devname,
5243 major, minor,
5244 keep_fd);
5245 i++;
5246 if (err) {
5247 err = 6;
5248 goto error;
5249 }
5250 }
5251 }
5252 error:
5253 *max = i;
5254 return err;
5255 }
5256
5257 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5258 int major, int minor, int keep_fd)
5259 {
5260 struct intel_super *s;
5261 char nm[32];
5262 int dfd = -1;
5263 int err = 0;
5264 int retry;
5265
5266 s = alloc_super();
5267 if (!s) {
5268 err = 1;
5269 goto error;
5270 }
5271
5272 sprintf(nm, "%d:%d", major, minor);
5273 dfd = dev_open(nm, O_RDWR);
5274 if (!is_fd_valid(dfd)) {
5275 err = 2;
5276 goto error;
5277 }
5278
5279 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5280 err = 2;
5281 goto error;
5282 }
5283 find_intel_hba_capability(dfd, s, devname);
5284 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5285
5286 /* retry the load if we might have raced against mdmon */
5287 if (err == 3 && devnm && mdmon_running(devnm))
5288 for (retry = 0; retry < 3; retry++) {
5289 sleep_for(0, MSEC_TO_NSEC(3), true);
5290 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5291 if (err != 3)
5292 break;
5293 }
5294 error:
5295 if (!err) {
5296 s->next = *super_list;
5297 *super_list = s;
5298 } else {
5299 if (s)
5300 free_imsm(s);
5301 close_fd(&dfd);
5302 }
5303 if (!keep_fd)
5304 close_fd(&dfd);
5305 return err;
5306
5307 }
5308
5309 static int
5310 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5311 {
5312 struct mdinfo *sra;
5313 char *devnm;
5314 struct mdinfo *sd;
5315 int err = 0;
5316 int i = 0;
5317 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
5318 if (!sra)
5319 return 1;
5320
5321 if (sra->array.major_version != -1 ||
5322 sra->array.minor_version != -2 ||
5323 strcmp(sra->text_version, "imsm") != 0) {
5324 err = 1;
5325 goto error;
5326 }
5327 /* load all mpbs */
5328 devnm = fd2devnm(fd);
5329 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
5330 if (get_super_block(super_list, devnm, devname,
5331 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5332 err = 7;
5333 goto error;
5334 }
5335 }
5336 error:
5337 sysfs_free(sra);
5338 *max = i;
5339 return err;
5340 }
5341
5342 static int load_container_imsm(struct supertype *st, int fd, char *devname)
5343 {
5344 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
5345 }
5346
5347 static int load_super_imsm(struct supertype *st, int fd, char *devname)
5348 {
5349 struct intel_super *super;
5350 int rv;
5351 int retry;
5352
5353 if (test_partition(fd))
5354 /* IMSM not allowed on partitions */
5355 return 1;
5356
5357 free_super_imsm(st);
5358
5359 super = alloc_super();
5360 if (!super)
5361 return 1;
5362
5363 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5364 free_imsm(super);
5365 return 1;
5366 }
5367 /* Load hba and capabilities if they exist.
5368 * But do not preclude loading metadata in case capabilities or hba are
5369 * non-compliant and ignore_hw_compat is set.
5370 */
5371 rv = find_intel_hba_capability(fd, super, devname);
5372 /* no orom/efi or non-intel hba of the disk */
5373 if (rv != 0 && st->ignore_hw_compat == 0) {
5374 if (devname)
5375 pr_err("No OROM/EFI properties for %s\n", devname);
5376 free_imsm(super);
5377 return 2;
5378 }
5379 rv = load_and_parse_mpb(fd, super, devname, 0);
5380
5381 /* retry the load if we might have raced against mdmon */
5382 if (rv == 3) {
5383 struct mdstat_ent *mdstat = NULL;
5384 char *name = fd2kname(fd);
5385
5386 if (name)
5387 mdstat = mdstat_by_component(name);
5388
5389 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5390 for (retry = 0; retry < 3; retry++) {
5391 sleep_for(0, MSEC_TO_NSEC(3), true);
5392 rv = load_and_parse_mpb(fd, super, devname, 0);
5393 if (rv != 3)
5394 break;
5395 }
5396 }
5397
5398 free_mdstat(mdstat);
5399 }
5400
5401 if (rv) {
5402 if (devname)
5403 pr_err("Failed to load all information sections on %s\n", devname);
5404 free_imsm(super);
5405 return rv;
5406 }
5407
5408 st->sb = super;
5409 if (st->ss == NULL) {
5410 st->ss = &super_imsm;
5411 st->minor_version = 0;
5412 st->max_devs = IMSM_MAX_DEVICES;
5413 }
5414
5415 /* load migration record */
5416 if (load_imsm_migr_rec(super) == 0) {
5417 /* Check for unsupported migration features */
5418 if (check_mpb_migr_compatibility(super) != 0) {
5419 pr_err("Unsupported migration detected");
5420 if (devname)
5421 fprintf(stderr, " on %s\n", devname);
5422 else
5423 fprintf(stderr, " (IMSM).\n");
5424 return 3;
5425 }
5426 }
5427
5428 return 0;
5429 }
5430
5431 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5432 {
5433 if (info->level == 1)
5434 return 128;
5435 return info->chunk_size >> 9;
5436 }
5437
5438 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5439 unsigned long long size)
5440 {
5441 if (info->level == 1)
5442 return size * 2;
5443 else
5444 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5445 }
5446
5447 static void imsm_update_version_info(struct intel_super *super)
5448 {
5449 /* update the version and attributes */
5450 struct imsm_super *mpb = super->anchor;
5451 char *version;
5452 struct imsm_dev *dev;
5453 struct imsm_map *map;
5454 int i;
5455
5456 for (i = 0; i < mpb->num_raid_devs; i++) {
5457 dev = get_imsm_dev(super, i);
5458 map = get_imsm_map(dev, MAP_0);
5459 if (__le32_to_cpu(dev->size_high) > 0)
5460 mpb->attributes |= MPB_ATTRIB_2TB;
5461
5462 /* FIXME detect when an array spans a port multiplier */
5463 #if 0
5464 mpb->attributes |= MPB_ATTRIB_PM;
5465 #endif
5466
5467 if (mpb->num_raid_devs > 1 ||
5468 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5469 version = MPB_VERSION_ATTRIBS;
5470 switch (get_imsm_raid_level(map)) {
5471 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5472 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5473 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5474 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5475 }
5476 } else {
5477 if (map->num_members >= 5)
5478 version = MPB_VERSION_5OR6_DISK_ARRAY;
5479 else if (dev->status == DEV_CLONE_N_GO)
5480 version = MPB_VERSION_CNG;
5481 else if (get_imsm_raid_level(map) == 5)
5482 version = MPB_VERSION_RAID5;
5483 else if (map->num_members >= 3)
5484 version = MPB_VERSION_3OR4_DISK_ARRAY;
5485 else if (get_imsm_raid_level(map) == 1)
5486 version = MPB_VERSION_RAID1;
5487 else
5488 version = MPB_VERSION_RAID0;
5489 }
5490 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5491 }
5492 }
5493
5494 /**
5495 * imsm_check_name() - check imsm naming criteria.
5496 * @super: &intel_super pointer, not NULL.
5497 * @name: name to check.
5498 * @verbose: verbose level.
5499 *
5500 * Name must be no longer than &MAX_RAID_SERIAL_LEN and must be unique across volumes.
5501 *
5502 * Returns: &true if @name matches, &false otherwise.
5503 */
5504 static bool imsm_is_name_allowed(struct intel_super *super, const char * const name,
5505 const int verbose)
5506 {
5507 struct imsm_super *mpb = super->anchor;
5508 int i;
5509
5510 if (is_string_lq(name, MAX_RAID_SERIAL_LEN + 1) == false) {
5511 pr_vrb("imsm: Name \"%s\" is too long\n", name);
5512 return false;
5513 }
5514
5515 for (i = 0; i < mpb->num_raid_devs; i++) {
5516 struct imsm_dev *dev = get_imsm_dev(super, i);
5517
5518 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5519 pr_vrb("imsm: Name \"%s\" already exists\n", name);
5520 return false;
5521 }
5522 }
5523
5524 return true;
5525 }
5526
5527 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5528 struct shape *s, char *name,
5529 char *homehost, int *uuid,
5530 long long data_offset)
5531 {
5532 /* We are creating a volume inside a pre-existing container.
5533 * so st->sb is already set.
5534 */
5535 struct intel_super *super = st->sb;
5536 unsigned int sector_size = super->sector_size;
5537 struct imsm_super *mpb = super->anchor;
5538 struct intel_dev *dv;
5539 struct imsm_dev *dev;
5540 struct imsm_vol *vol;
5541 struct imsm_map *map;
5542 int idx = mpb->num_raid_devs;
5543 int i;
5544 int namelen;
5545 unsigned long long array_blocks;
5546 size_t size_old, size_new;
5547 unsigned int data_disks;
5548 unsigned long long size_per_member;
5549
5550 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5551 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5552 return 0;
5553 }
5554
5555 /* ensure the mpb is large enough for the new data */
5556 size_old = __le32_to_cpu(mpb->mpb_size);
5557 size_new = disks_to_mpb_size(info->nr_disks);
5558 if (size_new > size_old) {
5559 void *mpb_new;
5560 size_t size_round = ROUND_UP(size_new, sector_size);
5561
5562 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5563 pr_err("could not allocate new mpb\n");
5564 return 0;
5565 }
5566 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5567 MIGR_REC_BUF_SECTORS*
5568 MAX_SECTOR_SIZE) != 0) {
5569 pr_err("could not allocate migr_rec buffer\n");
5570 free(super->buf);
5571 free(super);
5572 free(mpb_new);
5573 return 0;
5574 }
5575 memcpy(mpb_new, mpb, size_old);
5576 free(mpb);
5577 mpb = mpb_new;
5578 super->anchor = mpb_new;
5579 mpb->mpb_size = __cpu_to_le32(size_new);
5580 memset(mpb_new + size_old, 0, size_round - size_old);
5581 super->len = size_round;
5582 }
5583 super->current_vol = idx;
5584
5585 /* handle 'failed_disks' by either:
5586 * a) create dummy disk entries in the table if this the first
5587 * volume in the array. We add them here as this is the only
5588 * opportunity to add them. add_to_super_imsm_volume()
5589 * handles the non-failed disks and continues incrementing
5590 * mpb->num_disks.
5591 * b) validate that 'failed_disks' matches the current number
5592 * of missing disks if the container is populated
5593 */
5594 if (super->current_vol == 0) {
5595 mpb->num_disks = 0;
5596 for (i = 0; i < info->failed_disks; i++) {
5597 struct imsm_disk *disk;
5598
5599 mpb->num_disks++;
5600 disk = __get_imsm_disk(mpb, i);
5601 disk->status = CONFIGURED_DISK | FAILED_DISK;
5602 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5603 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5604 "missing:%d", (__u8)i);
5605 }
5606 find_missing(super);
5607 } else {
5608 int missing = 0;
5609 struct dl *d;
5610
5611 for (d = super->missing; d; d = d->next)
5612 missing++;
5613 if (info->failed_disks > missing) {
5614 pr_err("unable to add 'missing' disk to container\n");
5615 return 0;
5616 }
5617 }
5618
5619 if (imsm_is_name_allowed(super, name, 1) == false)
5620 return 0;
5621
5622 dv = xmalloc(sizeof(*dv));
5623 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5624 /*
5625 * Explicitly allow truncating to not confuse gcc's
5626 * -Werror=stringop-truncation
5627 */
5628 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5629 memcpy(dev->volume, name, namelen);
5630 array_blocks = calc_array_size(info->level, info->raid_disks,
5631 info->layout, info->chunk_size,
5632 s->size * BLOCKS_PER_KB);
5633 data_disks = get_data_disks(info->level, info->layout,
5634 info->raid_disks);
5635 array_blocks = round_size_to_mb(array_blocks, data_disks);
5636 size_per_member = array_blocks / data_disks;
5637
5638 set_imsm_dev_size(dev, array_blocks);
5639 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5640 vol = &dev->vol;
5641 vol->migr_state = 0;
5642 set_migr_type(dev, MIGR_INIT);
5643 vol->dirty = !info->state;
5644 set_vol_curr_migr_unit(dev, 0);
5645 map = get_imsm_map(dev, MAP_0);
5646 set_pba_of_lba0(map, super->create_offset);
5647 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5648 map->failed_disk_num = ~0;
5649 if (info->level > 0)
5650 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5651 : IMSM_T_STATE_UNINITIALIZED);
5652 else
5653 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5654 IMSM_T_STATE_NORMAL;
5655 map->ddf = 1;
5656
5657 if (info->level == 1 && info->raid_disks > 2) {
5658 free(dev);
5659 free(dv);
5660 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5661 return 0;
5662 }
5663
5664 map->raid_level = info->level;
5665 if (info->level == 10)
5666 map->raid_level = 1;
5667 set_num_domains(map);
5668
5669 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5670 set_blocks_per_member(map, info_to_blocks_per_member(info,
5671 size_per_member /
5672 BLOCKS_PER_KB));
5673
5674 map->num_members = info->raid_disks;
5675 update_num_data_stripes(map, array_blocks);
5676 for (i = 0; i < map->num_members; i++) {
5677 /* initialized in add_to_super */
5678 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5679 }
5680 mpb->num_raid_devs++;
5681 mpb->num_raid_devs_created++;
5682 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
5683
5684 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
5685 dev->rwh_policy = RWH_MULTIPLE_OFF;
5686 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5687 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
5688 } else {
5689 free(dev);
5690 free(dv);
5691 pr_err("imsm does not support consistency policy %s\n",
5692 map_num_s(consistency_policies, s->consistency_policy));
5693 return 0;
5694 }
5695
5696 dv->dev = dev;
5697 dv->index = super->current_vol;
5698 dv->next = super->devlist;
5699 super->devlist = dv;
5700
5701 imsm_update_version_info(super);
5702
5703 return 1;
5704 }
5705
5706 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5707 struct shape *s, char *name,
5708 char *homehost, int *uuid,
5709 unsigned long long data_offset)
5710 {
5711 /* This is primarily called by Create when creating a new array.
5712 * We will then get add_to_super called for each component, and then
5713 * write_init_super called to write it out to each device.
5714 * For IMSM, Create can create on fresh devices or on a pre-existing
5715 * array.
5716 * To create on a pre-existing array a different method will be called.
5717 * This one is just for fresh drives.
5718 */
5719 struct intel_super *super;
5720 struct imsm_super *mpb;
5721 size_t mpb_size;
5722 char *version;
5723
5724 if (data_offset != INVALID_SECTORS) {
5725 pr_err("data-offset not supported by imsm\n");
5726 return 0;
5727 }
5728
5729 if (st->sb)
5730 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
5731 data_offset);
5732
5733 if (info)
5734 mpb_size = disks_to_mpb_size(info->nr_disks);
5735 else
5736 mpb_size = MAX_SECTOR_SIZE;
5737
5738 super = alloc_super();
5739 if (super &&
5740 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5741 free_imsm(super);
5742 super = NULL;
5743 }
5744 if (!super) {
5745 pr_err("could not allocate superblock\n");
5746 return 0;
5747 }
5748 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5749 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5750 pr_err("could not allocate migr_rec buffer\n");
5751 free(super->buf);
5752 free_imsm(super);
5753 return 0;
5754 }
5755 memset(super->buf, 0, mpb_size);
5756 mpb = super->buf;
5757 mpb->mpb_size = __cpu_to_le32(mpb_size);
5758 st->sb = super;
5759
5760 if (info == NULL) {
5761 /* zeroing superblock */
5762 return 0;
5763 }
5764
5765 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5766
5767 version = (char *) mpb->sig;
5768 strcpy(version, MPB_SIGNATURE);
5769 version += strlen(MPB_SIGNATURE);
5770 strcpy(version, MPB_VERSION_RAID0);
5771
5772 return 1;
5773 }
5774
5775 static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5776 {
5777 unsigned int member_sector_size;
5778
5779 if (!is_fd_valid(dl->fd)) {
5780 pr_err("Invalid file descriptor for %s\n", dl->devname);
5781 return 0;
5782 }
5783
5784 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5785 return 0;
5786 if (member_sector_size != super->sector_size)
5787 return 0;
5788 return 1;
5789 }
5790
5791 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5792 int fd, char *devname)
5793 {
5794 struct intel_super *super = st->sb;
5795 struct imsm_super *mpb = super->anchor;
5796 struct imsm_disk *_disk;
5797 struct imsm_dev *dev;
5798 struct imsm_map *map;
5799 struct dl *dl, *df;
5800 int slot;
5801 int autolayout = 0;
5802
5803 if (!is_fd_valid(fd))
5804 autolayout = 1;
5805
5806 dev = get_imsm_dev(super, super->current_vol);
5807 map = get_imsm_map(dev, MAP_0);
5808
5809 if (! (dk->state & (1<<MD_DISK_SYNC))) {
5810 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5811 devname);
5812 return 1;
5813 }
5814
5815 for (dl = super->disks; dl ; dl = dl->next) {
5816 if (autolayout) {
5817 if (dl->raiddisk == dk->raid_disk)
5818 break;
5819 } else if (dl->major == dk->major && dl->minor == dk->minor)
5820 break;
5821 }
5822
5823 if (!dl) {
5824 if (!autolayout)
5825 pr_err("%s is not a member of the same container.\n",
5826 devname);
5827 return 1;
5828 }
5829
5830 if (!autolayout && super->current_vol > 0) {
5831 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5832
5833 if (_slot != dk->raid_disk) {
5834 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5835 dl->devname, _slot, dk->raid_disk);
5836 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5837 return 1;
5838 }
5839 }
5840
5841 if (mpb->num_disks == 0)
5842 if (!get_dev_sector_size(dl->fd, dl->devname,
5843 &super->sector_size))
5844 return 1;
5845
5846 if (!drive_validate_sector_size(super, dl)) {
5847 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5848 return 1;
5849 }
5850
5851 /* add a pristine spare to the metadata */
5852 if (dl->index < 0) {
5853 dl->index = super->anchor->num_disks;
5854 super->anchor->num_disks++;
5855 }
5856 /* Check the device has not already been added */
5857 slot = get_imsm_disk_slot(map, dl->index);
5858 if (slot >= 0 &&
5859 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5860 pr_err("%s has been included in this array twice\n",
5861 devname);
5862 return 1;
5863 }
5864 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5865 dl->disk.status = CONFIGURED_DISK;
5866
5867 /* update size of 'missing' disks to be at least as large as the
5868 * largest acitve member (we only have dummy missing disks when
5869 * creating the first volume)
5870 */
5871 if (super->current_vol == 0) {
5872 for (df = super->missing; df; df = df->next) {
5873 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5874 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5875 _disk = __get_imsm_disk(mpb, df->index);
5876 *_disk = df->disk;
5877 }
5878 }
5879
5880 /* refresh unset/failed slots to point to valid 'missing' entries */
5881 for (df = super->missing; df; df = df->next)
5882 for (slot = 0; slot < mpb->num_disks; slot++) {
5883 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5884
5885 if ((ord & IMSM_ORD_REBUILD) == 0)
5886 continue;
5887 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5888 if (is_gen_migration(dev)) {
5889 struct imsm_map *map2 = get_imsm_map(dev,
5890 MAP_1);
5891 int slot2 = get_imsm_disk_slot(map2, df->index);
5892 if (slot2 < map2->num_members && slot2 >= 0) {
5893 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5894 slot2,
5895 MAP_1);
5896 if ((unsigned)df->index ==
5897 ord_to_idx(ord2))
5898 set_imsm_ord_tbl_ent(map2,
5899 slot2,
5900 df->index |
5901 IMSM_ORD_REBUILD);
5902 }
5903 }
5904 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5905 break;
5906 }
5907
5908 /* if we are creating the first raid device update the family number */
5909 if (super->current_vol == 0) {
5910 __u32 sum;
5911 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5912
5913 _disk = __get_imsm_disk(mpb, dl->index);
5914 if (!_disk) {
5915 pr_err("BUG mpb setup error\n");
5916 return 1;
5917 }
5918 *_dev = *dev;
5919 *_disk = dl->disk;
5920 sum = random32();
5921 sum += __gen_imsm_checksum(mpb);
5922 mpb->family_num = __cpu_to_le32(sum);
5923 mpb->orig_family_num = mpb->family_num;
5924 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
5925 }
5926 super->current_disk = dl;
5927 return 0;
5928 }
5929
5930 /* mark_spare()
5931 * Function marks disk as spare and restores disk serial
5932 * in case it was previously marked as failed by takeover operation
5933 * reruns:
5934 * -1 : critical error
5935 * 0 : disk is marked as spare but serial is not set
5936 * 1 : success
5937 */
5938 int mark_spare(struct dl *disk)
5939 {
5940 __u8 serial[MAX_RAID_SERIAL_LEN];
5941 int ret_val = -1;
5942
5943 if (!disk)
5944 return ret_val;
5945
5946 ret_val = 0;
5947 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
5948 /* Restore disk serial number, because takeover marks disk
5949 * as failed and adds to serial ':0' before it becomes
5950 * a spare disk.
5951 */
5952 serialcpy(disk->serial, serial);
5953 serialcpy(disk->disk.serial, serial);
5954 ret_val = 1;
5955 }
5956 disk->disk.status = SPARE_DISK;
5957 disk->index = -1;
5958
5959 return ret_val;
5960 }
5961
5962
5963 static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5964
5965 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5966 int fd, char *devname,
5967 unsigned long long data_offset)
5968 {
5969 struct intel_super *super = st->sb;
5970 struct dl *dd;
5971 unsigned long long size;
5972 unsigned int member_sector_size;
5973 __u32 id;
5974 int rv;
5975 struct stat stb;
5976
5977 /* If we are on an RAID enabled platform check that the disk is
5978 * attached to the raid controller.
5979 * We do not need to test disks attachment for container based additions,
5980 * they shall be already tested when container was created/assembled.
5981 */
5982 rv = find_intel_hba_capability(fd, super, devname);
5983 /* no orom/efi or non-intel hba of the disk */
5984 if (rv != 0) {
5985 dprintf("capability: %p fd: %d ret: %d\n",
5986 super->orom, fd, rv);
5987 return 1;
5988 }
5989
5990 if (super->current_vol >= 0)
5991 return add_to_super_imsm_volume(st, dk, fd, devname);
5992
5993 fstat(fd, &stb);
5994 dd = xcalloc(sizeof(*dd), 1);
5995 dd->major = major(stb.st_rdev);
5996 dd->minor = minor(stb.st_rdev);
5997 dd->devname = devname ? xstrdup(devname) : NULL;
5998 dd->fd = fd;
5999 dd->e = NULL;
6000 dd->action = DISK_ADD;
6001 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
6002 if (rv) {
6003 pr_err("failed to retrieve scsi serial, aborting\n");
6004 __free_imsm_disk(dd, 0);
6005 abort();
6006 }
6007
6008 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6009 (super->hba->type == SYS_DEV_VMD))) {
6010 int i;
6011 char cntrl_path[PATH_MAX];
6012 char *cntrl_name;
6013 char pci_dev_path[PATH_MAX];
6014
6015 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6016 !diskfd_to_devpath(fd, 1, cntrl_path)) {
6017 pr_err("failed to get dev paths, aborting\n");
6018 __free_imsm_disk(dd, 0);
6019 return 1;
6020 }
6021
6022 cntrl_name = basename(cntrl_path);
6023 if (is_multipath_nvme(fd))
6024 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6025 cntrl_name);
6026
6027 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
6028 /*
6029 * If Intel's NVMe drive has serial ended with
6030 * "-A","-B","-1" or "-2" it means that this is "x8"
6031 * device (double drive on single PCIe card).
6032 * User should be warned about potential data loss.
6033 */
6034 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6035 /* Skip empty character at the end */
6036 if (dd->serial[i] == 0)
6037 continue;
6038
6039 if (((dd->serial[i] == 'A') ||
6040 (dd->serial[i] == 'B') ||
6041 (dd->serial[i] == '1') ||
6042 (dd->serial[i] == '2')) &&
6043 (dd->serial[i-1] == '-'))
6044 pr_err("\tThe action you are about to take may put your data at risk.\n"
6045 "\tPlease note that x8 devices may consist of two separate x4 devices "
6046 "located on a single PCIe port.\n"
6047 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6048 break;
6049 }
6050 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6051 !imsm_orom_has_tpv_support(super->orom)) {
6052 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
6053 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
6054 __free_imsm_disk(dd, 0);
6055 return 1;
6056 }
6057 }
6058
6059 get_dev_size(fd, NULL, &size);
6060 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6061 __free_imsm_disk(dd, 0);
6062 return 1;
6063 }
6064
6065 if (super->sector_size == 0) {
6066 /* this a first device, so sector_size is not set yet */
6067 super->sector_size = member_sector_size;
6068 }
6069
6070 /* clear migr_rec when adding disk to container */
6071 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6072 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
6073 SEEK_SET) >= 0) {
6074 if ((unsigned int)write(fd, super->migr_rec_buf,
6075 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6076 MIGR_REC_BUF_SECTORS*member_sector_size)
6077 perror("Write migr_rec failed");
6078 }
6079
6080 size /= 512;
6081 serialcpy(dd->disk.serial, dd->serial);
6082 set_total_blocks(&dd->disk, size);
6083 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6084 struct imsm_super *mpb = super->anchor;
6085 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6086 }
6087 mark_spare(dd);
6088 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
6089 dd->disk.scsi_id = __cpu_to_le32(id);
6090 else
6091 dd->disk.scsi_id = __cpu_to_le32(0);
6092
6093 if (st->update_tail) {
6094 dd->next = super->disk_mgmt_list;
6095 super->disk_mgmt_list = dd;
6096 } else {
6097 /* this is called outside of mdmon
6098 * write initial spare metadata
6099 * mdmon will overwrite it.
6100 */
6101 dd->next = super->disks;
6102 super->disks = dd;
6103 write_super_imsm_spare(super, dd);
6104 }
6105
6106 return 0;
6107 }
6108
6109 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6110 {
6111 struct intel_super *super = st->sb;
6112 struct dl *dd;
6113
6114 /* remove from super works only in mdmon - for communication
6115 * manager - monitor. Check if communication memory buffer
6116 * is prepared.
6117 */
6118 if (!st->update_tail) {
6119 pr_err("shall be used in mdmon context only\n");
6120 return 1;
6121 }
6122 dd = xcalloc(1, sizeof(*dd));
6123 dd->major = dk->major;
6124 dd->minor = dk->minor;
6125 dd->fd = -1;
6126 mark_spare(dd);
6127 dd->action = DISK_REMOVE;
6128
6129 dd->next = super->disk_mgmt_list;
6130 super->disk_mgmt_list = dd;
6131
6132 return 0;
6133 }
6134
6135 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6136
6137 static union {
6138 char buf[MAX_SECTOR_SIZE];
6139 struct imsm_super anchor;
6140 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
6141
6142
6143 static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
6144 {
6145 struct imsm_super *mpb = super->anchor;
6146 struct imsm_super *spare = &spare_record.anchor;
6147 __u32 sum;
6148
6149 if (d->index != -1)
6150 return 1;
6151
6152 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6153 spare->generation_num = __cpu_to_le32(1UL);
6154 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
6155 spare->num_disks = 1;
6156 spare->num_raid_devs = 0;
6157 spare->cache_size = mpb->cache_size;
6158 spare->pwr_cycle_count = __cpu_to_le32(1);
6159
6160 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6161 MPB_SIGNATURE MPB_VERSION_RAID0);
6162
6163 spare->disk[0] = d->disk;
6164 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6165 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6166
6167 if (super->sector_size == 4096)
6168 convert_to_4k_imsm_disk(&spare->disk[0]);
6169
6170 sum = __gen_imsm_checksum(spare);
6171 spare->family_num = __cpu_to_le32(sum);
6172 spare->orig_family_num = 0;
6173 sum = __gen_imsm_checksum(spare);
6174 spare->check_sum = __cpu_to_le32(sum);
6175
6176 if (store_imsm_mpb(d->fd, spare)) {
6177 pr_err("failed for device %d:%d %s\n",
6178 d->major, d->minor, strerror(errno));
6179 return 1;
6180 }
6181
6182 return 0;
6183 }
6184 /* spare records have their own family number and do not have any defined raid
6185 * devices
6186 */
6187 static int write_super_imsm_spares(struct intel_super *super, int doclose)
6188 {
6189 struct dl *d;
6190
6191 for (d = super->disks; d; d = d->next) {
6192 if (d->index != -1)
6193 continue;
6194
6195 if (write_super_imsm_spare(super, d))
6196 return 1;
6197
6198 if (doclose)
6199 close_fd(&d->fd);
6200 }
6201
6202 return 0;
6203 }
6204
6205 static int write_super_imsm(struct supertype *st, int doclose)
6206 {
6207 struct intel_super *super = st->sb;
6208 unsigned int sector_size = super->sector_size;
6209 struct imsm_super *mpb = super->anchor;
6210 struct dl *d;
6211 __u32 generation;
6212 __u32 sum;
6213 int spares = 0;
6214 int i;
6215 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
6216 int num_disks = 0;
6217 int clear_migration_record = 1;
6218 __u32 bbm_log_size;
6219
6220 /* 'generation' is incremented everytime the metadata is written */
6221 generation = __le32_to_cpu(mpb->generation_num);
6222 generation++;
6223 mpb->generation_num = __cpu_to_le32(generation);
6224
6225 /* fix up cases where previous mdadm releases failed to set
6226 * orig_family_num
6227 */
6228 if (mpb->orig_family_num == 0)
6229 mpb->orig_family_num = mpb->family_num;
6230
6231 for (d = super->disks; d; d = d->next) {
6232 if (d->index == -1)
6233 spares++;
6234 else {
6235 mpb->disk[d->index] = d->disk;
6236 num_disks++;
6237 }
6238 }
6239 for (d = super->missing; d; d = d->next) {
6240 mpb->disk[d->index] = d->disk;
6241 num_disks++;
6242 }
6243 mpb->num_disks = num_disks;
6244 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
6245
6246 for (i = 0; i < mpb->num_raid_devs; i++) {
6247 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
6248 struct imsm_dev *dev2 = get_imsm_dev(super, i);
6249
6250 imsm_copy_dev(dev, dev2);
6251 mpb_size += sizeof_imsm_dev(dev, 0);
6252
6253 if (is_gen_migration(dev2))
6254 clear_migration_record = 0;
6255 }
6256
6257 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6258
6259 if (bbm_log_size) {
6260 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6261 mpb->attributes |= MPB_ATTRIB_BBM;
6262 } else
6263 mpb->attributes &= ~MPB_ATTRIB_BBM;
6264
6265 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6266 mpb_size += bbm_log_size;
6267 mpb->mpb_size = __cpu_to_le32(mpb_size);
6268
6269 #ifdef DEBUG
6270 assert(super->len == 0 || mpb_size <= super->len);
6271 #endif
6272
6273 /* recalculate checksum */
6274 sum = __gen_imsm_checksum(mpb);
6275 mpb->check_sum = __cpu_to_le32(sum);
6276
6277 if (super->clean_migration_record_by_mdmon) {
6278 clear_migration_record = 1;
6279 super->clean_migration_record_by_mdmon = 0;
6280 }
6281 if (clear_migration_record)
6282 memset(super->migr_rec_buf, 0,
6283 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6284
6285 if (sector_size == 4096)
6286 convert_to_4k(super);
6287
6288 /* write the mpb for disks that compose raid devices */
6289 for (d = super->disks; d ; d = d->next) {
6290 if (d->index < 0 || is_failed(&d->disk))
6291 continue;
6292
6293 if (clear_migration_record) {
6294 unsigned long long dsize;
6295
6296 get_dev_size(d->fd, NULL, &dsize);
6297 if (lseek64(d->fd, dsize - sector_size,
6298 SEEK_SET) >= 0) {
6299 if ((unsigned int)write(d->fd,
6300 super->migr_rec_buf,
6301 MIGR_REC_BUF_SECTORS*sector_size) !=
6302 MIGR_REC_BUF_SECTORS*sector_size)
6303 perror("Write migr_rec failed");
6304 }
6305 }
6306
6307 if (store_imsm_mpb(d->fd, mpb))
6308 fprintf(stderr,
6309 "failed for device %d:%d (fd: %d)%s\n",
6310 d->major, d->minor,
6311 d->fd, strerror(errno));
6312
6313 if (doclose)
6314 close_fd(&d->fd);
6315 }
6316
6317 if (spares)
6318 return write_super_imsm_spares(super, doclose);
6319
6320 return 0;
6321 }
6322
6323 static int create_array(struct supertype *st, int dev_idx)
6324 {
6325 size_t len;
6326 struct imsm_update_create_array *u;
6327 struct intel_super *super = st->sb;
6328 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
6329 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6330 struct disk_info *inf;
6331 struct imsm_disk *disk;
6332 int i;
6333
6334 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6335 sizeof(*inf) * map->num_members;
6336 u = xmalloc(len);
6337 u->type = update_create_array;
6338 u->dev_idx = dev_idx;
6339 imsm_copy_dev(&u->dev, dev);
6340 inf = get_disk_info(u);
6341 for (i = 0; i < map->num_members; i++) {
6342 int idx = get_imsm_disk_idx(dev, i, MAP_X);
6343
6344 disk = get_imsm_disk(super, idx);
6345 if (!disk)
6346 disk = get_imsm_missing(super, idx);
6347 serialcpy(inf[i].serial, disk->serial);
6348 }
6349 append_metadata_update(st, u, len);
6350
6351 return 0;
6352 }
6353
6354 static int mgmt_disk(struct supertype *st)
6355 {
6356 struct intel_super *super = st->sb;
6357 size_t len;
6358 struct imsm_update_add_remove_disk *u;
6359
6360 if (!super->disk_mgmt_list)
6361 return 0;
6362
6363 len = sizeof(*u);
6364 u = xmalloc(len);
6365 u->type = update_add_remove_disk;
6366 append_metadata_update(st, u, len);
6367
6368 return 0;
6369 }
6370
6371 __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6372
6373 static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6374 {
6375 struct ppl_header *ppl_hdr = buf;
6376 int ret;
6377
6378 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6379
6380 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6381 ret = -errno;
6382 perror("Failed to seek to PPL header location");
6383 return ret;
6384 }
6385
6386 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6387 ret = -errno;
6388 perror("Write PPL header failed");
6389 return ret;
6390 }
6391
6392 fsync(fd);
6393
6394 return 0;
6395 }
6396
6397 static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6398 {
6399 struct intel_super *super = st->sb;
6400 void *buf;
6401 struct ppl_header *ppl_hdr;
6402 int ret;
6403
6404 /* first clear entire ppl space */
6405 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6406 if (ret)
6407 return ret;
6408
6409 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
6410 if (ret) {
6411 pr_err("Failed to allocate PPL header buffer\n");
6412 return -ret;
6413 }
6414
6415 memset(buf, 0, PPL_HEADER_SIZE);
6416 ppl_hdr = buf;
6417 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6418 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6419
6420 if (info->mismatch_cnt) {
6421 /*
6422 * We are overwriting an invalid ppl. Make one entry with wrong
6423 * checksum to prevent the kernel from skipping resync.
6424 */
6425 ppl_hdr->entries_count = __cpu_to_le32(1);
6426 ppl_hdr->entries[0].checksum = ~0;
6427 }
6428
6429 ret = write_ppl_header(info->ppl_sector, fd, buf);
6430
6431 free(buf);
6432 return ret;
6433 }
6434
6435 static int is_rebuilding(struct imsm_dev *dev);
6436
6437 static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6438 struct mdinfo *disk)
6439 {
6440 struct intel_super *super = st->sb;
6441 struct dl *d;
6442 void *buf_orig, *buf, *buf_prev = NULL;
6443 int ret = 0;
6444 struct ppl_header *ppl_hdr = NULL;
6445 __u32 crc;
6446 struct imsm_dev *dev;
6447 __u32 idx;
6448 unsigned int i;
6449 unsigned long long ppl_offset = 0;
6450 unsigned long long prev_gen_num = 0;
6451
6452 if (disk->disk.raid_disk < 0)
6453 return 0;
6454
6455 dev = get_imsm_dev(super, info->container_member);
6456 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
6457 d = get_imsm_dl_disk(super, idx);
6458
6459 if (!d || d->index < 0 || is_failed(&d->disk))
6460 return 0;
6461
6462 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6463 pr_err("Failed to allocate PPL header buffer\n");
6464 return -1;
6465 }
6466 buf = buf_orig;
6467
6468 ret = 1;
6469 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
6470 void *tmp;
6471
6472 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
6473
6474 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6475 SEEK_SET) < 0) {
6476 perror("Failed to seek to PPL header location");
6477 ret = -1;
6478 break;
6479 }
6480
6481 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6482 perror("Read PPL header failed");
6483 ret = -1;
6484 break;
6485 }
6486
6487 ppl_hdr = buf;
6488
6489 crc = __le32_to_cpu(ppl_hdr->checksum);
6490 ppl_hdr->checksum = 0;
6491
6492 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6493 dprintf("Wrong PPL header checksum on %s\n",
6494 d->devname);
6495 break;
6496 }
6497
6498 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6499 /* previous was newest, it was already checked */
6500 break;
6501 }
6502
6503 if ((__le32_to_cpu(ppl_hdr->signature) !=
6504 super->anchor->orig_family_num)) {
6505 dprintf("Wrong PPL header signature on %s\n",
6506 d->devname);
6507 ret = 1;
6508 break;
6509 }
6510
6511 ret = 0;
6512 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
6513
6514 ppl_offset += PPL_HEADER_SIZE;
6515 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6516 ppl_offset +=
6517 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
6518
6519 if (!buf_prev)
6520 buf_prev = buf + PPL_HEADER_SIZE;
6521 tmp = buf_prev;
6522 buf_prev = buf;
6523 buf = tmp;
6524 }
6525
6526 if (buf_prev) {
6527 buf = buf_prev;
6528 ppl_hdr = buf_prev;
6529 }
6530
6531 /*
6532 * Update metadata to use mutliple PPLs area (1MB).
6533 * This is done once for all RAID members
6534 */
6535 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6536 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6537 char subarray[20];
6538 struct mdinfo *member_dev;
6539
6540 sprintf(subarray, "%d", info->container_member);
6541
6542 if (mdmon_running(st->container_devnm))
6543 st->update_tail = &st->updates;
6544
6545 if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) {
6546 pr_err("Failed to update subarray %s\n",
6547 subarray);
6548 } else {
6549 if (st->update_tail)
6550 flush_metadata_updates(st);
6551 else
6552 st->ss->sync_metadata(st);
6553 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6554 for (member_dev = info->devs; member_dev;
6555 member_dev = member_dev->next)
6556 member_dev->ppl_size =
6557 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6558 }
6559 }
6560
6561 if (ret == 1) {
6562 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6563
6564 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6565 (map->map_state == IMSM_T_STATE_NORMAL &&
6566 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
6567 (is_rebuilding(dev) &&
6568 vol_curr_migr_unit(dev) == 0 &&
6569 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
6570 ret = st->ss->write_init_ppl(st, info, d->fd);
6571 else
6572 info->mismatch_cnt++;
6573 } else if (ret == 0 &&
6574 ppl_hdr->entries_count == 0 &&
6575 is_rebuilding(dev) &&
6576 info->resync_start == 0) {
6577 /*
6578 * The header has no entries - add a single empty entry and
6579 * rewrite the header to prevent the kernel from going into
6580 * resync after an interrupted rebuild.
6581 */
6582 ppl_hdr->entries_count = __cpu_to_le32(1);
6583 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
6584 }
6585
6586 free(buf_orig);
6587
6588 return ret;
6589 }
6590
6591 static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6592 {
6593 struct intel_super *super = st->sb;
6594 struct dl *d;
6595 int ret = 0;
6596
6597 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6598 info->array.level != 5)
6599 return 0;
6600
6601 for (d = super->disks; d ; d = d->next) {
6602 if (d->index < 0 || is_failed(&d->disk))
6603 continue;
6604
6605 ret = st->ss->write_init_ppl(st, info, d->fd);
6606 if (ret)
6607 break;
6608 }
6609
6610 return ret;
6611 }
6612
6613 /*******************************************************************************
6614 * Function: write_init_bitmap_imsm_vol
6615 * Description: Write a bitmap header and prepares the area for the bitmap.
6616 * Parameters:
6617 * st : supertype information
6618 * vol_idx : the volume index to use
6619 *
6620 * Returns:
6621 * 0 : success
6622 * -1 : fail
6623 ******************************************************************************/
6624 static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6625 {
6626 struct intel_super *super = st->sb;
6627 int prev_current_vol = super->current_vol;
6628 struct dl *d;
6629 int ret = 0;
6630
6631 super->current_vol = vol_idx;
6632 for (d = super->disks; d; d = d->next) {
6633 if (d->index < 0 || is_failed(&d->disk))
6634 continue;
6635 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6636 if (ret)
6637 break;
6638 }
6639 super->current_vol = prev_current_vol;
6640 return ret;
6641 }
6642
6643 /*******************************************************************************
6644 * Function: write_init_bitmap_imsm_all
6645 * Description: Write a bitmap header and prepares the area for the bitmap.
6646 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6647 * Parameters:
6648 * st : supertype information
6649 * info : info about the volume where the bitmap should be written
6650 * vol_idx : the volume index to use
6651 *
6652 * Returns:
6653 * 0 : success
6654 * -1 : fail
6655 ******************************************************************************/
6656 static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6657 int vol_idx)
6658 {
6659 int ret = 0;
6660
6661 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6662 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6663
6664 return ret;
6665 }
6666
6667 static int write_init_super_imsm(struct supertype *st)
6668 {
6669 struct intel_super *super = st->sb;
6670 int current_vol = super->current_vol;
6671 int rv = 0;
6672 struct mdinfo info;
6673
6674 getinfo_super_imsm(st, &info, NULL);
6675
6676 /* we are done with current_vol reset it to point st at the container */
6677 super->current_vol = -1;
6678
6679 if (st->update_tail) {
6680 /* queue the recently created array / added disk
6681 * as a metadata update */
6682
6683 /* determine if we are creating a volume or adding a disk */
6684 if (current_vol < 0) {
6685 /* in the mgmt (add/remove) disk case we are running
6686 * in mdmon context, so don't close fd's
6687 */
6688 rv = mgmt_disk(st);
6689 } else {
6690 /* adding the second volume to the array */
6691 rv = write_init_ppl_imsm_all(st, &info);
6692 if (!rv)
6693 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6694 if (!rv)
6695 rv = create_array(st, current_vol);
6696 }
6697 } else {
6698 struct dl *d;
6699 for (d = super->disks; d; d = d->next)
6700 Kill(d->devname, NULL, 0, -1, 1);
6701 if (current_vol >= 0) {
6702 rv = write_init_ppl_imsm_all(st, &info);
6703 if (!rv)
6704 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6705 }
6706
6707 if (!rv)
6708 rv = write_super_imsm(st, 1);
6709 }
6710
6711 return rv;
6712 }
6713
6714 static int store_super_imsm(struct supertype *st, int fd)
6715 {
6716 struct intel_super *super = st->sb;
6717 struct imsm_super *mpb = super ? super->anchor : NULL;
6718
6719 if (!mpb)
6720 return 1;
6721
6722 if (super->sector_size == 4096)
6723 convert_to_4k(super);
6724 return store_imsm_mpb(fd, mpb);
6725 }
6726
6727 static int validate_geometry_imsm_container(struct supertype *st, int level,
6728 int raiddisks,
6729 unsigned long long data_offset,
6730 char *dev,
6731 unsigned long long *freesize,
6732 int verbose)
6733 {
6734 int fd;
6735 unsigned long long ldsize;
6736 struct intel_super *super = NULL;
6737 int rv = 0;
6738
6739 if (!is_container(level))
6740 return 0;
6741 if (!dev)
6742 return 1;
6743
6744 fd = dev_open(dev, O_RDONLY|O_EXCL);
6745 if (!is_fd_valid(fd)) {
6746 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
6747 return 0;
6748 }
6749 if (!get_dev_size(fd, dev, &ldsize))
6750 goto exit;
6751
6752 /* capabilities retrieve could be possible
6753 * note that there is no fd for the disks in array.
6754 */
6755 super = alloc_super();
6756 if (!super)
6757 goto exit;
6758
6759 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6760 goto exit;
6761
6762 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6763 if (rv != 0) {
6764 #if DEBUG
6765 char str[256];
6766 fd2devname(fd, str);
6767 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6768 fd, str, super->orom, rv, raiddisks);
6769 #endif
6770 /* no orom/efi or non-intel hba of the disk */
6771 rv = 0;
6772 goto exit;
6773 }
6774 if (super->orom) {
6775 if (raiddisks > super->orom->tds) {
6776 if (verbose)
6777 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6778 raiddisks, super->orom->tds);
6779 goto exit;
6780 }
6781 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6782 (ldsize >> 9) >> 32 > 0) {
6783 if (verbose)
6784 pr_err("%s exceeds maximum platform supported size\n", dev);
6785 goto exit;
6786 }
6787
6788 if (super->hba->type == SYS_DEV_VMD ||
6789 super->hba->type == SYS_DEV_NVME) {
6790 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6791 if (verbose)
6792 pr_err("NVMe namespace %s is not supported by IMSM\n",
6793 basename(dev));
6794 goto exit;
6795 }
6796 }
6797 }
6798 if (freesize)
6799 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6800 rv = 1;
6801 exit:
6802 if (super)
6803 free_imsm(super);
6804 close(fd);
6805
6806 return rv;
6807 }
6808
6809 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6810 {
6811 const unsigned long long base_start = e[*idx].start;
6812 unsigned long long end = base_start + e[*idx].size;
6813 int i;
6814
6815 if (base_start == end)
6816 return 0;
6817
6818 *idx = *idx + 1;
6819 for (i = *idx; i < num_extents; i++) {
6820 /* extend overlapping extents */
6821 if (e[i].start >= base_start &&
6822 e[i].start <= end) {
6823 if (e[i].size == 0)
6824 return 0;
6825 if (e[i].start + e[i].size > end)
6826 end = e[i].start + e[i].size;
6827 } else if (e[i].start > end) {
6828 *idx = i;
6829 break;
6830 }
6831 }
6832
6833 return end - base_start;
6834 }
6835
6836 /** merge_extents() - analyze extents and get free size.
6837 * @super: Intel metadata, not NULL.
6838 * @expanding: if set, we are expanding &super->current_vol.
6839 *
6840 * Build a composite disk with all known extents and generate a size given the
6841 * "all disks in an array must share a common start offset" constraint.
6842 * If a volume is expanded, then return free space after the volume.
6843 *
6844 * Return: Free space or 0 on failure.
6845 */
6846 static unsigned long long merge_extents(struct intel_super *super, const bool expanding)
6847 {
6848 struct extent *e;
6849 struct dl *dl;
6850 int i, j, pos_vol_idx = -1;
6851 int extent_idx = 0;
6852 int sum_extents = 0;
6853 unsigned long long pos = 0;
6854 unsigned long long start = 0;
6855 unsigned long long free_size = 0;
6856
6857 unsigned long pre_reservation = 0;
6858 unsigned long post_reservation = IMSM_RESERVED_SECTORS;
6859 unsigned long reservation_size;
6860
6861 for (dl = super->disks; dl; dl = dl->next)
6862 if (dl->e)
6863 sum_extents += dl->extent_cnt;
6864 e = xcalloc(sum_extents, sizeof(struct extent));
6865
6866 /* coalesce and sort all extents. also, check to see if we need to
6867 * reserve space between member arrays
6868 */
6869 j = 0;
6870 for (dl = super->disks; dl; dl = dl->next) {
6871 if (!dl->e)
6872 continue;
6873 for (i = 0; i < dl->extent_cnt; i++)
6874 e[j++] = dl->e[i];
6875 }
6876 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6877
6878 /* merge extents */
6879 i = 0;
6880 j = 0;
6881 while (i < sum_extents) {
6882 e[j].start = e[i].start;
6883 e[j].vol = e[i].vol;
6884 e[j].size = find_size(e, &i, sum_extents);
6885 j++;
6886 if (e[j-1].size == 0)
6887 break;
6888 }
6889
6890 i = 0;
6891 do {
6892 unsigned long long esize = e[i].start - pos;
6893
6894 if (expanding ? pos_vol_idx == super->current_vol : esize >= free_size) {
6895 free_size = esize;
6896 start = pos;
6897 extent_idx = i;
6898 }
6899
6900 pos = e[i].start + e[i].size;
6901 pos_vol_idx = e[i].vol;
6902
6903 i++;
6904 } while (e[i-1].size);
6905
6906 if (free_size == 0) {
6907 dprintf("imsm: Cannot find free size.\n");
6908 free(e);
6909 return 0;
6910 }
6911
6912 if (!expanding && extent_idx != 0)
6913 /*
6914 * Not a real first volume in a container is created, pre_reservation is needed.
6915 */
6916 pre_reservation = IMSM_RESERVED_SECTORS;
6917
6918 if (e[extent_idx].size == 0)
6919 /*
6920 * extent_idx points to the metadata, post_reservation is allready done.
6921 */
6922 post_reservation = 0;
6923 free(e);
6924
6925 reservation_size = pre_reservation + post_reservation;
6926
6927 if (free_size < reservation_size) {
6928 dprintf("imsm: Reservation size is greater than free space.\n");
6929 return 0;
6930 }
6931
6932 super->create_offset = start + pre_reservation;
6933 return free_size - reservation_size;
6934 }
6935
6936 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6937 {
6938 if (level < 0 || level == 6 || level == 4)
6939 return 0;
6940
6941 /* if we have an orom prevent invalid raid levels */
6942 if (orom)
6943 switch (level) {
6944 case 0: return imsm_orom_has_raid0(orom);
6945 case 1:
6946 if (raiddisks > 2)
6947 return imsm_orom_has_raid1e(orom);
6948 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6949 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6950 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6951 }
6952 else
6953 return 1; /* not on an Intel RAID platform so anything goes */
6954
6955 return 0;
6956 }
6957
6958 static int
6959 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6960 int dpa, int verbose)
6961 {
6962 struct mdstat_ent *mdstat = mdstat_read(0, 0);
6963 struct mdstat_ent *memb;
6964 int count = 0;
6965 int num = 0;
6966 struct md_list *dv;
6967 int found;
6968
6969 for (memb = mdstat ; memb ; memb = memb->next) {
6970 if (memb->metadata_version &&
6971 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6972 (strcmp(&memb->metadata_version[9], name) == 0) &&
6973 !is_subarray(memb->metadata_version+9) &&
6974 memb->members) {
6975 struct dev_member *dev = memb->members;
6976 int fd = -1;
6977 while (dev && !is_fd_valid(fd)) {
6978 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6979 num = snprintf(path, PATH_MAX, "%s%s", "/dev/", dev->name);
6980 if (num > 0)
6981 fd = open(path, O_RDONLY, 0);
6982 if (num <= 0 || !is_fd_valid(fd)) {
6983 pr_vrb("Cannot open %s: %s\n",
6984 dev->name, strerror(errno));
6985 }
6986 free(path);
6987 dev = dev->next;
6988 }
6989 found = 0;
6990 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
6991 struct mdstat_ent *vol;
6992 for (vol = mdstat ; vol ; vol = vol->next) {
6993 if (vol->active > 0 &&
6994 vol->metadata_version &&
6995 is_container_member(vol, memb->devnm)) {
6996 found++;
6997 count++;
6998 }
6999 }
7000 if (*devlist && (found < dpa)) {
7001 dv = xcalloc(1, sizeof(*dv));
7002 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
7003 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
7004 dv->found = found;
7005 dv->used = 0;
7006 dv->next = *devlist;
7007 *devlist = dv;
7008 }
7009 }
7010 close_fd(&fd);
7011 }
7012 }
7013 free_mdstat(mdstat);
7014 return count;
7015 }
7016
7017 #ifdef DEBUG_LOOP
7018 static struct md_list*
7019 get_loop_devices(void)
7020 {
7021 int i;
7022 struct md_list *devlist = NULL;
7023 struct md_list *dv;
7024
7025 for(i = 0; i < 12; i++) {
7026 dv = xcalloc(1, sizeof(*dv));
7027 dv->devname = xmalloc(40);
7028 sprintf(dv->devname, "/dev/loop%d", i);
7029 dv->next = devlist;
7030 devlist = dv;
7031 }
7032 return devlist;
7033 }
7034 #endif
7035
7036 static struct md_list*
7037 get_devices(const char *hba_path)
7038 {
7039 struct md_list *devlist = NULL;
7040 struct md_list *dv;
7041 struct dirent *ent;
7042 DIR *dir;
7043 int err = 0;
7044
7045 #if DEBUG_LOOP
7046 devlist = get_loop_devices();
7047 return devlist;
7048 #endif
7049 /* scroll through /sys/dev/block looking for devices attached to
7050 * this hba
7051 */
7052 dir = opendir("/sys/dev/block");
7053 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7054 int fd;
7055 char buf[1024];
7056 int major, minor;
7057 char *path = NULL;
7058 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7059 continue;
7060 path = devt_to_devpath(makedev(major, minor), 1, NULL);
7061 if (!path)
7062 continue;
7063 if (!path_attached_to_hba(path, hba_path)) {
7064 free(path);
7065 path = NULL;
7066 continue;
7067 }
7068 free(path);
7069 path = NULL;
7070 fd = dev_open(ent->d_name, O_RDONLY);
7071 if (is_fd_valid(fd)) {
7072 fd2devname(fd, buf);
7073 close(fd);
7074 } else {
7075 pr_err("cannot open device: %s\n",
7076 ent->d_name);
7077 continue;
7078 }
7079
7080 dv = xcalloc(1, sizeof(*dv));
7081 dv->devname = xstrdup(buf);
7082 dv->next = devlist;
7083 devlist = dv;
7084 }
7085 if (err) {
7086 while(devlist) {
7087 dv = devlist;
7088 devlist = devlist->next;
7089 free(dv->devname);
7090 free(dv);
7091 }
7092 }
7093 closedir(dir);
7094 return devlist;
7095 }
7096
7097 static int
7098 count_volumes_list(struct md_list *devlist, char *homehost,
7099 int verbose, int *found)
7100 {
7101 struct md_list *tmpdev;
7102 int count = 0;
7103 struct supertype *st;
7104
7105 /* first walk the list of devices to find a consistent set
7106 * that match the criterea, if that is possible.
7107 * We flag the ones we like with 'used'.
7108 */
7109 *found = 0;
7110 st = match_metadata_desc_imsm("imsm");
7111 if (st == NULL) {
7112 pr_vrb("cannot allocate memory for imsm supertype\n");
7113 return 0;
7114 }
7115
7116 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7117 char *devname = tmpdev->devname;
7118 dev_t rdev;
7119 struct supertype *tst;
7120 int dfd;
7121 if (tmpdev->used > 1)
7122 continue;
7123 tst = dup_super(st);
7124 if (tst == NULL) {
7125 pr_vrb("cannot allocate memory for imsm supertype\n");
7126 goto err_1;
7127 }
7128 tmpdev->container = 0;
7129 dfd = dev_open(devname, O_RDONLY|O_EXCL);
7130 if (!is_fd_valid(dfd)) {
7131 dprintf("cannot open device %s: %s\n",
7132 devname, strerror(errno));
7133 tmpdev->used = 2;
7134 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
7135 tmpdev->used = 2;
7136 } else if (must_be_container(dfd)) {
7137 struct supertype *cst;
7138 cst = super_by_fd(dfd, NULL);
7139 if (cst == NULL) {
7140 dprintf("cannot recognize container type %s\n",
7141 devname);
7142 tmpdev->used = 2;
7143 } else if (tst->ss != st->ss) {
7144 dprintf("non-imsm container - ignore it: %s\n",
7145 devname);
7146 tmpdev->used = 2;
7147 } else if (!tst->ss->load_container ||
7148 tst->ss->load_container(tst, dfd, NULL))
7149 tmpdev->used = 2;
7150 else {
7151 tmpdev->container = 1;
7152 }
7153 if (cst)
7154 cst->ss->free_super(cst);
7155 } else {
7156 tmpdev->st_rdev = rdev;
7157 if (tst->ss->load_super(tst,dfd, NULL)) {
7158 dprintf("no RAID superblock on %s\n",
7159 devname);
7160 tmpdev->used = 2;
7161 } else if (tst->ss->compare_super == NULL) {
7162 dprintf("Cannot assemble %s metadata on %s\n",
7163 tst->ss->name, devname);
7164 tmpdev->used = 2;
7165 }
7166 }
7167 close_fd(&dfd);
7168
7169 if (tmpdev->used == 2 || tmpdev->used == 4) {
7170 /* Ignore unrecognised devices during auto-assembly */
7171 goto loop;
7172 }
7173 else {
7174 struct mdinfo info;
7175 tst->ss->getinfo_super(tst, &info, NULL);
7176
7177 if (st->minor_version == -1)
7178 st->minor_version = tst->minor_version;
7179
7180 if (memcmp(info.uuid, uuid_zero,
7181 sizeof(int[4])) == 0) {
7182 /* this is a floating spare. It cannot define
7183 * an array unless there are no more arrays of
7184 * this type to be found. It can be included
7185 * in an array of this type though.
7186 */
7187 tmpdev->used = 3;
7188 goto loop;
7189 }
7190
7191 if (st->ss != tst->ss ||
7192 st->minor_version != tst->minor_version ||
7193 st->ss->compare_super(st, tst, 1) != 0) {
7194 /* Some mismatch. If exactly one array matches this host,
7195 * we can resolve on that one.
7196 * Or, if we are auto assembling, we just ignore the second
7197 * for now.
7198 */
7199 dprintf("superblock on %s doesn't match others - assembly aborted\n",
7200 devname);
7201 goto loop;
7202 }
7203 tmpdev->used = 1;
7204 *found = 1;
7205 dprintf("found: devname: %s\n", devname);
7206 }
7207 loop:
7208 if (tst)
7209 tst->ss->free_super(tst);
7210 }
7211 if (*found != 0) {
7212 int err;
7213 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7214 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7215 for (iter = head; iter; iter = iter->next) {
7216 dprintf("content->text_version: %s vol\n",
7217 iter->text_version);
7218 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7219 /* do not assemble arrays with unsupported
7220 configurations */
7221 dprintf("Cannot activate member %s.\n",
7222 iter->text_version);
7223 } else
7224 count++;
7225 }
7226 sysfs_free(head);
7227
7228 } else {
7229 dprintf("No valid super block on device list: err: %d %p\n",
7230 err, st->sb);
7231 }
7232 } else {
7233 dprintf("no more devices to examine\n");
7234 }
7235
7236 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7237 if (tmpdev->used == 1 && tmpdev->found) {
7238 if (count) {
7239 if (count < tmpdev->found)
7240 count = 0;
7241 else
7242 count -= tmpdev->found;
7243 }
7244 }
7245 if (tmpdev->used == 1)
7246 tmpdev->used = 4;
7247 }
7248 err_1:
7249 if (st)
7250 st->ss->free_super(st);
7251 return count;
7252 }
7253
7254 static int __count_volumes(char *hba_path, int dpa, int verbose,
7255 int cmp_hba_path)
7256 {
7257 struct sys_dev *idev, *intel_devices = find_intel_devices();
7258 int count = 0;
7259 const struct orom_entry *entry;
7260 struct devid_list *dv, *devid_list;
7261
7262 if (!hba_path)
7263 return 0;
7264
7265 for (idev = intel_devices; idev; idev = idev->next) {
7266 if (strstr(idev->path, hba_path))
7267 break;
7268 }
7269
7270 if (!idev || !idev->dev_id)
7271 return 0;
7272
7273 entry = get_orom_entry_by_device_id(idev->dev_id);
7274
7275 if (!entry || !entry->devid_list)
7276 return 0;
7277
7278 devid_list = entry->devid_list;
7279 for (dv = devid_list; dv; dv = dv->next) {
7280 struct md_list *devlist;
7281 struct sys_dev *device = NULL;
7282 char *hpath;
7283 int found = 0;
7284
7285 if (cmp_hba_path)
7286 device = device_by_id_and_path(dv->devid, hba_path);
7287 else
7288 device = device_by_id(dv->devid);
7289
7290 if (device)
7291 hpath = device->path;
7292 else
7293 return 0;
7294
7295 devlist = get_devices(hpath);
7296 /* if no intel devices return zero volumes */
7297 if (devlist == NULL)
7298 return 0;
7299
7300 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7301 verbose);
7302 dprintf("path: %s active arrays: %d\n", hpath, count);
7303 if (devlist == NULL)
7304 return 0;
7305 do {
7306 found = 0;
7307 count += count_volumes_list(devlist,
7308 NULL,
7309 verbose,
7310 &found);
7311 dprintf("found %d count: %d\n", found, count);
7312 } while (found);
7313
7314 dprintf("path: %s total number of volumes: %d\n", hpath, count);
7315
7316 while (devlist) {
7317 struct md_list *dv = devlist;
7318 devlist = devlist->next;
7319 free(dv->devname);
7320 free(dv);
7321 }
7322 }
7323 return count;
7324 }
7325
7326 static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7327 {
7328 if (!hba)
7329 return 0;
7330 if (hba->type == SYS_DEV_VMD) {
7331 struct sys_dev *dev;
7332 int count = 0;
7333
7334 for (dev = find_intel_devices(); dev; dev = dev->next) {
7335 if (dev->type == SYS_DEV_VMD)
7336 count += __count_volumes(dev->path, dpa,
7337 verbose, 1);
7338 }
7339 return count;
7340 }
7341 return __count_volumes(hba->path, dpa, verbose, 0);
7342 }
7343
7344 static int imsm_default_chunk(const struct imsm_orom *orom)
7345 {
7346 /* up to 512 if the plaform supports it, otherwise the platform max.
7347 * 128 if no platform detected
7348 */
7349 int fs = max(7, orom ? fls(orom->sss) : 0);
7350
7351 return min(512, (1 << fs));
7352 }
7353
7354 static int
7355 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
7356 int raiddisks, int *chunk, unsigned long long size, int verbose)
7357 {
7358 /* check/set platform and metadata limits/defaults */
7359 if (super->orom && raiddisks > super->orom->dpa) {
7360 pr_vrb("platform supports a maximum of %d disks per array\n",
7361 super->orom->dpa);
7362 return 0;
7363 }
7364
7365 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
7366 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
7367 pr_vrb("platform does not support raid%d with %d disk%s\n",
7368 level, raiddisks, raiddisks > 1 ? "s" : "");
7369 return 0;
7370 }
7371
7372 if (*chunk == 0 || *chunk == UnSet)
7373 *chunk = imsm_default_chunk(super->orom);
7374
7375 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
7376 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
7377 return 0;
7378 }
7379
7380 if (layout != imsm_level_to_layout(level)) {
7381 if (level == 5)
7382 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
7383 else if (level == 10)
7384 pr_vrb("imsm raid 10 only supports the n2 layout\n");
7385 else
7386 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
7387 layout, level);
7388 return 0;
7389 }
7390
7391 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
7392 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
7393 pr_vrb("platform does not support a volume size over 2TB\n");
7394 return 0;
7395 }
7396
7397 return 1;
7398 }
7399
7400 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
7401 * FIX ME add ahci details
7402 */
7403 static int validate_geometry_imsm_volume(struct supertype *st, int level,
7404 int layout, int raiddisks, int *chunk,
7405 unsigned long long size,
7406 unsigned long long data_offset,
7407 char *dev,
7408 unsigned long long *freesize,
7409 int verbose)
7410 {
7411 dev_t rdev;
7412 struct intel_super *super = st->sb;
7413 struct imsm_super *mpb;
7414 struct dl *dl;
7415 unsigned long long pos = 0;
7416 unsigned long long maxsize;
7417 struct extent *e;
7418 int i;
7419
7420 /* We must have the container info already read in. */
7421 if (!super)
7422 return 0;
7423
7424 mpb = super->anchor;
7425
7426 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7427 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
7428 return 0;
7429 }
7430 if (!dev) {
7431 /* General test: make sure there is space for
7432 * 'raiddisks' device extents of size 'size' at a given
7433 * offset
7434 */
7435 unsigned long long minsize = size;
7436 unsigned long long start_offset = MaxSector;
7437 int dcnt = 0;
7438 if (minsize == 0)
7439 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7440 for (dl = super->disks; dl ; dl = dl->next) {
7441 int found = 0;
7442
7443 pos = 0;
7444 i = 0;
7445 e = get_extents(super, dl, 0);
7446 if (!e) continue;
7447 do {
7448 unsigned long long esize;
7449 esize = e[i].start - pos;
7450 if (esize >= minsize)
7451 found = 1;
7452 if (found && start_offset == MaxSector) {
7453 start_offset = pos;
7454 break;
7455 } else if (found && pos != start_offset) {
7456 found = 0;
7457 break;
7458 }
7459 pos = e[i].start + e[i].size;
7460 i++;
7461 } while (e[i-1].size);
7462 if (found)
7463 dcnt++;
7464 free(e);
7465 }
7466 if (dcnt < raiddisks) {
7467 if (verbose)
7468 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
7469 dcnt, raiddisks);
7470 return 0;
7471 }
7472 return 1;
7473 }
7474
7475 /* This device must be a member of the set */
7476 if (!stat_is_blkdev(dev, &rdev))
7477 return 0;
7478 for (dl = super->disks ; dl ; dl = dl->next) {
7479 if (dl->major == (int)major(rdev) &&
7480 dl->minor == (int)minor(rdev))
7481 break;
7482 }
7483 if (!dl) {
7484 if (verbose)
7485 pr_err("%s is not in the same imsm set\n", dev);
7486 return 0;
7487 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7488 /* If a volume is present then the current creation attempt
7489 * cannot incorporate new spares because the orom may not
7490 * understand this configuration (all member disks must be
7491 * members of each array in the container).
7492 */
7493 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7494 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7495 return 0;
7496 } else if (super->orom && mpb->num_raid_devs > 0 &&
7497 mpb->num_disks != raiddisks) {
7498 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7499 return 0;
7500 }
7501
7502 /* retrieve the largest free space block */
7503 e = get_extents(super, dl, 0);
7504 maxsize = 0;
7505 i = 0;
7506 if (e) {
7507 do {
7508 unsigned long long esize;
7509
7510 esize = e[i].start - pos;
7511 if (esize >= maxsize)
7512 maxsize = esize;
7513 pos = e[i].start + e[i].size;
7514 i++;
7515 } while (e[i-1].size);
7516 dl->e = e;
7517 dl->extent_cnt = i;
7518 } else {
7519 if (verbose)
7520 pr_err("unable to determine free space for: %s\n",
7521 dev);
7522 return 0;
7523 }
7524 if (maxsize < size) {
7525 if (verbose)
7526 pr_err("%s not enough space (%llu < %llu)\n",
7527 dev, maxsize, size);
7528 return 0;
7529 }
7530
7531 maxsize = merge_extents(super, false);
7532
7533 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7534 pr_err("attempting to create a second volume with size less then remaining space.\n");
7535
7536 if (maxsize < size || maxsize == 0) {
7537 if (verbose) {
7538 if (maxsize == 0)
7539 pr_err("no free space left on device. Aborting...\n");
7540 else
7541 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
7542 maxsize, size);
7543 }
7544 return 0;
7545 }
7546
7547 *freesize = maxsize;
7548
7549 if (super->orom) {
7550 int count = count_volumes(super->hba,
7551 super->orom->dpa, verbose);
7552 if (super->orom->vphba <= count) {
7553 pr_vrb("platform does not support more than %d raid volumes.\n",
7554 super->orom->vphba);
7555 return 0;
7556 }
7557 }
7558 return 1;
7559 }
7560
7561 /**
7562 * imsm_get_free_size() - get the biggest, common free space from members.
7563 * @super: &intel_super pointer, not NULL.
7564 * @raiddisks: number of raid disks.
7565 * @size: requested size, could be 0 (means max size).
7566 * @chunk: requested chunk size in KiB.
7567 * @freesize: pointer for returned size value.
7568 *
7569 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7570 *
7571 * @freesize is set to meaningful value, this can be @size, or calculated
7572 * max free size.
7573 * super->create_offset value is modified and set appropriately in
7574 * merge_extends() for further creation.
7575 */
7576 static imsm_status_t imsm_get_free_size(struct intel_super *super,
7577 const int raiddisks,
7578 unsigned long long size,
7579 const int chunk,
7580 unsigned long long *freesize,
7581 bool expanding)
7582 {
7583 struct imsm_super *mpb = super->anchor;
7584 struct dl *dl;
7585 int i;
7586 struct extent *e;
7587 int cnt = 0;
7588 int used = 0;
7589 unsigned long long maxsize;
7590 unsigned long long minsize = size;
7591
7592 if (minsize == 0)
7593 minsize = chunk * 2;
7594
7595 /* find the largest common start free region of the possible disks */
7596 for (dl = super->disks; dl; dl = dl->next) {
7597 dl->raiddisk = -1;
7598
7599 if (dl->index >= 0)
7600 used++;
7601
7602 /* don't activate new spares if we are orom constrained
7603 * and there is already a volume active in the container
7604 */
7605 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7606 continue;
7607
7608 e = get_extents(super, dl, 0);
7609 if (!e)
7610 continue;
7611 for (i = 1; e[i-1].size; i++)
7612 ;
7613 dl->e = e;
7614 dl->extent_cnt = i;
7615 cnt++;
7616 }
7617
7618 maxsize = merge_extents(super, expanding);
7619 if (maxsize < minsize) {
7620 pr_err("imsm: Free space is %llu but must be equal or larger than %llu.\n",
7621 maxsize, minsize);
7622 return IMSM_STATUS_ERROR;
7623 }
7624
7625 if (cnt < raiddisks || (super->orom && used && used != raiddisks)) {
7626 pr_err("imsm: Not enough devices with space to create array.\n");
7627 return IMSM_STATUS_ERROR;
7628 }
7629
7630 if (size == 0) {
7631 size = maxsize;
7632 if (chunk) {
7633 size /= 2 * chunk;
7634 size *= 2 * chunk;
7635 }
7636 maxsize = size;
7637 }
7638 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7639 pr_err("attempting to create a second volume with size less then remaining space.\n");
7640 *freesize = size;
7641
7642 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7643
7644 return IMSM_STATUS_OK;
7645 }
7646
7647 /**
7648 * autolayout_imsm() - automatically layout a new volume.
7649 * @super: &intel_super pointer, not NULL.
7650 * @raiddisks: number of raid disks.
7651 * @size: requested size, could be 0 (means max size).
7652 * @chunk: requested chunk.
7653 * @freesize: pointer for returned size value.
7654 *
7655 * We are being asked to automatically layout a new volume based on the current
7656 * contents of the container. If the parameters can be satisfied autolayout_imsm
7657 * will record the disks, start offset, and will return size of the volume to
7658 * be created. See imsm_get_free_size() for details.
7659 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7660 * If first volume exists, slots are set consistently to it.
7661 *
7662 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7663 *
7664 * Disks are marked for creation via dl->raiddisk.
7665 */
7666 static imsm_status_t autolayout_imsm(struct intel_super *super,
7667 const int raiddisks,
7668 unsigned long long size, const int chunk,
7669 unsigned long long *freesize)
7670 {
7671 int curr_slot = 0;
7672 struct dl *disk;
7673 int vol_cnt = super->anchor->num_raid_devs;
7674 imsm_status_t rv;
7675
7676 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize, false);
7677 if (rv != IMSM_STATUS_OK)
7678 return IMSM_STATUS_ERROR;
7679
7680 for (disk = super->disks; disk; disk = disk->next) {
7681 if (!disk->e)
7682 continue;
7683
7684 if (curr_slot == raiddisks)
7685 break;
7686
7687 if (vol_cnt == 0) {
7688 disk->raiddisk = curr_slot;
7689 } else {
7690 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7691
7692 if (_slot == -1) {
7693 pr_err("Disk %s is not used in first volume, aborting\n",
7694 disk->devname);
7695 return IMSM_STATUS_ERROR;
7696 }
7697 disk->raiddisk = _slot;
7698 }
7699 curr_slot++;
7700 }
7701
7702 return IMSM_STATUS_OK;
7703 }
7704
7705 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
7706 int raiddisks, int *chunk, unsigned long long size,
7707 unsigned long long data_offset,
7708 char *dev, unsigned long long *freesize,
7709 int consistency_policy, int verbose)
7710 {
7711 int fd, cfd;
7712 struct mdinfo *sra;
7713 int is_member = 0;
7714
7715 /* load capability
7716 * if given unused devices create a container
7717 * if given given devices in a container create a member volume
7718 */
7719 if (is_container(level))
7720 /* Must be a fresh device to add to a container */
7721 return validate_geometry_imsm_container(st, level, raiddisks,
7722 data_offset, dev,
7723 freesize, verbose);
7724
7725 /*
7726 * Size is given in sectors.
7727 */
7728 if (size && (size < 2048)) {
7729 pr_err("Given size must be greater than 1M.\n");
7730 /* Depends on algorithm in Create.c :
7731 * if container was given (dev == NULL) return -1,
7732 * if block device was given ( dev != NULL) return 0.
7733 */
7734 return dev ? -1 : 0;
7735 }
7736
7737 if (!dev) {
7738 struct intel_super *super = st->sb;
7739
7740 /*
7741 * Autolayout mode, st->sb must be set.
7742 */
7743 if (!super) {
7744 pr_vrb("superblock must be set for autolayout, aborting\n");
7745 return 0;
7746 }
7747
7748 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7749 raiddisks, chunk, size,
7750 verbose))
7751 return 0;
7752
7753 if (super->orom && freesize) {
7754 imsm_status_t rv;
7755 int count = count_volumes(super->hba, super->orom->dpa,
7756 verbose);
7757 if (super->orom->vphba <= count) {
7758 pr_vrb("platform does not support more than %d raid volumes.\n",
7759 super->orom->vphba);
7760 return 0;
7761 }
7762
7763 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7764 freesize);
7765 if (rv != IMSM_STATUS_OK)
7766 return 0;
7767 }
7768 return 1;
7769 }
7770 if (st->sb) {
7771 /* creating in a given container */
7772 return validate_geometry_imsm_volume(st, level, layout,
7773 raiddisks, chunk, size,
7774 data_offset,
7775 dev, freesize, verbose);
7776 }
7777
7778 /* This device needs to be a device in an 'imsm' container */
7779 fd = open(dev, O_RDONLY|O_EXCL, 0);
7780
7781 if (is_fd_valid(fd)) {
7782 pr_vrb("Cannot create this array on device %s\n", dev);
7783 close(fd);
7784 return 0;
7785 }
7786 if (errno == EBUSY)
7787 fd = open(dev, O_RDONLY, 0);
7788
7789 if (!is_fd_valid(fd)) {
7790 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
7791 return 0;
7792 }
7793
7794 /* Well, it is in use by someone, maybe an 'imsm' container. */
7795 cfd = open_container(fd);
7796 close_fd(&fd);
7797
7798 if (!is_fd_valid(cfd)) {
7799 pr_vrb("Cannot use %s: It is busy\n", dev);
7800 return 0;
7801 }
7802 sra = sysfs_read(cfd, NULL, GET_VERSION);
7803 if (sra && sra->array.major_version == -1 &&
7804 strcmp(sra->text_version, "imsm") == 0)
7805 is_member = 1;
7806 sysfs_free(sra);
7807 if (is_member) {
7808 /* This is a member of a imsm container. Load the container
7809 * and try to create a volume
7810 */
7811 struct intel_super *super;
7812
7813 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
7814 st->sb = super;
7815 strcpy(st->container_devnm, fd2devnm(cfd));
7816 close(cfd);
7817 return validate_geometry_imsm_volume(st, level, layout,
7818 raiddisks, chunk,
7819 size, data_offset, dev,
7820 freesize, 1)
7821 ? 1 : -1;
7822 }
7823 }
7824
7825 if (verbose)
7826 pr_err("failed container membership check\n");
7827
7828 close(cfd);
7829 return 0;
7830 }
7831
7832 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7833 {
7834 struct intel_super *super = st->sb;
7835
7836 if (level && *level == UnSet)
7837 *level = LEVEL_CONTAINER;
7838
7839 if (level && layout && *layout == UnSet)
7840 *layout = imsm_level_to_layout(*level);
7841
7842 if (chunk && (*chunk == UnSet || *chunk == 0))
7843 *chunk = imsm_default_chunk(super->orom);
7844 }
7845
7846 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7847
7848 static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
7849 {
7850 /* remove the subarray currently referenced by subarray_id */
7851 __u8 i;
7852 struct intel_dev **dp;
7853 struct intel_super *super = st->sb;
7854 __u8 current_vol = strtoul(subarray_id, NULL, 10);
7855 struct imsm_super *mpb = super->anchor;
7856
7857 if (mpb->num_raid_devs == 0)
7858 return 2;
7859
7860 /* block deletions that would change the uuid of active subarrays
7861 *
7862 * FIXME when immutable ids are available, but note that we'll
7863 * also need to fixup the invalidated/active subarray indexes in
7864 * mdstat
7865 */
7866 for (i = 0; i < mpb->num_raid_devs; i++) {
7867 char subarray[4];
7868
7869 if (i < current_vol)
7870 continue;
7871 snprintf(subarray, sizeof(subarray), "%u", i);
7872 if (is_subarray_active(subarray, st->devnm)) {
7873 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7874 current_vol, i);
7875
7876 return 2;
7877 }
7878 }
7879
7880 if (st->update_tail) {
7881 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7882
7883 u->type = update_kill_array;
7884 u->dev_idx = current_vol;
7885 append_metadata_update(st, u, sizeof(*u));
7886
7887 return 0;
7888 }
7889
7890 for (dp = &super->devlist; *dp;)
7891 if ((*dp)->index == current_vol) {
7892 *dp = (*dp)->next;
7893 } else {
7894 handle_missing(super, (*dp)->dev);
7895 if ((*dp)->index > current_vol)
7896 (*dp)->index--;
7897 dp = &(*dp)->next;
7898 }
7899
7900 /* no more raid devices, all active components are now spares,
7901 * but of course failed are still failed
7902 */
7903 if (--mpb->num_raid_devs == 0) {
7904 struct dl *d;
7905
7906 for (d = super->disks; d; d = d->next)
7907 if (d->index > -2)
7908 mark_spare(d);
7909 }
7910
7911 super->updates_pending++;
7912
7913 return 0;
7914 }
7915
7916 /**
7917 * get_rwh_policy_from_update() - Get the rwh policy for update option.
7918 * @update: Update option.
7919 */
7920 static int get_rwh_policy_from_update(enum update_opt update)
7921 {
7922 switch (update) {
7923 case UOPT_PPL:
7924 return RWH_MULTIPLE_DISTRIBUTED;
7925 case UOPT_NO_PPL:
7926 return RWH_MULTIPLE_OFF;
7927 case UOPT_BITMAP:
7928 return RWH_BITMAP;
7929 case UOPT_NO_BITMAP:
7930 return RWH_OFF;
7931 default:
7932 break;
7933 }
7934 return UOPT_UNDEFINED;
7935 }
7936
7937 static int update_subarray_imsm(struct supertype *st, char *subarray,
7938 enum update_opt update, struct mddev_ident *ident)
7939 {
7940 /* update the subarray currently referenced by ->current_vol */
7941 struct intel_super *super = st->sb;
7942 struct imsm_super *mpb = super->anchor;
7943
7944 if (update == UOPT_NAME) {
7945 char *name = ident->name;
7946 char *ep;
7947 int vol;
7948
7949 if (imsm_is_name_allowed(super, name, 1) == false)
7950 return 2;
7951
7952 vol = strtoul(subarray, &ep, 10);
7953 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7954 return 2;
7955
7956 if (st->update_tail) {
7957 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
7958
7959 u->type = update_rename_array;
7960 u->dev_idx = vol;
7961 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7962 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
7963 append_metadata_update(st, u, sizeof(*u));
7964 } else {
7965 struct imsm_dev *dev;
7966 int i, namelen;
7967
7968 dev = get_imsm_dev(super, vol);
7969 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7970 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7971 memcpy(dev->volume, name, namelen);
7972 for (i = 0; i < mpb->num_raid_devs; i++) {
7973 dev = get_imsm_dev(super, i);
7974 handle_missing(super, dev);
7975 }
7976 super->updates_pending++;
7977 }
7978 } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) {
7979 int new_policy;
7980 char *ep;
7981 int vol = strtoul(subarray, &ep, 10);
7982
7983 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7984 return 2;
7985
7986 new_policy = get_rwh_policy_from_update(update);
7987
7988 if (st->update_tail) {
7989 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7990
7991 u->type = update_rwh_policy;
7992 u->dev_idx = vol;
7993 u->new_policy = new_policy;
7994 append_metadata_update(st, u, sizeof(*u));
7995 } else {
7996 struct imsm_dev *dev;
7997
7998 dev = get_imsm_dev(super, vol);
7999 dev->rwh_policy = new_policy;
8000 super->updates_pending++;
8001 }
8002 if (new_policy == RWH_BITMAP)
8003 return write_init_bitmap_imsm_vol(st, vol);
8004 } else
8005 return 2;
8006
8007 return 0;
8008 }
8009
8010 static bool is_gen_migration(struct imsm_dev *dev)
8011 {
8012 if (dev && dev->vol.migr_state &&
8013 migr_type(dev) == MIGR_GEN_MIGR)
8014 return true;
8015
8016 return false;
8017 }
8018
8019 static int is_rebuilding(struct imsm_dev *dev)
8020 {
8021 struct imsm_map *migr_map;
8022
8023 if (!dev->vol.migr_state)
8024 return 0;
8025
8026 if (migr_type(dev) != MIGR_REBUILD)
8027 return 0;
8028
8029 migr_map = get_imsm_map(dev, MAP_1);
8030
8031 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8032 return 1;
8033 else
8034 return 0;
8035 }
8036
8037 static int is_initializing(struct imsm_dev *dev)
8038 {
8039 struct imsm_map *migr_map;
8040
8041 if (!dev->vol.migr_state)
8042 return 0;
8043
8044 if (migr_type(dev) != MIGR_INIT)
8045 return 0;
8046
8047 migr_map = get_imsm_map(dev, MAP_1);
8048
8049 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8050 return 1;
8051
8052 return 0;
8053 }
8054
8055 static void update_recovery_start(struct intel_super *super,
8056 struct imsm_dev *dev,
8057 struct mdinfo *array)
8058 {
8059 struct mdinfo *rebuild = NULL;
8060 struct mdinfo *d;
8061 __u32 units;
8062
8063 if (!is_rebuilding(dev))
8064 return;
8065
8066 /* Find the rebuild target, but punt on the dual rebuild case */
8067 for (d = array->devs; d; d = d->next)
8068 if (d->recovery_start == 0) {
8069 if (rebuild)
8070 return;
8071 rebuild = d;
8072 }
8073
8074 if (!rebuild) {
8075 /* (?) none of the disks are marked with
8076 * IMSM_ORD_REBUILD, so assume they are missing and the
8077 * disk_ord_tbl was not correctly updated
8078 */
8079 dprintf("failed to locate out-of-sync disk\n");
8080 return;
8081 }
8082
8083 units = vol_curr_migr_unit(dev);
8084 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
8085 }
8086
8087 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
8088
8089 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
8090 {
8091 /* Given a container loaded by load_super_imsm_all,
8092 * extract information about all the arrays into
8093 * an mdinfo tree.
8094 * If 'subarray' is given, just extract info about that array.
8095 *
8096 * For each imsm_dev create an mdinfo, fill it in,
8097 * then look for matching devices in super->disks
8098 * and create appropriate device mdinfo.
8099 */
8100 struct intel_super *super = st->sb;
8101 struct imsm_super *mpb = super->anchor;
8102 struct mdinfo *rest = NULL;
8103 unsigned int i;
8104 int sb_errors = 0;
8105 struct dl *d;
8106 int spare_disks = 0;
8107 int current_vol = super->current_vol;
8108
8109 /* do not assemble arrays when not all attributes are supported */
8110 if (imsm_check_attributes(mpb->attributes) == 0) {
8111 sb_errors = 1;
8112 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
8113 }
8114
8115 /* count spare devices, not used in maps
8116 */
8117 for (d = super->disks; d; d = d->next)
8118 if (d->index == -1)
8119 spare_disks++;
8120
8121 for (i = 0; i < mpb->num_raid_devs; i++) {
8122 struct imsm_dev *dev;
8123 struct imsm_map *map;
8124 struct imsm_map *map2;
8125 struct mdinfo *this;
8126 int slot;
8127 int chunk;
8128 char *ep;
8129 int level;
8130
8131 if (subarray &&
8132 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8133 continue;
8134
8135 dev = get_imsm_dev(super, i);
8136 map = get_imsm_map(dev, MAP_0);
8137 map2 = get_imsm_map(dev, MAP_1);
8138 level = get_imsm_raid_level(map);
8139
8140 /* do not publish arrays that are in the middle of an
8141 * unsupported migration
8142 */
8143 if (dev->vol.migr_state &&
8144 (migr_type(dev) == MIGR_STATE_CHANGE)) {
8145 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
8146 dev->volume);
8147 continue;
8148 }
8149 /* do not publish arrays that are not support by controller's
8150 * OROM/EFI
8151 */
8152
8153 this = xmalloc(sizeof(*this));
8154
8155 super->current_vol = i;
8156 getinfo_super_imsm_volume(st, this, NULL);
8157 this->next = rest;
8158 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
8159 /* mdadm does not support all metadata features- set the bit in all arrays state */
8160 if (!validate_geometry_imsm_orom(super,
8161 level, /* RAID level */
8162 imsm_level_to_layout(level),
8163 map->num_members, /* raid disks */
8164 &chunk, imsm_dev_size(dev),
8165 1 /* verbose */)) {
8166 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
8167 dev->volume);
8168 this->array.state |=
8169 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8170 (1<<MD_SB_BLOCK_VOLUME);
8171 }
8172
8173 /* if array has bad blocks, set suitable bit in all arrays state */
8174 if (sb_errors)
8175 this->array.state |=
8176 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8177 (1<<MD_SB_BLOCK_VOLUME);
8178
8179 for (slot = 0 ; slot < map->num_members; slot++) {
8180 unsigned long long recovery_start;
8181 struct mdinfo *info_d;
8182 struct dl *d;
8183 int idx;
8184 int skip;
8185 __u32 ord;
8186 int missing = 0;
8187
8188 skip = 0;
8189 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8190 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
8191 for (d = super->disks; d ; d = d->next)
8192 if (d->index == idx)
8193 break;
8194
8195 recovery_start = MaxSector;
8196 if (d == NULL)
8197 skip = 1;
8198 if (d && is_failed(&d->disk))
8199 skip = 1;
8200 if (!skip && (ord & IMSM_ORD_REBUILD))
8201 recovery_start = 0;
8202 if (!(ord & IMSM_ORD_REBUILD))
8203 this->array.working_disks++;
8204 /*
8205 * if we skip some disks the array will be assmebled degraded;
8206 * reset resync start to avoid a dirty-degraded
8207 * situation when performing the intial sync
8208 */
8209 if (skip)
8210 missing++;
8211
8212 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8213 if ((!able_to_resync(level, missing) ||
8214 recovery_start == 0))
8215 this->resync_start = MaxSector;
8216 }
8217
8218 if (skip)
8219 continue;
8220
8221 info_d = xcalloc(1, sizeof(*info_d));
8222 info_d->next = this->devs;
8223 this->devs = info_d;
8224
8225 info_d->disk.number = d->index;
8226 info_d->disk.major = d->major;
8227 info_d->disk.minor = d->minor;
8228 info_d->disk.raid_disk = slot;
8229 info_d->recovery_start = recovery_start;
8230 if (map2) {
8231 if (slot < map2->num_members)
8232 info_d->disk.state = (1 << MD_DISK_ACTIVE);
8233 else
8234 this->array.spare_disks++;
8235 } else {
8236 if (slot < map->num_members)
8237 info_d->disk.state = (1 << MD_DISK_ACTIVE);
8238 else
8239 this->array.spare_disks++;
8240 }
8241
8242 info_d->events = __le32_to_cpu(mpb->generation_num);
8243 info_d->data_offset = pba_of_lba0(map);
8244 info_d->component_size = calc_component_size(map, dev);
8245
8246 if (map->raid_level == 5) {
8247 info_d->ppl_sector = this->ppl_sector;
8248 info_d->ppl_size = this->ppl_size;
8249 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8250 recovery_start == 0)
8251 this->resync_start = 0;
8252 }
8253
8254 info_d->bb.supported = 1;
8255 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8256 info_d->data_offset,
8257 info_d->component_size,
8258 &info_d->bb);
8259 }
8260 /* now that the disk list is up-to-date fixup recovery_start */
8261 update_recovery_start(super, dev, this);
8262 this->array.spare_disks += spare_disks;
8263
8264 /* check for reshape */
8265 if (this->reshape_active == 1)
8266 recover_backup_imsm(st, this);
8267 rest = this;
8268 }
8269
8270 super->current_vol = current_vol;
8271 return rest;
8272 }
8273
8274 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8275 int failed, int look_in_map)
8276 {
8277 struct imsm_map *map;
8278
8279 map = get_imsm_map(dev, look_in_map);
8280
8281 if (!failed)
8282 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
8283 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
8284
8285 switch (get_imsm_raid_level(map)) {
8286 case 0:
8287 return IMSM_T_STATE_FAILED;
8288 break;
8289 case 1:
8290 if (failed < map->num_members)
8291 return IMSM_T_STATE_DEGRADED;
8292 else
8293 return IMSM_T_STATE_FAILED;
8294 break;
8295 case 10:
8296 {
8297 /**
8298 * check to see if any mirrors have failed, otherwise we
8299 * are degraded. Even numbered slots are mirrored on
8300 * slot+1
8301 */
8302 int i;
8303 /* gcc -Os complains that this is unused */
8304 int insync = insync;
8305
8306 for (i = 0; i < map->num_members; i++) {
8307 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
8308 int idx = ord_to_idx(ord);
8309 struct imsm_disk *disk;
8310
8311 /* reset the potential in-sync count on even-numbered
8312 * slots. num_copies is always 2 for imsm raid10
8313 */
8314 if ((i & 1) == 0)
8315 insync = 2;
8316
8317 disk = get_imsm_disk(super, idx);
8318 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8319 insync--;
8320
8321 /* no in-sync disks left in this mirror the
8322 * array has failed
8323 */
8324 if (insync == 0)
8325 return IMSM_T_STATE_FAILED;
8326 }
8327
8328 return IMSM_T_STATE_DEGRADED;
8329 }
8330 case 5:
8331 if (failed < 2)
8332 return IMSM_T_STATE_DEGRADED;
8333 else
8334 return IMSM_T_STATE_FAILED;
8335 break;
8336 default:
8337 break;
8338 }
8339
8340 return map->map_state;
8341 }
8342
8343 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8344 int look_in_map)
8345 {
8346 int i;
8347 int failed = 0;
8348 struct imsm_disk *disk;
8349 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8350 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
8351 struct imsm_map *map_for_loop;
8352 __u32 ord;
8353 int idx;
8354 int idx_1;
8355
8356 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8357 * disks that are being rebuilt. New failures are recorded to
8358 * map[0]. So we look through all the disks we started with and
8359 * see if any failures are still present, or if any new ones
8360 * have arrived
8361 */
8362 map_for_loop = map;
8363 if (prev && (map->num_members < prev->num_members))
8364 map_for_loop = prev;
8365
8366 for (i = 0; i < map_for_loop->num_members; i++) {
8367 idx_1 = -255;
8368 /* when MAP_X is passed both maps failures are counted
8369 */
8370 if (prev &&
8371 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8372 i < prev->num_members) {
8373 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8374 idx_1 = ord_to_idx(ord);
8375
8376 disk = get_imsm_disk(super, idx_1);
8377 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8378 failed++;
8379 }
8380 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8381 i < map->num_members) {
8382 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8383 idx = ord_to_idx(ord);
8384
8385 if (idx != idx_1) {
8386 disk = get_imsm_disk(super, idx);
8387 if (!disk || is_failed(disk) ||
8388 ord & IMSM_ORD_REBUILD)
8389 failed++;
8390 }
8391 }
8392 }
8393
8394 return failed;
8395 }
8396
8397 static int imsm_open_new(struct supertype *c, struct active_array *a,
8398 int inst)
8399 {
8400 struct intel_super *super = c->sb;
8401 struct imsm_super *mpb = super->anchor;
8402 struct imsm_update_prealloc_bb_mem u;
8403
8404 if (inst >= mpb->num_raid_devs) {
8405 pr_err("subarry index %d, out of range\n", inst);
8406 return -ENODEV;
8407 }
8408
8409 dprintf("imsm: open_new %d\n", inst);
8410 a->info.container_member = inst;
8411
8412 u.type = update_prealloc_badblocks_mem;
8413 imsm_update_metadata_locally(c, &u, sizeof(u));
8414
8415 return 0;
8416 }
8417
8418 static int is_resyncing(struct imsm_dev *dev)
8419 {
8420 struct imsm_map *migr_map;
8421
8422 if (!dev->vol.migr_state)
8423 return 0;
8424
8425 if (migr_type(dev) == MIGR_INIT ||
8426 migr_type(dev) == MIGR_REPAIR)
8427 return 1;
8428
8429 if (migr_type(dev) == MIGR_GEN_MIGR)
8430 return 0;
8431
8432 migr_map = get_imsm_map(dev, MAP_1);
8433
8434 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8435 dev->vol.migr_type != MIGR_GEN_MIGR)
8436 return 1;
8437 else
8438 return 0;
8439 }
8440
8441 /* return true if we recorded new information */
8442 static int mark_failure(struct intel_super *super,
8443 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8444 {
8445 __u32 ord;
8446 int slot;
8447 struct imsm_map *map;
8448 char buf[MAX_RAID_SERIAL_LEN+3];
8449 unsigned int len, shift = 0;
8450
8451 /* new failures are always set in map[0] */
8452 map = get_imsm_map(dev, MAP_0);
8453
8454 slot = get_imsm_disk_slot(map, idx);
8455 if (slot < 0)
8456 return 0;
8457
8458 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
8459 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
8460 return 0;
8461
8462 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8463 buf[MAX_RAID_SERIAL_LEN] = '\000';
8464 strcat(buf, ":0");
8465 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8466 shift = len - MAX_RAID_SERIAL_LEN + 1;
8467 memcpy(disk->serial, &buf[shift], len + 1 - shift);
8468
8469 disk->status |= FAILED_DISK;
8470 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
8471 /* mark failures in second map if second map exists and this disk
8472 * in this slot.
8473 * This is valid for migration, initialization and rebuild
8474 */
8475 if (dev->vol.migr_state) {
8476 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
8477 int slot2 = get_imsm_disk_slot(map2, idx);
8478
8479 if (slot2 < map2->num_members && slot2 >= 0)
8480 set_imsm_ord_tbl_ent(map2, slot2,
8481 idx | IMSM_ORD_REBUILD);
8482 }
8483 if (map->failed_disk_num == 0xff ||
8484 (!is_rebuilding(dev) && map->failed_disk_num > slot))
8485 map->failed_disk_num = slot;
8486
8487 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8488
8489 return 1;
8490 }
8491
8492 static void mark_missing(struct intel_super *super,
8493 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8494 {
8495 mark_failure(super, dev, disk, idx);
8496
8497 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8498 return;
8499
8500 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8501 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8502 }
8503
8504 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8505 {
8506 struct dl *dl;
8507
8508 if (!super->missing)
8509 return;
8510
8511 /* When orom adds replacement for missing disk it does
8512 * not remove entry of missing disk, but just updates map with
8513 * new added disk. So it is not enough just to test if there is
8514 * any missing disk, we have to look if there are any failed disks
8515 * in map to stop migration */
8516
8517 dprintf("imsm: mark missing\n");
8518 /* end process for initialization and rebuild only
8519 */
8520 if (is_gen_migration(dev) == false) {
8521 int failed = imsm_count_failed(super, dev, MAP_0);
8522
8523 if (failed) {
8524 __u8 map_state;
8525 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8526 struct imsm_map *map1;
8527 int i, ord, ord_map1;
8528 int rebuilt = 1;
8529
8530 for (i = 0; i < map->num_members; i++) {
8531 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8532 if (!(ord & IMSM_ORD_REBUILD))
8533 continue;
8534
8535 map1 = get_imsm_map(dev, MAP_1);
8536 if (!map1)
8537 continue;
8538
8539 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8540 if (ord_map1 & IMSM_ORD_REBUILD)
8541 rebuilt = 0;
8542 }
8543
8544 if (rebuilt) {
8545 map_state = imsm_check_degraded(super, dev,
8546 failed, MAP_0);
8547 end_migration(dev, super, map_state);
8548 }
8549 }
8550 }
8551 for (dl = super->missing; dl; dl = dl->next)
8552 mark_missing(super, dev, &dl->disk, dl->index);
8553 super->updates_pending++;
8554 }
8555
8556 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8557 long long new_size)
8558 {
8559 unsigned long long array_blocks;
8560 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8561 int used_disks = imsm_num_data_members(map);
8562
8563 if (used_disks == 0) {
8564 /* when problems occures
8565 * return current array_blocks value
8566 */
8567 array_blocks = imsm_dev_size(dev);
8568
8569 return array_blocks;
8570 }
8571
8572 /* set array size in metadata
8573 */
8574 if (new_size <= 0)
8575 /* OLCE size change is caused by added disks
8576 */
8577 array_blocks = per_dev_array_size(map) * used_disks;
8578 else
8579 /* Online Volume Size Change
8580 * Using available free space
8581 */
8582 array_blocks = new_size;
8583
8584 array_blocks = round_size_to_mb(array_blocks, used_disks);
8585 set_imsm_dev_size(dev, array_blocks);
8586
8587 return array_blocks;
8588 }
8589
8590 static void imsm_set_disk(struct active_array *a, int n, int state);
8591
8592 static void imsm_progress_container_reshape(struct intel_super *super)
8593 {
8594 /* if no device has a migr_state, but some device has a
8595 * different number of members than the previous device, start
8596 * changing the number of devices in this device to match
8597 * previous.
8598 */
8599 struct imsm_super *mpb = super->anchor;
8600 int prev_disks = -1;
8601 int i;
8602 int copy_map_size;
8603
8604 for (i = 0; i < mpb->num_raid_devs; i++) {
8605 struct imsm_dev *dev = get_imsm_dev(super, i);
8606 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8607 struct imsm_map *map2;
8608 int prev_num_members;
8609
8610 if (dev->vol.migr_state)
8611 return;
8612
8613 if (prev_disks == -1)
8614 prev_disks = map->num_members;
8615 if (prev_disks == map->num_members)
8616 continue;
8617
8618 /* OK, this array needs to enter reshape mode.
8619 * i.e it needs a migr_state
8620 */
8621
8622 copy_map_size = sizeof_imsm_map(map);
8623 prev_num_members = map->num_members;
8624 map->num_members = prev_disks;
8625 dev->vol.migr_state = 1;
8626 set_vol_curr_migr_unit(dev, 0);
8627 set_migr_type(dev, MIGR_GEN_MIGR);
8628 for (i = prev_num_members;
8629 i < map->num_members; i++)
8630 set_imsm_ord_tbl_ent(map, i, i);
8631 map2 = get_imsm_map(dev, MAP_1);
8632 /* Copy the current map */
8633 memcpy(map2, map, copy_map_size);
8634 map2->num_members = prev_num_members;
8635
8636 imsm_set_array_size(dev, -1);
8637 super->clean_migration_record_by_mdmon = 1;
8638 super->updates_pending++;
8639 }
8640 }
8641
8642 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
8643 * states are handled in imsm_set_disk() with one exception, when a
8644 * resync is stopped due to a new failure this routine will set the
8645 * 'degraded' state for the array.
8646 */
8647 static int imsm_set_array_state(struct active_array *a, int consistent)
8648 {
8649 int inst = a->info.container_member;
8650 struct intel_super *super = a->container->sb;
8651 struct imsm_dev *dev = get_imsm_dev(super, inst);
8652 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8653 int failed = imsm_count_failed(super, dev, MAP_0);
8654 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8655 __u32 blocks_per_unit;
8656
8657 if (dev->vol.migr_state &&
8658 dev->vol.migr_type == MIGR_GEN_MIGR) {
8659 /* array state change is blocked due to reshape action
8660 * We might need to
8661 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8662 * - finish the reshape (if last_checkpoint is big and action != reshape)
8663 * - update vol_curr_migr_unit
8664 */
8665 if (a->curr_action == reshape) {
8666 /* still reshaping, maybe update vol_curr_migr_unit */
8667 goto mark_checkpoint;
8668 } else {
8669 if (a->last_checkpoint >= a->info.component_size) {
8670 unsigned long long array_blocks;
8671 int used_disks;
8672 struct mdinfo *mdi;
8673
8674 used_disks = imsm_num_data_members(map);
8675 if (used_disks > 0) {
8676 array_blocks =
8677 per_dev_array_size(map) *
8678 used_disks;
8679 array_blocks =
8680 round_size_to_mb(array_blocks,
8681 used_disks);
8682 a->info.custom_array_size = array_blocks;
8683 /* encourage manager to update array
8684 * size
8685 */
8686
8687 a->check_reshape = 1;
8688 }
8689 /* finalize online capacity expansion/reshape */
8690 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8691 imsm_set_disk(a,
8692 mdi->disk.raid_disk,
8693 mdi->curr_state);
8694
8695 imsm_progress_container_reshape(super);
8696 }
8697 }
8698 }
8699
8700 /* before we activate this array handle any missing disks */
8701 if (consistent == 2)
8702 handle_missing(super, dev);
8703
8704 if (consistent == 2 &&
8705 (!is_resync_complete(&a->info) ||
8706 map_state != IMSM_T_STATE_NORMAL ||
8707 dev->vol.migr_state))
8708 consistent = 0;
8709
8710 if (is_resync_complete(&a->info)) {
8711 /* complete intialization / resync,
8712 * recovery and interrupted recovery is completed in
8713 * ->set_disk
8714 */
8715 if (is_resyncing(dev)) {
8716 dprintf("imsm: mark resync done\n");
8717 end_migration(dev, super, map_state);
8718 super->updates_pending++;
8719 a->last_checkpoint = 0;
8720 }
8721 } else if ((!is_resyncing(dev) && !failed) &&
8722 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
8723 /* mark the start of the init process if nothing is failed */
8724 dprintf("imsm: mark resync start\n");
8725 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8726 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
8727 else
8728 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
8729 super->updates_pending++;
8730 }
8731
8732 if (a->prev_action == idle)
8733 goto skip_mark_checkpoint;
8734
8735 mark_checkpoint:
8736 /* skip checkpointing for general migration,
8737 * it is controlled in mdadm
8738 */
8739 if (is_gen_migration(dev))
8740 goto skip_mark_checkpoint;
8741
8742 /* check if we can update vol_curr_migr_unit from resync_start,
8743 * recovery_start
8744 */
8745 blocks_per_unit = blocks_per_migr_unit(super, dev);
8746 if (blocks_per_unit) {
8747 set_vol_curr_migr_unit(dev,
8748 a->last_checkpoint / blocks_per_unit);
8749 dprintf("imsm: mark checkpoint (%llu)\n",
8750 vol_curr_migr_unit(dev));
8751 super->updates_pending++;
8752 }
8753
8754 skip_mark_checkpoint:
8755 /* mark dirty / clean */
8756 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8757 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
8758 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
8759 if (consistent) {
8760 dev->vol.dirty = RAIDVOL_CLEAN;
8761 } else {
8762 dev->vol.dirty = RAIDVOL_DIRTY;
8763 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8764 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
8765 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8766 }
8767 super->updates_pending++;
8768 }
8769
8770 return consistent;
8771 }
8772
8773 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8774 {
8775 int inst = a->info.container_member;
8776 struct intel_super *super = a->container->sb;
8777 struct imsm_dev *dev = get_imsm_dev(super, inst);
8778 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8779
8780 if (slot > map->num_members) {
8781 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8782 slot, map->num_members - 1);
8783 return -1;
8784 }
8785
8786 if (slot < 0)
8787 return -1;
8788
8789 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8790 }
8791
8792 static void imsm_set_disk(struct active_array *a, int n, int state)
8793 {
8794 int inst = a->info.container_member;
8795 struct intel_super *super = a->container->sb;
8796 struct imsm_dev *dev = get_imsm_dev(super, inst);
8797 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8798 struct imsm_disk *disk;
8799 struct mdinfo *mdi;
8800 int recovery_not_finished = 0;
8801 int failed;
8802 int ord;
8803 __u8 map_state;
8804 int rebuild_done = 0;
8805 int i;
8806
8807 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
8808 if (ord < 0)
8809 return;
8810
8811 dprintf("imsm: set_disk %d:%x\n", n, state);
8812 disk = get_imsm_disk(super, ord_to_idx(ord));
8813
8814 /* check for new failures */
8815 if (disk && (state & DS_FAULTY)) {
8816 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
8817 super->updates_pending++;
8818 }
8819
8820 /* check if in_sync */
8821 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
8822 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8823
8824 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
8825 rebuild_done = 1;
8826 super->updates_pending++;
8827 }
8828
8829 failed = imsm_count_failed(super, dev, MAP_0);
8830 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8831
8832 /* check if recovery complete, newly degraded, or failed */
8833 dprintf("imsm: Detected transition to state ");
8834 switch (map_state) {
8835 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8836 dprintf("normal: ");
8837 if (is_rebuilding(dev)) {
8838 dprintf_cont("while rebuilding");
8839 /* check if recovery is really finished */
8840 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8841 if (mdi->recovery_start != MaxSector) {
8842 recovery_not_finished = 1;
8843 break;
8844 }
8845 if (recovery_not_finished) {
8846 dprintf_cont("\n");
8847 dprintf("Rebuild has not finished yet, state not changed");
8848 if (a->last_checkpoint < mdi->recovery_start) {
8849 a->last_checkpoint = mdi->recovery_start;
8850 super->updates_pending++;
8851 }
8852 break;
8853 }
8854 end_migration(dev, super, map_state);
8855 map->failed_disk_num = ~0;
8856 super->updates_pending++;
8857 a->last_checkpoint = 0;
8858 break;
8859 }
8860 if (is_gen_migration(dev)) {
8861 dprintf_cont("while general migration");
8862 if (a->last_checkpoint >= a->info.component_size)
8863 end_migration(dev, super, map_state);
8864 else
8865 map->map_state = map_state;
8866 map->failed_disk_num = ~0;
8867 super->updates_pending++;
8868 break;
8869 }
8870 break;
8871 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8872 dprintf_cont("degraded: ");
8873 if (map->map_state != map_state && !dev->vol.migr_state) {
8874 dprintf_cont("mark degraded");
8875 map->map_state = map_state;
8876 super->updates_pending++;
8877 a->last_checkpoint = 0;
8878 break;
8879 }
8880 if (is_rebuilding(dev)) {
8881 dprintf_cont("while rebuilding ");
8882 if (state & DS_FAULTY) {
8883 dprintf_cont("removing failed drive ");
8884 if (n == map->failed_disk_num) {
8885 dprintf_cont("end migration");
8886 end_migration(dev, super, map_state);
8887 a->last_checkpoint = 0;
8888 } else {
8889 dprintf_cont("fail detected during rebuild, changing map state");
8890 map->map_state = map_state;
8891 }
8892 super->updates_pending++;
8893 }
8894
8895 if (!rebuild_done)
8896 break;
8897
8898 /* check if recovery is really finished */
8899 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8900 if (mdi->recovery_start != MaxSector) {
8901 recovery_not_finished = 1;
8902 break;
8903 }
8904 if (recovery_not_finished) {
8905 dprintf_cont("\n");
8906 dprintf_cont("Rebuild has not finished yet");
8907 if (a->last_checkpoint < mdi->recovery_start) {
8908 a->last_checkpoint =
8909 mdi->recovery_start;
8910 super->updates_pending++;
8911 }
8912 break;
8913 }
8914
8915 dprintf_cont(" Rebuild done, still degraded");
8916 end_migration(dev, super, map_state);
8917 a->last_checkpoint = 0;
8918 super->updates_pending++;
8919
8920 for (i = 0; i < map->num_members; i++) {
8921 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8922
8923 if (idx & IMSM_ORD_REBUILD)
8924 map->failed_disk_num = i;
8925 }
8926 super->updates_pending++;
8927 break;
8928 }
8929 if (is_gen_migration(dev)) {
8930 dprintf_cont("while general migration");
8931 if (a->last_checkpoint >= a->info.component_size)
8932 end_migration(dev, super, map_state);
8933 else {
8934 map->map_state = map_state;
8935 manage_second_map(super, dev);
8936 }
8937 super->updates_pending++;
8938 break;
8939 }
8940 if (is_initializing(dev)) {
8941 dprintf_cont("while initialization.");
8942 map->map_state = map_state;
8943 super->updates_pending++;
8944 break;
8945 }
8946 break;
8947 case IMSM_T_STATE_FAILED: /* transition to failed state */
8948 dprintf_cont("failed: ");
8949 if (is_gen_migration(dev)) {
8950 dprintf_cont("while general migration");
8951 map->map_state = map_state;
8952 super->updates_pending++;
8953 break;
8954 }
8955 if (map->map_state != map_state) {
8956 dprintf_cont("mark failed");
8957 end_migration(dev, super, map_state);
8958 super->updates_pending++;
8959 a->last_checkpoint = 0;
8960 break;
8961 }
8962 break;
8963 default:
8964 dprintf_cont("state %i\n", map_state);
8965 }
8966 dprintf_cont("\n");
8967 }
8968
8969 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
8970 {
8971 void *buf = mpb;
8972 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8973 unsigned long long dsize;
8974 unsigned long long sectors;
8975 unsigned int sector_size;
8976
8977 if (!get_dev_sector_size(fd, NULL, &sector_size))
8978 return 1;
8979 get_dev_size(fd, NULL, &dsize);
8980
8981 if (mpb_size > sector_size) {
8982 /* -1 to account for anchor */
8983 sectors = mpb_sectors(mpb, sector_size) - 1;
8984
8985 /* write the extended mpb to the sectors preceeding the anchor */
8986 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8987 SEEK_SET) < 0)
8988 return 1;
8989
8990 if ((unsigned long long)write(fd, buf + sector_size,
8991 sector_size * sectors) != sector_size * sectors)
8992 return 1;
8993 }
8994
8995 /* first block is stored on second to last sector of the disk */
8996 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
8997 return 1;
8998
8999 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
9000 return 1;
9001
9002 return 0;
9003 }
9004
9005 static void imsm_sync_metadata(struct supertype *container)
9006 {
9007 struct intel_super *super = container->sb;
9008
9009 dprintf("sync metadata: %d\n", super->updates_pending);
9010 if (!super->updates_pending)
9011 return;
9012
9013 write_super_imsm(container, 0);
9014
9015 super->updates_pending = 0;
9016 }
9017
9018 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9019 {
9020 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
9021 int i = get_imsm_disk_idx(dev, idx, MAP_X);
9022 struct dl *dl;
9023
9024 for (dl = super->disks; dl; dl = dl->next)
9025 if (dl->index == i)
9026 break;
9027
9028 if (dl && is_failed(&dl->disk))
9029 dl = NULL;
9030
9031 if (dl)
9032 dprintf("found %x:%x\n", dl->major, dl->minor);
9033
9034 return dl;
9035 }
9036
9037 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
9038 struct active_array *a, int activate_new,
9039 struct mdinfo *additional_test_list)
9040 {
9041 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
9042 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
9043 struct imsm_super *mpb = super->anchor;
9044 struct imsm_map *map;
9045 unsigned long long pos;
9046 struct mdinfo *d;
9047 struct extent *ex;
9048 int i, j;
9049 int found;
9050 __u32 array_start = 0;
9051 __u32 array_end = 0;
9052 struct dl *dl;
9053 struct mdinfo *test_list;
9054
9055 for (dl = super->disks; dl; dl = dl->next) {
9056 /* If in this array, skip */
9057 for (d = a->info.devs ; d ; d = d->next)
9058 if (is_fd_valid(d->state_fd) &&
9059 d->disk.major == dl->major &&
9060 d->disk.minor == dl->minor) {
9061 dprintf("%x:%x already in array\n",
9062 dl->major, dl->minor);
9063 break;
9064 }
9065 if (d)
9066 continue;
9067 test_list = additional_test_list;
9068 while (test_list) {
9069 if (test_list->disk.major == dl->major &&
9070 test_list->disk.minor == dl->minor) {
9071 dprintf("%x:%x already in additional test list\n",
9072 dl->major, dl->minor);
9073 break;
9074 }
9075 test_list = test_list->next;
9076 }
9077 if (test_list)
9078 continue;
9079
9080 /* skip in use or failed drives */
9081 if (is_failed(&dl->disk) || idx == dl->index ||
9082 dl->index == -2) {
9083 dprintf("%x:%x status (failed: %d index: %d)\n",
9084 dl->major, dl->minor, is_failed(&dl->disk), idx);
9085 continue;
9086 }
9087
9088 /* skip pure spares when we are looking for partially
9089 * assimilated drives
9090 */
9091 if (dl->index == -1 && !activate_new)
9092 continue;
9093
9094 if (!drive_validate_sector_size(super, dl))
9095 continue;
9096
9097 /* Does this unused device have the requisite free space?
9098 * It needs to be able to cover all member volumes
9099 */
9100 ex = get_extents(super, dl, 1);
9101 if (!ex) {
9102 dprintf("cannot get extents\n");
9103 continue;
9104 }
9105 for (i = 0; i < mpb->num_raid_devs; i++) {
9106 dev = get_imsm_dev(super, i);
9107 map = get_imsm_map(dev, MAP_0);
9108
9109 /* check if this disk is already a member of
9110 * this array
9111 */
9112 if (get_imsm_disk_slot(map, dl->index) >= 0)
9113 continue;
9114
9115 found = 0;
9116 j = 0;
9117 pos = 0;
9118 array_start = pba_of_lba0(map);
9119 array_end = array_start +
9120 per_dev_array_size(map) - 1;
9121
9122 do {
9123 /* check that we can start at pba_of_lba0 with
9124 * num_data_stripes*blocks_per_stripe of space
9125 */
9126 if (array_start >= pos && array_end < ex[j].start) {
9127 found = 1;
9128 break;
9129 }
9130 pos = ex[j].start + ex[j].size;
9131 j++;
9132 } while (ex[j-1].size);
9133
9134 if (!found)
9135 break;
9136 }
9137
9138 free(ex);
9139 if (i < mpb->num_raid_devs) {
9140 dprintf("%x:%x does not have %u to %u available\n",
9141 dl->major, dl->minor, array_start, array_end);
9142 /* No room */
9143 continue;
9144 }
9145 return dl;
9146 }
9147
9148 return dl;
9149 }
9150
9151 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9152 {
9153 struct imsm_dev *dev2;
9154 struct imsm_map *map;
9155 struct dl *idisk;
9156 int slot;
9157 int idx;
9158 __u8 state;
9159
9160 dev2 = get_imsm_dev(cont->sb, dev_idx);
9161
9162 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9163 if (state == IMSM_T_STATE_FAILED) {
9164 map = get_imsm_map(dev2, MAP_0);
9165 for (slot = 0; slot < map->num_members; slot++) {
9166 /*
9167 * Check if failed disks are deleted from intel
9168 * disk list or are marked to be deleted
9169 */
9170 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9171 idisk = get_imsm_dl_disk(cont->sb, idx);
9172 /*
9173 * Do not rebuild the array if failed disks
9174 * from failed sub-array are not removed from
9175 * container.
9176 */
9177 if (idisk &&
9178 is_failed(&idisk->disk) &&
9179 (idisk->action != DISK_REMOVE))
9180 return 0;
9181 }
9182 }
9183 return 1;
9184 }
9185
9186 static struct mdinfo *imsm_activate_spare(struct active_array *a,
9187 struct metadata_update **updates)
9188 {
9189 /**
9190 * Find a device with unused free space and use it to replace a
9191 * failed/vacant region in an array. We replace failed regions one a
9192 * array at a time. The result is that a new spare disk will be added
9193 * to the first failed array and after the monitor has finished
9194 * propagating failures the remainder will be consumed.
9195 *
9196 * FIXME add a capability for mdmon to request spares from another
9197 * container.
9198 */
9199
9200 struct intel_super *super = a->container->sb;
9201 int inst = a->info.container_member;
9202 struct imsm_dev *dev = get_imsm_dev(super, inst);
9203 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9204 int failed = a->info.array.raid_disks;
9205 struct mdinfo *rv = NULL;
9206 struct mdinfo *d;
9207 struct mdinfo *di;
9208 struct metadata_update *mu;
9209 struct dl *dl;
9210 struct imsm_update_activate_spare *u;
9211 int num_spares = 0;
9212 int i;
9213 int allowed;
9214
9215 for (d = a->info.devs ; d; d = d->next) {
9216 if (!is_fd_valid(d->state_fd))
9217 continue;
9218
9219 if (d->curr_state & DS_FAULTY)
9220 /* wait for Removal to happen */
9221 return NULL;
9222
9223 failed--;
9224 }
9225
9226 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9227 inst, failed, a->info.array.raid_disks, a->info.array.level);
9228
9229 if (imsm_reshape_blocks_arrays_changes(super))
9230 return NULL;
9231
9232 /* Cannot activate another spare if rebuild is in progress already
9233 */
9234 if (is_rebuilding(dev)) {
9235 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
9236 return NULL;
9237 }
9238
9239 if (a->info.array.level == 4)
9240 /* No repair for takeovered array
9241 * imsm doesn't support raid4
9242 */
9243 return NULL;
9244
9245 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9246 IMSM_T_STATE_DEGRADED)
9247 return NULL;
9248
9249 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9250 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9251 return NULL;
9252 }
9253
9254 /*
9255 * If there are any failed disks check state of the other volume.
9256 * Block rebuild if the another one is failed until failed disks
9257 * are removed from container.
9258 */
9259 if (failed) {
9260 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
9261 MAX_RAID_SERIAL_LEN, dev->volume);
9262 /* check if states of the other volumes allow for rebuild */
9263 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9264 if (i != inst) {
9265 allowed = imsm_rebuild_allowed(a->container,
9266 i, failed);
9267 if (!allowed)
9268 return NULL;
9269 }
9270 }
9271 }
9272
9273 /* For each slot, if it is not working, find a spare */
9274 for (i = 0; i < a->info.array.raid_disks; i++) {
9275 for (d = a->info.devs ; d ; d = d->next)
9276 if (d->disk.raid_disk == i)
9277 break;
9278 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
9279 if (d && is_fd_valid(d->state_fd))
9280 continue;
9281
9282 /*
9283 * OK, this device needs recovery. Try to re-add the
9284 * previous occupant of this slot, if this fails see if
9285 * we can continue the assimilation of a spare that was
9286 * partially assimilated, finally try to activate a new
9287 * spare.
9288 */
9289 dl = imsm_readd(super, i, a);
9290 if (!dl)
9291 dl = imsm_add_spare(super, i, a, 0, rv);
9292 if (!dl)
9293 dl = imsm_add_spare(super, i, a, 1, rv);
9294 if (!dl)
9295 continue;
9296
9297 /* found a usable disk with enough space */
9298 di = xcalloc(1, sizeof(*di));
9299
9300 /* dl->index will be -1 in the case we are activating a
9301 * pristine spare. imsm_process_update() will create a
9302 * new index in this case. Once a disk is found to be
9303 * failed in all member arrays it is kicked from the
9304 * metadata
9305 */
9306 di->disk.number = dl->index;
9307
9308 /* (ab)use di->devs to store a pointer to the device
9309 * we chose
9310 */
9311 di->devs = (struct mdinfo *) dl;
9312
9313 di->disk.raid_disk = i;
9314 di->disk.major = dl->major;
9315 di->disk.minor = dl->minor;
9316 di->disk.state = 0;
9317 di->recovery_start = 0;
9318 di->data_offset = pba_of_lba0(map);
9319 di->component_size = a->info.component_size;
9320 di->container_member = inst;
9321 di->bb.supported = 1;
9322 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
9323 di->ppl_sector = get_ppl_sector(super, inst);
9324 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
9325 }
9326 super->random = random32();
9327 di->next = rv;
9328 rv = di;
9329 num_spares++;
9330 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9331 i, di->data_offset);
9332 }
9333
9334 if (!rv)
9335 /* No spares found */
9336 return rv;
9337 /* Now 'rv' has a list of devices to return.
9338 * Create a metadata_update record to update the
9339 * disk_ord_tbl for the array
9340 */
9341 mu = xmalloc(sizeof(*mu));
9342 mu->buf = xcalloc(num_spares,
9343 sizeof(struct imsm_update_activate_spare));
9344 mu->space = NULL;
9345 mu->space_list = NULL;
9346 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9347 mu->next = *updates;
9348 u = (struct imsm_update_activate_spare *) mu->buf;
9349
9350 for (di = rv ; di ; di = di->next) {
9351 u->type = update_activate_spare;
9352 u->dl = (struct dl *) di->devs;
9353 di->devs = NULL;
9354 u->slot = di->disk.raid_disk;
9355 u->array = inst;
9356 u->next = u + 1;
9357 u++;
9358 }
9359 (u-1)->next = NULL;
9360 *updates = mu;
9361
9362 return rv;
9363 }
9364
9365 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
9366 {
9367 struct imsm_dev *dev = get_imsm_dev(super, idx);
9368 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9369 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
9370 struct disk_info *inf = get_disk_info(u);
9371 struct imsm_disk *disk;
9372 int i;
9373 int j;
9374
9375 for (i = 0; i < map->num_members; i++) {
9376 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
9377 for (j = 0; j < new_map->num_members; j++)
9378 if (serialcmp(disk->serial, inf[j].serial) == 0)
9379 return 1;
9380 }
9381
9382 return 0;
9383 }
9384
9385 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9386 {
9387 struct dl *dl;
9388
9389 for (dl = super->disks; dl; dl = dl->next)
9390 if (dl->major == major && dl->minor == minor)
9391 return dl;
9392 return NULL;
9393 }
9394
9395 static int remove_disk_super(struct intel_super *super, int major, int minor)
9396 {
9397 struct dl *prev;
9398 struct dl *dl;
9399
9400 prev = NULL;
9401 for (dl = super->disks; dl; dl = dl->next) {
9402 if (dl->major == major && dl->minor == minor) {
9403 /* remove */
9404 if (prev)
9405 prev->next = dl->next;
9406 else
9407 super->disks = dl->next;
9408 dl->next = NULL;
9409 __free_imsm_disk(dl, 1);
9410 dprintf("removed %x:%x\n", major, minor);
9411 break;
9412 }
9413 prev = dl;
9414 }
9415 return 0;
9416 }
9417
9418 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
9419
9420 static int add_remove_disk_update(struct intel_super *super)
9421 {
9422 int check_degraded = 0;
9423 struct dl *disk;
9424
9425 /* add/remove some spares to/from the metadata/contrainer */
9426 while (super->disk_mgmt_list) {
9427 struct dl *disk_cfg;
9428
9429 disk_cfg = super->disk_mgmt_list;
9430 super->disk_mgmt_list = disk_cfg->next;
9431 disk_cfg->next = NULL;
9432
9433 if (disk_cfg->action == DISK_ADD) {
9434 disk_cfg->next = super->disks;
9435 super->disks = disk_cfg;
9436 check_degraded = 1;
9437 dprintf("added %x:%x\n",
9438 disk_cfg->major, disk_cfg->minor);
9439 } else if (disk_cfg->action == DISK_REMOVE) {
9440 dprintf("Disk remove action processed: %x.%x\n",
9441 disk_cfg->major, disk_cfg->minor);
9442 disk = get_disk_super(super,
9443 disk_cfg->major,
9444 disk_cfg->minor);
9445 if (disk) {
9446 /* store action status */
9447 disk->action = DISK_REMOVE;
9448 /* remove spare disks only */
9449 if (disk->index == -1) {
9450 remove_disk_super(super,
9451 disk_cfg->major,
9452 disk_cfg->minor);
9453 } else {
9454 disk_cfg->fd = disk->fd;
9455 disk->fd = -1;
9456 }
9457 }
9458 /* release allocate disk structure */
9459 __free_imsm_disk(disk_cfg, 1);
9460 }
9461 }
9462 return check_degraded;
9463 }
9464
9465 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9466 struct intel_super *super,
9467 void ***space_list)
9468 {
9469 struct intel_dev *id;
9470 void **tofree = NULL;
9471 int ret_val = 0;
9472
9473 dprintf("(enter)\n");
9474 if (u->subdev < 0 || u->subdev > 1) {
9475 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9476 return ret_val;
9477 }
9478 if (space_list == NULL || *space_list == NULL) {
9479 dprintf("imsm: Error: Memory is not allocated\n");
9480 return ret_val;
9481 }
9482
9483 for (id = super->devlist ; id; id = id->next) {
9484 if (id->index == (unsigned)u->subdev) {
9485 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9486 struct imsm_map *map;
9487 struct imsm_dev *new_dev =
9488 (struct imsm_dev *)*space_list;
9489 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
9490 int to_state;
9491 struct dl *new_disk;
9492
9493 if (new_dev == NULL)
9494 return ret_val;
9495 *space_list = **space_list;
9496 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
9497 map = get_imsm_map(new_dev, MAP_0);
9498 if (migr_map) {
9499 dprintf("imsm: Error: migration in progress");
9500 return ret_val;
9501 }
9502
9503 to_state = map->map_state;
9504 if ((u->new_level == 5) && (map->raid_level == 0)) {
9505 map->num_members++;
9506 /* this should not happen */
9507 if (u->new_disks[0] < 0) {
9508 map->failed_disk_num =
9509 map->num_members - 1;
9510 to_state = IMSM_T_STATE_DEGRADED;
9511 } else
9512 to_state = IMSM_T_STATE_NORMAL;
9513 }
9514 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
9515 if (u->new_level > -1)
9516 map->raid_level = u->new_level;
9517 migr_map = get_imsm_map(new_dev, MAP_1);
9518 if ((u->new_level == 5) &&
9519 (migr_map->raid_level == 0)) {
9520 int ord = map->num_members - 1;
9521 migr_map->num_members--;
9522 if (u->new_disks[0] < 0)
9523 ord |= IMSM_ORD_REBUILD;
9524 set_imsm_ord_tbl_ent(map,
9525 map->num_members - 1,
9526 ord);
9527 }
9528 id->dev = new_dev;
9529 tofree = (void **)dev;
9530
9531 /* update chunk size
9532 */
9533 if (u->new_chunksize > 0) {
9534 struct imsm_map *dest_map =
9535 get_imsm_map(dev, MAP_0);
9536 int used_disks =
9537 imsm_num_data_members(dest_map);
9538
9539 if (used_disks == 0)
9540 return ret_val;
9541
9542 map->blocks_per_strip =
9543 __cpu_to_le16(u->new_chunksize * 2);
9544 update_num_data_stripes(map, imsm_dev_size(dev));
9545 }
9546
9547 /* ensure blocks_per_member has valid value
9548 */
9549 set_blocks_per_member(map,
9550 per_dev_array_size(map) +
9551 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9552
9553 /* add disk
9554 */
9555 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9556 migr_map->raid_level == map->raid_level)
9557 goto skip_disk_add;
9558
9559 if (u->new_disks[0] >= 0) {
9560 /* use passes spare
9561 */
9562 new_disk = get_disk_super(super,
9563 major(u->new_disks[0]),
9564 minor(u->new_disks[0]));
9565 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9566 major(u->new_disks[0]),
9567 minor(u->new_disks[0]),
9568 new_disk, new_disk->index);
9569 if (new_disk == NULL)
9570 goto error_disk_add;
9571
9572 new_disk->index = map->num_members - 1;
9573 /* slot to fill in autolayout
9574 */
9575 new_disk->raiddisk = new_disk->index;
9576 new_disk->disk.status |= CONFIGURED_DISK;
9577 new_disk->disk.status &= ~SPARE_DISK;
9578 } else
9579 goto error_disk_add;
9580
9581 skip_disk_add:
9582 *tofree = *space_list;
9583 /* calculate new size
9584 */
9585 imsm_set_array_size(new_dev, -1);
9586
9587 ret_val = 1;
9588 }
9589 }
9590
9591 if (tofree)
9592 *space_list = tofree;
9593 return ret_val;
9594
9595 error_disk_add:
9596 dprintf("Error: imsm: Cannot find disk.\n");
9597 return ret_val;
9598 }
9599
9600 static int apply_size_change_update(struct imsm_update_size_change *u,
9601 struct intel_super *super)
9602 {
9603 struct intel_dev *id;
9604 int ret_val = 0;
9605
9606 dprintf("(enter)\n");
9607 if (u->subdev < 0 || u->subdev > 1) {
9608 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9609 return ret_val;
9610 }
9611
9612 for (id = super->devlist ; id; id = id->next) {
9613 if (id->index == (unsigned)u->subdev) {
9614 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9615 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9616 int used_disks = imsm_num_data_members(map);
9617 unsigned long long blocks_per_member;
9618 unsigned long long new_size_per_disk;
9619
9620 if (used_disks == 0)
9621 return 0;
9622
9623 /* calculate new size
9624 */
9625 new_size_per_disk = u->new_size / used_disks;
9626 blocks_per_member = new_size_per_disk +
9627 NUM_BLOCKS_DIRTY_STRIPE_REGION;
9628
9629 imsm_set_array_size(dev, u->new_size);
9630 set_blocks_per_member(map, blocks_per_member);
9631 update_num_data_stripes(map, u->new_size);
9632 ret_val = 1;
9633 break;
9634 }
9635 }
9636
9637 return ret_val;
9638 }
9639
9640 static int prepare_spare_to_activate(struct supertype *st,
9641 struct imsm_update_activate_spare *u)
9642 {
9643 struct intel_super *super = st->sb;
9644 int prev_current_vol = super->current_vol;
9645 struct active_array *a;
9646 int ret = 1;
9647
9648 for (a = st->arrays; a; a = a->next)
9649 /*
9650 * Additional initialization (adding bitmap header, filling
9651 * the bitmap area with '1's to force initial rebuild for a whole
9652 * data-area) is required when adding the spare to the volume
9653 * with write-intent bitmap.
9654 */
9655 if (a->info.container_member == u->array &&
9656 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9657 struct dl *dl;
9658
9659 for (dl = super->disks; dl; dl = dl->next)
9660 if (dl == u->dl)
9661 break;
9662 if (!dl)
9663 break;
9664
9665 super->current_vol = u->array;
9666 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9667 ret = 0;
9668 super->current_vol = prev_current_vol;
9669 }
9670 return ret;
9671 }
9672
9673 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
9674 struct intel_super *super,
9675 struct active_array *active_array)
9676 {
9677 struct imsm_super *mpb = super->anchor;
9678 struct imsm_dev *dev = get_imsm_dev(super, u->array);
9679 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9680 struct imsm_map *migr_map;
9681 struct active_array *a;
9682 struct imsm_disk *disk;
9683 __u8 to_state;
9684 struct dl *dl;
9685 unsigned int found;
9686 int failed;
9687 int victim;
9688 int i;
9689 int second_map_created = 0;
9690
9691 for (; u; u = u->next) {
9692 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
9693
9694 if (victim < 0)
9695 return 0;
9696
9697 for (dl = super->disks; dl; dl = dl->next)
9698 if (dl == u->dl)
9699 break;
9700
9701 if (!dl) {
9702 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
9703 u->dl->index);
9704 return 0;
9705 }
9706
9707 /* count failures (excluding rebuilds and the victim)
9708 * to determine map[0] state
9709 */
9710 failed = 0;
9711 for (i = 0; i < map->num_members; i++) {
9712 if (i == u->slot)
9713 continue;
9714 disk = get_imsm_disk(super,
9715 get_imsm_disk_idx(dev, i, MAP_X));
9716 if (!disk || is_failed(disk))
9717 failed++;
9718 }
9719
9720 /* adding a pristine spare, assign a new index */
9721 if (dl->index < 0) {
9722 dl->index = super->anchor->num_disks;
9723 super->anchor->num_disks++;
9724 }
9725 disk = &dl->disk;
9726 disk->status |= CONFIGURED_DISK;
9727 disk->status &= ~SPARE_DISK;
9728
9729 /* mark rebuild */
9730 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
9731 if (!second_map_created) {
9732 second_map_created = 1;
9733 map->map_state = IMSM_T_STATE_DEGRADED;
9734 migrate(dev, super, to_state, MIGR_REBUILD);
9735 } else
9736 map->map_state = to_state;
9737 migr_map = get_imsm_map(dev, MAP_1);
9738 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9739 set_imsm_ord_tbl_ent(migr_map, u->slot,
9740 dl->index | IMSM_ORD_REBUILD);
9741
9742 /* update the family_num to mark a new container
9743 * generation, being careful to record the existing
9744 * family_num in orig_family_num to clean up after
9745 * earlier mdadm versions that neglected to set it.
9746 */
9747 if (mpb->orig_family_num == 0)
9748 mpb->orig_family_num = mpb->family_num;
9749 mpb->family_num += super->random;
9750
9751 /* count arrays using the victim in the metadata */
9752 found = 0;
9753 for (a = active_array; a ; a = a->next) {
9754 int dev_idx = a->info.container_member;
9755
9756 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
9757 found++;
9758 }
9759
9760 /* delete the victim if it is no longer being
9761 * utilized anywhere
9762 */
9763 if (!found) {
9764 struct dl **dlp;
9765
9766 /* We know that 'manager' isn't touching anything,
9767 * so it is safe to delete
9768 */
9769 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
9770 if ((*dlp)->index == victim)
9771 break;
9772
9773 /* victim may be on the missing list */
9774 if (!*dlp)
9775 for (dlp = &super->missing; *dlp;
9776 dlp = &(*dlp)->next)
9777 if ((*dlp)->index == victim)
9778 break;
9779 imsm_delete(super, dlp, victim);
9780 }
9781 }
9782
9783 return 1;
9784 }
9785
9786 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9787 struct intel_super *super,
9788 void ***space_list)
9789 {
9790 struct dl *new_disk;
9791 struct intel_dev *id;
9792 int i;
9793 int delta_disks = u->new_raid_disks - u->old_raid_disks;
9794 int disk_count = u->old_raid_disks;
9795 void **tofree = NULL;
9796 int devices_to_reshape = 1;
9797 struct imsm_super *mpb = super->anchor;
9798 int ret_val = 0;
9799 unsigned int dev_id;
9800
9801 dprintf("(enter)\n");
9802
9803 /* enable spares to use in array */
9804 for (i = 0; i < delta_disks; i++) {
9805 new_disk = get_disk_super(super,
9806 major(u->new_disks[i]),
9807 minor(u->new_disks[i]));
9808 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9809 major(u->new_disks[i]), minor(u->new_disks[i]),
9810 new_disk, new_disk->index);
9811 if (new_disk == NULL ||
9812 (new_disk->index >= 0 &&
9813 new_disk->index < u->old_raid_disks))
9814 goto update_reshape_exit;
9815 new_disk->index = disk_count++;
9816 /* slot to fill in autolayout
9817 */
9818 new_disk->raiddisk = new_disk->index;
9819 new_disk->disk.status |=
9820 CONFIGURED_DISK;
9821 new_disk->disk.status &= ~SPARE_DISK;
9822 }
9823
9824 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9825 mpb->num_raid_devs);
9826 /* manage changes in volume
9827 */
9828 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
9829 void **sp = *space_list;
9830 struct imsm_dev *newdev;
9831 struct imsm_map *newmap, *oldmap;
9832
9833 for (id = super->devlist ; id; id = id->next) {
9834 if (id->index == dev_id)
9835 break;
9836 }
9837 if (id == NULL)
9838 break;
9839 if (!sp)
9840 continue;
9841 *space_list = *sp;
9842 newdev = (void*)sp;
9843 /* Copy the dev, but not (all of) the map */
9844 memcpy(newdev, id->dev, sizeof(*newdev));
9845 oldmap = get_imsm_map(id->dev, MAP_0);
9846 newmap = get_imsm_map(newdev, MAP_0);
9847 /* Copy the current map */
9848 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9849 /* update one device only
9850 */
9851 if (devices_to_reshape) {
9852 dprintf("imsm: modifying subdev: %i\n",
9853 id->index);
9854 devices_to_reshape--;
9855 newdev->vol.migr_state = 1;
9856 set_vol_curr_migr_unit(newdev, 0);
9857 set_migr_type(newdev, MIGR_GEN_MIGR);
9858 newmap->num_members = u->new_raid_disks;
9859 for (i = 0; i < delta_disks; i++) {
9860 set_imsm_ord_tbl_ent(newmap,
9861 u->old_raid_disks + i,
9862 u->old_raid_disks + i);
9863 }
9864 /* New map is correct, now need to save old map
9865 */
9866 newmap = get_imsm_map(newdev, MAP_1);
9867 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9868
9869 imsm_set_array_size(newdev, -1);
9870 }
9871
9872 sp = (void **)id->dev;
9873 id->dev = newdev;
9874 *sp = tofree;
9875 tofree = sp;
9876
9877 /* Clear migration record */
9878 memset(super->migr_rec, 0, sizeof(struct migr_record));
9879 }
9880 if (tofree)
9881 *space_list = tofree;
9882 ret_val = 1;
9883
9884 update_reshape_exit:
9885
9886 return ret_val;
9887 }
9888
9889 static int apply_takeover_update(struct imsm_update_takeover *u,
9890 struct intel_super *super,
9891 void ***space_list)
9892 {
9893 struct imsm_dev *dev = NULL;
9894 struct intel_dev *dv;
9895 struct imsm_dev *dev_new;
9896 struct imsm_map *map;
9897 struct dl *dm, *du;
9898 int i;
9899
9900 for (dv = super->devlist; dv; dv = dv->next)
9901 if (dv->index == (unsigned int)u->subarray) {
9902 dev = dv->dev;
9903 break;
9904 }
9905
9906 if (dev == NULL)
9907 return 0;
9908
9909 map = get_imsm_map(dev, MAP_0);
9910
9911 if (u->direction == R10_TO_R0) {
9912 /* Number of failed disks must be half of initial disk number */
9913 if (imsm_count_failed(super, dev, MAP_0) !=
9914 (map->num_members / 2))
9915 return 0;
9916
9917 /* iterate through devices to mark removed disks as spare */
9918 for (dm = super->disks; dm; dm = dm->next) {
9919 if (dm->disk.status & FAILED_DISK) {
9920 int idx = dm->index;
9921 /* update indexes on the disk list */
9922 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9923 the index values will end up being correct.... NB */
9924 for (du = super->disks; du; du = du->next)
9925 if (du->index > idx)
9926 du->index--;
9927 /* mark as spare disk */
9928 mark_spare(dm);
9929 }
9930 }
9931 /* update map */
9932 map->num_members /= map->num_domains;
9933 map->map_state = IMSM_T_STATE_NORMAL;
9934 map->raid_level = 0;
9935 set_num_domains(map);
9936 update_num_data_stripes(map, imsm_dev_size(dev));
9937 map->failed_disk_num = -1;
9938 }
9939
9940 if (u->direction == R0_TO_R10) {
9941 void **space;
9942
9943 /* update slots in current disk list */
9944 for (dm = super->disks; dm; dm = dm->next) {
9945 if (dm->index >= 0)
9946 dm->index *= 2;
9947 }
9948 /* create new *missing* disks */
9949 for (i = 0; i < map->num_members; i++) {
9950 space = *space_list;
9951 if (!space)
9952 continue;
9953 *space_list = *space;
9954 du = (void *)space;
9955 memcpy(du, super->disks, sizeof(*du));
9956 du->fd = -1;
9957 du->minor = 0;
9958 du->major = 0;
9959 du->index = (i * 2) + 1;
9960 sprintf((char *)du->disk.serial,
9961 " MISSING_%d", du->index);
9962 sprintf((char *)du->serial,
9963 "MISSING_%d", du->index);
9964 du->next = super->missing;
9965 super->missing = du;
9966 }
9967 /* create new dev and map */
9968 space = *space_list;
9969 if (!space)
9970 return 0;
9971 *space_list = *space;
9972 dev_new = (void *)space;
9973 memcpy(dev_new, dev, sizeof(*dev));
9974 /* update new map */
9975 map = get_imsm_map(dev_new, MAP_0);
9976
9977 map->map_state = IMSM_T_STATE_DEGRADED;
9978 map->raid_level = 1;
9979 set_num_domains(map);
9980 map->num_members = map->num_members * map->num_domains;
9981 update_num_data_stripes(map, imsm_dev_size(dev));
9982
9983 /* replace dev<->dev_new */
9984 dv->dev = dev_new;
9985 }
9986 /* update disk order table */
9987 for (du = super->disks; du; du = du->next)
9988 if (du->index >= 0)
9989 set_imsm_ord_tbl_ent(map, du->index, du->index);
9990 for (du = super->missing; du; du = du->next)
9991 if (du->index >= 0) {
9992 set_imsm_ord_tbl_ent(map, du->index, du->index);
9993 mark_missing(super, dv->dev, &du->disk, du->index);
9994 }
9995
9996 return 1;
9997 }
9998
9999 static void imsm_process_update(struct supertype *st,
10000 struct metadata_update *update)
10001 {
10002 /**
10003 * crack open the metadata_update envelope to find the update record
10004 * update can be one of:
10005 * update_reshape_container_disks - all the arrays in the container
10006 * are being reshaped to have more devices. We need to mark
10007 * the arrays for general migration and convert selected spares
10008 * into active devices.
10009 * update_activate_spare - a spare device has replaced a failed
10010 * device in an array, update the disk_ord_tbl. If this disk is
10011 * present in all member arrays then also clear the SPARE_DISK
10012 * flag
10013 * update_create_array
10014 * update_kill_array
10015 * update_rename_array
10016 * update_add_remove_disk
10017 */
10018 struct intel_super *super = st->sb;
10019 struct imsm_super *mpb;
10020 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10021
10022 /* update requires a larger buf but the allocation failed */
10023 if (super->next_len && !super->next_buf) {
10024 super->next_len = 0;
10025 return;
10026 }
10027
10028 if (super->next_buf) {
10029 memcpy(super->next_buf, super->buf, super->len);
10030 free(super->buf);
10031 super->len = super->next_len;
10032 super->buf = super->next_buf;
10033
10034 super->next_len = 0;
10035 super->next_buf = NULL;
10036 }
10037
10038 mpb = super->anchor;
10039
10040 switch (type) {
10041 case update_general_migration_checkpoint: {
10042 struct intel_dev *id;
10043 struct imsm_update_general_migration_checkpoint *u =
10044 (void *)update->buf;
10045
10046 dprintf("called for update_general_migration_checkpoint\n");
10047
10048 /* find device under general migration */
10049 for (id = super->devlist ; id; id = id->next) {
10050 if (is_gen_migration(id->dev)) {
10051 set_vol_curr_migr_unit(id->dev,
10052 u->curr_migr_unit);
10053 super->updates_pending++;
10054 }
10055 }
10056 break;
10057 }
10058 case update_takeover: {
10059 struct imsm_update_takeover *u = (void *)update->buf;
10060 if (apply_takeover_update(u, super, &update->space_list)) {
10061 imsm_update_version_info(super);
10062 super->updates_pending++;
10063 }
10064 break;
10065 }
10066
10067 case update_reshape_container_disks: {
10068 struct imsm_update_reshape *u = (void *)update->buf;
10069 if (apply_reshape_container_disks_update(
10070 u, super, &update->space_list))
10071 super->updates_pending++;
10072 break;
10073 }
10074 case update_reshape_migration: {
10075 struct imsm_update_reshape_migration *u = (void *)update->buf;
10076 if (apply_reshape_migration_update(
10077 u, super, &update->space_list))
10078 super->updates_pending++;
10079 break;
10080 }
10081 case update_size_change: {
10082 struct imsm_update_size_change *u = (void *)update->buf;
10083 if (apply_size_change_update(u, super))
10084 super->updates_pending++;
10085 break;
10086 }
10087 case update_activate_spare: {
10088 struct imsm_update_activate_spare *u = (void *) update->buf;
10089
10090 if (prepare_spare_to_activate(st, u) &&
10091 apply_update_activate_spare(u, super, st->arrays))
10092 super->updates_pending++;
10093 break;
10094 }
10095 case update_create_array: {
10096 /* someone wants to create a new array, we need to be aware of
10097 * a few races/collisions:
10098 * 1/ 'Create' called by two separate instances of mdadm
10099 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10100 * devices that have since been assimilated via
10101 * activate_spare.
10102 * In the event this update can not be carried out mdadm will
10103 * (FIX ME) notice that its update did not take hold.
10104 */
10105 struct imsm_update_create_array *u = (void *) update->buf;
10106 struct intel_dev *dv;
10107 struct imsm_dev *dev;
10108 struct imsm_map *map, *new_map;
10109 unsigned long long start, end;
10110 unsigned long long new_start, new_end;
10111 int i;
10112 struct disk_info *inf;
10113 struct dl *dl;
10114
10115 /* handle racing creates: first come first serve */
10116 if (u->dev_idx < mpb->num_raid_devs) {
10117 dprintf("subarray %d already defined\n", u->dev_idx);
10118 goto create_error;
10119 }
10120
10121 /* check update is next in sequence */
10122 if (u->dev_idx != mpb->num_raid_devs) {
10123 dprintf("can not create array %d expected index %d\n",
10124 u->dev_idx, mpb->num_raid_devs);
10125 goto create_error;
10126 }
10127
10128 new_map = get_imsm_map(&u->dev, MAP_0);
10129 new_start = pba_of_lba0(new_map);
10130 new_end = new_start + per_dev_array_size(new_map);
10131 inf = get_disk_info(u);
10132
10133 /* handle activate_spare versus create race:
10134 * check to make sure that overlapping arrays do not include
10135 * overalpping disks
10136 */
10137 for (i = 0; i < mpb->num_raid_devs; i++) {
10138 dev = get_imsm_dev(super, i);
10139 map = get_imsm_map(dev, MAP_0);
10140 start = pba_of_lba0(map);
10141 end = start + per_dev_array_size(map);
10142 if ((new_start >= start && new_start <= end) ||
10143 (start >= new_start && start <= new_end))
10144 /* overlap */;
10145 else
10146 continue;
10147
10148 if (disks_overlap(super, i, u)) {
10149 dprintf("arrays overlap\n");
10150 goto create_error;
10151 }
10152 }
10153
10154 /* check that prepare update was successful */
10155 if (!update->space) {
10156 dprintf("prepare update failed\n");
10157 goto create_error;
10158 }
10159
10160 /* check that all disks are still active before committing
10161 * changes. FIXME: could we instead handle this by creating a
10162 * degraded array? That's probably not what the user expects,
10163 * so better to drop this update on the floor.
10164 */
10165 for (i = 0; i < new_map->num_members; i++) {
10166 dl = serial_to_dl(inf[i].serial, super);
10167 if (!dl) {
10168 dprintf("disk disappeared\n");
10169 goto create_error;
10170 }
10171 }
10172
10173 super->updates_pending++;
10174
10175 /* convert spares to members and fixup ord_tbl */
10176 for (i = 0; i < new_map->num_members; i++) {
10177 dl = serial_to_dl(inf[i].serial, super);
10178 if (dl->index == -1) {
10179 dl->index = mpb->num_disks;
10180 mpb->num_disks++;
10181 dl->disk.status |= CONFIGURED_DISK;
10182 dl->disk.status &= ~SPARE_DISK;
10183 }
10184 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10185 }
10186
10187 dv = update->space;
10188 dev = dv->dev;
10189 update->space = NULL;
10190 imsm_copy_dev(dev, &u->dev);
10191 dv->index = u->dev_idx;
10192 dv->next = super->devlist;
10193 super->devlist = dv;
10194 mpb->num_raid_devs++;
10195
10196 imsm_update_version_info(super);
10197 break;
10198 create_error:
10199 /* mdmon knows how to release update->space, but not
10200 * ((struct intel_dev *) update->space)->dev
10201 */
10202 if (update->space) {
10203 dv = update->space;
10204 free(dv->dev);
10205 }
10206 break;
10207 }
10208 case update_kill_array: {
10209 struct imsm_update_kill_array *u = (void *) update->buf;
10210 int victim = u->dev_idx;
10211 struct active_array *a;
10212 struct intel_dev **dp;
10213
10214 /* sanity check that we are not affecting the uuid of
10215 * active arrays, or deleting an active array
10216 *
10217 * FIXME when immutable ids are available, but note that
10218 * we'll also need to fixup the invalidated/active
10219 * subarray indexes in mdstat
10220 */
10221 for (a = st->arrays; a; a = a->next)
10222 if (a->info.container_member >= victim)
10223 break;
10224 /* by definition if mdmon is running at least one array
10225 * is active in the container, so checking
10226 * mpb->num_raid_devs is just extra paranoia
10227 */
10228 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
10229 dprintf("failed to delete subarray-%d\n", victim);
10230 break;
10231 }
10232
10233 for (dp = &super->devlist; *dp;)
10234 if ((*dp)->index == (unsigned)super->current_vol) {
10235 *dp = (*dp)->next;
10236 } else {
10237 if ((*dp)->index > (unsigned)victim)
10238 (*dp)->index--;
10239 dp = &(*dp)->next;
10240 }
10241 mpb->num_raid_devs--;
10242 super->updates_pending++;
10243 break;
10244 }
10245 case update_rename_array: {
10246 struct imsm_update_rename_array *u = (void *) update->buf;
10247 char name[MAX_RAID_SERIAL_LEN+1];
10248 int target = u->dev_idx;
10249 struct active_array *a;
10250 struct imsm_dev *dev;
10251
10252 /* sanity check that we are not affecting the uuid of
10253 * an active array
10254 */
10255 memset(name, 0, sizeof(name));
10256 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10257 name[MAX_RAID_SERIAL_LEN] = '\0';
10258 for (a = st->arrays; a; a = a->next)
10259 if (a->info.container_member == target)
10260 break;
10261 dev = get_imsm_dev(super, u->dev_idx);
10262
10263 if (a || !dev || imsm_is_name_allowed(super, name, 0) == false) {
10264 dprintf("failed to rename subarray-%d\n", target);
10265 break;
10266 }
10267
10268 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
10269 super->updates_pending++;
10270 break;
10271 }
10272 case update_add_remove_disk: {
10273 /* we may be able to repair some arrays if disks are
10274 * being added, check the status of add_remove_disk
10275 * if discs has been added.
10276 */
10277 if (add_remove_disk_update(super)) {
10278 struct active_array *a;
10279
10280 super->updates_pending++;
10281 for (a = st->arrays; a; a = a->next)
10282 a->check_degraded = 1;
10283 }
10284 break;
10285 }
10286 case update_prealloc_badblocks_mem:
10287 break;
10288 case update_rwh_policy: {
10289 struct imsm_update_rwh_policy *u = (void *)update->buf;
10290 int target = u->dev_idx;
10291 struct imsm_dev *dev = get_imsm_dev(super, target);
10292
10293 if (dev->rwh_policy != u->new_policy) {
10294 dev->rwh_policy = u->new_policy;
10295 super->updates_pending++;
10296 }
10297 break;
10298 }
10299 default:
10300 pr_err("error: unsupported process update type:(type: %d)\n", type);
10301 }
10302 }
10303
10304 static struct mdinfo *get_spares_for_grow(struct supertype *st);
10305
10306 static int imsm_prepare_update(struct supertype *st,
10307 struct metadata_update *update)
10308 {
10309 /**
10310 * Allocate space to hold new disk entries, raid-device entries or a new
10311 * mpb if necessary. The manager synchronously waits for updates to
10312 * complete in the monitor, so new mpb buffers allocated here can be
10313 * integrated by the monitor thread without worrying about live pointers
10314 * in the manager thread.
10315 */
10316 enum imsm_update_type type;
10317 struct intel_super *super = st->sb;
10318 unsigned int sector_size = super->sector_size;
10319 struct imsm_super *mpb = super->anchor;
10320 size_t buf_len;
10321 size_t len = 0;
10322
10323 if (update->len < (int)sizeof(type))
10324 return 0;
10325
10326 type = *(enum imsm_update_type *) update->buf;
10327
10328 switch (type) {
10329 case update_general_migration_checkpoint:
10330 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10331 return 0;
10332 dprintf("called for update_general_migration_checkpoint\n");
10333 break;
10334 case update_takeover: {
10335 struct imsm_update_takeover *u = (void *)update->buf;
10336 if (update->len < (int)sizeof(*u))
10337 return 0;
10338 if (u->direction == R0_TO_R10) {
10339 void **tail = (void **)&update->space_list;
10340 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
10341 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10342 int num_members = map->num_members;
10343 void *space;
10344 int size, i;
10345 /* allocate memory for added disks */
10346 for (i = 0; i < num_members; i++) {
10347 size = sizeof(struct dl);
10348 space = xmalloc(size);
10349 *tail = space;
10350 tail = space;
10351 *tail = NULL;
10352 }
10353 /* allocate memory for new device */
10354 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10355 (num_members * sizeof(__u32));
10356 space = xmalloc(size);
10357 *tail = space;
10358 tail = space;
10359 *tail = NULL;
10360 len = disks_to_mpb_size(num_members * 2);
10361 }
10362
10363 break;
10364 }
10365 case update_reshape_container_disks: {
10366 /* Every raid device in the container is about to
10367 * gain some more devices, and we will enter a
10368 * reconfiguration.
10369 * So each 'imsm_map' will be bigger, and the imsm_vol
10370 * will now hold 2 of them.
10371 * Thus we need new 'struct imsm_dev' allocations sized
10372 * as sizeof_imsm_dev but with more devices in both maps.
10373 */
10374 struct imsm_update_reshape *u = (void *)update->buf;
10375 struct intel_dev *dl;
10376 void **space_tail = (void**)&update->space_list;
10377
10378 if (update->len < (int)sizeof(*u))
10379 return 0;
10380
10381 dprintf("for update_reshape\n");
10382
10383 for (dl = super->devlist; dl; dl = dl->next) {
10384 int size = sizeof_imsm_dev(dl->dev, 1);
10385 void *s;
10386 if (u->new_raid_disks > u->old_raid_disks)
10387 size += sizeof(__u32)*2*
10388 (u->new_raid_disks - u->old_raid_disks);
10389 s = xmalloc(size);
10390 *space_tail = s;
10391 space_tail = s;
10392 *space_tail = NULL;
10393 }
10394
10395 len = disks_to_mpb_size(u->new_raid_disks);
10396 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10397 break;
10398 }
10399 case update_reshape_migration: {
10400 /* for migration level 0->5 we need to add disks
10401 * so the same as for container operation we will copy
10402 * device to the bigger location.
10403 * in memory prepared device and new disk area are prepared
10404 * for usage in process update
10405 */
10406 struct imsm_update_reshape_migration *u = (void *)update->buf;
10407 struct intel_dev *id;
10408 void **space_tail = (void **)&update->space_list;
10409 int size;
10410 void *s;
10411 int current_level = -1;
10412
10413 if (update->len < (int)sizeof(*u))
10414 return 0;
10415
10416 dprintf("for update_reshape\n");
10417
10418 /* add space for bigger array in update
10419 */
10420 for (id = super->devlist; id; id = id->next) {
10421 if (id->index == (unsigned)u->subdev) {
10422 size = sizeof_imsm_dev(id->dev, 1);
10423 if (u->new_raid_disks > u->old_raid_disks)
10424 size += sizeof(__u32)*2*
10425 (u->new_raid_disks - u->old_raid_disks);
10426 s = xmalloc(size);
10427 *space_tail = s;
10428 space_tail = s;
10429 *space_tail = NULL;
10430 break;
10431 }
10432 }
10433 if (update->space_list == NULL)
10434 break;
10435
10436 /* add space for disk in update
10437 */
10438 size = sizeof(struct dl);
10439 s = xmalloc(size);
10440 *space_tail = s;
10441 space_tail = s;
10442 *space_tail = NULL;
10443
10444 /* add spare device to update
10445 */
10446 for (id = super->devlist ; id; id = id->next)
10447 if (id->index == (unsigned)u->subdev) {
10448 struct imsm_dev *dev;
10449 struct imsm_map *map;
10450
10451 dev = get_imsm_dev(super, u->subdev);
10452 map = get_imsm_map(dev, MAP_0);
10453 current_level = map->raid_level;
10454 break;
10455 }
10456 if (u->new_level == 5 && u->new_level != current_level) {
10457 struct mdinfo *spares;
10458
10459 spares = get_spares_for_grow(st);
10460 if (spares) {
10461 struct dl *dl;
10462 struct mdinfo *dev;
10463
10464 dev = spares->devs;
10465 if (dev) {
10466 u->new_disks[0] =
10467 makedev(dev->disk.major,
10468 dev->disk.minor);
10469 dl = get_disk_super(super,
10470 dev->disk.major,
10471 dev->disk.minor);
10472 dl->index = u->old_raid_disks;
10473 dev = dev->next;
10474 }
10475 sysfs_free(spares);
10476 }
10477 }
10478 len = disks_to_mpb_size(u->new_raid_disks);
10479 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10480 break;
10481 }
10482 case update_size_change: {
10483 if (update->len < (int)sizeof(struct imsm_update_size_change))
10484 return 0;
10485 break;
10486 }
10487 case update_activate_spare: {
10488 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10489 return 0;
10490 break;
10491 }
10492 case update_create_array: {
10493 struct imsm_update_create_array *u = (void *) update->buf;
10494 struct intel_dev *dv;
10495 struct imsm_dev *dev = &u->dev;
10496 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10497 struct dl *dl;
10498 struct disk_info *inf;
10499 int i;
10500 int activate = 0;
10501
10502 if (update->len < (int)sizeof(*u))
10503 return 0;
10504
10505 inf = get_disk_info(u);
10506 len = sizeof_imsm_dev(dev, 1);
10507 /* allocate a new super->devlist entry */
10508 dv = xmalloc(sizeof(*dv));
10509 dv->dev = xmalloc(len);
10510 update->space = dv;
10511
10512 /* count how many spares will be converted to members */
10513 for (i = 0; i < map->num_members; i++) {
10514 dl = serial_to_dl(inf[i].serial, super);
10515 if (!dl) {
10516 /* hmm maybe it failed?, nothing we can do about
10517 * it here
10518 */
10519 continue;
10520 }
10521 if (count_memberships(dl, super) == 0)
10522 activate++;
10523 }
10524 len += activate * sizeof(struct imsm_disk);
10525 break;
10526 }
10527 case update_kill_array: {
10528 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10529 return 0;
10530 break;
10531 }
10532 case update_rename_array: {
10533 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10534 return 0;
10535 break;
10536 }
10537 case update_add_remove_disk:
10538 /* no update->len needed */
10539 break;
10540 case update_prealloc_badblocks_mem:
10541 super->extra_space += sizeof(struct bbm_log) -
10542 get_imsm_bbm_log_size(super->bbm_log);
10543 break;
10544 case update_rwh_policy: {
10545 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10546 return 0;
10547 break;
10548 }
10549 default:
10550 return 0;
10551 }
10552
10553 /* check if we need a larger metadata buffer */
10554 if (super->next_buf)
10555 buf_len = super->next_len;
10556 else
10557 buf_len = super->len;
10558
10559 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
10560 /* ok we need a larger buf than what is currently allocated
10561 * if this allocation fails process_update will notice that
10562 * ->next_len is set and ->next_buf is NULL
10563 */
10564 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10565 super->extra_space + len, sector_size);
10566 if (super->next_buf)
10567 free(super->next_buf);
10568
10569 super->next_len = buf_len;
10570 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
10571 memset(super->next_buf, 0, buf_len);
10572 else
10573 super->next_buf = NULL;
10574 }
10575 return 1;
10576 }
10577
10578 /* must be called while manager is quiesced */
10579 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
10580 {
10581 struct imsm_super *mpb = super->anchor;
10582 struct dl *iter;
10583 struct imsm_dev *dev;
10584 struct imsm_map *map;
10585 unsigned int i, j, num_members;
10586 __u32 ord, ord_map0;
10587 struct bbm_log *log = super->bbm_log;
10588
10589 dprintf("deleting device[%d] from imsm_super\n", index);
10590
10591 /* shift all indexes down one */
10592 for (iter = super->disks; iter; iter = iter->next)
10593 if (iter->index > (int)index)
10594 iter->index--;
10595 for (iter = super->missing; iter; iter = iter->next)
10596 if (iter->index > (int)index)
10597 iter->index--;
10598
10599 for (i = 0; i < mpb->num_raid_devs; i++) {
10600 dev = get_imsm_dev(super, i);
10601 map = get_imsm_map(dev, MAP_0);
10602 num_members = map->num_members;
10603 for (j = 0; j < num_members; j++) {
10604 /* update ord entries being careful not to propagate
10605 * ord-flags to the first map
10606 */
10607 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
10608 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
10609
10610 if (ord_to_idx(ord) <= index)
10611 continue;
10612
10613 map = get_imsm_map(dev, MAP_0);
10614 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
10615 map = get_imsm_map(dev, MAP_1);
10616 if (map)
10617 set_imsm_ord_tbl_ent(map, j, ord - 1);
10618 }
10619 }
10620
10621 for (i = 0; i < log->entry_count; i++) {
10622 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10623
10624 if (entry->disk_ordinal <= index)
10625 continue;
10626 entry->disk_ordinal--;
10627 }
10628
10629 mpb->num_disks--;
10630 super->updates_pending++;
10631 if (*dlp) {
10632 struct dl *dl = *dlp;
10633
10634 *dlp = (*dlp)->next;
10635 __free_imsm_disk(dl, 1);
10636 }
10637 }
10638
10639 static int imsm_get_allowed_degradation(int level, int raid_disks,
10640 struct intel_super *super,
10641 struct imsm_dev *dev)
10642 {
10643 switch (level) {
10644 case 1:
10645 case 10:{
10646 int ret_val = 0;
10647 struct imsm_map *map;
10648 int i;
10649
10650 ret_val = raid_disks/2;
10651 /* check map if all disks pairs not failed
10652 * in both maps
10653 */
10654 map = get_imsm_map(dev, MAP_0);
10655 for (i = 0; i < ret_val; i++) {
10656 int degradation = 0;
10657 if (get_imsm_disk(super, i) == NULL)
10658 degradation++;
10659 if (get_imsm_disk(super, i + 1) == NULL)
10660 degradation++;
10661 if (degradation == 2)
10662 return 0;
10663 }
10664 map = get_imsm_map(dev, MAP_1);
10665 /* if there is no second map
10666 * result can be returned
10667 */
10668 if (map == NULL)
10669 return ret_val;
10670 /* check degradation in second map
10671 */
10672 for (i = 0; i < ret_val; i++) {
10673 int degradation = 0;
10674 if (get_imsm_disk(super, i) == NULL)
10675 degradation++;
10676 if (get_imsm_disk(super, i + 1) == NULL)
10677 degradation++;
10678 if (degradation == 2)
10679 return 0;
10680 }
10681 return ret_val;
10682 }
10683 case 5:
10684 return 1;
10685 case 6:
10686 return 2;
10687 default:
10688 return 0;
10689 }
10690 }
10691
10692 /*******************************************************************************
10693 * Function: validate_container_imsm
10694 * Description: This routine validates container after assemble,
10695 * eg. if devices in container are under the same controller.
10696 *
10697 * Parameters:
10698 * info : linked list with info about devices used in array
10699 * Returns:
10700 * 1 : HBA mismatch
10701 * 0 : Success
10702 ******************************************************************************/
10703 int validate_container_imsm(struct mdinfo *info)
10704 {
10705 if (check_no_platform())
10706 return 0;
10707
10708 struct sys_dev *idev;
10709 struct sys_dev *hba = NULL;
10710 struct sys_dev *intel_devices = find_intel_devices();
10711 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10712 info->disk.minor), 1, NULL);
10713
10714 for (idev = intel_devices; idev; idev = idev->next) {
10715 if (dev_path && strstr(dev_path, idev->path)) {
10716 hba = idev;
10717 break;
10718 }
10719 }
10720 if (dev_path)
10721 free(dev_path);
10722
10723 if (!hba) {
10724 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10725 devid2kname(makedev(info->disk.major, info->disk.minor)));
10726 return 1;
10727 }
10728
10729 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10730 struct mdinfo *dev;
10731
10732 for (dev = info->next; dev; dev = dev->next) {
10733 dev_path = devt_to_devpath(makedev(dev->disk.major,
10734 dev->disk.minor), 1, NULL);
10735
10736 struct sys_dev *hba2 = NULL;
10737 for (idev = intel_devices; idev; idev = idev->next) {
10738 if (dev_path && strstr(dev_path, idev->path)) {
10739 hba2 = idev;
10740 break;
10741 }
10742 }
10743 if (dev_path)
10744 free(dev_path);
10745
10746 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10747 get_orom_by_device_id(hba2->dev_id);
10748
10749 if (hba2 && hba->type != hba2->type) {
10750 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10751 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10752 return 1;
10753 }
10754
10755 if (orom != orom2) {
10756 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10757 " This operation is not supported and can lead to data loss.\n");
10758 return 1;
10759 }
10760
10761 if (!orom) {
10762 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10763 " This operation is not supported and can lead to data loss.\n");
10764 return 1;
10765 }
10766 }
10767
10768 return 0;
10769 }
10770
10771 /*******************************************************************************
10772 * Function: imsm_record_badblock
10773 * Description: This routine stores new bad block record in BBM log
10774 *
10775 * Parameters:
10776 * a : array containing a bad block
10777 * slot : disk number containing a bad block
10778 * sector : bad block sector
10779 * length : bad block sectors range
10780 * Returns:
10781 * 1 : Success
10782 * 0 : Error
10783 ******************************************************************************/
10784 static int imsm_record_badblock(struct active_array *a, int slot,
10785 unsigned long long sector, int length)
10786 {
10787 struct intel_super *super = a->container->sb;
10788 int ord;
10789 int ret;
10790
10791 ord = imsm_disk_slot_to_ord(a, slot);
10792 if (ord < 0)
10793 return 0;
10794
10795 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10796 length);
10797 if (ret)
10798 super->updates_pending++;
10799
10800 return ret;
10801 }
10802 /*******************************************************************************
10803 * Function: imsm_clear_badblock
10804 * Description: This routine clears bad block record from BBM log
10805 *
10806 * Parameters:
10807 * a : array containing a bad block
10808 * slot : disk number containing a bad block
10809 * sector : bad block sector
10810 * length : bad block sectors range
10811 * Returns:
10812 * 1 : Success
10813 * 0 : Error
10814 ******************************************************************************/
10815 static int imsm_clear_badblock(struct active_array *a, int slot,
10816 unsigned long long sector, int length)
10817 {
10818 struct intel_super *super = a->container->sb;
10819 int ord;
10820 int ret;
10821
10822 ord = imsm_disk_slot_to_ord(a, slot);
10823 if (ord < 0)
10824 return 0;
10825
10826 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10827 if (ret)
10828 super->updates_pending++;
10829
10830 return ret;
10831 }
10832 /*******************************************************************************
10833 * Function: imsm_get_badblocks
10834 * Description: This routine get list of bad blocks for an array
10835 *
10836 * Parameters:
10837 * a : array
10838 * slot : disk number
10839 * Returns:
10840 * bb : structure containing bad blocks
10841 * NULL : error
10842 ******************************************************************************/
10843 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10844 {
10845 int inst = a->info.container_member;
10846 struct intel_super *super = a->container->sb;
10847 struct imsm_dev *dev = get_imsm_dev(super, inst);
10848 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10849 int ord;
10850
10851 ord = imsm_disk_slot_to_ord(a, slot);
10852 if (ord < 0)
10853 return NULL;
10854
10855 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10856 per_dev_array_size(map), &super->bb);
10857
10858 return &super->bb;
10859 }
10860 /*******************************************************************************
10861 * Function: examine_badblocks_imsm
10862 * Description: Prints list of bad blocks on a disk to the standard output
10863 *
10864 * Parameters:
10865 * st : metadata handler
10866 * fd : open file descriptor for device
10867 * devname : device name
10868 * Returns:
10869 * 0 : Success
10870 * 1 : Error
10871 ******************************************************************************/
10872 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10873 {
10874 struct intel_super *super = st->sb;
10875 struct bbm_log *log = super->bbm_log;
10876 struct dl *d = NULL;
10877 int any = 0;
10878
10879 for (d = super->disks; d ; d = d->next) {
10880 if (strcmp(d->devname, devname) == 0)
10881 break;
10882 }
10883
10884 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10885 pr_err("%s doesn't appear to be part of a raid array\n",
10886 devname);
10887 return 1;
10888 }
10889
10890 if (log != NULL) {
10891 unsigned int i;
10892 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10893
10894 for (i = 0; i < log->entry_count; i++) {
10895 if (entry[i].disk_ordinal == d->index) {
10896 unsigned long long sector = __le48_to_cpu(
10897 &entry[i].defective_block_start);
10898 int cnt = entry[i].marked_count + 1;
10899
10900 if (!any) {
10901 printf("Bad-blocks on %s:\n", devname);
10902 any = 1;
10903 }
10904
10905 printf("%20llu for %d sectors\n", sector, cnt);
10906 }
10907 }
10908 }
10909
10910 if (!any)
10911 printf("No bad-blocks list configured on %s\n", devname);
10912
10913 return 0;
10914 }
10915 /*******************************************************************************
10916 * Function: init_migr_record_imsm
10917 * Description: Function inits imsm migration record
10918 * Parameters:
10919 * super : imsm internal array info
10920 * dev : device under migration
10921 * info : general array info to find the smallest device
10922 * Returns:
10923 * none
10924 ******************************************************************************/
10925 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10926 struct mdinfo *info)
10927 {
10928 struct intel_super *super = st->sb;
10929 struct migr_record *migr_rec = super->migr_rec;
10930 int new_data_disks;
10931 unsigned long long dsize, dev_sectors;
10932 long long unsigned min_dev_sectors = -1LLU;
10933 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10934 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10935 unsigned long long num_migr_units;
10936 unsigned long long array_blocks;
10937 struct dl *dl_disk = NULL;
10938
10939 memset(migr_rec, 0, sizeof(struct migr_record));
10940 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10941
10942 /* only ascending reshape supported now */
10943 migr_rec->ascending_migr = __cpu_to_le32(1);
10944
10945 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10946 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10947 migr_rec->dest_depth_per_unit *=
10948 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10949 new_data_disks = imsm_num_data_members(map_dest);
10950 migr_rec->blocks_per_unit =
10951 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10952 migr_rec->dest_depth_per_unit =
10953 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10954 array_blocks = info->component_size * new_data_disks;
10955 num_migr_units =
10956 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10957
10958 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10959 num_migr_units++;
10960 set_num_migr_units(migr_rec, num_migr_units);
10961
10962 migr_rec->post_migr_vol_cap = dev->size_low;
10963 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10964
10965 /* Find the smallest dev */
10966 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10967 /* ignore spares in container */
10968 if (dl_disk->index < 0)
10969 continue;
10970 get_dev_size(dl_disk->fd, NULL, &dsize);
10971 dev_sectors = dsize / 512;
10972 if (dev_sectors < min_dev_sectors)
10973 min_dev_sectors = dev_sectors;
10974 }
10975 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
10976 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10977
10978 write_imsm_migr_rec(st);
10979
10980 return;
10981 }
10982
10983 /*******************************************************************************
10984 * Function: save_backup_imsm
10985 * Description: Function saves critical data stripes to Migration Copy Area
10986 * and updates the current migration unit status.
10987 * Use restore_stripes() to form a destination stripe,
10988 * and to write it to the Copy Area.
10989 * Parameters:
10990 * st : supertype information
10991 * dev : imsm device that backup is saved for
10992 * info : general array info
10993 * buf : input buffer
10994 * length : length of data to backup (blocks_per_unit)
10995 * Returns:
10996 * 0 : success
10997 *, -1 : fail
10998 ******************************************************************************/
10999 int save_backup_imsm(struct supertype *st,
11000 struct imsm_dev *dev,
11001 struct mdinfo *info,
11002 void *buf,
11003 int length)
11004 {
11005 int rv = -1;
11006 struct intel_super *super = st->sb;
11007 int i;
11008 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
11009 int new_disks = map_dest->num_members;
11010 int dest_layout = 0;
11011 int dest_chunk, targets[new_disks];
11012 unsigned long long start, target_offsets[new_disks];
11013 int data_disks = imsm_num_data_members(map_dest);
11014
11015 for (i = 0; i < new_disks; i++) {
11016 struct dl *dl_disk = get_imsm_dl_disk(super, i);
11017 if (dl_disk && is_fd_valid(dl_disk->fd))
11018 targets[i] = dl_disk->fd;
11019 else
11020 goto abort;
11021 }
11022
11023 start = info->reshape_progress * 512;
11024 for (i = 0; i < new_disks; i++) {
11025 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
11026 /* move back copy area adderss, it will be moved forward
11027 * in restore_stripes() using start input variable
11028 */
11029 target_offsets[i] -= start/data_disks;
11030 }
11031
11032 dest_layout = imsm_level_to_layout(map_dest->raid_level);
11033 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11034
11035 if (restore_stripes(targets, /* list of dest devices */
11036 target_offsets, /* migration record offsets */
11037 new_disks,
11038 dest_chunk,
11039 map_dest->raid_level,
11040 dest_layout,
11041 -1, /* source backup file descriptor */
11042 0, /* input buf offset
11043 * always 0 buf is already offseted */
11044 start,
11045 length,
11046 buf) != 0) {
11047 pr_err("Error restoring stripes\n");
11048 goto abort;
11049 }
11050
11051 rv = 0;
11052
11053 abort:
11054 return rv;
11055 }
11056
11057 /*******************************************************************************
11058 * Function: save_checkpoint_imsm
11059 * Description: Function called for current unit status update
11060 * in the migration record. It writes it to disk.
11061 * Parameters:
11062 * super : imsm internal array info
11063 * info : general array info
11064 * Returns:
11065 * 0: success
11066 * 1: failure
11067 * 2: failure, means no valid migration record
11068 * / no general migration in progress /
11069 ******************************************************************************/
11070 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11071 {
11072 struct intel_super *super = st->sb;
11073 unsigned long long blocks_per_unit;
11074 unsigned long long curr_migr_unit;
11075
11076 if (load_imsm_migr_rec(super) != 0) {
11077 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
11078 return 1;
11079 }
11080
11081 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11082 if (blocks_per_unit == 0) {
11083 dprintf("imsm: no migration in progress.\n");
11084 return 2;
11085 }
11086 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11087 /* check if array is alligned to copy area
11088 * if it is not alligned, add one to current migration unit value
11089 * this can happend on array reshape finish only
11090 */
11091 if (info->reshape_progress % blocks_per_unit)
11092 curr_migr_unit++;
11093
11094 set_current_migr_unit(super->migr_rec, curr_migr_unit);
11095 super->migr_rec->rec_status = __cpu_to_le32(state);
11096 set_migr_dest_1st_member_lba(super->migr_rec,
11097 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11098
11099 if (write_imsm_migr_rec(st) < 0) {
11100 dprintf("imsm: Cannot write migration record outside backup area\n");
11101 return 1;
11102 }
11103
11104 return 0;
11105 }
11106
11107 /*******************************************************************************
11108 * Function: recover_backup_imsm
11109 * Description: Function recovers critical data from the Migration Copy Area
11110 * while assembling an array.
11111 * Parameters:
11112 * super : imsm internal array info
11113 * info : general array info
11114 * Returns:
11115 * 0 : success (or there is no data to recover)
11116 * 1 : fail
11117 ******************************************************************************/
11118 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11119 {
11120 struct intel_super *super = st->sb;
11121 struct migr_record *migr_rec = super->migr_rec;
11122 struct imsm_map *map_dest;
11123 struct intel_dev *id = NULL;
11124 unsigned long long read_offset;
11125 unsigned long long write_offset;
11126 unsigned unit_len;
11127 int new_disks, err;
11128 char *buf = NULL;
11129 int retval = 1;
11130 unsigned int sector_size = super->sector_size;
11131 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11132 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
11133 char buffer[SYSFS_MAX_BUF_SIZE];
11134 int skipped_disks = 0;
11135 struct dl *dl_disk;
11136
11137 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, sizeof(buffer));
11138 if (err < 1)
11139 return 1;
11140
11141 /* recover data only during assemblation */
11142 if (strncmp(buffer, "inactive", 8) != 0)
11143 return 0;
11144 /* no data to recover */
11145 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11146 return 0;
11147 if (curr_migr_unit >= num_migr_units)
11148 return 1;
11149
11150 /* find device during reshape */
11151 for (id = super->devlist; id; id = id->next)
11152 if (is_gen_migration(id->dev))
11153 break;
11154 if (id == NULL)
11155 return 1;
11156
11157 map_dest = get_imsm_map(id->dev, MAP_0);
11158 new_disks = map_dest->num_members;
11159
11160 read_offset = migr_chkp_area_pba(migr_rec) * 512;
11161
11162 write_offset = (migr_dest_1st_member_lba(migr_rec) +
11163 pba_of_lba0(map_dest)) * 512;
11164
11165 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11166 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
11167 goto abort;
11168
11169 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11170 if (dl_disk->index < 0)
11171 continue;
11172
11173 if (!is_fd_valid(dl_disk->fd)) {
11174 skipped_disks++;
11175 continue;
11176 }
11177 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
11178 pr_err("Cannot seek to block: %s\n",
11179 strerror(errno));
11180 skipped_disks++;
11181 continue;
11182 }
11183 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
11184 pr_err("Cannot read copy area block: %s\n",
11185 strerror(errno));
11186 skipped_disks++;
11187 continue;
11188 }
11189 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
11190 pr_err("Cannot seek to block: %s\n",
11191 strerror(errno));
11192 skipped_disks++;
11193 continue;
11194 }
11195 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
11196 pr_err("Cannot restore block: %s\n",
11197 strerror(errno));
11198 skipped_disks++;
11199 continue;
11200 }
11201 }
11202
11203 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11204 new_disks,
11205 super,
11206 id->dev)) {
11207 pr_err("Cannot restore data from backup. Too many failed disks\n");
11208 goto abort;
11209 }
11210
11211 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11212 /* ignore error == 2, this can mean end of reshape here
11213 */
11214 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
11215 } else
11216 retval = 0;
11217
11218 abort:
11219 free(buf);
11220 return retval;
11221 }
11222
11223 /**
11224 * test_and_add_drive_controller_policy_imsm() - add disk controller to policies list.
11225 * @type: Policy type to search on list.
11226 * @pols: List of currently recorded policies.
11227 * @disk_fd: File descriptor of the device to check.
11228 * @hba: The hba disk is attached, could be NULL if verification is disabled.
11229 * @verbose: verbose flag.
11230 *
11231 * IMSM cares about drive physical placement. If @hba is not set, it adds unknown policy.
11232 * If there is no controller policy on pols we are free to add first one. If there is a policy then,
11233 * new must be the same - no controller mixing allowed.
11234 */
11235 static mdadm_status_t
11236 test_and_add_drive_controller_policy_imsm(const char * const type, dev_policy_t **pols, int disk_fd,
11237 struct sys_dev *hba, const int verbose)
11238 {
11239 const char *controller_policy = get_sys_dev_type(SYS_DEV_UNKNOWN);
11240 struct dev_policy *pol = pol_find(*pols, (char *)type);
11241 char devname[MAX_RAID_SERIAL_LEN];
11242
11243 if (hba)
11244 controller_policy = get_sys_dev_type(hba->type);
11245
11246 if (!pol) {
11247 pol_add(pols, (char *)type, (char *)controller_policy, "imsm");
11248 return MDADM_STATUS_SUCCESS;
11249 }
11250
11251 if (strcmp(pol->value, controller_policy) == 0)
11252 return MDADM_STATUS_SUCCESS;
11253
11254 fd2devname(disk_fd, devname);
11255 pr_vrb("Intel(R) raid controller \"%s\" found for %s, but \"%s\" was detected earlier\n",
11256 controller_policy, devname, pol->value);
11257 pr_vrb("Disks under different controllers cannot be used, aborting\n");
11258
11259 return MDADM_STATUS_ERROR;
11260 }
11261
11262 struct imsm_drive_policy {
11263 char *type;
11264 mdadm_status_t (*test_and_add_drive_policy)(const char * const type,
11265 struct dev_policy **pols, int disk_fd,
11266 struct sys_dev *hba, const int verbose);
11267 };
11268
11269 struct imsm_drive_policy imsm_policies[] = {
11270 {"controller", test_and_add_drive_controller_policy_imsm},
11271 };
11272
11273 mdadm_status_t test_and_add_drive_policies_imsm(struct dev_policy **pols, int disk_fd,
11274 const int verbose)
11275 {
11276 struct imsm_drive_policy *imsm_pol;
11277 struct sys_dev *hba = NULL;
11278 char path[PATH_MAX];
11279 mdadm_status_t ret;
11280 unsigned int i;
11281
11282 /* If imsm platform verification is disabled, do not search for hba. */
11283 if (check_no_platform() != 1) {
11284 if (!diskfd_to_devpath(disk_fd, 1, path)) {
11285 pr_vrb("IMSM: Failed to retrieve device path by file descriptor.\n");
11286 return MDADM_STATUS_ERROR;
11287 }
11288
11289 hba = find_disk_attached_hba(disk_fd, path);
11290 if (!hba) {
11291 pr_vrb("IMSM: Failed to find hba for %s\n", path);
11292 return MDADM_STATUS_ERROR;
11293 }
11294 }
11295
11296 for (i = 0; i < ARRAY_SIZE(imsm_policies); i++) {
11297 imsm_pol = &imsm_policies[i];
11298
11299 ret = imsm_pol->test_and_add_drive_policy(imsm_pol->type, pols, disk_fd, hba,
11300 verbose);
11301 if (ret != MDADM_STATUS_SUCCESS)
11302 /* Inherit error code */
11303 return ret;
11304 }
11305
11306 return MDADM_STATUS_SUCCESS;
11307 }
11308
11309 /**
11310 * get_spare_criteria_imsm() - set spare criteria.
11311 * @st: supertype.
11312 * @mddev_path: path to md device devnode, it must be container.
11313 * @c: spare_criteria struct to fill, not NULL.
11314 *
11315 * If superblock is not loaded, use mddev_path to load_container. It must be given in this case.
11316 * Filles size and sector size accordingly to superblock.
11317 */
11318 mdadm_status_t get_spare_criteria_imsm(struct supertype *st, char *mddev_path,
11319 struct spare_criteria *c)
11320 {
11321 mdadm_status_t ret = MDADM_STATUS_ERROR;
11322 bool free_superblock = false;
11323 unsigned long long size = 0;
11324 struct intel_super *super;
11325 struct extent *e;
11326 struct dl *dl;
11327 int i;
11328
11329 /* If no superblock and no mddev_path, we cannot load superblock. */
11330 assert(st->sb || mddev_path);
11331
11332 if (mddev_path) {
11333 int fd = open(mddev_path, O_RDONLY);
11334 mdadm_status_t rv;
11335
11336 if (!is_fd_valid(fd))
11337 return MDADM_STATUS_ERROR;
11338
11339 if (!st->sb) {
11340 if (load_container_imsm(st, fd, st->devnm)) {
11341 close(fd);
11342 return MDADM_STATUS_ERROR;
11343 }
11344 free_superblock = true;
11345 }
11346
11347 rv = mddev_test_and_add_drive_policies(st, &c->pols, fd, 0);
11348 close(fd);
11349
11350 if (rv != MDADM_STATUS_SUCCESS)
11351 goto out;
11352 }
11353
11354 super = st->sb;
11355
11356 /* find first active disk in array */
11357 dl = super->disks;
11358 while (dl && (is_failed(&dl->disk) || dl->index == -1))
11359 dl = dl->next;
11360
11361 if (!dl)
11362 goto out;
11363
11364 /* find last lba used by subarrays */
11365 e = get_extents(super, dl, 0);
11366 if (!e)
11367 goto out;
11368
11369 for (i = 0; e[i].size; i++)
11370 continue;
11371 if (i > 0)
11372 size = e[i - 1].start + e[i - 1].size;
11373 free(e);
11374
11375 /* add the amount of space needed for metadata */
11376 size += imsm_min_reserved_sectors(super);
11377
11378 c->min_size = size * 512;
11379 c->sector_size = super->sector_size;
11380 c->criteria_set = true;
11381 ret = MDADM_STATUS_SUCCESS;
11382
11383 out:
11384 if (free_superblock)
11385 free_super_imsm(st);
11386
11387 if (ret != MDADM_STATUS_SUCCESS)
11388 c->criteria_set = false;
11389
11390 return ret;
11391 }
11392
11393 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
11394 {
11395 static char devnm[32];
11396 char subdev_name[20];
11397 struct mdstat_ent *mdstat;
11398
11399 sprintf(subdev_name, "%d", subdev);
11400 mdstat = mdstat_by_subdev(subdev_name, container);
11401 if (!mdstat)
11402 return NULL;
11403
11404 strcpy(devnm, mdstat->devnm);
11405 free_mdstat(mdstat);
11406 return devnm;
11407 }
11408
11409 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11410 struct geo_params *geo,
11411 int *old_raid_disks,
11412 int direction)
11413 {
11414 /* currently we only support increasing the number of devices
11415 * for a container. This increases the number of device for each
11416 * member array. They must all be RAID0 or RAID5.
11417 */
11418 int ret_val = 0;
11419 struct mdinfo *info, *member;
11420 int devices_that_can_grow = 0;
11421
11422 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
11423
11424 if (geo->size > 0 ||
11425 geo->level != UnSet ||
11426 geo->layout != UnSet ||
11427 geo->chunksize != 0 ||
11428 geo->raid_disks == UnSet) {
11429 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
11430 return ret_val;
11431 }
11432
11433 if (direction == ROLLBACK_METADATA_CHANGES) {
11434 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
11435 return ret_val;
11436 }
11437
11438 info = container_content_imsm(st, NULL);
11439 for (member = info; member; member = member->next) {
11440 char *result;
11441
11442 dprintf("imsm: checking device_num: %i\n",
11443 member->container_member);
11444
11445 if (geo->raid_disks <= member->array.raid_disks) {
11446 /* we work on container for Online Capacity Expansion
11447 * only so raid_disks has to grow
11448 */
11449 dprintf("imsm: for container operation raid disks increase is required\n");
11450 break;
11451 }
11452
11453 if (info->array.level != 0 && info->array.level != 5) {
11454 /* we cannot use this container with other raid level
11455 */
11456 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
11457 info->array.level);
11458 break;
11459 } else {
11460 /* check for platform support
11461 * for this raid level configuration
11462 */
11463 struct intel_super *super = st->sb;
11464 if (!is_raid_level_supported(super->orom,
11465 member->array.level,
11466 geo->raid_disks)) {
11467 dprintf("platform does not support raid%d with %d disk%s\n",
11468 info->array.level,
11469 geo->raid_disks,
11470 geo->raid_disks > 1 ? "s" : "");
11471 break;
11472 }
11473 /* check if component size is aligned to chunk size
11474 */
11475 if (info->component_size %
11476 (info->array.chunk_size/512)) {
11477 dprintf("Component size is not aligned to chunk size\n");
11478 break;
11479 }
11480 }
11481
11482 if (*old_raid_disks &&
11483 info->array.raid_disks != *old_raid_disks)
11484 break;
11485 *old_raid_disks = info->array.raid_disks;
11486
11487 /* All raid5 and raid0 volumes in container
11488 * have to be ready for Online Capacity Expansion
11489 * so they need to be assembled. We have already
11490 * checked that no recovery etc is happening.
11491 */
11492 result = imsm_find_array_devnm_by_subdev(member->container_member,
11493 st->container_devnm);
11494 if (result == NULL) {
11495 dprintf("imsm: cannot find array\n");
11496 break;
11497 }
11498 devices_that_can_grow++;
11499 }
11500 sysfs_free(info);
11501 if (!member && devices_that_can_grow)
11502 ret_val = 1;
11503
11504 if (ret_val)
11505 dprintf("Container operation allowed\n");
11506 else
11507 dprintf("Error: %i\n", ret_val);
11508
11509 return ret_val;
11510 }
11511
11512 /* Function: get_spares_for_grow
11513 * Description: Allocates memory and creates list of spare devices
11514 * avaliable in container. Checks if spare drive size is acceptable.
11515 * Parameters: Pointer to the supertype structure
11516 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
11517 * NULL if fail
11518 */
11519 static struct mdinfo *get_spares_for_grow(struct supertype *st)
11520 {
11521 struct spare_criteria sc = {0};
11522 struct mdinfo *spares;
11523
11524 get_spare_criteria_imsm(st, NULL, &sc);
11525 spares = container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
11526
11527 dev_policy_free(sc.pols);
11528
11529 return spares;
11530 }
11531
11532 /******************************************************************************
11533 * function: imsm_create_metadata_update_for_reshape
11534 * Function creates update for whole IMSM container.
11535 *
11536 ******************************************************************************/
11537 static int imsm_create_metadata_update_for_reshape(
11538 struct supertype *st,
11539 struct geo_params *geo,
11540 int old_raid_disks,
11541 struct imsm_update_reshape **updatep)
11542 {
11543 struct intel_super *super = st->sb;
11544 struct imsm_super *mpb = super->anchor;
11545 int update_memory_size;
11546 struct imsm_update_reshape *u;
11547 struct mdinfo *spares;
11548 int i;
11549 int delta_disks;
11550 struct mdinfo *dev;
11551
11552 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
11553
11554 delta_disks = geo->raid_disks - old_raid_disks;
11555
11556 /* size of all update data without anchor */
11557 update_memory_size = sizeof(struct imsm_update_reshape);
11558
11559 /* now add space for spare disks that we need to add. */
11560 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11561
11562 u = xcalloc(1, update_memory_size);
11563 u->type = update_reshape_container_disks;
11564 u->old_raid_disks = old_raid_disks;
11565 u->new_raid_disks = geo->raid_disks;
11566
11567 /* now get spare disks list
11568 */
11569 spares = get_spares_for_grow(st);
11570
11571 if (spares == NULL || delta_disks > spares->array.spare_disks) {
11572 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
11573 i = -1;
11574 goto abort;
11575 }
11576
11577 /* we have got spares
11578 * update disk list in imsm_disk list table in anchor
11579 */
11580 dprintf("imsm: %i spares are available.\n\n",
11581 spares->array.spare_disks);
11582
11583 dev = spares->devs;
11584 for (i = 0; i < delta_disks; i++) {
11585 struct dl *dl;
11586
11587 if (dev == NULL)
11588 break;
11589 u->new_disks[i] = makedev(dev->disk.major,
11590 dev->disk.minor);
11591 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
11592 dl->index = mpb->num_disks;
11593 mpb->num_disks++;
11594 dev = dev->next;
11595 }
11596
11597 abort:
11598 /* free spares
11599 */
11600 sysfs_free(spares);
11601
11602 dprintf("imsm: reshape update preparation :");
11603 if (i == delta_disks) {
11604 dprintf_cont(" OK\n");
11605 *updatep = u;
11606 return update_memory_size;
11607 }
11608 free(u);
11609 dprintf_cont(" Error\n");
11610
11611 return 0;
11612 }
11613
11614 /******************************************************************************
11615 * function: imsm_create_metadata_update_for_size_change()
11616 * Creates update for IMSM array for array size change.
11617 *
11618 ******************************************************************************/
11619 static int imsm_create_metadata_update_for_size_change(
11620 struct supertype *st,
11621 struct geo_params *geo,
11622 struct imsm_update_size_change **updatep)
11623 {
11624 struct intel_super *super = st->sb;
11625 int update_memory_size;
11626 struct imsm_update_size_change *u;
11627
11628 dprintf("(enter) New size = %llu\n", geo->size);
11629
11630 /* size of all update data without anchor */
11631 update_memory_size = sizeof(struct imsm_update_size_change);
11632
11633 u = xcalloc(1, update_memory_size);
11634 u->type = update_size_change;
11635 u->subdev = super->current_vol;
11636 u->new_size = geo->size;
11637
11638 dprintf("imsm: reshape update preparation : OK\n");
11639 *updatep = u;
11640
11641 return update_memory_size;
11642 }
11643
11644 /******************************************************************************
11645 * function: imsm_create_metadata_update_for_migration()
11646 * Creates update for IMSM array.
11647 *
11648 ******************************************************************************/
11649 static int imsm_create_metadata_update_for_migration(
11650 struct supertype *st,
11651 struct geo_params *geo,
11652 struct imsm_update_reshape_migration **updatep)
11653 {
11654 struct intel_super *super = st->sb;
11655 int update_memory_size;
11656 int current_chunk_size;
11657 struct imsm_update_reshape_migration *u;
11658 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11659 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11660 int previous_level = -1;
11661
11662 dprintf("(enter) New Level = %i\n", geo->level);
11663
11664 /* size of all update data without anchor */
11665 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11666
11667 u = xcalloc(1, update_memory_size);
11668 u->type = update_reshape_migration;
11669 u->subdev = super->current_vol;
11670 u->new_level = geo->level;
11671 u->new_layout = geo->layout;
11672 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11673 u->new_disks[0] = -1;
11674 u->new_chunksize = -1;
11675
11676 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
11677
11678 if (geo->chunksize != current_chunk_size) {
11679 u->new_chunksize = geo->chunksize / 1024;
11680 dprintf("imsm: chunk size change from %i to %i\n",
11681 current_chunk_size, u->new_chunksize);
11682 }
11683 previous_level = map->raid_level;
11684
11685 if (geo->level == 5 && previous_level == 0) {
11686 struct mdinfo *spares = NULL;
11687
11688 u->new_raid_disks++;
11689 spares = get_spares_for_grow(st);
11690 if (spares == NULL || spares->array.spare_disks < 1) {
11691 free(u);
11692 sysfs_free(spares);
11693 update_memory_size = 0;
11694 pr_err("cannot get spare device for requested migration\n");
11695 return 0;
11696 }
11697 sysfs_free(spares);
11698 }
11699 dprintf("imsm: reshape update preparation : OK\n");
11700 *updatep = u;
11701
11702 return update_memory_size;
11703 }
11704
11705 static void imsm_update_metadata_locally(struct supertype *st,
11706 void *buf, int len)
11707 {
11708 struct metadata_update mu;
11709
11710 mu.buf = buf;
11711 mu.len = len;
11712 mu.space = NULL;
11713 mu.space_list = NULL;
11714 mu.next = NULL;
11715 if (imsm_prepare_update(st, &mu))
11716 imsm_process_update(st, &mu);
11717
11718 while (mu.space_list) {
11719 void **space = mu.space_list;
11720 mu.space_list = *space;
11721 free(space);
11722 }
11723 }
11724
11725 /**
11726 * imsm_analyze_expand() - check expand properties and calculate new size.
11727 * @st: imsm supertype.
11728 * @geo: new geometry params.
11729 * @array: array info.
11730 * @direction: reshape direction.
11731 *
11732 * Obtain free space after the &array and verify if expand to requested size is
11733 * possible. If geo->size is set to %MAX_SIZE, assume that max free size is
11734 * requested.
11735 *
11736 * Return:
11737 * On success %IMSM_STATUS_OK is returned, geo->size and geo->raid_disks are
11738 * updated.
11739 * On error, %IMSM_STATUS_ERROR is returned.
11740 */
11741 static imsm_status_t imsm_analyze_expand(struct supertype *st,
11742 struct geo_params *geo,
11743 struct mdinfo *array,
11744 int direction)
11745 {
11746 struct intel_super *super = st->sb;
11747 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11748 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11749 int data_disks = imsm_num_data_members(map);
11750
11751 unsigned long long current_size;
11752 unsigned long long free_size;
11753 unsigned long long new_size;
11754 unsigned long long max_size;
11755
11756 const int chunk_kib = geo->chunksize / 1024;
11757 imsm_status_t rv;
11758
11759 if (direction == ROLLBACK_METADATA_CHANGES) {
11760 /**
11761 * Accept size for rollback only.
11762 */
11763 new_size = geo->size * 2;
11764 goto success;
11765 }
11766
11767 if (data_disks == 0) {
11768 pr_err("imsm: Cannot retrieve data disks.\n");
11769 return IMSM_STATUS_ERROR;
11770 }
11771 current_size = array->custom_array_size / data_disks;
11772
11773 rv = imsm_get_free_size(super, dev->vol.map->num_members, 0, chunk_kib, &free_size, true);
11774 if (rv != IMSM_STATUS_OK) {
11775 pr_err("imsm: Cannot find free space for expand.\n");
11776 return IMSM_STATUS_ERROR;
11777 }
11778 max_size = round_member_size_to_mb(free_size + current_size);
11779
11780 if (geo->size == MAX_SIZE)
11781 new_size = max_size;
11782 else
11783 new_size = round_member_size_to_mb(geo->size * 2);
11784
11785 if (new_size == 0) {
11786 pr_err("imsm: Rounded requested size is 0.\n");
11787 return IMSM_STATUS_ERROR;
11788 }
11789
11790 if (new_size > max_size) {
11791 pr_err("imsm: Rounded requested size (%llu) is larger than free space available (%llu).\n",
11792 new_size, max_size);
11793 return IMSM_STATUS_ERROR;
11794 }
11795
11796 if (new_size == current_size) {
11797 pr_err("imsm: Rounded requested size (%llu) is same as current size (%llu).\n",
11798 new_size, current_size);
11799 return IMSM_STATUS_ERROR;
11800 }
11801
11802 if (new_size < current_size) {
11803 pr_err("imsm: Size reduction is not supported, rounded requested size (%llu) is smaller than current (%llu).\n",
11804 new_size, current_size);
11805 return IMSM_STATUS_ERROR;
11806 }
11807
11808 success:
11809 dprintf("imsm: New size per member is %llu.\n", new_size);
11810 geo->size = data_disks * new_size;
11811 geo->raid_disks = dev->vol.map->num_members;
11812 return IMSM_STATUS_OK;
11813 }
11814
11815 /***************************************************************************
11816 * Function: imsm_analyze_change
11817 * Description: Function analyze change for single volume
11818 * and validate if transition is supported
11819 * Parameters: Geometry parameters, supertype structure,
11820 * metadata change direction (apply/rollback)
11821 * Returns: Operation type code on success, -1 if fail
11822 ****************************************************************************/
11823 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
11824 struct geo_params *geo,
11825 int direction)
11826 {
11827 struct mdinfo info;
11828 int change = -1;
11829 int check_devs = 0;
11830 int chunk;
11831 /* number of added/removed disks in operation result */
11832 int devNumChange = 0;
11833 /* imsm compatible layout value for array geometry verification */
11834 int imsm_layout = -1;
11835 imsm_status_t rv;
11836
11837 getinfo_super_imsm_volume(st, &info, NULL);
11838 if (geo->level != info.array.level && geo->level >= 0 &&
11839 geo->level != UnSet) {
11840 switch (info.array.level) {
11841 case 0:
11842 if (geo->level == 5) {
11843 change = CH_MIGRATION;
11844 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
11845 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
11846 change = -1;
11847 goto analyse_change_exit;
11848 }
11849 imsm_layout = geo->layout;
11850 check_devs = 1;
11851 devNumChange = 1; /* parity disk added */
11852 } else if (geo->level == 10) {
11853 change = CH_TAKEOVER;
11854 check_devs = 1;
11855 devNumChange = 2; /* two mirrors added */
11856 imsm_layout = 0x102; /* imsm supported layout */
11857 }
11858 break;
11859 case 1:
11860 case 10:
11861 if (geo->level == 0) {
11862 change = CH_TAKEOVER;
11863 check_devs = 1;
11864 devNumChange = -(geo->raid_disks/2);
11865 imsm_layout = 0; /* imsm raid0 layout */
11866 }
11867 break;
11868 }
11869 if (change == -1) {
11870 pr_err("Error. Level Migration from %d to %d not supported!\n",
11871 info.array.level, geo->level);
11872 goto analyse_change_exit;
11873 }
11874 } else
11875 geo->level = info.array.level;
11876
11877 if (geo->layout != info.array.layout &&
11878 (geo->layout != UnSet && geo->layout != -1)) {
11879 change = CH_MIGRATION;
11880 if (info.array.layout == 0 && info.array.level == 5 &&
11881 geo->layout == 5) {
11882 /* reshape 5 -> 4 */
11883 } else if (info.array.layout == 5 && info.array.level == 5 &&
11884 geo->layout == 0) {
11885 /* reshape 4 -> 5 */
11886 geo->layout = 0;
11887 geo->level = 5;
11888 } else {
11889 pr_err("Error. Layout Migration from %d to %d not supported!\n",
11890 info.array.layout, geo->layout);
11891 change = -1;
11892 goto analyse_change_exit;
11893 }
11894 } else {
11895 geo->layout = info.array.layout;
11896 if (imsm_layout == -1)
11897 imsm_layout = info.array.layout;
11898 }
11899
11900 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11901 geo->chunksize != info.array.chunk_size) {
11902 if (info.array.level == 10) {
11903 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11904 change = -1;
11905 goto analyse_change_exit;
11906 } else if (info.component_size % (geo->chunksize/512)) {
11907 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11908 geo->chunksize/1024, info.component_size/2);
11909 change = -1;
11910 goto analyse_change_exit;
11911 }
11912 change = CH_MIGRATION;
11913 } else {
11914 geo->chunksize = info.array.chunk_size;
11915 }
11916
11917 if (geo->size > 0) {
11918 if (change != -1) {
11919 pr_err("Error. Size change should be the only one at a time.\n");
11920 change = -1;
11921 goto analyse_change_exit;
11922 }
11923
11924 rv = imsm_analyze_expand(st, geo, &info, direction);
11925 if (rv != IMSM_STATUS_OK)
11926 goto analyse_change_exit;
11927 change = CH_ARRAY_SIZE;
11928 }
11929
11930 chunk = geo->chunksize / 1024;
11931 if (!validate_geometry_imsm(st,
11932 geo->level,
11933 imsm_layout,
11934 geo->raid_disks + devNumChange,
11935 &chunk,
11936 geo->size, INVALID_SECTORS,
11937 0, 0, info.consistency_policy, 1))
11938 change = -1;
11939
11940 if (check_devs) {
11941 struct intel_super *super = st->sb;
11942 struct imsm_super *mpb = super->anchor;
11943
11944 if (mpb->num_raid_devs > 1) {
11945 pr_err("Error. Cannot perform operation on %s- for this operation "
11946 "it MUST be single array in container\n", geo->dev_name);
11947 change = -1;
11948 }
11949 }
11950
11951 analyse_change_exit:
11952 if (direction == ROLLBACK_METADATA_CHANGES &&
11953 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
11954 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
11955 change = -1;
11956 }
11957 return change;
11958 }
11959
11960 int imsm_takeover(struct supertype *st, struct geo_params *geo)
11961 {
11962 struct intel_super *super = st->sb;
11963 struct imsm_update_takeover *u;
11964
11965 u = xmalloc(sizeof(struct imsm_update_takeover));
11966
11967 u->type = update_takeover;
11968 u->subarray = super->current_vol;
11969
11970 /* 10->0 transition */
11971 if (geo->level == 0)
11972 u->direction = R10_TO_R0;
11973
11974 /* 0->10 transition */
11975 if (geo->level == 10)
11976 u->direction = R0_TO_R10;
11977
11978 /* update metadata locally */
11979 imsm_update_metadata_locally(st, u,
11980 sizeof(struct imsm_update_takeover));
11981 /* and possibly remotely */
11982 if (st->update_tail)
11983 append_metadata_update(st, u,
11984 sizeof(struct imsm_update_takeover));
11985 else
11986 free(u);
11987
11988 return 0;
11989 }
11990
11991 /* Flush size update if size calculated by num_data_stripes is higher than
11992 * imsm_dev_size to eliminate differences during reshape.
11993 * Mdmon will recalculate them correctly.
11994 * If subarray index is not set then check whole container.
11995 * Returns:
11996 * 0 - no error occurred
11997 * 1 - error detected
11998 */
11999 static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
12000 {
12001 struct intel_super *super = st->sb;
12002 int tmp = super->current_vol;
12003 int ret_val = 1;
12004 int i;
12005
12006 for (i = 0; i < super->anchor->num_raid_devs; i++) {
12007 if (subarray_index >= 0 && i != subarray_index)
12008 continue;
12009 super->current_vol = i;
12010 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12011 struct imsm_map *map = get_imsm_map(dev, MAP_0);
12012 unsigned int disc_count = imsm_num_data_members(map);
12013 struct geo_params geo;
12014 struct imsm_update_size_change *update;
12015 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
12016 unsigned long long d_size = imsm_dev_size(dev);
12017 int u_size;
12018
12019 if (calc_size == d_size)
12020 continue;
12021
12022 /* There is a difference, confirm that imsm_dev_size is
12023 * smaller and push update.
12024 */
12025 if (d_size > calc_size) {
12026 pr_err("imsm: dev size of subarray %d is incorrect\n",
12027 i);
12028 goto exit;
12029 }
12030 memset(&geo, 0, sizeof(struct geo_params));
12031 geo.size = d_size;
12032 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
12033 &update);
12034 imsm_update_metadata_locally(st, update, u_size);
12035 if (st->update_tail) {
12036 append_metadata_update(st, update, u_size);
12037 flush_metadata_updates(st);
12038 st->update_tail = &st->updates;
12039 } else {
12040 imsm_sync_metadata(st);
12041 free(update);
12042 }
12043 }
12044 ret_val = 0;
12045 exit:
12046 super->current_vol = tmp;
12047 return ret_val;
12048 }
12049
12050 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
12051 int level,
12052 int layout, int chunksize, int raid_disks,
12053 int delta_disks, char *backup, char *dev,
12054 int direction, int verbose)
12055 {
12056 int ret_val = 1;
12057 struct geo_params geo;
12058
12059 dprintf("(enter)\n");
12060
12061 memset(&geo, 0, sizeof(struct geo_params));
12062
12063 geo.dev_name = dev;
12064 strcpy(geo.devnm, st->devnm);
12065 geo.size = size;
12066 geo.level = level;
12067 geo.layout = layout;
12068 geo.chunksize = chunksize;
12069 geo.raid_disks = raid_disks;
12070 if (delta_disks != UnSet)
12071 geo.raid_disks += delta_disks;
12072
12073 dprintf("for level : %i\n", geo.level);
12074 dprintf("for raid_disks : %i\n", geo.raid_disks);
12075
12076 if (strcmp(st->container_devnm, st->devnm) == 0) {
12077 /* On container level we can only increase number of devices. */
12078 dprintf("imsm: info: Container operation\n");
12079 int old_raid_disks = 0;
12080
12081 if (imsm_reshape_is_allowed_on_container(
12082 st, &geo, &old_raid_disks, direction)) {
12083 struct imsm_update_reshape *u = NULL;
12084 int len;
12085
12086 if (imsm_fix_size_mismatch(st, -1)) {
12087 dprintf("imsm: Cannot fix size mismatch\n");
12088 goto exit_imsm_reshape_super;
12089 }
12090
12091 len = imsm_create_metadata_update_for_reshape(
12092 st, &geo, old_raid_disks, &u);
12093
12094 if (len <= 0) {
12095 dprintf("imsm: Cannot prepare update\n");
12096 goto exit_imsm_reshape_super;
12097 }
12098
12099 ret_val = 0;
12100 /* update metadata locally */
12101 imsm_update_metadata_locally(st, u, len);
12102 /* and possibly remotely */
12103 if (st->update_tail)
12104 append_metadata_update(st, u, len);
12105 else
12106 free(u);
12107
12108 } else {
12109 pr_err("(imsm) Operation is not allowed on this container\n");
12110 }
12111 } else {
12112 /* On volume level we support following operations
12113 * - takeover: raid10 -> raid0; raid0 -> raid10
12114 * - chunk size migration
12115 * - migration: raid5 -> raid0; raid0 -> raid5
12116 */
12117 struct intel_super *super = st->sb;
12118 struct intel_dev *dev = super->devlist;
12119 int change;
12120 dprintf("imsm: info: Volume operation\n");
12121 /* find requested device */
12122 while (dev) {
12123 char *devnm =
12124 imsm_find_array_devnm_by_subdev(
12125 dev->index, st->container_devnm);
12126 if (devnm && strcmp(devnm, geo.devnm) == 0)
12127 break;
12128 dev = dev->next;
12129 }
12130 if (dev == NULL) {
12131 pr_err("Cannot find %s (%s) subarray\n",
12132 geo.dev_name, geo.devnm);
12133 goto exit_imsm_reshape_super;
12134 }
12135 super->current_vol = dev->index;
12136 change = imsm_analyze_change(st, &geo, direction);
12137 switch (change) {
12138 case CH_TAKEOVER:
12139 ret_val = imsm_takeover(st, &geo);
12140 break;
12141 case CH_MIGRATION: {
12142 struct imsm_update_reshape_migration *u = NULL;
12143 int len =
12144 imsm_create_metadata_update_for_migration(
12145 st, &geo, &u);
12146 if (len < 1) {
12147 dprintf("imsm: Cannot prepare update\n");
12148 break;
12149 }
12150 ret_val = 0;
12151 /* update metadata locally */
12152 imsm_update_metadata_locally(st, u, len);
12153 /* and possibly remotely */
12154 if (st->update_tail)
12155 append_metadata_update(st, u, len);
12156 else
12157 free(u);
12158 }
12159 break;
12160 case CH_ARRAY_SIZE: {
12161 struct imsm_update_size_change *u = NULL;
12162 int len =
12163 imsm_create_metadata_update_for_size_change(
12164 st, &geo, &u);
12165 if (len < 1) {
12166 dprintf("imsm: Cannot prepare update\n");
12167 break;
12168 }
12169 ret_val = 0;
12170 /* update metadata locally */
12171 imsm_update_metadata_locally(st, u, len);
12172 /* and possibly remotely */
12173 if (st->update_tail)
12174 append_metadata_update(st, u, len);
12175 else
12176 free(u);
12177 }
12178 break;
12179 default:
12180 ret_val = 1;
12181 }
12182 }
12183
12184 exit_imsm_reshape_super:
12185 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12186 return ret_val;
12187 }
12188
12189 #define COMPLETED_OK 0
12190 #define COMPLETED_NONE 1
12191 #define COMPLETED_DELAYED 2
12192
12193 static int read_completed(int fd, unsigned long long *val)
12194 {
12195 int ret;
12196 char buf[SYSFS_MAX_BUF_SIZE];
12197
12198 ret = sysfs_fd_get_str(fd, buf, sizeof(buf));
12199 if (ret < 0)
12200 return ret;
12201
12202 ret = COMPLETED_OK;
12203 if (str_is_none(buf) == true) {
12204 ret = COMPLETED_NONE;
12205 } else if (strncmp(buf, "delayed", 7) == 0) {
12206 ret = COMPLETED_DELAYED;
12207 } else {
12208 char *ep;
12209 *val = strtoull(buf, &ep, 0);
12210 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12211 ret = -1;
12212 }
12213 return ret;
12214 }
12215
12216 /*******************************************************************************
12217 * Function: wait_for_reshape_imsm
12218 * Description: Function writes new sync_max value and waits until
12219 * reshape process reach new position
12220 * Parameters:
12221 * sra : general array info
12222 * ndata : number of disks in new array's layout
12223 * Returns:
12224 * 0 : success,
12225 * 1 : there is no reshape in progress,
12226 * -1 : fail
12227 ******************************************************************************/
12228 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
12229 {
12230 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
12231 int retry = 3;
12232 unsigned long long completed;
12233 /* to_complete : new sync_max position */
12234 unsigned long long to_complete = sra->reshape_progress;
12235 unsigned long long position_to_set = to_complete / ndata;
12236
12237 if (!is_fd_valid(fd)) {
12238 dprintf("cannot open reshape_position\n");
12239 return 1;
12240 }
12241
12242 do {
12243 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12244 if (!retry) {
12245 dprintf("cannot read reshape_position (no reshape in progres)\n");
12246 close(fd);
12247 return 1;
12248 }
12249 sleep_for(0, MSEC_TO_NSEC(30), true);
12250 } else
12251 break;
12252 } while (retry--);
12253
12254 if (completed > position_to_set) {
12255 dprintf("wrong next position to set %llu (%llu)\n",
12256 to_complete, position_to_set);
12257 close(fd);
12258 return -1;
12259 }
12260 dprintf("Position set: %llu\n", position_to_set);
12261 if (sysfs_set_num(sra, NULL, "sync_max",
12262 position_to_set) != 0) {
12263 dprintf("cannot set reshape position to %llu\n",
12264 position_to_set);
12265 close(fd);
12266 return -1;
12267 }
12268
12269 do {
12270 int rc;
12271 char action[SYSFS_MAX_BUF_SIZE];
12272 int timeout = 3000;
12273
12274 sysfs_wait(fd, &timeout);
12275 if (sysfs_get_str(sra, NULL, "sync_action",
12276 action, sizeof(action)) > 0 &&
12277 strncmp(action, "reshape", 7) != 0) {
12278 if (strncmp(action, "idle", 4) == 0)
12279 break;
12280 close(fd);
12281 return -1;
12282 }
12283
12284 rc = read_completed(fd, &completed);
12285 if (rc < 0) {
12286 dprintf("cannot read reshape_position (in loop)\n");
12287 close(fd);
12288 return 1;
12289 } else if (rc == COMPLETED_NONE)
12290 break;
12291 } while (completed < position_to_set);
12292
12293 close(fd);
12294 return 0;
12295 }
12296
12297 /*******************************************************************************
12298 * Function: check_degradation_change
12299 * Description: Check that array hasn't become failed.
12300 * Parameters:
12301 * info : for sysfs access
12302 * sources : source disks descriptors
12303 * degraded: previous degradation level
12304 * Returns:
12305 * degradation level
12306 ******************************************************************************/
12307 int check_degradation_change(struct mdinfo *info,
12308 int *sources,
12309 int degraded)
12310 {
12311 unsigned long long new_degraded;
12312 int rv;
12313
12314 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
12315 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
12316 /* check each device to ensure it is still working */
12317 struct mdinfo *sd;
12318 new_degraded = 0;
12319 for (sd = info->devs ; sd ; sd = sd->next) {
12320 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12321 continue;
12322 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
12323 char sbuf[SYSFS_MAX_BUF_SIZE];
12324 int raid_disk = sd->disk.raid_disk;
12325
12326 if (sysfs_get_str(info,
12327 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
12328 strstr(sbuf, "faulty") ||
12329 strstr(sbuf, "in_sync") == NULL) {
12330 /* this device is dead */
12331 sd->disk.state = (1<<MD_DISK_FAULTY);
12332 if (raid_disk >= 0)
12333 close_fd(&sources[raid_disk]);
12334 new_degraded++;
12335 }
12336 }
12337 }
12338 }
12339
12340 return new_degraded;
12341 }
12342
12343 /*******************************************************************************
12344 * Function: imsm_manage_reshape
12345 * Description: Function finds array under reshape and it manages reshape
12346 * process. It creates stripes backups (if required) and sets
12347 * checkpoints.
12348 * Parameters:
12349 * afd : Backup handle (nattive) - not used
12350 * sra : general array info
12351 * reshape : reshape parameters - not used
12352 * st : supertype structure
12353 * blocks : size of critical section [blocks]
12354 * fds : table of source device descriptor
12355 * offsets : start of array (offest per devices)
12356 * dests : not used
12357 * destfd : table of destination device descriptor
12358 * destoffsets : table of destination offsets (per device)
12359 * Returns:
12360 * 1 : success, reshape is done
12361 * 0 : fail
12362 ******************************************************************************/
12363 static int imsm_manage_reshape(
12364 int afd, struct mdinfo *sra, struct reshape *reshape,
12365 struct supertype *st, unsigned long backup_blocks,
12366 int *fds, unsigned long long *offsets,
12367 int dests, int *destfd, unsigned long long *destoffsets)
12368 {
12369 int ret_val = 0;
12370 struct intel_super *super = st->sb;
12371 struct intel_dev *dv;
12372 unsigned int sector_size = super->sector_size;
12373 struct imsm_dev *dev = NULL;
12374 struct imsm_map *map_src, *map_dest;
12375 int migr_vol_qan = 0;
12376 int ndata, odata; /* [bytes] */
12377 int chunk; /* [bytes] */
12378 struct migr_record *migr_rec;
12379 char *buf = NULL;
12380 unsigned int buf_size; /* [bytes] */
12381 unsigned long long max_position; /* array size [bytes] */
12382 unsigned long long next_step; /* [blocks]/[bytes] */
12383 unsigned long long old_data_stripe_length;
12384 unsigned long long start_src; /* [bytes] */
12385 unsigned long long start; /* [bytes] */
12386 unsigned long long start_buf_shift; /* [bytes] */
12387 int degraded = 0;
12388 int source_layout = 0;
12389 int subarray_index = -1;
12390
12391 if (!sra)
12392 return ret_val;
12393
12394 if (!fds || !offsets)
12395 goto abort;
12396
12397 /* Find volume during the reshape */
12398 for (dv = super->devlist; dv; dv = dv->next) {
12399 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12400 dv->dev->vol.migr_state == 1) {
12401 dev = dv->dev;
12402 migr_vol_qan++;
12403 subarray_index = dv->index;
12404 }
12405 }
12406 /* Only one volume can migrate at the same time */
12407 if (migr_vol_qan != 1) {
12408 pr_err("%s", migr_vol_qan ?
12409 "Number of migrating volumes greater than 1\n" :
12410 "There is no volume during migrationg\n");
12411 goto abort;
12412 }
12413
12414 map_dest = get_imsm_map(dev, MAP_0);
12415 map_src = get_imsm_map(dev, MAP_1);
12416 if (map_src == NULL)
12417 goto abort;
12418
12419 ndata = imsm_num_data_members(map_dest);
12420 odata = imsm_num_data_members(map_src);
12421
12422 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
12423 old_data_stripe_length = odata * chunk;
12424
12425 migr_rec = super->migr_rec;
12426
12427 /* initialize migration record for start condition */
12428 if (sra->reshape_progress == 0)
12429 init_migr_record_imsm(st, dev, sra);
12430 else {
12431 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
12432 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
12433 goto abort;
12434 }
12435 /* Save checkpoint to update migration record for current
12436 * reshape position (in md). It can be farther than current
12437 * reshape position in metadata.
12438 */
12439 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12440 /* ignore error == 2, this can mean end of reshape here
12441 */
12442 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
12443 goto abort;
12444 }
12445 }
12446
12447 /* size for data */
12448 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12449 /* extend buffer size for parity disk */
12450 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
12451 /* add space for stripe alignment */
12452 buf_size += old_data_stripe_length;
12453 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12454 dprintf("imsm: Cannot allocate checkpoint buffer\n");
12455 goto abort;
12456 }
12457
12458 max_position = sra->component_size * ndata;
12459 source_layout = imsm_level_to_layout(map_src->raid_level);
12460
12461 while (current_migr_unit(migr_rec) <
12462 get_num_migr_units(migr_rec)) {
12463 /* current reshape position [blocks] */
12464 unsigned long long current_position =
12465 __le32_to_cpu(migr_rec->blocks_per_unit)
12466 * current_migr_unit(migr_rec);
12467 unsigned long long border;
12468
12469 /* Check that array hasn't become failed.
12470 */
12471 degraded = check_degradation_change(sra, fds, degraded);
12472 if (degraded > 1) {
12473 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
12474 goto abort;
12475 }
12476
12477 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12478
12479 if ((current_position + next_step) > max_position)
12480 next_step = max_position - current_position;
12481
12482 start = current_position * 512;
12483
12484 /* align reading start to old geometry */
12485 start_buf_shift = start % old_data_stripe_length;
12486 start_src = start - start_buf_shift;
12487
12488 border = (start_src / odata) - (start / ndata);
12489 border /= 512;
12490 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12491 /* save critical stripes to buf
12492 * start - start address of current unit
12493 * to backup [bytes]
12494 * start_src - start address of current unit
12495 * to backup alligned to source array
12496 * [bytes]
12497 */
12498 unsigned long long next_step_filler;
12499 unsigned long long copy_length = next_step * 512;
12500
12501 /* allign copy area length to stripe in old geometry */
12502 next_step_filler = ((copy_length + start_buf_shift)
12503 % old_data_stripe_length);
12504 if (next_step_filler)
12505 next_step_filler = (old_data_stripe_length
12506 - next_step_filler);
12507 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
12508 start, start_src, copy_length,
12509 start_buf_shift, next_step_filler);
12510
12511 if (save_stripes(fds, offsets, map_src->num_members,
12512 chunk, map_src->raid_level,
12513 source_layout, 0, NULL, start_src,
12514 copy_length +
12515 next_step_filler + start_buf_shift,
12516 buf)) {
12517 dprintf("imsm: Cannot save stripes to buffer\n");
12518 goto abort;
12519 }
12520 /* Convert data to destination format and store it
12521 * in backup general migration area
12522 */
12523 if (save_backup_imsm(st, dev, sra,
12524 buf + start_buf_shift, copy_length)) {
12525 dprintf("imsm: Cannot save stripes to target devices\n");
12526 goto abort;
12527 }
12528 if (save_checkpoint_imsm(st, sra,
12529 UNIT_SRC_IN_CP_AREA)) {
12530 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
12531 goto abort;
12532 }
12533 } else {
12534 /* set next step to use whole border area */
12535 border /= next_step;
12536 if (border > 1)
12537 next_step *= border;
12538 }
12539 /* When data backed up, checkpoint stored,
12540 * kick the kernel to reshape unit of data
12541 */
12542 next_step = next_step + sra->reshape_progress;
12543 /* limit next step to array max position */
12544 if (next_step > max_position)
12545 next_step = max_position;
12546 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12547 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
12548 sra->reshape_progress = next_step;
12549
12550 /* wait until reshape finish */
12551 if (wait_for_reshape_imsm(sra, ndata)) {
12552 dprintf("wait_for_reshape_imsm returned error!\n");
12553 goto abort;
12554 }
12555 if (sigterm)
12556 goto abort;
12557
12558 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12559 /* ignore error == 2, this can mean end of reshape here
12560 */
12561 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
12562 goto abort;
12563 }
12564
12565 }
12566
12567 /* clear migr_rec on disks after successful migration */
12568 struct dl *d;
12569
12570 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
12571 for (d = super->disks; d; d = d->next) {
12572 if (d->index < 0 || is_failed(&d->disk))
12573 continue;
12574 unsigned long long dsize;
12575
12576 get_dev_size(d->fd, NULL, &dsize);
12577 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
12578 SEEK_SET) >= 0) {
12579 if ((unsigned int)write(d->fd, super->migr_rec_buf,
12580 MIGR_REC_BUF_SECTORS*sector_size) !=
12581 MIGR_REC_BUF_SECTORS*sector_size)
12582 perror("Write migr_rec failed");
12583 }
12584 }
12585
12586 /* return '1' if done */
12587 ret_val = 1;
12588
12589 /* After the reshape eliminate size mismatch in metadata.
12590 * Don't update md/component_size here, volume hasn't
12591 * to take whole space. It is allowed by kernel.
12592 * md/component_size will be set propoperly after next assembly.
12593 */
12594 imsm_fix_size_mismatch(st, subarray_index);
12595
12596 abort:
12597 free(buf);
12598 /* See Grow.c: abort_reshape() for further explanation */
12599 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12600 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12601 sysfs_set_num(sra, NULL, "suspend_lo", 0);
12602
12603 return ret_val;
12604 }
12605
12606 /*******************************************************************************
12607 * Function: calculate_bitmap_min_chunksize
12608 * Description: Calculates the minimal valid bitmap chunk size
12609 * Parameters:
12610 * max_bits : indicate how many bits can be used for the bitmap
12611 * data_area_size : the size of the data area covered by the bitmap
12612 *
12613 * Returns:
12614 * The bitmap chunk size
12615 ******************************************************************************/
12616 static unsigned long long
12617 calculate_bitmap_min_chunksize(unsigned long long max_bits,
12618 unsigned long long data_area_size)
12619 {
12620 unsigned long long min_chunk =
12621 4096; /* sub-page chunks don't work yet.. */
12622 unsigned long long bits = data_area_size / min_chunk + 1;
12623
12624 while (bits > max_bits) {
12625 min_chunk *= 2;
12626 bits = (bits + 1) / 2;
12627 }
12628 return min_chunk;
12629 }
12630
12631 /*******************************************************************************
12632 * Function: calculate_bitmap_chunksize
12633 * Description: Calculates the bitmap chunk size for the given device
12634 * Parameters:
12635 * st : supertype information
12636 * dev : device for the bitmap
12637 *
12638 * Returns:
12639 * The bitmap chunk size
12640 ******************************************************************************/
12641 static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12642 struct imsm_dev *dev)
12643 {
12644 struct intel_super *super = st->sb;
12645 unsigned long long min_chunksize;
12646 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12647 size_t dev_size = imsm_dev_size(dev);
12648
12649 min_chunksize = calculate_bitmap_min_chunksize(
12650 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12651
12652 if (result < min_chunksize)
12653 result = min_chunksize;
12654
12655 return result;
12656 }
12657
12658 /*******************************************************************************
12659 * Function: init_bitmap_header
12660 * Description: Initialize the bitmap header structure
12661 * Parameters:
12662 * st : supertype information
12663 * bms : bitmap header struct to initialize
12664 * dev : device for the bitmap
12665 *
12666 * Returns:
12667 * 0 : success
12668 * -1 : fail
12669 ******************************************************************************/
12670 static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12671 struct imsm_dev *dev)
12672 {
12673 int vol_uuid[4];
12674
12675 if (!bms || !dev)
12676 return -1;
12677
12678 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12679 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12680 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12681 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12682 bms->write_behind = __cpu_to_le32(0);
12683
12684 uuid_from_super_imsm(st, vol_uuid);
12685 memcpy(bms->uuid, vol_uuid, 16);
12686
12687 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12688
12689 return 0;
12690 }
12691
12692 /*******************************************************************************
12693 * Function: validate_internal_bitmap_for_drive
12694 * Description: Verify if the bitmap header for a given drive.
12695 * Parameters:
12696 * st : supertype information
12697 * offset : The offset from the beginning of the drive where to look for
12698 * the bitmap header.
12699 * d : the drive info
12700 *
12701 * Returns:
12702 * 0 : success
12703 * -1 : fail
12704 ******************************************************************************/
12705 static int validate_internal_bitmap_for_drive(struct supertype *st,
12706 unsigned long long offset,
12707 struct dl *d)
12708 {
12709 struct intel_super *super = st->sb;
12710 int ret = -1;
12711 int vol_uuid[4];
12712 bitmap_super_t *bms;
12713 int fd;
12714
12715 if (!d)
12716 return -1;
12717
12718 void *read_buf;
12719
12720 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12721 return -1;
12722
12723 fd = d->fd;
12724 if (!is_fd_valid(fd)) {
12725 fd = open(d->devname, O_RDONLY, 0);
12726
12727 if (!is_fd_valid(fd)) {
12728 dprintf("cannot open the device %s\n", d->devname);
12729 goto abort;
12730 }
12731 }
12732
12733 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12734 goto abort;
12735 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12736 IMSM_BITMAP_HEADER_SIZE)
12737 goto abort;
12738
12739 uuid_from_super_imsm(st, vol_uuid);
12740
12741 bms = read_buf;
12742 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12743 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12744 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12745 dprintf("wrong bitmap header detected\n");
12746 goto abort;
12747 }
12748
12749 ret = 0;
12750 abort:
12751 if (!is_fd_valid(d->fd))
12752 close_fd(&fd);
12753
12754 if (read_buf)
12755 free(read_buf);
12756
12757 return ret;
12758 }
12759
12760 /*******************************************************************************
12761 * Function: validate_internal_bitmap_imsm
12762 * Description: Verify if the bitmap header is in place and with proper data.
12763 * Parameters:
12764 * st : supertype information
12765 *
12766 * Returns:
12767 * 0 : success or device w/o RWH_BITMAP
12768 * -1 : fail
12769 ******************************************************************************/
12770 static int validate_internal_bitmap_imsm(struct supertype *st)
12771 {
12772 struct intel_super *super = st->sb;
12773 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12774 unsigned long long offset;
12775 struct dl *d;
12776
12777 if (dev->rwh_policy != RWH_BITMAP)
12778 return 0;
12779
12780 offset = get_bitmap_header_sector(super, super->current_vol);
12781 for (d = super->disks; d; d = d->next) {
12782 if (d->index < 0 || is_failed(&d->disk))
12783 continue;
12784
12785 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12786 pr_err("imsm: bitmap validation failed\n");
12787 return -1;
12788 }
12789 }
12790 return 0;
12791 }
12792
12793 /*******************************************************************************
12794 * Function: add_internal_bitmap_imsm
12795 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12796 * Parameters:
12797 * st : supertype information
12798 * chunkp : bitmap chunk size
12799 * delay : not used for imsm
12800 * write_behind : not used for imsm
12801 * size : not used for imsm
12802 * may_change : not used for imsm
12803 * amajor : not used for imsm
12804 *
12805 * Returns:
12806 * 0 : success
12807 * -1 : fail
12808 ******************************************************************************/
12809 static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12810 int delay, int write_behind,
12811 unsigned long long size, int may_change,
12812 int amajor)
12813 {
12814 struct intel_super *super = st->sb;
12815 int vol_idx = super->current_vol;
12816 struct imsm_dev *dev;
12817
12818 if (!super->devlist || vol_idx == -1 || !chunkp)
12819 return -1;
12820
12821 dev = get_imsm_dev(super, vol_idx);
12822 dev->rwh_policy = RWH_BITMAP;
12823 *chunkp = calculate_bitmap_chunksize(st, dev);
12824 return 0;
12825 }
12826
12827 /*******************************************************************************
12828 * Function: locate_bitmap_imsm
12829 * Description: Seek 'fd' to start of write-intent-bitmap.
12830 * Parameters:
12831 * st : supertype information
12832 * fd : file descriptor for the device
12833 * node_num : not used for imsm
12834 *
12835 * Returns:
12836 * 0 : success
12837 * -1 : fail
12838 ******************************************************************************/
12839 static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12840 {
12841 struct intel_super *super = st->sb;
12842 unsigned long long offset;
12843 int vol_idx = super->current_vol;
12844
12845 if (!super->devlist || vol_idx == -1)
12846 return -1;
12847
12848 offset = get_bitmap_header_sector(super, super->current_vol);
12849 dprintf("bitmap header offset is %llu\n", offset);
12850
12851 lseek64(fd, offset << 9, 0);
12852
12853 return 0;
12854 }
12855
12856 /*******************************************************************************
12857 * Function: write_init_bitmap_imsm
12858 * Description: Write a bitmap header and prepares the area for the bitmap.
12859 * Parameters:
12860 * st : supertype information
12861 * fd : file descriptor for the device
12862 * update : not used for imsm
12863 *
12864 * Returns:
12865 * 0 : success
12866 * -1 : fail
12867 ******************************************************************************/
12868 static int write_init_bitmap_imsm(struct supertype *st, int fd,
12869 enum bitmap_update update)
12870 {
12871 struct intel_super *super = st->sb;
12872 int vol_idx = super->current_vol;
12873 int ret = 0;
12874 unsigned long long offset;
12875 bitmap_super_t bms = { 0 };
12876 size_t written = 0;
12877 size_t to_write;
12878 ssize_t rv_num;
12879 void *buf;
12880
12881 if (!super->devlist || !super->sector_size || vol_idx == -1)
12882 return -1;
12883
12884 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12885
12886 /* first clear the space for bitmap header */
12887 unsigned long long bitmap_area_start =
12888 get_bitmap_header_sector(super, vol_idx);
12889
12890 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12891 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12892 if (zero_disk_range(fd, bitmap_area_start,
12893 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12894 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12895 return -1;
12896 }
12897
12898 /* The bitmap area should be filled with "1"s to perform initial
12899 * synchronization.
12900 */
12901 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12902 return -1;
12903 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12904 offset = get_bitmap_sector(super, vol_idx);
12905 lseek64(fd, offset << 9, 0);
12906 while (written < IMSM_BITMAP_AREA_SIZE) {
12907 to_write = IMSM_BITMAP_AREA_SIZE - written;
12908 if (to_write > MAX_SECTOR_SIZE)
12909 to_write = MAX_SECTOR_SIZE;
12910 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12911 if (rv_num != MAX_SECTOR_SIZE) {
12912 ret = -1;
12913 dprintf("cannot initialize bitmap area\n");
12914 goto abort;
12915 }
12916 written += rv_num;
12917 }
12918
12919 /* write a bitmap header */
12920 init_bitmap_header(st, &bms, dev);
12921 memset(buf, 0, MAX_SECTOR_SIZE);
12922 memcpy(buf, &bms, sizeof(bitmap_super_t));
12923 if (locate_bitmap_imsm(st, fd, 0)) {
12924 ret = -1;
12925 dprintf("cannot locate the bitmap\n");
12926 goto abort;
12927 }
12928 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12929 ret = -1;
12930 dprintf("cannot write the bitmap header\n");
12931 goto abort;
12932 }
12933 fsync(fd);
12934
12935 abort:
12936 free(buf);
12937
12938 return ret;
12939 }
12940
12941 /*******************************************************************************
12942 * Function: is_vol_to_setup_bitmap
12943 * Description: Checks if a bitmap should be activated on the dev.
12944 * Parameters:
12945 * info : info about the volume to setup the bitmap
12946 * dev : the device to check against bitmap creation
12947 *
12948 * Returns:
12949 * 0 : bitmap should be set up on the device
12950 * -1 : otherwise
12951 ******************************************************************************/
12952 static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12953 {
12954 if (!dev || !info)
12955 return -1;
12956
12957 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12958 (dev->rwh_policy == RWH_BITMAP))
12959 return -1;
12960
12961 return 0;
12962 }
12963
12964 /*******************************************************************************
12965 * Function: set_bitmap_sysfs
12966 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12967 * Parameters:
12968 * info : info about the volume where the bitmap should be setup
12969 * chunksize : bitmap chunk size
12970 * location : location of the bitmap
12971 *
12972 * Returns:
12973 * 0 : success
12974 * -1 : fail
12975 ******************************************************************************/
12976 static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12977 char *location)
12978 {
12979 /* The bitmap/metadata is set to external to allow changing of value for
12980 * bitmap/location. When external is used, the kernel will treat an offset
12981 * related to the device's first lba (in opposition to the "internal" case
12982 * when this value is related to the beginning of the superblock).
12983 */
12984 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12985 dprintf("failed to set bitmap/metadata\n");
12986 return -1;
12987 }
12988
12989 /* It can only be changed when no bitmap is active.
12990 * Should be bigger than 512 and must be power of 2.
12991 * It is expecting the value in bytes.
12992 */
12993 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12994 __cpu_to_le32(chunksize))) {
12995 dprintf("failed to set bitmap/chunksize\n");
12996 return -1;
12997 }
12998
12999 /* It is expecting the value in sectors. */
13000 if (sysfs_set_num(info, NULL, "bitmap/space",
13001 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
13002 dprintf("failed to set bitmap/space\n");
13003 return -1;
13004 }
13005
13006 /* Determines the delay between the bitmap updates.
13007 * It is expecting the value in seconds.
13008 */
13009 if (sysfs_set_num(info, NULL, "bitmap/time_base",
13010 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
13011 dprintf("failed to set bitmap/time_base\n");
13012 return -1;
13013 }
13014
13015 /* It is expecting the value in sectors with a sign at the beginning. */
13016 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
13017 dprintf("failed to set bitmap/location\n");
13018 return -1;
13019 }
13020
13021 return 0;
13022 }
13023
13024 /*******************************************************************************
13025 * Function: set_bitmap_imsm
13026 * Description: Setup the bitmap for the given volume
13027 * Parameters:
13028 * st : supertype information
13029 * info : info about the volume where the bitmap should be setup
13030 *
13031 * Returns:
13032 * 0 : success
13033 * -1 : fail
13034 ******************************************************************************/
13035 static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
13036 {
13037 struct intel_super *super = st->sb;
13038 int prev_current_vol = super->current_vol;
13039 struct imsm_dev *dev;
13040 int ret = -1;
13041 char location[16] = "";
13042 unsigned long long chunksize;
13043 struct intel_dev *dev_it;
13044
13045 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
13046 super->current_vol = dev_it->index;
13047 dev = get_imsm_dev(super, super->current_vol);
13048
13049 if (is_vol_to_setup_bitmap(info, dev)) {
13050 if (validate_internal_bitmap_imsm(st)) {
13051 dprintf("bitmap header validation failed\n");
13052 goto abort;
13053 }
13054
13055 chunksize = calculate_bitmap_chunksize(st, dev);
13056 dprintf("chunk size is %llu\n", chunksize);
13057
13058 snprintf(location, sizeof(location), "+%llu",
13059 get_bitmap_sector(super, super->current_vol));
13060 dprintf("bitmap offset is %s\n", location);
13061
13062 if (set_bitmap_sysfs(info, chunksize, location)) {
13063 dprintf("cannot setup the bitmap\n");
13064 goto abort;
13065 }
13066 }
13067 }
13068 ret = 0;
13069 abort:
13070 super->current_vol = prev_current_vol;
13071 return ret;
13072 }
13073
13074 struct superswitch super_imsm = {
13075 .examine_super = examine_super_imsm,
13076 .brief_examine_super = brief_examine_super_imsm,
13077 .brief_examine_subarrays = brief_examine_subarrays_imsm,
13078 .export_examine_super = export_examine_super_imsm,
13079 .detail_super = detail_super_imsm,
13080 .brief_detail_super = brief_detail_super_imsm,
13081 .write_init_super = write_init_super_imsm,
13082 .validate_geometry = validate_geometry_imsm,
13083 .add_to_super = add_to_super_imsm,
13084 .remove_from_super = remove_from_super_imsm,
13085 .detail_platform = detail_platform_imsm,
13086 .export_detail_platform = export_detail_platform_imsm,
13087 .kill_subarray = kill_subarray_imsm,
13088 .update_subarray = update_subarray_imsm,
13089 .load_container = load_container_imsm,
13090 .default_geometry = default_geometry_imsm,
13091 .test_and_add_drive_policies = test_and_add_drive_policies_imsm,
13092 .reshape_super = imsm_reshape_super,
13093 .manage_reshape = imsm_manage_reshape,
13094 .recover_backup = recover_backup_imsm,
13095 .examine_badblocks = examine_badblocks_imsm,
13096 .match_home = match_home_imsm,
13097 .uuid_from_super= uuid_from_super_imsm,
13098 .getinfo_super = getinfo_super_imsm,
13099 .getinfo_super_disks = getinfo_super_disks_imsm,
13100 .update_super = update_super_imsm,
13101
13102 .avail_size = avail_size_imsm,
13103 .get_spare_criteria = get_spare_criteria_imsm,
13104
13105 .compare_super = compare_super_imsm,
13106
13107 .load_super = load_super_imsm,
13108 .init_super = init_super_imsm,
13109 .store_super = store_super_imsm,
13110 .free_super = free_super_imsm,
13111 .match_metadata_desc = match_metadata_desc_imsm,
13112 .container_content = container_content_imsm,
13113 .validate_container = validate_container_imsm,
13114
13115 .add_internal_bitmap = add_internal_bitmap_imsm,
13116 .locate_bitmap = locate_bitmap_imsm,
13117 .write_bitmap = write_init_bitmap_imsm,
13118 .set_bitmap = set_bitmap_imsm,
13119
13120 .write_init_ppl = write_init_ppl_imsm,
13121 .validate_ppl = validate_ppl_imsm,
13122
13123 .external = 1,
13124 .swapuuid = 0,
13125 .name = "imsm",
13126
13127 /* for mdmon */
13128 .open_new = imsm_open_new,
13129 .set_array_state= imsm_set_array_state,
13130 .set_disk = imsm_set_disk,
13131 .sync_metadata = imsm_sync_metadata,
13132 .activate_spare = imsm_activate_spare,
13133 .process_update = imsm_process_update,
13134 .prepare_update = imsm_prepare_update,
13135 .record_bad_block = imsm_record_badblock,
13136 .clear_bad_block = imsm_clear_badblock,
13137 .get_bad_blocks = imsm_get_badblocks,
13138 };