]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blobdiff - gdb/rs6000-tdep.c
Add new infrun.h header.
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
index 32cedc048fe749025318ef29e4bf6e7e31b4b145..c4ce51c5430217a923d8f13c23cd5908ad192df7 100644 (file)
@@ -1,14 +1,12 @@
 /* Target-dependent code for GDB, the GNU debugger.
 
-   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
-   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
-   Foundation, Inc.
+   Copyright (C) 1986-2014 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2 of the License, or
+   the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
 
    This program is distributed in the hope that it will be useful,
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 #include "defs.h"
 #include "frame.h"
 #include "inferior.h"
+#include "infrun.h"
 #include "symtab.h"
 #include "target.h"
 #include "gdbcore.h"
 #include "objfiles.h"
 #include "arch-utils.h"
 #include "regcache.h"
+#include "regset.h"
 #include "doublest.h"
 #include "value.h"
 #include "parser-defs.h"
 #include "osabi.h"
+#include "infcall.h"
+#include "sim-regno.h"
+#include "gdb/sim-ppc.h"
+#include "reggroups.h"
+#include "dwarf2-frame.h"
+#include "target-descriptions.h"
+#include "user-regs.h"
 
 #include "libbfd.h"            /* for bfd_default_set_arch_mach */
 #include "coff/internal.h"     /* for libcoff.h */
 #include "libxcoff.h"
 
 #include "elf-bfd.h"
+#include "elf/ppc.h"
+#include "elf/ppc64.h"
 
 #include "solib-svr4.h"
 #include "ppc-tdep.h"
+#include "ppc-ravenscar-thread.h"
 
 #include "gdb_assert.h"
 #include "dis-asm.h"
 
-/* If the kernel has to deliver a signal, it pushes a sigcontext
-   structure on the stack and then calls the signal handler, passing
-   the address of the sigcontext in an argument register. Usually
-   the signal handler doesn't save this register, so we have to
-   access the sigcontext structure via an offset from the signal handler
-   frame.
-   The following constants were determined by experimentation on AIX 3.2.  */
-#define SIG_FRAME_PC_OFFSET 96
-#define SIG_FRAME_LR_OFFSET 108
-#define SIG_FRAME_FP_OFFSET 284
+#include "trad-frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+
+#include "features/rs6000/powerpc-32.c"
+#include "features/rs6000/powerpc-altivec32.c"
+#include "features/rs6000/powerpc-vsx32.c"
+#include "features/rs6000/powerpc-403.c"
+#include "features/rs6000/powerpc-403gc.c"
+#include "features/rs6000/powerpc-405.c"
+#include "features/rs6000/powerpc-505.c"
+#include "features/rs6000/powerpc-601.c"
+#include "features/rs6000/powerpc-602.c"
+#include "features/rs6000/powerpc-603.c"
+#include "features/rs6000/powerpc-604.c"
+#include "features/rs6000/powerpc-64.c"
+#include "features/rs6000/powerpc-altivec64.c"
+#include "features/rs6000/powerpc-vsx64.c"
+#include "features/rs6000/powerpc-7400.c"
+#include "features/rs6000/powerpc-750.c"
+#include "features/rs6000/powerpc-860.c"
+#include "features/rs6000/powerpc-e500.c"
+#include "features/rs6000/rs6000.c"
+
+/* Determine if regnum is an SPE pseudo-register.  */
+#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_ev0_regnum \
+    && (regnum) < (tdep)->ppc_ev0_regnum + 32)
+
+/* Determine if regnum is a decimal float pseudo-register.  */
+#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_dl0_regnum \
+    && (regnum) < (tdep)->ppc_dl0_regnum + 16)
+
+/* Determine if regnum is a POWER7 VSX register.  */
+#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_vsr0_regnum \
+    && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
+
+/* Determine if regnum is a POWER7 Extended FP register.  */
+#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_efpr0_regnum \
+    && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
+
+/* The list of available "set powerpc ..." and "show powerpc ..."
+   commands.  */
+static struct cmd_list_element *setpowerpccmdlist = NULL;
+static struct cmd_list_element *showpowerpccmdlist = NULL;
+
+static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
+
+/* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
+static const char *const powerpc_vector_strings[] =
+{
+  "auto",
+  "generic",
+  "altivec",
+  "spe",
+  NULL
+};
 
-/* To be used by skip_prologue. */
+/* A variable that can be configured by the user.  */
+static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
+static const char *powerpc_vector_abi_string = "auto";
+
+/* To be used by skip_prologue.  */
 
 struct rs6000_framedata
   {
@@ -69,481 +131,1458 @@ struct rs6000_framedata
                                   by which we decrement sp to allocate
                                   the frame */
     int saved_gpr;             /* smallest # of saved gpr */
+    unsigned int gpr_mask;     /* Each bit is an individual saved GPR.  */
     int saved_fpr;             /* smallest # of saved fpr */
     int saved_vr;               /* smallest # of saved vr */
     int saved_ev;               /* smallest # of saved ev */
     int alloca_reg;            /* alloca register number (frame ptr) */
-    char frameless;            /* true if frameless functions. */
-    char nosavedpc;            /* true if pc not saved. */
+    char frameless;            /* true if frameless functions.  */
+    char nosavedpc;            /* true if pc not saved.  */
+    char used_bl;              /* true if link register clobbered */
     int gpr_offset;            /* offset of saved gprs from prev sp */
     int fpr_offset;            /* offset of saved fprs from prev sp */
     int vr_offset;              /* offset of saved vrs from prev sp */
     int ev_offset;              /* offset of saved evs from prev sp */
     int lr_offset;             /* offset of saved lr */
+    int lr_register;           /* register of saved lr, if trustworthy */
     int cr_offset;             /* offset of saved cr */
     int vrsave_offset;          /* offset of saved vrsave register */
   };
 
-/* Description of a single register. */
-
-struct reg
-  {
-    char *name;                        /* name of register */
-    unsigned char sz32;                /* size on 32-bit arch, 0 if nonextant */
-    unsigned char sz64;                /* size on 64-bit arch, 0 if nonextant */
-    unsigned char fpr;         /* whether register is floating-point */
-    unsigned char pseudo;       /* whether register is pseudo */
-  };
-
-/* Breakpoint shadows for the single step instructions will be kept here. */
-
-static struct sstep_breaks
-  {
-    /* Address, or 0 if this is not in use.  */
-    CORE_ADDR address;
-    /* Shadow contents.  */
-    char data[4];
-  }
-stepBreaks[2];
-
-/* Hook for determining the TOC address when calling functions in the
-   inferior under AIX. The initialization code in rs6000-nat.c sets
-   this hook to point to find_toc_address.  */
-
-CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
-
-/* Hook to set the current architecture when starting a child process. 
-   rs6000-nat.c sets this. */
 
-void (*rs6000_set_host_arch_hook) (int) = NULL;
-
-/* Static function prototypes */
-
-static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
-                             CORE_ADDR safety);
-static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
-                                struct rs6000_framedata *);
-static void frame_get_saved_regs (struct frame_info * fi,
-                                 struct rs6000_framedata * fdatap);
-static CORE_ADDR frame_initial_stack_address (struct frame_info *);
+/* Is REGNO a VSX register? Return 1 if so, 0 otherwise.  */
+int
+vsx_register_p (struct gdbarch *gdbarch, int regno)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  if (tdep->ppc_vsr0_regnum < 0)
+    return 0;
+  else
+    return (regno >= tdep->ppc_vsr0_upper_regnum && regno
+           <= tdep->ppc_vsr0_upper_regnum + 31);
+}
 
 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
 int
-altivec_register_p (int regno)
+altivec_register_p (struct gdbarch *gdbarch, int regno)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
   if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
     return 0;
   else
     return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
 }
 
-/* Use the architectures FP registers?  */
+
+/* Return true if REGNO is an SPE register, false otherwise.  */
 int
-ppc_floating_point_unit_p (struct gdbarch *gdbarch)
+spe_register_p (struct gdbarch *gdbarch, int regno)
 {
-  const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
-  if (info->arch == bfd_arch_powerpc)
-    return (info->mach != bfd_mach_ppc_e500);
-  if (info->arch == bfd_arch_rs6000)
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  
+  /* Is it a reference to EV0 -- EV31, and do we have those?  */
+  if (IS_SPE_PSEUDOREG (tdep, regno))
+    return 1;
+
+  /* Is it a reference to one of the raw upper GPR halves?  */
+  if (tdep->ppc_ev0_upper_regnum >= 0
+      && tdep->ppc_ev0_upper_regnum <= regno
+      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
     return 1;
+
+  /* Is it a reference to the 64-bit accumulator, and do we have that?  */
+  if (tdep->ppc_acc_regnum >= 0
+      && tdep->ppc_acc_regnum == regno)
+    return 1;
+
+  /* Is it a reference to the SPE floating-point status and control register,
+     and do we have that?  */
+  if (tdep->ppc_spefscr_regnum >= 0
+      && tdep->ppc_spefscr_regnum == regno)
+    return 1;
+
   return 0;
 }
 
-/* Read a LEN-byte address from debugged memory address MEMADDR. */
 
-static CORE_ADDR
-read_memory_addr (CORE_ADDR memaddr, int len)
+/* Return non-zero if the architecture described by GDBARCH has
+   floating-point registers (f0 --- f31 and fpscr).  */
+int
+ppc_floating_point_unit_p (struct gdbarch *gdbarch)
 {
-  return read_memory_unsigned_integer (memaddr, len);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return (tdep->ppc_fp0_regnum >= 0
+          && tdep->ppc_fpscr_regnum >= 0);
 }
 
-static CORE_ADDR
-rs6000_skip_prologue (CORE_ADDR pc)
+/* Return non-zero if the architecture described by GDBARCH has
+   VSX registers (vsr0 --- vsr63).  */
+static int
+ppc_vsx_support_p (struct gdbarch *gdbarch)
 {
-  struct rs6000_framedata frame;
-  pc = skip_prologue (pc, 0, &frame);
-  return pc;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return tdep->ppc_vsr0_regnum >= 0;
 }
 
+/* Return non-zero if the architecture described by GDBARCH has
+   Altivec registers (vr0 --- vr31, vrsave and vscr).  */
+int
+ppc_altivec_support_p (struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return (tdep->ppc_vr0_regnum >= 0
+          && tdep->ppc_vrsave_regnum >= 0);
+}
 
-/* Fill in fi->saved_regs */
+/* Check that TABLE[GDB_REGNO] is not already initialized, and then
+   set it to SIM_REGNO.
 
-struct frame_extra_info
+   This is a helper function for init_sim_regno_table, constructing
+   the table mapping GDB register numbers to sim register numbers; we
+   initialize every element in that table to -1 before we start
+   filling it in.  */
+static void
+set_sim_regno (int *table, int gdb_regno, int sim_regno)
 {
-  /* Functions calling alloca() change the value of the stack
-     pointer. We need to use initial stack pointer (which is saved in
-     r31 by gcc) in such cases. If a compiler emits traceback table,
-     then we should use the alloca register specified in traceback
-     table. FIXME. */
-  CORE_ADDR initial_sp;                /* initial stack pointer. */
-};
+  /* Make sure we don't try to assign any given GDB register a sim
+     register number more than once.  */
+  gdb_assert (table[gdb_regno] == -1);
+  table[gdb_regno] = sim_regno;
+}
 
-void
-rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
-  struct frame_extra_info *extra_info =
-    frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
-  extra_info->initial_sp = 0;
-  if (get_next_frame (fi) != NULL
-      && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
-    /* We're in get_prev_frame */
-    /* and this is a special signal frame.  */
-    /* (fi->pc will be some low address in the kernel, */
-    /*  to which the signal handler returns).  */
-    deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
-   the addresses of the saved registers of frame described by FRAME_INFO.
-   This includes special registers such as pc and fp saved in special
-   ways in the stack frame.  sp is even more special:
-   the address we return for it IS the sp for the next frame.  */
-
-/* In this implementation for RS/6000, we do *not* save sp. I am
-   not sure if it will be needed. The following function takes care of gpr's
-   and fpr's only. */
 
-void
-rs6000_frame_init_saved_regs (struct frame_info *fi)
+/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
+   numbers to simulator register numbers, based on the values placed
+   in the ARCH->tdep->ppc_foo_regnum members.  */
+static void
+init_sim_regno_table (struct gdbarch *arch)
 {
-  frame_get_saved_regs (fi, NULL);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
+  int total_regs = gdbarch_num_regs (arch);
+  int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
+  int i;
+  static const char *const segment_regs[] = {
+    "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
+    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
+  };
+
+  /* Presume that all registers not explicitly mentioned below are
+     unavailable from the sim.  */
+  for (i = 0; i < total_regs; i++)
+    sim_regno[i] = -1;
+
+  /* General-purpose registers.  */
+  for (i = 0; i < ppc_num_gprs; i++)
+    set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
+  
+  /* Floating-point registers.  */
+  if (tdep->ppc_fp0_regnum >= 0)
+    for (i = 0; i < ppc_num_fprs; i++)
+      set_sim_regno (sim_regno,
+                     tdep->ppc_fp0_regnum + i,
+                     sim_ppc_f0_regnum + i);
+  if (tdep->ppc_fpscr_regnum >= 0)
+    set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
+
+  set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
+  set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
+  set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
+
+  /* Segment registers.  */
+  for (i = 0; i < ppc_num_srs; i++)
+    {
+      int gdb_regno;
+
+      gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
+      if (gdb_regno >= 0)
+       set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
+    }
+
+  /* Altivec registers.  */
+  if (tdep->ppc_vr0_regnum >= 0)
+    {
+      for (i = 0; i < ppc_num_vrs; i++)
+        set_sim_regno (sim_regno,
+                       tdep->ppc_vr0_regnum + i,
+                       sim_ppc_vr0_regnum + i);
+
+      /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
+         we can treat this more like the other cases.  */
+      set_sim_regno (sim_regno,
+                     tdep->ppc_vr0_regnum + ppc_num_vrs,
+                     sim_ppc_vscr_regnum);
+    }
+  /* vsave is a special-purpose register, so the code below handles it.  */
+
+  /* SPE APU (E500) registers.  */
+  if (tdep->ppc_ev0_upper_regnum >= 0)
+    for (i = 0; i < ppc_num_gprs; i++)
+      set_sim_regno (sim_regno,
+                     tdep->ppc_ev0_upper_regnum + i,
+                     sim_ppc_rh0_regnum + i);
+  if (tdep->ppc_acc_regnum >= 0)
+    set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
+  /* spefscr is a special-purpose register, so the code below handles it.  */
+
+#ifdef WITH_SIM
+  /* Now handle all special-purpose registers.  Verify that they
+     haven't mistakenly been assigned numbers by any of the above
+     code.  */
+  for (i = 0; i < sim_ppc_num_sprs; i++)
+    {
+      const char *spr_name = sim_spr_register_name (i);
+      int gdb_regno = -1;
+
+      if (spr_name != NULL)
+       gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
+
+      if (gdb_regno != -1)
+       set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
+    }
+#endif
+
+  /* Drop the initialized array into place.  */
+  tdep->sim_regno = sim_regno;
 }
 
-static CORE_ADDR
-rs6000_frame_args_address (struct frame_info *fi)
+
+/* Given a GDB register number REG, return the corresponding SIM
+   register number.  */
+static int
+rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
 {
-  struct frame_extra_info *extra_info = get_frame_extra_info (fi);
-  if (extra_info->initial_sp != 0)
-    return extra_info->initial_sp;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int sim_regno;
+
+  if (tdep->sim_regno == NULL)
+    init_sim_regno_table (gdbarch);
+
+  gdb_assert (0 <= reg 
+             && reg <= gdbarch_num_regs (gdbarch)
+                       + gdbarch_num_pseudo_regs (gdbarch));
+  sim_regno = tdep->sim_regno[reg];
+
+  if (sim_regno >= 0)
+    return sim_regno;
   else
-    return frame_initial_stack_address (fi);
+    return LEGACY_SIM_REGNO_IGNORE;
 }
 
-/* Immediately after a function call, return the saved pc.
-   Can't go through the frames for this because on some machines
-   the new frame is not set up until the new function executes
-   some instructions.  */
+\f
 
-static CORE_ADDR
-rs6000_saved_pc_after_call (struct frame_info *fi)
-{
-  return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-}
+/* Register set support functions.  */
 
-/* Get the ith function argument for the current function.  */
-static CORE_ADDR
-rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
-                              struct type *type)
+/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
+   Write the register to REGCACHE.  */
+
+void
+ppc_supply_reg (struct regcache *regcache, int regnum, 
+               const gdb_byte *regs, size_t offset, int regsize)
 {
-  CORE_ADDR addr;
-  get_frame_register (frame, 3 + argi, &addr);
-  return addr;
+  if (regnum != -1 && offset != -1)
+    {
+      if (regsize > 4)
+       {
+         struct gdbarch *gdbarch = get_regcache_arch (regcache);
+         int gdb_regsize = register_size (gdbarch, regnum);
+         if (gdb_regsize < regsize
+             && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+           offset += regsize - gdb_regsize;
+       }
+      regcache_raw_supply (regcache, regnum, regs + offset);
+    }
 }
 
-/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
+/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
+   in a field REGSIZE wide.  Zero pad as necessary.  */
 
-static CORE_ADDR
-branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
+void
+ppc_collect_reg (const struct regcache *regcache, int regnum,
+                gdb_byte *regs, size_t offset, int regsize)
 {
-  CORE_ADDR dest;
-  int immediate;
-  int absolute;
-  int ext_op;
-
-  absolute = (int) ((instr >> 1) & 1);
-
-  switch (opcode)
+  if (regnum != -1 && offset != -1)
     {
-    case 18:
-      immediate = ((instr & ~3) << 6) >> 6;    /* br unconditional */
-      if (absolute)
-       dest = immediate;
-      else
-       dest = pc + immediate;
-      break;
+      if (regsize > 4)
+       {
+         struct gdbarch *gdbarch = get_regcache_arch (regcache);
+         int gdb_regsize = register_size (gdbarch, regnum);
+         if (gdb_regsize < regsize)
+           {
+             if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+               {
+                 memset (regs + offset, 0, regsize - gdb_regsize);
+                 offset += regsize - gdb_regsize;
+               }
+             else
+               memset (regs + offset + regsize - gdb_regsize, 0,
+                       regsize - gdb_regsize);
+           }
+       }
+      regcache_raw_collect (regcache, regnum, regs + offset);
+    }
+}
+    
+static int
+ppc_greg_offset (struct gdbarch *gdbarch,
+                struct gdbarch_tdep *tdep,
+                const struct ppc_reg_offsets *offsets,
+                int regnum,
+                int *regsize)
+{
+  *regsize = offsets->gpr_size;
+  if (regnum >= tdep->ppc_gp0_regnum
+      && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
+    return (offsets->r0_offset
+           + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
 
-    case 16:
-      immediate = ((instr & ~3) << 16) >> 16;  /* br conditional */
-      if (absolute)
-       dest = immediate;
-      else
-       dest = pc + immediate;
-      break;
+  if (regnum == gdbarch_pc_regnum (gdbarch))
+    return offsets->pc_offset;
 
-    case 19:
-      ext_op = (instr >> 1) & 0x3ff;
+  if (regnum == tdep->ppc_ps_regnum)
+    return offsets->ps_offset;
 
-      if (ext_op == 16)                /* br conditional register */
-       {
-          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
+  if (regnum == tdep->ppc_lr_regnum)
+    return offsets->lr_offset;
 
-         /* If we are about to return from a signal handler, dest is
-            something like 0x3c90.  The current frame is a signal handler
-            caller frame, upon completion of the sigreturn system call
-            execution will return to the saved PC in the frame.  */
-         if (dest < TEXT_SEGMENT_BASE)
-           {
-             struct frame_info *fi;
+  if (regnum == tdep->ppc_ctr_regnum)
+    return offsets->ctr_offset;
 
-             fi = get_current_frame ();
-             if (fi != NULL)
-               dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
-                                        gdbarch_tdep (current_gdbarch)->wordsize);
-           }
-       }
+  *regsize = offsets->xr_size;
+  if (regnum == tdep->ppc_cr_regnum)
+    return offsets->cr_offset;
 
-      else if (ext_op == 528)  /* br cond to count reg */
-       {
-          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
+  if (regnum == tdep->ppc_xer_regnum)
+    return offsets->xer_offset;
 
-         /* If we are about to execute a system call, dest is something
-            like 0x22fc or 0x3b00.  Upon completion the system call
-            will return to the address in the link register.  */
-         if (dest < TEXT_SEGMENT_BASE)
-            dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
-       }
-      else
-       return -1;
-      break;
+  if (regnum == tdep->ppc_mq_regnum)
+    return offsets->mq_offset;
 
-    default:
-      return -1;
-    }
-  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
+  return -1;
 }
 
+static int
+ppc_fpreg_offset (struct gdbarch_tdep *tdep,
+                 const struct ppc_reg_offsets *offsets,
+                 int regnum)
+{
+  if (regnum >= tdep->ppc_fp0_regnum
+      && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
+    return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
+
+  if (regnum == tdep->ppc_fpscr_regnum)
+    return offsets->fpscr_offset;
 
-/* Sequence of bytes for breakpoint instruction.  */
+  return -1;
+}
 
-const static unsigned char *
-rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
+static int
+ppc_vrreg_offset (struct gdbarch_tdep *tdep,
+                 const struct ppc_reg_offsets *offsets,
+                 int regnum)
 {
-  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
-  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
-  *bp_size = 4;
-  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-    return big_breakpoint;
-  else
-    return little_breakpoint;
+  if (regnum >= tdep->ppc_vr0_regnum
+      && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
+    return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
+
+  if (regnum == tdep->ppc_vrsave_regnum - 1)
+    return offsets->vscr_offset;
+
+  if (regnum == tdep->ppc_vrsave_regnum)
+    return offsets->vrsave_offset;
+
+  return -1;
 }
 
+/* Supply register REGNUM in the general-purpose register set REGSET
+   from the buffer specified by GREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
+
+void
+ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
+                   int regnum, const void *gregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  const struct ppc_reg_offsets *offsets = regset->descr;
+  size_t offset;
+  int regsize;
+
+  if (regnum == -1)
+    {
+      int i;
+      int gpr_size = offsets->gpr_size;
+
+      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
+          i < tdep->ppc_gp0_regnum + ppc_num_gprs;
+          i++, offset += gpr_size)
+       ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
+
+      ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
+                     gregs, offsets->pc_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
+                     gregs, offsets->ps_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
+                     gregs, offsets->lr_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
+                     gregs, offsets->ctr_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
+                     gregs, offsets->cr_offset, offsets->xr_size);
+      ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
+                     gregs, offsets->xer_offset, offsets->xr_size);
+      ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
+                     gregs, offsets->mq_offset, offsets->xr_size);
+      return;
+    }
+
+  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
+  ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
+}
 
-/* AIX does not support PT_STEP. Simulate it. */
+/* Supply register REGNUM in the floating-point register set REGSET
+   from the buffer specified by FPREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
 
 void
-rs6000_software_single_step (enum target_signal signal,
-                            int insert_breakpoints_p)
+ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *fpregs, size_t len)
 {
-  CORE_ADDR dummy;
-  int breakp_sz;
-  const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
-  int ii, insn;
-  CORE_ADDR loc;
-  CORE_ADDR breaks[2];
-  int opcode;
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_floating_point_unit_p (gdbarch))
+    return;
 
-  if (insert_breakpoints_p)
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
     {
+      int i;
 
-      loc = read_pc ();
+      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
+          i < tdep->ppc_fp0_regnum + ppc_num_fprs;
+          i++, offset += 8)
+       ppc_supply_reg (regcache, i, fpregs, offset, 8);
 
-      insn = read_memory_integer (loc, 4);
+      ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
+                     fpregs, offsets->fpscr_offset, offsets->fpscr_size);
+      return;
+    }
 
-      breaks[0] = loc + breakp_sz;
-      opcode = insn >> 26;
-      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
+  offset = ppc_fpreg_offset (tdep, offsets, regnum);
+  ppc_supply_reg (regcache, regnum, fpregs, offset,
+                 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
+}
 
-      /* Don't put two breakpoints on the same address. */
-      if (breaks[1] == breaks[0])
-       breaks[1] = -1;
+/* Supply register REGNUM in the VSX register set REGSET
+   from the buffer specified by VSXREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
 
-      stepBreaks[1].address = 0;
+void
+ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *vsxregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
 
-      for (ii = 0; ii < 2; ++ii)
-       {
+  if (!ppc_vsx_support_p (gdbarch))
+    return;
 
-         /* ignore invalid breakpoint. */
-         if (breaks[ii] == -1)
-           continue;
-         target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
-         stepBreaks[ii].address = breaks[ii];
-       }
+  tdep = gdbarch_tdep (gdbarch);
 
-    }
-  else
+  if (regnum == -1)
     {
+      int i;
 
-      /* remove step breakpoints. */
-      for (ii = 0; ii < 2; ++ii)
-       if (stepBreaks[ii].address != 0)
-         target_remove_breakpoint (stepBreaks[ii].address,
-                                   stepBreaks[ii].data);
+      for (i = tdep->ppc_vsr0_upper_regnum;
+          i < tdep->ppc_vsr0_upper_regnum + 32;
+          i++)
+       ppc_supply_reg (regcache, i, vsxregs, 0, 8);
+
+      return;
     }
-  errno = 0;                   /* FIXME, don't ignore errors! */
-  /* What errors?  {read,write}_memory call error().  */
+  else
+    ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
 }
 
+/* Supply register REGNUM in the Altivec register set REGSET
+   from the buffer specified by VRREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
 
-/* return pc value after skipping a function prologue and also return
-   information about a function frame.
+void
+ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *vrregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
 
-   in struct rs6000_framedata fdata:
-   - frameless is TRUE, if function does not have a frame.
-   - nosavedpc is TRUE, if function does not save %pc value in its frame.
-   - offset is the initial size of this stack frame --- the amount by
-   which we decrement the sp to allocate the frame.
-   - saved_gpr is the number of the first saved gpr.
-   - saved_fpr is the number of the first saved fpr.
-   - saved_vr is the number of the first saved vr.
-   - saved_ev is the number of the first saved ev.
-   - alloca_reg is the number of the register used for alloca() handling.
-   Otherwise -1.
-   - gpr_offset is the offset of the first saved gpr from the previous frame.
-   - fpr_offset is the offset of the first saved fpr from the previous frame.
-   - vr_offset is the offset of the first saved vr from the previous frame.
-   - ev_offset is the offset of the first saved ev from the previous frame.
-   - lr_offset is the offset of the saved lr
-   - cr_offset is the offset of the saved cr
-   - vrsave_offset is the offset of the saved vrsave register
- */
+  if (!ppc_altivec_support_p (gdbarch))
+    return;
 
-#define SIGNED_SHORT(x)                                                \
-  ((sizeof (short) == 2)                                               \
-   ? ((int)(short)(x))                                                 \
-   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
+    {
+      int i;
 
-#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
+      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
+          i < tdep->ppc_vr0_regnum + ppc_num_vrs;
+          i++, offset += 16)
+        ppc_supply_reg (regcache, i, vrregs, offset, 16);
 
-/* Limit the number of skipped non-prologue instructions, as the examining
-   of the prologue is expensive.  */
-static int max_skip_non_prologue_insns = 10;
+      ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
+                     vrregs, offsets->vscr_offset, 4);
 
-/* Given PC representing the starting address of a function, and
-   LIM_PC which is the (sloppy) limit to which to scan when looking
-   for a prologue, attempt to further refine this limit by using
-   the line data in the symbol table.  If successful, a better guess
-   on where the prologue ends is returned, otherwise the previous
-   value of lim_pc is returned.  */
-static CORE_ADDR
-refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
+      ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
+                     vrregs, offsets->vrsave_offset, 4);
+      return;
+    }
+
+  offset = ppc_vrreg_offset (tdep, offsets, regnum);
+  if (regnum != tdep->ppc_vrsave_regnum
+      && regnum != tdep->ppc_vrsave_regnum - 1)
+    ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
+  else
+    ppc_supply_reg (regcache, regnum,
+                   vrregs, offset, 4);
+}
+
+/* Collect register REGNUM in the general-purpose register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   GREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
+
+void
+ppc_collect_gregset (const struct regset *regset,
+                    const struct regcache *regcache,
+                    int regnum, void *gregs, size_t len)
 {
-  struct symtab_and_line prologue_sal;
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  const struct ppc_reg_offsets *offsets = regset->descr;
+  size_t offset;
+  int regsize;
 
-  prologue_sal = find_pc_line (pc, 0);
-  if (prologue_sal.line != 0)
+  if (regnum == -1)
     {
       int i;
-      CORE_ADDR addr = prologue_sal.end;
-
-      /* Handle the case in which compiler's optimizer/scheduler
-         has moved instructions into the prologue.  We scan ahead
-        in the function looking for address ranges whose corresponding
-        line number is less than or equal to the first one that we
-        found for the function.  (It can be less than when the
-        scheduler puts a body instruction before the first prologue
-        instruction.)  */
-      for (i = 2 * max_skip_non_prologue_insns; 
-           i > 0 && (lim_pc == 0 || addr < lim_pc);
-          i--)
-        {
-         struct symtab_and_line sal;
-
-         sal = find_pc_line (addr, 0);
-         if (sal.line == 0)
-           break;
-         if (sal.line <= prologue_sal.line 
-             && sal.symtab == prologue_sal.symtab)
-           {
-             prologue_sal = sal;
-           }
-         addr = sal.end;
-       }
-
-      if (lim_pc == 0 || prologue_sal.end < lim_pc)
-       lim_pc = prologue_sal.end;
+      int gpr_size = offsets->gpr_size;
+
+      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
+          i < tdep->ppc_gp0_regnum + ppc_num_gprs;
+          i++, offset += gpr_size)
+       ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
+
+      ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
+                      gregs, offsets->pc_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
+                      gregs, offsets->ps_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
+                      gregs, offsets->lr_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
+                      gregs, offsets->ctr_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
+                      gregs, offsets->cr_offset, offsets->xr_size);
+      ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
+                      gregs, offsets->xer_offset, offsets->xr_size);
+      ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
+                      gregs, offsets->mq_offset, offsets->xr_size);
+      return;
     }
-  return lim_pc;
+
+  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
+  ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
 }
 
+/* Collect register REGNUM in the floating-point register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   FPREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
 
-static CORE_ADDR
-skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
+void
+ppc_collect_fpregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *fpregs, size_t len)
 {
-  CORE_ADDR orig_pc = pc;
-  CORE_ADDR last_prologue_pc = pc;
-  CORE_ADDR li_found_pc = 0;
-  char buf[4];
-  unsigned long op;
-  long offset = 0;
-  long vr_saved_offset = 0;
-  int lr_reg = -1;
-  int cr_reg = -1;
-  int vr_reg = -1;
-  int ev_reg = -1;
-  long ev_offset = 0;
-  int vrsave_reg = -1;
-  int reg;
-  int framep = 0;
-  int minimal_toc_loaded = 0;
-  int prev_insn_was_prologue_insn = 1;
-  int num_skip_non_prologue_insns = 0;
-  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  
-  /* Attempt to find the end of the prologue when no limit is specified.
-     Note that refine_prologue_limit() has been written so that it may
-     be used to "refine" the limits of non-zero PC values too, but this
-     is only safe if we 1) trust the line information provided by the
-     compiler and 2) iterate enough to actually find the end of the
-     prologue.  
-     
-     It may become a good idea at some point (for both performance and
-     accuracy) to unconditionally call refine_prologue_limit().  But,
-     until we can make a clear determination that this is beneficial,
-     we'll play it safe and only use it to obtain a limit when none
-     has been specified.  */
-  if (lim_pc == 0)
-    lim_pc = refine_prologue_limit (pc, lim_pc);
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
 
-  memset (fdata, 0, sizeof (struct rs6000_framedata));
-  fdata->saved_gpr = -1;
-  fdata->saved_fpr = -1;
-  fdata->saved_vr = -1;
-  fdata->saved_ev = -1;
-  fdata->alloca_reg = -1;
-  fdata->frameless = 1;
-  fdata->nosavedpc = 1;
+  if (!ppc_floating_point_unit_p (gdbarch))
+    return;
 
-  for (;; pc += 4)
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
     {
-      /* Sometimes it isn't clear if an instruction is a prologue
-         instruction or not.  When we encounter one of these ambiguous
-        cases, we'll set prev_insn_was_prologue_insn to 0 (false).
-        Otherwise, we'll assume that it really is a prologue instruction. */
-      if (prev_insn_was_prologue_insn)
-       last_prologue_pc = pc;
+      int i;
 
-      /* Stop scanning if we've hit the limit.  */
-      if (lim_pc != 0 && pc >= lim_pc)
-       break;
+      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
+          i < tdep->ppc_fp0_regnum + ppc_num_fprs;
+          i++, offset += 8)
+       ppc_collect_reg (regcache, i, fpregs, offset, 8);
 
-      prev_insn_was_prologue_insn = 1;
+      ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
+                      fpregs, offsets->fpscr_offset, offsets->fpscr_size);
+      return;
+    }
 
-      /* Fetch the instruction and convert it to an integer.  */
-      if (target_read_memory (pc, buf, 4))
-       break;
-      op = extract_signed_integer (buf, 4);
+  offset = ppc_fpreg_offset (tdep, offsets, regnum);
+  ppc_collect_reg (regcache, regnum, fpregs, offset,
+                  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
+}
+
+/* Collect register REGNUM in the VSX register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   VSXREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
+
+void
+ppc_collect_vsxregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *vsxregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+
+  if (!ppc_vsx_support_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_vsr0_upper_regnum;
+          i < tdep->ppc_vsr0_upper_regnum + 32;
+          i++)
+       ppc_collect_reg (regcache, i, vsxregs, 0, 8);
+
+      return;
+    }
+  else
+    ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
+}
+
+
+/* Collect register REGNUM in the Altivec register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   VRREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
+
+void
+ppc_collect_vrregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *vrregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_altivec_support_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
+          i < tdep->ppc_vr0_regnum + ppc_num_vrs;
+          i++, offset += 16)
+       ppc_collect_reg (regcache, i, vrregs, offset, 16);
+
+      ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
+                      vrregs, offsets->vscr_offset, 4);
+
+      ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
+                      vrregs, offsets->vrsave_offset, 4);
+      return;
+    }
+
+  offset = ppc_vrreg_offset (tdep, offsets, regnum);
+  if (regnum != tdep->ppc_vrsave_regnum
+      && regnum != tdep->ppc_vrsave_regnum - 1)
+    ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
+  else
+    ppc_collect_reg (regcache, regnum,
+                   vrregs, offset, 4);
+}
+\f
+
+static int
+insn_changes_sp_or_jumps (unsigned long insn)
+{
+  int opcode = (insn >> 26) & 0x03f;
+  int sd = (insn >> 21) & 0x01f;
+  int a = (insn >> 16) & 0x01f;
+  int subcode = (insn >> 1) & 0x3ff;
+
+  /* Changes the stack pointer.  */
+
+  /* NOTE: There are many ways to change the value of a given register.
+           The ways below are those used when the register is R1, the SP,
+           in a funtion's epilogue.  */
+
+  if (opcode == 31 && subcode == 444 && a == 1)
+    return 1;  /* mr R1,Rn */
+  if (opcode == 14 && sd == 1)
+    return 1;  /* addi R1,Rn,simm */
+  if (opcode == 58 && sd == 1)
+    return 1;  /* ld R1,ds(Rn) */
+
+  /* Transfers control.  */
+
+  if (opcode == 18)
+    return 1;  /* b */
+  if (opcode == 16)
+    return 1;  /* bc */
+  if (opcode == 19 && subcode == 16)
+    return 1;  /* bclr */
+  if (opcode == 19 && subcode == 528)
+    return 1;  /* bcctr */
+
+  return 0;
+}
+
+/* Return true if we are in the function's epilogue, i.e. after the
+   instruction that destroyed the function's stack frame.
+
+   1) scan forward from the point of execution:
+       a) If you find an instruction that modifies the stack pointer
+          or transfers control (except a return), execution is not in
+          an epilogue, return.
+       b) Stop scanning if you find a return instruction or reach the
+          end of the function or reach the hard limit for the size of
+          an epilogue.
+   2) scan backward from the point of execution:
+        a) If you find an instruction that modifies the stack pointer,
+            execution *is* in an epilogue, return.
+        b) Stop scanning if you reach an instruction that transfers
+           control or the beginning of the function or reach the hard
+           limit for the size of an epilogue.  */
+
+static int
+rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  bfd_byte insn_buf[PPC_INSN_SIZE];
+  CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
+  unsigned long insn;
+  struct frame_info *curfrm;
+
+  /* Find the search limits based on function boundaries and hard limit.  */
+
+  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
+    return 0;
+
+  epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
+  if (epilogue_start < func_start) epilogue_start = func_start;
+
+  epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
+  if (epilogue_end > func_end) epilogue_end = func_end;
+
+  curfrm = get_current_frame ();
+
+  /* Scan forward until next 'blr'.  */
+
+  for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
+    {
+      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
+        return 0;
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
+      if (insn == 0x4e800020)
+        break;
+      /* Assume a bctr is a tail call unless it points strictly within
+        this function.  */
+      if (insn == 0x4e800420)
+       {
+         CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
+                                                      tdep->ppc_ctr_regnum);
+         if (ctr > func_start && ctr < func_end)
+           return 0;
+         else
+           break;
+       }
+      if (insn_changes_sp_or_jumps (insn))
+        return 0;
+    }
+
+  /* Scan backward until adjustment to stack pointer (R1).  */
+
+  for (scan_pc = pc - PPC_INSN_SIZE;
+       scan_pc >= epilogue_start;
+       scan_pc -= PPC_INSN_SIZE)
+    {
+      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
+        return 0;
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
+      if (insn_changes_sp_or_jumps (insn))
+        return 1;
+    }
+
+  return 0;
+}
+
+/* Get the ith function argument for the current function.  */
+static CORE_ADDR
+rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
+                              struct type *type)
+{
+  return get_frame_register_unsigned (frame, 3 + argi);
+}
+
+/* Sequence of bytes for breakpoint instruction.  */
+
+static const unsigned char *
+rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
+                          int *bp_size)
+{
+  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
+  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
+  *bp_size = 4;
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+    return big_breakpoint;
+  else
+    return little_breakpoint;
+}
+
+/* Instruction masks for displaced stepping.  */
+#define BRANCH_MASK 0xfc000000
+#define BP_MASK 0xFC0007FE
+#define B_INSN 0x48000000
+#define BC_INSN 0x40000000
+#define BXL_INSN 0x4c000000
+#define BP_INSN 0x7C000008
+
+/* Fix up the state of registers and memory after having single-stepped
+   a displaced instruction.  */
+static void
+ppc_displaced_step_fixup (struct gdbarch *gdbarch,
+                         struct displaced_step_closure *closure,
+                         CORE_ADDR from, CORE_ADDR to,
+                         struct regcache *regs)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  /* Since we use simple_displaced_step_copy_insn, our closure is a
+     copy of the instruction.  */
+  ULONGEST insn  = extract_unsigned_integer ((gdb_byte *) closure,
+                                             PPC_INSN_SIZE, byte_order);
+  ULONGEST opcode = 0;
+  /* Offset for non PC-relative instructions.  */
+  LONGEST offset = PPC_INSN_SIZE;
+
+  opcode = insn & BRANCH_MASK;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: (ppc) fixup (%s, %s)\n",
+                       paddress (gdbarch, from), paddress (gdbarch, to));
+
+
+  /* Handle PC-relative branch instructions.  */
+  if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
+    {
+      ULONGEST current_pc;
+
+      /* Read the current PC value after the instruction has been executed
+        in a displaced location.  Calculate the offset to be applied to the
+        original PC value before the displaced stepping.  */
+      regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                     &current_pc);
+      offset = current_pc - to;
+
+      if (opcode != BXL_INSN)
+       {
+         /* Check for AA bit indicating whether this is an absolute
+            addressing or PC-relative (1: absolute, 0: relative).  */
+         if (!(insn & 0x2))
+           {
+             /* PC-relative addressing is being used in the branch.  */
+             if (debug_displaced)
+               fprintf_unfiltered
+                 (gdb_stdlog,
+                  "displaced: (ppc) branch instruction: %s\n"
+                  "displaced: (ppc) adjusted PC from %s to %s\n",
+                  paddress (gdbarch, insn), paddress (gdbarch, current_pc),
+                  paddress (gdbarch, from + offset));
+
+             regcache_cooked_write_unsigned (regs,
+                                             gdbarch_pc_regnum (gdbarch),
+                                             from + offset);
+           }
+       }
+      else
+       {
+         /* If we're here, it means we have a branch to LR or CTR.  If the
+            branch was taken, the offset is probably greater than 4 (the next
+            instruction), so it's safe to assume that an offset of 4 means we
+            did not take the branch.  */
+         if (offset == PPC_INSN_SIZE)
+           regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                           from + PPC_INSN_SIZE);
+       }
+
+      /* Check for LK bit indicating whether we should set the link
+        register to point to the next instruction
+        (1: Set, 0: Don't set).  */
+      if (insn & 0x1)
+       {
+         /* Link register needs to be set to the next instruction's PC.  */
+         regcache_cooked_write_unsigned (regs,
+                                         gdbarch_tdep (gdbarch)->ppc_lr_regnum,
+                                         from + PPC_INSN_SIZE);
+         if (debug_displaced)
+               fprintf_unfiltered (gdb_stdlog,
+                                   "displaced: (ppc) adjusted LR to %s\n",
+                                   paddress (gdbarch, from + PPC_INSN_SIZE));
+
+       }
+    }
+  /* Check for breakpoints in the inferior.  If we've found one, place the PC
+     right at the breakpoint instruction.  */
+  else if ((insn & BP_MASK) == BP_INSN)
+    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
+  else
+  /* Handle any other instructions that do not fit in the categories above.  */
+    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                   from + offset);
+}
+
+/* Always use hardware single-stepping to execute the
+   displaced instruction.  */
+static int
+ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
+                                 struct displaced_step_closure *closure)
+{
+  return 1;
+}
+
+/* Instruction masks used during single-stepping of atomic sequences.  */
+#define LWARX_MASK 0xfc0007fe
+#define LWARX_INSTRUCTION 0x7c000028
+#define LDARX_INSTRUCTION 0x7c0000A8
+#define STWCX_MASK 0xfc0007ff
+#define STWCX_INSTRUCTION 0x7c00012d
+#define STDCX_INSTRUCTION 0x7c0001ad
+
+/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
+   instruction and ending with a STWCX/STDCX instruction.  If such a sequence
+   is found, attempt to step through it.  A breakpoint is placed at the end of 
+   the sequence.  */
+
+int 
+ppc_deal_with_atomic_sequence (struct frame_info *frame)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct address_space *aspace = get_frame_address_space (frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  CORE_ADDR pc = get_frame_pc (frame);
+  CORE_ADDR breaks[2] = {-1, -1};
+  CORE_ADDR loc = pc;
+  CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
+  int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
+  int insn_count;
+  int index;
+  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
+  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
+  int opcode; /* Branch instruction's OPcode.  */
+  int bc_insn_count = 0; /* Conditional branch instruction count.  */
+
+  /* Assume all atomic sequences start with a lwarx/ldarx instruction.  */
+  if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
+      && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
+    return 0;
+
+  /* Assume that no atomic sequence is longer than "atomic_sequence_length" 
+     instructions.  */
+  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
+    {
+      loc += PPC_INSN_SIZE;
+      insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
+
+      /* Assume that there is at most one conditional branch in the atomic
+         sequence.  If a conditional branch is found, put a breakpoint in 
+         its destination address.  */
+      if ((insn & BRANCH_MASK) == BC_INSN)
+        {
+          int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
+          int absolute = insn & 2;
+
+          if (bc_insn_count >= 1)
+            return 0; /* More than one conditional branch found, fallback 
+                         to the standard single-step code.  */
+         if (absolute)
+           breaks[1] = immediate;
+         else
+           breaks[1] = loc + immediate;
+
+         bc_insn_count++;
+         last_breakpoint++;
+        }
+
+      if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
+          || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
+        break;
+    }
+
+  /* Assume that the atomic sequence ends with a stwcx/stdcx instruction.  */
+  if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
+      && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
+    return 0;
+
+  closing_insn = loc;
+  loc += PPC_INSN_SIZE;
+  insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
+
+  /* Insert a breakpoint right after the end of the atomic sequence.  */
+  breaks[0] = loc;
+
+  /* Check for duplicated breakpoints.  Check also for a breakpoint
+     placed (branch instruction's destination) anywhere in sequence.  */
+  if (last_breakpoint
+      && (breaks[1] == breaks[0]
+         || (breaks[1] >= pc && breaks[1] <= closing_insn)))
+    last_breakpoint = 0;
+
+  /* Effectively inserts the breakpoints.  */
+  for (index = 0; index <= last_breakpoint; index++)
+    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
+
+  return 1;
+}
+
+
+#define SIGNED_SHORT(x)                                                \
+  ((sizeof (short) == 2)                                               \
+   ? ((int)(short)(x))                                                 \
+   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
+
+#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
+
+/* Limit the number of skipped non-prologue instructions, as the examining
+   of the prologue is expensive.  */
+static int max_skip_non_prologue_insns = 10;
+
+/* Return nonzero if the given instruction OP can be part of the prologue
+   of a function and saves a parameter on the stack.  FRAMEP should be
+   set if one of the previous instructions in the function has set the
+   Frame Pointer.  */
+
+static int
+store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
+{
+  /* Move parameters from argument registers to temporary register.  */
+  if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
+    {
+      /* Rx must be scratch register r0.  */
+      const int rx_regno = (op >> 16) & 31;
+      /* Ry: Only r3 - r10 are used for parameter passing.  */
+      const int ry_regno = GET_SRC_REG (op);
+
+      if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
+        {
+          *r0_contains_arg = 1;
+          return 1;
+        }
+      else
+        return 0;
+    }
+
+  /* Save a General Purpose Register on stack.  */
+
+  if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
+      (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
+    {
+      /* Rx: Only r3 - r10 are used for parameter passing.  */
+      const int rx_regno = GET_SRC_REG (op);
+
+      return (rx_regno >= 3 && rx_regno <= 10);
+    }
+           
+  /* Save a General Purpose Register on stack via the Frame Pointer.  */
+
+  if (framep &&
+      ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
+       (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
+       (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
+    {
+      /* Rx: Usually, only r3 - r10 are used for parameter passing.
+         However, the compiler sometimes uses r0 to hold an argument.  */
+      const int rx_regno = GET_SRC_REG (op);
+
+      return ((rx_regno >= 3 && rx_regno <= 10)
+              || (rx_regno == 0 && *r0_contains_arg));
+    }
+
+  if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
+    {
+      /* Only f2 - f8 are used for parameter passing.  */
+      const int src_regno = GET_SRC_REG (op);
+
+      return (src_regno >= 2 && src_regno <= 8);
+    }
+
+  if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
+    {
+      /* Only f2 - f8 are used for parameter passing.  */
+      const int src_regno = GET_SRC_REG (op);
+
+      return (src_regno >= 2 && src_regno <= 8);
+    }
+
+  /* Not an insn that saves a parameter on stack.  */
+  return 0;
+}
+
+/* Assuming that INSN is a "bl" instruction located at PC, return
+   nonzero if the destination of the branch is a "blrl" instruction.
+   
+   This sequence is sometimes found in certain function prologues.
+   It allows the function to load the LR register with a value that
+   they can use to access PIC data using PC-relative offsets.  */
+
+static int
+bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
+{
+  CORE_ADDR dest;
+  int immediate;
+  int absolute;
+  int dest_insn;
+
+  absolute = (int) ((insn >> 1) & 1);
+  immediate = ((insn & ~3) << 6) >> 6;
+  if (absolute)
+    dest = immediate;
+  else
+    dest = pc + immediate;
+
+  dest_insn = read_memory_integer (dest, 4, byte_order);
+  if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
+    return 1;
+
+  return 0;
+}
+
+/* Masks for decoding a branch-and-link (bl) instruction.
+
+   BL_MASK and BL_INSTRUCTION are used in combination with each other.
+   The former is anded with the opcode in question; if the result of
+   this masking operation is equal to BL_INSTRUCTION, then the opcode in
+   question is a ``bl'' instruction.
+   
+   BL_DISPLACMENT_MASK is anded with the opcode in order to extract
+   the branch displacement.  */
+
+#define BL_MASK 0xfc000001
+#define BL_INSTRUCTION 0x48000001
+#define BL_DISPLACEMENT_MASK 0x03fffffc
+
+static unsigned long
+rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  gdb_byte buf[4];
+  unsigned long op;
+
+  /* Fetch the instruction and convert it to an integer.  */
+  if (target_read_memory (pc, buf, 4))
+    return 0;
+  op = extract_unsigned_integer (buf, 4, byte_order);
+
+  return op;
+}
+
+/* GCC generates several well-known sequences of instructions at the begining
+   of each function prologue when compiling with -fstack-check.  If one of
+   such sequences starts at START_PC, then return the address of the
+   instruction immediately past this sequence.  Otherwise, return START_PC.  */
+   
+static CORE_ADDR
+rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
+{
+  CORE_ADDR pc = start_pc;
+  unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
+
+  /* First possible sequence: A small number of probes.
+         stw 0, -<some immediate>(1)
+         [repeat this instruction any (small) number of times].  */
+  
+  if ((op & 0xffff0000) == 0x90010000)
+    {
+      while ((op & 0xffff0000) == 0x90010000)
+        {
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+        }
+      return pc;
+    }
+
+  /* Second sequence: A probing loop.
+         addi 12,1,-<some immediate>
+         lis 0,-<some immediate>
+         [possibly ori 0,0,<some immediate>]
+         add 0,12,0
+         cmpw 0,12,0
+         beq 0,<disp>
+         addi 12,12,-<some immediate>
+         stw 0,0(12)
+         b <disp>
+         [possibly one last probe: stw 0,<some immediate>(12)].  */
+
+  while (1)
+    {
+      /* addi 12,1,-<some immediate> */
+      if ((op & 0xffff0000) != 0x39810000)
+        break;
+
+      /* lis 0,-<some immediate> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x3c000000)
+        break;
+
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      /* [possibly ori 0,0,<some immediate>] */
+      if ((op & 0xffff0000) == 0x60000000)
+        {
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+        }
+      /* add 0,12,0 */
+      if (op != 0x7c0c0214)
+        break;
+
+      /* cmpw 0,12,0 */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if (op != 0x7c0c0000)
+        break;
+
+      /* beq 0,<disp> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xff9f0001) != 0x41820000)
+        break;
+
+      /* addi 12,12,-<some immediate> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x398c0000)
+        break;
+
+      /* stw 0,0(12) */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if (op != 0x900c0000)
+        break;
+
+      /* b <disp> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xfc000001) != 0x48000000)
+        break;
+
+      /* [possibly one last probe: stw 0,<some immediate>(12)].  */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) == 0x900c0000)
+        {
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+        }
+
+      /* We found a valid stack-check sequence, return the new PC.  */
+      return pc;
+    }
+
+  /* Third sequence: No probe; instead, a comparizon between the stack size
+     limit (saved in a run-time global variable) and the current stack
+     pointer:
+
+        addi 0,1,-<some immediate>
+        lis 12,__gnat_stack_limit@ha
+        lwz 12,__gnat_stack_limit@l(12)
+        twllt 0,12
+
+     or, with a small variant in the case of a bigger stack frame:
+        addis 0,1,<some immediate>
+        addic 0,0,-<some immediate>
+        lis 12,__gnat_stack_limit@ha
+        lwz 12,__gnat_stack_limit@l(12)
+        twllt 0,12
+  */
+  while (1)
+    {
+      /* addi 0,1,-<some immediate> */
+      if ((op & 0xffff0000) != 0x38010000)
+        {
+          /* small stack frame variant not recognized; try the
+             big stack frame variant: */
+
+          /* addis 0,1,<some immediate> */
+          if ((op & 0xffff0000) != 0x3c010000)
+            break;
+
+          /* addic 0,0,-<some immediate> */
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+          if ((op & 0xffff0000) != 0x30000000)
+            break;
+        }
+
+      /* lis 12,<some immediate> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x3d800000)
+        break;
+      
+      /* lwz 12,<some immediate>(12) */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x818c0000)
+        break;
+
+      /* twllt 0,12 */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xfffffffe) != 0x7c406008)
+        break;
+
+      /* We found a valid stack-check sequence, return the new PC.  */
+      return pc;
+    }
+
+  /* No stack check code in our prologue, return the start_pc.  */
+  return start_pc;
+}
+
+/* return pc value after skipping a function prologue and also return
+   information about a function frame.
+
+   in struct rs6000_framedata fdata:
+   - frameless is TRUE, if function does not have a frame.
+   - nosavedpc is TRUE, if function does not save %pc value in its frame.
+   - offset is the initial size of this stack frame --- the amount by
+   which we decrement the sp to allocate the frame.
+   - saved_gpr is the number of the first saved gpr.
+   - saved_fpr is the number of the first saved fpr.
+   - saved_vr is the number of the first saved vr.
+   - saved_ev is the number of the first saved ev.
+   - alloca_reg is the number of the register used for alloca() handling.
+   Otherwise -1.
+   - gpr_offset is the offset of the first saved gpr from the previous frame.
+   - fpr_offset is the offset of the first saved fpr from the previous frame.
+   - vr_offset is the offset of the first saved vr from the previous frame.
+   - ev_offset is the offset of the first saved ev from the previous frame.
+   - lr_offset is the offset of the saved lr
+   - cr_offset is the offset of the saved cr
+   - vrsave_offset is the offset of the saved vrsave register.  */
+
+static CORE_ADDR
+skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
+              struct rs6000_framedata *fdata)
+{
+  CORE_ADDR orig_pc = pc;
+  CORE_ADDR last_prologue_pc = pc;
+  CORE_ADDR li_found_pc = 0;
+  gdb_byte buf[4];
+  unsigned long op;
+  long offset = 0;
+  long vr_saved_offset = 0;
+  int lr_reg = -1;
+  int cr_reg = -1;
+  int vr_reg = -1;
+  int ev_reg = -1;
+  long ev_offset = 0;
+  int vrsave_reg = -1;
+  int reg;
+  int framep = 0;
+  int minimal_toc_loaded = 0;
+  int prev_insn_was_prologue_insn = 1;
+  int num_skip_non_prologue_insns = 0;
+  int r0_contains_arg = 0;
+  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  memset (fdata, 0, sizeof (struct rs6000_framedata));
+  fdata->saved_gpr = -1;
+  fdata->saved_fpr = -1;
+  fdata->saved_vr = -1;
+  fdata->saved_ev = -1;
+  fdata->alloca_reg = -1;
+  fdata->frameless = 1;
+  fdata->nosavedpc = 1;
+  fdata->lr_register = -1;
+
+  pc = rs6000_skip_stack_check (gdbarch, pc);
+  if (pc >= lim_pc)
+    pc = lim_pc;
+
+  for (;; pc += 4)
+    {
+      /* Sometimes it isn't clear if an instruction is a prologue
+         instruction or not.  When we encounter one of these ambiguous
+        cases, we'll set prev_insn_was_prologue_insn to 0 (false).
+        Otherwise, we'll assume that it really is a prologue instruction.  */
+      if (prev_insn_was_prologue_insn)
+       last_prologue_pc = pc;
+
+      /* Stop scanning if we've hit the limit.  */
+      if (pc >= lim_pc)
+       break;
+
+      prev_insn_was_prologue_insn = 1;
+
+      /* Fetch the instruction and convert it to an integer.  */
+      if (target_read_memory (pc, buf, 4))
+       break;
+      op = extract_unsigned_integer (buf, 4, byte_order);
 
       if ((op & 0xfc1fffff) == 0x7c0802a6)
        {                       /* mflr Rx */
-         lr_reg = (op & 0x03e00000);
+         /* Since shared library / PIC code, which needs to get its
+            address at runtime, can appear to save more than one link
+            register vis:
+
+            *INDENT-OFF*
+            stwu r1,-304(r1)
+            mflr r3
+            bl 0xff570d0 (blrl)
+            stw r30,296(r1)
+            mflr r30
+            stw r31,300(r1)
+            stw r3,308(r1);
+            ...
+            *INDENT-ON*
+
+            remember just the first one, but skip over additional
+            ones.  */
+         if (lr_reg == -1)
+           lr_reg = (op & 0x03e00000) >> 21;
+          if (lr_reg == 0)
+            r0_contains_arg = 0;
          continue;
-
        }
       else if ((op & 0xfc1fffff) == 0x7c000026)
        {                       /* mfcr Rx */
          cr_reg = (op & 0x03e00000);
+          if (cr_reg == 0)
+            r0_contains_arg = 0;
          continue;
 
        }
@@ -565,6 +1604,10 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        {
 
          reg = GET_SRC_REG (op);
+         if ((op & 0xfc1f0000) == 0xbc010000)
+           fdata->gpr_mask |= ~((1U << reg) - 1);
+         else
+           fdata->gpr_mask |= 1U << reg;
          if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
            {
              fdata->saved_gpr = reg;
@@ -575,33 +1618,45 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
 
        }
-      else if ((op & 0xffff0000) == 0x60000000)
+      else if ((op & 0xffff0000) == 0x3c4c0000
+              || (op & 0xffff0000) == 0x3c400000
+              || (op & 0xffff0000) == 0x38420000)
+       {
+         /* .  0:      addis 2,12,.TOC.-0b@ha
+            .          addi 2,2,.TOC.-0b@l
+            or
+            .          lis 2,.TOC.@ha
+            .          addi 2,2,.TOC.@l
+            used by ELFv2 global entry points to set up r2.  */
+         continue;
+       }
+      else if (op == 0x60000000)
         {
          /* nop */
          /* Allow nops in the prologue, but do not consider them to
             be part of the prologue unless followed by other prologue
-            instructions. */
+            instructions.  */
          prev_insn_was_prologue_insn = 0;
          continue;
 
        }
       else if ((op & 0xffff0000) == 0x3c000000)
-       {                       /* addis 0,0,NUM, used
-                                  for >= 32k frames */
+       {                       /* addis 0,0,NUM, used for >= 32k frames */
          fdata->offset = (op & 0x0000ffff) << 16;
          fdata->frameless = 0;
+          r0_contains_arg = 0;
          continue;
 
        }
       else if ((op & 0xffff0000) == 0x60000000)
-       {                       /* ori 0,0,NUM, 2nd ha
-                                  lf of >= 32k frames */
+       {                       /* ori 0,0,NUM, 2nd half of >= 32k frames */
          fdata->offset |= (op & 0x0000ffff);
          fdata->frameless = 0;
+          r0_contains_arg = 0;
          continue;
 
        }
-      else if (lr_reg != -1 &&
+      else if (lr_reg >= 0 &&
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
               (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
                /* stw Rx, NUM(r1) */
@@ -611,7 +1666,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        {       /* where Rx == lr */
          fdata->lr_offset = offset;
          fdata->nosavedpc = 0;
-         lr_reg = 0;
+         /* Invalidate lr_reg, but don't set it to -1.
+            That would mean that it had never been set.  */
+         lr_reg = -2;
          if ((op & 0xfc000003) == 0xf8000000 ||        /* std */
              (op & 0xfc000000) == 0x90000000)          /* stw */
            {
@@ -621,7 +1678,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
 
        }
-      else if (cr_reg != -1 &&
+      else if (cr_reg >= 0 &&
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
               (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
                /* stw Rx, NUM(r1) */
@@ -630,7 +1687,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                ((op & 0xffff0000) == (cr_reg | 0x94010000))))
        {       /* where Rx == cr */
          fdata->cr_offset = offset;
-         cr_reg = 0;
+         /* Invalidate cr_reg, but don't set it to -1.
+            That would mean that it had never been set.  */
+         cr_reg = -2;
          if ((op & 0xfc000003) == 0xf8000000 ||
              (op & 0xfc000000) == 0x90000000)
            {
@@ -640,9 +1699,17 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
 
        }
+      else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
+       {
+         /* bcl 20,xx,.+4 is used to get the current PC, with or without
+            prediction bits.  If the LR has already been saved, we can
+            skip it.  */
+         continue;
+       }
       else if (op == 0x48000005)
        {                       /* bl .+4 used in 
                                   -mrelocatable */
+         fdata->used_bl = 1;
          continue;
 
        }
@@ -660,26 +1727,46 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        }
       else if ((op & 0xfc000001) == 0x48000001)
        {                       /* bl foo, 
-                                  to save fprs??? */
+                                  to save fprs???  */
 
          fdata->frameless = 0;
+
+         /* If the return address has already been saved, we can skip
+            calls to blrl (for PIC).  */
+          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
+           {
+             fdata->used_bl = 1;
+             continue;
+           }
+
          /* Don't skip over the subroutine call if it is not within
-            the first three instructions of the prologue.  */
+            the first three instructions of the prologue and either
+            we have no line table information or the line info tells
+            us that the subroutine call is not part of the line
+            associated with the prologue.  */
          if ((pc - orig_pc) > 8)
-           break;
+           {
+             struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
+             struct symtab_and_line this_sal = find_pc_line (pc, 0);
 
-         op = read_memory_integer (pc + 4, 4);
+             if ((prologue_sal.line == 0)
+                 || (prologue_sal.line != this_sal.line))
+               break;
+           }
+
+         op = read_memory_integer (pc + 4, 4, byte_order);
 
          /* At this point, make sure this is not a trampoline
             function (a function that simply calls another functions,
             and nothing else).  If the next is not a nop, this branch
-            was part of the function prologue. */
+            was part of the function prologue.  */
 
          if (op == 0x4def7b82 || op == 0)      /* crorc 15, 15, 15 */
-           break;              /* don't skip over 
-                                  this branch */
-         continue;
+           break;              /* Don't skip over 
+                                  this branch.  */
 
+         fdata->used_bl = 1;
+         continue;
        }
       /* update stack pointer */
       else if ((op & 0xfc1f0000) == 0x94010000)
@@ -691,7 +1778,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        }
       else if ((op & 0xfc1f016a) == 0x7c01016e)
        {                       /* stwux rX,r1,rY */
-         /* no way to figure out what r1 is going to be */
+         /* No way to figure out what r1 is going to be.  */
          fdata->frameless = 0;
          offset = fdata->offset;
          continue;
@@ -705,14 +1792,23 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        }
       else if ((op & 0xfc1f016a) == 0x7c01016a)
        {                       /* stdux rX,r1,rY */
-         /* no way to figure out what r1 is going to be */
+         /* No way to figure out what r1 is going to be.  */
          fdata->frameless = 0;
          offset = fdata->offset;
          continue;
        }
-      /* Load up minimal toc pointer */
-      else if (((op >> 22) == 0x20f    ||      /* l r31,... or l r30,... */
-              (op >> 22) == 0x3af)             /* ld r31,... or ld r30,... */
+      else if ((op & 0xffff0000) == 0x38210000)
+       {                       /* addi r1,r1,SIMM */
+         fdata->frameless = 0;
+         fdata->offset += SIGNED_SHORT (op);
+         offset = fdata->offset;
+         continue;
+       }
+      /* Load up minimal toc pointer.  Do not treat an epilogue restore
+        of r31 as a minimal TOC load.  */
+      else if (((op >> 22) == 0x20f    ||      /* l r31,... or l r30,...  */
+              (op >> 22) == 0x3af)             /* ld r31,... or ld r30,...  */
+              && !framep
               && !minimal_toc_loaded)
        {
          minimal_toc_loaded = 1;
@@ -724,28 +1820,28 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
       else if ((op & 0xfc0007fe) == 0x7c000378 &&      /* mr(.)  Rx,Ry */
                (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
                (((op >> 21) & 31) <= 10) &&
-               ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
+               ((long) ((op >> 16) & 31)
+               >= fdata->saved_gpr)) /* Rx: local var reg */
        {
          continue;
 
          /* store parameters in stack */
        }
-      else if ((op & 0xfc1f0003) == 0xf8010000 ||      /* std rx,NUM(r1) */
-              (op & 0xfc1f0000) == 0xd8010000 ||       /* stfd Rx,NUM(r1) */
-              (op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
-       {
+      /* Move parameters from argument registers to temporary register.  */
+      else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
+        {
          continue;
 
-         /* store parameters in stack via frame pointer */
+         /* Set up frame pointer */
        }
-      else if (framep &&
-              ((op & 0xfc1f0000) == 0x901f0000 ||      /* st rx,NUM(r1) */
-               (op & 0xfc1f0000) == 0xd81f0000 ||      /* stfd Rx,NUM(r1) */
-               (op & 0xfc1f0000) == 0xfc1f0000))
-       {                       /* frsp, fp?,NUM(r1) */
+      else if (op == 0x603d0000)       /* oril r29, r1, 0x0 */
+       {
+         fdata->frameless = 0;
+         framep = 1;
+         fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
          continue;
 
-         /* Set up frame pointer */
+         /* Another way to set up the frame pointer.  */
        }
       else if (op == 0x603f0000        /* oril r31, r1, 0x0 */
               || op == 0x7c3f0b78)
@@ -810,8 +1906,15 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
       else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
                || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
        {
+          if ((op & 0xffff0000) == 0x38000000)
+            r0_contains_arg = 0;
          li_found_pc = pc;
          vr_saved_offset = SIGNED_SHORT (op);
+
+          /* This insn by itself is not part of the prologue, unless
+             if part of the pair of insns mentioned above.  So do not
+             record this insn as part of the prologue yet.  */
+          prev_insn_was_prologue_insn = 0;
        }
       /* Store vector register S at (r31+r0) aligned to 16 bytes.  */      
       /* 011111 sssss 11111 00000 00111001110 */
@@ -903,483 +2006,183 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
        }
       /* Store gen register S at (r31+r0).
-         Store param on stack when offset from SP bigger than 4 bytes.  */
-      /* 000100 sssss 11111 00000 01100100000 */
-      else if (arch_info->mach == bfd_mach_ppc_e500
-              && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
-       {
-          if (pc == (li_found_pc + 4))
-            {
-              if ((op & 0x03e00000) >= 0x01a00000)
-               {
-                 ev_reg = GET_SRC_REG (op);
-                 /* If this is the first vector reg to be saved, or if
-                    it has a lower number than others previously seen,
-                    reupdate the frame info.  */
-                  /* We know the contents of r0 from the previous
-                     instruction.  */
-                 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
-                   {
-                     fdata->saved_ev = ev_reg;
-                     fdata->ev_offset = vr_saved_offset + offset;
-                   }
-                 ev_reg = -1;
-               }
-             vr_saved_offset = -1;
-             li_found_pc = 0;
-             continue;
-            }
-       }
-      /* End BookE related instructions.  */
-
-      else
-       {
-         /* Not a recognized prologue instruction.
-            Handle optimizer code motions into the prologue by continuing
-            the search if we have no valid frame yet or if the return
-            address is not yet saved in the frame.  */
-         if (fdata->frameless == 0
-             && (lr_reg == -1 || fdata->nosavedpc == 0))
-           break;
-
-         if (op == 0x4e800020          /* blr */
-             || op == 0x4e800420)      /* bctr */
-           /* Do not scan past epilogue in frameless functions or
-              trampolines.  */
-           break;
-         if ((op & 0xf4000000) == 0x40000000) /* bxx */
-           /* Never skip branches.  */
-           break;
-
-         if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
-           /* Do not scan too many insns, scanning insns is expensive with
-              remote targets.  */
-           break;
-
-         /* Continue scanning.  */
-         prev_insn_was_prologue_insn = 0;
-         continue;
-       }
-    }
-
-#if 0
-/* I have problems with skipping over __main() that I need to address
- * sometime. Previously, I used to use misc_function_vector which
- * didn't work as well as I wanted to be.  -MGO */
-
-  /* If the first thing after skipping a prolog is a branch to a function,
-     this might be a call to an initializer in main(), introduced by gcc2.
-     We'd like to skip over it as well.  Fortunately, xlc does some extra
-     work before calling a function right after a prologue, thus we can
-     single out such gcc2 behaviour.  */
-
-
-  if ((op & 0xfc000001) == 0x48000001)
-    {                          /* bl foo, an initializer function? */
-      op = read_memory_integer (pc + 4, 4);
-
-      if (op == 0x4def7b82)
-       {                       /* cror 0xf, 0xf, 0xf (nop) */
-
-         /* Check and see if we are in main.  If so, skip over this
-            initializer function as well.  */
-
-         tmp = find_pc_misc_function (pc);
-         if (tmp >= 0
-             && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
-           return pc + 8;
-       }
-    }
-#endif /* 0 */
-
-  fdata->offset = -fdata->offset;
-  return last_prologue_pc;
-}
-
-
-/*************************************************************************
-  Support for creating pushing a dummy frame into the stack, and popping
-  frames, etc. 
-*************************************************************************/
-
-
-/* Pop the innermost frame, go back to the caller.  */
-
-static void
-rs6000_pop_frame (void)
-{
-  CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
-  struct rs6000_framedata fdata;
-  struct frame_info *frame = get_current_frame ();
-  int ii, wordsize;
-
-  pc = read_pc ();
-  sp = get_frame_base (frame);
-
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
-                                  get_frame_base (frame),
-                                  get_frame_base (frame)))
-    {
-      generic_pop_dummy_frame ();
-      flush_cached_frames ();
-      return;
-    }
-
-  /* Make sure that all registers are valid.  */
-  deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
-
-  /* Figure out previous %pc value.  If the function is frameless, it is 
-     still in the link register, otherwise walk the frames and retrieve the
-     saved %pc value in the previous frame.  */
-
-  addr = get_frame_func (frame);
-  (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
-
-  wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
-  if (fdata.frameless)
-    prev_sp = sp;
-  else
-    prev_sp = read_memory_addr (sp, wordsize);
-  if (fdata.lr_offset == 0)
-     lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-  else
-    lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
-
-  /* reset %pc value. */
-  write_register (PC_REGNUM, lr);
-
-  /* reset register values if any was saved earlier.  */
-
-  if (fdata.saved_gpr != -1)
-    {
-      addr = prev_sp + fdata.gpr_offset;
-      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
-       {
-         read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
-                      wordsize);
-         addr += wordsize;
-       }
-    }
-
-  if (fdata.saved_fpr != -1)
-    {
-      addr = prev_sp + fdata.fpr_offset;
-      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
-       {
-         read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
-         addr += 8;
-       }
-    }
-
-  write_register (SP_REGNUM, prev_sp);
-  target_store_registers (-1);
-  flush_cached_frames ();
-}
-
-/* All the ABI's require 16 byte alignment.  */
-static CORE_ADDR
-rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
-  return (addr & -16);
-}
-
-/* Pass the arguments in either registers, or in the stack. In RS/6000,
-   the first eight words of the argument list (that might be less than
-   eight parameters if some parameters occupy more than one word) are
-   passed in r3..r10 registers.  float and double parameters are
-   passed in fpr's, in addition to that.  Rest of the parameters if any
-   are passed in user stack.  There might be cases in which half of the
-   parameter is copied into registers, the other half is pushed into
-   stack.
-
-   Stack must be aligned on 64-bit boundaries when synthesizing
-   function calls.
-
-   If the function is returning a structure, then the return address is passed
-   in r3, then the first 7 words of the parameters can be passed in registers,
-   starting from r4.  */
-
-static CORE_ADDR
-rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
-                       struct regcache *regcache, CORE_ADDR bp_addr,
-                       int nargs, struct value **args, CORE_ADDR sp,
-                       int struct_return, CORE_ADDR struct_addr)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  int ii;
-  int len = 0;
-  int argno;                   /* current argument number */
-  int argbytes;                        /* current argument byte */
-  char tmp_buffer[50];
-  int f_argno = 0;             /* current floating point argno */
-  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
-
-  struct value *arg = 0;
-  struct type *type;
-
-  CORE_ADDR saved_sp;
-
-  /* The first eight words of ther arguments are passed in registers.
-     Copy them appropriately.  */
-  ii = 0;
-
-  /* If the function is returning a `struct', then the first word
-     (which will be passed in r3) is used for struct return address.
-     In that case we should advance one word and start from r4
-     register to copy parameters.  */
-  if (struct_return)
-    {
-      regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
-                                  struct_addr);
-      ii++;
-    }
-
-/* 
-   effectively indirect call... gcc does...
-
-   return_val example( float, int);
-
-   eabi: 
-   float in fp0, int in r3
-   offset of stack on overflow 8/16
-   for varargs, must go by type.
-   power open:
-   float in r3&r4, int in r5
-   offset of stack on overflow different 
-   both: 
-   return in r3 or f0.  If no float, must study how gcc emulates floats;
-   pay attention to arg promotion.  
-   User may have to cast\args to handle promotion correctly 
-   since gdb won't know if prototype supplied or not.
- */
-
-  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
-    {
-      int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
-
-      arg = args[argno];
-      type = check_typedef (VALUE_TYPE (arg));
-      len = TYPE_LENGTH (type);
-
-      if (TYPE_CODE (type) == TYPE_CODE_FLT)
-       {
-
-         /* Floating point arguments are passed in fpr's, as well as gpr's.
-            There are 13 fpr's reserved for passing parameters. At this point
-            there is no way we would run out of them.  */
-
-         if (len > 8)
-           printf_unfiltered (
-                               "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
-
-         memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
-                 VALUE_CONTENTS (arg),
-                 len);
-         ++f_argno;
-       }
-
-      if (len > reg_size)
-       {
-
-         /* Argument takes more than one register.  */
-         while (argbytes < len)
-           {
-             memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
-                     reg_size);
-             memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
-                     ((char *) VALUE_CONTENTS (arg)) + argbytes,
-                     (len - argbytes) > reg_size
-                       ? reg_size : len - argbytes);
-             ++ii, argbytes += reg_size;
-
-             if (ii >= 8)
-               goto ran_out_of_registers_for_arguments;
-           }
-         argbytes = 0;
-         --ii;
-       }
-      else
-       {
-         /* Argument can fit in one register.  No problem.  */
-         int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
-         memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
-         memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj, 
-                 VALUE_CONTENTS (arg), len);
-       }
-      ++argno;
-    }
-
-ran_out_of_registers_for_arguments:
-
-  saved_sp = read_sp ();
-
-  /* Location for 8 parameters are always reserved.  */
-  sp -= wordsize * 8;
-
-  /* Another six words for back chain, TOC register, link register, etc.  */
-  sp -= wordsize * 6;
-
-  /* Stack pointer must be quadword aligned.  */
-  sp &= -16;
-
-  /* If there are more arguments, allocate space for them in 
-     the stack, then push them starting from the ninth one.  */
-
-  if ((argno < nargs) || argbytes)
-    {
-      int space = 0, jj;
-
-      if (argbytes)
+         Store param on stack when offset from SP bigger than 4 bytes.  */
+      /* 000100 sssss 11111 00000 01100100000 */
+      else if (arch_info->mach == bfd_mach_ppc_e500
+              && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
        {
-         space += ((len - argbytes + 3) & -4);
-         jj = argno + 1;
+          if (pc == (li_found_pc + 4))
+            {
+              if ((op & 0x03e00000) >= 0x01a00000)
+               {
+                 ev_reg = GET_SRC_REG (op);
+                 /* If this is the first vector reg to be saved, or if
+                    it has a lower number than others previously seen,
+                    reupdate the frame info.  */
+                  /* We know the contents of r0 from the previous
+                     instruction.  */
+                 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
+                   {
+                     fdata->saved_ev = ev_reg;
+                     fdata->ev_offset = vr_saved_offset + offset;
+                   }
+                 ev_reg = -1;
+               }
+             vr_saved_offset = -1;
+             li_found_pc = 0;
+             continue;
+            }
        }
-      else
-       jj = argno;
+      /* End BookE related instructions.  */
 
-      for (; jj < nargs; ++jj)
+      else
        {
-         struct value *val = args[jj];
-         space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
-       }
-
-      /* Add location required for the rest of the parameters.  */
-      space = (space + 15) & -16;
-      sp -= space;
+         unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
 
-      /* This is another instance we need to be concerned about
-         securing our stack space. If we write anything underneath %sp
-         (r1), we might conflict with the kernel who thinks he is free
-         to use this area.  So, update %sp first before doing anything
-         else.  */
+         /* Not a recognized prologue instruction.
+            Handle optimizer code motions into the prologue by continuing
+            the search if we have no valid frame yet or if the return
+            address is not yet saved in the frame.  Also skip instructions
+            if some of the GPRs expected to be saved are not yet saved.  */
+         if (fdata->frameless == 0 && fdata->nosavedpc == 0
+             && (fdata->gpr_mask & all_mask) == all_mask)
+           break;
 
-      regcache_raw_write_signed (regcache, SP_REGNUM, sp);
+         if (op == 0x4e800020          /* blr */
+             || op == 0x4e800420)      /* bctr */
+           /* Do not scan past epilogue in frameless functions or
+              trampolines.  */
+           break;
+         if ((op & 0xf4000000) == 0x40000000) /* bxx */
+           /* Never skip branches.  */
+           break;
 
-      /* If the last argument copied into the registers didn't fit there 
-         completely, push the rest of it into stack.  */
+         if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
+           /* Do not scan too many insns, scanning insns is expensive with
+              remote targets.  */
+           break;
 
-      if (argbytes)
-       {
-         write_memory (sp + 24 + (ii * 4),
-                       ((char *) VALUE_CONTENTS (arg)) + argbytes,
-                       len - argbytes);
-         ++argno;
-         ii += ((len - argbytes + 3) & -4) / 4;
+         /* Continue scanning.  */
+         prev_insn_was_prologue_insn = 0;
+         continue;
        }
+    }
 
-      /* Push the rest of the arguments into stack.  */
-      for (; argno < nargs; ++argno)
-       {
+#if 0
+/* I have problems with skipping over __main() that I need to address
+ * sometime.  Previously, I used to use misc_function_vector which
+ * didn't work as well as I wanted to be.  -MGO */
 
-         arg = args[argno];
-         type = check_typedef (VALUE_TYPE (arg));
-         len = TYPE_LENGTH (type);
+  /* If the first thing after skipping a prolog is a branch to a function,
+     this might be a call to an initializer in main(), introduced by gcc2.
+     We'd like to skip over it as well.  Fortunately, xlc does some extra
+     work before calling a function right after a prologue, thus we can
+     single out such gcc2 behaviour.  */
 
 
-         /* Float types should be passed in fpr's, as well as in the
-             stack.  */
-         if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
-           {
+  if ((op & 0xfc000001) == 0x48000001)
+    {                          /* bl foo, an initializer function?  */
+      op = read_memory_integer (pc + 4, 4, byte_order);
 
-             if (len > 8)
-               printf_unfiltered (
-                                   "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+      if (op == 0x4def7b82)
+       {                       /* cror 0xf, 0xf, 0xf (nop) */
 
-             memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
-                     VALUE_CONTENTS (arg),
-                     len);
-             ++f_argno;
-           }
+         /* Check and see if we are in main.  If so, skip over this
+            initializer function as well.  */
 
-         write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
-         ii += ((len + 3) & -4) / 4;
+         tmp = find_pc_misc_function (pc);
+         if (tmp >= 0
+             && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
+           return pc + 8;
        }
     }
+#endif /* 0 */
 
-  /* Set the stack pointer.  According to the ABI, the SP is meant to
-     be set _before_ the corresponding stack space is used.  On AIX,
-     this even applies when the target has been completely stopped!
-     Not doing this can lead to conflicts with the kernel which thinks
-     that it still has control over this not-yet-allocated stack
-     region.  */
-  regcache_raw_write_signed (regcache, SP_REGNUM, sp);
+  if (pc == lim_pc && lr_reg >= 0)
+    fdata->lr_register = lr_reg;
 
-  /* Set back chain properly.  */
-  store_unsigned_integer (tmp_buffer, 4, saved_sp);
-  write_memory (sp, tmp_buffer, 4);
+  fdata->offset = -fdata->offset;
+  return last_prologue_pc;
+}
 
-  /* Point the inferior function call's return address at the dummy's
-     breakpoint.  */
-  regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
+static CORE_ADDR
+rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  struct rs6000_framedata frame;
+  CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
 
-  /* Set the TOC register, get the value from the objfile reader
-     which, in turn, gets it from the VMAP table.  */
-  if (rs6000_find_toc_address_hook != NULL)
+  /* See if we can determine the end of the prologue via the symbol table.
+     If so, then return either PC, or the PC after the prologue, whichever
+     is greater.  */
+  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
     {
-      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
-      regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
+      CORE_ADDR post_prologue_pc
+       = skip_prologue_using_sal (gdbarch, func_addr);
+      if (post_prologue_pc != 0)
+       return max (pc, post_prologue_pc);
     }
 
-  target_store_registers (-1);
-  return sp;
-}
+  /* Can't determine prologue from the symbol table, need to examine
+     instructions.  */
 
-/* PowerOpen always puts structures in memory.  Vectors, which were
-   added later, do get returned in a register though.  */
+  /* Find an upper limit on the function prologue using the debug
+     information.  If the debug information could not be used to provide
+     that bound, then use an arbitrary large number as the upper bound.  */
+  limit_pc = skip_prologue_using_sal (gdbarch, pc);
+  if (limit_pc == 0)
+    limit_pc = pc + 100;          /* Magic.  */
 
-static int     
-rs6000_use_struct_convention (int gcc_p, struct type *value_type)
-{  
-  if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
-      && TYPE_VECTOR (value_type))
-    return 0;                            
-  return 1;
+  /* Do not allow limit_pc to be past the function end, if we know
+     where that end is...  */
+  if (func_end_addr && limit_pc > func_end_addr)
+    limit_pc = func_end_addr;
+
+  pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
+  return pc;
 }
 
-static void
-rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
-{
-  int offset = 0;
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+/* When compiling for EABI, some versions of GCC emit a call to __eabi
+   in the prologue of main().
 
-  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
-    {
+   The function below examines the code pointed at by PC and checks to
+   see if it corresponds to a call to __eabi.  If so, it returns the
+   address of the instruction following that call.  Otherwise, it simply
+   returns PC.  */
+
+static CORE_ADDR
+rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  gdb_byte buf[4];
+  unsigned long op;
 
-      double dd;
-      float ff;
-      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
-         We need to truncate the return value into float size (4 byte) if
-         necessary.  */
+  if (target_read_memory (pc, buf, 4))
+    return pc;
+  op = extract_unsigned_integer (buf, 4, byte_order);
 
-      if (TYPE_LENGTH (valtype) > 4)   /* this is a double */
-       memcpy (valbuf,
-               &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
-               TYPE_LENGTH (valtype));
-      else
-       {                       /* float */
-         memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
-         ff = (float) dd;
-         memcpy (valbuf, &ff, sizeof (float));
-       }
-    }
-  else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
-           && TYPE_LENGTH (valtype) == 16
-           && TYPE_VECTOR (valtype))
+  if ((op & BL_MASK) == BL_INSTRUCTION)
     {
-      memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
-             TYPE_LENGTH (valtype));
+      CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
+      CORE_ADDR call_dest = pc + 4 + displ;
+      struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
+
+      /* We check for ___eabi (three leading underscores) in addition
+         to __eabi in case the GCC option "-fleading-underscore" was
+        used to compile the program.  */
+      if (s.minsym != NULL
+          && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
+         && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
+             || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
+       pc += 4;
     }
-  else
-    {
-      /* return value is copied starting from r3. */
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
-         && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
-       offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
+  return pc;
+}
 
-      memcpy (valbuf,
-             regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
-             TYPE_LENGTH (valtype));
-    }
+/* All the ABI's require 16 byte alignment.  */
+static CORE_ADDR
+rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+  return (addr & -16);
 }
 
 /* Return whether handle_inferior_event() should proceed through code
@@ -1397,15 +2200,17 @@ rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
    back to where execution should continue.
 
    GDB should silently step over @FIX code, just like AIX dbx does.
-   Unfortunately, the linker uses the "b" instruction for the branches,
-   meaning that the link register doesn't get set.  Therefore, GDB's usual
-   step_over_function() mechanism won't work.
+   Unfortunately, the linker uses the "b" instruction for the
+   branches, meaning that the link register doesn't get set.
+   Therefore, GDB's usual step_over_function () mechanism won't work.
 
-   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
-   in handle_inferior_event() to skip past @FIX code.  */
+   Instead, use the gdbarch_skip_trampoline_code and
+   gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
+   @FIX code.  */
 
-int
-rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
+static int
+rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
+                                  CORE_ADDR pc, const char *name)
 {
   return name && !strncmp (name, "@FIX", 4);
 }
@@ -1424,13 +2229,16 @@ rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
    Result is desired PC to step until, or NULL if we are not in
    code that should be skipped.  */
 
-CORE_ADDR
-rs6000_skip_trampoline_code (CORE_ADDR pc)
+static CORE_ADDR
+rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
 {
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   unsigned int ii, op;
   int rel;
   CORE_ADDR solib_target_pc;
-  struct minimal_symbol *msymbol;
+  struct bound_minimal_symbol msymbol;
 
   static unsigned trampoline_code[] =
   {
@@ -1446,10 +2254,12 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
 
   /* Check for bigtoc fixup code.  */
   msymbol = lookup_minimal_symbol_by_pc (pc);
-  if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
+  if (msymbol.minsym
+      && rs6000_in_solib_return_trampoline (gdbarch, pc,
+                                           MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
     {
       /* Double-check that the third instruction from PC is relative "b".  */
-      op = read_memory_integer (pc + 8, 4);
+      op = read_memory_integer (pc + 8, 4, byte_order);
       if ((op & 0xfc000003) == 0x48000000)
        {
          /* Extract bits 6-29 as a signed 24-bit relative word address and
@@ -1460,1154 +2270,1275 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
     }
 
   /* If pc is in a shared library trampoline, return its target.  */
-  solib_target_pc = find_solib_trampoline_target (pc);
+  solib_target_pc = find_solib_trampoline_target (frame, pc);
   if (solib_target_pc)
     return solib_target_pc;
 
   for (ii = 0; trampoline_code[ii]; ++ii)
     {
-      op = read_memory_integer (pc + (ii * 4), 4);
+      op = read_memory_integer (pc + (ii * 4), 4, byte_order);
       if (op != trampoline_code[ii])
        return 0;
     }
-  ii = read_register (11);     /* r11 holds destination addr   */
-  pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
+  ii = get_frame_register_unsigned (frame, 11);        /* r11 holds destination
+                                                  addr.  */
+  pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
   return pc;
 }
 
-/* Determines whether the function FI has a frame on the stack or not.  */
+/* ISA-specific vector types.  */
 
-int
-rs6000_frameless_function_invocation (struct frame_info *fi)
+static struct type *
+rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
 {
-  CORE_ADDR func_start;
-  struct rs6000_framedata fdata;
-
-  /* Don't even think about framelessness except on the innermost frame
-     or if the function was interrupted by a signal.  */
-  if (get_next_frame (fi) != NULL
-      && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
-    return 0;
-
-  func_start = get_frame_func (fi);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  /* If we failed to find the start of the function, it is a mistake
-     to inspect the instructions.  */
-
-  if (!func_start)
+  if (!tdep->ppc_builtin_type_vec64)
     {
-      /* A frame with a zero PC is usually created by dereferencing a NULL
-         function pointer, normally causing an immediate core dump of the
-         inferior.  Mark function as frameless, as the inferior has no chance
-         of setting up a stack frame.  */
-      if (get_frame_pc (fi) == 0)
-       return 1;
-      else
-       return 0;
-    }
-
-  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
-  return fdata.frameless;
-}
-
-/* Return the PC saved in a frame.  */
-
-CORE_ADDR
-rs6000_frame_saved_pc (struct frame_info *fi)
-{
-  CORE_ADDR func_start;
-  struct rs6000_framedata fdata;
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  int wordsize = tdep->wordsize;
-
-  if ((get_frame_type (fi) == SIGTRAMP_FRAME))
-    return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
-                            wordsize);
-
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
-                                  get_frame_base (fi),
-                                  get_frame_base (fi)))
-    return deprecated_read_register_dummy (get_frame_pc (fi),
-                                          get_frame_base (fi), PC_REGNUM);
-
-  func_start = get_frame_func (fi);
-
-  /* If we failed to find the start of the function, it is a mistake
-     to inspect the instructions.  */
-  if (!func_start)
-    return 0;
-
-  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
+      const struct builtin_type *bt = builtin_type (gdbarch);
 
-  if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
-    {
-      if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
-       return read_memory_addr ((get_frame_base (get_next_frame (fi))
-                                 + SIG_FRAME_LR_OFFSET),
-                                wordsize);
-      else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
-       /* The link register wasn't saved by this frame and the next
-           (inner, newer) frame is a dummy.  Get the link register
-           value by unwinding it from that [dummy] frame.  */
+      /* The type we're building is this: */
+#if 0
+      union __gdb_builtin_type_vec64
        {
-         ULONGEST lr;
-         frame_unwind_unsigned_register (get_next_frame (fi),
-                                         tdep->ppc_lr_regnum, &lr);
-         return lr;
-       }
-      else
-       return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
-                                + tdep->lr_frame_offset,
-                                wordsize);
+         int64_t uint64;
+         float v2_float[2];
+         int32_t v2_int32[2];
+         int16_t v4_int16[4];
+         int8_t v8_int8[8];
+       };
+#endif
+
+      struct type *t;
+
+      t = arch_composite_type (gdbarch,
+                              "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
+      append_composite_type_field (t, "uint64", bt->builtin_int64);
+      append_composite_type_field (t, "v2_float",
+                                  init_vector_type (bt->builtin_float, 2));
+      append_composite_type_field (t, "v2_int32",
+                                  init_vector_type (bt->builtin_int32, 2));
+      append_composite_type_field (t, "v4_int16",
+                                  init_vector_type (bt->builtin_int16, 4));
+      append_composite_type_field (t, "v8_int8",
+                                  init_vector_type (bt->builtin_int8, 8));
+
+      TYPE_VECTOR (t) = 1;
+      TYPE_NAME (t) = "ppc_builtin_type_vec64";
+      tdep->ppc_builtin_type_vec64 = t;
     }
 
-  if (fdata.lr_offset == 0)
-    return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-
-  return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
-                          wordsize);
+  return tdep->ppc_builtin_type_vec64;
 }
 
-/* If saved registers of frame FI are not known yet, read and cache them.
-   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
-   in which case the framedata are read.  */
+/* Vector 128 type.  */
 
-static void
-frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
+static struct type *
+rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
 {
-  CORE_ADDR frame_addr;
-  struct rs6000_framedata work_fdata;
-  struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
-  int wordsize = tdep->wordsize;
-
-  if (deprecated_get_frame_saved_regs (fi))
-    return;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (fdatap == NULL)
+  if (!tdep->ppc_builtin_type_vec128)
     {
-      fdatap = &work_fdata;
-      (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
+      const struct builtin_type *bt = builtin_type (gdbarch);
+
+      /* The type we're building is this
+
+        type = union __ppc_builtin_type_vec128 {
+            uint128_t uint128;
+            double v2_double[2];
+            float v4_float[4];
+            int32_t v4_int32[4];
+            int16_t v8_int16[8];
+            int8_t v16_int8[16];
+        }
+      */
+
+      struct type *t;
+
+      t = arch_composite_type (gdbarch,
+                              "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
+      append_composite_type_field (t, "uint128", bt->builtin_uint128);
+      append_composite_type_field (t, "v2_double",
+                                  init_vector_type (bt->builtin_double, 2));
+      append_composite_type_field (t, "v4_float",
+                                  init_vector_type (bt->builtin_float, 4));
+      append_composite_type_field (t, "v4_int32",
+                                  init_vector_type (bt->builtin_int32, 4));
+      append_composite_type_field (t, "v8_int16",
+                                  init_vector_type (bt->builtin_int16, 8));
+      append_composite_type_field (t, "v16_int8",
+                                  init_vector_type (bt->builtin_int8, 16));
+
+      TYPE_VECTOR (t) = 1;
+      TYPE_NAME (t) = "ppc_builtin_type_vec128";
+      tdep->ppc_builtin_type_vec128 = t;
     }
 
-  frame_saved_regs_zalloc (fi);
-
-  /* If there were any saved registers, figure out parent's stack
-     pointer.  */
-  /* The following is true only if the frame doesn't have a call to
-     alloca(), FIXME.  */
+  return tdep->ppc_builtin_type_vec128;
+}
 
-  if (fdatap->saved_fpr == 0
-      && fdatap->saved_gpr == 0
-      && fdatap->saved_vr == 0
-      && fdatap->saved_ev == 0
-      && fdatap->lr_offset == 0
-      && fdatap->cr_offset == 0
-      && fdatap->vr_offset == 0
-      && fdatap->ev_offset == 0)
-    frame_addr = 0;
-  else
-    /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
-       address of the current frame.  Things might be easier if the
-       ->frame pointed to the outer-most address of the frame.  In the
-       mean time, the address of the prev frame is used as the base
-       address of this frame.  */
-    frame_addr = DEPRECATED_FRAME_CHAIN (fi);
-
-  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
-     All fpr's from saved_fpr to fp31 are saved.  */
+/* Return the name of register number REGNO, or the empty string if it
+   is an anonymous register.  */
 
-  if (fdatap->saved_fpr >= 0)
+static const char *
+rs6000_register_name (struct gdbarch *gdbarch, int regno)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  /* The upper half "registers" have names in the XML description,
+     but we present only the low GPRs and the full 64-bit registers
+     to the user.  */
+  if (tdep->ppc_ev0_upper_regnum >= 0
+      && tdep->ppc_ev0_upper_regnum <= regno
+      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
+    return "";
+
+  /* Hide the upper halves of the vs0~vs31 registers.  */
+  if (tdep->ppc_vsr0_regnum >= 0
+      && tdep->ppc_vsr0_upper_regnum <= regno
+      && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
+    return "";
+
+  /* Check if the SPE pseudo registers are available.  */
+  if (IS_SPE_PSEUDOREG (tdep, regno))
     {
-      int i;
-      CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
-      for (i = fdatap->saved_fpr; i < 32; i++)
-       {
-         deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
-         fpr_addr += 8;
-       }
+      static const char *const spe_regnames[] = {
+       "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
+       "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
+       "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
+       "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
+      };
+      return spe_regnames[regno - tdep->ppc_ev0_regnum];
     }
 
-  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
-     All gpr's from saved_gpr to gpr31 are saved.  */
-
-  if (fdatap->saved_gpr >= 0)
+  /* Check if the decimal128 pseudo-registers are available.  */
+  if (IS_DFP_PSEUDOREG (tdep, regno))
     {
-      int i;
-      CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
-      for (i = fdatap->saved_gpr; i < 32; i++)
-       {
-         deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
-         gpr_addr += wordsize;
-       }
+      static const char *const dfp128_regnames[] = {
+       "dl0", "dl1", "dl2", "dl3",
+       "dl4", "dl5", "dl6", "dl7",
+       "dl8", "dl9", "dl10", "dl11",
+       "dl12", "dl13", "dl14", "dl15"
+      };
+      return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
     }
 
-  /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
-     All vr's from saved_vr to vr31 are saved.  */
-  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
+  /* Check if this is a VSX pseudo-register.  */
+  if (IS_VSX_PSEUDOREG (tdep, regno))
     {
-      if (fdatap->saved_vr >= 0)
-       {
-         int i;
-         CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
-         for (i = fdatap->saved_vr; i < 32; i++)
-           {
-             deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
-             vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
-           }
-       }
+      static const char *const vsx_regnames[] = {
+       "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
+       "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
+       "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
+       "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
+       "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
+       "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
+       "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
+       "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
+       "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
+      };
+      return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
     }
 
-  /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
-       All vr's from saved_ev to ev31 are saved. ????? */
-  if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
+  /* Check if the this is a Extended FP pseudo-register.  */
+  if (IS_EFP_PSEUDOREG (tdep, regno))
     {
-      if (fdatap->saved_ev >= 0)
-       {
-         int i;
-         CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
-         for (i = fdatap->saved_ev; i < 32; i++)
-           {
-             deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
-              deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
-             ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
-            }
-       }
+      static const char *const efpr_regnames[] = {
+       "f32", "f33", "f34", "f35", "f36", "f37", "f38",
+       "f39", "f40", "f41", "f42", "f43", "f44", "f45",
+       "f46", "f47", "f48", "f49", "f50", "f51",
+       "f52", "f53", "f54", "f55", "f56", "f57",
+       "f58", "f59", "f60", "f61", "f62", "f63"
+      };
+      return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
     }
 
-  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
-     the CR.  */
-  if (fdatap->cr_offset != 0)
-    deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
-
-  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
-     the LR.  */
-  if (fdatap->lr_offset != 0)
-    deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
-
-  /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
-     the VRSAVE.  */
-  if (fdatap->vrsave_offset != 0)
-    deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
+  return tdesc_register_name (gdbarch, regno);
 }
 
-/* Return the address of a frame. This is the inital %sp value when the frame
-   was first allocated.  For functions calling alloca(), it might be saved in
-   an alloca register.  */
+/* Return the GDB type object for the "standard" data type of data in
+   register N.  */
 
-static CORE_ADDR
-frame_initial_stack_address (struct frame_info *fi)
+static struct type *
+rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
 {
-  CORE_ADDR tmpaddr;
-  struct rs6000_framedata fdata;
-  struct frame_info *callee_fi;
-
-  /* If the initial stack pointer (frame address) of this frame is known,
-     just return it.  */
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  /* These are the only pseudo-registers we support.  */
+  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
+             || IS_DFP_PSEUDOREG (tdep, regnum)
+             || IS_VSX_PSEUDOREG (tdep, regnum)
+             || IS_EFP_PSEUDOREG (tdep, regnum));
+
+  /* These are the e500 pseudo-registers.  */
+  if (IS_SPE_PSEUDOREG (tdep, regnum))
+    return rs6000_builtin_type_vec64 (gdbarch);
+  else if (IS_DFP_PSEUDOREG (tdep, regnum))
+    /* PPC decimal128 pseudo-registers.  */
+    return builtin_type (gdbarch)->builtin_declong;
+  else if (IS_VSX_PSEUDOREG (tdep, regnum))
+    /* POWER7 VSX pseudo-registers.  */
+    return rs6000_builtin_type_vec128 (gdbarch);
+  else
+    /* POWER7 Extended FP pseudo-registers.  */
+    return builtin_type (gdbarch)->builtin_double;
+}
 
-  if (get_frame_extra_info (fi)->initial_sp)
-    return get_frame_extra_info (fi)->initial_sp;
+/* Is REGNUM a member of REGGROUP?  */
+static int
+rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+                                  struct reggroup *group)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  /* Find out if this function is using an alloca register.  */
+  /* These are the only pseudo-registers we support.  */
+  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
+             || IS_DFP_PSEUDOREG (tdep, regnum)
+             || IS_VSX_PSEUDOREG (tdep, regnum)
+             || IS_EFP_PSEUDOREG (tdep, regnum));
 
-  (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
+  /* These are the e500 pseudo-registers or the POWER7 VSX registers.  */
+  if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
+    return group == all_reggroup || group == vector_reggroup;
+  else
+    /* PPC decimal128 or Extended FP pseudo-registers.  */
+    return group == all_reggroup || group == float_reggroup;
+}
 
-  /* If saved registers of this frame are not known yet, read and
-     cache them.  */
+/* The register format for RS/6000 floating point registers is always
+   double, we need a conversion if the memory format is float.  */
 
-  if (!deprecated_get_frame_saved_regs (fi))
-    frame_get_saved_regs (fi, &fdata);
+static int
+rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
+                          struct type *type)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return (tdep->ppc_fp0_regnum >= 0
+         && regnum >= tdep->ppc_fp0_regnum
+         && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
+         && TYPE_CODE (type) == TYPE_CODE_FLT
+         && TYPE_LENGTH (type)
+            != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
+}
 
-  /* If no alloca register used, then fi->frame is the value of the %sp for
-     this frame, and it is good enough.  */
+static int
+rs6000_register_to_value (struct frame_info *frame,
+                          int regnum,
+                          struct type *type,
+                          gdb_byte *to,
+                         int *optimizedp, int *unavailablep)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  gdb_byte from[MAX_REGISTER_SIZE];
+  
+  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-  if (fdata.alloca_reg < 0)
-    {
-      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
-      return get_frame_extra_info (fi)->initial_sp;
-    }
+  if (!get_frame_register_bytes (frame, regnum, 0,
+                                register_size (gdbarch, regnum),
+                                from, optimizedp, unavailablep))
+    return 0;
 
-  /* There is an alloca register, use its value, in the current frame,
-     as the initial stack pointer.  */
-  {
-    char tmpbuf[MAX_REGISTER_SIZE];
-    if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
-      {
-       get_frame_extra_info (fi)->initial_sp
-         = extract_unsigned_integer (tmpbuf,
-                                     DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
-      }
-    else
-      /* NOTE: cagney/2002-04-17: At present the only time
-         frame_register_read will fail is when the register isn't
-         available.  If that does happen, use the frame.  */
-      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
-  }
-  return get_frame_extra_info (fi)->initial_sp;
+  convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
+                         to, type);
+  *optimizedp = *unavailablep = 0;
+  return 1;
 }
 
-/* Describe the pointer in each stack frame to the previous stack frame
-   (its caller).  */
+static void
+rs6000_value_to_register (struct frame_info *frame,
+                          int regnum,
+                          struct type *type,
+                          const gdb_byte *from)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  gdb_byte to[MAX_REGISTER_SIZE];
 
-/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
-   the frame's chain-pointer.  */
+  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-/* In the case of the RS/6000, the frame's nominal address
-   is the address of a 4-byte word containing the calling frame's address.  */
+  convert_typed_floating (from, type,
+                         to, builtin_type (gdbarch)->builtin_double);
+  put_frame_register (frame, regnum, to);
+}
 
-CORE_ADDR
-rs6000_frame_chain (struct frame_info *thisframe)
+ /* The type of a function that moves the value of REG between CACHE
+    or BUF --- in either direction.  */
+typedef enum register_status (*move_ev_register_func) (struct regcache *,
+                                                      int, void *);
+
+/* Move SPE vector register values between a 64-bit buffer and the two
+   32-bit raw register halves in a regcache.  This function handles
+   both splitting a 64-bit value into two 32-bit halves, and joining
+   two halves into a whole 64-bit value, depending on the function
+   passed as the MOVE argument.
+
+   EV_REG must be the number of an SPE evN vector register --- a
+   pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
+   64-bit buffer.
+
+   Call MOVE once for each 32-bit half of that register, passing
+   REGCACHE, the number of the raw register corresponding to that
+   half, and the address of the appropriate half of BUFFER.
+
+   For example, passing 'regcache_raw_read' as the MOVE function will
+   fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
+   'regcache_raw_supply' will supply the contents of BUFFER to the
+   appropriate pair of raw registers in REGCACHE.
+
+   You may need to cast away some 'const' qualifiers when passing
+   MOVE, since this function can't tell at compile-time which of
+   REGCACHE or BUFFER is acting as the source of the data.  If C had
+   co-variant type qualifiers, ...  */
+
+static enum register_status
+e500_move_ev_register (move_ev_register_func move,
+                      struct regcache *regcache, int ev_reg, void *buffer)
 {
-  CORE_ADDR fp, fpp, lr;
-  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
+  struct gdbarch *arch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
+  int reg_index;
+  gdb_byte *byte_buffer = buffer;
+  enum register_status status;
 
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
-                                  get_frame_base (thisframe),
-                                  get_frame_base (thisframe)))
-    /* A dummy frame always correctly chains back to the previous
-       frame.  */
-    return read_memory_addr (get_frame_base (thisframe), wordsize);
+  gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
 
-  if (deprecated_inside_entry_file (get_frame_pc (thisframe))
-      || get_frame_pc (thisframe) == entry_point_address ())
-    return 0;
+  reg_index = ev_reg - tdep->ppc_ev0_regnum;
 
-  if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
-    fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
-                          wordsize);
-  else if (get_next_frame (thisframe) != NULL
-          && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
-          && (DEPRECATED_FRAMELESS_FUNCTION_INVOCATION_P ()
-              && DEPRECATED_FRAMELESS_FUNCTION_INVOCATION (thisframe)))
-    /* A frameless function interrupted by a signal did not change the
-       frame pointer.  */
-    fp = get_frame_base (thisframe);
+  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
+    {
+      status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
+                    byte_buffer);
+      if (status == REG_VALID)
+       status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
+                      byte_buffer + 4);
+    }
   else
-    fp = read_memory_addr (get_frame_base (thisframe), wordsize);
-  return fp;
-}
+    {
+      status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
+      if (status == REG_VALID)
+       status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
+                      byte_buffer + 4);
+    }
 
-/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
-   isn't available with that word size, return 0.  */
+  return status;
+}
 
-static int
-regsize (const struct reg *reg, int wordsize)
+static enum register_status
+do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
 {
-  return wordsize == 8 ? reg->sz64 : reg->sz32;
+  return regcache_raw_read (regcache, regnum, buffer);
 }
 
-/* Return the name of register number N, or null if no such register exists
-   in the current architecture.  */
-
-static const char *
-rs6000_register_name (int n)
+static enum register_status
+do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
+  regcache_raw_write (regcache, regnum, buffer);
 
-  if (!regsize (reg, tdep->wordsize))
-    return NULL;
-  return reg->name;
+  return REG_VALID;
 }
 
-/* Index within `registers' of the first byte of the space for
-   register N.  */
-
-static int
-rs6000_register_byte (int n)
+static enum register_status
+e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
 {
-  return gdbarch_tdep (current_gdbarch)->regoff[n];
+  return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
 }
 
-/* Return the number of bytes of storage in the actual machine representation
-   for register N if that register is available, else return 0.  */
-
-static int
-rs6000_register_raw_size (int n)
+static void
+e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
-  return regsize (reg, tdep->wordsize);
+  e500_move_ev_register (do_regcache_raw_write, regcache,
+                        reg_nr, (void *) buffer);
 }
 
-/* Return the GDB type object for the "standard" data type
-   of data in register N.  */
-
-static struct type *
-rs6000_register_virtual_type (int n)
+/* Read method for DFP pseudo-registers.  */
+static enum register_status
+dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_dl0_regnum;
+  enum register_status status;
 
-  if (reg->fpr)
-    return builtin_type_double;
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+    {
+      /* Read two FP registers to form a whole dl register.  */
+      status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                 2 * reg_index, buffer);
+      if (status == REG_VALID)
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   2 * reg_index + 1, buffer + 8);
+    }
   else
     {
-      int size = regsize (reg, tdep->wordsize);
-      switch (size)
-       {
-       case 0:
-         return builtin_type_int0;
-       case 4:
-         return builtin_type_int32;
-       case 8:
-         if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
-           return builtin_type_vec64;
-         else
-           return builtin_type_int64;
-         break;
-       case 16:
-         return builtin_type_vec128;
-         break;
-       default:
-         internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
-                         n, size);
-       }
+      status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                 2 * reg_index + 1, buffer);
+      if (status == REG_VALID)
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   2 * reg_index, buffer + 8);
     }
+
+  return status;
 }
 
-/* Return whether register N requires conversion when moving from raw format
-   to virtual format.
+/* Write method for DFP pseudo-registers.  */
+static void
+dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_dl0_regnum;
 
-   The register format for RS/6000 floating point registers is always
-   double, we need a conversion if the memory format is float.  */
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+    {
+      /* Write each half of the dl register into a separate
+      FP register.  */
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index, buffer);
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index + 1, buffer + 8);
+    }
+  else
+    {
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index + 1, buffer);
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index, buffer + 8);
+    }
+}
 
-static int
-rs6000_register_convertible (int n)
+/* Read method for POWER7 VSX pseudo-registers.  */
+static enum register_status
+vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
 {
-  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
-  return reg->fpr;
-}
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
+  enum register_status status;
+
+  /* Read the portion that overlaps the VMX registers.  */
+  if (reg_index > 31)
+    status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
+                               reg_index - 32, buffer);
+  else
+    /* Read the portion that overlaps the FPR registers.  */
+    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+      {
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   reg_index, buffer);
+       if (status == REG_VALID)
+         status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
+                                     reg_index, buffer + 8);
+      }
+    else
+      {
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   reg_index, buffer + 8);
+       if (status == REG_VALID)
+         status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
+                                     reg_index, buffer);
+      }
 
-/* Convert data from raw format for register N in buffer FROM
-   to virtual format with type TYPE in buffer TO.  */
+  return status;
+}
 
+/* Write method for POWER7 VSX pseudo-registers.  */
 static void
-rs6000_register_convert_to_virtual (int n, struct type *type,
-                                   char *from, char *to)
+vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
 {
-  if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
-    {
-      double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
-      deprecated_store_floating (to, TYPE_LENGTH (type), val);
-    }
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
+
+  /* Write the portion that overlaps the VMX registers.  */
+  if (reg_index > 31)
+    regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
+                       reg_index - 32, buffer);
   else
-    memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
+    /* Write the portion that overlaps the FPR registers.  */
+    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+      {
+       regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                       reg_index, buffer);
+       regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
+                       reg_index, buffer + 8);
+      }
+    else
+      {
+       regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                       reg_index, buffer + 8);
+       regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
+                       reg_index, buffer);
+      }
 }
 
-/* Convert data from virtual format with type TYPE in buffer FROM
-   to raw format for register N in buffer TO.  */
+/* Read method for POWER7 Extended FP pseudo-registers.  */
+static enum register_status
+efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
+  int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
+
+  /* Read the portion that overlaps the VMX register.  */
+  return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
+                                offset, register_size (gdbarch, reg_nr),
+                                buffer);
+}
 
+/* Write method for POWER7 Extended FP pseudo-registers.  */
 static void
-rs6000_register_convert_to_raw (struct type *type, int n,
-                               const char *from, char *to)
+efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
 {
-  if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
-    {
-      double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
-      deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
-    }
-  else
-    memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
+  int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
+
+  /* Write the portion that overlaps the VMX register.  */
+  regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
+                          offset, register_size (gdbarch, reg_nr),
+                          buffer);
 }
 
-static void
-e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
-                          int reg_nr, void *buffer)
+static enum register_status
+rs6000_pseudo_register_read (struct gdbarch *gdbarch,
+                            struct regcache *regcache,
+                            int reg_nr, gdb_byte *buffer)
 {
-  int base_regnum;
-  int offset = 0;
-  char temp_buffer[MAX_REGISTER_SIZE];
+  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
 
-  if (reg_nr >= tdep->ppc_gp0_regnum 
-      && reg_nr <= tdep->ppc_gplast_regnum)
-    {
-      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
+  gdb_assert (regcache_arch == gdbarch);
 
-      /* Build the value in the provided buffer.  */ 
-      /* Read the raw register of which this one is the lower portion.  */
-      regcache_raw_read (regcache, base_regnum, temp_buffer);
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-       offset = 4;
-      memcpy ((char *) buffer, temp_buffer + offset, 4);
-    }
+  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
+    return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
+    return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
+    return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
+    return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else
+    internal_error (__FILE__, __LINE__,
+                   _("rs6000_pseudo_register_read: "
+                   "called on unexpected register '%s' (%d)"),
+                   gdbarch_register_name (gdbarch, reg_nr), reg_nr);
 }
 
 static void
-e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
-                           int reg_nr, const void *buffer)
+rs6000_pseudo_register_write (struct gdbarch *gdbarch,
+                             struct regcache *regcache,
+                             int reg_nr, const gdb_byte *buffer)
 {
-  int base_regnum;
-  int offset = 0;
-  char temp_buffer[MAX_REGISTER_SIZE];
+  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
 
-  if (reg_nr >= tdep->ppc_gp0_regnum 
-      && reg_nr <= tdep->ppc_gplast_regnum)
-    {
-      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
-      /* reg_nr is 32 bit here, and base_regnum is 64 bits.  */
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-       offset = 4;
-
-      /* Let's read the value of the base register into a temporary
-        buffer, so that overwriting the last four bytes with the new
-        value of the pseudo will leave the upper 4 bytes unchanged.  */
-      regcache_raw_read (regcache, base_regnum, temp_buffer);
+  gdb_assert (regcache_arch == gdbarch);
 
-      /* Write as an 8 byte quantity.  */
-      memcpy (temp_buffer + offset, (char *) buffer, 4);
-      regcache_raw_write (regcache, base_regnum, temp_buffer);
-    }
+  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
+    e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
+    dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
+    vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
+    efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+  else
+    internal_error (__FILE__, __LINE__,
+                   _("rs6000_pseudo_register_write: "
+                   "called on unexpected register '%s' (%d)"),
+                   gdbarch_register_name (gdbarch, reg_nr), reg_nr);
 }
 
-/* Convert a dwarf2 register number to a gdb REGNUM.  */
+/* Convert a DBX STABS register number to a GDB register number.  */
 static int
-e500_dwarf2_reg_to_regnum (int num)
+rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
 {
-  int regnum;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
   if (0 <= num && num <= 31)
-    return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
-  else 
-    return num;
+    return tdep->ppc_gp0_regnum + num;
+  else if (32 <= num && num <= 63)
+    /* FIXME: jimb/2004-05-05: What should we do when the debug info
+       specifies registers the architecture doesn't have?  Our
+       callers don't check the value we return.  */
+    return tdep->ppc_fp0_regnum + (num - 32);
+  else if (77 <= num && num <= 108)
+    return tdep->ppc_vr0_regnum + (num - 77);
+  else if (1200 <= num && num < 1200 + 32)
+    return tdep->ppc_ev0_upper_regnum + (num - 1200);
+  else
+    switch (num)
+      {
+      case 64: 
+        return tdep->ppc_mq_regnum;
+      case 65:
+        return tdep->ppc_lr_regnum;
+      case 66: 
+        return tdep->ppc_ctr_regnum;
+      case 76: 
+        return tdep->ppc_xer_regnum;
+      case 109:
+        return tdep->ppc_vrsave_regnum;
+      case 110:
+        return tdep->ppc_vrsave_regnum - 1; /* vscr */
+      case 111:
+        return tdep->ppc_acc_regnum;
+      case 112:
+        return tdep->ppc_spefscr_regnum;
+      default: 
+        return num;
+      }
 }
 
-/* Convert a dbx stab register number (from `r' declaration) to a gdb
-   REGNUM.  */
-static int
-rs6000_stab_reg_to_regnum (int num)
-{
-  int regnum;
-  switch (num)
-    {
-    case 64: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
-      break;
-    case 65: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
-      break;
-    case 66: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
-      break;
-    case 76: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
-      break;
-    default: 
-      regnum = num;
-      break;
-    }
-  return regnum;
-}
 
-static void
-rs6000_store_return_value (struct type *type, char *valbuf)
+/* Convert a Dwarf 2 register number to a GDB register number.  */
+static int
+rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-
-  if (TYPE_CODE (type) == TYPE_CODE_FLT)
-
-    /* Floating point values are returned starting from FPR1 and up.
-       Say a double_double_double type could be returned in
-       FPR1/FPR2/FPR3 triple.  */
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-    deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
-                                    TYPE_LENGTH (type));
-  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
-    {
-      if (TYPE_LENGTH (type) == 16
-          && TYPE_VECTOR (type))
-       deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
-                                        valbuf, TYPE_LENGTH (type));
-    }
+  if (0 <= num && num <= 31)
+    return tdep->ppc_gp0_regnum + num;
+  else if (32 <= num && num <= 63)
+    /* FIXME: jimb/2004-05-05: What should we do when the debug info
+       specifies registers the architecture doesn't have?  Our
+       callers don't check the value we return.  */
+    return tdep->ppc_fp0_regnum + (num - 32);
+  else if (1124 <= num && num < 1124 + 32)
+    return tdep->ppc_vr0_regnum + (num - 1124);
+  else if (1200 <= num && num < 1200 + 32)
+    return tdep->ppc_ev0_upper_regnum + (num - 1200);
   else
-    /* Everything else is returned in GPR3 and up.  */
-    deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
-                                    valbuf, TYPE_LENGTH (type));
-}
-
-/* Extract from an array REGBUF containing the (raw) register state
-   the address in which a function should return its structure value,
-   as a CORE_ADDR (or an expression that can be used as one).  */
-
-static CORE_ADDR
-rs6000_extract_struct_value_address (struct regcache *regcache)
-{
-  /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
-     function call GDB knows the address of the struct return value
-     and hence, should not need to call this function.  Unfortunately,
-     the current call_function_by_hand() code only saves the most
-     recent struct address leading to occasional calls.  The code
-     should instead maintain a stack of such addresses (in the dummy
-     frame object).  */
-  /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
-     really got no idea where the return value is being stored.  While
-     r3, on function entry, contained the address it will have since
-     been reused (scratch) and hence wouldn't be valid */
-  return 0;
+    switch (num)
+      {
+      case 64:
+       return tdep->ppc_cr_regnum;
+      case 67:
+        return tdep->ppc_vrsave_regnum - 1; /* vscr */
+      case 99:
+        return tdep->ppc_acc_regnum;
+      case 100:
+        return tdep->ppc_mq_regnum;
+      case 101:
+        return tdep->ppc_xer_regnum;
+      case 108:
+        return tdep->ppc_lr_regnum;
+      case 109:
+        return tdep->ppc_ctr_regnum;
+      case 356:
+        return tdep->ppc_vrsave_regnum;
+      case 612:
+        return tdep->ppc_spefscr_regnum;
+      default:
+        return num;
+      }
 }
 
-/* Hook called when a new child process is started.  */
-
-void
-rs6000_create_inferior (int pid)
-{
-  if (rs6000_set_host_arch_hook)
-    rs6000_set_host_arch_hook (pid);
-}
-\f
-/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
-
-   Usually a function pointer's representation is simply the address
-   of the function. On the RS/6000 however, a function pointer is
-   represented by a pointer to a TOC entry. This TOC entry contains
-   three words, the first word is the address of the function, the
-   second word is the TOC pointer (r2), and the third word is the
-   static chain value.  Throughout GDB it is currently assumed that a
-   function pointer contains the address of the function, which is not
-   easy to fix.  In addition, the conversion of a function address to
-   a function pointer would require allocation of a TOC entry in the
-   inferior's memory space, with all its drawbacks.  To be able to
-   call C++ virtual methods in the inferior (which are called via
-   function pointers), find_function_addr uses this function to get the
-   function address from a function pointer.  */
-
-/* Return real function address if ADDR (a function pointer) is in the data
-   space and is therefore a special function pointer.  */
+/* Translate a .eh_frame register to DWARF register, or adjust a
+   .debug_frame register.  */
 
-static CORE_ADDR
-rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
-                                  CORE_ADDR addr,
-                                  struct target_ops *targ)
+static int
+rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
 {
-  struct obj_section *s;
-
-  s = find_pc_section (addr);
-  if (s && s->the_bfd_section->flags & SEC_CODE)
-    return addr;
+  /* GCC releases before 3.4 use GCC internal register numbering in
+     .debug_frame (and .debug_info, et cetera).  The numbering is
+     different from the standard SysV numbering for everything except
+     for GPRs and FPRs.  We can not detect this problem in most cases
+     - to get accurate debug info for variables living in lr, ctr, v0,
+     et cetera, use a newer version of GCC.  But we must detect
+     one important case - lr is in column 65 in .debug_frame output,
+     instead of 108.
+
+     GCC 3.4, and the "hammer" branch, have a related problem.  They
+     record lr register saves in .debug_frame as 108, but still record
+     the return column as 65.  We fix that up too.
+
+     We can do this because 65 is assigned to fpsr, and GCC never
+     generates debug info referring to it.  To add support for
+     handwritten debug info that restores fpsr, we would need to add a
+     producer version check to this.  */
+  if (!eh_frame_p)
+    {
+      if (num == 65)
+       return 108;
+      else
+       return num;
+    }
 
-  /* ADDR is in the data space, so it's a special function pointer. */
-  return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
+  /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
+     internal register numbering; translate that to the standard DWARF2
+     register numbering.  */
+  if (0 <= num && num <= 63)   /* r0-r31,fp0-fp31 */
+    return num;
+  else if (68 <= num && num <= 75) /* cr0-cr8 */
+    return num - 68 + 86;
+  else if (77 <= num && num <= 108) /* vr0-vr31 */
+    return num - 77 + 1124;
+  else
+    switch (num)
+      {
+      case 64: /* mq */
+       return 100;
+      case 65: /* lr */
+       return 108;
+      case 66: /* ctr */
+       return 109;
+      case 76: /* xer */
+       return 101;
+      case 109: /* vrsave */
+       return 356;
+      case 110: /* vscr */
+       return 67;
+      case 111: /* spe_acc */
+       return 99;
+      case 112: /* spefscr */
+       return 612;
+      default:
+       return num;
+      }
 }
 \f
 
 /* Handling the various POWER/PowerPC variants.  */
 
+/* Information about a particular processor variant.  */
 
-/* The arrays here called registers_MUMBLE hold information about available
-   registers.
-
-   For each family of PPC variants, I've tried to isolate out the
-   common registers and put them up front, so that as long as you get
-   the general family right, GDB will correctly identify the registers
-   common to that family.  The common register sets are:
+struct variant
+  {
+    /* Name of this variant.  */
+    char *name;
 
-   For the 60x family: hid0 hid1 iabr dabr pir
+    /* English description of the variant.  */
+    char *description;
 
-   For the 505 and 860 family: eie eid nri
+    /* bfd_arch_info.arch corresponding to variant.  */
+    enum bfd_architecture arch;
 
-   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
-   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
-   pbu1 pbl2 pbu2
+    /* bfd_arch_info.mach corresponding to variant.  */
+    unsigned long mach;
 
-   Most of these register groups aren't anything formal.  I arrived at
-   them by looking at the registers that occurred in more than one
-   processor.
-   
-   Note: kevinb/2002-04-30: Support for the fpscr register was added
-   during April, 2002.  Slot 70 is being used for PowerPC and slot 71
-   for Power.  For PowerPC, slot 70 was unused and was already in the
-   PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
-   slot 70 was being used for "mq", so the next available slot (71)
-   was chosen.  It would have been nice to be able to make the
-   register numbers the same across processor cores, but this wasn't
-   possible without either 1) renumbering some registers for some
-   processors or 2) assigning fpscr to a really high slot that's
-   larger than any current register number.  Doing (1) is bad because
-   existing stubs would break.  Doing (2) is undesirable because it
-   would introduce a really large gap between fpscr and the rest of
-   the registers for most processors.  */
-
-/* Convenience macros for populating register arrays.  */
-
-/* Within another macro, convert S to a string.  */
-
-#define STR(s) #s
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
-   and 64 bits on 64-bit systems.  */
-#define R(name)                { STR(name), 4, 8, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 32 bits on all
-   systems.  */
-#define R4(name)       { STR(name), 4, 4, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on all
-   systems.  */
-#define R8(name)       { STR(name), 8, 8, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 128 bits on all
-   systems.  */
-#define R16(name)       { STR(name), 16, 16, 0, 0 }
-
-/* Return a struct reg defining floating-point register NAME.  */
-#define F(name)                { STR(name), 8, 8, 1, 0 }
-
-/* Return a struct reg defining a pseudo register NAME.  */
-#define P(name)                { STR(name), 4, 8, 0, 1}
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit
-   systems and that doesn't exist on 64-bit systems.  */
-#define R32(name)      { STR(name), 4, 0, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on 64-bit
-   systems and that doesn't exist on 32-bit systems.  */
-#define R64(name)      { STR(name), 0, 8, 0, 0 }
-
-/* Return a struct reg placeholder for a register that doesn't exist.  */
-#define R0             { 0, 0, 0, 0, 0 }
-
-/* UISA registers common across all architectures, including POWER.  */
-
-#define COMMON_UISA_REGS \
-  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
-  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
-  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
-  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
-  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
-  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
-  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
-  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
-  /* 64 */ R(pc), R(ps)
-
-#define COMMON_UISA_NOFP_REGS \
-  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
-  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
-  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
-  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
-  /* 32 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 40 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 48 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 56 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 64 */ R(pc), R(ps)
-
-/* UISA-level SPRs for PowerPC.  */
-#define PPC_UISA_SPRS \
-  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R4(fpscr)
-
-/* UISA-level SPRs for PowerPC without floating point support.  */
-#define PPC_UISA_NOFP_SPRS \
-  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
-
-/* Segment registers, for PowerPC.  */
-#define PPC_SEGMENT_REGS \
-  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
-  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
-  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
-  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
-
-/* OEA SPRs for PowerPC.  */
-#define PPC_OEA_SPRS \
-  /*  87 */ R4(pvr), \
-  /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
-  /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
-  /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
-  /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
-  /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
-  /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
-  /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
-  /* 116 */ R4(dec),   R(dabr),   R4(ear)
-
-/* AltiVec registers.  */
-#define PPC_ALTIVEC_REGS \
-  /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
-  /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
-  /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
-  /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
-  /*151*/R4(vscr), R4(vrsave)
-
-/* Vectors of hi-lo general purpose registers.  */
-#define PPC_EV_REGS \
-  /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7),  \
-  /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
-  /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
-  /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
-
-/* Lower half of the EV registers.  */
-#define PPC_GPRS_PSEUDO_REGS \
-  /*  0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7),  \
-  /*  8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
-  /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
-  /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
-
-/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
-   user-level SPR's.  */
-static const struct reg registers_power[] =
-{
-  COMMON_UISA_REGS,
-  /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
-  /* 71 */ R4(fpscr)
-};
+    /* Target description for this variant.  */
+    struct target_desc **tdesc;
+  };
 
-/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
-   view of the PowerPC.  */
-static const struct reg registers_powerpc[] =
+static struct variant variants[] =
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_ALTIVEC_REGS
-};
+  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
+   bfd_mach_ppc, &tdesc_powerpc_altivec32},
+  {"power", "POWER user-level", bfd_arch_rs6000,
+   bfd_mach_rs6k, &tdesc_rs6000},
+  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
+   bfd_mach_ppc_403, &tdesc_powerpc_403},
+  {"405", "IBM PowerPC 405", bfd_arch_powerpc,
+   bfd_mach_ppc_405, &tdesc_powerpc_405},
+  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
+   bfd_mach_ppc_601, &tdesc_powerpc_601},
+  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
+   bfd_mach_ppc_602, &tdesc_powerpc_602},
+  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
+   bfd_mach_ppc_603, &tdesc_powerpc_603},
+  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
+   604, &tdesc_powerpc_604},
+  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
+   bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
+  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
+   bfd_mach_ppc_505, &tdesc_powerpc_505},
+  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
+   bfd_mach_ppc_860, &tdesc_powerpc_860},
+  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
+   bfd_mach_ppc_750, &tdesc_powerpc_750},
+  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
+   bfd_mach_ppc_7400, &tdesc_powerpc_7400},
+  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
+   bfd_mach_ppc_e500, &tdesc_powerpc_e500},
 
-/* PowerPC UISA - a PPC processor as viewed by user-level
-   code, but without floating point registers.  */
-static const struct reg registers_powerpc_nofp[] =
-{
-  COMMON_UISA_NOFP_REGS,
-  PPC_UISA_SPRS
-};
+  /* 64-bit */
+  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
+   bfd_mach_ppc64, &tdesc_powerpc_altivec64},
+  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
+   bfd_mach_ppc_620, &tdesc_powerpc_64},
+  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
+   bfd_mach_ppc_630, &tdesc_powerpc_64},
+  {"a35", "PowerPC A35", bfd_arch_powerpc,
+   bfd_mach_ppc_a35, &tdesc_powerpc_64},
+  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
+   bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
+  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
+   bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
 
-/* IBM PowerPC 403.  */
-static const struct reg registers_403[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
-  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
-  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
-  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
-  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
-  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
-};
+  /* FIXME: I haven't checked the register sets of the following.  */
+  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
+   bfd_mach_rs6k_rs1, &tdesc_rs6000},
+  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
+   bfd_mach_rs6k_rsc, &tdesc_rs6000},
+  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
+   bfd_mach_rs6k_rs2, &tdesc_rs6000},
 
-/* IBM PowerPC 403GC.  */
-static const struct reg registers_403GC[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
-  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
-  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
-  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
-  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
-  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
-  /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
-  /* 147 */ R(tbhu),   R(tblu)
+  {0, 0, 0, 0, 0}
 };
 
-/* Motorola PowerPC 505.  */
-static const struct reg registers_505[] =
+/* Return the variant corresponding to architecture ARCH and machine number
+   MACH.  If no such variant exists, return null.  */
+
+static const struct variant *
+find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(eie), R(eid), R(nri)
-};
+  const struct variant *v;
 
-/* Motorola PowerPC 860 or 850.  */
-static const struct reg registers_860[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
-  /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
-  /* 127 */ R(der), R(counta), R(countb), R(cmpe),
-  /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
-  /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
-  /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
-  /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
-  /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
-  /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
-  /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
-  /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
-  /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
-};
+  for (v = variants; v->name; v++)
+    if (arch == v->arch && mach == v->mach)
+      return v;
 
-/* Motorola PowerPC 601.  Note that the 601 has different register numbers
-   for reading and writing RTCU and RTCL.  However, how one reads and writes a
-   register is the stub's problem.  */
-static const struct reg registers_601[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
-};
+  return NULL;
+}
 
-/* Motorola PowerPC 602.  */
-static const struct reg registers_602[] =
+static int
+gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
-  /* 123 */ R0, R(tcr), R(ibr), R(esassr),
-  /* 127 */ R(sebr), R(ser), R(sp), R(lt)
-};
+  if (info->endian == BFD_ENDIAN_BIG)
+    return print_insn_big_powerpc (memaddr, info);
+  else
+    return print_insn_little_powerpc (memaddr, info);
+}
+\f
+static CORE_ADDR
+rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  return frame_unwind_register_unsigned (next_frame,
+                                        gdbarch_pc_regnum (gdbarch));
+}
 
-/* Motorola/IBM PowerPC 603 or 603e.  */
-static const struct reg registers_603[] =
+static struct frame_id
+rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
-  /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
-  /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
-};
+  return frame_id_build (get_frame_register_unsigned
+                         (this_frame, gdbarch_sp_regnum (gdbarch)),
+                        get_frame_pc (this_frame));
+}
 
-/* Motorola PowerPC 604 or 604e.  */
-static const struct reg registers_604[] =
+struct rs6000_frame_cache
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
-  /* 127 */ R(sia), R(sda)
+  CORE_ADDR base;
+  CORE_ADDR initial_sp;
+  struct trad_frame_saved_reg *saved_regs;
 };
 
-/* Motorola/IBM PowerPC 750 or 740.  */
-static const struct reg registers_750[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
-  /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
-  /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
-  /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
-  /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
-};
+static struct rs6000_frame_cache *
+rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
+{
+  struct rs6000_frame_cache *cache;
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  struct rs6000_framedata fdata;
+  int wordsize = tdep->wordsize;
+  CORE_ADDR func, pc;
+
+  if ((*this_cache) != NULL)
+    return (*this_cache);
+  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
+  (*this_cache) = cache;
+  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+
+  func = get_frame_func (this_frame);
+  pc = get_frame_pc (this_frame);
+  skip_prologue (gdbarch, func, pc, &fdata);
+
+  /* Figure out the parent's stack pointer.  */
+
+  /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
+     address of the current frame.  Things might be easier if the
+     ->frame pointed to the outer-most address of the frame.  In
+     the mean time, the address of the prev frame is used as the
+     base address of this frame.  */
+  cache->base = get_frame_register_unsigned
+               (this_frame, gdbarch_sp_regnum (gdbarch));
+
+  /* If the function appears to be frameless, check a couple of likely
+     indicators that we have simply failed to find the frame setup.
+     Two common cases of this are missing symbols (i.e.
+     get_frame_func returns the wrong address or 0), and assembly
+     stubs which have a fast exit path but set up a frame on the slow
+     path.
+
+     If the LR appears to return to this function, then presume that
+     we have an ABI compliant frame that we failed to find.  */
+  if (fdata.frameless && fdata.lr_offset == 0)
+    {
+      CORE_ADDR saved_lr;
+      int make_frame = 0;
 
+      saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
+      if (func == 0 && saved_lr == pc)
+       make_frame = 1;
+      else if (func != 0)
+       {
+         CORE_ADDR saved_func = get_pc_function_start (saved_lr);
+         if (func == saved_func)
+           make_frame = 1;
+       }
 
-/* Motorola PowerPC 7400.  */
-static const struct reg registers_7400[] =
-{
-  /* gpr0-gpr31, fpr0-fpr31 */
-  COMMON_UISA_REGS,
-  /* ctr, xre, lr, cr */
-  PPC_UISA_SPRS,
-  /* sr0-sr15 */
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* vr0-vr31, vrsave, vscr */
-  PPC_ALTIVEC_REGS
-  /* FIXME? Add more registers? */
-};
+      if (make_frame)
+       {
+         fdata.frameless = 0;
+         fdata.lr_offset = tdep->lr_frame_offset;
+       }
+    }
 
-/* Motorola e500.  */
-static const struct reg registers_e500[] =
-{
-  R(pc), R(ps),
-  /* cr, lr, ctr, xer, "" */
-  PPC_UISA_NOFP_SPRS,
-  /* 7...38 */
-  PPC_EV_REGS,
-  R8(acc), R(spefscr),
-  /* NOTE: Add new registers here the end of the raw register
-     list and just before the first pseudo register.  */
-  /* 39...70 */
-  PPC_GPRS_PSEUDO_REGS
-};
+  if (!fdata.frameless)
+    /* Frameless really means stackless.  */
+    cache->base
+      = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
 
-/* Information about a particular processor variant.  */
+  trad_frame_set_value (cache->saved_regs,
+                       gdbarch_sp_regnum (gdbarch), cache->base);
 
-struct variant
-  {
-    /* Name of this variant.  */
-    char *name;
+  /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
+     All fpr's from saved_fpr to fp31 are saved.  */
 
-    /* English description of the variant.  */
-    char *description;
+  if (fdata.saved_fpr >= 0)
+    {
+      int i;
+      CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
+
+      /* If skip_prologue says floating-point registers were saved,
+         but the current architecture has no floating-point registers,
+         then that's strange.  But we have no indices to even record
+         the addresses under, so we just ignore it.  */
+      if (ppc_floating_point_unit_p (gdbarch))
+        for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
+          {
+            cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
+            fpr_addr += 8;
+          }
+    }
 
-    /* bfd_arch_info.arch corresponding to variant.  */
-    enum bfd_architecture arch;
+  /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
+     All gpr's from saved_gpr to gpr31 are saved (except during the
+     prologue).  */
 
-    /* bfd_arch_info.mach corresponding to variant.  */
-    unsigned long mach;
+  if (fdata.saved_gpr >= 0)
+    {
+      int i;
+      CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
+      for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
+       {
+         if (fdata.gpr_mask & (1U << i))
+           cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
+         gpr_addr += wordsize;
+       }
+    }
+
+  /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
+     All vr's from saved_vr to vr31 are saved.  */
+  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
+    {
+      if (fdata.saved_vr >= 0)
+       {
+         int i;
+         CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
+         for (i = fdata.saved_vr; i < 32; i++)
+           {
+             cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
+             vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
+           }
+       }
+    }
 
-    /* Number of real registers.  */
-    int nregs;
+  /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
+     All vr's from saved_ev to ev31 are saved. ?????  */
+  if (tdep->ppc_ev0_regnum != -1)
+    {
+      if (fdata.saved_ev >= 0)
+       {
+         int i;
+         CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
+         CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
 
-    /* Number of pseudo registers.  */
-    int npregs;
+         for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
+           {
+             cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
+             cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
+             ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
+           }
+       }
+    }
 
-    /* Number of total registers (the sum of nregs and npregs).  */
-    int num_tot_regs;
+  /* If != 0, fdata.cr_offset is the offset from the frame that
+     holds the CR.  */
+  if (fdata.cr_offset != 0)
+    cache->saved_regs[tdep->ppc_cr_regnum].addr
+      = cache->base + fdata.cr_offset;
+
+  /* If != 0, fdata.lr_offset is the offset from the frame that
+     holds the LR.  */
+  if (fdata.lr_offset != 0)
+    cache->saved_regs[tdep->ppc_lr_regnum].addr
+      = cache->base + fdata.lr_offset;
+  else if (fdata.lr_register != -1)
+    cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
+  /* The PC is found in the link register.  */
+  cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
+    cache->saved_regs[tdep->ppc_lr_regnum];
+
+  /* If != 0, fdata.vrsave_offset is the offset from the frame that
+     holds the VRSAVE.  */
+  if (fdata.vrsave_offset != 0)
+    cache->saved_regs[tdep->ppc_vrsave_regnum].addr
+      = cache->base + fdata.vrsave_offset;
 
-    /* Table of register names; registers[R] is the name of the register
-       number R.  */
-    const struct reg *regs;
-  };
+  if (fdata.alloca_reg < 0)
+    /* If no alloca register used, then fi->frame is the value of the
+       %sp for this frame, and it is good enough.  */
+    cache->initial_sp
+      = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
+  else
+    cache->initial_sp
+      = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
 
-#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
+  return cache;
+}
 
-static int
-num_registers (const struct reg *reg_list, int num_tot_regs)
+static void
+rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
+                     struct frame_id *this_id)
 {
-  int i;
-  int nregs = 0;
+  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
+                                                       this_cache);
+  /* This marks the outermost frame.  */
+  if (info->base == 0)
+    return;
 
-  for (i = 0; i < num_tot_regs; i++)
-    if (!reg_list[i].pseudo)
-      nregs++;
-       
-  return nregs;
+  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
 }
 
-static int
-num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
+static struct value *
+rs6000_frame_prev_register (struct frame_info *this_frame,
+                           void **this_cache, int regnum)
 {
-  int i;
-  int npregs = 0;
+  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
+                                                       this_cache);
+  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
+}
 
-  for (i = 0; i < num_tot_regs; i++)
-    if (reg_list[i].pseudo)
-      npregs ++; 
+static const struct frame_unwind rs6000_frame_unwind =
+{
+  NORMAL_FRAME,
+  default_frame_unwind_stop_reason,
+  rs6000_frame_this_id,
+  rs6000_frame_prev_register,
+  NULL,
+  default_frame_sniffer
+};
+\f
 
-  return npregs;
+static CORE_ADDR
+rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
+{
+  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
+                                                       this_cache);
+  return info->initial_sp;
 }
 
-/* Information in this table comes from the following web sites:
-   IBM:       http://www.chips.ibm.com:80/products/embedded/
-   Motorola:  http://www.mot.com/SPS/PowerPC/
+static const struct frame_base rs6000_frame_base = {
+  &rs6000_frame_unwind,
+  rs6000_frame_base_address,
+  rs6000_frame_base_address,
+  rs6000_frame_base_address
+};
 
-   I'm sure I've got some of the variant descriptions not quite right.
-   Please report any inaccuracies you find to GDB's maintainer.
+static const struct frame_base *
+rs6000_frame_base_sniffer (struct frame_info *this_frame)
+{
+  return &rs6000_frame_base;
+}
 
-   If you add entries to this table, please be sure to allow the new
-   value as an argument to the --with-cpu flag, in configure.in.  */
+/* DWARF-2 frame support.  Used to handle the detection of
+  clobbered registers during function calls.  */
 
-static struct variant variants[] =
+static void
+ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
+                           struct dwarf2_frame_state_reg *reg,
+                           struct frame_info *this_frame)
 {
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
-   bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"power", "POWER user-level", bfd_arch_rs6000,
-   bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
-   bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
-   registers_403},
-  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
-   bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
-   registers_601},
-  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
-   bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
-   registers_602},
-  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
-   bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
-   registers_603},
-  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
-   604, -1, -1, tot_num_registers (registers_604),
-   registers_604},
-  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
-   bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
-   registers_403GC},
-  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
-   bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
-   registers_505},
-  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
-   bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
-   registers_860},
-  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
-   bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
-   registers_750},
-  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
-   bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
-   registers_7400},
-  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
-   bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
-   registers_e500},
+  /* PPC32 and PPC64 ABI's are the same regarding volatile and
+     non-volatile registers.  We will use the same code for both.  */
 
-  /* 64-bit */
-  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
-   bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
-   bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
-   bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"a35", "PowerPC A35", bfd_arch_powerpc,
-   bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
-   bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
-   bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
+  /* Call-saved GP registers.  */
+  if ((regnum >= tdep->ppc_gp0_regnum + 14
+      && regnum <= tdep->ppc_gp0_regnum + 31)
+      || (regnum == tdep->ppc_gp0_regnum + 1))
+    reg->how = DWARF2_FRAME_REG_SAME_VALUE;
 
-  /* FIXME: I haven't checked the register sets of the following.  */
-  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
-   bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
-   bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
-   bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
-   registers_power},
+  /* Call-clobbered GP registers.  */
+  if ((regnum >= tdep->ppc_gp0_regnum + 3
+      && regnum <= tdep->ppc_gp0_regnum + 12)
+      || (regnum == tdep->ppc_gp0_regnum))
+    reg->how = DWARF2_FRAME_REG_UNDEFINED;
 
-  {0, 0, 0, 0, 0, 0, 0, 0}
-};
+  /* Deal with FP registers, if supported.  */
+  if (tdep->ppc_fp0_regnum >= 0)
+    {
+      /* Call-saved FP registers.  */
+      if ((regnum >= tdep->ppc_fp0_regnum + 14
+         && regnum <= tdep->ppc_fp0_regnum + 31))
+       reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+
+      /* Call-clobbered FP registers.  */
+      if ((regnum >= tdep->ppc_fp0_regnum
+         && regnum <= tdep->ppc_fp0_regnum + 13))
+       reg->how = DWARF2_FRAME_REG_UNDEFINED;
+    }
 
-/* Initialize the number of registers and pseudo registers in each variant.  */
+  /* Deal with ALTIVEC registers, if supported.  */
+  if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
+    {
+      /* Call-saved Altivec registers.  */
+      if ((regnum >= tdep->ppc_vr0_regnum + 20
+         && regnum <= tdep->ppc_vr0_regnum + 31)
+         || regnum == tdep->ppc_vrsave_regnum)
+       reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+
+      /* Call-clobbered Altivec registers.  */
+      if ((regnum >= tdep->ppc_vr0_regnum
+         && regnum <= tdep->ppc_vr0_regnum + 19))
+       reg->how = DWARF2_FRAME_REG_UNDEFINED;
+    }
 
-static void
-init_variants (void)
+  /* Handle PC register and Stack Pointer correctly.  */
+  if (regnum == gdbarch_pc_regnum (gdbarch))
+    reg->how = DWARF2_FRAME_REG_RA;
+  else if (regnum == gdbarch_sp_regnum (gdbarch))
+    reg->how = DWARF2_FRAME_REG_CFA;
+}
+
+
+/* Return true if a .gnu_attributes section exists in BFD and it
+   indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
+   section exists in BFD and it indicates that SPE extensions are in
+   use.  Check the .gnu.attributes section first, as the binary might be
+   compiled for SPE, but not actually using SPE instructions.  */
+
+static int
+bfd_uses_spe_extensions (bfd *abfd)
 {
-  struct variant *v;
+  asection *sect;
+  gdb_byte *contents = NULL;
+  bfd_size_type size;
+  gdb_byte *ptr;
+  int success = 0;
+  int vector_abi;
 
-  for (v = variants; v->name; v++)
+  if (!abfd)
+    return 0;
+
+#ifdef HAVE_ELF
+  /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
+     could be using the SPE vector abi without actually using any spe
+     bits whatsoever.  But it's close enough for now.  */
+  vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
+                                        Tag_GNU_Power_ABI_Vector);
+  if (vector_abi == 3)
+    return 1;
+#endif
+
+  sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
+  if (!sect)
+    return 0;
+
+  size = bfd_get_section_size (sect);
+  contents = xmalloc (size);
+  if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
     {
-      if (v->nregs == -1)
-        v->nregs = num_registers (v->regs, v->num_tot_regs);
-      if (v->npregs == -1)
-        v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
-    }  
-}
+      xfree (contents);
+      return 0;
+    }
+
+  /* Parse the .PPC.EMB.apuinfo section.  The layout is as follows:
+
+     struct {
+       uint32 name_len;
+       uint32 data_len;
+       uint32 type;
+       char name[name_len rounded up to 4-byte alignment];
+       char data[data_len];
+     };
+
+     Technically, there's only supposed to be one such structure in a
+     given apuinfo section, but the linker is not always vigilant about
+     merging apuinfo sections from input files.  Just go ahead and parse
+     them all, exiting early when we discover the binary uses SPE
+     insns.
+
+     It's not specified in what endianness the information in this
+     section is stored.  Assume that it's the endianness of the BFD.  */
+  ptr = contents;
+  while (1)
+    {
+      unsigned int name_len;
+      unsigned int data_len;
+      unsigned int type;
+
+      /* If we can't read the first three fields, we're done.  */
+      if (size < 12)
+       break;
+
+      name_len = bfd_get_32 (abfd, ptr);
+      name_len = (name_len + 3) & ~3U; /* Round to 4 bytes.  */
+      data_len = bfd_get_32 (abfd, ptr + 4);
+      type = bfd_get_32 (abfd, ptr + 8);
+      ptr += 12;
+
+      /* The name must be "APUinfo\0".  */
+      if (name_len != 8
+         && strcmp ((const char *) ptr, "APUinfo") != 0)
+       break;
+      ptr += name_len;
+
+      /* The type must be 2.  */
+      if (type != 2)
+       break;
 
-/* Return the variant corresponding to architecture ARCH and machine number
-   MACH.  If no such variant exists, return null.  */
+      /* The data is stored as a series of uint32.  The upper half of
+        each uint32 indicates the particular APU used and the lower
+        half indicates the revision of that APU.  We just care about
+        the upper half.  */
 
-static const struct variant *
-find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
-{
-  const struct variant *v;
+      /* Not 4-byte quantities.  */
+      if (data_len & 3U)
+       break;
 
-  for (v = variants; v->name; v++)
-    if (arch == v->arch && mach == v->mach)
-      return v;
+      while (data_len)
+       {
+         unsigned int apuinfo = bfd_get_32 (abfd, ptr);
+         unsigned int apu = apuinfo >> 16;
+         ptr += 4;
+         data_len -= 4;
+
+         /* The SPE APU is 0x100; the SPEFP APU is 0x101.  Accept
+            either.  */
+         if (apu == 0x100 || apu == 0x101)
+           {
+             success = 1;
+             data_len = 0;
+           }
+       }
 
-  return NULL;
-}
+      if (success)
+       break;
+    }
 
-static int
-gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
-{
-  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-    return print_insn_big_powerpc (memaddr, info);
-  else
-    return print_insn_little_powerpc (memaddr, info);
+  xfree (contents);
+  return success;
 }
-\f
+
 /* Initialize the current architecture based on INFO.  If possible, re-use an
    architecture from ARCHES, which is a list of architectures already created
    during this debugging session.
@@ -2620,14 +3551,31 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
 {
   struct gdbarch *gdbarch;
   struct gdbarch_tdep *tdep;
-  int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
-  struct reg *regs;
-  const struct variant *v;
+  int wordsize, from_xcoff_exec, from_elf_exec;
   enum bfd_architecture arch;
   unsigned long mach;
   bfd abfd;
-  int sysv_abi;
-  asection *sect;
+  enum auto_boolean soft_float_flag = powerpc_soft_float_global;
+  int soft_float;
+  enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
+  enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
+  int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
+      have_vsx = 0;
+  int tdesc_wordsize = -1;
+  const struct target_desc *tdesc = info.target_desc;
+  struct tdesc_arch_data *tdesc_data = NULL;
+  int num_pseudoregs = 0;
+  int cur_reg;
+
+  /* INFO may refer to a binary that is not of the PowerPC architecture,
+     e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
+     In this case, we must not attempt to infer properties of the (PowerPC
+     side) of the target system from properties of that executable.  Trust
+     the target description instead.  */
+  if (info.abfd
+      && bfd_get_arch (info.abfd) != bfd_arch_powerpc
+      && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
+    info.abfd = NULL;
 
   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
@@ -2635,8 +3583,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
     bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
 
-  sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
-
   /* Check word size.  If INFO is from a binary file, infer it from
      that, else choose a likely default.  */
   if (from_xcoff_exec)
@@ -2653,6 +3599,8 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
       else
        wordsize = 4;
     }
+  else if (tdesc_has_registers (tdesc))
+    wordsize = -1;
   else
     {
       if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
@@ -2662,6 +3610,356 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        wordsize = 4;
     }
 
+  /* Get the architecture and machine from the BFD.  */
+  arch = info.bfd_arch_info->arch;
+  mach = info.bfd_arch_info->mach;
+
+  /* For e500 executables, the apuinfo section is of help here.  Such
+     section contains the identifier and revision number of each
+     Application-specific Processing Unit that is present on the
+     chip.  The content of the section is determined by the assembler
+     which looks at each instruction and determines which unit (and
+     which version of it) can execute it.  Grovel through the section
+     looking for relevant e500 APUs.  */
+
+  if (bfd_uses_spe_extensions (info.abfd))
+    {
+      arch = info.bfd_arch_info->arch;
+      mach = bfd_mach_ppc_e500;
+      bfd_default_set_arch_mach (&abfd, arch, mach);
+      info.bfd_arch_info = bfd_get_arch_info (&abfd);
+    }
+
+  /* Find a default target description which describes our register
+     layout, if we do not already have one.  */
+  if (! tdesc_has_registers (tdesc))
+    {
+      const struct variant *v;
+
+      /* Choose variant.  */
+      v = find_variant_by_arch (arch, mach);
+      if (!v)
+       return NULL;
+
+      tdesc = *v->tdesc;
+    }
+
+  gdb_assert (tdesc_has_registers (tdesc));
+
+  /* Check any target description for validity.  */
+  if (tdesc_has_registers (tdesc))
+    {
+      static const char *const gprs[] = {
+       "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+       "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+       "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+       "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
+      };
+      const struct tdesc_feature *feature;
+      int i, valid_p;
+      static const char *const msr_names[] = { "msr", "ps" };
+      static const char *const cr_names[] = { "cr", "cnd" };
+      static const char *const ctr_names[] = { "ctr", "cnt" };
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.core");
+      if (feature == NULL)
+       return NULL;
+
+      tdesc_data = tdesc_data_alloc ();
+
+      valid_p = 1;
+      for (i = 0; i < ppc_num_gprs; i++)
+       valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
+                                         "pc");
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
+                                         "lr");
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
+                                         "xer");
+
+      /* Allow alternate names for these registers, to accomodate GDB's
+        historic naming.  */
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_MSR_REGNUM, msr_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_CR_REGNUM, cr_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_CTR_REGNUM, ctr_names);
+
+      if (!valid_p)
+       {
+         tdesc_data_cleanup (tdesc_data);
+         return NULL;
+       }
+
+      have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
+                                        "mq");
+
+      tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
+      if (wordsize == -1)
+       wordsize = tdesc_wordsize;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.fpu");
+      if (feature != NULL)
+       {
+         static const char *const fprs[] = {
+           "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+           "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+           "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+           "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
+         };
+         valid_p = 1;
+         for (i = 0; i < ppc_num_fprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_F0_REGNUM + i, fprs[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_FPSCR_REGNUM, "fpscr");
+
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_fpu = 1;
+       }
+      else
+       have_fpu = 0;
+
+      /* The DFP pseudo-registers will be available when there are floating
+         point registers.  */
+      have_dfp = have_fpu;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.altivec");
+      if (feature != NULL)
+       {
+         static const char *const vector_regs[] = {
+           "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
+           "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
+           "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
+           "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
+         };
+
+         valid_p = 1;
+         for (i = 0; i < ppc_num_gprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_VR0_REGNUM + i,
+                                               vector_regs[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_VSCR_REGNUM, "vscr");
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_VRSAVE_REGNUM, "vrsave");
+
+         if (have_spe || !valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_altivec = 1;
+       }
+      else
+       have_altivec = 0;
+
+      /* Check for POWER7 VSX registers support.  */
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.vsx");
+
+      if (feature != NULL)
+       {
+         static const char *const vsx_regs[] = {
+           "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
+           "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
+           "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
+           "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
+           "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
+           "vs30h", "vs31h"
+         };
+
+         valid_p = 1;
+
+         for (i = 0; i < ppc_num_vshrs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_VSR0_UPPER_REGNUM + i,
+                                               vsx_regs[i]);
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+
+         have_vsx = 1;
+       }
+      else
+       have_vsx = 0;
+
+      /* On machines supporting the SPE APU, the general-purpose registers
+        are 64 bits long.  There are SIMD vector instructions to treat them
+        as pairs of floats, but the rest of the instruction set treats them
+        as 32-bit registers, and only operates on their lower halves.
+
+        In the GDB regcache, we treat their high and low halves as separate
+        registers.  The low halves we present as the general-purpose
+        registers, and then we have pseudo-registers that stitch together
+        the upper and lower halves and present them as pseudo-registers.
+
+        Thus, the target description is expected to supply the upper
+        halves separately.  */
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.spe");
+      if (feature != NULL)
+       {
+         static const char *const upper_spe[] = {
+           "ev0h", "ev1h", "ev2h", "ev3h",
+           "ev4h", "ev5h", "ev6h", "ev7h",
+           "ev8h", "ev9h", "ev10h", "ev11h",
+           "ev12h", "ev13h", "ev14h", "ev15h",
+           "ev16h", "ev17h", "ev18h", "ev19h",
+           "ev20h", "ev21h", "ev22h", "ev23h",
+           "ev24h", "ev25h", "ev26h", "ev27h",
+           "ev28h", "ev29h", "ev30h", "ev31h"
+         };
+
+         valid_p = 1;
+         for (i = 0; i < ppc_num_gprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_SPE_UPPER_GP0_REGNUM + i,
+                                               upper_spe[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_SPE_ACC_REGNUM, "acc");
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_SPE_FSCR_REGNUM, "spefscr");
+
+         if (have_mq || have_fpu || !valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_spe = 1;
+       }
+      else
+       have_spe = 0;
+    }
+
+  /* If we have a 64-bit binary on a 32-bit target, complain.  Also
+     complain for a 32-bit binary on a 64-bit target; we do not yet
+     support that.  For instance, the 32-bit ABI routines expect
+     32-bit GPRs.
+
+     As long as there isn't an explicit target description, we'll
+     choose one based on the BFD architecture and get a word size
+     matching the binary (probably powerpc:common or
+     powerpc:common64).  So there is only trouble if a 64-bit target
+     supplies a 64-bit description while debugging a 32-bit
+     binary.  */
+  if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
+    {
+      tdesc_data_cleanup (tdesc_data);
+      return NULL;
+    }
+
+#ifdef HAVE_ELF
+  if (from_elf_exec)
+    {
+      switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
+       {
+       case 1:
+         elf_abi = POWERPC_ELF_V1;
+         break;
+       case 2:
+         elf_abi = POWERPC_ELF_V2;
+         break;
+       default:
+         break;
+       }
+    }
+
+  if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
+    {
+      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+                                       Tag_GNU_Power_ABI_FP))
+       {
+       case 1:
+         soft_float_flag = AUTO_BOOLEAN_FALSE;
+         break;
+       case 2:
+         soft_float_flag = AUTO_BOOLEAN_TRUE;
+         break;
+       default:
+         break;
+       }
+    }
+
+  if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
+    {
+      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+                                       Tag_GNU_Power_ABI_Vector))
+       {
+       case 1:
+         vector_abi = POWERPC_VEC_GENERIC;
+         break;
+       case 2:
+         vector_abi = POWERPC_VEC_ALTIVEC;
+         break;
+       case 3:
+         vector_abi = POWERPC_VEC_SPE;
+         break;
+       default:
+         break;
+       }
+    }
+#endif
+
+  /* At this point, the only supported ELF-based 64-bit little-endian
+     operating system is GNU/Linux, and this uses the ELFv2 ABI by
+     default.  All other supported ELF-based operating systems use the
+     ELFv1 ABI by default.  Therefore, if the ABI marker is missing,
+     e.g. because we run a legacy binary, or have attached to a process
+     and have not found any associated binary file, set the default
+     according to this heuristic.  */
+  if (elf_abi == POWERPC_ELF_AUTO)
+    {
+      if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
+        elf_abi = POWERPC_ELF_V2;
+      else
+        elf_abi = POWERPC_ELF_V1;
+    }
+
+  if (soft_float_flag == AUTO_BOOLEAN_TRUE)
+    soft_float = 1;
+  else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
+    soft_float = 0;
+  else
+    soft_float = !have_fpu;
+
+  /* If we have a hard float binary or setting but no floating point
+     registers, downgrade to soft float anyway.  We're still somewhat
+     useful in this scenario.  */
+  if (!soft_float && !have_fpu)
+    soft_float = 1;
+
+  /* Similarly for vector registers.  */
+  if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
+    vector_abi = POWERPC_VEC_GENERIC;
+
+  if (vector_abi == POWERPC_VEC_SPE && !have_spe)
+    vector_abi = POWERPC_VEC_GENERIC;
+
+  if (vector_abi == POWERPC_VEC_AUTO)
+    {
+      if (have_altivec)
+       vector_abi = POWERPC_VEC_ALTIVEC;
+      else if (have_spe)
+       vector_abi = POWERPC_VEC_SPE;
+      else
+       vector_abi = POWERPC_VEC_GENERIC;
+    }
+
+  /* Do not limit the vector ABI based on available hardware, since we
+     do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */
+
   /* Find a candidate among extant architectures.  */
   for (arches = gdbarch_list_lookup_by_info (arches, &info);
        arches != NULL;
@@ -2671,8 +3969,18 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
          meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
          separate word size check.  */
       tdep = gdbarch_tdep (arches->gdbarch);
+      if (tdep && tdep->elf_abi != elf_abi)
+       continue;
+      if (tdep && tdep->soft_float != soft_float)
+       continue;
+      if (tdep && tdep->vector_abi != vector_abi)
+       continue;
       if (tdep && tdep->wordsize == wordsize)
-       return arches->gdbarch;
+       {
+         if (tdesc_data != NULL)
+           tdesc_data_cleanup (tdesc_data);
+         return arches->gdbarch;
+       }
     }
 
   /* None found, create a new architecture from INFO, whose bfd_arch_info
@@ -2683,159 +3991,80 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        - "set arch"            trust blindly
        - GDB startup           useless but harmless */
 
-  if (!from_xcoff_exec)
-    {
-      arch = info.bfd_arch_info->arch;
-      mach = info.bfd_arch_info->mach;
-    }
-  else
-    {
-      arch = bfd_arch_powerpc;
-      bfd_default_set_arch_mach (&abfd, arch, 0);
-      info.bfd_arch_info = bfd_get_arch_info (&abfd);
-      mach = info.bfd_arch_info->mach;
-    }
-  tdep = xmalloc (sizeof (struct gdbarch_tdep));
+  tdep = XCNEW (struct gdbarch_tdep);
   tdep->wordsize = wordsize;
-
-  /* For e500 executables, the apuinfo section is of help here.  Such
-     section contains the identifier and revision number of each
-     Application-specific Processing Unit that is present on the
-     chip.  The content of the section is determined by the assembler
-     which looks at each instruction and determines which unit (and
-     which version of it) can execute it. In our case we just look for
-     the existance of the section.  */
-
-  if (info.abfd)
-    {
-      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
-      if (sect)
-       {
-         arch = info.bfd_arch_info->arch;
-         mach = bfd_mach_ppc_e500;
-         bfd_default_set_arch_mach (&abfd, arch, mach);
-         info.bfd_arch_info = bfd_get_arch_info (&abfd);
-       }
-    }
+  tdep->elf_abi = elf_abi;
+  tdep->soft_float = soft_float;
+  tdep->vector_abi = vector_abi;
 
   gdbarch = gdbarch_alloc (&info, tdep);
-  power = arch == bfd_arch_rs6000;
-
-  /* Initialize the number of real and pseudo registers in each variant.  */
-  init_variants ();
-
-  /* Choose variant.  */
-  v = find_variant_by_arch (arch, mach);
-  if (!v)
-    return NULL;
-
-  tdep->regs = v->regs;
-
-  tdep->ppc_gp0_regnum = 0;
-  tdep->ppc_gplast_regnum = 31;
-  tdep->ppc_toc_regnum = 2;
-  tdep->ppc_ps_regnum = 65;
-  tdep->ppc_cr_regnum = 66;
-  tdep->ppc_lr_regnum = 67;
-  tdep->ppc_ctr_regnum = 68;
-  tdep->ppc_xer_regnum = 69;
-  if (v->mach == bfd_mach_ppc_601)
-    tdep->ppc_mq_regnum = 124;
-  else if (power)
-    tdep->ppc_mq_regnum = 70;
-  else
-    tdep->ppc_mq_regnum = -1;
-  tdep->ppc_fpscr_regnum = power ? 71 : 70;
 
-  set_gdbarch_pc_regnum (gdbarch, 64);
-  set_gdbarch_sp_regnum (gdbarch, 1);
-  set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
-  if (sysv_abi && wordsize == 8)
+  tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
+  tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
+  tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
+  tdep->ppc_cr_regnum = PPC_CR_REGNUM;
+  tdep->ppc_lr_regnum = PPC_LR_REGNUM;
+  tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
+  tdep->ppc_xer_regnum = PPC_XER_REGNUM;
+  tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
+
+  tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
+  tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
+  tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
+  tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
+  tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
+  tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
+  tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
+  tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
+
+  set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
+  set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
+  set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
+  set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
+  set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
+
+  /* The XML specification for PowerPC sensibly calls the MSR "msr".
+     GDB traditionally called it "ps", though, so let GDB add an
+     alias.  */
+  set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
+
+  if (wordsize == 8)
     set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
-  else if (sysv_abi && wordsize == 4)
-    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
   else
-    {
-      set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
-      set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
-    }
-
-  if (v->arch == bfd_arch_powerpc)
-    switch (v->mach)
-      {
-      case bfd_mach_ppc: 
-       tdep->ppc_vr0_regnum = 71;
-       tdep->ppc_vrsave_regnum = 104;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      case bfd_mach_ppc_7400:
-       tdep->ppc_vr0_regnum = 119;
-       tdep->ppc_vrsave_regnum = 152;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      case bfd_mach_ppc_e500:
-        tdep->ppc_gp0_regnum = 41;
-        tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
-        tdep->ppc_toc_regnum = -1;
-        tdep->ppc_ps_regnum = 1;
-        tdep->ppc_cr_regnum = 2;
-        tdep->ppc_lr_regnum = 3;
-        tdep->ppc_ctr_regnum = 4;
-        tdep->ppc_xer_regnum = 5;
-       tdep->ppc_ev0_regnum = 7;
-       tdep->ppc_ev31_regnum = 38;
-        set_gdbarch_pc_regnum (gdbarch, 0);
-        set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
-        set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
-        set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
-        set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
-        set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
-       break;
-      default:
-       tdep->ppc_vr0_regnum = -1;
-       tdep->ppc_vrsave_regnum = -1;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      }   
-
-  /* Sanity check on registers.  */
-  gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
+    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
 
   /* Set lr_frame_offset.  */
   if (wordsize == 8)
     tdep->lr_frame_offset = 16;
-  else if (sysv_abi)
-    tdep->lr_frame_offset = 4;
   else
-    tdep->lr_frame_offset = 8;
+    tdep->lr_frame_offset = 4;
 
-  /* Calculate byte offsets in raw register array.  */
-  tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
-  for (i = off = 0; i < v->num_tot_regs; i++)
+  if (have_spe || have_dfp || have_vsx)
     {
-      tdep->regoff[i] = off;
-      off += regsize (v->regs + i, wordsize);
+      set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
+      set_gdbarch_pseudo_register_write (gdbarch,
+                                        rs6000_pseudo_register_write);
     }
 
+  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
+
   /* Select instruction printer.  */
-  if (arch == power)
+  if (arch == bfd_arch_rs6000)
     set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
   else
     set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
 
-  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
+  set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
 
-  set_gdbarch_num_regs (gdbarch, v->nregs);
-  set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
-  set_gdbarch_register_name (gdbarch, rs6000_register_name);
-  set_gdbarch_deprecated_register_size (gdbarch, wordsize);
-  set_gdbarch_deprecated_register_bytes (gdbarch, off);
-  set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
-  set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
-  set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
+  if (have_spe)
+    num_pseudoregs += 32;
+  if (have_dfp)
+    num_pseudoregs += 16;
+  if (have_vsx)
+    /* Include both VSX and Extended FP registers.  */
+    num_pseudoregs += 96;
+
+  set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
 
   set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
@@ -2844,107 +4073,147 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
-  if (sysv_abi)
-    set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
-  else
-    set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
   set_gdbarch_char_signed (gdbarch, 0);
 
   set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
-  if (sysv_abi && wordsize == 8)
+  if (wordsize == 8)
     /* PPC64 SYSV.  */
     set_gdbarch_frame_red_zone_size (gdbarch, 288);
-  else if (!sysv_abi && wordsize == 4)
-    /* PowerOpen / AIX 32 bit.  The saved area or red zone consists of
-       19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
-       Problem is, 220 isn't frame (16 byte) aligned.  Round it up to
-       224.  */
-    set_gdbarch_frame_red_zone_size (gdbarch, 224);
-  set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
-  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
-
-  set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
-  set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
-  set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
+
+  set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
+  set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
+  set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
+
   set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
-  /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
-     is correct for the SysV ABI when the wordsize is 8, but I'm also
-     fairly certain that ppc_sysv_abi_push_arguments() will give even
-     worse results since it only works for 32-bit code.  So, for the moment,
-     we're better off calling rs6000_push_arguments() since it works for
-     64-bit code.  At some point in the future, this matter needs to be
-     revisited.  */
-  if (sysv_abi && wordsize == 4)
+  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
+
+  if (wordsize == 4)
     set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
-  else if (sysv_abi && wordsize == 8)
+  else if (wordsize == 8)
     set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
-  else
-    set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
-
-  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
-  set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
 
   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
+  set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
+  set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
+
   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
   set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
 
-  /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
-     for the descriptor and ".FN" for the entry-point -- a user
-     specifying "break FN" will unexpectedly end up with a breakpoint
-     on the descriptor and not the function.  This architecture method
-     transforms any breakpoints on descriptors into breakpoints on the
-     corresponding entry point.  */
-  if (sysv_abi && wordsize == 8)
-    set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
+  /* The value of symbols of type N_SO and N_FUN maybe null when
+     it shouldn't be.  */
+  set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
 
-  /* Not sure on this. FIXMEmgo */
+  /* Handles single stepping of atomic sequences.  */
+  set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
+  
+  /* Not sure on this.  FIXMEmgo */
   set_gdbarch_frame_args_skip (gdbarch, 8);
 
-  if (!sysv_abi)
-    set_gdbarch_use_struct_convention (gdbarch,
-                                      rs6000_use_struct_convention);
+  /* Helpers for function argument information.  */
+  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
 
-  set_gdbarch_deprecated_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
-  set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
-  set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
+  /* Trampoline.  */
+  set_gdbarch_in_solib_return_trampoline
+    (gdbarch, rs6000_in_solib_return_trampoline);
+  set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
 
-  set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
-  set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
+  /* Hook in the DWARF CFI frame unwinder.  */
+  dwarf2_append_unwinders (gdbarch);
+  dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
 
-  if (!sysv_abi)
-    {
-      /* Handle RS/6000 function pointers (which are really function
-         descriptors).  */
-      set_gdbarch_convert_from_func_ptr_addr (gdbarch,
-       rs6000_convert_from_func_ptr_addr);
-    }
-  set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
-  set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
-  set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
+  /* Frame handling.  */
+  dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
 
-  /* Helpers for function argument information.  */
-  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
+  /* Setup displaced stepping.  */
+  set_gdbarch_displaced_step_copy_insn (gdbarch,
+                                       simple_displaced_step_copy_insn);
+  set_gdbarch_displaced_step_hw_singlestep (gdbarch,
+                                           ppc_displaced_step_hw_singlestep);
+  set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
+  set_gdbarch_displaced_step_free_closure (gdbarch,
+                                          simple_displaced_step_free_closure);
+  set_gdbarch_displaced_step_location (gdbarch,
+                                      displaced_step_at_entry_point);
+
+  set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
 
   /* Hook in ABI-specific overrides, if they have been registered.  */
+  info.target_desc = tdesc;
+  info.tdep_info = (void *) tdesc_data;
   gdbarch_init_osabi (info, gdbarch);
 
-  if (from_xcoff_exec)
+  switch (info.osabi)
+    {
+    case GDB_OSABI_LINUX:
+    case GDB_OSABI_NETBSD_AOUT:
+    case GDB_OSABI_NETBSD_ELF:
+    case GDB_OSABI_UNKNOWN:
+      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
+      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
+      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
+      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
+      break;
+    default:
+      set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+
+      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
+      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
+      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
+      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
+    }
+
+  set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
+  set_tdesc_pseudo_register_reggroup_p (gdbarch,
+                                       rs6000_pseudo_register_reggroup_p);
+  tdesc_use_registers (gdbarch, tdesc, tdesc_data);
+
+  /* Override the normal target description method to make the SPE upper
+     halves anonymous.  */
+  set_gdbarch_register_name (gdbarch, rs6000_register_name);
+
+  /* Choose register numbers for all supported pseudo-registers.  */
+  tdep->ppc_ev0_regnum = -1;
+  tdep->ppc_dl0_regnum = -1;
+  tdep->ppc_vsr0_regnum = -1;
+  tdep->ppc_efpr0_regnum = -1;
+
+  cur_reg = gdbarch_num_regs (gdbarch);
+
+  if (have_spe)
+    {
+      tdep->ppc_ev0_regnum = cur_reg;
+      cur_reg += 32;
+    }
+  if (have_dfp)
+    {
+      tdep->ppc_dl0_regnum = cur_reg;
+      cur_reg += 16;
+    }
+  if (have_vsx)
     {
-      /* NOTE: jimix/2003-06-09: This test should really check for
-        GDB_OSABI_AIX when that is defined and becomes
-        available. (Actually, once things are properly split apart,
-        the test goes away.) */
-       /* RS6000/AIX does not support PT_STEP.  Has to be simulated.  */
-       set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
+      tdep->ppc_vsr0_regnum = cur_reg;
+      cur_reg += 64;
+      tdep->ppc_efpr0_regnum = cur_reg;
+      cur_reg += 32;
     }
 
+  gdb_assert (gdbarch_num_regs (gdbarch)
+             + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
+
+  /* Register the ravenscar_arch_ops.  */
+  if (mach == bfd_mach_ppc_e500)
+    register_e500_ravenscar_ops (gdbarch);
+  else
+    register_ppc_ravenscar_ops (gdbarch);
+
   return gdbarch;
 }
 
 static void
-rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
+rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
   if (tdep == NULL)
     return;
@@ -2952,17 +4221,144 @@ rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
   /* FIXME: Dump gdbarch_tdep.  */
 }
 
-static struct cmd_list_element *info_powerpc_cmdlist = NULL;
+/* PowerPC-specific commands.  */
+
+static void
+set_powerpc_command (char *args, int from_tty)
+{
+  printf_unfiltered (_("\
+\"set powerpc\" must be followed by an appropriate subcommand.\n"));
+  help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
+}
+
+static void
+show_powerpc_command (char *args, int from_tty)
+{
+  cmd_show_list (showpowerpccmdlist, from_tty, "");
+}
+
+static void
+powerpc_set_soft_float (char *args, int from_tty,
+                       struct cmd_list_element *c)
+{
+  struct gdbarch_info info;
+
+  /* Update the architecture.  */
+  gdbarch_info_init (&info);
+  if (!gdbarch_update_p (info))
+    internal_error (__FILE__, __LINE__, _("could not update architecture"));
+}
+
+static void
+powerpc_set_vector_abi (char *args, int from_tty,
+                       struct cmd_list_element *c)
+{
+  struct gdbarch_info info;
+  enum powerpc_vector_abi vector_abi;
+
+  for (vector_abi = POWERPC_VEC_AUTO;
+       vector_abi != POWERPC_VEC_LAST;
+       vector_abi++)
+    if (strcmp (powerpc_vector_abi_string,
+               powerpc_vector_strings[vector_abi]) == 0)
+      {
+       powerpc_vector_abi_global = vector_abi;
+       break;
+      }
+
+  if (vector_abi == POWERPC_VEC_LAST)
+    internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
+                   powerpc_vector_abi_string);
+
+  /* Update the architecture.  */
+  gdbarch_info_init (&info);
+  if (!gdbarch_update_p (info))
+    internal_error (__FILE__, __LINE__, _("could not update architecture"));
+}
+
+/* Show the current setting of the exact watchpoints flag.  */
 
 static void
-rs6000_info_powerpc_command (char *args, int from_tty)
+show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
+                               struct cmd_list_element *c,
+                               const char *value)
+{
+  fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
+}
+
+/* Read a PPC instruction from memory.  */
+
+static unsigned int
+read_insn (struct frame_info *frame, CORE_ADDR pc)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  return read_memory_unsigned_integer (pc, 4, byte_order);
+}
+
+/* Return non-zero if the instructions at PC match the series
+   described in PATTERN, or zero otherwise.  PATTERN is an array of
+   'struct ppc_insn_pattern' objects, terminated by an entry whose
+   mask is zero.
+
+   When the match is successful, fill INSN[i] with what PATTERN[i]
+   matched.  If PATTERN[i] is optional, and the instruction wasn't
+   present, set INSN[i] to 0 (which is not a valid PPC instruction).
+   INSN should have as many elements as PATTERN.  Note that, if
+   PATTERN contains optional instructions which aren't present in
+   memory, then INSN will have holes, so INSN[i] isn't necessarily the
+   i'th instruction in memory.  */
+
+int
+ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
+                        struct ppc_insn_pattern *pattern,
+                        unsigned int *insns)
+{
+  int i;
+  unsigned int insn;
+
+  for (i = 0, insn = 0; pattern[i].mask; i++)
+    {
+      if (insn == 0)
+       insn = read_insn (frame, pc);
+      insns[i] = 0;
+      if ((insn & pattern[i].mask) == pattern[i].data)
+       {
+         insns[i] = insn;
+         pc += 4;
+         insn = 0;
+       }
+      else if (!pattern[i].optional)
+       return 0;
+    }
+
+  return 1;
+}
+
+/* Return the 'd' field of the d-form instruction INSN, properly
+   sign-extended.  */
+
+CORE_ADDR
+ppc_insn_d_field (unsigned int insn)
+{
+  return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
+}
+
+/* Return the 'ds' field of the ds-form instruction INSN, with the two
+   zero bits concatenated at the right, and properly
+   sign-extended.  */
+
+CORE_ADDR
+ppc_insn_ds_field (unsigned int insn)
 {
-  help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
+  return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
 }
 
 /* Initialization code.  */
 
-extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
+/* -Wmissing-prototypes */
+extern initialize_file_ftype _initialize_rs6000_tdep;
 
 void
 _initialize_rs6000_tdep (void)
@@ -2970,8 +4366,63 @@ _initialize_rs6000_tdep (void)
   gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
   gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
 
-  /* Add root prefix command for "info powerpc" commands */
-  add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
-                 "Various POWERPC info specific commands.",
-                 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
+  /* Initialize the standard target descriptions.  */
+  initialize_tdesc_powerpc_32 ();
+  initialize_tdesc_powerpc_altivec32 ();
+  initialize_tdesc_powerpc_vsx32 ();
+  initialize_tdesc_powerpc_403 ();
+  initialize_tdesc_powerpc_403gc ();
+  initialize_tdesc_powerpc_405 ();
+  initialize_tdesc_powerpc_505 ();
+  initialize_tdesc_powerpc_601 ();
+  initialize_tdesc_powerpc_602 ();
+  initialize_tdesc_powerpc_603 ();
+  initialize_tdesc_powerpc_604 ();
+  initialize_tdesc_powerpc_64 ();
+  initialize_tdesc_powerpc_altivec64 ();
+  initialize_tdesc_powerpc_vsx64 ();
+  initialize_tdesc_powerpc_7400 ();
+  initialize_tdesc_powerpc_750 ();
+  initialize_tdesc_powerpc_860 ();
+  initialize_tdesc_powerpc_e500 ();
+  initialize_tdesc_rs6000 ();
+
+  /* Add root prefix command for all "set powerpc"/"show powerpc"
+     commands.  */
+  add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
+                 _("Various PowerPC-specific commands."),
+                 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
+
+  add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
+                 _("Various PowerPC-specific commands."),
+                 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
+
+  /* Add a command to allow the user to force the ABI.  */
+  add_setshow_auto_boolean_cmd ("soft-float", class_support,
+                               &powerpc_soft_float_global,
+                               _("Set whether to use a soft-float ABI."),
+                               _("Show whether to use a soft-float ABI."),
+                               NULL,
+                               powerpc_set_soft_float, NULL,
+                               &setpowerpccmdlist, &showpowerpccmdlist);
+
+  add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
+                       &powerpc_vector_abi_string,
+                       _("Set the vector ABI."),
+                       _("Show the vector ABI."),
+                       NULL, powerpc_set_vector_abi, NULL,
+                       &setpowerpccmdlist, &showpowerpccmdlist);
+
+  add_setshow_boolean_cmd ("exact-watchpoints", class_support,
+                          &target_exact_watchpoints,
+                          _("\
+Set whether to use just one debug register for watchpoints on scalars."),
+                          _("\
+Show whether to use just one debug register for watchpoints on scalars."),
+                          _("\
+If true, GDB will use only one debug register when watching a variable of\n\
+scalar type, thus assuming that the variable is accessed through the address\n\
+of its first byte."),
+                          NULL, show_powerpc_exact_watchpoints,
+                          &setpowerpccmdlist, &showpowerpccmdlist);
 }