]> git.ipfire.org Git - ipfire-2.x.git/blob - src/patches/suse-2.6.27.39/patches.trace/utrace-core
Imported linux-2.6.27.39 suse/xen patches.
[ipfire-2.x.git] / src / patches / suse-2.6.27.39 / patches.trace / utrace-core
1 From: Roland McGrath <roland@redhat.com>
2 Date: Mon Aug 25 17:22:07 2008 -0700
3 Subject: utrace core
4 References: FATE#304321
5 Patch-mainline: no
6
7 This adds the utrace facility, a new modular interface in the kernel for
8 implementing user thread tracing and debugging. This fits on top of the
9 tracehook_* layer, so the new code is well-isolated.
10
11 The new interface is in <linux/utrace.h> and the DocBook utrace book
12 describes it. It allows for multiple separate tracing engines to work in
13 parallel without interfering with each other. Higher-level tracing
14 facilities can be implemented as loadable kernel modules using this layer.
15
16 The new facility is made optional under CONFIG_UTRACE.
17 When this is not enabled, no new code is added.
18 It can only be enabled on machines that have all the
19 prerequisites and select CONFIG_HAVE_ARCH_TRACEHOOK.
20
21 In this initial version, utrace and ptrace do not play well together.
22 If both utrace and ptrace are attached to the same thread, they can
23 confuse each other about the stopping and resuming of that thread.
24 The old ptrace code is unchanged and nothing using ptrace should be
25 affected by this patch as long as utrace is not used at the same time.
26 A later patch will make them cooperate properly.
27
28 Signed-off-by: Roland McGrath <roland@redhat.com>
29 Signed-off-by: Petr Tesarik <ptesarik@suse.cz>
30
31 ---
32 Documentation/DocBook/Makefile | 2
33 Documentation/DocBook/utrace.tmpl | 566 ++++++++
34 fs/proc/array.c | 3
35 include/linux/sched.h | 5
36 include/linux/tracehook.h | 71 +
37 include/linux/utrace.h | 711 ++++++++++
38 init/Kconfig | 10
39 kernel/Makefile | 1
40 kernel/utrace.c | 2495 ++++++++++++++++++++++++++++++++++++++
41 9 files changed, 3862 insertions(+), 2 deletions(-)
42
43 --- a/Documentation/DocBook/Makefile
44 +++ b/Documentation/DocBook/Makefile
45 @@ -7,7 +7,7 @@
46 # list of DOCBOOKS.
47
48 DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
49 - kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
50 + kernel-hacking.xml kernel-locking.xml deviceiobook.xml utrace.xml \
51 procfs-guide.xml writing_usb_driver.xml networking.xml \
52 kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
53 gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
54 --- /dev/null
55 +++ b/Documentation/DocBook/utrace.tmpl
56 @@ -0,0 +1,566 @@
57 +<?xml version="1.0" encoding="UTF-8"?>
58 +<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
59 +"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
60 +
61 +<book id="utrace">
62 + <bookinfo>
63 + <title>The utrace User Debugging Infrastructure</title>
64 + </bookinfo>
65 +
66 + <toc></toc>
67 +
68 + <chapter id="concepts"><title>utrace concepts</title>
69 +
70 + <sect1 id="intro"><title>Introduction</title>
71 +
72 + <para>
73 + <application>utrace</application> is infrastructure code for tracing
74 + and controlling user threads. This is the foundation for writing
75 + tracing engines, which can be loadable kernel modules.
76 + </para>
77 +
78 + <para>
79 + The basic actors in <application>utrace</application> are the thread
80 + and the tracing engine. A tracing engine is some body of code that
81 + calls into the <filename>&lt;linux/utrace.h&gt;</filename>
82 + interfaces, represented by a <structname>struct
83 + utrace_engine_ops</structname>. (Usually it's a kernel module,
84 + though the legacy <function>ptrace</function> support is a tracing
85 + engine that is not in a kernel module.) The interface operates on
86 + individual threads (<structname>struct task_struct</structname>).
87 + If an engine wants to treat several threads as a group, that is up
88 + to its higher-level code.
89 + </para>
90 +
91 + <para>
92 + Tracing begins by attaching an engine to a thread, using
93 + <function>utrace_attach_task</function> or
94 + <function>utrace_attach_pid</function>. If successful, it returns a
95 + pointer that is the handle used in all other calls.
96 + </para>
97 +
98 + </sect1>
99 +
100 + <sect1 id="callbacks"><title>Events and Callbacks</title>
101 +
102 + <para>
103 + An attached engine does nothing by default. An engine makes something
104 + happen by requesting callbacks via <function>utrace_set_events</function>
105 + and poking the thread with <function>utrace_control</function>.
106 + The synchronization issues related to these two calls
107 + are discussed further below in <xref linkend="teardown"/>.
108 + </para>
109 +
110 + <para>
111 + Events are specified using the macro
112 + <constant>UTRACE_EVENT(<replaceable>type</replaceable>)</constant>.
113 + Each event type is associated with a callback in <structname>struct
114 + utrace_engine_ops</structname>. A tracing engine can leave unused
115 + callbacks <constant>NULL</constant>. The only callbacks required
116 + are those used by the event flags it sets.
117 + </para>
118 +
119 + <para>
120 + Many engines can be attached to each thread. When a thread has an
121 + event, each engine gets a callback if it has set the event flag for
122 + that event type. Engines are called in the order they attached.
123 + </para>
124 +
125 + <para>
126 + Event reporting callbacks have details particular to the event type,
127 + but are all called in similar environments and have the same
128 + constraints. Callbacks are made from safe points, where no locks
129 + are held, no special resources are pinned (usually), and the
130 + user-mode state of the thread is accessible. So, callback code has
131 + a pretty free hand. But to be a good citizen, callback code should
132 + never block for long periods. It is fine to block in
133 + <function>kmalloc</function> and the like, but never wait for i/o or
134 + for user mode to do something. If you need the thread to wait, use
135 + <constant>UTRACE_STOP</constant> and return from the callback
136 + quickly. When your i/o finishes or whatever, you can use
137 + <function>utrace_control</function> to resume the thread.
138 + </para>
139 +
140 + </sect1>
141 +
142 + <sect1 id="safely"><title>Stopping Safely</title>
143 +
144 + <sect2 id="well-behaved"><title>Writing well-behaved callbacks</title>
145 +
146 + <para>
147 + Well-behaved callbacks are important to maintain two essential
148 + properties of the interface. The first of these is that unrelated
149 + tracing engines should not interfere with each other. If your engine's
150 + event callback does not return quickly, then another engine won't get
151 + the event notification in a timely manner. The second important
152 + property is that tracing should be as noninvasive as possible to the
153 + normal operation of the system overall and of the traced thread in
154 + particular. That is, attached tracing engines should not perturb a
155 + thread's behavior, except to the extent that changing its user-visible
156 + state is explicitly what you want to do. (Obviously some perturbation
157 + is unavoidable, primarily timing changes, ranging from small delays due
158 + to the overhead of tracing, to arbitrary pauses in user code execution
159 + when a user stops a thread with a debugger for examination.) Even when
160 + you explicitly want the perturbation of making the traced thread block,
161 + just blocking directly in your callback has more unwanted effects. For
162 + example, the <constant>CLONE</constant> event callbacks are called when
163 + the new child thread has been created but not yet started running; the
164 + child can never be scheduled until the <constant>CLONE</constant>
165 + tracing callbacks return. (This allows engines tracing the parent to
166 + attach to the child.) If a <constant>CLONE</constant> event callback
167 + blocks the parent thread, it also prevents the child thread from
168 + running (even to process a <constant>SIGKILL</constant>). If what you
169 + want is to make both the parent and child block, then use
170 + <function>utrace_attach_task</function> on the child and then use
171 + <constant>UTRACE_STOP</constant> on both threads. A more crucial
172 + problem with blocking in callbacks is that it can prevent
173 + <constant>SIGKILL</constant> from working. A thread that is blocking
174 + due to <constant>UTRACE_STOP</constant> will still wake up and die
175 + immediately when sent a <constant>SIGKILL</constant>, as all threads
176 + should. Relying on the <application>utrace</application>
177 + infrastructure rather than on private synchronization calls in event
178 + callbacks is an important way to help keep tracing robustly
179 + noninvasive.
180 + </para>
181 +
182 + </sect2>
183 +
184 + <sect2 id="UTRACE_STOP"><title>Using <constant>UTRACE_STOP</constant></title>
185 +
186 + <para>
187 + To control another thread and access its state, it must be stopped
188 + with <constant>UTRACE_STOP</constant>. This means that it is
189 + stopped and won't start running again while we access it. When a
190 + thread is not already stopped, <function>utrace_control</function>
191 + returns <constant>-EINPROGRESS</constant> and an engine must wait
192 + for an event callback when the thread is ready to stop. The thread
193 + may be running on another CPU or may be blocked. When it is ready
194 + to be examined, it will make callbacks to engines that set the
195 + <constant>UTRACE_EVENT(QUIESCE)</constant> event bit. To wake up an
196 + interruptible wait, use <constant>UTRACE_INTERRUPT</constant>.
197 + </para>
198 +
199 + <para>
200 + As long as some engine has used <constant>UTRACE_STOP</constant> and
201 + not called <function>utrace_control</function> to resume the thread,
202 + then the thread will remain stopped. <constant>SIGKILL</constant>
203 + will wake it up, but it will not run user code. When the stop is
204 + cleared with <function>utrace_control</function> or a callback
205 + return value, the thread starts running again.
206 + (See also <xref linkend="teardown"/>.)
207 + </para>
208 +
209 + </sect2>
210 +
211 + </sect1>
212 +
213 + <sect1 id="teardown"><title>Tear-down Races</title>
214 +
215 + <sect2 id="SIGKILL"><title>Primacy of <constant>SIGKILL</constant></title>
216 + <para>
217 + Ordinarily synchronization issues for tracing engines are kept fairly
218 + straightforward by using <constant>UTRACE_STOP</constant>. You ask a
219 + thread to stop, and then once it makes the
220 + <function>report_quiesce</function> callback it cannot do anything else
221 + that would result in another callback, until you let it with a
222 + <function>utrace_control</function> call. This simple arrangement
223 + avoids complex and error-prone code in each one of a tracing engine's
224 + event callbacks to keep them serialized with the engine's other
225 + operations done on that thread from another thread of control.
226 + However, giving tracing engines complete power to keep a traced thread
227 + stuck in place runs afoul of a more important kind of simplicity that
228 + the kernel overall guarantees: nothing can prevent or delay
229 + <constant>SIGKILL</constant> from making a thread die and release its
230 + resources. To preserve this important property of
231 + <constant>SIGKILL</constant>, it as a special case can break
232 + <constant>UTRACE_STOP</constant> like nothing else normally can. This
233 + includes both explicit <constant>SIGKILL</constant> signals and the
234 + implicit <constant>SIGKILL</constant> sent to each other thread in the
235 + same thread group by a thread doing an exec, or processing a fatal
236 + signal, or making an <function>exit_group</function> system call. A
237 + tracing engine can prevent a thread from beginning the exit or exec or
238 + dying by signal (other than <constant>SIGKILL</constant>) if it is
239 + attached to that thread, but once the operation begins, no tracing
240 + engine can prevent or delay all other threads in the same thread group
241 + dying.
242 + </para>
243 + </sect2>
244 +
245 + <sect2 id="reap"><title>Final callbacks</title>
246 + <para>
247 + The <function>report_reap</function> callback is always the final event
248 + in the life cycle of a traced thread. Tracing engines can use this as
249 + the trigger to clean up their own data structures. The
250 + <function>report_death</function> callback is always the penultimate
251 + event a tracing engine might see; it's seen unless the thread was
252 + already in the midst of dying when the engine attached. Many tracing
253 + engines will have no interest in when a parent reaps a dead process,
254 + and nothing they want to do with a zombie thread once it dies; for
255 + them, the <function>report_death</function> callback is the natural
256 + place to clean up data structures and detach. To facilitate writing
257 + such engines robustly, given the asynchrony of
258 + <constant>SIGKILL</constant>, and without error-prone manual
259 + implementation of synchronization schemes, the
260 + <application>utrace</application> infrastructure provides some special
261 + guarantees about the <function>report_death</function> and
262 + <function>report_reap</function> callbacks. It still takes some care
263 + to be sure your tracing engine is robust to tear-down races, but these
264 + rules make it reasonably straightforward and concise to handle a lot of
265 + corner cases correctly.
266 + </para>
267 + </sect2>
268 +
269 + <sect2 id="refcount"><title>Engine and task pointers</title>
270 + <para>
271 + The first sort of guarantee concerns the core data structures
272 + themselves. <structname>struct utrace_attached_engine</structname> is
273 + a reference-counted data structure. While you hold a reference, an
274 + engine pointer will always stay valid so that you can safely pass it to
275 + any <application>utrace</application> call. Each call to
276 + <function>utrace_attach_task</function> or
277 + <function>utrace_attach_pid</function> returns an engine pointer with a
278 + reference belonging to the caller. You own that reference until you
279 + drop it using <function>utrace_engine_put</function>. There is an
280 + implicit reference on the engine while it is attached. So if you drop
281 + your only reference, and then use
282 + <function>utrace_attach_task</function> without
283 + <constant>UTRACE_ATTACH_CREATE</constant> to look up that same engine,
284 + you will get the same pointer with a new reference to replace the one
285 + you dropped, just like calling <function>utrace_engine_get</function>.
286 + When an engine has been detached, either explicitly with
287 + <constant>UTRACE_DETACH</constant> or implicitly after
288 + <function>report_reap</function>, then any references you hold are all
289 + that keep the old engine pointer alive.
290 + </para>
291 +
292 + <para>
293 + There is nothing a kernel module can do to keep a <structname>struct
294 + task_struct</structname> alive outside of
295 + <function>rcu_read_lock</function>. When the task dies and is reaped
296 + by its parent (or itself), that structure can be freed so that any
297 + dangling pointers you have stored become invalid.
298 + <application>utrace</application> will not prevent this, but it can
299 + help you detect it safely. By definition, a task that has been reaped
300 + has had all its engines detached. All
301 + <application>utrace</application> calls can be safely called on a
302 + detached engine if the caller holds a reference on that engine pointer,
303 + even if the task pointer passed in the call is invalid. All calls
304 + return <constant>-ESRCH</constant> for a detached engine, which tells
305 + you that the task pointer you passed could be invalid now. Since
306 + <function>utrace_control</function> and
307 + <function>utrace_set_events</function> do not block, you can call those
308 + inside a <function>rcu_read_lock</function> section and be sure after
309 + they don't return <constant>-ESRCH</constant> that the task pointer is
310 + still valid until <function>rcu_read_unlock</function>. The
311 + infrastructure never holds task references of its own. Though neither
312 + <function>rcu_read_lock</function> nor any other lock is held while
313 + making a callback, it's always guaranteed that the <structname>struct
314 + task_struct</structname> and the <structname>struct
315 + utrace_attached_engine</structname> passed as arguments remain valid
316 + until the callback function returns.
317 + </para>
318 +
319 + <para>
320 + The common means for safely holding task pointers that is available to
321 + kernel modules is to use <structname>struct pid</structname>, which
322 + permits <function>put_pid</function> from kernel modules. When using
323 + that, the calls <function>utrace_attach_pid</function>,
324 + <function>utrace_control_pid</function>,
325 + <function>utrace_set_events_pid</function>, and
326 + <function>utrace_barrier_pid</function> are available.
327 + </para>
328 + </sect2>
329 +
330 + <sect2 id="reap-after-death">
331 + <title>
332 + Serialization of <constant>DEATH</constant> and <constant>REAP</constant>
333 + </title>
334 + <para>
335 + The second guarantee is the serialization of
336 + <constant>DEATH</constant> and <constant>REAP</constant> event
337 + callbacks for a given thread. The actual reaping by the parent
338 + (<function>release_task</function> call) can occur simultaneously
339 + while the thread is still doing the final steps of dying, including
340 + the <function>report_death</function> callback. If a tracing engine
341 + has requested both <constant>DEATH</constant> and
342 + <constant>REAP</constant> event reports, it's guaranteed that the
343 + <function>report_reap</function> callback will not be made until
344 + after the <function>report_death</function> callback has returned.
345 + If the <function>report_death</function> callback itself detaches
346 + from the thread, then the <function>report_reap</function> callback
347 + will never be made. Thus it is safe for a
348 + <function>report_death</function> callback to clean up data
349 + structures and detach.
350 + </para>
351 + </sect2>
352 +
353 + <sect2 id="interlock"><title>Interlock with final callbacks</title>
354 + <para>
355 + The final sort of guarantee is that a tracing engine will know for sure
356 + whether or not the <function>report_death</function> and/or
357 + <function>report_reap</function> callbacks will be made for a certain
358 + thread. These tear-down races are disambiguated by the error return
359 + values of <function>utrace_set_events</function> and
360 + <function>utrace_control</function>. Normally
361 + <function>utrace_control</function> called with
362 + <constant>UTRACE_DETACH</constant> returns zero, and this means that no
363 + more callbacks will be made. If the thread is in the midst of dying,
364 + it returns <constant>-EALREADY</constant> to indicate that the
365 + <constant>report_death</constant> callback may already be in progress;
366 + when you get this error, you know that any cleanup your
367 + <function>report_death</function> callback does is about to happen or
368 + has just happened--note that if the <function>report_death</function>
369 + callback does not detach, the engine remains attached until the thread
370 + gets reaped. If the thread is in the midst of being reaped,
371 + <function>utrace_control</function> returns <constant>-ESRCH</constant>
372 + to indicate that the <function>report_reap</function> callback may
373 + already be in progress; this means the engine is implicitly detached
374 + when the callback completes. This makes it possible for a tracing
375 + engine that has decided asynchronously to detach from a thread to
376 + safely clean up its data structures, knowing that no
377 + <function>report_death</function> or <function>report_reap</function>
378 + callback will try to do the same. <constant>utrace_detach</constant>
379 + returns <constant>-ESRCH</constant> when the <structname>struct
380 + utrace_attached_engine</structname> has already been detached, but is
381 + still a valid pointer because of its reference count. A tracing engine
382 + can use this to safely synchronize its own independent multiple threads
383 + of control with each other and with its event callbacks that detach.
384 + </para>
385 +
386 + <para>
387 + In the same vein, <function>utrace_set_events</function> normally
388 + returns zero; if the target thread was stopped before the call, then
389 + after a successful call, no event callbacks not requested in the new
390 + flags will be made. It fails with <constant>-EALREADY</constant> if
391 + you try to clear <constant>UTRACE_EVENT(DEATH)</constant> when the
392 + <function>report_death</function> callback may already have begun, if
393 + you try to clear <constant>UTRACE_EVENT(REAP)</constant> when the
394 + <function>report_reap</function> callback may already have begun, or if
395 + you try to newly set <constant>UTRACE_EVENT(DEATH)</constant> or
396 + <constant>UTRACE_EVENT(QUIESCE)</constant> when the target is already
397 + dead or dying. Like <function>utrace_control</function>, it returns
398 + <constant>-ESRCH</constant> when the thread has already been detached
399 + (including forcible detach on reaping). This lets the tracing engine
400 + know for sure which event callbacks it will or won't see after
401 + <function>utrace_set_events</function> has returned. By checking for
402 + errors, it can know whether to clean up its data structures immediately
403 + or to let its callbacks do the work.
404 + </para>
405 + </sect2>
406 +
407 + <sect2 id="barrier"><title>Using <function>utrace_barrier</function></title>
408 + <para>
409 + When a thread is safely stopped, calling
410 + <function>utrace_control</function> with <constant>UTRACE_DETACH</constant>
411 + or calling <function>utrace_set_events</function> to disable some events
412 + ensures synchronously that your engine won't get any more of the callbacks
413 + that have been disabled (none at all when detaching). But these can also
414 + be used while the thread is not stopped, when it might be simultaneously
415 + making a callback to your engine. For this situation, these calls return
416 + <constant>-EINPROGRESS</constant> when it's possible a callback is in
417 + progress. If you are not prepared to have your old callbacks still run,
418 + then you can synchronize to be sure all the old callbacks are finished,
419 + using <function>utrace_barrier</function>. This is necessary if the
420 + kernel module containing your callback code is going to be unloaded.
421 + </para>
422 + <para>
423 + After using <constant>UTRACE_DETACH</constant> once, further calls to
424 + <function>utrace_control</function> with the same engine pointer will
425 + return <constant>-ESRCH</constant>. In contrast, after getting
426 + <constant>-EINPROGRESS</constant> from
427 + <function>utrace_set_events</function>, you can call
428 + <function>utrace_set_events</function> again later and if it returns zero
429 + then know the old callbacks have finished.
430 + </para>
431 + <para>
432 + Unlike all other calls, <function>utrace_barrier</function> (and
433 + <function>utrace_barrier_pid</function>) will accept any engine pointer you
434 + hold a reference on, even if <constant>UTRACE_DETACH</constant> has already
435 + been used. After any <function>utrace_control</function> or
436 + <function>utrace_set_events</function> call (these do not block), you can
437 + call <function>utrace_barrier</function> to block until callbacks have
438 + finished. This returns <constant>-ESRCH</constant> only if the engine is
439 + completely detached (finished all callbacks). Otherwise returns it waits
440 + until the thread is definitely not in the midst of a callback to this
441 + engine and then returns zero, but can return
442 + <constant>-ERESTARTSYS</constant> if its wait is interrupted.
443 + </para>
444 + </sect2>
445 +
446 +</sect1>
447 +
448 +</chapter>
449 +
450 +<chapter id="core"><title>utrace core API</title>
451 +
452 +<para>
453 + The utrace API is declared in <filename>&lt;linux/utrace.h&gt;</filename>.
454 +</para>
455 +
456 +!Iinclude/linux/utrace.h
457 +!Ekernel/utrace.c
458 +
459 +</chapter>
460 +
461 +<chapter id="machine"><title>Machine State</title>
462 +
463 +<para>
464 + The <function>task_current_syscall</function> function can be used on any
465 + valid <structname>struct task_struct</structname> at any time, and does
466 + not even require that <function>utrace_attach_task</function> was used at all.
467 +</para>
468 +
469 +<para>
470 + The other ways to access the registers and other machine-dependent state of
471 + a task can only be used on a task that is at a known safe point. The safe
472 + points are all the places where <function>utrace_set_events</function> can
473 + request callbacks (except for the <constant>DEATH</constant> and
474 + <constant>REAP</constant> events). So at any event callback, it is safe to
475 + examine <varname>current</varname>.
476 +</para>
477 +
478 +<para>
479 + One task can examine another only after a callback in the target task that
480 + returns <constant>UTRACE_STOP</constant> so that task will not return to user
481 + mode after the safe point. This guarantees that the task will not resume
482 + until the same engine uses <function>utrace_control</function>, unless the
483 + task dies suddenly. To examine safely, one must use a pair of calls to
484 + <function>utrace_prepare_examine</function> and
485 + <function>utrace_finish_examine</function> surrounding the calls to
486 + <structname>struct user_regset</structname> functions or direct examination
487 + of task data structures. <function>utrace_prepare_examine</function> returns
488 + an error if the task is not properly stopped and not dead. After a
489 + successful examination, the paired <function>utrace_finish_examine</function>
490 + call returns an error if the task ever woke up during the examination. If
491 + so, any data gathered may be scrambled and should be discarded. This means
492 + there was a spurious wake-up (which should not happen), or a sudden death.
493 +</para>
494 +
495 +<sect1 id="regset"><title><structname>struct user_regset</structname></title>
496 +
497 +<para>
498 + The <structname>struct user_regset</structname> API
499 + is declared in <filename>&lt;linux/regset.h&gt;</filename>.
500 +</para>
501 +
502 +!Finclude/linux/regset.h
503 +
504 +</sect1>
505 +
506 +<sect1 id="task_current_syscall">
507 + <title><filename>System Call Information</filename></title>
508 +
509 +<para>
510 + This function is declared in <filename>&lt;linux/ptrace.h&gt;</filename>.
511 +</para>
512 +
513 +!Elib/syscall.c
514 +
515 +</sect1>
516 +
517 +<sect1 id="syscall"><title><filename>System Call Tracing</filename></title>
518 +
519 +<para>
520 + The arch API for system call information is declared in
521 + <filename>&lt;asm/syscall.h&gt;</filename>.
522 + Each of these calls can be used only at system call entry tracing,
523 + or can be used only at system call exit and the subsequent safe points
524 + before returning to user mode.
525 + At system call entry tracing means either during a
526 + <structfield>report_syscall_entry</structfield> callback,
527 + or any time after that callback has returned <constant>UTRACE_STOP</constant>.
528 +</para>
529 +
530 +!Finclude/asm-generic/syscall.h
531 +
532 +</sect1>
533 +
534 +</chapter>
535 +
536 +<chapter id="internals"><title>Kernel Internals</title>
537 +
538 +<para>
539 + This chapter covers the interface to the tracing infrastructure
540 + from the core of the kernel and the architecture-specific code.
541 + This is for maintainers of the kernel and arch code, and not relevant
542 + to using the tracing facilities described in preceding chapters.
543 +</para>
544 +
545 +<sect1 id="tracehook"><title>Core Calls In</title>
546 +
547 +<para>
548 + These calls are declared in <filename>&lt;linux/tracehook.h&gt;</filename>.
549 + The core kernel calls these functions at various important places.
550 +</para>
551 +
552 +!Finclude/linux/tracehook.h
553 +
554 +</sect1>
555 +
556 +<sect1 id="arch"><title>Architecture Calls Out</title>
557 +
558 +<para>
559 + An arch that has done all these things sets
560 + <constant>CONFIG_HAVE_ARCH_TRACEHOOK</constant>.
561 + This is required to enable the <application>utrace</application> code.
562 +</para>
563 +
564 +<sect2 id="arch-ptrace"><title><filename>&lt;asm/ptrace.h&gt;</filename></title>
565 +
566 +<para>
567 + An arch defines these in <filename>&lt;asm/ptrace.h&gt;</filename>
568 + if it supports hardware single-step or block-step features.
569 +</para>
570 +
571 +!Finclude/linux/ptrace.h arch_has_single_step arch_has_block_step
572 +!Finclude/linux/ptrace.h user_enable_single_step user_enable_block_step
573 +!Finclude/linux/ptrace.h user_disable_single_step
574 +
575 +</sect2>
576 +
577 +<sect2 id="arch-syscall">
578 + <title><filename>&lt;asm/syscall.h&gt;</filename></title>
579 +
580 + <para>
581 + An arch provides <filename>&lt;asm/syscall.h&gt;</filename> that
582 + defines these as inlines, or declares them as exported functions.
583 + These interfaces are described in <xref linkend="syscall"/>.
584 + </para>
585 +
586 +</sect2>
587 +
588 +<sect2 id="arch-tracehook">
589 + <title><filename>&lt;linux/tracehook.h&gt;</filename></title>
590 +
591 + <para>
592 + An arch must define <constant>TIF_NOTIFY_RESUME</constant>
593 + and <constant>TIF_SYSCALL_TRACE</constant>
594 + in its <filename>&lt;asm/thread_info.h&gt;</filename>.
595 + The arch code must call the following functions, all declared
596 + in <filename>&lt;linux/tracehook.h&gt;</filename> and
597 + described in <xref linkend="tracehook"/>:
598 +
599 + <itemizedlist>
600 + <listitem>
601 + <para><function>tracehook_notify_resume</function></para>
602 + </listitem>
603 + <listitem>
604 + <para><function>tracehook_report_syscall_entry</function></para>
605 + </listitem>
606 + <listitem>
607 + <para><function>tracehook_report_syscall_exit</function></para>
608 + </listitem>
609 + <listitem>
610 + <para><function>tracehook_signal_handler</function></para>
611 + </listitem>
612 + </itemizedlist>
613 +
614 + </para>
615 +
616 +</sect2>
617 +
618 +</sect1>
619 +
620 +</chapter>
621 +
622 +</book>
623 --- a/fs/proc/array.c
624 +++ b/fs/proc/array.c
625 @@ -82,6 +82,7 @@
626 #include <linux/pid_namespace.h>
627 #include <linux/ptrace.h>
628 #include <linux/tracehook.h>
629 +#include <linux/utrace.h>
630
631 #include <asm/pgtable.h>
632 #include <asm/processor.h>
633 @@ -191,6 +192,8 @@ static inline void task_state(struct seq
634 p->uid, p->euid, p->suid, p->fsuid,
635 p->gid, p->egid, p->sgid, p->fsgid);
636
637 + task_utrace_proc_status(m, p);
638 +
639 task_lock(p);
640 if (p->files)
641 fdt = files_fdtable(p->files);
642 --- a/include/linux/sched.h
643 +++ b/include/linux/sched.h
644 @@ -1202,6 +1202,11 @@ struct task_struct {
645 #endif
646 seccomp_t seccomp;
647
648 +#ifdef CONFIG_UTRACE
649 + struct utrace *utrace;
650 + unsigned long utrace_flags;
651 +#endif
652 +
653 /* Thread group tracking */
654 u32 parent_exec_id;
655 u32 self_exec_id;
656 --- a/include/linux/tracehook.h
657 +++ b/include/linux/tracehook.h
658 @@ -49,6 +49,7 @@
659 #include <linux/sched.h>
660 #include <linux/ptrace.h>
661 #include <linux/security.h>
662 +#include <linux/utrace.h>
663 struct linux_binprm;
664
665 /**
666 @@ -63,6 +64,8 @@ struct linux_binprm;
667 */
668 static inline int tracehook_expect_breakpoints(struct task_struct *task)
669 {
670 + if (unlikely(task_utrace_flags(task) & UTRACE_EVENT(SIGNAL_CORE)))
671 + return 1;
672 return (task_ptrace(task) & PT_PTRACED) != 0;
673 }
674
675 @@ -111,6 +114,9 @@ static inline void ptrace_report_syscall
676 static inline __must_check int tracehook_report_syscall_entry(
677 struct pt_regs *regs)
678 {
679 + if ((task_utrace_flags(current) & UTRACE_EVENT(SYSCALL_ENTRY)) &&
680 + utrace_report_syscall_entry(regs))
681 + return 1;
682 ptrace_report_syscall(regs);
683 return 0;
684 }
685 @@ -134,6 +140,8 @@ static inline __must_check int tracehook
686 */
687 static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step)
688 {
689 + if (task_utrace_flags(current) & UTRACE_EVENT(SYSCALL_EXIT))
690 + utrace_report_syscall_exit(regs);
691 ptrace_report_syscall(regs);
692 }
693
694 @@ -155,6 +163,8 @@ static inline int tracehook_unsafe_exec(
695 else
696 unsafe |= LSM_UNSAFE_PTRACE;
697 }
698 + if (unlikely(task_utrace_flags(task)))
699 + unsafe |= utrace_unsafe_exec(task);
700 return unsafe;
701 }
702
703 @@ -173,6 +183,8 @@ static inline struct task_struct *traceh
704 {
705 if (task_ptrace(tsk) & PT_PTRACED)
706 return rcu_dereference(tsk->parent);
707 + if (unlikely(task_utrace_flags(tsk)))
708 + return utrace_tracer_task(tsk);
709 return NULL;
710 }
711
712 @@ -194,6 +206,8 @@ static inline void tracehook_report_exec
713 struct linux_binprm *bprm,
714 struct pt_regs *regs)
715 {
716 + if (unlikely(task_utrace_flags(current) & UTRACE_EVENT(EXEC)))
717 + utrace_report_exec(fmt, bprm, regs);
718 if (!ptrace_event(PT_TRACE_EXEC, PTRACE_EVENT_EXEC, 0) &&
719 unlikely(task_ptrace(current) & PT_PTRACED))
720 send_sig(SIGTRAP, current, 0);
721 @@ -211,6 +225,8 @@ static inline void tracehook_report_exec
722 */
723 static inline void tracehook_report_exit(long *exit_code)
724 {
725 + if (unlikely(task_utrace_flags(current) & UTRACE_EVENT(EXIT)))
726 + utrace_report_exit(exit_code);
727 ptrace_event(PT_TRACE_EXIT, PTRACE_EVENT_EXIT, *exit_code);
728 }
729
730 @@ -254,6 +270,7 @@ static inline int tracehook_prepare_clon
731 static inline void tracehook_finish_clone(struct task_struct *child,
732 unsigned long clone_flags, int trace)
733 {
734 + utrace_init_task(child);
735 ptrace_init_task(child, (clone_flags & CLONE_PTRACE) || trace);
736 }
737
738 @@ -280,6 +297,8 @@ static inline void tracehook_report_clon
739 unsigned long clone_flags,
740 pid_t pid, struct task_struct *child)
741 {
742 + if (unlikely(task_utrace_flags(current) & UTRACE_EVENT(CLONE)))
743 + utrace_report_clone(clone_flags, child);
744 if (unlikely(trace) || unlikely(clone_flags & CLONE_PTRACE)) {
745 /*
746 * The child starts up with an immediate SIGSTOP.
747 @@ -345,6 +364,11 @@ static inline void tracehook_report_vfor
748 */
749 static inline void tracehook_prepare_release_task(struct task_struct *task)
750 {
751 +#ifdef CONFIG_UTRACE
752 + smp_mb();
753 + if (task_utrace_struct(task) != NULL)
754 + utrace_release_task(task);
755 +#endif
756 }
757
758 /**
759 @@ -358,7 +382,25 @@ static inline void tracehook_prepare_rel
760 */
761 static inline void tracehook_finish_release_task(struct task_struct *task)
762 {
763 +#ifdef CONFIG_UTRACE
764 + int bad = 0;
765 +#endif
766 ptrace_release_task(task);
767 +#ifdef CONFIG_UTRACE
768 + BUG_ON(task->exit_state != EXIT_DEAD);
769 + if (unlikely(task_utrace_struct(task) != NULL)) {
770 + /*
771 + * In a race condition, utrace_attach() will temporarily set
772 + * it, but then check @task->exit_state and clear it. It does
773 + * all this under task_lock(), so we take the lock to check
774 + * that there is really a bug and not just that known race.
775 + */
776 + task_lock(task);
777 + bad = unlikely(task_utrace_struct(task) != NULL);
778 + task_unlock(task);
779 + }
780 + BUG_ON(bad);
781 +#endif
782 }
783
784 /**
785 @@ -380,6 +422,8 @@ static inline void tracehook_signal_hand
786 const struct k_sigaction *ka,
787 struct pt_regs *regs, int stepping)
788 {
789 + if (task_utrace_flags(current))
790 + utrace_signal_handler(current, stepping);
791 if (stepping)
792 ptrace_notify(SIGTRAP);
793 }
794 @@ -400,6 +444,8 @@ static inline int tracehook_consider_ign
795 int sig,
796 void __user *handler)
797 {
798 + if (unlikely(task_utrace_flags(task) & UTRACE_EVENT(SIGNAL_IGN)))
799 + return 1;
800 return (task_ptrace(task) & PT_PTRACED) != 0;
801 }
802
803 @@ -421,6 +467,9 @@ static inline int tracehook_consider_fat
804 int sig,
805 void __user *handler)
806 {
807 + if (unlikely(task_utrace_flags(task) & (UTRACE_EVENT(SIGNAL_TERM) |
808 + UTRACE_EVENT(SIGNAL_CORE))))
809 + return 1;
810 return (task_ptrace(task) & PT_PTRACED) != 0;
811 }
812
813 @@ -435,6 +484,8 @@ static inline int tracehook_consider_fat
814 */
815 static inline int tracehook_force_sigpending(void)
816 {
817 + if (unlikely(task_utrace_flags(current)))
818 + return utrace_interrupt_pending();
819 return 0;
820 }
821
822 @@ -464,6 +515,8 @@ static inline int tracehook_get_signal(s
823 siginfo_t *info,
824 struct k_sigaction *return_ka)
825 {
826 + if (unlikely(task_utrace_flags(task)))
827 + return utrace_get_signal(task, regs, info, return_ka);
828 return 0;
829 }
830
831 @@ -484,6 +537,8 @@ static inline int tracehook_get_signal(s
832 */
833 static inline int tracehook_notify_jctl(int notify, int why)
834 {
835 + if (task_utrace_flags(current) & UTRACE_EVENT(JCTL))
836 + utrace_report_jctl(notify, why);
837 return notify || (current->ptrace & PT_PTRACED);
838 }
839
840 @@ -507,6 +562,10 @@ static inline int tracehook_notify_jctl(
841 static inline int tracehook_notify_death(struct task_struct *task,
842 void **death_cookie, int group_dead)
843 {
844 +#ifdef CONFIG_UTRACE
845 + *death_cookie = task_utrace_struct(task);
846 +#endif
847 +
848 if (task->exit_signal == -1)
849 return task->ptrace ? SIGCHLD : DEATH_REAP;
850
851 @@ -543,6 +602,12 @@ static inline void tracehook_report_deat
852 int signal, void *death_cookie,
853 int group_dead)
854 {
855 +#ifdef CONFIG_UTRACE
856 + smp_mb();
857 + if (task_utrace_flags(task) & (UTRACE_EVENT(DEATH) |
858 + UTRACE_EVENT(QUIESCE)))
859 + utrace_report_death(task, death_cookie, group_dead, signal);
860 +#endif
861 }
862
863 #ifdef TIF_NOTIFY_RESUME
864 @@ -572,10 +637,14 @@ static inline void set_notify_resume(str
865 * asynchronously, this will be called again before we return to
866 * user mode.
867 *
868 - * Called without locks.
869 + * Called without locks. However, on some machines this may be
870 + * called with interrupts disabled.
871 */
872 static inline void tracehook_notify_resume(struct pt_regs *regs)
873 {
874 + struct task_struct *task = current;
875 + if (task_utrace_flags(task))
876 + utrace_resume(task, regs);
877 }
878 #endif /* TIF_NOTIFY_RESUME */
879
880 --- /dev/null
881 +++ b/include/linux/utrace.h
882 @@ -0,0 +1,711 @@
883 +/*
884 + * utrace infrastructure interface for debugging user processes
885 + *
886 + * Copyright (C) 2006, 2007, 2008 Red Hat, Inc. All rights reserved.
887 + *
888 + * This copyrighted material is made available to anyone wishing to use,
889 + * modify, copy, or redistribute it subject to the terms and conditions
890 + * of the GNU General Public License v.2.
891 + *
892 + * Red Hat Author: Roland McGrath.
893 + *
894 + * This interface allows for notification of interesting events in a
895 + * thread. It also mediates access to thread state such as registers.
896 + * Multiple unrelated users can be associated with a single thread.
897 + * We call each of these a tracing engine.
898 + *
899 + * A tracing engine starts by calling utrace_attach_task() or
900 + * utrace_attach_pid() on the chosen thread, passing in a set of hooks
901 + * (&struct utrace_engine_ops), and some associated data. This produces a
902 + * &struct utrace_attached_engine, which is the handle used for all other
903 + * operations. An attached engine has its ops vector, its data, and an
904 + * event mask controlled by utrace_set_events().
905 + *
906 + * For each event bit that is set, that engine will get the
907 + * appropriate ops->report_*() callback when the event occurs. The
908 + * &struct utrace_engine_ops need not provide callbacks for an event
909 + * unless the engine sets one of the associated event bits.
910 + */
911 +
912 +#ifndef _LINUX_UTRACE_H
913 +#define _LINUX_UTRACE_H 1
914 +
915 +#include <linux/list.h>
916 +#include <linux/kref.h>
917 +#include <linux/signal.h>
918 +#include <linux/sched.h>
919 +
920 +struct linux_binprm;
921 +struct pt_regs;
922 +struct utrace;
923 +struct utrace_engine_ops;
924 +struct utrace_attached_engine;
925 +struct utrace_examiner;
926 +struct user_regset;
927 +struct user_regset_view;
928 +enum utrace_resume_action;
929 +
930 +/*
931 + * Event bits passed to utrace_set_events().
932 + * These appear in &struct task_struct.@utrace_flags
933 + * and &struct utrace_attached_engine.@flags.
934 + */
935 +enum utrace_events {
936 + _UTRACE_EVENT_QUIESCE, /* Thread is available for examination. */
937 + _UTRACE_EVENT_REAP, /* Zombie reaped, no more tracing possible. */
938 + _UTRACE_EVENT_CLONE, /* Successful clone/fork/vfork just done. */
939 + _UTRACE_EVENT_EXEC, /* Successful execve just completed. */
940 + _UTRACE_EVENT_EXIT, /* Thread exit in progress. */
941 + _UTRACE_EVENT_DEATH, /* Thread has died. */
942 + _UTRACE_EVENT_SYSCALL_ENTRY, /* User entered kernel for system call. */
943 + _UTRACE_EVENT_SYSCALL_EXIT, /* Returning to user after system call. */
944 + _UTRACE_EVENT_SIGNAL, /* Signal delivery will run a user handler. */
945 + _UTRACE_EVENT_SIGNAL_IGN, /* No-op signal to be delivered. */
946 + _UTRACE_EVENT_SIGNAL_STOP, /* Signal delivery will suspend. */
947 + _UTRACE_EVENT_SIGNAL_TERM, /* Signal delivery will terminate. */
948 + _UTRACE_EVENT_SIGNAL_CORE, /* Signal delivery will dump core. */
949 + _UTRACE_EVENT_JCTL, /* Job control stop or continue completed. */
950 + _UTRACE_NEVENTS
951 +};
952 +#define UTRACE_EVENT(type) (1UL << _UTRACE_EVENT_##type)
953 +
954 +/*
955 + * All the kinds of signal events.
956 + * These all use the @report_signal() callback.
957 + */
958 +#define UTRACE_EVENT_SIGNAL_ALL (UTRACE_EVENT(SIGNAL) \
959 + | UTRACE_EVENT(SIGNAL_IGN) \
960 + | UTRACE_EVENT(SIGNAL_STOP) \
961 + | UTRACE_EVENT(SIGNAL_TERM) \
962 + | UTRACE_EVENT(SIGNAL_CORE))
963 +/*
964 + * Both kinds of syscall events; these call the @report_syscall_entry()
965 + * and @report_syscall_exit() callbacks, respectively.
966 + */
967 +#define UTRACE_EVENT_SYSCALL \
968 + (UTRACE_EVENT(SYSCALL_ENTRY) | UTRACE_EVENT(SYSCALL_EXIT))
969 +
970 +/*
971 + * Hooks in <linux/tracehook.h> call these entry points to the
972 + * utrace dispatch. They are weak references here only so
973 + * tracehook.h doesn't need to #ifndef CONFIG_UTRACE them to
974 + * avoid external references in case of unoptimized compilation.
975 + */
976 +void utrace_release_task(struct task_struct *)
977 + __attribute__((weak));
978 +bool utrace_interrupt_pending(void)
979 + __attribute__((weak));
980 +void utrace_resume(struct task_struct *, struct pt_regs *)
981 + __attribute__((weak));
982 +int utrace_get_signal(struct task_struct *, struct pt_regs *,
983 + siginfo_t *, struct k_sigaction *)
984 + __attribute__((weak));
985 +void utrace_report_clone(unsigned long, struct task_struct *)
986 + __attribute__((weak));
987 +void utrace_report_exit(long *exit_code)
988 + __attribute__((weak));
989 +void utrace_report_death(struct task_struct *, struct utrace *, bool, int)
990 + __attribute__((weak));
991 +void utrace_report_jctl(int notify, int type)
992 + __attribute__((weak));
993 +void utrace_report_exec(struct linux_binfmt *, struct linux_binprm *,
994 + struct pt_regs *regs)
995 + __attribute__((weak));
996 +bool utrace_report_syscall_entry(struct pt_regs *)
997 + __attribute__((weak));
998 +void utrace_report_syscall_exit(struct pt_regs *)
999 + __attribute__((weak));
1000 +struct task_struct *utrace_tracer_task(struct task_struct *)
1001 + __attribute__((weak));
1002 +int utrace_unsafe_exec(struct task_struct *)
1003 + __attribute__((weak));
1004 +void utrace_signal_handler(struct task_struct *, int)
1005 + __attribute__((weak));
1006 +
1007 +#ifndef CONFIG_UTRACE
1008 +
1009 +/*
1010 + * <linux/tracehook.h> uses these accessors to avoid #ifdef CONFIG_UTRACE.
1011 + */
1012 +static inline unsigned long task_utrace_flags(struct task_struct *task)
1013 +{
1014 + return 0;
1015 +}
1016 +static inline struct utrace *task_utrace_struct(struct task_struct *task)
1017 +{
1018 + return NULL;
1019 +}
1020 +static inline void utrace_init_task(struct task_struct *child)
1021 +{
1022 +}
1023 +
1024 +static inline void task_utrace_proc_status(struct seq_file *m,
1025 + struct task_struct *p)
1026 +{
1027 +}
1028 +
1029 +#else /* CONFIG_UTRACE */
1030 +
1031 +static inline unsigned long task_utrace_flags(struct task_struct *task)
1032 +{
1033 + return task->utrace_flags;
1034 +}
1035 +
1036 +static inline struct utrace *task_utrace_struct(struct task_struct *task)
1037 +{
1038 + return task->utrace;
1039 +}
1040 +
1041 +static inline void utrace_init_task(struct task_struct *child)
1042 +{
1043 + child->utrace_flags = 0;
1044 + child->utrace = NULL;
1045 +}
1046 +
1047 +void task_utrace_proc_status(struct seq_file *m, struct task_struct *p);
1048 +
1049 +/*
1050 + * These are the exported entry points for tracing engines to use.
1051 + * See kernel/utrace.c for their kerneldoc comments with interface details.
1052 + */
1053 +struct utrace_attached_engine *utrace_attach_task(
1054 + struct task_struct *, int, const struct utrace_engine_ops *, void *);
1055 +struct utrace_attached_engine *utrace_attach_pid(
1056 + struct pid *, int, const struct utrace_engine_ops *, void *);
1057 +int __must_check utrace_control(struct task_struct *,
1058 + struct utrace_attached_engine *,
1059 + enum utrace_resume_action);
1060 +int __must_check utrace_set_events(struct task_struct *,
1061 + struct utrace_attached_engine *,
1062 + unsigned long eventmask);
1063 +int __must_check utrace_barrier(struct task_struct *,
1064 + struct utrace_attached_engine *);
1065 +int __must_check utrace_prepare_examine(struct task_struct *,
1066 + struct utrace_attached_engine *,
1067 + struct utrace_examiner *);
1068 +int __must_check utrace_finish_examine(struct task_struct *,
1069 + struct utrace_attached_engine *,
1070 + struct utrace_examiner *);
1071 +void __utrace_engine_release(struct kref *);
1072 +
1073 +/**
1074 + * enum utrace_resume_action - engine's choice of action for a traced task
1075 + * @UTRACE_STOP: Stay quiescent after callbacks.
1076 + * @UTRACE_REPORT: Make some callback soon.
1077 + * @UTRACE_INTERRUPT: Make @report_signal() callback soon.
1078 + * @UTRACE_SINGLESTEP: Resume in user mode for one instruction.
1079 + * @UTRACE_BLOCKSTEP: Resume in user mode until next branch.
1080 + * @UTRACE_RESUME: Resume normally in user mode.
1081 + * @UTRACE_DETACH: Detach my engine (implies %UTRACE_RESUME).
1082 + *
1083 + * See utrace_control() for detailed descriptions of each action. This is
1084 + * encoded in the @action argument and the return value for every callback
1085 + * with a &u32 return value.
1086 + *
1087 + * The order of these is important. When there is more than one engine,
1088 + * each supplies its choice and the smallest value prevails.
1089 + */
1090 +enum utrace_resume_action {
1091 + UTRACE_STOP,
1092 + UTRACE_REPORT,
1093 + UTRACE_INTERRUPT,
1094 + UTRACE_SINGLESTEP,
1095 + UTRACE_BLOCKSTEP,
1096 + UTRACE_RESUME,
1097 + UTRACE_DETACH
1098 +};
1099 +#define UTRACE_RESUME_MASK 0x0f
1100 +
1101 +/**
1102 + * utrace_resume_action - &enum utrace_resume_action from callback action
1103 + * @action: &u32 callback @action argument or return value
1104 + *
1105 + * This extracts the &enum utrace_resume_action from @action,
1106 + * which is the @action argument to a &struct utrace_engine_ops
1107 + * callback or the return value from one.
1108 + */
1109 +static inline enum utrace_resume_action utrace_resume_action(u32 action)
1110 +{
1111 + return action & UTRACE_RESUME_MASK;
1112 +}
1113 +
1114 +/**
1115 + * enum utrace_signal_action - disposition of signal
1116 + * @UTRACE_SIGNAL_DELIVER: Deliver according to sigaction.
1117 + * @UTRACE_SIGNAL_IGN: Ignore the signal.
1118 + * @UTRACE_SIGNAL_TERM: Terminate the process.
1119 + * @UTRACE_SIGNAL_CORE: Terminate with core dump.
1120 + * @UTRACE_SIGNAL_STOP: Deliver as absolute stop.
1121 + * @UTRACE_SIGNAL_TSTP: Deliver as job control stop.
1122 + * @UTRACE_SIGNAL_REPORT: Reporting before pending signals.
1123 + * @UTRACE_SIGNAL_HANDLER: Reporting after signal handler setup.
1124 + *
1125 + * This is encoded in the @action argument and the return value for
1126 + * a @report_signal() callback. It says what will happen to the
1127 + * signal described by the &siginfo_t parameter to the callback.
1128 + *
1129 + * The %UTRACE_SIGNAL_REPORT value is used in an @action argument when
1130 + * a tracing report is being made before dequeuing any pending signal.
1131 + * If this is immediately after a signal handler has been set up, then
1132 + * %UTRACE_SIGNAL_HANDLER is used instead. A @report_signal callback
1133 + * that uses %UTRACE_SIGNAL_DELIVER|%UTRACE_SINGLESTEP will ensure
1134 + * it sees a %UTRACE_SIGNAL_HANDLER report.
1135 + */
1136 +enum utrace_signal_action {
1137 + UTRACE_SIGNAL_DELIVER = 0x00,
1138 + UTRACE_SIGNAL_IGN = 0x10,
1139 + UTRACE_SIGNAL_TERM = 0x20,
1140 + UTRACE_SIGNAL_CORE = 0x30,
1141 + UTRACE_SIGNAL_STOP = 0x40,
1142 + UTRACE_SIGNAL_TSTP = 0x50,
1143 + UTRACE_SIGNAL_REPORT = 0x60,
1144 + UTRACE_SIGNAL_HANDLER = 0x70
1145 +};
1146 +#define UTRACE_SIGNAL_MASK 0xf0
1147 +#define UTRACE_SIGNAL_HOLD 0x100 /* Flag, push signal back on queue. */
1148 +
1149 +/**
1150 + * utrace_signal_action - &enum utrace_signal_action from callback action
1151 + * @action: @report_signal callback @action argument or return value
1152 + *
1153 + * This extracts the &enum utrace_signal_action from @action, which
1154 + * is the @action argument to a @report_signal callback or the
1155 + * return value from one.
1156 + */
1157 +static inline enum utrace_signal_action utrace_signal_action(u32 action)
1158 +{
1159 + return action & UTRACE_SIGNAL_MASK;
1160 +}
1161 +
1162 +/**
1163 + * enum utrace_syscall_action - disposition of system call attempt
1164 + * @UTRACE_SYSCALL_RUN: Run the system call.
1165 + * @UTRACE_SYSCALL_ABORT: Don't run the system call.
1166 + *
1167 + * This is encoded in the @action argument and the return value for
1168 + * a @report_syscall_entry callback.
1169 + */
1170 +enum utrace_syscall_action {
1171 + UTRACE_SYSCALL_RUN = 0x00,
1172 + UTRACE_SYSCALL_ABORT = 0x10
1173 +};
1174 +#define UTRACE_SYSCALL_MASK 0xf0
1175 +
1176 +/**
1177 + * utrace_syscall_action - &enum utrace_syscall_action from callback action
1178 + * @action: @report_syscall_entry callback @action or return value
1179 + *
1180 + * This extracts the &enum utrace_syscall_action from @action, which
1181 + * is the @action argument to a @report_syscall_entry callback or the
1182 + * return value from one.
1183 + */
1184 +static inline enum utrace_syscall_action utrace_syscall_action(u32 action)
1185 +{
1186 + return action & UTRACE_SYSCALL_MASK;
1187 +}
1188 +
1189 +/*
1190 + * Flags for utrace_attach_task() and utrace_attach_pid().
1191 + */
1192 +#define UTRACE_ATTACH_CREATE 0x0010 /* Attach a new engine. */
1193 +#define UTRACE_ATTACH_EXCLUSIVE 0x0020 /* Refuse if existing match. */
1194 +#define UTRACE_ATTACH_MATCH_OPS 0x0001 /* Match engines on ops. */
1195 +#define UTRACE_ATTACH_MATCH_DATA 0x0002 /* Match engines on data. */
1196 +#define UTRACE_ATTACH_MATCH_MASK 0x000f
1197 +
1198 +/**
1199 + * struct utrace_attached_engine - per-engine structure
1200 + * @ops: &struct utrace_engine_ops pointer passed to utrace_attach_task()
1201 + * @data: engine-private &void * passed to utrace_attach_task()
1202 + * @flags: event mask set by utrace_set_events() plus internal flag bits
1203 + *
1204 + * The task itself never has to worry about engines detaching while
1205 + * it's doing event callbacks. These structures are removed from the
1206 + * task's active list only when it's stopped, or by the task itself.
1207 + *
1208 + * utrace_engine_get() and utrace_engine_put() maintain a reference count.
1209 + * When it drops to zero, the structure is freed. One reference is held
1210 + * implicitly while the engine is attached to its task.
1211 + */
1212 +struct utrace_attached_engine {
1213 +/* private: */
1214 + struct kref kref;
1215 + struct list_head entry;
1216 +
1217 +/* public: */
1218 + const struct utrace_engine_ops *ops;
1219 + void *data;
1220 +
1221 + unsigned long flags;
1222 +};
1223 +
1224 +/**
1225 + * utrace_engine_get - acquire a reference on a &struct utrace_attached_engine
1226 + * @engine: &struct utrace_attached_engine pointer
1227 + *
1228 + * You must hold a reference on @engine, and you get another.
1229 + */
1230 +static inline void utrace_engine_get(struct utrace_attached_engine *engine)
1231 +{
1232 + kref_get(&engine->kref);
1233 +}
1234 +
1235 +/**
1236 + * utrace_engine_put - release a reference on a &struct utrace_attached_engine
1237 + * @engine: &struct utrace_attached_engine pointer
1238 + *
1239 + * You must hold a reference on @engine, and you lose that reference.
1240 + * If it was the last one, @engine becomes an invalid pointer.
1241 + */
1242 +static inline void utrace_engine_put(struct utrace_attached_engine *engine)
1243 +{
1244 + kref_put(&engine->kref, __utrace_engine_release);
1245 +}
1246 +
1247 +/**
1248 + * struct utrace_engine_ops - tracing engine callbacks
1249 + *
1250 + * Each @report_*() callback corresponds to an %UTRACE_EVENT(*) bit.
1251 + * utrace_set_events() calls on @engine choose which callbacks will be made
1252 + * to @engine from @task.
1253 + *
1254 + * Most callbacks take an @action argument, giving the resume action
1255 + * chosen by other tracing engines. All callbacks take an @engine
1256 + * argument, and a @task argument, which is always equal to @current.
1257 + * For some calls, @action also includes bits specific to that event
1258 + * and utrace_resume_action() is used to extract the resume action.
1259 + * This shows what would happen if @engine wasn't there, or will if
1260 + * the callback's return value uses %UTRACE_RESUME. This always
1261 + * starts as %UTRACE_RESUME when no other tracing is being done on
1262 + * this task.
1263 + *
1264 + * All return values contain &enum utrace_resume_action bits. For
1265 + * some calls, other bits specific to that kind of event are added to
1266 + * the resume action bits with OR. These are the same bits used in
1267 + * the @action argument. The resume action returned by a callback
1268 + * does not override previous engines' choices, it only says what
1269 + * @engine wants done. What @task actually does is the action that's
1270 + * most constrained among the choices made by all attached engines.
1271 + * See utrace_control() for more information on the actions.
1272 + *
1273 + * When %UTRACE_STOP is used in @report_syscall_entry, then @task
1274 + * stops before attempting the system call. In other cases, the
1275 + * resume action does not take effect until @task is ready to check
1276 + * for signals and return to user mode. If there are more callbacks
1277 + * to be made, the last round of calls determines the final action.
1278 + * A @report_quiesce callback with @event zero, or a @report_signal
1279 + * callback, will always be the last one made before @task resumes.
1280 + * Only %UTRACE_STOP is "sticky"--if @engine returned %UTRACE_STOP
1281 + * then @task stays stopped unless @engine returns different from a
1282 + * following callback.
1283 + *
1284 + * The report_death() and report_reap() callbacks do not take @action
1285 + * arguments, and only %UTRACE_DETACH is meaningful in the return value
1286 + * from a report_death() callback. None of the resume actions applies
1287 + * to a dead thread.
1288 + *
1289 + * All @report_*() hooks are called with no locks held, in a generally
1290 + * safe environment when we will be returning to user mode soon (or just
1291 + * entered the kernel). It is fine to block for memory allocation and
1292 + * the like, but all hooks are asynchronous and must not block on
1293 + * external events! If you want the thread to block, use %UTRACE_STOP
1294 + * in your hook's return value; then later wake it up with utrace_control().
1295 + *
1296 + * The @unsafe_exec and @tracer_task hooks are not associated with
1297 + * event reports. These may be %NULL if the engine has nothing to say.
1298 + * These hooks are called in more constrained environments and should
1299 + * not block or do very much.
1300 + *
1301 + * @report_quiesce:
1302 + * Requested by %UTRACE_EVENT(%QUIESCE).
1303 + * This does not indicate any event, but just that @task (the current
1304 + * thread) is in a safe place for examination. This call is made
1305 + * before each specific event callback, except for @report_reap.
1306 + * The @event argument gives the %UTRACE_EVENT(@which) value for
1307 + * the event occurring. This callback might be made for events @engine
1308 + * has not requested, if some other engine is tracing the event;
1309 + * calling utrace_set_events() call here can request the immediate
1310 + * callback for this occurrence of @event. @event is zero when there
1311 + * is no other event, @task is now ready to check for signals and
1312 + * return to user mode, and some engine has used %UTRACE_REPORT or
1313 + * %UTRACE_INTERRUPT to request this callback. For this case,
1314 + * if @report_signal is not %NULL, the @report_quiesce callback
1315 + * may be replaced with a @report_signal callback passing
1316 + * %UTRACE_SIGNAL_REPORT in its @action argument, whenever @task is
1317 + * entering the signal-check path anyway.
1318 + *
1319 + * @report_signal:
1320 + * Requested by %UTRACE_EVENT(%SIGNAL_*) or %UTRACE_EVENT(%QUIESCE).
1321 + * Use utrace_signal_action() and utrace_resume_action() on @action.
1322 + * The signal action is %UTRACE_SIGNAL_REPORT when some engine has
1323 + * used %UTRACE_REPORT or %UTRACE_INTERRUPT; the callback can choose
1324 + * to stop or to deliver an artificial signal, before pending signals.
1325 + * It's %UTRACE_SIGNAL_HANDLER instead when signal handler setup just
1326 + * finished (after a previous %UTRACE_SIGNAL_DELIVER return); this
1327 + * serves in lieu of any %UTRACE_SIGNAL_REPORT callback requested by
1328 + * %UTRACE_REPORT or %UTRACE_INTERRUPT, and is also implicitly
1329 + * requested by %UTRACE_SINGLESTEP or %UTRACE_BLOCKSTEP into the
1330 + * signal delivery. The other signal actions indicate a signal about
1331 + * to be delivered; the previous engine's return value sets the signal
1332 + * action seen by the the following engine's callback. The @info data
1333 + * can be changed at will, including @info->si_signo. The settings in
1334 + * @return_ka determines what %UTRACE_SIGNAL_DELIVER does. @orig_ka
1335 + * is what was in force before other tracing engines intervened, and
1336 + * it's %NULL when this report began as %UTRACE_SIGNAL_REPORT or
1337 + * %UTRACE_SIGNAL_HANDLER. For a report without a new signal, @info
1338 + * is left uninitialized and must be set completely by an engine that
1339 + * chooses to deliver a signal; if there was a previous @report_signal
1340 + * callback ending in %UTRACE_STOP and it was just resumed using
1341 + * %UTRACE_REPORT or %UTRACE_INTERRUPT, then @info is left unchanged
1342 + * from the previous callback. In this way, the original signal can
1343 + * be left in @info while returning %UTRACE_STOP|%UTRACE_SIGNAL_IGN
1344 + * and then found again when resuming @task with %UTRACE_INTERRUPT.
1345 + * The %UTRACE_SIGNAL_HOLD flag bit can be OR'd into the return value,
1346 + * and might be in @action if the previous engine returned it. This
1347 + * flag asks that the signal in @info be pushed back on @task's queue
1348 + * so that it will be seen again after whatever action is taken now.
1349 + *
1350 + * @report_clone:
1351 + * Requested by %UTRACE_EVENT(%CLONE).
1352 + * Event reported for parent, before the new task @child might run.
1353 + * @clone_flags gives the flags used in the clone system call,
1354 + * or equivalent flags for a fork() or vfork() system call.
1355 + * This function can use utrace_attach_task() on @child. It's guaranteed
1356 + * that asynchronous utrace_attach_task() calls will be ordered after
1357 + * any calls in @report_clone callbacks for the parent. Thus
1358 + * when using %UTRACE_ATTACH_EXCLUSIVE in the asynchronous calls,
1359 + * you can be sure that the parent's @report_clone callback has
1360 + * already attached to @child or chosen not to. Passing %UTRACE_STOP
1361 + * to utrace_control() on @child here keeps the child stopped before
1362 + * it ever runs in user mode, %UTRACE_REPORT or %UTRACE_INTERRUPT
1363 + * ensures a callback from @child before it starts in user mode.
1364 + *
1365 + * @report_jctl:
1366 + * Requested by %UTRACE_EVENT(%JCTL).
1367 + * Job control event; @type is %CLD_STOPPED or %CLD_CONTINUED,
1368 + * indicating whether we are stopping or resuming now. If @notify
1369 + * is nonzero, @task is the last thread to stop and so will send
1370 + * %SIGCHLD to its parent after this callback; @notify reflects
1371 + * what the parent's %SIGCHLD has in @si_code, which can sometimes
1372 + * be %CLD_STOPPED even when @type is %CLD_CONTINUED.
1373 + *
1374 + * @report_exec:
1375 + * Requested by %UTRACE_EVENT(%EXEC).
1376 + * An execve system call has succeeded and the new program is about to
1377 + * start running. The initial user register state is handy to be tweaked
1378 + * directly in @regs. @fmt and @bprm gives the details of this exec.
1379 + *
1380 + * @report_syscall_entry:
1381 + * Requested by %UTRACE_EVENT(%SYSCALL_ENTRY).
1382 + * Thread has entered the kernel to request a system call.
1383 + * The user register state is handy to be tweaked directly in @regs.
1384 + * The @action argument contains an &enum utrace_syscall_action,
1385 + * use utrace_syscall_action() to extract it. The return value
1386 + * overrides the last engine's action for the system call.
1387 + * If the final action is %UTRACE_SYSCALL_ABORT, no system call
1388 + * is made. The details of the system call being attempted can
1389 + * be fetched here with syscall_get_nr() and syscall_get_arguments().
1390 + * The parameter registers can be changed with syscall_set_arguments().
1391 + *
1392 + * @report_syscall_exit:
1393 + * Requested by %UTRACE_EVENT(%SYSCALL_EXIT).
1394 + * Thread is about to leave the kernel after a system call request.
1395 + * The user register state is handy to be tweaked directly in @regs.
1396 + * The results of the system call attempt can be examined here using
1397 + * syscall_get_error() and syscall_get_return_value(). It is safe
1398 + * here to call syscall_set_return_value() or syscall_rollback().
1399 + *
1400 + * @report_exit:
1401 + * Requested by %UTRACE_EVENT(%EXIT).
1402 + * Thread is exiting and cannot be prevented from doing so,
1403 + * but all its state is still live. The @code value will be
1404 + * the wait result seen by the parent, and can be changed by
1405 + * this engine or others. The @orig_code value is the real
1406 + * status, not changed by any tracing engine. Returning %UTRACE_STOP
1407 + * here keeps @task stopped before it cleans up its state and dies,
1408 + * so it can be examined by other processes. When @task is allowed
1409 + * to run, it will die and get to the @report_death callback.
1410 + *
1411 + * @report_death:
1412 + * Requested by %UTRACE_EVENT(%DEATH).
1413 + * Thread is really dead now. It might be reaped by its parent at
1414 + * any time, or self-reap immediately. Though the actual reaping
1415 + * may happen in parallel, a report_reap() callback will always be
1416 + * ordered after a report_death() callback.
1417 + *
1418 + * @report_reap:
1419 + * Requested by %UTRACE_EVENT(%REAP).
1420 + * Called when someone reaps the dead task (parent, init, or self).
1421 + * This means the parent called wait, or else this was a detached
1422 + * thread or a process whose parent ignores SIGCHLD.
1423 + * No more callbacks are made after this one.
1424 + * The engine is always detached.
1425 + * There is nothing more a tracing engine can do about this thread.
1426 + * After this callback, the @engine pointer will become invalid.
1427 + * The @task pointer may become invalid if get_task_struct() hasn't
1428 + * been used to keep it alive.
1429 + * An engine should always request this callback if it stores the
1430 + * @engine pointer or stores any pointer in @engine->data, so it
1431 + * can clean up its data structures.
1432 + * Unlike other callbacks, this can be called from the parent's context
1433 + * rather than from the traced thread itself--it must not delay the
1434 + * parent by blocking.
1435 + *
1436 + * @unsafe_exec:
1437 + * Used if not %NULL.
1438 + * Return %LSM_UNSAFE_* bits that apply to the exec in progress
1439 + * due to tracing done by this engine. These bits indicate that
1440 + * someone is able to examine the process and so a set-UID or similar
1441 + * privilege escalation may not be safe to permit.
1442 + * Called with task_lock() held.
1443 + *
1444 + * @tracer_task:
1445 + * Used if not %NULL.
1446 + * Return the &struct task_struct for the task using ptrace() on
1447 + * @task, or %NULL. Always called with rcu_read_lock() held to
1448 + * keep the returned struct alive. At exec time, this may be
1449 + * called with task_lock() still held from when unsafe_exec() was
1450 + * just called. In that case it must give results consistent
1451 + * with those unsafe_exec() results, i.e. non-%NULL if any
1452 + * %LSM_UNSAFE_PTRACE_* bits were set. The value is also used to
1453 + * display after "TracerPid:" in /proc/PID/status, where it is
1454 + * called with only rcu_read_lock() held. If this engine returns
1455 + * %NULL, another engine may supply the result.
1456 + */
1457 +struct utrace_engine_ops {
1458 + u32 (*report_quiesce)(enum utrace_resume_action action,
1459 + struct utrace_attached_engine *engine,
1460 + struct task_struct *task,
1461 + unsigned long event);
1462 + u32 (*report_signal)(u32 action,
1463 + struct utrace_attached_engine *engine,
1464 + struct task_struct *task,
1465 + struct pt_regs *regs,
1466 + siginfo_t *info,
1467 + const struct k_sigaction *orig_ka,
1468 + struct k_sigaction *return_ka);
1469 + u32 (*report_clone)(enum utrace_resume_action action,
1470 + struct utrace_attached_engine *engine,
1471 + struct task_struct *parent,
1472 + unsigned long clone_flags,
1473 + struct task_struct *child);
1474 + u32 (*report_jctl)(enum utrace_resume_action action,
1475 + struct utrace_attached_engine *engine,
1476 + struct task_struct *task,
1477 + int type, int notify);
1478 + u32 (*report_exec)(enum utrace_resume_action action,
1479 + struct utrace_attached_engine *engine,
1480 + struct task_struct *task,
1481 + const struct linux_binfmt *fmt,
1482 + const struct linux_binprm *bprm,
1483 + struct pt_regs *regs);
1484 + u32 (*report_syscall_entry)(u32 action,
1485 + struct utrace_attached_engine *engine,
1486 + struct task_struct *task,
1487 + struct pt_regs *regs);
1488 + u32 (*report_syscall_exit)(enum utrace_resume_action action,
1489 + struct utrace_attached_engine *engine,
1490 + struct task_struct *task,
1491 + struct pt_regs *regs);
1492 + u32 (*report_exit)(enum utrace_resume_action action,
1493 + struct utrace_attached_engine *engine,
1494 + struct task_struct *task,
1495 + long orig_code, long *code);
1496 + u32 (*report_death)(struct utrace_attached_engine *engine,
1497 + struct task_struct *task,
1498 + bool group_dead, int signal);
1499 + void (*report_reap)(struct utrace_attached_engine *engine,
1500 + struct task_struct *task);
1501 +
1502 + int (*unsafe_exec)(struct utrace_attached_engine *engine,
1503 + struct task_struct *task);
1504 + struct task_struct *(*tracer_task)(
1505 + struct utrace_attached_engine *engine,
1506 + struct task_struct *task);
1507 +};
1508 +
1509 +/**
1510 + * struct utrace_examiner - private state for using utrace_prepare_examine()
1511 + * @dummy: all fields are private, none described here
1512 + *
1513 + * The members of &struct utrace_examiner are private to the implementation.
1514 + * This data type holds the state from a call to utrace_prepare_examine()
1515 + * to be used by a call to utrace_finish_examine().
1516 + */
1517 +struct utrace_examiner {
1518 +/* private: */
1519 + long state; /* cache of task_struct.state */
1520 + unsigned long ncsw; /* cache of wait_task_inactive() return value */
1521 +/* public: */
1522 + struct {} dummy;
1523 +};
1524 +
1525 +/**
1526 + * utrace_control_pid - control a thread being traced by a tracing engine
1527 + * @pid: thread to affect
1528 + * @engine: attached engine to affect
1529 + * @action: &enum utrace_resume_action for thread to do
1530 + *
1531 + * This is the same as utrace_control(), but takes a &struct pid
1532 + * pointer rather than a &struct task_struct pointer. The caller must
1533 + * hold a ref on @pid, but does not need to worry about the task
1534 + * staying valid. If it's been reaped so that @pid points nowhere,
1535 + * then this call returns -%ESRCH.
1536 + */
1537 +static inline __must_check int utrace_control_pid(
1538 + struct pid *pid, struct utrace_attached_engine *engine,
1539 + enum utrace_resume_action action)
1540 +{
1541 + /*
1542 + * We don't bother with rcu_read_lock() here to protect the
1543 + * task_struct pointer, because utrace_control will return
1544 + * -ESRCH without looking at that pointer if the engine is
1545 + * already detached. A task_struct pointer can't die before
1546 + * all the engines are detached in release_task() first.
1547 + */
1548 + struct task_struct *task = pid_task(pid, PIDTYPE_PID);
1549 + return unlikely(!task) ? -ESRCH : utrace_control(task, engine, action);
1550 +}
1551 +
1552 +/**
1553 + * utrace_set_events_pid - choose which event reports a tracing engine gets
1554 + * @pid: thread to affect
1555 + * @engine: attached engine to affect
1556 + * @eventmask: new event mask
1557 + *
1558 + * This is the same as utrace_set_events(), but takes a &struct pid
1559 + * pointer rather than a &struct task_struct pointer. The caller must
1560 + * hold a ref on @pid, but does not need to worry about the task
1561 + * staying valid. If it's been reaped so that @pid points nowhere,
1562 + * then this call returns -%ESRCH.
1563 + */
1564 +static inline __must_check int utrace_set_events_pid(
1565 + struct pid *pid, struct utrace_attached_engine *engine,
1566 + unsigned long eventmask)
1567 +{
1568 + struct task_struct *task = pid_task(pid, PIDTYPE_PID);
1569 + return unlikely(!task) ? -ESRCH :
1570 + utrace_set_events(task, engine, eventmask);
1571 +}
1572 +
1573 +/**
1574 + * utrace_barrier_pid - synchronize with simultaneous tracing callbacks
1575 + * @pid: thread to affect
1576 + * @engine: engine to affect (can be detached)
1577 + *
1578 + * This is the same as utrace_barrier(), but takes a &struct pid
1579 + * pointer rather than a &struct task_struct pointer. The caller must
1580 + * hold a ref on @pid, but does not need to worry about the task
1581 + * staying valid. If it's been reaped so that @pid points nowhere,
1582 + * then this call returns -%ESRCH.
1583 + */
1584 +static inline __must_check int utrace_barrier_pid(
1585 + struct pid *pid, struct utrace_attached_engine *engine)
1586 +{
1587 + struct task_struct *task = pid_task(pid, PIDTYPE_PID);
1588 + return unlikely(!task) ? -ESRCH : utrace_barrier(task, engine);
1589 +}
1590 +
1591 +#endif /* CONFIG_UTRACE */
1592 +
1593 +#endif /* linux/utrace.h */
1594 --- a/init/Kconfig
1595 +++ b/init/Kconfig
1596 @@ -916,6 +916,16 @@ config STOP_MACHINE
1597 help
1598 Need stop_machine() primitive.
1599
1600 +menuconfig UTRACE
1601 + bool "Infrastructure for tracing and debugging user processes"
1602 + depends on EXPERIMENTAL
1603 + depends on HAVE_ARCH_TRACEHOOK
1604 + depends on MODULES
1605 + help
1606 + Enable the utrace process tracing interface. This is an internal
1607 + kernel interface exported to kernel modules, to track events in
1608 + user threads, extract and change user thread state.
1609 +
1610 source "block/Kconfig"
1611
1612 config PREEMPT_NOTIFIERS
1613 --- a/kernel/Makefile
1614 +++ b/kernel/Makefile
1615 @@ -65,6 +65,7 @@ obj-$(CONFIG_IKCONFIG) += configs.o
1616 obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o
1617 obj-$(CONFIG_STOP_MACHINE) += stop_machine.o
1618 obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o
1619 +obj-$(CONFIG_UTRACE) += utrace.o
1620 obj-$(CONFIG_AUDIT) += audit.o auditfilter.o
1621 obj-$(CONFIG_AUDITSYSCALL) += auditsc.o
1622 obj-$(CONFIG_AUDIT_TREE) += audit_tree.o
1623 --- /dev/null
1624 +++ b/kernel/utrace.c
1625 @@ -0,0 +1,2495 @@
1626 +/*
1627 + * utrace infrastructure interface for debugging user processes
1628 + *
1629 + * Copyright (C) 2006, 2007, 2008 Red Hat, Inc. All rights reserved.
1630 + *
1631 + * This copyrighted material is made available to anyone wishing to use,
1632 + * modify, copy, or redistribute it subject to the terms and conditions
1633 + * of the GNU General Public License v.2.
1634 + *
1635 + * Red Hat Author: Roland McGrath.
1636 + */
1637 +
1638 +#include <linux/utrace.h>
1639 +#include <linux/tracehook.h>
1640 +#include <linux/regset.h>
1641 +#include <asm/syscall.h>
1642 +#include <linux/ptrace.h>
1643 +#include <linux/err.h>
1644 +#include <linux/sched.h>
1645 +#include <linux/freezer.h>
1646 +#include <linux/module.h>
1647 +#include <linux/init.h>
1648 +#include <linux/slab.h>
1649 +#include <linux/seq_file.h>
1650 +
1651 +
1652 +#define UTRACE_DEBUG 1
1653 +#ifdef UTRACE_DEBUG
1654 +#define CHECK_INIT(p) atomic_set(&(p)->check_dead, 1)
1655 +#define CHECK_DEAD(p) BUG_ON(!atomic_dec_and_test(&(p)->check_dead))
1656 +#else
1657 +#define CHECK_INIT(p) do { } while (0)
1658 +#define CHECK_DEAD(p) do { } while (0)
1659 +#endif
1660 +
1661 +/*
1662 + * Per-thread structure task_struct.utrace points to.
1663 + *
1664 + * The task itself never has to worry about this going away after
1665 + * some event is found set in task_struct.utrace_flags.
1666 + * Once created, this pointer is changed only when the task is quiescent
1667 + * (TASK_TRACED or TASK_STOPPED with the siglock held, or dead).
1668 + *
1669 + * For other parties, the pointer to this is protected by RCU and
1670 + * task_lock. Since call_rcu is never used while the thread is alive and
1671 + * using this struct utrace, we can overlay the RCU data structure used
1672 + * only for a dead struct with some local state used only for a live utrace
1673 + * on an active thread.
1674 + *
1675 + * The two lists @attached and @attaching work together for smooth
1676 + * asynchronous attaching with low overhead. Modifying either list
1677 + * requires @lock. The @attaching list can be modified any time while
1678 + * holding @lock. New engines being attached always go on this list.
1679 + *
1680 + * The @attached list is what the task itself uses for its reporting
1681 + * loops. When the task itself is not quiescent, it can use the
1682 + * @attached list without taking any lock. Noone may modify the list
1683 + * when the task is not quiescent. When it is quiescent, that means
1684 + * that it won't run again without taking @lock itself before using
1685 + * the list.
1686 + *
1687 + * At each place where we know the task is quiescent (or it's current),
1688 + * while holding @lock, we call splice_attaching(), below. This moves
1689 + * the @attaching list members on to the end of the @attached list.
1690 + * Since this happens at the start of any reporting pass, any new
1691 + * engines attached asynchronously go on the stable @attached list
1692 + * in time to have their callbacks seen.
1693 + */
1694 +struct utrace {
1695 + union {
1696 + struct rcu_head dead;
1697 + struct {
1698 + struct task_struct *cloning;
1699 + } live;
1700 + } u;
1701 +
1702 + struct list_head attached, attaching;
1703 + spinlock_t lock;
1704 +#ifdef UTRACE_DEBUG
1705 + atomic_t check_dead;
1706 +#endif
1707 +
1708 + struct utrace_attached_engine *reporting;
1709 +
1710 + unsigned int stopped:1;
1711 + unsigned int report:1;
1712 + unsigned int interrupt:1;
1713 + unsigned int signal_handler:1;
1714 + unsigned int death:1; /* in utrace_report_death() now */
1715 + unsigned int reap:1; /* release_task() has run */
1716 +};
1717 +
1718 +static struct kmem_cache *utrace_cachep;
1719 +static struct kmem_cache *utrace_engine_cachep;
1720 +static const struct utrace_engine_ops utrace_detached_ops; /* forward decl */
1721 +
1722 +static int __init utrace_init(void)
1723 +{
1724 + utrace_cachep = KMEM_CACHE(utrace, SLAB_PANIC);
1725 + utrace_engine_cachep = KMEM_CACHE(utrace_attached_engine, SLAB_PANIC);
1726 + return 0;
1727 +}
1728 +subsys_initcall(utrace_init);
1729 +
1730 +
1731 +/*
1732 + * Make sure target->utrace is allocated, and return with it locked on
1733 + * success. This function mediates startup races. The creating parent
1734 + * task has priority, and other callers will delay here to let its call
1735 + * succeed and take the new utrace lock first.
1736 + */
1737 +static struct utrace *utrace_first_engine(struct task_struct *target,
1738 + struct utrace_attached_engine *engine)
1739 + __acquires(utrace->lock)
1740 +{
1741 + struct utrace *utrace;
1742 +
1743 + /*
1744 + * If this is a newborn thread and we are not the creator,
1745 + * we have to wait for it. The creator gets the first chance
1746 + * to attach. The PF_STARTING flag is cleared after its
1747 + * report_clone hook has had a chance to run.
1748 + */
1749 + if (target->flags & PF_STARTING) {
1750 + utrace = current->utrace;
1751 + if (utrace == NULL || utrace->u.live.cloning != target) {
1752 + yield();
1753 + if (signal_pending(current))
1754 + return ERR_PTR(-ERESTARTNOINTR);
1755 + return NULL;
1756 + }
1757 + }
1758 +
1759 + utrace = kmem_cache_zalloc(utrace_cachep, GFP_KERNEL);
1760 + if (unlikely(utrace == NULL))
1761 + return ERR_PTR(-ENOMEM);
1762 +
1763 + INIT_LIST_HEAD(&utrace->attached);
1764 + INIT_LIST_HEAD(&utrace->attaching);
1765 + list_add(&engine->entry, &utrace->attached);
1766 + spin_lock_init(&utrace->lock);
1767 + CHECK_INIT(utrace);
1768 +
1769 + spin_lock(&utrace->lock);
1770 + task_lock(target);
1771 + if (likely(target->utrace == NULL)) {
1772 + rcu_assign_pointer(target->utrace, utrace);
1773 +
1774 + /*
1775 + * The task_lock protects us against another thread doing
1776 + * the same thing. We might still be racing against
1777 + * tracehook_release_task. It's called with ->exit_state
1778 + * set to EXIT_DEAD and then checks ->utrace with an
1779 + * smp_mb() in between. If EXIT_DEAD is set, then
1780 + * release_task might have checked ->utrace already and saw
1781 + * it NULL; we can't attach. If we see EXIT_DEAD not yet
1782 + * set after our barrier, then we know release_task will
1783 + * see our target->utrace pointer.
1784 + */
1785 + smp_mb();
1786 + if (likely(target->exit_state != EXIT_DEAD)) {
1787 + task_unlock(target);
1788 + return utrace;
1789 + }
1790 +
1791 + /*
1792 + * The target has already been through release_task.
1793 + * Our caller will restart and notice it's too late now.
1794 + */
1795 + target->utrace = NULL;
1796 + }
1797 +
1798 + /*
1799 + * Another engine attached first, so there is a struct already.
1800 + * A null return says to restart looking for the existing one.
1801 + */
1802 + task_unlock(target);
1803 + spin_unlock(&utrace->lock);
1804 + kmem_cache_free(utrace_cachep, utrace);
1805 +
1806 + return NULL;
1807 +}
1808 +
1809 +static void utrace_free(struct rcu_head *rhead)
1810 +{
1811 + struct utrace *utrace = container_of(rhead, struct utrace, u.dead);
1812 + kmem_cache_free(utrace_cachep, utrace);
1813 +}
1814 +
1815 +/*
1816 + * Called with utrace locked. Clean it up and free it via RCU.
1817 + */
1818 +static void rcu_utrace_free(struct utrace *utrace)
1819 + __releases(utrace->lock)
1820 +{
1821 + CHECK_DEAD(utrace);
1822 + spin_unlock(&utrace->lock);
1823 + call_rcu(&utrace->u.dead, utrace_free);
1824 +}
1825 +
1826 +/*
1827 + * This is the exported function used by the utrace_engine_put() inline.
1828 + */
1829 +void __utrace_engine_release(struct kref *kref)
1830 +{
1831 + struct utrace_attached_engine *engine =
1832 + container_of(kref, struct utrace_attached_engine, kref);
1833 + BUG_ON(!list_empty(&engine->entry));
1834 + kmem_cache_free(utrace_engine_cachep, engine);
1835 +}
1836 +EXPORT_SYMBOL_GPL(__utrace_engine_release);
1837 +
1838 +static bool engine_matches(struct utrace_attached_engine *engine, int flags,
1839 + const struct utrace_engine_ops *ops, void *data)
1840 +{
1841 + if ((flags & UTRACE_ATTACH_MATCH_OPS) && engine->ops != ops)
1842 + return false;
1843 + if ((flags & UTRACE_ATTACH_MATCH_DATA) && engine->data != data)
1844 + return false;
1845 + return engine->ops && engine->ops != &utrace_detached_ops;
1846 +}
1847 +
1848 +static struct utrace_attached_engine *matching_engine(
1849 + struct utrace *utrace, int flags,
1850 + const struct utrace_engine_ops *ops, void *data)
1851 +{
1852 + struct utrace_attached_engine *engine;
1853 + list_for_each_entry(engine, &utrace->attached, entry)
1854 + if (engine_matches(engine, flags, ops, data))
1855 + return engine;
1856 + list_for_each_entry(engine, &utrace->attaching, entry)
1857 + if (engine_matches(engine, flags, ops, data))
1858 + return engine;
1859 + return NULL;
1860 +}
1861 +
1862 +/*
1863 + * Allocate a new engine structure. It starts out with two refs:
1864 + * one ref for utrace_attach_task() to return, and ref for being attached.
1865 + */
1866 +static struct utrace_attached_engine *alloc_engine(void)
1867 +{
1868 + struct utrace_attached_engine *engine;
1869 + engine = kmem_cache_alloc(utrace_engine_cachep, GFP_KERNEL);
1870 + if (likely(engine)) {
1871 + engine->flags = 0;
1872 + kref_set(&engine->kref, 2);
1873 + }
1874 + return engine;
1875 +}
1876 +
1877 +/**
1878 + * utrace_attach_task - attach new engine, or look up an attached engine
1879 + * @target: thread to attach to
1880 + * @flags: flag bits combined with OR, see below
1881 + * @ops: callback table for new engine
1882 + * @data: engine private data pointer
1883 + *
1884 + * The caller must ensure that the @target thread does not get freed,
1885 + * i.e. hold a ref or be its parent. It is always safe to call this
1886 + * on @current, or on the @child pointer in a @report_clone callback.
1887 + * For most other cases, it's easier to use utrace_attach_pid() instead.
1888 + *
1889 + * UTRACE_ATTACH_CREATE:
1890 + * Create a new engine. If %UTRACE_ATTACH_CREATE is not specified, you
1891 + * only look up an existing engine already attached to the thread.
1892 + *
1893 + * UTRACE_ATTACH_EXCLUSIVE:
1894 + * Attempting to attach a second (matching) engine fails with -%EEXIST.
1895 + *
1896 + * UTRACE_ATTACH_MATCH_OPS: Only consider engines matching @ops.
1897 + * UTRACE_ATTACH_MATCH_DATA: Only consider engines matching @data.
1898 + */
1899 +struct utrace_attached_engine *utrace_attach_task(
1900 + struct task_struct *target, int flags,
1901 + const struct utrace_engine_ops *ops, void *data)
1902 +{
1903 + struct utrace *utrace;
1904 + struct utrace_attached_engine *engine;
1905 +
1906 +restart:
1907 + rcu_read_lock();
1908 + utrace = rcu_dereference(target->utrace);
1909 + smp_rmb();
1910 + if (unlikely(target->exit_state == EXIT_DEAD)) {
1911 + /*
1912 + * The target has already been reaped.
1913 + * Check this first; a race with reaping may lead to restart.
1914 + */
1915 + rcu_read_unlock();
1916 + if (!(flags & UTRACE_ATTACH_CREATE))
1917 + return ERR_PTR(-ENOENT);
1918 + return ERR_PTR(-ESRCH);
1919 + }
1920 +
1921 + if (utrace == NULL) {
1922 + rcu_read_unlock();
1923 +
1924 + if (!(flags & UTRACE_ATTACH_CREATE))
1925 + return ERR_PTR(-ENOENT);
1926 +
1927 + if (unlikely(target->flags & PF_KTHREAD))
1928 + /*
1929 + * Silly kernel, utrace is for users!
1930 + */
1931 + return ERR_PTR(-EPERM);
1932 +
1933 + engine = alloc_engine();
1934 + if (unlikely(!engine))
1935 + return ERR_PTR(-ENOMEM);
1936 +
1937 + goto first;
1938 + }
1939 +
1940 + if (!(flags & UTRACE_ATTACH_CREATE)) {
1941 + spin_lock(&utrace->lock);
1942 + engine = matching_engine(utrace, flags, ops, data);
1943 + if (engine)
1944 + utrace_engine_get(engine);
1945 + spin_unlock(&utrace->lock);
1946 + rcu_read_unlock();
1947 + return engine ?: ERR_PTR(-ENOENT);
1948 + }
1949 + rcu_read_unlock();
1950 +
1951 + if (unlikely(!ops) || unlikely(ops == &utrace_detached_ops))
1952 + return ERR_PTR(-EINVAL);
1953 +
1954 + engine = alloc_engine();
1955 + if (unlikely(!engine))
1956 + return ERR_PTR(-ENOMEM);
1957 +
1958 + rcu_read_lock();
1959 + utrace = rcu_dereference(target->utrace);
1960 + if (unlikely(utrace == NULL)) { /* Race with detach. */
1961 + rcu_read_unlock();
1962 + goto first;
1963 + }
1964 + spin_lock(&utrace->lock);
1965 +
1966 + if (flags & UTRACE_ATTACH_EXCLUSIVE) {
1967 + struct utrace_attached_engine *old;
1968 + old = matching_engine(utrace, flags, ops, data);
1969 + if (old) {
1970 + spin_unlock(&utrace->lock);
1971 + rcu_read_unlock();
1972 + kmem_cache_free(utrace_engine_cachep, engine);
1973 + return ERR_PTR(-EEXIST);
1974 + }
1975 + }
1976 +
1977 + if (unlikely(rcu_dereference(target->utrace) != utrace)) {
1978 + /*
1979 + * We lost a race with other CPUs doing a sequence
1980 + * of detach and attach before we got in.
1981 + */
1982 + spin_unlock(&utrace->lock);
1983 + rcu_read_unlock();
1984 + kmem_cache_free(utrace_engine_cachep, engine);
1985 + goto restart;
1986 + }
1987 + rcu_read_unlock();
1988 +
1989 + list_add_tail(&engine->entry, &utrace->attaching);
1990 + utrace->report = 1;
1991 + goto finish;
1992 +
1993 +first:
1994 + utrace = utrace_first_engine(target, engine);
1995 + if (IS_ERR(utrace) || unlikely(utrace == NULL)) {
1996 + kmem_cache_free(utrace_engine_cachep, engine);
1997 + if (unlikely(utrace == NULL)) /* Race condition. */
1998 + goto restart;
1999 + return ERR_PTR(PTR_ERR(utrace));
2000 + }
2001 +
2002 +finish:
2003 + engine->ops = ops;
2004 + engine->data = data;
2005 +
2006 + spin_unlock(&utrace->lock);
2007 +
2008 + return engine;
2009 +}
2010 +EXPORT_SYMBOL_GPL(utrace_attach_task);
2011 +
2012 +/**
2013 + * utrace_attach_pid - attach new engine, or look up an attached engine
2014 + * @pid: &struct pid pointer representing thread to attach to
2015 + * @flags: flag bits combined with OR, see utrace_attach_task()
2016 + * @ops: callback table for new engine
2017 + * @data: engine private data pointer
2018 + *
2019 + * This is the same as utrace_attach_task(), but takes a &struct pid
2020 + * pointer rather than a &struct task_struct pointer. The caller must
2021 + * hold a ref on @pid, but does not need to worry about the task
2022 + * staying valid. If it's been reaped so that @pid points nowhere,
2023 + * then this call returns -%ESRCH.
2024 + */
2025 +struct utrace_attached_engine *utrace_attach_pid(
2026 + struct pid *pid, int flags,
2027 + const struct utrace_engine_ops *ops, void *data)
2028 +{
2029 + struct utrace_attached_engine *engine = ERR_PTR(-ESRCH);
2030 + struct task_struct *task = get_pid_task(pid, PIDTYPE_PID);
2031 + if (task) {
2032 + engine = utrace_attach_task(task, flags, ops, data);
2033 + put_task_struct(task);
2034 + }
2035 + return engine;
2036 +}
2037 +EXPORT_SYMBOL_GPL(utrace_attach_pid);
2038 +
2039 +/*
2040 + * This is called with @utrace->lock held when the task is safely
2041 + * quiescent, i.e. it won't consult utrace->attached without the lock.
2042 + * Move any engines attached asynchronously from @utrace->attaching
2043 + * onto the @utrace->attached list.
2044 + */
2045 +static void splice_attaching(struct utrace *utrace)
2046 +{
2047 + list_splice_tail_init(&utrace->attaching, &utrace->attached);
2048 +}
2049 +
2050 +/*
2051 + * When an engine is detached, the target thread may still see it and
2052 + * make callbacks until it quiesces. We install a special ops vector
2053 + * with these two callbacks. When the target thread quiesces, it can
2054 + * safely free the engine itself. For any event we will always get
2055 + * the report_quiesce() callback first, so we only need this one
2056 + * pointer to be set. The only exception is report_reap(), so we
2057 + * supply that callback too.
2058 + */
2059 +static u32 utrace_detached_quiesce(enum utrace_resume_action action,
2060 + struct utrace_attached_engine *engine,
2061 + struct task_struct *task,
2062 + unsigned long event)
2063 +{
2064 + return UTRACE_DETACH;
2065 +}
2066 +
2067 +static void utrace_detached_reap(struct utrace_attached_engine *engine,
2068 + struct task_struct *task)
2069 +{
2070 +}
2071 +
2072 +static const struct utrace_engine_ops utrace_detached_ops = {
2073 + .report_quiesce = &utrace_detached_quiesce,
2074 + .report_reap = &utrace_detached_reap
2075 +};
2076 +
2077 +/*
2078 + * Only these flags matter any more for a dead task (exit_state set).
2079 + * We use this mask on flags installed in ->utrace_flags after
2080 + * exit_notify (and possibly utrace_report_death) has run.
2081 + * This ensures that utrace_release_task knows positively that
2082 + * utrace_report_death will not run later.
2083 + */
2084 +#define DEAD_FLAGS_MASK (UTRACE_EVENT(REAP))
2085 +#define LIVE_FLAGS_MASK (~0UL)
2086 +
2087 +/*
2088 + * Perform %UTRACE_STOP, i.e. block in TASK_TRACED until woken up.
2089 + * @task == current, @utrace == current->utrace, which is not locked.
2090 + * Return true if we were woken up by SIGKILL even though some utrace
2091 + * engine may still want us to stay stopped.
2092 + */
2093 +static bool utrace_stop(struct task_struct *task, struct utrace *utrace)
2094 +{
2095 + /*
2096 + * @utrace->stopped is the flag that says we are safely
2097 + * inside this function. It should never be set on entry.
2098 + */
2099 + BUG_ON(utrace->stopped);
2100 +
2101 + /*
2102 + * The siglock protects us against signals. As well as SIGKILL
2103 + * waking us up, we must synchronize with the signal bookkeeping
2104 + * for stop signals and SIGCONT.
2105 + */
2106 + spin_lock(&utrace->lock);
2107 + spin_lock_irq(&task->sighand->siglock);
2108 +
2109 + if (unlikely(sigismember(&task->pending.signal, SIGKILL))) {
2110 + spin_unlock_irq(&task->sighand->siglock);
2111 + spin_unlock(&utrace->lock);
2112 + return true;
2113 + }
2114 +
2115 + utrace->stopped = 1;
2116 + __set_current_state(TASK_TRACED);
2117 +
2118 + /*
2119 + * If there is a group stop in progress,
2120 + * we must participate in the bookkeeping.
2121 + */
2122 + if (task->signal->group_stop_count > 0)
2123 + --task->signal->group_stop_count;
2124 +
2125 + spin_unlock_irq(&task->sighand->siglock);
2126 + spin_unlock(&utrace->lock);
2127 +
2128 + schedule();
2129 +
2130 + /*
2131 + * While in TASK_TRACED, we were considered "frozen enough".
2132 + * Now that we woke up, it's crucial if we're supposed to be
2133 + * frozen that we freeze now before running anything substantial.
2134 + */
2135 + try_to_freeze();
2136 +
2137 + /*
2138 + * utrace_wakeup() clears @utrace->stopped before waking us up.
2139 + * We're officially awake if it's clear.
2140 + */
2141 + if (likely(!utrace->stopped))
2142 + return false;
2143 +
2144 + /*
2145 + * If we're here with it still set, it must have been
2146 + * signal_wake_up() instead, waking us up for a SIGKILL.
2147 + */
2148 + spin_lock(&utrace->lock);
2149 + utrace->stopped = 0;
2150 + spin_unlock(&utrace->lock);
2151 + return true;
2152 +}
2153 +
2154 +/*
2155 + * The caller has to hold a ref on the engine. If the attached flag is
2156 + * true (all but utrace_barrier() calls), the engine is supposed to be
2157 + * attached. If the attached flag is false (utrace_barrier() only),
2158 + * then return -ERESTARTSYS for an engine marked for detach but not yet
2159 + * fully detached. The task pointer can be invalid if the engine is
2160 + * detached.
2161 + *
2162 + * Get the utrace lock for the target task.
2163 + * Returns the struct if locked, or ERR_PTR(-errno).
2164 + *
2165 + * This has to be robust against races with:
2166 + * utrace_control(target, UTRACE_DETACH) calls
2167 + * UTRACE_DETACH after reports
2168 + * utrace_report_death
2169 + * utrace_release_task
2170 + */
2171 +static struct utrace *get_utrace_lock(struct task_struct *target,
2172 + struct utrace_attached_engine *engine,
2173 + bool attached)
2174 + __acquires(utrace->lock)
2175 +{
2176 + struct utrace *utrace;
2177 +
2178 + /*
2179 + * You must hold a ref to be making a call. A call from within
2180 + * a report_* callback in @target might only have the ref for
2181 + * being attached, not a second one of its own.
2182 + */
2183 + if (unlikely(atomic_read(&engine->kref.refcount) < 1))
2184 + return ERR_PTR(-EINVAL);
2185 +
2186 + rcu_read_lock();
2187 +
2188 + /*
2189 + * If this engine was already detached, bail out before we look at
2190 + * the task_struct pointer at all. If it's detached after this
2191 + * check, then RCU is still keeping this task_struct pointer valid.
2192 + *
2193 + * The ops pointer is NULL when the engine is fully detached.
2194 + * It's &utrace_detached_ops when it's marked detached but still
2195 + * on the list. In the latter case, utrace_barrier() still works,
2196 + * since the target might be in the middle of an old callback.
2197 + */
2198 + if (unlikely(!engine->ops)) {
2199 + rcu_read_unlock();
2200 + return ERR_PTR(-ESRCH);
2201 + }
2202 +
2203 + if (unlikely(engine->ops == &utrace_detached_ops)) {
2204 + rcu_read_unlock();
2205 + return attached ? ERR_PTR(-ESRCH) : ERR_PTR(-ERESTARTSYS);
2206 + }
2207 +
2208 + utrace = rcu_dereference(target->utrace);
2209 + smp_rmb();
2210 + if (unlikely(!utrace) || unlikely(target->exit_state == EXIT_DEAD)) {
2211 + /*
2212 + * If all engines detached already, utrace is clear.
2213 + * Otherwise, we're called after utrace_release_task might
2214 + * have started. A call to this engine's report_reap
2215 + * callback might already be in progress.
2216 + */
2217 + utrace = ERR_PTR(-ESRCH);
2218 + } else {
2219 + spin_lock(&utrace->lock);
2220 + if (unlikely(rcu_dereference(target->utrace) != utrace) ||
2221 + unlikely(!engine->ops) ||
2222 + unlikely(engine->ops == &utrace_detached_ops)) {
2223 + /*
2224 + * By the time we got the utrace lock,
2225 + * it had been reaped or detached already.
2226 + */
2227 + spin_unlock(&utrace->lock);
2228 + utrace = ERR_PTR(-ESRCH);
2229 + if (!attached && engine->ops == &utrace_detached_ops)
2230 + utrace = ERR_PTR(-ERESTARTSYS);
2231 + }
2232 + }
2233 + rcu_read_unlock();
2234 +
2235 + return utrace;
2236 +}
2237 +
2238 +/*
2239 + * Now that we don't hold any locks, run through any
2240 + * detached engines and free their references. Each
2241 + * engine had one implicit ref while it was attached.
2242 + */
2243 +static void put_detached_list(struct list_head *list)
2244 +{
2245 + struct utrace_attached_engine *engine, *next;
2246 + list_for_each_entry_safe(engine, next, list, entry) {
2247 + list_del_init(&engine->entry);
2248 + utrace_engine_put(engine);
2249 + }
2250 +}
2251 +
2252 +/*
2253 + * Called with utrace->lock held.
2254 + * Notify and clean up all engines, then free utrace.
2255 + */
2256 +static void utrace_reap(struct task_struct *target, struct utrace *utrace)
2257 + __releases(utrace->lock)
2258 +{
2259 + struct utrace_attached_engine *engine, *next;
2260 + const struct utrace_engine_ops *ops;
2261 + LIST_HEAD(detached);
2262 +
2263 +restart:
2264 + splice_attaching(utrace);
2265 + list_for_each_entry_safe(engine, next, &utrace->attached, entry) {
2266 + ops = engine->ops;
2267 + engine->ops = NULL;
2268 + list_move(&engine->entry, &detached);
2269 +
2270 + /*
2271 + * If it didn't need a callback, we don't need to drop
2272 + * the lock. Now nothing else refers to this engine.
2273 + */
2274 + if (!(engine->flags & UTRACE_EVENT(REAP)))
2275 + continue;
2276 +
2277 + utrace->reporting = engine;
2278 + spin_unlock(&utrace->lock);
2279 +
2280 + (*ops->report_reap)(engine, target);
2281 +
2282 + utrace->reporting = NULL;
2283 +
2284 + put_detached_list(&detached);
2285 +
2286 + spin_lock(&utrace->lock);
2287 + goto restart;
2288 + }
2289 +
2290 + rcu_utrace_free(utrace); /* Releases the lock. */
2291 +
2292 + put_detached_list(&detached);
2293 +}
2294 +
2295 +#define DEATH_EVENTS (UTRACE_EVENT(DEATH) | UTRACE_EVENT(QUIESCE))
2296 +
2297 +/*
2298 + * Called by release_task. After this, target->utrace must be cleared.
2299 + */
2300 +void utrace_release_task(struct task_struct *target)
2301 +{
2302 + struct utrace *utrace;
2303 +
2304 + task_lock(target);
2305 + utrace = rcu_dereference(target->utrace);
2306 + rcu_assign_pointer(target->utrace, NULL);
2307 + task_unlock(target);
2308 +
2309 + if (unlikely(utrace == NULL))
2310 + return;
2311 +
2312 + spin_lock(&utrace->lock);
2313 + /*
2314 + * If the list is empty, utrace is already on its way to be freed.
2315 + * We raced with detach and we won the task_lock race but lost the
2316 + * utrace->lock race. All we have to do is let RCU run.
2317 + */
2318 + if (likely(!list_empty(&utrace->attached))) {
2319 + utrace->reap = 1;
2320 +
2321 + if (!(target->utrace_flags & DEATH_EVENTS)) {
2322 + utrace_reap(target, utrace); /* Unlocks and frees. */
2323 + return;
2324 + }
2325 +
2326 + /*
2327 + * The target will do some final callbacks but hasn't
2328 + * finished them yet. We know because it clears these
2329 + * event bits after it's done. Instead of cleaning up here
2330 + * and requiring utrace_report_death to cope with it, we
2331 + * delay the REAP report and the teardown until after the
2332 + * target finishes its death reports.
2333 + */
2334 + }
2335 + spin_unlock(&utrace->lock);
2336 +}
2337 +
2338 +/*
2339 + * We use an extra bit in utrace_attached_engine.flags past the event bits,
2340 + * to record whether the engine is keeping the target thread stopped.
2341 + */
2342 +#define ENGINE_STOP (1UL << _UTRACE_NEVENTS)
2343 +
2344 +static void mark_engine_wants_stop(struct utrace_attached_engine *engine)
2345 +{
2346 + engine->flags |= ENGINE_STOP;
2347 +}
2348 +
2349 +static void clear_engine_wants_stop(struct utrace_attached_engine *engine)
2350 +{
2351 + engine->flags &= ~ENGINE_STOP;
2352 +}
2353 +
2354 +static bool engine_wants_stop(struct utrace_attached_engine *engine)
2355 +{
2356 + return (engine->flags & ENGINE_STOP) != 0;
2357 +}
2358 +
2359 +/**
2360 + * utrace_set_events - choose which event reports a tracing engine gets
2361 + * @target: thread to affect
2362 + * @engine: attached engine to affect
2363 + * @events: new event mask
2364 + *
2365 + * This changes the set of events for which @engine wants callbacks made.
2366 + *
2367 + * This fails with -%EALREADY and does nothing if you try to clear
2368 + * %UTRACE_EVENT(%DEATH) when the @report_death callback may already have
2369 + * begun, if you try to clear %UTRACE_EVENT(%REAP) when the @report_reap
2370 + * callback may already have begun, or if you try to newly set
2371 + * %UTRACE_EVENT(%DEATH) or %UTRACE_EVENT(%QUIESCE) when @target is
2372 + * already dead or dying.
2373 + *
2374 + * This can fail with -%ESRCH when @target has already been detached,
2375 + * including forcible detach on reaping.
2376 + *
2377 + * If @target was stopped before the call, then after a successful call,
2378 + * no event callbacks not requested in @events will be made; if
2379 + * %UTRACE_EVENT(%QUIESCE) is included in @events, then a @report_quiesce
2380 + * callback will be made when @target resumes. If @target was not stopped,
2381 + * and was about to make a callback to @engine, this returns -%EINPROGRESS.
2382 + * In this case, the callback in progress might be one excluded from the
2383 + * new @events setting. When this returns zero, you can be sure that no
2384 + * event callbacks you've disabled in @events can be made.
2385 + *
2386 + * To synchronize after an -%EINPROGRESS return, see utrace_barrier().
2387 + *
2388 + * These rules provide for coherent synchronization based on %UTRACE_STOP,
2389 + * even when %SIGKILL is breaking its normal simple rules.
2390 + */
2391 +int utrace_set_events(struct task_struct *target,
2392 + struct utrace_attached_engine *engine,
2393 + unsigned long events)
2394 +{
2395 + struct utrace *utrace;
2396 + unsigned long old_flags, old_utrace_flags, set_utrace_flags;
2397 + struct sighand_struct *sighand;
2398 + unsigned long flags;
2399 + int ret;
2400 +
2401 + utrace = get_utrace_lock(target, engine, true);
2402 + if (unlikely(IS_ERR(utrace)))
2403 + return PTR_ERR(utrace);
2404 +
2405 + old_utrace_flags = target->utrace_flags;
2406 + set_utrace_flags = events;
2407 + old_flags = engine->flags;
2408 +
2409 + if (target->exit_state &&
2410 + (((events & ~old_flags) & DEATH_EVENTS) ||
2411 + (utrace->death && ((old_flags & ~events) & DEATH_EVENTS)) ||
2412 + (utrace->reap && ((old_flags & ~events) & UTRACE_EVENT(REAP))))) {
2413 + spin_unlock(&utrace->lock);
2414 + return -EALREADY;
2415 + }
2416 +
2417 + /*
2418 + * When it's in TASK_STOPPED state and UTRACE_EVENT(JCTL) is set,
2419 + * utrace_do_stop() will think it is still running and needs to
2420 + * finish utrace_report_jctl() before it's really stopped. But
2421 + * if the bit wasn't already set, it can't be running in there
2422 + * and really is quiescent now in its existing job control stop.
2423 + */
2424 + if (!utrace->stopped &&
2425 + ((set_utrace_flags & ~old_utrace_flags) & UTRACE_EVENT(JCTL))) {
2426 + sighand = lock_task_sighand(target, &flags);
2427 + if (likely(sighand)) {
2428 + if (task_is_stopped(target))
2429 + utrace->stopped = 1;
2430 + unlock_task_sighand(target, &flags);
2431 + }
2432 + }
2433 +
2434 + /*
2435 + * When setting these flags, it's essential that we really
2436 + * synchronize with exit_notify(). They cannot be set after
2437 + * exit_notify() takes the tasklist_lock. By holding the read
2438 + * lock here while setting the flags, we ensure that the calls
2439 + * to tracehook_notify_death() and tracehook_report_death() will
2440 + * see the new flags. This ensures that utrace_release_task()
2441 + * knows positively that utrace_report_death() will be called or
2442 + * that it won't.
2443 + */
2444 + if ((set_utrace_flags & ~old_utrace_flags) & DEATH_EVENTS) {
2445 + read_lock(&tasklist_lock);
2446 + if (unlikely(target->exit_state)) {
2447 + read_unlock(&tasklist_lock);
2448 + spin_unlock(&utrace->lock);
2449 + return -EALREADY;
2450 + }
2451 + target->utrace_flags |= set_utrace_flags;
2452 + read_unlock(&tasklist_lock);
2453 + }
2454 +
2455 + engine->flags = events | (engine->flags & ENGINE_STOP);
2456 + target->utrace_flags |= set_utrace_flags;
2457 +
2458 + if ((set_utrace_flags & UTRACE_EVENT_SYSCALL) &&
2459 + !(old_utrace_flags & UTRACE_EVENT_SYSCALL))
2460 + set_tsk_thread_flag(target, TIF_SYSCALL_TRACE);
2461 +
2462 + ret = 0;
2463 + if (!utrace->stopped && target != current) {
2464 + smp_mb();
2465 + if (utrace->reporting == engine)
2466 + ret = -EINPROGRESS;
2467 + }
2468 +
2469 + spin_unlock(&utrace->lock);
2470 +
2471 + return ret;
2472 +}
2473 +EXPORT_SYMBOL_GPL(utrace_set_events);
2474 +
2475 +/*
2476 + * Asynchronously mark an engine as being detached.
2477 + *
2478 + * This must work while the target thread races with us doing
2479 + * start_callback(), defined below. It uses smp_rmb() between checking
2480 + * @engine->flags and using @engine->ops. Here we change @engine->ops
2481 + * first, then use smp_wmb() before changing @engine->flags. This ensures
2482 + * it can check the old flags before using the old ops, or check the old
2483 + * flags before using the new ops, or check the new flags before using the
2484 + * new ops, but can never check the new flags before using the old ops.
2485 + * Hence, utrace_detached_ops might be used with any old flags in place.
2486 + * It has report_quiesce() and report_reap() callbacks to handle all cases.
2487 + */
2488 +static void mark_engine_detached(struct utrace_attached_engine *engine)
2489 +{
2490 + engine->ops = &utrace_detached_ops;
2491 + smp_wmb();
2492 + engine->flags = UTRACE_EVENT(QUIESCE);
2493 +}
2494 +
2495 +/*
2496 + * Get @target to stop and return true if it is already stopped now.
2497 + * If we return false, it will make some event callback soonish.
2498 + * Called with @utrace locked.
2499 + */
2500 +static bool utrace_do_stop(struct task_struct *target, struct utrace *utrace)
2501 +{
2502 + bool stopped;
2503 +
2504 + /*
2505 + * If it will call utrace_report_jctl() but has not gotten
2506 + * through it yet, then don't consider it quiescent yet.
2507 + * utrace_report_jctl() will take @utrace->lock and
2508 + * set @utrace->stopped itself once it finishes. After that,
2509 + * it is considered quiescent; when it wakes up, it will go
2510 + * through utrace_get_signal() before doing anything else.
2511 + */
2512 + if (task_is_stopped(target) &&
2513 + !(target->utrace_flags & UTRACE_EVENT(JCTL))) {
2514 + utrace->stopped = 1;
2515 + return true;
2516 + }
2517 +
2518 + stopped = false;
2519 + spin_lock_irq(&target->sighand->siglock);
2520 + if (unlikely(target->exit_state)) {
2521 + /*
2522 + * On the exit path, it's only truly quiescent
2523 + * if it has already been through
2524 + * utrace_report_death(), or never will.
2525 + */
2526 + if (!(target->utrace_flags & DEATH_EVENTS))
2527 + utrace->stopped = stopped = true;
2528 + } else if (task_is_stopped(target)) {
2529 + if (!(target->utrace_flags & UTRACE_EVENT(JCTL)))
2530 + utrace->stopped = stopped = true;
2531 + } else if (!utrace->report && !utrace->interrupt) {
2532 + utrace->report = 1;
2533 + set_notify_resume(target);
2534 + }
2535 + spin_unlock_irq(&target->sighand->siglock);
2536 +
2537 + return stopped;
2538 +}
2539 +
2540 +/*
2541 + * If the target is not dead it should not be in tracing
2542 + * stop any more. Wake it unless it's in job control stop.
2543 + *
2544 + * Called with @utrace->lock held and @utrace->stopped set.
2545 + */
2546 +static void utrace_wakeup(struct task_struct *target, struct utrace *utrace)
2547 +{
2548 + struct sighand_struct *sighand;
2549 + unsigned long irqflags;
2550 +
2551 + utrace->stopped = 0;
2552 +
2553 + sighand = lock_task_sighand(target, &irqflags);
2554 + if (unlikely(!sighand))
2555 + return;
2556 +
2557 + if (likely(task_is_stopped_or_traced(target))) {
2558 + if (target->signal->flags & SIGNAL_STOP_STOPPED)
2559 + target->state = TASK_STOPPED;
2560 + else
2561 + wake_up_state(target, __TASK_STOPPED | __TASK_TRACED);
2562 + }
2563 +
2564 + unlock_task_sighand(target, &irqflags);
2565 +}
2566 +
2567 +/*
2568 + * This is called when there might be some detached engines on the list or
2569 + * some stale bits in @task->utrace_flags. Clean them up and recompute the
2570 + * flags.
2571 + *
2572 + * @wake is false when @task is current. @wake is true when @task is
2573 + * stopped and @utrace->stopped is set; wake it up if it should not be.
2574 + *
2575 + * Called with @utrace->lock held, returns with it released.
2576 + */
2577 +static void utrace_reset(struct task_struct *task, struct utrace *utrace,
2578 + bool wake)
2579 + __releases(utrace->lock)
2580 +{
2581 + struct utrace_attached_engine *engine, *next;
2582 + unsigned long flags = 0;
2583 + LIST_HEAD(detached);
2584 +
2585 + splice_attaching(utrace);
2586 +
2587 + /*
2588 + * Update the set of events of interest from the union
2589 + * of the interests of the remaining tracing engines.
2590 + * For any engine marked detached, remove it from the list.
2591 + * We'll collect them on the detached list.
2592 + */
2593 + list_for_each_entry_safe(engine, next, &utrace->attached, entry) {
2594 + if (engine->ops == &utrace_detached_ops) {
2595 + engine->ops = NULL;
2596 + list_move(&engine->entry, &detached);
2597 + } else {
2598 + flags |= engine->flags | UTRACE_EVENT(REAP);
2599 + wake = wake && !engine_wants_stop(engine);
2600 + }
2601 + }
2602 +
2603 + if (task->exit_state) {
2604 + BUG_ON(utrace->death);
2605 + flags &= DEAD_FLAGS_MASK;
2606 + wake = false;
2607 + } else if (!(flags & UTRACE_EVENT_SYSCALL) &&
2608 + test_tsk_thread_flag(task, TIF_SYSCALL_TRACE)) {
2609 + clear_tsk_thread_flag(task, TIF_SYSCALL_TRACE);
2610 + }
2611 +
2612 + task->utrace_flags = flags;
2613 +
2614 + if (wake)
2615 + utrace_wakeup(task, utrace);
2616 +
2617 + /*
2618 + * If any engines are left, we're done.
2619 + */
2620 + if (flags) {
2621 + spin_unlock(&utrace->lock);
2622 + goto done;
2623 + }
2624 +
2625 + /*
2626 + * No more engines, clear out the utrace. Here we can race with
2627 + * utrace_release_task(). If it gets task_lock() first, then it
2628 + * cleans up this struct for us.
2629 + */
2630 +
2631 + task_lock(task);
2632 +
2633 + if (unlikely(task->utrace != utrace)) {
2634 + task_unlock(task);
2635 + spin_unlock(&utrace->lock);
2636 + goto done;
2637 + }
2638 +
2639 + rcu_assign_pointer(task->utrace, NULL);
2640 +
2641 + task_unlock(task);
2642 +
2643 + rcu_utrace_free(utrace);
2644 +
2645 +done:
2646 + put_detached_list(&detached);
2647 +}
2648 +
2649 +/**
2650 + * utrace_control - control a thread being traced by a tracing engine
2651 + * @target: thread to affect
2652 + * @engine: attached engine to affect
2653 + * @action: &enum utrace_resume_action for thread to do
2654 + *
2655 + * This is how a tracing engine asks a traced thread to do something.
2656 + * This call is controlled by the @action argument, which has the
2657 + * same meaning as the &enum utrace_resume_action value returned by
2658 + * event reporting callbacks.
2659 + *
2660 + * If @target is already dead (@target->exit_state nonzero),
2661 + * all actions except %UTRACE_DETACH fail with -%ESRCH.
2662 + *
2663 + * The following sections describe each option for the @action argument.
2664 + *
2665 + * UTRACE_DETACH:
2666 + *
2667 + * After this, the @engine data structure is no longer accessible,
2668 + * and the thread might be reaped. The thread will start running
2669 + * again if it was stopped and no longer has any attached engines
2670 + * that want it stopped.
2671 + *
2672 + * If the @report_reap callback may already have begun, this fails
2673 + * with -%ESRCH. If the @report_death callback may already have
2674 + * begun, this fails with -%EALREADY.
2675 + *
2676 + * If @target is not already stopped, then a callback to this engine
2677 + * might be in progress or about to start on another CPU. If so,
2678 + * then this returns -%EINPROGRESS; the detach happens as soon as
2679 + * the pending callback is finished. To synchronize after an
2680 + * -%EINPROGRESS return, see utrace_barrier().
2681 + *
2682 + * If @target is properly stopped before utrace_control() is called,
2683 + * then after successful return it's guaranteed that no more callbacks
2684 + * to the @engine->ops vector will be made.
2685 + *
2686 + * The only exception is %SIGKILL (and exec or group-exit by another
2687 + * thread in the group), which can cause asynchronous @report_death
2688 + * and/or @report_reap callbacks even when %UTRACE_STOP was used.
2689 + * (In that event, this fails with -%ESRCH or -%EALREADY, see above.)
2690 + *
2691 + * UTRACE_STOP:
2692 + * This asks that @target stop running. This returns 0 only if
2693 + * @target is already stopped, either for tracing or for job
2694 + * control. Then @target will remain stopped until another
2695 + * utrace_control() call is made on @engine; @target can be woken
2696 + * only by %SIGKILL (or equivalent, such as exec or termination by
2697 + * another thread in the same thread group).
2698 + *
2699 + * This returns -%EINPROGRESS if @target is not already stopped.
2700 + * Then the effect is like %UTRACE_REPORT. A @report_quiesce or
2701 + * @report_signal callback will be made soon. Your callback can
2702 + * then return %UTRACE_STOP to keep @target stopped.
2703 + *
2704 + * This does not interrupt system calls in progress, including ones
2705 + * that sleep for a long time. For that, use %UTRACE_INTERRUPT.
2706 + * To interrupt system calls and then keep @target stopped, your
2707 + * @report_signal callback can return %UTRACE_STOP.
2708 + *
2709 + * UTRACE_RESUME:
2710 + *
2711 + * Just let @target continue running normally, reversing the effect
2712 + * of a previous %UTRACE_STOP. If another engine is keeping @target
2713 + * stopped, then it remains stopped until all engines let it resume.
2714 + * If @target was not stopped, this has no effect.
2715 + *
2716 + * UTRACE_REPORT:
2717 + *
2718 + * This is like %UTRACE_RESUME, but also ensures that there will be
2719 + * a @report_quiesce or @report_signal callback made soon. If
2720 + * @target had been stopped, then there will be a callback before it
2721 + * resumes running normally. If another engine is keeping @target
2722 + * stopped, then there might be no callbacks until all engines let
2723 + * it resume.
2724 + *
2725 + * UTRACE_INTERRUPT:
2726 + *
2727 + * This is like %UTRACE_REPORT, but ensures that @target will make a
2728 + * @report_signal callback before it resumes or delivers signals.
2729 + * If @target was in a system call or about to enter one, work in
2730 + * progress will be interrupted as if by %SIGSTOP. If another
2731 + * engine is keeping @target stopped, then there might be no
2732 + * callbacks until all engines let it resume.
2733 + *
2734 + * This gives @engine an opportunity to introduce a forced signal
2735 + * disposition via its @report_signal callback.
2736 + *
2737 + * UTRACE_SINGLESTEP:
2738 + *
2739 + * It's invalid to use this unless arch_has_single_step() returned true.
2740 + * This is like %UTRACE_RESUME, but resumes for one user instruction
2741 + * only. It's invalid to use this in utrace_control() unless @target
2742 + * had been stopped by @engine previously.
2743 + *
2744 + * Note that passing %UTRACE_SINGLESTEP or %UTRACE_BLOCKSTEP to
2745 + * utrace_control() or returning it from an event callback alone does
2746 + * not necessarily ensure that stepping will be enabled. If there are
2747 + * more callbacks made to any engine before returning to user mode,
2748 + * then the resume action is chosen only by the last set of callbacks.
2749 + * To be sure, enable %UTRACE_EVENT(%QUIESCE) and look for the
2750 + * @report_quiesce callback with a zero event mask, or the
2751 + * @report_signal callback with %UTRACE_SIGNAL_REPORT.
2752 + *
2753 + * UTRACE_BLOCKSTEP:
2754 + *
2755 + * It's invalid to use this unless arch_has_block_step() returned true.
2756 + * This is like %UTRACE_SINGLESTEP, but resumes for one whole basic
2757 + * block of user instructions.
2758 + *
2759 + * %UTRACE_BLOCKSTEP devolves to %UTRACE_SINGLESTEP when another
2760 + * tracing engine is using %UTRACE_SINGLESTEP at the same time.
2761 + */
2762 +int utrace_control(struct task_struct *target,
2763 + struct utrace_attached_engine *engine,
2764 + enum utrace_resume_action action)
2765 +{
2766 + struct utrace *utrace;
2767 + bool resume;
2768 + int ret;
2769 +
2770 + if (unlikely(action > UTRACE_DETACH))
2771 + return -EINVAL;
2772 +
2773 + utrace = get_utrace_lock(target, engine, true);
2774 + if (unlikely(IS_ERR(utrace)))
2775 + return PTR_ERR(utrace);
2776 +
2777 + if (target->exit_state) {
2778 + /*
2779 + * You can't do anything to a dead task but detach it.
2780 + * If release_task() has been called, you can't do that.
2781 + *
2782 + * On the exit path, DEATH and QUIESCE event bits are
2783 + * set only before utrace_report_death() has taken the
2784 + * lock. At that point, the death report will come
2785 + * soon, so disallow detach until it's done. This
2786 + * prevents us from racing with it detaching itself.
2787 + */
2788 + if (action != UTRACE_DETACH ||
2789 + unlikely(utrace->reap)) {
2790 + spin_unlock(&utrace->lock);
2791 + return -ESRCH;
2792 + } else if (unlikely(target->utrace_flags & DEATH_EVENTS) ||
2793 + unlikely(utrace->death)) {
2794 + /*
2795 + * We have already started the death report, or
2796 + * are about to very soon. We can't prevent
2797 + * the report_death and report_reap callbacks,
2798 + * so tell the caller they will happen.
2799 + */
2800 + spin_unlock(&utrace->lock);
2801 + return -EALREADY;
2802 + }
2803 + }
2804 +
2805 + resume = utrace->stopped;
2806 + ret = 0;
2807 +
2808 + clear_engine_wants_stop(engine);
2809 + switch (action) {
2810 + case UTRACE_STOP:
2811 + mark_engine_wants_stop(engine);
2812 + if (!resume && !utrace_do_stop(target, utrace))
2813 + ret = -EINPROGRESS;
2814 + resume = false;
2815 + break;
2816 +
2817 + case UTRACE_DETACH:
2818 + mark_engine_detached(engine);
2819 + resume = resume || utrace_do_stop(target, utrace);
2820 + if (!resume) {
2821 + smp_mb();
2822 + if (utrace->reporting == engine)
2823 + ret = -EINPROGRESS;
2824 + break;
2825 + }
2826 + /* Fall through. */
2827 +
2828 + case UTRACE_RESUME:
2829 + /*
2830 + * This and all other cases imply resuming if stopped.
2831 + * There might not be another report before it just
2832 + * resumes, so make sure single-step is not left set.
2833 + */
2834 + if (likely(resume))
2835 + user_disable_single_step(target);
2836 + break;
2837 +
2838 + case UTRACE_REPORT:
2839 + /*
2840 + * Make the thread call tracehook_notify_resume() soon.
2841 + * But don't bother if it's already been stopped or
2842 + * interrupted. In those cases, utrace_get_signal()
2843 + * will be reporting soon.
2844 + */
2845 + if (!utrace->report && !utrace->interrupt && !utrace->stopped) {
2846 + utrace->report = 1;
2847 + set_notify_resume(target);
2848 + }
2849 + break;
2850 +
2851 + case UTRACE_INTERRUPT:
2852 + /*
2853 + * Make the thread call tracehook_get_signal() soon.
2854 + */
2855 + if (utrace->interrupt)
2856 + break;
2857 + utrace->interrupt = 1;
2858 +
2859 + /*
2860 + * If it's not already stopped, interrupt it now.
2861 + * We need the siglock here in case it calls
2862 + * recalc_sigpending() and clears its own
2863 + * TIF_SIGPENDING. By taking the lock, we've
2864 + * serialized any later recalc_sigpending() after
2865 + * our setting of utrace->interrupt to force it on.
2866 + */
2867 + if (resume) {
2868 + /*
2869 + * This is really just to keep the invariant
2870 + * that TIF_SIGPENDING is set with utrace->interrupt.
2871 + * When it's stopped, we know it's always going
2872 + * through utrace_get_signal and will recalculate.
2873 + */
2874 + set_tsk_thread_flag(target, TIF_SIGPENDING);
2875 + } else {
2876 + struct sighand_struct *sighand;
2877 + unsigned long irqflags;
2878 + sighand = lock_task_sighand(target, &irqflags);
2879 + if (likely(sighand)) {
2880 + signal_wake_up(target, 0);
2881 + unlock_task_sighand(target, &irqflags);
2882 + }
2883 + }
2884 + break;
2885 +
2886 + case UTRACE_BLOCKSTEP:
2887 + /*
2888 + * Resume from stopped, step one block.
2889 + */
2890 + if (unlikely(!arch_has_block_step())) {
2891 + WARN_ON(1);
2892 + /* Fall through to treat it as SINGLESTEP. */
2893 + } else if (likely(resume)) {
2894 + user_enable_block_step(target);
2895 + break;
2896 + }
2897 +
2898 + case UTRACE_SINGLESTEP:
2899 + /*
2900 + * Resume from stopped, step one instruction.
2901 + */
2902 + if (unlikely(!arch_has_single_step())) {
2903 + WARN_ON(1);
2904 + resume = false;
2905 + ret = -EOPNOTSUPP;
2906 + break;
2907 + }
2908 +
2909 + if (likely(resume))
2910 + user_enable_single_step(target);
2911 + else
2912 + /*
2913 + * You were supposed to stop it before asking
2914 + * it to step.
2915 + */
2916 + ret = -EAGAIN;
2917 + break;
2918 + }
2919 +
2920 + /*
2921 + * Let the thread resume running. If it's not stopped now,
2922 + * there is nothing more we need to do.
2923 + */
2924 + if (resume)
2925 + utrace_reset(target, utrace, true);
2926 + else
2927 + spin_unlock(&utrace->lock);
2928 +
2929 + return ret;
2930 +}
2931 +EXPORT_SYMBOL_GPL(utrace_control);
2932 +
2933 +/**
2934 + * utrace_barrier - synchronize with simultaneous tracing callbacks
2935 + * @target: thread to affect
2936 + * @engine: engine to affect (can be detached)
2937 + *
2938 + * This blocks while @target might be in the midst of making a callback to
2939 + * @engine. It can be interrupted by signals and will return -%ERESTARTSYS.
2940 + * A return value of zero means no callback from @target to @engine was
2941 + * in progress.
2942 + *
2943 + * It's not necessary to keep the @target pointer alive for this call.
2944 + * It's only necessary to hold a ref on @engine. This will return
2945 + * safely even if @target has been reaped and has no task refs.
2946 + *
2947 + * A successful return from utrace_barrier() guarantees its ordering
2948 + * with respect to utrace_set_events() and utrace_control() calls. If
2949 + * @target was not properly stopped, event callbacks just disabled might
2950 + * still be in progress; utrace_barrier() waits until there is no chance
2951 + * an unwanted callback can be in progress.
2952 + */
2953 +int utrace_barrier(struct task_struct *target,
2954 + struct utrace_attached_engine *engine)
2955 +{
2956 + struct utrace *utrace;
2957 + int ret = -ERESTARTSYS;
2958 +
2959 + if (unlikely(target == current))
2960 + return 0;
2961 +
2962 + do {
2963 + utrace = get_utrace_lock(target, engine, false);
2964 + if (unlikely(IS_ERR(utrace))) {
2965 + ret = PTR_ERR(utrace);
2966 + if (ret != -ERESTARTSYS)
2967 + break;
2968 + } else {
2969 + if (utrace->stopped || utrace->reporting != engine)
2970 + ret = 0;
2971 + spin_unlock(&utrace->lock);
2972 + if (!ret)
2973 + break;
2974 + }
2975 + schedule_timeout_interruptible(1);
2976 + } while (!signal_pending(current));
2977 +
2978 + return ret;
2979 +}
2980 +EXPORT_SYMBOL_GPL(utrace_barrier);
2981 +
2982 +/*
2983 + * This is local state used for reporting loops, perhaps optimized away.
2984 + */
2985 +struct utrace_report {
2986 + enum utrace_resume_action action;
2987 + u32 result;
2988 + bool detaches;
2989 + bool takers;
2990 + bool killed;
2991 +};
2992 +
2993 +#define INIT_REPORT(var) \
2994 + struct utrace_report var = { UTRACE_RESUME, 0, false, false, false }
2995 +
2996 +/*
2997 + * We are now making the report, so clear the flag saying we need one.
2998 + */
2999 +static void start_report(struct utrace *utrace)
3000 +{
3001 + BUG_ON(utrace->stopped);
3002 + if (utrace->report) {
3003 + spin_lock(&utrace->lock);
3004 + utrace->report = 0;
3005 + splice_attaching(utrace);
3006 + spin_unlock(&utrace->lock);
3007 + }
3008 +}
3009 +
3010 +/*
3011 + * Complete a normal reporting pass, pairing with a start_report() call.
3012 + * This handles any UTRACE_DETACH or UTRACE_REPORT or UTRACE_INTERRUPT
3013 + * returns from engine callbacks. If any engine's last callback used
3014 + * UTRACE_STOP, we do UTRACE_REPORT here to ensure we stop before user
3015 + * mode. If there were no callbacks made, it will recompute
3016 + * @task->utrace_flags to avoid another false-positive.
3017 + */
3018 +static void finish_report(struct utrace_report *report,
3019 + struct task_struct *task, struct utrace *utrace)
3020 +{
3021 + bool clean = (report->takers && !report->detaches);
3022 +
3023 + if (report->action <= UTRACE_REPORT && !utrace->report) {
3024 + spin_lock(&utrace->lock);
3025 + utrace->report = 1;
3026 + set_tsk_thread_flag(task, TIF_NOTIFY_RESUME);
3027 + } else if (report->action == UTRACE_INTERRUPT && !utrace->interrupt) {
3028 + spin_lock(&utrace->lock);
3029 + utrace->interrupt = 1;
3030 + set_tsk_thread_flag(task, TIF_SIGPENDING);
3031 + } else if (clean) {
3032 + return;
3033 + } else {
3034 + spin_lock(&utrace->lock);
3035 + }
3036 +
3037 + if (clean)
3038 + spin_unlock(&utrace->lock);
3039 + else
3040 + utrace_reset(task, utrace, false);
3041 +}
3042 +
3043 +/*
3044 + * Apply the return value of one engine callback to @report.
3045 + * Returns true if @engine detached and should not get any more callbacks.
3046 + */
3047 +static bool finish_callback(struct utrace *utrace,
3048 + struct utrace_report *report,
3049 + struct utrace_attached_engine *engine,
3050 + u32 ret)
3051 +{
3052 + enum utrace_resume_action action = utrace_resume_action(ret);
3053 +
3054 + utrace->reporting = NULL;
3055 +
3056 + /*
3057 + * This is a good place to make sure tracing engines don't
3058 + * introduce too much latency under voluntary preemption.
3059 + */
3060 + if (need_resched())
3061 + cond_resched();
3062 +
3063 + report->result = ret & ~UTRACE_RESUME_MASK;
3064 +
3065 + /*
3066 + * If utrace_control() was used, treat that like UTRACE_DETACH here.
3067 + */
3068 + if (action == UTRACE_DETACH || engine->ops == &utrace_detached_ops) {
3069 + engine->ops = &utrace_detached_ops;
3070 + report->detaches = true;
3071 + return true;
3072 + }
3073 +
3074 + if (action < report->action)
3075 + report->action = action;
3076 +
3077 + if (action == UTRACE_STOP) {
3078 + if (!engine_wants_stop(engine)) {
3079 + spin_lock(&utrace->lock);
3080 + mark_engine_wants_stop(engine);
3081 + spin_unlock(&utrace->lock);
3082 + }
3083 + } else if (engine_wants_stop(engine)) {
3084 + spin_lock(&utrace->lock);
3085 + clear_engine_wants_stop(engine);
3086 + spin_unlock(&utrace->lock);
3087 + }
3088 +
3089 + return false;
3090 +}
3091 +
3092 +/*
3093 + * Start the callbacks for @engine to consider @event (a bit mask).
3094 + * This makes the report_quiesce() callback first. If @engine wants
3095 + * a specific callback for @event, we return the ops vector to use.
3096 + * If not, we return NULL. The return value from the ops->callback
3097 + * function called should be passed to finish_callback().
3098 + */
3099 +static const struct utrace_engine_ops *start_callback(
3100 + struct utrace *utrace, struct utrace_report *report,
3101 + struct utrace_attached_engine *engine, struct task_struct *task,
3102 + unsigned long event)
3103 +{
3104 + const struct utrace_engine_ops *ops;
3105 + unsigned long want;
3106 +
3107 + utrace->reporting = engine;
3108 + smp_mb();
3109 +
3110 + /*
3111 + * This pairs with the barrier in mark_engine_detached().
3112 + * It makes sure that we never see the old ops vector with
3113 + * the new flags, in case the original vector had no report_quiesce.
3114 + */
3115 + want = engine->flags;
3116 + smp_rmb();
3117 + ops = engine->ops;
3118 +
3119 + if (want & UTRACE_EVENT(QUIESCE)) {
3120 + if (finish_callback(utrace, report, engine,
3121 + (*ops->report_quiesce)(report->action,
3122 + engine, task,
3123 + event)))
3124 + goto nocall;
3125 +
3126 + utrace->reporting = engine;
3127 + smp_mb();
3128 + want = engine->flags;
3129 + }
3130 +
3131 + if (want & ENGINE_STOP)
3132 + report->action = UTRACE_STOP;
3133 +
3134 + if (want & event) {
3135 + report->takers = true;
3136 + return ops;
3137 + }
3138 +
3139 +nocall:
3140 + utrace->reporting = NULL;
3141 + return NULL;
3142 +}
3143 +
3144 +/*
3145 + * Do a normal reporting pass for engines interested in @event.
3146 + * @callback is the name of the member in the ops vector, and remaining
3147 + * args are the extras it takes after the standard three args.
3148 + */
3149 +#define REPORT(task, utrace, report, event, callback, ...) \
3150 + do { \
3151 + start_report(utrace); \
3152 + REPORT_CALLBACKS(task, utrace, report, event, callback, \
3153 + (report)->action, engine, current, \
3154 + ## __VA_ARGS__); \
3155 + finish_report(report, task, utrace); \
3156 + } while (0)
3157 +#define REPORT_CALLBACKS(task, utrace, report, event, callback, ...) \
3158 + do { \
3159 + struct utrace_attached_engine *engine, *next; \
3160 + const struct utrace_engine_ops *ops; \
3161 + list_for_each_entry_safe(engine, next, \
3162 + &utrace->attached, entry) { \
3163 + ops = start_callback(utrace, report, engine, task, \
3164 + event); \
3165 + if (!ops) \
3166 + continue; \
3167 + finish_callback(utrace, report, engine, \
3168 + (*ops->callback)(__VA_ARGS__)); \
3169 + } \
3170 + } while (0)
3171 +
3172 +/*
3173 + * Called iff UTRACE_EVENT(EXEC) flag is set.
3174 + */
3175 +void utrace_report_exec(struct linux_binfmt *fmt, struct linux_binprm *bprm,
3176 + struct pt_regs *regs)
3177 +{
3178 + struct task_struct *task = current;
3179 + struct utrace *utrace = task->utrace;
3180 + INIT_REPORT(report);
3181 +
3182 + REPORT(task, utrace, &report, UTRACE_EVENT(EXEC),
3183 + report_exec, fmt, bprm, regs);
3184 +}
3185 +
3186 +/*
3187 + * Called iff UTRACE_EVENT(SYSCALL_ENTRY) flag is set.
3188 + * Return true to prevent the system call.
3189 + */
3190 +bool utrace_report_syscall_entry(struct pt_regs *regs)
3191 +{
3192 + struct task_struct *task = current;
3193 + struct utrace *utrace = task->utrace;
3194 + INIT_REPORT(report);
3195 +
3196 + start_report(utrace);
3197 + REPORT_CALLBACKS(task, utrace, &report, UTRACE_EVENT(SYSCALL_ENTRY),
3198 + report_syscall_entry, report.result | report.action,
3199 + engine, current, regs);
3200 + finish_report(&report, task, utrace);
3201 +
3202 + if (report.action == UTRACE_STOP && unlikely(utrace_stop(task, utrace)))
3203 + /*
3204 + * We are continuing despite UTRACE_STOP because of a
3205 + * SIGKILL. Don't let the system call actually proceed.
3206 + */
3207 + return true;
3208 +
3209 + if (unlikely(report.result == UTRACE_SYSCALL_ABORT))
3210 + return true;
3211 +
3212 + if (signal_pending(task)) {
3213 + /*
3214 + * Clear TIF_SIGPENDING if it no longer needs to be set.
3215 + * It may have been set as part of quiescence, and won't
3216 + * ever have been cleared by another thread. For other
3217 + * reports, we can just leave it set and will go through
3218 + * utrace_get_signal() to reset things. But here we are
3219 + * about to enter a syscall, which might bail out with an
3220 + * -ERESTART* error if it's set now.
3221 + */
3222 + spin_lock_irq(&task->sighand->siglock);
3223 + recalc_sigpending();
3224 + spin_unlock_irq(&task->sighand->siglock);
3225 + }
3226 +
3227 + return false;
3228 +}
3229 +
3230 +/*
3231 + * Called iff UTRACE_EVENT(SYSCALL_EXIT) flag is set.
3232 + */
3233 +void utrace_report_syscall_exit(struct pt_regs *regs)
3234 +{
3235 + struct task_struct *task = current;
3236 + struct utrace *utrace = task->utrace;
3237 + INIT_REPORT(report);
3238 +
3239 + REPORT(task, utrace, &report, UTRACE_EVENT(SYSCALL_EXIT),
3240 + report_syscall_exit, regs);
3241 +}
3242 +
3243 +/*
3244 + * Called iff UTRACE_EVENT(CLONE) flag is set.
3245 + * This notification call blocks the wake_up_new_task call on the child.
3246 + * So we must not quiesce here. tracehook_report_clone_complete will do
3247 + * a quiescence check momentarily.
3248 + */
3249 +void utrace_report_clone(unsigned long clone_flags, struct task_struct *child)
3250 +{
3251 + struct task_struct *task = current;
3252 + struct utrace *utrace = task->utrace;
3253 + INIT_REPORT(report);
3254 +
3255 + utrace->u.live.cloning = child;
3256 +
3257 + REPORT(task, utrace, &report, UTRACE_EVENT(CLONE),
3258 + report_clone, clone_flags, child);
3259 +
3260 + utrace->u.live.cloning = NULL;
3261 +}
3262 +
3263 +/*
3264 + * Called iff UTRACE_EVENT(JCTL) flag is set.
3265 + */
3266 +void utrace_report_jctl(int notify, int what)
3267 +{
3268 + struct task_struct *task = current;
3269 + struct utrace *utrace = task->utrace;
3270 + INIT_REPORT(report);
3271 + bool was_stopped = task_is_stopped(task);
3272 +
3273 + /*
3274 + * We get here with CLD_STOPPED when we've just entered
3275 + * TASK_STOPPED, or with CLD_CONTINUED when we've just come
3276 + * out but not yet been through utrace_get_signal() again.
3277 + *
3278 + * While in TASK_STOPPED, we can be considered safely
3279 + * stopped by utrace_do_stop() and detached asynchronously.
3280 + * If we woke up and checked task->utrace_flags before that
3281 + * was finished, we might be here with utrace already
3282 + * removed or in the middle of being removed.
3283 + *
3284 + * RCU makes it safe to get the utrace->lock even if it's
3285 + * being freed. Once we have that lock, either an external
3286 + * detach has finished and this struct has been freed, or
3287 + * else we know we are excluding any other detach attempt.
3288 + *
3289 + * If we are indeed attached, then make sure we are no
3290 + * longer considered stopped while we run callbacks.
3291 + */
3292 + rcu_read_lock();
3293 + utrace = rcu_dereference(task->utrace);
3294 + if (unlikely(!utrace)) {
3295 + rcu_read_unlock();
3296 + return;
3297 + }
3298 + spin_lock(&utrace->lock);
3299 + utrace->stopped = 0;
3300 + utrace->report = 0;
3301 + spin_unlock(&utrace->lock);
3302 + rcu_read_unlock();
3303 +
3304 + REPORT(task, utrace, &report, UTRACE_EVENT(JCTL),
3305 + report_jctl, was_stopped ? CLD_STOPPED : CLD_CONTINUED, what);
3306 +
3307 + if (was_stopped && !task_is_stopped(task)) {
3308 + /*
3309 + * The event report hooks could have blocked, though
3310 + * it should have been briefly. Make sure we're in
3311 + * TASK_STOPPED state again to block properly, unless
3312 + * we've just come back out of job control stop.
3313 + */
3314 + spin_lock_irq(&task->sighand->siglock);
3315 + if (task->signal->flags & SIGNAL_STOP_STOPPED)
3316 + __set_current_state(TASK_STOPPED);
3317 + spin_unlock_irq(&task->sighand->siglock);
3318 + }
3319 +
3320 + if (task_is_stopped(current)) {
3321 + /*
3322 + * While in TASK_STOPPED, we can be considered safely
3323 + * stopped by utrace_do_stop() only once we set this.
3324 + */
3325 + spin_lock(&utrace->lock);
3326 + utrace->stopped = 1;
3327 + spin_unlock(&utrace->lock);
3328 + }
3329 +}
3330 +
3331 +/*
3332 + * Called iff UTRACE_EVENT(EXIT) flag is set.
3333 + */
3334 +void utrace_report_exit(long *exit_code)
3335 +{
3336 + struct task_struct *task = current;
3337 + struct utrace *utrace = task->utrace;
3338 + INIT_REPORT(report);
3339 + long orig_code = *exit_code;
3340 +
3341 + REPORT(task, utrace, &report, UTRACE_EVENT(EXIT),
3342 + report_exit, orig_code, exit_code);
3343 +
3344 + if (report.action == UTRACE_STOP)
3345 + utrace_stop(task, utrace);
3346 +}
3347 +
3348 +/*
3349 + * Called iff UTRACE_EVENT(DEATH) or UTRACE_EVENT(QUIESCE) flag is set.
3350 + *
3351 + * It is always possible that we are racing with utrace_release_task here.
3352 + * For this reason, utrace_release_task checks for the event bits that get
3353 + * us here, and delays its cleanup for us to do.
3354 + */
3355 +void utrace_report_death(struct task_struct *task, struct utrace *utrace,
3356 + bool group_dead, int signal)
3357 +{
3358 + INIT_REPORT(report);
3359 +
3360 + BUG_ON(!task->exit_state);
3361 +
3362 + /*
3363 + * We are presently considered "quiescent"--which is accurate
3364 + * inasmuch as we won't run any more user instructions ever again.
3365 + * But for utrace_control and utrace_set_events to be robust, they
3366 + * must be sure whether or not we will run any more callbacks. If
3367 + * a call comes in before we do, taking the lock here synchronizes
3368 + * us so we don't run any callbacks just disabled. Calls that come
3369 + * in while we're running the callbacks will see the exit.death
3370 + * flag and know that we are not yet fully quiescent for purposes
3371 + * of detach bookkeeping.
3372 + */
3373 + spin_lock(&utrace->lock);
3374 + BUG_ON(utrace->death);
3375 + utrace->death = 1;
3376 + utrace->report = 0;
3377 + utrace->interrupt = 0;
3378 + spin_unlock(&utrace->lock);
3379 +
3380 + REPORT_CALLBACKS(task, utrace, &report, UTRACE_EVENT(DEATH),
3381 + report_death, engine, task, group_dead, signal);
3382 +
3383 + spin_lock(&utrace->lock);
3384 +
3385 + /*
3386 + * After we unlock (possibly inside utrace_reap for callbacks) with
3387 + * this flag clear, competing utrace_control/utrace_set_events calls
3388 + * know that we've finished our callbacks and any detach bookkeeping.
3389 + */
3390 + utrace->death = 0;
3391 +
3392 + if (utrace->reap)
3393 + /*
3394 + * utrace_release_task() was already called in parallel.
3395 + * We must complete its work now.
3396 + */
3397 + utrace_reap(task, utrace);
3398 + else
3399 + utrace_reset(task, utrace, false);
3400 +}
3401 +
3402 +/*
3403 + * Finish the last reporting pass before returning to user mode.
3404 + *
3405 + * Returns true if we might have been in TASK_TRACED and then resumed.
3406 + * In that event, signal_pending() might not be set when it should be,
3407 + * as the signals code passes us over while we're in TASK_TRACED.
3408 + */
3409 +static bool finish_resume_report(struct utrace_report *report,
3410 + struct task_struct *task,
3411 + struct utrace *utrace)
3412 +{
3413 + if (report->detaches || !report->takers) {
3414 + spin_lock(&utrace->lock);
3415 + utrace_reset(task, utrace, false);
3416 + }
3417 +
3418 + switch (report->action) {
3419 + case UTRACE_INTERRUPT:
3420 + if (!signal_pending(task))
3421 + set_tsk_thread_flag(task, TIF_SIGPENDING);
3422 + break;
3423 +
3424 + case UTRACE_SINGLESTEP:
3425 + user_enable_single_step(task);
3426 + break;
3427 +
3428 + case UTRACE_BLOCKSTEP:
3429 + user_enable_block_step(task);
3430 + break;
3431 +
3432 + case UTRACE_STOP:
3433 + report->killed = utrace_stop(task, utrace);
3434 + return likely(!report->killed);
3435 +
3436 + case UTRACE_REPORT:
3437 + case UTRACE_RESUME:
3438 + default:
3439 + user_disable_single_step(task);
3440 + break;
3441 + }
3442 +
3443 + return false;
3444 +}
3445 +
3446 +/*
3447 + * This is called when TIF_NOTIFY_RESUME had been set (and is now clear).
3448 + * We are close to user mode, and this is the place to report or stop.
3449 + * When we return, we're going to user mode or into the signals code.
3450 + */
3451 +void utrace_resume(struct task_struct *task, struct pt_regs *regs)
3452 +{
3453 + struct utrace *utrace = task->utrace;
3454 + INIT_REPORT(report);
3455 + struct utrace_attached_engine *engine, *next;
3456 +
3457 + /*
3458 + * Some machines get here with interrupts disabled. The same arch
3459 + * code path leads to calling into get_signal_to_deliver(), which
3460 + * implicitly reenables them by virtue of spin_unlock_irq.
3461 + */
3462 + local_irq_enable();
3463 +
3464 + /*
3465 + * If this flag is still set it's because there was a signal
3466 + * handler setup done but no report_signal following it. Clear
3467 + * the flag before we get to user so it doesn't confuse us later.
3468 + */
3469 + if (unlikely(utrace->signal_handler)) {
3470 + int skip;
3471 + spin_lock(&utrace->lock);
3472 + utrace->signal_handler = 0;
3473 + skip = !utrace->report;
3474 + spin_unlock(&utrace->lock);
3475 + if (skip)
3476 + return;
3477 + }
3478 +
3479 + /*
3480 + * If UTRACE_INTERRUPT was just used, we don't bother with a
3481 + * report here. We will report and stop in utrace_get_signal().
3482 + */
3483 + if (unlikely(utrace->interrupt)) {
3484 + BUG_ON(!signal_pending(task));
3485 + return;
3486 + }
3487 +
3488 + /*
3489 + * Do a simple reporting pass, with no callback after report_quiesce.
3490 + */
3491 + start_report(utrace);
3492 +
3493 + list_for_each_entry_safe(engine, next, &utrace->attached, entry)
3494 + start_callback(utrace, &report, engine, task, 0);
3495 +
3496 + /*
3497 + * Finish the report and either stop or get ready to resume.
3498 + * If we stop and then signal_pending() is clear, we
3499 + * should recompute it before returning to user mode.
3500 + */
3501 + if (finish_resume_report(&report, task, utrace) &&
3502 + !signal_pending(task)) {
3503 + spin_lock_irq(&task->sighand->siglock);
3504 + recalc_sigpending();
3505 + spin_unlock_irq(&task->sighand->siglock);
3506 + }
3507 +}
3508 +
3509 +/*
3510 + * Return true if current has forced signal_pending().
3511 + *
3512 + * This is called only when current->utrace_flags is nonzero, so we know
3513 + * that current->utrace must be set. It's not inlined in tracehook.h
3514 + * just so that struct utrace can stay opaque outside this file.
3515 + */
3516 +bool utrace_interrupt_pending(void)
3517 +{
3518 + return current->utrace->interrupt;
3519 +}
3520 +
3521 +/*
3522 + * Take the siglock and push @info back on our queue.
3523 + * Returns with @task->sighand->siglock held.
3524 + */
3525 +static void push_back_signal(struct task_struct *task, siginfo_t *info)
3526 + __acquires(task->sighand->siglock)
3527 +{
3528 + struct sigqueue *q;
3529 +
3530 + if (unlikely(!info->si_signo)) { /* Oh, a wise guy! */
3531 + spin_lock_irq(&task->sighand->siglock);
3532 + return;
3533 + }
3534 +
3535 + q = sigqueue_alloc();
3536 + if (likely(q)) {
3537 + q->flags = 0;
3538 + copy_siginfo(&q->info, info);
3539 + }
3540 +
3541 + spin_lock_irq(&task->sighand->siglock);
3542 +
3543 + sigaddset(&task->pending.signal, info->si_signo);
3544 + if (likely(q))
3545 + list_add(&q->list, &task->pending.list);
3546 +
3547 + set_tsk_thread_flag(task, TIF_SIGPENDING);
3548 +}
3549 +
3550 +/*
3551 + * This is the hook from the signals code, called with the siglock held.
3552 + * Here is the ideal place to stop. We also dequeue and intercept signals.
3553 + */
3554 +int utrace_get_signal(struct task_struct *task, struct pt_regs *regs,
3555 + siginfo_t *info, struct k_sigaction *return_ka)
3556 + __releases(task->sighand->siglock)
3557 + __acquires(task->sighand->siglock)
3558 +{
3559 + struct utrace *utrace;
3560 + struct k_sigaction *ka;
3561 + INIT_REPORT(report);
3562 + struct utrace_attached_engine *engine, *next;
3563 + const struct utrace_engine_ops *ops;
3564 + unsigned long event, want;
3565 + u32 ret;
3566 + int signr;
3567 +
3568 + /*
3569 + * We could have been considered quiescent while we were in
3570 + * TASK_STOPPED, and detached asynchronously. If we woke up
3571 + * and checked task->utrace_flags before that was finished,
3572 + * we might be here with utrace already removed or in the
3573 + * middle of being removed.
3574 + */
3575 + rcu_read_lock();
3576 + utrace = rcu_dereference(task->utrace);
3577 + if (unlikely(utrace == NULL)) {
3578 + rcu_read_unlock();
3579 + return 0;
3580 + }
3581 +
3582 + if (utrace->interrupt || utrace->report || utrace->signal_handler) {
3583 + /*
3584 + * We've been asked for an explicit report before we
3585 + * even check for pending signals.
3586 + */
3587 +
3588 + spin_unlock_irq(&task->sighand->siglock);
3589 +
3590 + /*
3591 + * RCU makes it safe to get the utrace->lock even if
3592 + * it's being freed. Once we have that lock, either an
3593 + * external detach has finished and this struct has been
3594 + * freed, or else we know we are excluding any other
3595 + * detach attempt.
3596 + */
3597 + spin_lock(&utrace->lock);
3598 + rcu_read_unlock();
3599 +
3600 + if (unlikely(task->utrace != utrace)) {
3601 + spin_unlock(&utrace->lock);
3602 + cond_resched();
3603 + return -1;
3604 + }
3605 +
3606 + splice_attaching(utrace);
3607 +
3608 + if (unlikely(!utrace->interrupt) && unlikely(!utrace->report))
3609 + report.result = UTRACE_SIGNAL_IGN;
3610 + else if (utrace->signal_handler)
3611 + report.result = UTRACE_SIGNAL_HANDLER;
3612 + else
3613 + report.result = UTRACE_SIGNAL_REPORT;
3614 +
3615 + /*
3616 + * We are now making the report and it's on the
3617 + * interrupt path, so clear the flags asking for those.
3618 + */
3619 + utrace->interrupt = utrace->report = utrace->signal_handler = 0;
3620 +
3621 + /*
3622 + * Make sure signal_pending() only returns true
3623 + * if there are real signals pending.
3624 + */
3625 + if (signal_pending(task)) {
3626 + spin_lock_irq(&task->sighand->siglock);
3627 + recalc_sigpending();
3628 + spin_unlock_irq(&task->sighand->siglock);
3629 + }
3630 +
3631 + spin_unlock(&utrace->lock);
3632 +
3633 + if (unlikely(report.result == UTRACE_SIGNAL_IGN))
3634 + /*
3635 + * We only got here to clear utrace->signal_handler.
3636 + */
3637 + return -1;
3638 +
3639 + /*
3640 + * Do a reporting pass for no signal, just for EVENT(QUIESCE).
3641 + * The engine callbacks can fill in *info and *return_ka.
3642 + * We'll pass NULL for the @orig_ka argument to indicate
3643 + * that there was no original signal.
3644 + */
3645 + event = 0;
3646 + ka = NULL;
3647 + memset(return_ka, 0, sizeof *return_ka);
3648 + } else if ((task->utrace_flags & UTRACE_EVENT_SIGNAL_ALL) == 0) {
3649 + /*
3650 + * If noone is interested in intercepting signals,
3651 + * let the caller just dequeue them normally.
3652 + */
3653 + rcu_read_unlock();
3654 + return 0;
3655 + } else {
3656 + if (unlikely(utrace->stopped)) {
3657 + /*
3658 + * We were just in TASK_STOPPED, so we have to
3659 + * check for the race mentioned above.
3660 + *
3661 + * RCU makes it safe to get the utrace->lock even
3662 + * if it's being freed. Once we have that lock,
3663 + * either an external detach has finished and this
3664 + * struct has been freed, or else we know we are
3665 + * excluding any other detach attempt. Since we
3666 + * are no longer in TASK_STOPPED now, all we needed
3667 + * the lock for was to order any utrace_do_stop()
3668 + * call after us.
3669 + */
3670 + spin_unlock_irq(&task->sighand->siglock);
3671 + spin_lock(&utrace->lock);
3672 + rcu_read_unlock();
3673 + if (unlikely(task->utrace != utrace)) {
3674 + spin_unlock(&utrace->lock);
3675 + cond_resched();
3676 + return -1;
3677 + }
3678 + utrace->stopped = 0;
3679 + spin_unlock(&utrace->lock);
3680 + spin_lock_irq(&task->sighand->siglock);
3681 + } else {
3682 + rcu_read_unlock();
3683 + }
3684 +
3685 + /*
3686 + * Steal the next signal so we can let tracing engines
3687 + * examine it. From the signal number and sigaction,
3688 + * determine what normal delivery would do. If no
3689 + * engine perturbs it, we'll do that by returning the
3690 + * signal number after setting *return_ka.
3691 + */
3692 + signr = dequeue_signal(task, &task->blocked, info);
3693 + if (signr == 0)
3694 + return signr;
3695 + BUG_ON(signr != info->si_signo);
3696 +
3697 + ka = &task->sighand->action[signr - 1];
3698 + *return_ka = *ka;
3699 +
3700 + /*
3701 + * We are never allowed to interfere with SIGKILL.
3702 + * Just punt after filling in *return_ka for our caller.
3703 + */
3704 + if (signr == SIGKILL)
3705 + return signr;
3706 +
3707 + if (ka->sa.sa_handler == SIG_IGN) {
3708 + event = UTRACE_EVENT(SIGNAL_IGN);
3709 + report.result = UTRACE_SIGNAL_IGN;
3710 + } else if (ka->sa.sa_handler != SIG_DFL) {
3711 + event = UTRACE_EVENT(SIGNAL);
3712 + report.result = UTRACE_SIGNAL_DELIVER;
3713 + } else if (sig_kernel_coredump(signr)) {
3714 + event = UTRACE_EVENT(SIGNAL_CORE);
3715 + report.result = UTRACE_SIGNAL_CORE;
3716 + } else if (sig_kernel_ignore(signr)) {
3717 + event = UTRACE_EVENT(SIGNAL_IGN);
3718 + report.result = UTRACE_SIGNAL_IGN;
3719 + } else if (signr == SIGSTOP) {
3720 + event = UTRACE_EVENT(SIGNAL_STOP);
3721 + report.result = UTRACE_SIGNAL_STOP;
3722 + } else if (sig_kernel_stop(signr)) {
3723 + event = UTRACE_EVENT(SIGNAL_STOP);
3724 + report.result = UTRACE_SIGNAL_TSTP;
3725 + } else {
3726 + event = UTRACE_EVENT(SIGNAL_TERM);
3727 + report.result = UTRACE_SIGNAL_TERM;
3728 + }
3729 +
3730 + /*
3731 + * Now that we know what event type this signal is,
3732 + * we can short-circuit if noone cares about those.
3733 + */
3734 + if ((task->utrace_flags & (event | UTRACE_EVENT(QUIESCE))) == 0)
3735 + return signr;
3736 +
3737 + /*
3738 + * We have some interested engines, so tell them about
3739 + * the signal and let them change its disposition.
3740 + */
3741 + spin_unlock_irq(&task->sighand->siglock);
3742 + }
3743 +
3744 + /*
3745 + * This reporting pass chooses what signal disposition we'll act on.
3746 + */
3747 + list_for_each_entry_safe(engine, next, &utrace->attached, entry) {
3748 + utrace->reporting = engine;
3749 + smp_mb();
3750 +
3751 + /*
3752 + * This pairs with the barrier in mark_engine_detached(),
3753 + * see start_callback() comments.
3754 + */
3755 + want = engine->flags;
3756 + smp_rmb();
3757 + ops = engine->ops;
3758 +
3759 + if ((want & (event | UTRACE_EVENT(QUIESCE))) == 0) {
3760 + utrace->reporting = NULL;
3761 + continue;
3762 + }
3763 +
3764 + if (ops->report_signal)
3765 + ret = (*ops->report_signal)(
3766 + report.result | report.action, engine, task,
3767 + regs, info, ka, return_ka);
3768 + else
3769 + ret = (report.result | (*ops->report_quiesce)(
3770 + report.action, engine, task, event));
3771 +
3772 + /*
3773 + * Avoid a tight loop reporting again and again if some
3774 + * engine is too stupid.
3775 + */
3776 + switch (utrace_resume_action(ret)) {
3777 + default:
3778 + break;
3779 + case UTRACE_INTERRUPT:
3780 + case UTRACE_REPORT:
3781 + ret = (ret & ~UTRACE_RESUME_MASK) | UTRACE_RESUME;
3782 + break;
3783 + }
3784 +
3785 + finish_callback(utrace, &report, engine, ret);
3786 + }
3787 +
3788 + /*
3789 + * We express the chosen action to the signals code in terms
3790 + * of a representative signal whose default action does it.
3791 + * Our caller uses our return value (signr) to decide what to
3792 + * do, but uses info->si_signo as the signal number to report.
3793 + */
3794 + switch (utrace_signal_action(report.result)) {
3795 + case UTRACE_SIGNAL_TERM:
3796 + signr = SIGTERM;
3797 + break;
3798 +
3799 + case UTRACE_SIGNAL_CORE:
3800 + signr = SIGQUIT;
3801 + break;
3802 +
3803 + case UTRACE_SIGNAL_STOP:
3804 + signr = SIGSTOP;
3805 + break;
3806 +
3807 + case UTRACE_SIGNAL_TSTP:
3808 + signr = SIGTSTP;
3809 + break;
3810 +
3811 + case UTRACE_SIGNAL_DELIVER:
3812 + signr = info->si_signo;
3813 +
3814 + if (return_ka->sa.sa_handler == SIG_DFL) {
3815 + /*
3816 + * We'll do signr's normal default action.
3817 + * For ignore, we'll fall through below.
3818 + * For stop/death, break locks and returns it.
3819 + */
3820 + if (likely(signr) && !sig_kernel_ignore(signr))
3821 + break;
3822 + } else if (return_ka->sa.sa_handler != SIG_IGN &&
3823 + likely(signr)) {
3824 + /*
3825 + * The handler will run. If an engine wanted to
3826 + * stop or step, then make sure we do another
3827 + * report after signal handler setup.
3828 + */
3829 + if (report.action != UTRACE_RESUME) {
3830 + spin_lock(&utrace->lock);
3831 + utrace->interrupt = 1;
3832 + spin_unlock(&utrace->lock);
3833 + set_tsk_thread_flag(task, TIF_SIGPENDING);
3834 + }
3835 +
3836 + if (unlikely(report.result & UTRACE_SIGNAL_HOLD))
3837 + push_back_signal(task, info);
3838 + else
3839 + spin_lock_irq(&task->sighand->siglock);
3840 +
3841 + /*
3842 + * We do the SA_ONESHOT work here since the
3843 + * normal path will only touch *return_ka now.
3844 + */
3845 + if (unlikely(return_ka->sa.sa_flags & SA_ONESHOT)) {
3846 + return_ka->sa.sa_flags &= ~SA_ONESHOT;
3847 + if (likely(valid_signal(signr))) {
3848 + ka = &task->sighand->action[signr - 1];
3849 + ka->sa.sa_handler = SIG_DFL;
3850 + }
3851 + }
3852 +
3853 + return signr;
3854 + }
3855 +
3856 + /* Fall through for an ignored signal. */
3857 +
3858 + case UTRACE_SIGNAL_IGN:
3859 + case UTRACE_SIGNAL_REPORT:
3860 + default:
3861 + /*
3862 + * If the signal is being ignored, then we are on the way
3863 + * directly back to user mode. We can stop here, or step,
3864 + * as in utrace_resume(), above. After we've dealt with that,
3865 + * our caller will relock and come back through here.
3866 + */
3867 + finish_resume_report(&report, task, utrace);
3868 +
3869 + if (unlikely(report.killed)) {
3870 + /*
3871 + * The only reason we woke up now was because of a
3872 + * SIGKILL. Don't do normal dequeuing in case it
3873 + * might get a signal other than SIGKILL. That would
3874 + * perturb the death state so it might differ from
3875 + * what the debugger would have allowed to happen.
3876 + * Instead, pluck out just the SIGKILL to be sure
3877 + * we'll die immediately with nothing else different
3878 + * from the quiescent state the debugger wanted us in.
3879 + */
3880 + sigset_t sigkill_only;
3881 + siginitsetinv(&sigkill_only, sigmask(SIGKILL));
3882 + spin_lock_irq(&task->sighand->siglock);
3883 + signr = dequeue_signal(task, &sigkill_only, info);
3884 + BUG_ON(signr != SIGKILL);
3885 + *return_ka = task->sighand->action[SIGKILL - 1];
3886 + return signr;
3887 + }
3888 +
3889 + if (unlikely(report.result & UTRACE_SIGNAL_HOLD)) {
3890 + push_back_signal(task, info);
3891 + spin_unlock_irq(&task->sighand->siglock);
3892 + }
3893 +
3894 + return -1;
3895 + }
3896 +
3897 + return_ka->sa.sa_handler = SIG_DFL;
3898 +
3899 + if (unlikely(report.result & UTRACE_SIGNAL_HOLD))
3900 + push_back_signal(task, info);
3901 + else
3902 + spin_lock_irq(&task->sighand->siglock);
3903 +
3904 + if (sig_kernel_stop(signr))
3905 + task->signal->flags |= SIGNAL_STOP_DEQUEUED;
3906 +
3907 + return signr;
3908 +}
3909 +
3910 +/*
3911 + * This gets called after a signal handler has been set up.
3912 + * We set a flag so the next report knows it happened.
3913 + * If we're already stepping, make sure we do a report_signal.
3914 + * If not, make sure we get into utrace_resume() where we can
3915 + * clear the signal_handler flag before resuming.
3916 + */
3917 +void utrace_signal_handler(struct task_struct *task, int stepping)
3918 +{
3919 + struct utrace *utrace = task->utrace;
3920 +
3921 + spin_lock(&utrace->lock);
3922 +
3923 + utrace->signal_handler = 1;
3924 + if (stepping) {
3925 + utrace->interrupt = 1;
3926 + set_tsk_thread_flag(task, TIF_SIGPENDING);
3927 + } else {
3928 + set_notify_resume(task);
3929 + }
3930 +
3931 + spin_unlock(&utrace->lock);
3932 +}
3933 +
3934 +/**
3935 + * utrace_prepare_examine - prepare to examine thread state
3936 + * @target: thread of interest, a &struct task_struct pointer
3937 + * @engine: engine pointer returned by utrace_attach_task()
3938 + * @exam: temporary state, a &struct utrace_examiner pointer
3939 + *
3940 + * This call prepares to safely examine the thread @target using
3941 + * &struct user_regset calls, or direct access to thread-synchronous fields.
3942 + *
3943 + * When @target is current, this call is superfluous. When @target is
3944 + * another thread, it must held stopped via %UTRACE_STOP by @engine.
3945 + *
3946 + * This call may block the caller until @target stays stopped, so it must
3947 + * be called only after the caller is sure @target is about to unschedule.
3948 + * This means a zero return from a utrace_control() call on @engine giving
3949 + * %UTRACE_STOP, or a report_quiesce() or report_signal() callback to
3950 + * @engine that used %UTRACE_STOP in its return value.
3951 + *
3952 + * Returns -%ESRCH if @target is dead or -%EINVAL if %UTRACE_STOP was
3953 + * not used. If @target has started running again despite %UTRACE_STOP
3954 + * (for %SIGKILL or a spurious wakeup), this call returns -%EAGAIN.
3955 + *
3956 + * When this call returns zero, it's safe to use &struct user_regset
3957 + * calls and task_user_regset_view() on @target and to examine some of
3958 + * its fields directly. When the examination is complete, a
3959 + * utrace_finish_examine() call must follow to check whether it was
3960 + * completed safely.
3961 + */
3962 +int utrace_prepare_examine(struct task_struct *target,
3963 + struct utrace_attached_engine *engine,
3964 + struct utrace_examiner *exam)
3965 +{
3966 + int ret = 0;
3967 +
3968 + if (unlikely(target == current))
3969 + return 0;
3970 +
3971 + rcu_read_lock();
3972 + if (unlikely(!engine_wants_stop(engine)))
3973 + ret = -EINVAL;
3974 + else if (unlikely(target->exit_state))
3975 + ret = -ESRCH;
3976 + else {
3977 + exam->state = target->state;
3978 + if (unlikely(exam->state == TASK_RUNNING))
3979 + ret = -EAGAIN;
3980 + else
3981 + get_task_struct(target);
3982 + }
3983 + rcu_read_unlock();
3984 +
3985 + if (likely(!ret)) {
3986 + exam->ncsw = wait_task_inactive(target, exam->state);
3987 + put_task_struct(target);
3988 + if (unlikely(!exam->ncsw))
3989 + ret = -EAGAIN;
3990 + }
3991 +
3992 + return ret;
3993 +}
3994 +EXPORT_SYMBOL_GPL(utrace_prepare_examine);
3995 +
3996 +/**
3997 + * utrace_finish_examine - complete an examination of thread state
3998 + * @target: thread of interest, a &struct task_struct pointer
3999 + * @engine: engine pointer returned by utrace_attach_task()
4000 + * @exam: pointer passed to utrace_prepare_examine() call
4001 + *
4002 + * This call completes an examination on the thread @target begun by a
4003 + * paired utrace_prepare_examine() call with the same arguments that
4004 + * returned success (zero).
4005 + *
4006 + * When @target is current, this call is superfluous. When @target is
4007 + * another thread, this returns zero if @target has remained unscheduled
4008 + * since the paired utrace_prepare_examine() call returned zero.
4009 + *
4010 + * When this returns an error, any examination done since the paired
4011 + * utrace_prepare_examine() call is unreliable and the data extracted
4012 + * should be discarded. The error is -%EINVAL if @engine is not
4013 + * keeping @target stopped, or -%EAGAIN if @target woke up unexpectedly.
4014 + */
4015 +int utrace_finish_examine(struct task_struct *target,
4016 + struct utrace_attached_engine *engine,
4017 + struct utrace_examiner *exam)
4018 +{
4019 + int ret = 0;
4020 +
4021 + if (unlikely(target == current))
4022 + return 0;
4023 +
4024 + rcu_read_lock();
4025 + if (unlikely(!engine_wants_stop(engine)))
4026 + ret = -EINVAL;
4027 + else if (unlikely(target->state != exam->state))
4028 + ret = -EAGAIN;
4029 + else
4030 + get_task_struct(target);
4031 + rcu_read_unlock();
4032 +
4033 + if (likely(!ret)) {
4034 + unsigned long ncsw = wait_task_inactive(target, exam->state);
4035 + if (unlikely(ncsw != exam->ncsw))
4036 + ret = -EAGAIN;
4037 + put_task_struct(target);
4038 + }
4039 +
4040 + return ret;
4041 +}
4042 +EXPORT_SYMBOL_GPL(utrace_finish_examine);
4043 +
4044 +/*
4045 + * This is declared in linux/regset.h and defined in machine-dependent
4046 + * code. We put the export here to ensure no machine forgets it.
4047 + */
4048 +EXPORT_SYMBOL_GPL(task_user_regset_view);
4049 +
4050 +/*
4051 + * Return the &struct task_struct for the task using ptrace on this one,
4052 + * or %NULL. Must be called with rcu_read_lock() held to keep the returned
4053 + * struct alive.
4054 + *
4055 + * At exec time, this may be called with task_lock() still held from when
4056 + * tracehook_unsafe_exec() was just called. In that case it must give
4057 + * results consistent with those unsafe_exec() results, i.e. non-%NULL if
4058 + * any %LSM_UNSAFE_PTRACE_* bits were set.
4059 + *
4060 + * The value is also used to display after "TracerPid:" in /proc/PID/status,
4061 + * where it is called with only rcu_read_lock() held.
4062 + */
4063 +struct task_struct *utrace_tracer_task(struct task_struct *target)
4064 +{
4065 + struct utrace *utrace;
4066 + struct task_struct *tracer = NULL;
4067 +
4068 + utrace = rcu_dereference(target->utrace);
4069 + if (utrace != NULL) {
4070 + struct list_head *pos, *next;
4071 + struct utrace_attached_engine *engine;
4072 + const struct utrace_engine_ops *ops;
4073 + list_for_each_safe(pos, next, &utrace->attached) {
4074 + engine = list_entry(pos, struct utrace_attached_engine,
4075 + entry);
4076 + ops = rcu_dereference(engine->ops);
4077 + if (ops->tracer_task) {
4078 + tracer = (*ops->tracer_task)(engine, target);
4079 + if (tracer != NULL)
4080 + break;
4081 + }
4082 + }
4083 + }
4084 +
4085 + return tracer;
4086 +}
4087 +
4088 +/*
4089 + * Called on the current task to return LSM_UNSAFE_* bits implied by tracing.
4090 + * Called with task_lock() held.
4091 + */
4092 +int utrace_unsafe_exec(struct task_struct *task)
4093 +{
4094 + struct utrace *utrace = task->utrace;
4095 + struct utrace_attached_engine *engine, *next;
4096 + const struct utrace_engine_ops *ops;
4097 + int unsafe = 0;
4098 +
4099 + list_for_each_entry_safe(engine, next, &utrace->attached, entry) {
4100 + ops = rcu_dereference(engine->ops);
4101 + if (ops->unsafe_exec)
4102 + unsafe |= (*ops->unsafe_exec)(engine, task);
4103 + }
4104 +
4105 + return unsafe;
4106 +}
4107 +
4108 +/*
4109 + * Called with rcu_read_lock() held.
4110 + */
4111 +void task_utrace_proc_status(struct seq_file *m, struct task_struct *p)
4112 +{
4113 + struct utrace *utrace = rcu_dereference(p->utrace);
4114 + if (unlikely(utrace))
4115 + seq_printf(m, "Utrace: %lx%s%s%s\n",
4116 + p->utrace_flags,
4117 + utrace->stopped ? " (stopped)" : "",
4118 + utrace->report ? " (report)" : "",
4119 + utrace->interrupt ? " (interrupt)" : "");
4120 +}