]> git.ipfire.org Git - people/ms/linux.git/blame - block/bio.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
b4c5875d 18#include <linux/highmem.h>
de6a78b6 19#include <linux/sched/sysctl.h>
a892c8d5 20#include <linux/blk-crypto.h>
49d1ec85 21#include <linux/xarray.h>
1da177e4 22
55782138 23#include <trace/events/block.h>
9e234eea 24#include "blk.h"
67b42d0b 25#include "blk-rq-qos.h"
672fdcf0 26#include "blk-cgroup.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
066ff571 227 void *p = bio;
4254bba1 228
066ff571 229 WARN_ON_ONCE(!bs);
4254bba1 230
066ff571
CH
231 bio_uninit(bio);
232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 mempool_free(p - bs->front_pad, &bs->bio_pool);
3676347a
PO
234}
235
9ae3b3f5
JA
236/*
237 * Users of this function have their own bio allocation. Subsequently,
238 * they must remember to pair any call to bio_init() with bio_uninit()
239 * when IO has completed, or when the bio is released.
240 */
49add496 241void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
16458cf3 242 unsigned short max_vecs, blk_opf_t opf)
1da177e4 243{
da521626 244 bio->bi_next = NULL;
49add496
CH
245 bio->bi_bdev = bdev;
246 bio->bi_opf = opf;
da521626
JA
247 bio->bi_flags = 0;
248 bio->bi_ioprio = 0;
da521626
JA
249 bio->bi_status = 0;
250 bio->bi_iter.bi_sector = 0;
251 bio->bi_iter.bi_size = 0;
252 bio->bi_iter.bi_idx = 0;
253 bio->bi_iter.bi_bvec_done = 0;
254 bio->bi_end_io = NULL;
255 bio->bi_private = NULL;
256#ifdef CONFIG_BLK_CGROUP
257 bio->bi_blkg = NULL;
258 bio->bi_issue.value = 0;
49add496
CH
259 if (bdev)
260 bio_associate_blkg(bio);
da521626
JA
261#ifdef CONFIG_BLK_CGROUP_IOCOST
262 bio->bi_iocost_cost = 0;
263#endif
264#endif
265#ifdef CONFIG_BLK_INLINE_ENCRYPTION
266 bio->bi_crypt_context = NULL;
267#endif
268#ifdef CONFIG_BLK_DEV_INTEGRITY
269 bio->bi_integrity = NULL;
270#endif
271 bio->bi_vcnt = 0;
272
c4cf5261 273 atomic_set(&bio->__bi_remaining, 1);
dac56212 274 atomic_set(&bio->__bi_cnt, 1);
3e08773c 275 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 276
3a83f467 277 bio->bi_max_vecs = max_vecs;
da521626
JA
278 bio->bi_io_vec = table;
279 bio->bi_pool = NULL;
1da177e4 280}
a112a71d 281EXPORT_SYMBOL(bio_init);
1da177e4 282
f44b48c7
KO
283/**
284 * bio_reset - reinitialize a bio
285 * @bio: bio to reset
a7c50c94
CH
286 * @bdev: block device to use the bio for
287 * @opf: operation and flags for bio
f44b48c7
KO
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
16458cf3 295void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
f44b48c7 296{
9ae3b3f5 297 bio_uninit(bio);
f44b48c7 298 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 299 atomic_set(&bio->__bi_remaining, 1);
a7c50c94 300 bio->bi_bdev = bdev;
78e34374
CH
301 if (bio->bi_bdev)
302 bio_associate_blkg(bio);
a7c50c94 303 bio->bi_opf = opf;
f44b48c7
KO
304}
305EXPORT_SYMBOL(bio_reset);
306
38f8baae 307static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 308{
4246a0b6
CH
309 struct bio *parent = bio->bi_private;
310
3edf5346 311 if (bio->bi_status && !parent->bi_status)
4e4cbee9 312 parent->bi_status = bio->bi_status;
196d38bc 313 bio_put(bio);
38f8baae
CH
314 return parent;
315}
316
317static void bio_chain_endio(struct bio *bio)
318{
319 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
320}
321
322/**
323 * bio_chain - chain bio completions
1051a902 324 * @bio: the target bio
5b874af6 325 * @parent: the parent bio of @bio
196d38bc
KO
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
333void bio_chain(struct bio *bio, struct bio *parent)
334{
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
c4cf5261 339 bio_inc_remaining(parent);
196d38bc
KO
340}
341EXPORT_SYMBOL(bio_chain);
342
0a3140ea 343struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
16458cf3 344 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
3b005bf6 345{
07888c66 346 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0a3140ea 347
3b005bf6
CH
348 if (bio) {
349 bio_chain(bio, new);
350 submit_bio(bio);
351 }
352
353 return new;
354}
355EXPORT_SYMBOL_GPL(blk_next_bio);
356
df2cb6da
KO
357static void bio_alloc_rescue(struct work_struct *work)
358{
359 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
360 struct bio *bio;
361
362 while (1) {
363 spin_lock(&bs->rescue_lock);
364 bio = bio_list_pop(&bs->rescue_list);
365 spin_unlock(&bs->rescue_lock);
366
367 if (!bio)
368 break;
369
ed00aabd 370 submit_bio_noacct(bio);
df2cb6da
KO
371 }
372}
373
374static void punt_bios_to_rescuer(struct bio_set *bs)
375{
376 struct bio_list punt, nopunt;
377 struct bio *bio;
378
47e0fb46
N
379 if (WARN_ON_ONCE(!bs->rescue_workqueue))
380 return;
df2cb6da
KO
381 /*
382 * In order to guarantee forward progress we must punt only bios that
383 * were allocated from this bio_set; otherwise, if there was a bio on
384 * there for a stacking driver higher up in the stack, processing it
385 * could require allocating bios from this bio_set, and doing that from
386 * our own rescuer would be bad.
387 *
388 * Since bio lists are singly linked, pop them all instead of trying to
389 * remove from the middle of the list:
390 */
391
392 bio_list_init(&punt);
393 bio_list_init(&nopunt);
394
f5fe1b51 395 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 396 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 397 current->bio_list[0] = nopunt;
df2cb6da 398
f5fe1b51
N
399 bio_list_init(&nopunt);
400 while ((bio = bio_list_pop(&current->bio_list[1])))
401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
402 current->bio_list[1] = nopunt;
df2cb6da
KO
403
404 spin_lock(&bs->rescue_lock);
405 bio_list_merge(&bs->rescue_list, &punt);
406 spin_unlock(&bs->rescue_lock);
407
408 queue_work(bs->rescue_workqueue, &bs->rescue_work);
409}
410
0df71650 411static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
16458cf3 412 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
0df71650
MS
413 struct bio_set *bs)
414{
415 struct bio_alloc_cache *cache;
416 struct bio *bio;
417
418 cache = per_cpu_ptr(bs->cache, get_cpu());
419 if (!cache->free_list) {
420 put_cpu();
421 return NULL;
422 }
423 bio = cache->free_list;
424 cache->free_list = bio->bi_next;
425 cache->nr--;
426 put_cpu();
427
428 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
429 bio->bi_pool = bs;
430 return bio;
431}
432
1da177e4
LT
433/**
434 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
435 * @bdev: block device to allocate the bio for (can be %NULL)
436 * @nr_vecs: number of bvecs to pre-allocate
437 * @opf: operation and flags for bio
519c8e9f 438 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 439 * @bs: the bio_set to allocate from.
1da177e4 440 *
3175199a 441 * Allocate a bio from the mempools in @bs.
3f86a82a 442 *
3175199a
CH
443 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
444 * allocate a bio. This is due to the mempool guarantees. To make this work,
445 * callers must never allocate more than 1 bio at a time from the general pool.
446 * Callers that need to allocate more than 1 bio must always submit the
447 * previously allocated bio for IO before attempting to allocate a new one.
448 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 449 *
3175199a
CH
450 * Note that when running under submit_bio_noacct() (i.e. any block driver),
451 * bios are not submitted until after you return - see the code in
452 * submit_bio_noacct() that converts recursion into iteration, to prevent
453 * stack overflows.
df2cb6da 454 *
3175199a
CH
455 * This would normally mean allocating multiple bios under submit_bio_noacct()
456 * would be susceptible to deadlocks, but we have
457 * deadlock avoidance code that resubmits any blocked bios from a rescuer
458 * thread.
df2cb6da 459 *
3175199a
CH
460 * However, we do not guarantee forward progress for allocations from other
461 * mempools. Doing multiple allocations from the same mempool under
462 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
463 * for per bio allocations.
df2cb6da 464 *
0df71650
MS
465 * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process
466 * context, not hard/soft IRQ.
467 *
3175199a 468 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 469 */
609be106 470struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
16458cf3 471 blk_opf_t opf, gfp_t gfp_mask,
7a88fa19 472 struct bio_set *bs)
1da177e4 473{
df2cb6da 474 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
475 struct bio *bio;
476 void *p;
477
609be106
CH
478 /* should not use nobvec bioset for nr_vecs > 0 */
479 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 480 return NULL;
df2cb6da 481
0df71650
MS
482 if (opf & REQ_ALLOC_CACHE) {
483 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
484 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
485 gfp_mask, bs);
486 if (bio)
487 return bio;
488 /*
489 * No cached bio available, bio returned below marked with
490 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
491 */
492 } else {
493 opf &= ~REQ_ALLOC_CACHE;
494 }
495 }
496
3175199a
CH
497 /*
498 * submit_bio_noacct() converts recursion to iteration; this means if
499 * we're running beneath it, any bios we allocate and submit will not be
500 * submitted (and thus freed) until after we return.
501 *
502 * This exposes us to a potential deadlock if we allocate multiple bios
503 * from the same bio_set() while running underneath submit_bio_noacct().
504 * If we were to allocate multiple bios (say a stacking block driver
505 * that was splitting bios), we would deadlock if we exhausted the
506 * mempool's reserve.
507 *
508 * We solve this, and guarantee forward progress, with a rescuer
509 * workqueue per bio_set. If we go to allocate and there are bios on
510 * current->bio_list, we first try the allocation without
511 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
512 * blocking to the rescuer workqueue before we retry with the original
513 * gfp_flags.
514 */
515 if (current->bio_list &&
516 (!bio_list_empty(&current->bio_list[0]) ||
517 !bio_list_empty(&current->bio_list[1])) &&
518 bs->rescue_workqueue)
519 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
520
521 p = mempool_alloc(&bs->bio_pool, gfp_mask);
522 if (!p && gfp_mask != saved_gfp) {
523 punt_bios_to_rescuer(bs);
524 gfp_mask = saved_gfp;
8aa6ba2f 525 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 526 }
451a9ebf
TH
527 if (unlikely(!p))
528 return NULL;
1da177e4 529
3175199a 530 bio = p + bs->front_pad;
609be106 531 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 532 struct bio_vec *bvl = NULL;
34053979 533
609be106 534 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
535 if (!bvl && gfp_mask != saved_gfp) {
536 punt_bios_to_rescuer(bs);
537 gfp_mask = saved_gfp;
609be106 538 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 539 }
34053979
IM
540 if (unlikely(!bvl))
541 goto err_free;
a38352e0 542
49add496 543 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 544 } else if (nr_vecs) {
49add496 545 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 546 } else {
49add496 547 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 548 }
3f86a82a
KO
549
550 bio->bi_pool = bs;
1da177e4 551 return bio;
34053979
IM
552
553err_free:
8aa6ba2f 554 mempool_free(p, &bs->bio_pool);
34053979 555 return NULL;
1da177e4 556}
a112a71d 557EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 558
3175199a 559/**
066ff571
CH
560 * bio_kmalloc - kmalloc a bio
561 * @nr_vecs: number of bio_vecs to allocate
3175199a 562 * @gfp_mask: the GFP_* mask given to the slab allocator
3175199a 563 *
066ff571
CH
564 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
565 * using bio_init() before use. To free a bio returned from this function use
566 * kfree() after calling bio_uninit(). A bio returned from this function can
567 * be reused by calling bio_uninit() before calling bio_init() again.
568 *
569 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
570 * function are not backed by a mempool can can fail. Do not use this function
571 * for allocations in the file system I/O path.
3175199a
CH
572 *
573 * Returns: Pointer to new bio on success, NULL on failure.
574 */
066ff571 575struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
3175199a
CH
576{
577 struct bio *bio;
578
066ff571 579 if (nr_vecs > UIO_MAXIOV)
3175199a 580 return NULL;
066ff571 581 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
3175199a
CH
582}
583EXPORT_SYMBOL(bio_kmalloc);
584
6f822e1b 585void zero_fill_bio(struct bio *bio)
1da177e4 586{
7988613b
KO
587 struct bio_vec bv;
588 struct bvec_iter iter;
1da177e4 589
ab6c340e
CH
590 bio_for_each_segment(bv, bio, iter)
591 memzero_bvec(&bv);
1da177e4 592}
6f822e1b 593EXPORT_SYMBOL(zero_fill_bio);
1da177e4 594
83c9c547
ML
595/**
596 * bio_truncate - truncate the bio to small size of @new_size
597 * @bio: the bio to be truncated
598 * @new_size: new size for truncating the bio
599 *
600 * Description:
601 * Truncate the bio to new size of @new_size. If bio_op(bio) is
602 * REQ_OP_READ, zero the truncated part. This function should only
603 * be used for handling corner cases, such as bio eod.
604 */
4f7ab09a 605static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
606{
607 struct bio_vec bv;
608 struct bvec_iter iter;
609 unsigned int done = 0;
610 bool truncated = false;
611
612 if (new_size >= bio->bi_iter.bi_size)
613 return;
614
83c9c547 615 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
616 goto exit;
617
618 bio_for_each_segment(bv, bio, iter) {
619 if (done + bv.bv_len > new_size) {
620 unsigned offset;
621
622 if (!truncated)
623 offset = new_size - done;
624 else
625 offset = 0;
3ee859e3
OH
626 zero_user(bv.bv_page, bv.bv_offset + offset,
627 bv.bv_len - offset);
85a8ce62
ML
628 truncated = true;
629 }
630 done += bv.bv_len;
631 }
632
633 exit:
634 /*
635 * Don't touch bvec table here and make it really immutable, since
636 * fs bio user has to retrieve all pages via bio_for_each_segment_all
637 * in its .end_bio() callback.
638 *
639 * It is enough to truncate bio by updating .bi_size since we can make
640 * correct bvec with the updated .bi_size for drivers.
641 */
642 bio->bi_iter.bi_size = new_size;
643}
644
29125ed6
CH
645/**
646 * guard_bio_eod - truncate a BIO to fit the block device
647 * @bio: bio to truncate
648 *
649 * This allows us to do IO even on the odd last sectors of a device, even if the
650 * block size is some multiple of the physical sector size.
651 *
652 * We'll just truncate the bio to the size of the device, and clear the end of
653 * the buffer head manually. Truly out-of-range accesses will turn into actual
654 * I/O errors, this only handles the "we need to be able to do I/O at the final
655 * sector" case.
656 */
657void guard_bio_eod(struct bio *bio)
658{
309dca30 659 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
660
661 if (!maxsector)
662 return;
663
664 /*
665 * If the *whole* IO is past the end of the device,
666 * let it through, and the IO layer will turn it into
667 * an EIO.
668 */
669 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
670 return;
671
672 maxsector -= bio->bi_iter.bi_sector;
673 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
674 return;
675
676 bio_truncate(bio, maxsector << 9);
677}
678
be4d234d
JA
679#define ALLOC_CACHE_MAX 512
680#define ALLOC_CACHE_SLACK 64
681
682static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
683 unsigned int nr)
684{
685 unsigned int i = 0;
686 struct bio *bio;
687
fcade2ce
JA
688 while ((bio = cache->free_list) != NULL) {
689 cache->free_list = bio->bi_next;
be4d234d
JA
690 cache->nr--;
691 bio_free(bio);
692 if (++i == nr)
693 break;
694 }
695}
696
697static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
698{
699 struct bio_set *bs;
700
701 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
702 if (bs->cache) {
703 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
704
705 bio_alloc_cache_prune(cache, -1U);
706 }
707 return 0;
708}
709
710static void bio_alloc_cache_destroy(struct bio_set *bs)
711{
712 int cpu;
713
714 if (!bs->cache)
715 return;
716
717 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
718 for_each_possible_cpu(cpu) {
719 struct bio_alloc_cache *cache;
720
721 cache = per_cpu_ptr(bs->cache, cpu);
722 bio_alloc_cache_prune(cache, -1U);
723 }
724 free_percpu(bs->cache);
605f7415 725 bs->cache = NULL;
be4d234d
JA
726}
727
1da177e4
LT
728/**
729 * bio_put - release a reference to a bio
730 * @bio: bio to release reference to
731 *
732 * Description:
733 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 734 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
735 **/
736void bio_put(struct bio *bio)
737{
be4d234d 738 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 739 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
740 if (!atomic_dec_and_test(&bio->__bi_cnt))
741 return;
742 }
dac56212 743
0df71650 744 if (bio->bi_opf & REQ_ALLOC_CACHE) {
be4d234d
JA
745 struct bio_alloc_cache *cache;
746
747 bio_uninit(bio);
748 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
749 bio->bi_next = cache->free_list;
750 cache->free_list = bio;
be4d234d
JA
751 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
752 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
753 put_cpu();
754 } else {
755 bio_free(bio);
dac56212 756 }
1da177e4 757}
a112a71d 758EXPORT_SYMBOL(bio_put);
1da177e4 759
a0e8de79 760static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
59d276fe 761{
b7c44ed9 762 bio_set_flag(bio, BIO_CLONED);
111be883
SL
763 if (bio_flagged(bio_src, BIO_THROTTLED))
764 bio_set_flag(bio, BIO_THROTTLED);
ca474b73 765 bio->bi_ioprio = bio_src->bi_ioprio;
59d276fe 766 bio->bi_iter = bio_src->bi_iter;
20bd723e 767
7ecc56c6
CH
768 if (bio->bi_bdev) {
769 if (bio->bi_bdev == bio_src->bi_bdev &&
770 bio_flagged(bio_src, BIO_REMAPPED))
771 bio_set_flag(bio, BIO_REMAPPED);
772 bio_clone_blkg_association(bio, bio_src);
773 }
56b4b5ab
CH
774
775 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
776 return -ENOMEM;
777 if (bio_integrity(bio_src) &&
778 bio_integrity_clone(bio, bio_src, gfp) < 0)
779 return -ENOMEM;
780 return 0;
59d276fe 781}
59d276fe
KO
782
783/**
abfc426d
CH
784 * bio_alloc_clone - clone a bio that shares the original bio's biovec
785 * @bdev: block_device to clone onto
a0e8de79
CH
786 * @bio_src: bio to clone from
787 * @gfp: allocation priority
788 * @bs: bio_set to allocate from
59d276fe 789 *
a0e8de79
CH
790 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
791 * bio, but not the actual data it points to.
792 *
793 * The caller must ensure that the return bio is not freed before @bio_src.
59d276fe 794 */
abfc426d
CH
795struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
796 gfp_t gfp, struct bio_set *bs)
59d276fe 797{
a0e8de79 798 struct bio *bio;
59d276fe 799
abfc426d 800 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
a0e8de79 801 if (!bio)
59d276fe
KO
802 return NULL;
803
a0e8de79
CH
804 if (__bio_clone(bio, bio_src, gfp) < 0) {
805 bio_put(bio);
56b4b5ab
CH
806 return NULL;
807 }
a0e8de79 808 bio->bi_io_vec = bio_src->bi_io_vec;
59d276fe 809
a0e8de79 810 return bio;
59d276fe 811}
abfc426d 812EXPORT_SYMBOL(bio_alloc_clone);
59d276fe 813
a0e8de79 814/**
abfc426d
CH
815 * bio_init_clone - clone a bio that shares the original bio's biovec
816 * @bdev: block_device to clone onto
a0e8de79
CH
817 * @bio: bio to clone into
818 * @bio_src: bio to clone from
819 * @gfp: allocation priority
820 *
821 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
822 * The caller owns the returned bio, but not the actual data it points to.
823 *
824 * The caller must ensure that @bio_src is not freed before @bio.
825 */
abfc426d
CH
826int bio_init_clone(struct block_device *bdev, struct bio *bio,
827 struct bio *bio_src, gfp_t gfp)
a0e8de79
CH
828{
829 int ret;
830
abfc426d 831 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
a0e8de79
CH
832 ret = __bio_clone(bio, bio_src, gfp);
833 if (ret)
834 bio_uninit(bio);
835 return ret;
836}
abfc426d 837EXPORT_SYMBOL(bio_init_clone);
a0e8de79 838
9a6083be
CH
839/**
840 * bio_full - check if the bio is full
841 * @bio: bio to check
842 * @len: length of one segment to be added
843 *
844 * Return true if @bio is full and one segment with @len bytes can't be
845 * added to the bio, otherwise return false
846 */
847static inline bool bio_full(struct bio *bio, unsigned len)
848{
849 if (bio->bi_vcnt >= bio->bi_max_vecs)
850 return true;
851 if (bio->bi_iter.bi_size > UINT_MAX - len)
852 return true;
853 return false;
854}
855
5919482e
ML
856static inline bool page_is_mergeable(const struct bio_vec *bv,
857 struct page *page, unsigned int len, unsigned int off,
ff896738 858 bool *same_page)
5919482e 859{
d8166519
MWO
860 size_t bv_end = bv->bv_offset + bv->bv_len;
861 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
862 phys_addr_t page_addr = page_to_phys(page);
863
864 if (vec_end_addr + 1 != page_addr + off)
865 return false;
866 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
867 return false;
52d52d1c 868
ff896738 869 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
870 if (*same_page)
871 return true;
872 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
873}
874
9774b391
CH
875/**
876 * __bio_try_merge_page - try appending data to an existing bvec.
877 * @bio: destination bio
878 * @page: start page to add
879 * @len: length of the data to add
880 * @off: offset of the data relative to @page
881 * @same_page: return if the segment has been merged inside the same page
882 *
883 * Try to add the data at @page + @off to the last bvec of @bio. This is a
884 * useful optimisation for file systems with a block size smaller than the
885 * page size.
886 *
887 * Warn if (@len, @off) crosses pages in case that @same_page is true.
888 *
889 * Return %true on success or %false on failure.
890 */
891static bool __bio_try_merge_page(struct bio *bio, struct page *page,
892 unsigned int len, unsigned int off, bool *same_page)
893{
894 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
895 return false;
896
897 if (bio->bi_vcnt > 0) {
898 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
899
900 if (page_is_mergeable(bv, page, len, off, same_page)) {
901 if (bio->bi_iter.bi_size > UINT_MAX - len) {
902 *same_page = false;
903 return false;
904 }
905 bv->bv_len += len;
906 bio->bi_iter.bi_size += len;
907 return true;
908 }
909 }
910 return false;
911}
912
e4581105
CH
913/*
914 * Try to merge a page into a segment, while obeying the hardware segment
915 * size limit. This is not for normal read/write bios, but for passthrough
916 * or Zone Append operations that we can't split.
917 */
918static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
919 struct page *page, unsigned len,
920 unsigned offset, bool *same_page)
489fbbcb 921{
384209cd 922 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
923 unsigned long mask = queue_segment_boundary(q);
924 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
925 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
926
927 if ((addr1 | mask) != (addr2 | mask))
928 return false;
489fbbcb
ML
929 if (bv->bv_len + len > queue_max_segment_size(q))
930 return false;
384209cd 931 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
932}
933
1da177e4 934/**
e4581105
CH
935 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
936 * @q: the target queue
937 * @bio: destination bio
938 * @page: page to add
939 * @len: vec entry length
940 * @offset: vec entry offset
941 * @max_sectors: maximum number of sectors that can be added
942 * @same_page: return if the segment has been merged inside the same page
c66a14d0 943 *
e4581105
CH
944 * Add a page to a bio while respecting the hardware max_sectors, max_segment
945 * and gap limitations.
1da177e4 946 */
e4581105 947int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 948 struct page *page, unsigned int len, unsigned int offset,
e4581105 949 unsigned int max_sectors, bool *same_page)
1da177e4 950{
1da177e4
LT
951 struct bio_vec *bvec;
952
e4581105 953 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
954 return 0;
955
e4581105 956 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
957 return 0;
958
80cfd548 959 if (bio->bi_vcnt > 0) {
e4581105 960 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 961 return len;
320ea869
CH
962
963 /*
964 * If the queue doesn't support SG gaps and adding this segment
965 * would create a gap, disallow it.
966 */
384209cd 967 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
c55ddd90 968 if (bvec_gap_to_prev(&q->limits, bvec, offset))
320ea869 969 return 0;
80cfd548
JA
970 }
971
79d08f89 972 if (bio_full(bio, len))
1da177e4
LT
973 return 0;
974
14ccb66b 975 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
976 return 0;
977
fcbf6a08
ML
978 bvec = &bio->bi_io_vec[bio->bi_vcnt];
979 bvec->bv_page = page;
980 bvec->bv_len = len;
981 bvec->bv_offset = offset;
982 bio->bi_vcnt++;
dcdca753 983 bio->bi_iter.bi_size += len;
1da177e4
LT
984 return len;
985}
19047087 986
e4581105
CH
987/**
988 * bio_add_pc_page - attempt to add page to passthrough bio
989 * @q: the target queue
990 * @bio: destination bio
991 * @page: page to add
992 * @len: vec entry length
993 * @offset: vec entry offset
994 *
995 * Attempt to add a page to the bio_vec maplist. This can fail for a
996 * number of reasons, such as the bio being full or target block device
997 * limitations. The target block device must allow bio's up to PAGE_SIZE,
998 * so it is always possible to add a single page to an empty bio.
999 *
1000 * This should only be used by passthrough bios.
1001 */
19047087
ML
1002int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1003 struct page *page, unsigned int len, unsigned int offset)
1004{
d1916c86 1005 bool same_page = false;
e4581105
CH
1006 return bio_add_hw_page(q, bio, page, len, offset,
1007 queue_max_hw_sectors(q), &same_page);
19047087 1008}
a112a71d 1009EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 1010
ae29333f
JT
1011/**
1012 * bio_add_zone_append_page - attempt to add page to zone-append bio
1013 * @bio: destination bio
1014 * @page: page to add
1015 * @len: vec entry length
1016 * @offset: vec entry offset
1017 *
1018 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1019 * for a zone-append request. This can fail for a number of reasons, such as the
1020 * bio being full or the target block device is not a zoned block device or
1021 * other limitations of the target block device. The target block device must
1022 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1023 * to an empty bio.
1024 *
1025 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1026 */
1027int bio_add_zone_append_page(struct bio *bio, struct page *page,
1028 unsigned int len, unsigned int offset)
1029{
3caee463 1030 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
1031 bool same_page = false;
1032
1033 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1034 return 0;
1035
edd1dbc8 1036 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
ae29333f
JT
1037 return 0;
1038
1039 return bio_add_hw_page(q, bio, page, len, offset,
1040 queue_max_zone_append_sectors(q), &same_page);
1041}
1042EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1043
0aa69fd3 1044/**
551879a4 1045 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1046 * @bio: destination bio
551879a4
ML
1047 * @page: start page to add
1048 * @len: length of the data to add, may cross pages
1049 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1050 *
1051 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1052 * that @bio has space for another bvec.
1053 */
1054void __bio_add_page(struct bio *bio, struct page *page,
1055 unsigned int len, unsigned int off)
1056{
1057 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 1058
0aa69fd3 1059 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1060 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1061
1062 bv->bv_page = page;
1063 bv->bv_offset = off;
1064 bv->bv_len = len;
c66a14d0 1065
c66a14d0 1066 bio->bi_iter.bi_size += len;
0aa69fd3 1067 bio->bi_vcnt++;
b8e24a93
JW
1068
1069 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1070 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1071}
1072EXPORT_SYMBOL_GPL(__bio_add_page);
1073
1074/**
551879a4 1075 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1076 * @bio: destination bio
551879a4
ML
1077 * @page: start page to add
1078 * @len: vec entry length, may cross pages
1079 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1080 *
551879a4 1081 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1082 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1083 */
1084int bio_add_page(struct bio *bio, struct page *page,
1085 unsigned int len, unsigned int offset)
1086{
ff896738
CH
1087 bool same_page = false;
1088
1089 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1090 if (bio_full(bio, len))
0aa69fd3
CH
1091 return 0;
1092 __bio_add_page(bio, page, len, offset);
1093 }
c66a14d0 1094 return len;
1da177e4 1095}
a112a71d 1096EXPORT_SYMBOL(bio_add_page);
1da177e4 1097
85f5a74c
MWO
1098/**
1099 * bio_add_folio - Attempt to add part of a folio to a bio.
1100 * @bio: BIO to add to.
1101 * @folio: Folio to add.
1102 * @len: How many bytes from the folio to add.
1103 * @off: First byte in this folio to add.
1104 *
1105 * Filesystems that use folios can call this function instead of calling
1106 * bio_add_page() for each page in the folio. If @off is bigger than
1107 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1108 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1109 *
1110 * Return: Whether the addition was successful.
1111 */
1112bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1113 size_t off)
1114{
1115 if (len > UINT_MAX || off > UINT_MAX)
455a844d 1116 return false;
85f5a74c
MWO
1117 return bio_add_page(bio, &folio->page, len, off) > 0;
1118}
1119
c809084a 1120void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1121{
1122 struct bvec_iter_all iter_all;
1123 struct bio_vec *bvec;
7321ecbf 1124
d241a95f
CH
1125 bio_for_each_segment_all(bvec, bio, iter_all) {
1126 if (mark_dirty && !PageCompound(bvec->bv_page))
1127 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1128 put_page(bvec->bv_page);
d241a95f 1129 }
7321ecbf 1130}
c809084a 1131EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1132
1bb6b810 1133void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1134{
fa5fa8ec
PB
1135 size_t size = iov_iter_count(iter);
1136
7a800a20 1137 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1138
fa5fa8ec
PB
1139 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1140 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1141 size_t max_sectors = queue_max_zone_append_sectors(q);
1142
1143 size = min(size, max_sectors << SECTOR_SHIFT);
1144 }
1145
c42bca92 1146 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1147 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1148 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1149 bio->bi_iter.bi_size = size;
ed97ce5e 1150 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1151 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1152}
c42bca92 1153
c58c0074
KB
1154static int bio_iov_add_page(struct bio *bio, struct page *page,
1155 unsigned int len, unsigned int offset)
1156{
1157 bool same_page = false;
1158
1159 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
c58c0074
KB
1160 __bio_add_page(bio, page, len, offset);
1161 return 0;
1162 }
1163
1164 if (same_page)
1165 put_page(page);
1166 return 0;
1167}
1168
1169static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1170 unsigned int len, unsigned int offset)
1171{
1172 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1173 bool same_page = false;
1174
1175 if (bio_add_hw_page(q, bio, page, len, offset,
1176 queue_max_zone_append_sectors(q), &same_page) != len)
1177 return -EINVAL;
1178 if (same_page)
1179 put_page(page);
1180 return 0;
1181}
1182
576ed913
CH
1183#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1184
2cefe4db 1185/**
17d51b10 1186 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1187 * @bio: bio to add pages to
1188 * @iter: iov iterator describing the region to be mapped
1189 *
17d51b10 1190 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1191 * pages will have to be released using put_page() when done.
17d51b10 1192 * For multi-segment *iter, this function only adds pages from the
3cf14889 1193 * next non-empty segment of the iov iterator.
2cefe4db 1194 */
17d51b10 1195static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1196{
576ed913
CH
1197 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1198 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1199 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1200 struct page **pages = (struct page **)bv;
576ed913 1201 ssize_t size, left;
e97424fd 1202 unsigned len, i = 0;
480cb846 1203 size_t offset, trim;
325347d9 1204 int ret = 0;
576ed913
CH
1205
1206 /*
1207 * Move page array up in the allocated memory for the bio vecs as far as
1208 * possible so that we can start filling biovecs from the beginning
1209 * without overwriting the temporary page array.
c58c0074 1210 */
576ed913
CH
1211 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1212 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1213
b1a000d3
KB
1214 /*
1215 * Each segment in the iov is required to be a block size multiple.
1216 * However, we may not be able to get the entire segment if it spans
1217 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1218 * result to ensure the bio's total size is correct. The remainder of
1219 * the iov data will be picked up in the next bio iteration.
1220 */
480cb846 1221 size = iov_iter_get_pages2(iter, pages, UINT_MAX - bio->bi_iter.bi_size,
34cdb8c8 1222 nr_pages, &offset);
480cb846
AV
1223 if (unlikely(size <= 0))
1224 return size ? size : -EFAULT;
1225
1226 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1227
1228 trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1229 iov_iter_revert(iter, trim);
1230
1231 size -= trim;
1232 if (unlikely(!size)) {
1233 ret = -EFAULT;
e97424fd
KB
1234 goto out;
1235 }
2cefe4db 1236
576ed913
CH
1237 for (left = size, i = 0; left > 0; left -= len, i++) {
1238 struct page *page = pages[i];
2cefe4db 1239
576ed913 1240 len = min_t(size_t, PAGE_SIZE - offset, left);
34cdb8c8 1241 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
c58c0074
KB
1242 ret = bio_iov_add_zone_append_page(bio, page, len,
1243 offset);
e97424fd 1244 if (ret)
34cdb8c8 1245 break;
34cdb8c8
KB
1246 } else
1247 bio_iov_add_page(bio, page, len, offset);
45691804 1248
576ed913 1249 offset = 0;
2cefe4db
KO
1250 }
1251
480cb846 1252 iov_iter_revert(iter, left);
e97424fd
KB
1253out:
1254 while (i < nr_pages)
1255 put_page(pages[i++]);
1256
325347d9 1257 return ret;
2cefe4db 1258}
17d51b10
MW
1259
1260/**
6d0c48ae 1261 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1262 * @bio: bio to add pages to
6d0c48ae
JA
1263 * @iter: iov iterator describing the region to be added
1264 *
1265 * This takes either an iterator pointing to user memory, or one pointing to
1266 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1267 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1268 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1269 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1270 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1271 * completed by a call to ->ki_complete() or returns with an error other than
1272 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1273 * on IO completion. If it isn't, then pages should be released.
17d51b10 1274 *
17d51b10 1275 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1276 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1277 * MM encounters an error pinning the requested pages, it stops. Error
1278 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1279 *
1280 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1281 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1282 */
1283int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1284{
c42bca92 1285 int ret = 0;
14eacf12 1286
c42bca92 1287 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1288 bio_iov_bvec_set(bio, iter);
1289 iov_iter_advance(iter, bio->bi_iter.bi_size);
1290 return 0;
c42bca92 1291 }
17d51b10
MW
1292
1293 do {
c58c0074 1294 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1295 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1296
0cf41e5e
PB
1297 /* don't account direct I/O as memory stall */
1298 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1299 return bio->bi_vcnt ? 0 : ret;
17d51b10 1300}
29b2a3aa 1301EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1302
4246a0b6 1303static void submit_bio_wait_endio(struct bio *bio)
9e882242 1304{
65e53aab 1305 complete(bio->bi_private);
9e882242
KO
1306}
1307
1308/**
1309 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1310 * @bio: The &struct bio which describes the I/O
1311 *
1312 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1313 * bio_endio() on failure.
3d289d68
JK
1314 *
1315 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1316 * result in bio reference to be consumed. The caller must drop the reference
1317 * on his own.
9e882242 1318 */
4e49ea4a 1319int submit_bio_wait(struct bio *bio)
9e882242 1320{
309dca30
CH
1321 DECLARE_COMPLETION_ONSTACK_MAP(done,
1322 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1323 unsigned long hang_check;
9e882242 1324
65e53aab 1325 bio->bi_private = &done;
9e882242 1326 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1327 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1328 submit_bio(bio);
de6a78b6
ML
1329
1330 /* Prevent hang_check timer from firing at us during very long I/O */
1331 hang_check = sysctl_hung_task_timeout_secs;
1332 if (hang_check)
1333 while (!wait_for_completion_io_timeout(&done,
1334 hang_check * (HZ/2)))
1335 ;
1336 else
1337 wait_for_completion_io(&done);
9e882242 1338
65e53aab 1339 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1340}
1341EXPORT_SYMBOL(submit_bio_wait);
1342
d4aa57a1 1343void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1344{
1345 if (bio_integrity(bio))
1346 bio_integrity_advance(bio, bytes);
1347
a892c8d5 1348 bio_crypt_advance(bio, bytes);
4550dd6c 1349 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1350}
d4aa57a1 1351EXPORT_SYMBOL(__bio_advance);
054bdf64 1352
45db54d5
KO
1353void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1354 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1355{
45db54d5 1356 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1357 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1358 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1359 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
403d5034
CH
1360 void *src_buf = bvec_kmap_local(&src_bv);
1361 void *dst_buf = bvec_kmap_local(&dst_bv);
f8b679a0 1362
403d5034
CH
1363 memcpy(dst_buf, src_buf, bytes);
1364
1365 kunmap_local(dst_buf);
f8b679a0 1366 kunmap_local(src_buf);
6e6e811d 1367
22b56c29
PB
1368 bio_advance_iter_single(src, src_iter, bytes);
1369 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1370 }
1371}
38a72dac
KO
1372EXPORT_SYMBOL(bio_copy_data_iter);
1373
1374/**
45db54d5
KO
1375 * bio_copy_data - copy contents of data buffers from one bio to another
1376 * @src: source bio
1377 * @dst: destination bio
38a72dac
KO
1378 *
1379 * Stops when it reaches the end of either @src or @dst - that is, copies
1380 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1381 */
1382void bio_copy_data(struct bio *dst, struct bio *src)
1383{
45db54d5
KO
1384 struct bvec_iter src_iter = src->bi_iter;
1385 struct bvec_iter dst_iter = dst->bi_iter;
1386
1387 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1388}
16ac3d63
KO
1389EXPORT_SYMBOL(bio_copy_data);
1390
491221f8 1391void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1392{
1393 struct bio_vec *bvec;
6dc4f100 1394 struct bvec_iter_all iter_all;
1dfa0f68 1395
2b070cfe 1396 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1397 __free_page(bvec->bv_page);
1398}
491221f8 1399EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1400
1da177e4
LT
1401/*
1402 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1403 * for performing direct-IO in BIOs.
1404 *
1405 * The problem is that we cannot run set_page_dirty() from interrupt context
1406 * because the required locks are not interrupt-safe. So what we can do is to
1407 * mark the pages dirty _before_ performing IO. And in interrupt context,
1408 * check that the pages are still dirty. If so, fine. If not, redirty them
1409 * in process context.
1410 *
1411 * We special-case compound pages here: normally this means reads into hugetlb
1412 * pages. The logic in here doesn't really work right for compound pages
1413 * because the VM does not uniformly chase down the head page in all cases.
1414 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1415 * handle them at all. So we skip compound pages here at an early stage.
1416 *
1417 * Note that this code is very hard to test under normal circumstances because
1418 * direct-io pins the pages with get_user_pages(). This makes
1419 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1420 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1421 * pagecache.
1422 *
1423 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1424 * deferred bio dirtying paths.
1425 */
1426
1427/*
1428 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1429 */
1430void bio_set_pages_dirty(struct bio *bio)
1431{
cb34e057 1432 struct bio_vec *bvec;
6dc4f100 1433 struct bvec_iter_all iter_all;
1da177e4 1434
2b070cfe 1435 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1436 if (!PageCompound(bvec->bv_page))
1437 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1438 }
1439}
1440
1da177e4
LT
1441/*
1442 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1443 * If they are, then fine. If, however, some pages are clean then they must
1444 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1445 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1446 *
1447 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1448 * here on. It will run one put_page() against each page and will run one
1449 * bio_put() against the BIO.
1da177e4
LT
1450 */
1451
65f27f38 1452static void bio_dirty_fn(struct work_struct *work);
1da177e4 1453
65f27f38 1454static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1455static DEFINE_SPINLOCK(bio_dirty_lock);
1456static struct bio *bio_dirty_list;
1457
1458/*
1459 * This runs in process context
1460 */
65f27f38 1461static void bio_dirty_fn(struct work_struct *work)
1da177e4 1462{
24d5493f 1463 struct bio *bio, *next;
1da177e4 1464
24d5493f
CH
1465 spin_lock_irq(&bio_dirty_lock);
1466 next = bio_dirty_list;
1da177e4 1467 bio_dirty_list = NULL;
24d5493f 1468 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1469
24d5493f
CH
1470 while ((bio = next) != NULL) {
1471 next = bio->bi_private;
1da177e4 1472
d241a95f 1473 bio_release_pages(bio, true);
1da177e4 1474 bio_put(bio);
1da177e4
LT
1475 }
1476}
1477
1478void bio_check_pages_dirty(struct bio *bio)
1479{
cb34e057 1480 struct bio_vec *bvec;
24d5493f 1481 unsigned long flags;
6dc4f100 1482 struct bvec_iter_all iter_all;
1da177e4 1483
2b070cfe 1484 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1485 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1486 goto defer;
1da177e4
LT
1487 }
1488
d241a95f 1489 bio_release_pages(bio, false);
24d5493f
CH
1490 bio_put(bio);
1491 return;
1492defer:
1493 spin_lock_irqsave(&bio_dirty_lock, flags);
1494 bio->bi_private = bio_dirty_list;
1495 bio_dirty_list = bio;
1496 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1497 schedule_work(&bio_dirty_work);
1da177e4
LT
1498}
1499
c4cf5261
JA
1500static inline bool bio_remaining_done(struct bio *bio)
1501{
1502 /*
1503 * If we're not chaining, then ->__bi_remaining is always 1 and
1504 * we always end io on the first invocation.
1505 */
1506 if (!bio_flagged(bio, BIO_CHAIN))
1507 return true;
1508
1509 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1510
326e1dbb 1511 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1512 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1513 return true;
326e1dbb 1514 }
c4cf5261
JA
1515
1516 return false;
1517}
1518
1da177e4
LT
1519/**
1520 * bio_endio - end I/O on a bio
1521 * @bio: bio
1da177e4
LT
1522 *
1523 * Description:
4246a0b6
CH
1524 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1525 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1526 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1527 *
1528 * bio_endio() can be called several times on a bio that has been chained
1529 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1530 * last time.
1da177e4 1531 **/
4246a0b6 1532void bio_endio(struct bio *bio)
1da177e4 1533{
ba8c6967 1534again:
2b885517 1535 if (!bio_remaining_done(bio))
ba8c6967 1536 return;
7c20f116
CH
1537 if (!bio_integrity_endio(bio))
1538 return;
1da177e4 1539
aa1b46dc 1540 rq_qos_done_bio(bio);
67b42d0b 1541
60b6a7e6 1542 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1543 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1544 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1545 }
1546
ba8c6967
CH
1547 /*
1548 * Need to have a real endio function for chained bios, otherwise
1549 * various corner cases will break (like stacking block devices that
1550 * save/restore bi_end_io) - however, we want to avoid unbounded
1551 * recursion and blowing the stack. Tail call optimization would
1552 * handle this, but compiling with frame pointers also disables
1553 * gcc's sibling call optimization.
1554 */
1555 if (bio->bi_end_io == bio_chain_endio) {
1556 bio = __bio_chain_endio(bio);
1557 goto again;
196d38bc 1558 }
ba8c6967 1559
9e234eea 1560 blk_throtl_bio_endio(bio);
b222dd2f
SL
1561 /* release cgroup info */
1562 bio_uninit(bio);
ba8c6967
CH
1563 if (bio->bi_end_io)
1564 bio->bi_end_io(bio);
1da177e4 1565}
a112a71d 1566EXPORT_SYMBOL(bio_endio);
1da177e4 1567
20d0189b
KO
1568/**
1569 * bio_split - split a bio
1570 * @bio: bio to split
1571 * @sectors: number of sectors to split from the front of @bio
1572 * @gfp: gfp mask
1573 * @bs: bio set to allocate from
1574 *
1575 * Allocates and returns a new bio which represents @sectors from the start of
1576 * @bio, and updates @bio to represent the remaining sectors.
1577 *
f3f5da62 1578 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1579 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1580 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1581 */
1582struct bio *bio_split(struct bio *bio, int sectors,
1583 gfp_t gfp, struct bio_set *bs)
1584{
f341a4d3 1585 struct bio *split;
20d0189b
KO
1586
1587 BUG_ON(sectors <= 0);
1588 BUG_ON(sectors >= bio_sectors(bio));
1589
0512a75b
KB
1590 /* Zone append commands cannot be split */
1591 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1592 return NULL;
1593
abfc426d 1594 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
20d0189b
KO
1595 if (!split)
1596 return NULL;
1597
1598 split->bi_iter.bi_size = sectors << 9;
1599
1600 if (bio_integrity(split))
fbd08e76 1601 bio_integrity_trim(split);
20d0189b
KO
1602
1603 bio_advance(bio, split->bi_iter.bi_size);
1604
fbbaf700 1605 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1606 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1607
20d0189b
KO
1608 return split;
1609}
1610EXPORT_SYMBOL(bio_split);
1611
6678d83f
KO
1612/**
1613 * bio_trim - trim a bio
1614 * @bio: bio to trim
1615 * @offset: number of sectors to trim from the front of @bio
1616 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1617 *
1618 * This function is typically used for bios that are cloned and submitted
1619 * to the underlying device in parts.
6678d83f 1620 */
e83502ca 1621void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1622{
e83502ca 1623 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
8535c018 1624 offset + size > bio_sectors(bio)))
e83502ca 1625 return;
6678d83f
KO
1626
1627 size <<= 9;
4f024f37 1628 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1629 return;
1630
6678d83f 1631 bio_advance(bio, offset << 9);
4f024f37 1632 bio->bi_iter.bi_size = size;
376a78ab
DM
1633
1634 if (bio_integrity(bio))
fbd08e76 1635 bio_integrity_trim(bio);
6678d83f
KO
1636}
1637EXPORT_SYMBOL_GPL(bio_trim);
1638
1da177e4
LT
1639/*
1640 * create memory pools for biovec's in a bio_set.
1641 * use the global biovec slabs created for general use.
1642 */
8aa6ba2f 1643int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1644{
7a800a20 1645 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1646
8aa6ba2f 1647 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1648}
1649
917a38c7
KO
1650/*
1651 * bioset_exit - exit a bioset initialized with bioset_init()
1652 *
1653 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1654 * kzalloc()).
1655 */
1656void bioset_exit(struct bio_set *bs)
1da177e4 1657{
be4d234d 1658 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1659 if (bs->rescue_workqueue)
1660 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1661 bs->rescue_workqueue = NULL;
df2cb6da 1662
8aa6ba2f
KO
1663 mempool_exit(&bs->bio_pool);
1664 mempool_exit(&bs->bvec_pool);
9f060e22 1665
7878cba9 1666 bioset_integrity_free(bs);
917a38c7
KO
1667 if (bs->bio_slab)
1668 bio_put_slab(bs);
1669 bs->bio_slab = NULL;
1670}
1671EXPORT_SYMBOL(bioset_exit);
1da177e4 1672
917a38c7
KO
1673/**
1674 * bioset_init - Initialize a bio_set
dad08527 1675 * @bs: pool to initialize
917a38c7
KO
1676 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1677 * @front_pad: Number of bytes to allocate in front of the returned bio
1678 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1679 * and %BIOSET_NEED_RESCUER
1680 *
dad08527
KO
1681 * Description:
1682 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1683 * to ask for a number of bytes to be allocated in front of the bio.
1684 * Front pad allocation is useful for embedding the bio inside
1685 * another structure, to avoid allocating extra data to go with the bio.
1686 * Note that the bio must be embedded at the END of that structure always,
1687 * or things will break badly.
1688 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
abfc426d
CH
1689 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1690 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1691 * to dispatch queued requests when the mempool runs out of space.
dad08527 1692 *
917a38c7
KO
1693 */
1694int bioset_init(struct bio_set *bs,
1695 unsigned int pool_size,
1696 unsigned int front_pad,
1697 int flags)
1698{
917a38c7 1699 bs->front_pad = front_pad;
9f180e31
ML
1700 if (flags & BIOSET_NEED_BVECS)
1701 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1702 else
1703 bs->back_pad = 0;
917a38c7
KO
1704
1705 spin_lock_init(&bs->rescue_lock);
1706 bio_list_init(&bs->rescue_list);
1707 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1708
49d1ec85 1709 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1710 if (!bs->bio_slab)
1711 return -ENOMEM;
1712
1713 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1714 goto bad;
1715
1716 if ((flags & BIOSET_NEED_BVECS) &&
1717 biovec_init_pool(&bs->bvec_pool, pool_size))
1718 goto bad;
1719
be4d234d
JA
1720 if (flags & BIOSET_NEED_RESCUER) {
1721 bs->rescue_workqueue = alloc_workqueue("bioset",
1722 WQ_MEM_RECLAIM, 0);
1723 if (!bs->rescue_workqueue)
1724 goto bad;
1725 }
1726 if (flags & BIOSET_PERCPU_CACHE) {
1727 bs->cache = alloc_percpu(struct bio_alloc_cache);
1728 if (!bs->cache)
1729 goto bad;
1730 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1731 }
917a38c7
KO
1732
1733 return 0;
1734bad:
1735 bioset_exit(bs);
1736 return -ENOMEM;
1737}
1738EXPORT_SYMBOL(bioset_init);
1739
de76fd89 1740static int __init init_bio(void)
1da177e4
LT
1741{
1742 int i;
1743
7878cba9 1744 bio_integrity_init();
1da177e4 1745
de76fd89
CH
1746 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1747 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1748
de76fd89
CH
1749 bvs->slab = kmem_cache_create(bvs->name,
1750 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1751 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1752 }
1da177e4 1753
be4d234d
JA
1754 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1755 bio_cpu_dead);
1756
f4f8154a 1757 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1758 panic("bio: can't allocate bios\n");
1759
f4f8154a 1760 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1761 panic("bio: can't create integrity pool\n");
1762
1da177e4
LT
1763 return 0;
1764}
1da177e4 1765subsys_initcall(init_bio);