]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
vfs: new internal helper: mnt_has_parent(mnt)
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
158unsigned int mnt_get_count(struct vfsmount *mnt)
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169#else
170 return mnt->mnt_count;
171#endif
172}
173
9d412a43 174static struct vfsmount *alloc_vfsmnt(const char *name)
1da177e4 175{
c3762229 176 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 177 if (mnt) {
73cd49ec
MS
178 int err;
179
180 err = mnt_alloc_id(mnt);
88b38782
LZ
181 if (err)
182 goto out_free_cache;
183
184 if (name) {
185 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
186 if (!mnt->mnt_devname)
187 goto out_free_id;
73cd49ec
MS
188 }
189
b3e19d92
NP
190#ifdef CONFIG_SMP
191 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
192 if (!mnt->mnt_pcp)
193 goto out_free_devname;
194
f03c6599 195 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92
NP
196#else
197 mnt->mnt_count = 1;
198 mnt->mnt_writers = 0;
199#endif
200
1da177e4
LT
201 INIT_LIST_HEAD(&mnt->mnt_hash);
202 INIT_LIST_HEAD(&mnt->mnt_child);
203 INIT_LIST_HEAD(&mnt->mnt_mounts);
204 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 205 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 206 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
207 INIT_LIST_HEAD(&mnt->mnt_slave_list);
208 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
209#ifdef CONFIG_FSNOTIFY
210 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 211#endif
1da177e4
LT
212 }
213 return mnt;
88b38782 214
d3ef3d73
NP
215#ifdef CONFIG_SMP
216out_free_devname:
217 kfree(mnt->mnt_devname);
218#endif
88b38782
LZ
219out_free_id:
220 mnt_free_id(mnt);
221out_free_cache:
222 kmem_cache_free(mnt_cache, mnt);
223 return NULL;
1da177e4
LT
224}
225
3d733633
DH
226/*
227 * Most r/o checks on a fs are for operations that take
228 * discrete amounts of time, like a write() or unlink().
229 * We must keep track of when those operations start
230 * (for permission checks) and when they end, so that
231 * we can determine when writes are able to occur to
232 * a filesystem.
233 */
234/*
235 * __mnt_is_readonly: check whether a mount is read-only
236 * @mnt: the mount to check for its write status
237 *
238 * This shouldn't be used directly ouside of the VFS.
239 * It does not guarantee that the filesystem will stay
240 * r/w, just that it is right *now*. This can not and
241 * should not be used in place of IS_RDONLY(inode).
242 * mnt_want/drop_write() will _keep_ the filesystem
243 * r/w.
244 */
245int __mnt_is_readonly(struct vfsmount *mnt)
246{
2e4b7fcd
DH
247 if (mnt->mnt_flags & MNT_READONLY)
248 return 1;
249 if (mnt->mnt_sb->s_flags & MS_RDONLY)
250 return 1;
251 return 0;
3d733633
DH
252}
253EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
c6653a83 255static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73
NP
256{
257#ifdef CONFIG_SMP
b3e19d92 258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73
NP
259#else
260 mnt->mnt_writers++;
261#endif
262}
3d733633 263
c6653a83 264static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
b3e19d92 267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73
NP
268#else
269 mnt->mnt_writers--;
270#endif
3d733633 271}
3d733633 272
c6653a83 273static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 274{
d3ef3d73
NP
275#ifdef CONFIG_SMP
276 unsigned int count = 0;
3d733633 277 int cpu;
3d733633
DH
278
279 for_each_possible_cpu(cpu) {
b3e19d92 280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 281 }
3d733633 282
d3ef3d73
NP
283 return count;
284#else
285 return mnt->mnt_writers;
286#endif
3d733633
DH
287}
288
8366025e
DH
289/*
290 * Most r/o checks on a fs are for operations that take
291 * discrete amounts of time, like a write() or unlink().
292 * We must keep track of when those operations start
293 * (for permission checks) and when they end, so that
294 * we can determine when writes are able to occur to
295 * a filesystem.
296 */
297/**
298 * mnt_want_write - get write access to a mount
299 * @mnt: the mount on which to take a write
300 *
301 * This tells the low-level filesystem that a write is
302 * about to be performed to it, and makes sure that
303 * writes are allowed before returning success. When
304 * the write operation is finished, mnt_drop_write()
305 * must be called. This is effectively a refcount.
306 */
307int mnt_want_write(struct vfsmount *mnt)
308{
3d733633 309 int ret = 0;
3d733633 310
d3ef3d73 311 preempt_disable();
c6653a83 312 mnt_inc_writers(mnt);
d3ef3d73 313 /*
c6653a83 314 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
315 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
316 * incremented count after it has set MNT_WRITE_HOLD.
317 */
318 smp_mb();
319 while (mnt->mnt_flags & MNT_WRITE_HOLD)
320 cpu_relax();
321 /*
322 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
323 * be set to match its requirements. So we must not load that until
324 * MNT_WRITE_HOLD is cleared.
325 */
326 smp_rmb();
3d733633 327 if (__mnt_is_readonly(mnt)) {
c6653a83 328 mnt_dec_writers(mnt);
3d733633
DH
329 ret = -EROFS;
330 goto out;
331 }
3d733633 332out:
d3ef3d73 333 preempt_enable();
3d733633 334 return ret;
8366025e
DH
335}
336EXPORT_SYMBOL_GPL(mnt_want_write);
337
96029c4e
NP
338/**
339 * mnt_clone_write - get write access to a mount
340 * @mnt: the mount on which to take a write
341 *
342 * This is effectively like mnt_want_write, except
343 * it must only be used to take an extra write reference
344 * on a mountpoint that we already know has a write reference
345 * on it. This allows some optimisation.
346 *
347 * After finished, mnt_drop_write must be called as usual to
348 * drop the reference.
349 */
350int mnt_clone_write(struct vfsmount *mnt)
351{
352 /* superblock may be r/o */
353 if (__mnt_is_readonly(mnt))
354 return -EROFS;
355 preempt_disable();
c6653a83 356 mnt_inc_writers(mnt);
96029c4e
NP
357 preempt_enable();
358 return 0;
359}
360EXPORT_SYMBOL_GPL(mnt_clone_write);
361
362/**
363 * mnt_want_write_file - get write access to a file's mount
364 * @file: the file who's mount on which to take a write
365 *
366 * This is like mnt_want_write, but it takes a file and can
367 * do some optimisations if the file is open for write already
368 */
369int mnt_want_write_file(struct file *file)
370{
2d8dd38a
OH
371 struct inode *inode = file->f_dentry->d_inode;
372 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
373 return mnt_want_write(file->f_path.mnt);
374 else
375 return mnt_clone_write(file->f_path.mnt);
376}
377EXPORT_SYMBOL_GPL(mnt_want_write_file);
378
8366025e
DH
379/**
380 * mnt_drop_write - give up write access to a mount
381 * @mnt: the mount on which to give up write access
382 *
383 * Tells the low-level filesystem that we are done
384 * performing writes to it. Must be matched with
385 * mnt_want_write() call above.
386 */
387void mnt_drop_write(struct vfsmount *mnt)
388{
d3ef3d73 389 preempt_disable();
c6653a83 390 mnt_dec_writers(mnt);
d3ef3d73 391 preempt_enable();
8366025e
DH
392}
393EXPORT_SYMBOL_GPL(mnt_drop_write);
394
2e4b7fcd 395static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 396{
3d733633
DH
397 int ret = 0;
398
99b7db7b 399 br_write_lock(vfsmount_lock);
d3ef3d73 400 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 401 /*
d3ef3d73
NP
402 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
403 * should be visible before we do.
3d733633 404 */
d3ef3d73
NP
405 smp_mb();
406
3d733633 407 /*
d3ef3d73
NP
408 * With writers on hold, if this value is zero, then there are
409 * definitely no active writers (although held writers may subsequently
410 * increment the count, they'll have to wait, and decrement it after
411 * seeing MNT_READONLY).
412 *
413 * It is OK to have counter incremented on one CPU and decremented on
414 * another: the sum will add up correctly. The danger would be when we
415 * sum up each counter, if we read a counter before it is incremented,
416 * but then read another CPU's count which it has been subsequently
417 * decremented from -- we would see more decrements than we should.
418 * MNT_WRITE_HOLD protects against this scenario, because
419 * mnt_want_write first increments count, then smp_mb, then spins on
420 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
421 * we're counting up here.
3d733633 422 */
c6653a83 423 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
424 ret = -EBUSY;
425 else
2e4b7fcd 426 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73
NP
427 /*
428 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
429 * that become unheld will see MNT_READONLY.
430 */
431 smp_wmb();
432 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 433 br_write_unlock(vfsmount_lock);
3d733633 434 return ret;
8366025e 435}
8366025e 436
2e4b7fcd
DH
437static void __mnt_unmake_readonly(struct vfsmount *mnt)
438{
99b7db7b 439 br_write_lock(vfsmount_lock);
2e4b7fcd 440 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 441 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
442}
443
9d412a43 444static void free_vfsmnt(struct vfsmount *mnt)
1da177e4
LT
445{
446 kfree(mnt->mnt_devname);
73cd49ec 447 mnt_free_id(mnt);
d3ef3d73 448#ifdef CONFIG_SMP
b3e19d92 449 free_percpu(mnt->mnt_pcp);
d3ef3d73 450#endif
1da177e4
LT
451 kmem_cache_free(mnt_cache, mnt);
452}
453
454/*
a05964f3
RP
455 * find the first or last mount at @dentry on vfsmount @mnt depending on
456 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 457 * vfsmount_lock must be held for read or write.
1da177e4 458 */
a05964f3
RP
459struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
460 int dir)
1da177e4 461{
b58fed8b
RP
462 struct list_head *head = mount_hashtable + hash(mnt, dentry);
463 struct list_head *tmp = head;
1da177e4
LT
464 struct vfsmount *p, *found = NULL;
465
1da177e4 466 for (;;) {
a05964f3 467 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
468 p = NULL;
469 if (tmp == head)
470 break;
471 p = list_entry(tmp, struct vfsmount, mnt_hash);
472 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 473 found = p;
1da177e4
LT
474 break;
475 }
476 }
1da177e4
LT
477 return found;
478}
479
a05964f3
RP
480/*
481 * lookup_mnt increments the ref count before returning
482 * the vfsmount struct.
483 */
1c755af4 484struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
485{
486 struct vfsmount *child_mnt;
99b7db7b
NP
487
488 br_read_lock(vfsmount_lock);
1c755af4 489 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3 490 mntget(child_mnt);
99b7db7b 491 br_read_unlock(vfsmount_lock);
a05964f3
RP
492 return child_mnt;
493}
494
1da177e4
LT
495static inline int check_mnt(struct vfsmount *mnt)
496{
6b3286ed 497 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
498}
499
99b7db7b
NP
500/*
501 * vfsmount lock must be held for write
502 */
6b3286ed 503static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
504{
505 if (ns) {
506 ns->event = ++event;
507 wake_up_interruptible(&ns->poll);
508 }
509}
510
99b7db7b
NP
511/*
512 * vfsmount lock must be held for write
513 */
6b3286ed 514static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
515{
516 if (ns && ns->event != event) {
517 ns->event = event;
518 wake_up_interruptible(&ns->poll);
519 }
520}
521
5f57cbcc
NP
522/*
523 * Clear dentry's mounted state if it has no remaining mounts.
524 * vfsmount_lock must be held for write.
525 */
526static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
527{
528 unsigned u;
529
530 for (u = 0; u < HASH_SIZE; u++) {
531 struct vfsmount *p;
532
533 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
534 if (p->mnt_mountpoint == dentry)
535 return;
536 }
537 }
538 spin_lock(&dentry->d_lock);
539 dentry->d_flags &= ~DCACHE_MOUNTED;
540 spin_unlock(&dentry->d_lock);
541}
542
99b7db7b
NP
543/*
544 * vfsmount lock must be held for write
545 */
1a390689 546static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 547{
1a390689
AV
548 old_path->dentry = mnt->mnt_mountpoint;
549 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
550 mnt->mnt_parent = mnt;
551 mnt->mnt_mountpoint = mnt->mnt_root;
552 list_del_init(&mnt->mnt_child);
553 list_del_init(&mnt->mnt_hash);
5f57cbcc 554 dentry_reset_mounted(old_path->mnt, old_path->dentry);
1da177e4
LT
555}
556
99b7db7b
NP
557/*
558 * vfsmount lock must be held for write
559 */
b90fa9ae
RP
560void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
561 struct vfsmount *child_mnt)
562{
563 child_mnt->mnt_parent = mntget(mnt);
564 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
565 spin_lock(&dentry->d_lock);
566 dentry->d_flags |= DCACHE_MOUNTED;
567 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
568}
569
99b7db7b
NP
570/*
571 * vfsmount lock must be held for write
572 */
1a390689 573static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 574{
1a390689 575 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 576 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
577 hash(path->mnt, path->dentry));
578 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
579}
580
7e3d0eb0
AV
581static inline void __mnt_make_longterm(struct vfsmount *mnt)
582{
583#ifdef CONFIG_SMP
584 atomic_inc(&mnt->mnt_longterm);
585#endif
586}
587
588/* needs vfsmount lock for write */
589static inline void __mnt_make_shortterm(struct vfsmount *mnt)
590{
591#ifdef CONFIG_SMP
592 atomic_dec(&mnt->mnt_longterm);
593#endif
594}
595
b90fa9ae 596/*
99b7db7b 597 * vfsmount lock must be held for write
b90fa9ae
RP
598 */
599static void commit_tree(struct vfsmount *mnt)
600{
601 struct vfsmount *parent = mnt->mnt_parent;
602 struct vfsmount *m;
603 LIST_HEAD(head);
6b3286ed 604 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
605
606 BUG_ON(parent == mnt);
607
608 list_add_tail(&head, &mnt->mnt_list);
f03c6599 609 list_for_each_entry(m, &head, mnt_list) {
6b3286ed 610 m->mnt_ns = n;
7e3d0eb0 611 __mnt_make_longterm(m);
f03c6599
AV
612 }
613
b90fa9ae
RP
614 list_splice(&head, n->list.prev);
615
616 list_add_tail(&mnt->mnt_hash, mount_hashtable +
617 hash(parent, mnt->mnt_mountpoint));
618 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 619 touch_mnt_namespace(n);
1da177e4
LT
620}
621
622static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
623{
624 struct list_head *next = p->mnt_mounts.next;
625 if (next == &p->mnt_mounts) {
626 while (1) {
627 if (p == root)
628 return NULL;
629 next = p->mnt_child.next;
630 if (next != &p->mnt_parent->mnt_mounts)
631 break;
632 p = p->mnt_parent;
633 }
634 }
635 return list_entry(next, struct vfsmount, mnt_child);
636}
637
9676f0c6
RP
638static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
639{
640 struct list_head *prev = p->mnt_mounts.prev;
641 while (prev != &p->mnt_mounts) {
642 p = list_entry(prev, struct vfsmount, mnt_child);
643 prev = p->mnt_mounts.prev;
644 }
645 return p;
646}
647
9d412a43
AV
648struct vfsmount *
649vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
650{
651 struct vfsmount *mnt;
652 struct dentry *root;
653
654 if (!type)
655 return ERR_PTR(-ENODEV);
656
657 mnt = alloc_vfsmnt(name);
658 if (!mnt)
659 return ERR_PTR(-ENOMEM);
660
661 if (flags & MS_KERNMOUNT)
662 mnt->mnt_flags = MNT_INTERNAL;
663
664 root = mount_fs(type, flags, name, data);
665 if (IS_ERR(root)) {
666 free_vfsmnt(mnt);
667 return ERR_CAST(root);
668 }
669
670 mnt->mnt_root = root;
671 mnt->mnt_sb = root->d_sb;
672 mnt->mnt_mountpoint = mnt->mnt_root;
673 mnt->mnt_parent = mnt;
674 return mnt;
675}
676EXPORT_SYMBOL_GPL(vfs_kern_mount);
677
36341f64
RP
678static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
679 int flag)
1da177e4
LT
680{
681 struct super_block *sb = old->mnt_sb;
682 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
683
684 if (mnt) {
719f5d7f
MS
685 if (flag & (CL_SLAVE | CL_PRIVATE))
686 mnt->mnt_group_id = 0; /* not a peer of original */
687 else
688 mnt->mnt_group_id = old->mnt_group_id;
689
690 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
691 int err = mnt_alloc_group_id(mnt);
692 if (err)
693 goto out_free;
694 }
695
be1a16a0 696 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
697 atomic_inc(&sb->s_active);
698 mnt->mnt_sb = sb;
699 mnt->mnt_root = dget(root);
700 mnt->mnt_mountpoint = mnt->mnt_root;
701 mnt->mnt_parent = mnt;
b90fa9ae 702
5afe0022
RP
703 if (flag & CL_SLAVE) {
704 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
705 mnt->mnt_master = old;
706 CLEAR_MNT_SHARED(mnt);
8aec0809 707 } else if (!(flag & CL_PRIVATE)) {
796a6b52 708 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
709 list_add(&mnt->mnt_share, &old->mnt_share);
710 if (IS_MNT_SLAVE(old))
711 list_add(&mnt->mnt_slave, &old->mnt_slave);
712 mnt->mnt_master = old->mnt_master;
713 }
b90fa9ae
RP
714 if (flag & CL_MAKE_SHARED)
715 set_mnt_shared(mnt);
1da177e4
LT
716
717 /* stick the duplicate mount on the same expiry list
718 * as the original if that was on one */
36341f64 719 if (flag & CL_EXPIRE) {
36341f64
RP
720 if (!list_empty(&old->mnt_expire))
721 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 722 }
1da177e4
LT
723 }
724 return mnt;
719f5d7f
MS
725
726 out_free:
727 free_vfsmnt(mnt);
728 return NULL;
1da177e4
LT
729}
730
b3e19d92 731static inline void mntfree(struct vfsmount *mnt)
1da177e4
LT
732{
733 struct super_block *sb = mnt->mnt_sb;
b3e19d92 734
3d733633
DH
735 /*
736 * This probably indicates that somebody messed
737 * up a mnt_want/drop_write() pair. If this
738 * happens, the filesystem was probably unable
739 * to make r/w->r/o transitions.
740 */
d3ef3d73 741 /*
b3e19d92
NP
742 * The locking used to deal with mnt_count decrement provides barriers,
743 * so mnt_get_writers() below is safe.
d3ef3d73 744 */
c6653a83 745 WARN_ON(mnt_get_writers(mnt));
ca9c726e 746 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
747 dput(mnt->mnt_root);
748 free_vfsmnt(mnt);
749 deactivate_super(sb);
750}
751
f03c6599 752static void mntput_no_expire(struct vfsmount *mnt)
b3e19d92 753{
b3e19d92 754put_again:
f03c6599
AV
755#ifdef CONFIG_SMP
756 br_read_lock(vfsmount_lock);
757 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 758 mnt_add_count(mnt, -1);
b3e19d92 759 br_read_unlock(vfsmount_lock);
f03c6599 760 return;
b3e19d92 761 }
f03c6599 762 br_read_unlock(vfsmount_lock);
b3e19d92 763
99b7db7b 764 br_write_lock(vfsmount_lock);
aa9c0e07 765 mnt_add_count(mnt, -1);
b3e19d92 766 if (mnt_get_count(mnt)) {
99b7db7b
NP
767 br_write_unlock(vfsmount_lock);
768 return;
769 }
b3e19d92 770#else
aa9c0e07 771 mnt_add_count(mnt, -1);
b3e19d92 772 if (likely(mnt_get_count(mnt)))
99b7db7b 773 return;
b3e19d92 774 br_write_lock(vfsmount_lock);
f03c6599 775#endif
b3e19d92
NP
776 if (unlikely(mnt->mnt_pinned)) {
777 mnt_add_count(mnt, mnt->mnt_pinned + 1);
778 mnt->mnt_pinned = 0;
779 br_write_unlock(vfsmount_lock);
780 acct_auto_close_mnt(mnt);
781 goto put_again;
7b7b1ace 782 }
99b7db7b 783 br_write_unlock(vfsmount_lock);
b3e19d92
NP
784 mntfree(mnt);
785}
b3e19d92
NP
786
787void mntput(struct vfsmount *mnt)
788{
789 if (mnt) {
790 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
791 if (unlikely(mnt->mnt_expiry_mark))
792 mnt->mnt_expiry_mark = 0;
f03c6599 793 mntput_no_expire(mnt);
b3e19d92
NP
794 }
795}
796EXPORT_SYMBOL(mntput);
797
798struct vfsmount *mntget(struct vfsmount *mnt)
799{
800 if (mnt)
aa9c0e07 801 mnt_add_count(mnt, 1);
b3e19d92
NP
802 return mnt;
803}
804EXPORT_SYMBOL(mntget);
805
7b7b1ace
AV
806void mnt_pin(struct vfsmount *mnt)
807{
99b7db7b 808 br_write_lock(vfsmount_lock);
7b7b1ace 809 mnt->mnt_pinned++;
99b7db7b 810 br_write_unlock(vfsmount_lock);
7b7b1ace 811}
7b7b1ace
AV
812EXPORT_SYMBOL(mnt_pin);
813
814void mnt_unpin(struct vfsmount *mnt)
815{
99b7db7b 816 br_write_lock(vfsmount_lock);
7b7b1ace 817 if (mnt->mnt_pinned) {
aa9c0e07 818 mnt_add_count(mnt, 1);
7b7b1ace
AV
819 mnt->mnt_pinned--;
820 }
99b7db7b 821 br_write_unlock(vfsmount_lock);
7b7b1ace 822}
7b7b1ace 823EXPORT_SYMBOL(mnt_unpin);
1da177e4 824
b3b304a2
MS
825static inline void mangle(struct seq_file *m, const char *s)
826{
827 seq_escape(m, s, " \t\n\\");
828}
829
830/*
831 * Simple .show_options callback for filesystems which don't want to
832 * implement more complex mount option showing.
833 *
834 * See also save_mount_options().
835 */
836int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
837{
2a32cebd
AV
838 const char *options;
839
840 rcu_read_lock();
841 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
842
843 if (options != NULL && options[0]) {
844 seq_putc(m, ',');
845 mangle(m, options);
846 }
2a32cebd 847 rcu_read_unlock();
b3b304a2
MS
848
849 return 0;
850}
851EXPORT_SYMBOL(generic_show_options);
852
853/*
854 * If filesystem uses generic_show_options(), this function should be
855 * called from the fill_super() callback.
856 *
857 * The .remount_fs callback usually needs to be handled in a special
858 * way, to make sure, that previous options are not overwritten if the
859 * remount fails.
860 *
861 * Also note, that if the filesystem's .remount_fs function doesn't
862 * reset all options to their default value, but changes only newly
863 * given options, then the displayed options will not reflect reality
864 * any more.
865 */
866void save_mount_options(struct super_block *sb, char *options)
867{
2a32cebd
AV
868 BUG_ON(sb->s_options);
869 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
870}
871EXPORT_SYMBOL(save_mount_options);
872
2a32cebd
AV
873void replace_mount_options(struct super_block *sb, char *options)
874{
875 char *old = sb->s_options;
876 rcu_assign_pointer(sb->s_options, options);
877 if (old) {
878 synchronize_rcu();
879 kfree(old);
880 }
881}
882EXPORT_SYMBOL(replace_mount_options);
883
a1a2c409 884#ifdef CONFIG_PROC_FS
1da177e4
LT
885/* iterator */
886static void *m_start(struct seq_file *m, loff_t *pos)
887{
a1a2c409 888 struct proc_mounts *p = m->private;
1da177e4 889
390c6843 890 down_read(&namespace_sem);
a1a2c409 891 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
892}
893
894static void *m_next(struct seq_file *m, void *v, loff_t *pos)
895{
a1a2c409 896 struct proc_mounts *p = m->private;
b0765fb8 897
a1a2c409 898 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
899}
900
901static void m_stop(struct seq_file *m, void *v)
902{
390c6843 903 up_read(&namespace_sem);
1da177e4
LT
904}
905
9f5596af
AV
906int mnt_had_events(struct proc_mounts *p)
907{
908 struct mnt_namespace *ns = p->ns;
909 int res = 0;
910
99b7db7b 911 br_read_lock(vfsmount_lock);
f1514638
KS
912 if (p->m.poll_event != ns->event) {
913 p->m.poll_event = ns->event;
9f5596af
AV
914 res = 1;
915 }
99b7db7b 916 br_read_unlock(vfsmount_lock);
9f5596af
AV
917
918 return res;
919}
920
2d4d4864
RP
921struct proc_fs_info {
922 int flag;
923 const char *str;
924};
925
2069f457 926static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 927{
2d4d4864 928 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
929 { MS_SYNCHRONOUS, ",sync" },
930 { MS_DIRSYNC, ",dirsync" },
931 { MS_MANDLOCK, ",mand" },
1da177e4
LT
932 { 0, NULL }
933 };
2d4d4864
RP
934 const struct proc_fs_info *fs_infop;
935
936 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
937 if (sb->s_flags & fs_infop->flag)
938 seq_puts(m, fs_infop->str);
939 }
2069f457
EP
940
941 return security_sb_show_options(m, sb);
2d4d4864
RP
942}
943
944static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
945{
946 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
947 { MNT_NOSUID, ",nosuid" },
948 { MNT_NODEV, ",nodev" },
949 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
950 { MNT_NOATIME, ",noatime" },
951 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 952 { MNT_RELATIME, ",relatime" },
1da177e4
LT
953 { 0, NULL }
954 };
2d4d4864
RP
955 const struct proc_fs_info *fs_infop;
956
957 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
958 if (mnt->mnt_flags & fs_infop->flag)
959 seq_puts(m, fs_infop->str);
960 }
961}
962
963static void show_type(struct seq_file *m, struct super_block *sb)
964{
965 mangle(m, sb->s_type->name);
966 if (sb->s_subtype && sb->s_subtype[0]) {
967 seq_putc(m, '.');
968 mangle(m, sb->s_subtype);
969 }
970}
971
972static int show_vfsmnt(struct seq_file *m, void *v)
973{
974 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
975 int err = 0;
c32c2f63 976 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 977
c7f404b4
AV
978 if (mnt->mnt_sb->s_op->show_devname) {
979 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
980 if (err)
981 goto out;
982 } else {
983 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
984 }
1da177e4 985 seq_putc(m, ' ');
c32c2f63 986 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 987 seq_putc(m, ' ');
2d4d4864 988 show_type(m, mnt->mnt_sb);
2e4b7fcd 989 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
990 err = show_sb_opts(m, mnt->mnt_sb);
991 if (err)
992 goto out;
2d4d4864 993 show_mnt_opts(m, mnt);
1da177e4
LT
994 if (mnt->mnt_sb->s_op->show_options)
995 err = mnt->mnt_sb->s_op->show_options(m, mnt);
996 seq_puts(m, " 0 0\n");
2069f457 997out:
1da177e4
LT
998 return err;
999}
1000
a1a2c409 1001const struct seq_operations mounts_op = {
1da177e4
LT
1002 .start = m_start,
1003 .next = m_next,
1004 .stop = m_stop,
1005 .show = show_vfsmnt
1006};
1007
2d4d4864
RP
1008static int show_mountinfo(struct seq_file *m, void *v)
1009{
1010 struct proc_mounts *p = m->private;
1011 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1012 struct super_block *sb = mnt->mnt_sb;
1013 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1014 struct path root = p->root;
1015 int err = 0;
1016
1017 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1018 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1019 if (sb->s_op->show_path)
1020 err = sb->s_op->show_path(m, mnt);
1021 else
1022 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1023 if (err)
1024 goto out;
2d4d4864 1025 seq_putc(m, ' ');
02125a82
AV
1026
1027 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1028 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1029 if (err)
1030 goto out;
1031
2d4d4864
RP
1032 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1033 show_mnt_opts(m, mnt);
1034
1035 /* Tagged fields ("foo:X" or "bar") */
1036 if (IS_MNT_SHARED(mnt))
1037 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1038 if (IS_MNT_SLAVE(mnt)) {
1039 int master = mnt->mnt_master->mnt_group_id;
1040 int dom = get_dominating_id(mnt, &p->root);
1041 seq_printf(m, " master:%i", master);
1042 if (dom && dom != master)
1043 seq_printf(m, " propagate_from:%i", dom);
1044 }
2d4d4864
RP
1045 if (IS_MNT_UNBINDABLE(mnt))
1046 seq_puts(m, " unbindable");
1047
1048 /* Filesystem specific data */
1049 seq_puts(m, " - ");
1050 show_type(m, sb);
1051 seq_putc(m, ' ');
c7f404b4
AV
1052 if (sb->s_op->show_devname)
1053 err = sb->s_op->show_devname(m, mnt);
1054 else
1055 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1056 if (err)
1057 goto out;
2d4d4864 1058 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1059 err = show_sb_opts(m, sb);
1060 if (err)
1061 goto out;
2d4d4864
RP
1062 if (sb->s_op->show_options)
1063 err = sb->s_op->show_options(m, mnt);
1064 seq_putc(m, '\n');
2069f457 1065out:
2d4d4864
RP
1066 return err;
1067}
1068
1069const struct seq_operations mountinfo_op = {
1070 .start = m_start,
1071 .next = m_next,
1072 .stop = m_stop,
1073 .show = show_mountinfo,
1074};
1075
b4629fe2
CL
1076static int show_vfsstat(struct seq_file *m, void *v)
1077{
b0765fb8 1078 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1079 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1080 int err = 0;
1081
1082 /* device */
c7f404b4 1083 if (mnt->mnt_sb->s_op->show_devname) {
a877ee03 1084 seq_puts(m, "device ");
c7f404b4
AV
1085 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1086 } else {
1087 if (mnt->mnt_devname) {
1088 seq_puts(m, "device ");
1089 mangle(m, mnt->mnt_devname);
1090 } else
1091 seq_puts(m, "no device");
1092 }
b4629fe2
CL
1093
1094 /* mount point */
1095 seq_puts(m, " mounted on ");
c32c2f63 1096 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1097 seq_putc(m, ' ');
1098
1099 /* file system type */
1100 seq_puts(m, "with fstype ");
2d4d4864 1101 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1102
1103 /* optional statistics */
1104 if (mnt->mnt_sb->s_op->show_stats) {
1105 seq_putc(m, ' ');
c7f404b4
AV
1106 if (!err)
1107 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1108 }
1109
1110 seq_putc(m, '\n');
1111 return err;
1112}
1113
a1a2c409 1114const struct seq_operations mountstats_op = {
b4629fe2
CL
1115 .start = m_start,
1116 .next = m_next,
1117 .stop = m_stop,
1118 .show = show_vfsstat,
1119};
a1a2c409 1120#endif /* CONFIG_PROC_FS */
b4629fe2 1121
1da177e4
LT
1122/**
1123 * may_umount_tree - check if a mount tree is busy
1124 * @mnt: root of mount tree
1125 *
1126 * This is called to check if a tree of mounts has any
1127 * open files, pwds, chroots or sub mounts that are
1128 * busy.
1129 */
1130int may_umount_tree(struct vfsmount *mnt)
1131{
36341f64
RP
1132 int actual_refs = 0;
1133 int minimum_refs = 0;
1134 struct vfsmount *p;
1da177e4 1135
b3e19d92
NP
1136 /* write lock needed for mnt_get_count */
1137 br_write_lock(vfsmount_lock);
36341f64 1138 for (p = mnt; p; p = next_mnt(p, mnt)) {
b3e19d92 1139 actual_refs += mnt_get_count(p);
1da177e4 1140 minimum_refs += 2;
1da177e4 1141 }
b3e19d92 1142 br_write_unlock(vfsmount_lock);
1da177e4
LT
1143
1144 if (actual_refs > minimum_refs)
e3474a8e 1145 return 0;
1da177e4 1146
e3474a8e 1147 return 1;
1da177e4
LT
1148}
1149
1150EXPORT_SYMBOL(may_umount_tree);
1151
1152/**
1153 * may_umount - check if a mount point is busy
1154 * @mnt: root of mount
1155 *
1156 * This is called to check if a mount point has any
1157 * open files, pwds, chroots or sub mounts. If the
1158 * mount has sub mounts this will return busy
1159 * regardless of whether the sub mounts are busy.
1160 *
1161 * Doesn't take quota and stuff into account. IOW, in some cases it will
1162 * give false negatives. The main reason why it's here is that we need
1163 * a non-destructive way to look for easily umountable filesystems.
1164 */
1165int may_umount(struct vfsmount *mnt)
1166{
e3474a8e 1167 int ret = 1;
8ad08d8a 1168 down_read(&namespace_sem);
b3e19d92 1169 br_write_lock(vfsmount_lock);
a05964f3 1170 if (propagate_mount_busy(mnt, 2))
e3474a8e 1171 ret = 0;
b3e19d92 1172 br_write_unlock(vfsmount_lock);
8ad08d8a 1173 up_read(&namespace_sem);
a05964f3 1174 return ret;
1da177e4
LT
1175}
1176
1177EXPORT_SYMBOL(may_umount);
1178
b90fa9ae 1179void release_mounts(struct list_head *head)
70fbcdf4
RP
1180{
1181 struct vfsmount *mnt;
bf066c7d 1182 while (!list_empty(head)) {
b5e61818 1183 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4 1184 list_del_init(&mnt->mnt_hash);
b2dba1af 1185 if (mnt_has_parent(mnt)) {
70fbcdf4
RP
1186 struct dentry *dentry;
1187 struct vfsmount *m;
99b7db7b
NP
1188
1189 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1190 dentry = mnt->mnt_mountpoint;
1191 m = mnt->mnt_parent;
1192 mnt->mnt_mountpoint = mnt->mnt_root;
1193 mnt->mnt_parent = mnt;
7c4b93d8 1194 m->mnt_ghosts--;
99b7db7b 1195 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1196 dput(dentry);
1197 mntput(m);
1198 }
f03c6599 1199 mntput(mnt);
70fbcdf4
RP
1200 }
1201}
1202
99b7db7b
NP
1203/*
1204 * vfsmount lock must be held for write
1205 * namespace_sem must be held for write
1206 */
a05964f3 1207void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4 1208{
7b8a53fd 1209 LIST_HEAD(tmp_list);
1da177e4 1210 struct vfsmount *p;
1da177e4 1211
1bfba4e8 1212 for (p = mnt; p; p = next_mnt(p, mnt))
7b8a53fd 1213 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1214
a05964f3 1215 if (propagate)
7b8a53fd 1216 propagate_umount(&tmp_list);
a05964f3 1217
7b8a53fd 1218 list_for_each_entry(p, &tmp_list, mnt_hash) {
70fbcdf4
RP
1219 list_del_init(&p->mnt_expire);
1220 list_del_init(&p->mnt_list);
6b3286ed
KK
1221 __touch_mnt_namespace(p->mnt_ns);
1222 p->mnt_ns = NULL;
7e3d0eb0 1223 __mnt_make_shortterm(p);
70fbcdf4 1224 list_del_init(&p->mnt_child);
b2dba1af 1225 if (mnt_has_parent(p)) {
7c4b93d8 1226 p->mnt_parent->mnt_ghosts++;
5f57cbcc 1227 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
7c4b93d8 1228 }
a05964f3 1229 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1230 }
7b8a53fd 1231 list_splice(&tmp_list, kill);
1da177e4
LT
1232}
1233
c35038be
AV
1234static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1235
1da177e4
LT
1236static int do_umount(struct vfsmount *mnt, int flags)
1237{
b58fed8b 1238 struct super_block *sb = mnt->mnt_sb;
1da177e4 1239 int retval;
70fbcdf4 1240 LIST_HEAD(umount_list);
1da177e4
LT
1241
1242 retval = security_sb_umount(mnt, flags);
1243 if (retval)
1244 return retval;
1245
1246 /*
1247 * Allow userspace to request a mountpoint be expired rather than
1248 * unmounting unconditionally. Unmount only happens if:
1249 * (1) the mark is already set (the mark is cleared by mntput())
1250 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1251 */
1252 if (flags & MNT_EXPIRE) {
6ac08c39 1253 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1254 flags & (MNT_FORCE | MNT_DETACH))
1255 return -EINVAL;
1256
b3e19d92
NP
1257 /*
1258 * probably don't strictly need the lock here if we examined
1259 * all race cases, but it's a slowpath.
1260 */
1261 br_write_lock(vfsmount_lock);
1262 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1263 br_write_unlock(vfsmount_lock);
1da177e4 1264 return -EBUSY;
b3e19d92
NP
1265 }
1266 br_write_unlock(vfsmount_lock);
1da177e4
LT
1267
1268 if (!xchg(&mnt->mnt_expiry_mark, 1))
1269 return -EAGAIN;
1270 }
1271
1272 /*
1273 * If we may have to abort operations to get out of this
1274 * mount, and they will themselves hold resources we must
1275 * allow the fs to do things. In the Unix tradition of
1276 * 'Gee thats tricky lets do it in userspace' the umount_begin
1277 * might fail to complete on the first run through as other tasks
1278 * must return, and the like. Thats for the mount program to worry
1279 * about for the moment.
1280 */
1281
42faad99 1282 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1283 sb->s_op->umount_begin(sb);
42faad99 1284 }
1da177e4
LT
1285
1286 /*
1287 * No sense to grab the lock for this test, but test itself looks
1288 * somewhat bogus. Suggestions for better replacement?
1289 * Ho-hum... In principle, we might treat that as umount + switch
1290 * to rootfs. GC would eventually take care of the old vfsmount.
1291 * Actually it makes sense, especially if rootfs would contain a
1292 * /reboot - static binary that would close all descriptors and
1293 * call reboot(9). Then init(8) could umount root and exec /reboot.
1294 */
6ac08c39 1295 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1296 /*
1297 * Special case for "unmounting" root ...
1298 * we just try to remount it readonly.
1299 */
1300 down_write(&sb->s_umount);
4aa98cf7 1301 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1302 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1303 up_write(&sb->s_umount);
1304 return retval;
1305 }
1306
390c6843 1307 down_write(&namespace_sem);
99b7db7b 1308 br_write_lock(vfsmount_lock);
5addc5dd 1309 event++;
1da177e4 1310
c35038be
AV
1311 if (!(flags & MNT_DETACH))
1312 shrink_submounts(mnt, &umount_list);
1313
1da177e4 1314 retval = -EBUSY;
a05964f3 1315 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1316 if (!list_empty(&mnt->mnt_list))
a05964f3 1317 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1318 retval = 0;
1319 }
99b7db7b 1320 br_write_unlock(vfsmount_lock);
390c6843 1321 up_write(&namespace_sem);
70fbcdf4 1322 release_mounts(&umount_list);
1da177e4
LT
1323 return retval;
1324}
1325
1326/*
1327 * Now umount can handle mount points as well as block devices.
1328 * This is important for filesystems which use unnamed block devices.
1329 *
1330 * We now support a flag for forced unmount like the other 'big iron'
1331 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1332 */
1333
bdc480e3 1334SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1335{
2d8f3038 1336 struct path path;
1da177e4 1337 int retval;
db1f05bb 1338 int lookup_flags = 0;
1da177e4 1339
db1f05bb
MS
1340 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1341 return -EINVAL;
1342
1343 if (!(flags & UMOUNT_NOFOLLOW))
1344 lookup_flags |= LOOKUP_FOLLOW;
1345
1346 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1347 if (retval)
1348 goto out;
1349 retval = -EINVAL;
2d8f3038 1350 if (path.dentry != path.mnt->mnt_root)
1da177e4 1351 goto dput_and_out;
2d8f3038 1352 if (!check_mnt(path.mnt))
1da177e4
LT
1353 goto dput_and_out;
1354
1355 retval = -EPERM;
1356 if (!capable(CAP_SYS_ADMIN))
1357 goto dput_and_out;
1358
2d8f3038 1359 retval = do_umount(path.mnt, flags);
1da177e4 1360dput_and_out:
429731b1 1361 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1362 dput(path.dentry);
1363 mntput_no_expire(path.mnt);
1da177e4
LT
1364out:
1365 return retval;
1366}
1367
1368#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1369
1370/*
b58fed8b 1371 * The 2.0 compatible umount. No flags.
1da177e4 1372 */
bdc480e3 1373SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1374{
b58fed8b 1375 return sys_umount(name, 0);
1da177e4
LT
1376}
1377
1378#endif
1379
2d92ab3c 1380static int mount_is_safe(struct path *path)
1da177e4
LT
1381{
1382 if (capable(CAP_SYS_ADMIN))
1383 return 0;
1384 return -EPERM;
1385#ifdef notyet
2d92ab3c 1386 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1387 return -EPERM;
2d92ab3c 1388 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1389 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1390 return -EPERM;
1391 }
2d92ab3c 1392 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1393 return -EPERM;
1394 return 0;
1395#endif
1396}
1397
b90fa9ae 1398struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1399 int flag)
1da177e4
LT
1400{
1401 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1402 struct path path;
1da177e4 1403
9676f0c6
RP
1404 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1405 return NULL;
1406
36341f64 1407 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1408 if (!q)
1409 goto Enomem;
1410 q->mnt_mountpoint = mnt->mnt_mountpoint;
1411
1412 p = mnt;
fdadd65f 1413 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1414 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1415 continue;
1416
1417 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1418 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1419 s = skip_mnt_tree(s);
1420 continue;
1421 }
1da177e4
LT
1422 while (p != s->mnt_parent) {
1423 p = p->mnt_parent;
1424 q = q->mnt_parent;
1425 }
1426 p = s;
1a390689
AV
1427 path.mnt = q;
1428 path.dentry = p->mnt_mountpoint;
36341f64 1429 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1430 if (!q)
1431 goto Enomem;
99b7db7b 1432 br_write_lock(vfsmount_lock);
1da177e4 1433 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1434 attach_mnt(q, &path);
99b7db7b 1435 br_write_unlock(vfsmount_lock);
1da177e4
LT
1436 }
1437 }
1438 return res;
b58fed8b 1439Enomem:
1da177e4 1440 if (res) {
70fbcdf4 1441 LIST_HEAD(umount_list);
99b7db7b 1442 br_write_lock(vfsmount_lock);
a05964f3 1443 umount_tree(res, 0, &umount_list);
99b7db7b 1444 br_write_unlock(vfsmount_lock);
70fbcdf4 1445 release_mounts(&umount_list);
1da177e4
LT
1446 }
1447 return NULL;
1448}
1449
589ff870 1450struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1451{
1452 struct vfsmount *tree;
1a60a280 1453 down_write(&namespace_sem);
589ff870 1454 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1455 up_write(&namespace_sem);
8aec0809
AV
1456 return tree;
1457}
1458
1459void drop_collected_mounts(struct vfsmount *mnt)
1460{
1461 LIST_HEAD(umount_list);
1a60a280 1462 down_write(&namespace_sem);
99b7db7b 1463 br_write_lock(vfsmount_lock);
8aec0809 1464 umount_tree(mnt, 0, &umount_list);
99b7db7b 1465 br_write_unlock(vfsmount_lock);
1a60a280 1466 up_write(&namespace_sem);
8aec0809
AV
1467 release_mounts(&umount_list);
1468}
1469
1f707137
AV
1470int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1471 struct vfsmount *root)
1472{
1473 struct vfsmount *mnt;
1474 int res = f(root, arg);
1475 if (res)
1476 return res;
1477 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1478 res = f(mnt, arg);
1479 if (res)
1480 return res;
1481 }
1482 return 0;
1483}
1484
719f5d7f
MS
1485static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1486{
1487 struct vfsmount *p;
1488
1489 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1490 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1491 mnt_release_group_id(p);
1492 }
1493}
1494
1495static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1496{
1497 struct vfsmount *p;
1498
1499 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1500 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1501 int err = mnt_alloc_group_id(p);
1502 if (err) {
1503 cleanup_group_ids(mnt, p);
1504 return err;
1505 }
1506 }
1507 }
1508
1509 return 0;
1510}
1511
b90fa9ae
RP
1512/*
1513 * @source_mnt : mount tree to be attached
21444403
RP
1514 * @nd : place the mount tree @source_mnt is attached
1515 * @parent_nd : if non-null, detach the source_mnt from its parent and
1516 * store the parent mount and mountpoint dentry.
1517 * (done when source_mnt is moved)
b90fa9ae
RP
1518 *
1519 * NOTE: in the table below explains the semantics when a source mount
1520 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1521 * ---------------------------------------------------------------------------
1522 * | BIND MOUNT OPERATION |
1523 * |**************************************************************************
1524 * | source-->| shared | private | slave | unbindable |
1525 * | dest | | | | |
1526 * | | | | | | |
1527 * | v | | | | |
1528 * |**************************************************************************
1529 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1530 * | | | | | |
1531 * |non-shared| shared (+) | private | slave (*) | invalid |
1532 * ***************************************************************************
b90fa9ae
RP
1533 * A bind operation clones the source mount and mounts the clone on the
1534 * destination mount.
1535 *
1536 * (++) the cloned mount is propagated to all the mounts in the propagation
1537 * tree of the destination mount and the cloned mount is added to
1538 * the peer group of the source mount.
1539 * (+) the cloned mount is created under the destination mount and is marked
1540 * as shared. The cloned mount is added to the peer group of the source
1541 * mount.
5afe0022
RP
1542 * (+++) the mount is propagated to all the mounts in the propagation tree
1543 * of the destination mount and the cloned mount is made slave
1544 * of the same master as that of the source mount. The cloned mount
1545 * is marked as 'shared and slave'.
1546 * (*) the cloned mount is made a slave of the same master as that of the
1547 * source mount.
1548 *
9676f0c6
RP
1549 * ---------------------------------------------------------------------------
1550 * | MOVE MOUNT OPERATION |
1551 * |**************************************************************************
1552 * | source-->| shared | private | slave | unbindable |
1553 * | dest | | | | |
1554 * | | | | | | |
1555 * | v | | | | |
1556 * |**************************************************************************
1557 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1558 * | | | | | |
1559 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1560 * ***************************************************************************
5afe0022
RP
1561 *
1562 * (+) the mount is moved to the destination. And is then propagated to
1563 * all the mounts in the propagation tree of the destination mount.
21444403 1564 * (+*) the mount is moved to the destination.
5afe0022
RP
1565 * (+++) the mount is moved to the destination and is then propagated to
1566 * all the mounts belonging to the destination mount's propagation tree.
1567 * the mount is marked as 'shared and slave'.
1568 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1569 *
1570 * if the source mount is a tree, the operations explained above is
1571 * applied to each mount in the tree.
1572 * Must be called without spinlocks held, since this function can sleep
1573 * in allocations.
1574 */
1575static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1576 struct path *path, struct path *parent_path)
b90fa9ae
RP
1577{
1578 LIST_HEAD(tree_list);
1a390689
AV
1579 struct vfsmount *dest_mnt = path->mnt;
1580 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1581 struct vfsmount *child, *p;
719f5d7f 1582 int err;
b90fa9ae 1583
719f5d7f
MS
1584 if (IS_MNT_SHARED(dest_mnt)) {
1585 err = invent_group_ids(source_mnt, true);
1586 if (err)
1587 goto out;
1588 }
1589 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1590 if (err)
1591 goto out_cleanup_ids;
b90fa9ae 1592
99b7db7b 1593 br_write_lock(vfsmount_lock);
df1a1ad2 1594
b90fa9ae
RP
1595 if (IS_MNT_SHARED(dest_mnt)) {
1596 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1597 set_mnt_shared(p);
1598 }
1a390689
AV
1599 if (parent_path) {
1600 detach_mnt(source_mnt, parent_path);
1601 attach_mnt(source_mnt, path);
e5d67f07 1602 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1603 } else {
1604 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1605 commit_tree(source_mnt);
1606 }
b90fa9ae
RP
1607
1608 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1609 list_del_init(&child->mnt_hash);
1610 commit_tree(child);
1611 }
99b7db7b
NP
1612 br_write_unlock(vfsmount_lock);
1613
b90fa9ae 1614 return 0;
719f5d7f
MS
1615
1616 out_cleanup_ids:
1617 if (IS_MNT_SHARED(dest_mnt))
1618 cleanup_group_ids(source_mnt, NULL);
1619 out:
1620 return err;
b90fa9ae
RP
1621}
1622
b12cea91
AV
1623static int lock_mount(struct path *path)
1624{
1625 struct vfsmount *mnt;
1626retry:
1627 mutex_lock(&path->dentry->d_inode->i_mutex);
1628 if (unlikely(cant_mount(path->dentry))) {
1629 mutex_unlock(&path->dentry->d_inode->i_mutex);
1630 return -ENOENT;
1631 }
1632 down_write(&namespace_sem);
1633 mnt = lookup_mnt(path);
1634 if (likely(!mnt))
1635 return 0;
1636 up_write(&namespace_sem);
1637 mutex_unlock(&path->dentry->d_inode->i_mutex);
1638 path_put(path);
1639 path->mnt = mnt;
1640 path->dentry = dget(mnt->mnt_root);
1641 goto retry;
1642}
1643
1644static void unlock_mount(struct path *path)
1645{
1646 up_write(&namespace_sem);
1647 mutex_unlock(&path->dentry->d_inode->i_mutex);
1648}
1649
8c3ee42e 1650static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4 1651{
1da177e4
LT
1652 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1653 return -EINVAL;
1654
8c3ee42e 1655 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1656 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1657 return -ENOTDIR;
1658
b12cea91
AV
1659 if (d_unlinked(path->dentry))
1660 return -ENOENT;
1da177e4 1661
b12cea91 1662 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1663}
1664
7a2e8a8f
VA
1665/*
1666 * Sanity check the flags to change_mnt_propagation.
1667 */
1668
1669static int flags_to_propagation_type(int flags)
1670{
7c6e984d 1671 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1672
1673 /* Fail if any non-propagation flags are set */
1674 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1675 return 0;
1676 /* Only one propagation flag should be set */
1677 if (!is_power_of_2(type))
1678 return 0;
1679 return type;
1680}
1681
07b20889
RP
1682/*
1683 * recursively change the type of the mountpoint.
1684 */
0a0d8a46 1685static int do_change_type(struct path *path, int flag)
07b20889 1686{
2d92ab3c 1687 struct vfsmount *m, *mnt = path->mnt;
07b20889 1688 int recurse = flag & MS_REC;
7a2e8a8f 1689 int type;
719f5d7f 1690 int err = 0;
07b20889 1691
ee6f9582
MS
1692 if (!capable(CAP_SYS_ADMIN))
1693 return -EPERM;
1694
2d92ab3c 1695 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1696 return -EINVAL;
1697
7a2e8a8f
VA
1698 type = flags_to_propagation_type(flag);
1699 if (!type)
1700 return -EINVAL;
1701
07b20889 1702 down_write(&namespace_sem);
719f5d7f
MS
1703 if (type == MS_SHARED) {
1704 err = invent_group_ids(mnt, recurse);
1705 if (err)
1706 goto out_unlock;
1707 }
1708
99b7db7b 1709 br_write_lock(vfsmount_lock);
07b20889
RP
1710 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1711 change_mnt_propagation(m, type);
99b7db7b 1712 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1713
1714 out_unlock:
07b20889 1715 up_write(&namespace_sem);
719f5d7f 1716 return err;
07b20889
RP
1717}
1718
1da177e4
LT
1719/*
1720 * do loopback mount.
1721 */
0a0d8a46 1722static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1723 int recurse)
1da177e4 1724{
b12cea91 1725 LIST_HEAD(umount_list);
2d92ab3c 1726 struct path old_path;
1da177e4 1727 struct vfsmount *mnt = NULL;
2d92ab3c 1728 int err = mount_is_safe(path);
1da177e4
LT
1729 if (err)
1730 return err;
1731 if (!old_name || !*old_name)
1732 return -EINVAL;
815d405c 1733 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1734 if (err)
1735 return err;
1736
b12cea91
AV
1737 err = lock_mount(path);
1738 if (err)
1739 goto out;
1740
1da177e4 1741 err = -EINVAL;
2d92ab3c 1742 if (IS_MNT_UNBINDABLE(old_path.mnt))
b12cea91 1743 goto out2;
9676f0c6 1744
2d92ab3c 1745 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
b12cea91 1746 goto out2;
1da177e4 1747
ccd48bc7
AV
1748 err = -ENOMEM;
1749 if (recurse)
2d92ab3c 1750 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1751 else
2d92ab3c 1752 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1753
1754 if (!mnt)
b12cea91 1755 goto out2;
ccd48bc7 1756
2d92ab3c 1757 err = graft_tree(mnt, path);
ccd48bc7 1758 if (err) {
99b7db7b 1759 br_write_lock(vfsmount_lock);
a05964f3 1760 umount_tree(mnt, 0, &umount_list);
99b7db7b 1761 br_write_unlock(vfsmount_lock);
5b83d2c5 1762 }
b12cea91
AV
1763out2:
1764 unlock_mount(path);
1765 release_mounts(&umount_list);
ccd48bc7 1766out:
2d92ab3c 1767 path_put(&old_path);
1da177e4
LT
1768 return err;
1769}
1770
2e4b7fcd
DH
1771static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1772{
1773 int error = 0;
1774 int readonly_request = 0;
1775
1776 if (ms_flags & MS_RDONLY)
1777 readonly_request = 1;
1778 if (readonly_request == __mnt_is_readonly(mnt))
1779 return 0;
1780
1781 if (readonly_request)
1782 error = mnt_make_readonly(mnt);
1783 else
1784 __mnt_unmake_readonly(mnt);
1785 return error;
1786}
1787
1da177e4
LT
1788/*
1789 * change filesystem flags. dir should be a physical root of filesystem.
1790 * If you've mounted a non-root directory somewhere and want to do remount
1791 * on it - tough luck.
1792 */
0a0d8a46 1793static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1794 void *data)
1795{
1796 int err;
2d92ab3c 1797 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1798
1799 if (!capable(CAP_SYS_ADMIN))
1800 return -EPERM;
1801
2d92ab3c 1802 if (!check_mnt(path->mnt))
1da177e4
LT
1803 return -EINVAL;
1804
2d92ab3c 1805 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1806 return -EINVAL;
1807
ff36fe2c
EP
1808 err = security_sb_remount(sb, data);
1809 if (err)
1810 return err;
1811
1da177e4 1812 down_write(&sb->s_umount);
2e4b7fcd 1813 if (flags & MS_BIND)
2d92ab3c 1814 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1815 else
2e4b7fcd 1816 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1817 if (!err) {
99b7db7b 1818 br_write_lock(vfsmount_lock);
495d6c9c 1819 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1820 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1821 br_write_unlock(vfsmount_lock);
7b43a79f 1822 }
1da177e4 1823 up_write(&sb->s_umount);
0e55a7cc 1824 if (!err) {
99b7db7b 1825 br_write_lock(vfsmount_lock);
0e55a7cc 1826 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1827 br_write_unlock(vfsmount_lock);
0e55a7cc 1828 }
1da177e4
LT
1829 return err;
1830}
1831
9676f0c6
RP
1832static inline int tree_contains_unbindable(struct vfsmount *mnt)
1833{
1834 struct vfsmount *p;
1835 for (p = mnt; p; p = next_mnt(p, mnt)) {
1836 if (IS_MNT_UNBINDABLE(p))
1837 return 1;
1838 }
1839 return 0;
1840}
1841
0a0d8a46 1842static int do_move_mount(struct path *path, char *old_name)
1da177e4 1843{
2d92ab3c 1844 struct path old_path, parent_path;
1da177e4
LT
1845 struct vfsmount *p;
1846 int err = 0;
1847 if (!capable(CAP_SYS_ADMIN))
1848 return -EPERM;
1849 if (!old_name || !*old_name)
1850 return -EINVAL;
2d92ab3c 1851 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1852 if (err)
1853 return err;
1854
b12cea91 1855 err = lock_mount(path);
cc53ce53
DH
1856 if (err < 0)
1857 goto out;
1858
1da177e4 1859 err = -EINVAL;
2d92ab3c 1860 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1861 goto out1;
1862
f3da392e 1863 if (d_unlinked(path->dentry))
21444403 1864 goto out1;
1da177e4
LT
1865
1866 err = -EINVAL;
2d92ab3c 1867 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1868 goto out1;
1da177e4 1869
b2dba1af 1870 if (!mnt_has_parent(old_path.mnt))
21444403 1871 goto out1;
1da177e4 1872
2d92ab3c
AV
1873 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1874 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1875 goto out1;
1876 /*
1877 * Don't move a mount residing in a shared parent.
1878 */
2d92ab3c
AV
1879 if (old_path.mnt->mnt_parent &&
1880 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1881 goto out1;
9676f0c6
RP
1882 /*
1883 * Don't move a mount tree containing unbindable mounts to a destination
1884 * mount which is shared.
1885 */
2d92ab3c
AV
1886 if (IS_MNT_SHARED(path->mnt) &&
1887 tree_contains_unbindable(old_path.mnt))
9676f0c6 1888 goto out1;
1da177e4 1889 err = -ELOOP;
b2dba1af 1890 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
2d92ab3c 1891 if (p == old_path.mnt)
21444403 1892 goto out1;
1da177e4 1893
2d92ab3c 1894 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1895 if (err)
21444403 1896 goto out1;
1da177e4
LT
1897
1898 /* if the mount is moved, it should no longer be expire
1899 * automatically */
2d92ab3c 1900 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1901out1:
b12cea91 1902 unlock_mount(path);
1da177e4 1903out:
1da177e4 1904 if (!err)
1a390689 1905 path_put(&parent_path);
2d92ab3c 1906 path_put(&old_path);
1da177e4
LT
1907 return err;
1908}
1909
9d412a43
AV
1910static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1911{
1912 int err;
1913 const char *subtype = strchr(fstype, '.');
1914 if (subtype) {
1915 subtype++;
1916 err = -EINVAL;
1917 if (!subtype[0])
1918 goto err;
1919 } else
1920 subtype = "";
1921
1922 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1923 err = -ENOMEM;
1924 if (!mnt->mnt_sb->s_subtype)
1925 goto err;
1926 return mnt;
1927
1928 err:
1929 mntput(mnt);
1930 return ERR_PTR(err);
1931}
1932
1933struct vfsmount *
1934do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1935{
1936 struct file_system_type *type = get_fs_type(fstype);
1937 struct vfsmount *mnt;
1938 if (!type)
1939 return ERR_PTR(-ENODEV);
1940 mnt = vfs_kern_mount(type, flags, name, data);
1941 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1942 !mnt->mnt_sb->s_subtype)
1943 mnt = fs_set_subtype(mnt, fstype);
1944 put_filesystem(type);
1945 return mnt;
1946}
1947EXPORT_SYMBOL_GPL(do_kern_mount);
1948
1949/*
1950 * add a mount into a namespace's mount tree
1951 */
1952static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1953{
1954 int err;
1955
1956 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1957
b12cea91
AV
1958 err = lock_mount(path);
1959 if (err)
1960 return err;
9d412a43
AV
1961
1962 err = -EINVAL;
1963 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1964 goto unlock;
1965
1966 /* Refuse the same filesystem on the same mount point */
1967 err = -EBUSY;
1968 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1969 path->mnt->mnt_root == path->dentry)
1970 goto unlock;
1971
1972 err = -EINVAL;
1973 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1974 goto unlock;
1975
1976 newmnt->mnt_flags = mnt_flags;
1977 err = graft_tree(newmnt, path);
1978
1979unlock:
b12cea91 1980 unlock_mount(path);
9d412a43
AV
1981 return err;
1982}
b1e75df4 1983
1da177e4
LT
1984/*
1985 * create a new mount for userspace and request it to be added into the
1986 * namespace's tree
1987 */
0a0d8a46 1988static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1989 int mnt_flags, char *name, void *data)
1990{
1991 struct vfsmount *mnt;
15f9a3f3 1992 int err;
1da177e4 1993
eca6f534 1994 if (!type)
1da177e4
LT
1995 return -EINVAL;
1996
1997 /* we need capabilities... */
1998 if (!capable(CAP_SYS_ADMIN))
1999 return -EPERM;
2000
2001 mnt = do_kern_mount(type, flags, name, data);
2002 if (IS_ERR(mnt))
2003 return PTR_ERR(mnt);
2004
15f9a3f3
AV
2005 err = do_add_mount(mnt, path, mnt_flags);
2006 if (err)
2007 mntput(mnt);
2008 return err;
1da177e4
LT
2009}
2010
19a167af
AV
2011int finish_automount(struct vfsmount *m, struct path *path)
2012{
2013 int err;
2014 /* The new mount record should have at least 2 refs to prevent it being
2015 * expired before we get a chance to add it
2016 */
2017 BUG_ON(mnt_get_count(m) < 2);
2018
2019 if (m->mnt_sb == path->mnt->mnt_sb &&
2020 m->mnt_root == path->dentry) {
b1e75df4
AV
2021 err = -ELOOP;
2022 goto fail;
19a167af
AV
2023 }
2024
19a167af 2025 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2026 if (!err)
2027 return 0;
2028fail:
2029 /* remove m from any expiration list it may be on */
2030 if (!list_empty(&m->mnt_expire)) {
2031 down_write(&namespace_sem);
2032 br_write_lock(vfsmount_lock);
2033 list_del_init(&m->mnt_expire);
2034 br_write_unlock(vfsmount_lock);
2035 up_write(&namespace_sem);
19a167af 2036 }
b1e75df4
AV
2037 mntput(m);
2038 mntput(m);
19a167af
AV
2039 return err;
2040}
2041
ea5b778a
DH
2042/**
2043 * mnt_set_expiry - Put a mount on an expiration list
2044 * @mnt: The mount to list.
2045 * @expiry_list: The list to add the mount to.
2046 */
2047void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2048{
2049 down_write(&namespace_sem);
2050 br_write_lock(vfsmount_lock);
2051
2052 list_add_tail(&mnt->mnt_expire, expiry_list);
2053
2054 br_write_unlock(vfsmount_lock);
2055 up_write(&namespace_sem);
2056}
2057EXPORT_SYMBOL(mnt_set_expiry);
2058
1da177e4
LT
2059/*
2060 * process a list of expirable mountpoints with the intent of discarding any
2061 * mountpoints that aren't in use and haven't been touched since last we came
2062 * here
2063 */
2064void mark_mounts_for_expiry(struct list_head *mounts)
2065{
1da177e4
LT
2066 struct vfsmount *mnt, *next;
2067 LIST_HEAD(graveyard);
bcc5c7d2 2068 LIST_HEAD(umounts);
1da177e4
LT
2069
2070 if (list_empty(mounts))
2071 return;
2072
bcc5c7d2 2073 down_write(&namespace_sem);
99b7db7b 2074 br_write_lock(vfsmount_lock);
1da177e4
LT
2075
2076 /* extract from the expiration list every vfsmount that matches the
2077 * following criteria:
2078 * - only referenced by its parent vfsmount
2079 * - still marked for expiry (marked on the last call here; marks are
2080 * cleared by mntput())
2081 */
55e700b9 2082 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 2083 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 2084 propagate_mount_busy(mnt, 1))
1da177e4 2085 continue;
55e700b9 2086 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2087 }
bcc5c7d2
AV
2088 while (!list_empty(&graveyard)) {
2089 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2090 touch_mnt_namespace(mnt->mnt_ns);
2091 umount_tree(mnt, 1, &umounts);
2092 }
99b7db7b 2093 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2094 up_write(&namespace_sem);
2095
2096 release_mounts(&umounts);
5528f911
TM
2097}
2098
2099EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2100
2101/*
2102 * Ripoff of 'select_parent()'
2103 *
2104 * search the list of submounts for a given mountpoint, and move any
2105 * shrinkable submounts to the 'graveyard' list.
2106 */
2107static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2108{
2109 struct vfsmount *this_parent = parent;
2110 struct list_head *next;
2111 int found = 0;
2112
2113repeat:
2114 next = this_parent->mnt_mounts.next;
2115resume:
2116 while (next != &this_parent->mnt_mounts) {
2117 struct list_head *tmp = next;
2118 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2119
2120 next = tmp->next;
2121 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 2122 continue;
5528f911
TM
2123 /*
2124 * Descend a level if the d_mounts list is non-empty.
2125 */
2126 if (!list_empty(&mnt->mnt_mounts)) {
2127 this_parent = mnt;
2128 goto repeat;
2129 }
1da177e4 2130
5528f911 2131 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
2132 list_move_tail(&mnt->mnt_expire, graveyard);
2133 found++;
2134 }
1da177e4 2135 }
5528f911
TM
2136 /*
2137 * All done at this level ... ascend and resume the search
2138 */
2139 if (this_parent != parent) {
2140 next = this_parent->mnt_child.next;
2141 this_parent = this_parent->mnt_parent;
2142 goto resume;
2143 }
2144 return found;
2145}
2146
2147/*
2148 * process a list of expirable mountpoints with the intent of discarding any
2149 * submounts of a specific parent mountpoint
99b7db7b
NP
2150 *
2151 * vfsmount_lock must be held for write
5528f911 2152 */
c35038be 2153static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
2154{
2155 LIST_HEAD(graveyard);
c35038be 2156 struct vfsmount *m;
5528f911 2157
5528f911 2158 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2159 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2160 while (!list_empty(&graveyard)) {
c35038be 2161 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 2162 mnt_expire);
afef80b3
EB
2163 touch_mnt_namespace(m->mnt_ns);
2164 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2165 }
2166 }
1da177e4
LT
2167}
2168
1da177e4
LT
2169/*
2170 * Some copy_from_user() implementations do not return the exact number of
2171 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2172 * Note that this function differs from copy_from_user() in that it will oops
2173 * on bad values of `to', rather than returning a short copy.
2174 */
b58fed8b
RP
2175static long exact_copy_from_user(void *to, const void __user * from,
2176 unsigned long n)
1da177e4
LT
2177{
2178 char *t = to;
2179 const char __user *f = from;
2180 char c;
2181
2182 if (!access_ok(VERIFY_READ, from, n))
2183 return n;
2184
2185 while (n) {
2186 if (__get_user(c, f)) {
2187 memset(t, 0, n);
2188 break;
2189 }
2190 *t++ = c;
2191 f++;
2192 n--;
2193 }
2194 return n;
2195}
2196
b58fed8b 2197int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2198{
2199 int i;
2200 unsigned long page;
2201 unsigned long size;
b58fed8b 2202
1da177e4
LT
2203 *where = 0;
2204 if (!data)
2205 return 0;
2206
2207 if (!(page = __get_free_page(GFP_KERNEL)))
2208 return -ENOMEM;
2209
2210 /* We only care that *some* data at the address the user
2211 * gave us is valid. Just in case, we'll zero
2212 * the remainder of the page.
2213 */
2214 /* copy_from_user cannot cross TASK_SIZE ! */
2215 size = TASK_SIZE - (unsigned long)data;
2216 if (size > PAGE_SIZE)
2217 size = PAGE_SIZE;
2218
2219 i = size - exact_copy_from_user((void *)page, data, size);
2220 if (!i) {
b58fed8b 2221 free_page(page);
1da177e4
LT
2222 return -EFAULT;
2223 }
2224 if (i != PAGE_SIZE)
2225 memset((char *)page + i, 0, PAGE_SIZE - i);
2226 *where = page;
2227 return 0;
2228}
2229
eca6f534
VN
2230int copy_mount_string(const void __user *data, char **where)
2231{
2232 char *tmp;
2233
2234 if (!data) {
2235 *where = NULL;
2236 return 0;
2237 }
2238
2239 tmp = strndup_user(data, PAGE_SIZE);
2240 if (IS_ERR(tmp))
2241 return PTR_ERR(tmp);
2242
2243 *where = tmp;
2244 return 0;
2245}
2246
1da177e4
LT
2247/*
2248 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2249 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2250 *
2251 * data is a (void *) that can point to any structure up to
2252 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2253 * information (or be NULL).
2254 *
2255 * Pre-0.97 versions of mount() didn't have a flags word.
2256 * When the flags word was introduced its top half was required
2257 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2258 * Therefore, if this magic number is present, it carries no information
2259 * and must be discarded.
2260 */
b58fed8b 2261long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2262 unsigned long flags, void *data_page)
2263{
2d92ab3c 2264 struct path path;
1da177e4
LT
2265 int retval = 0;
2266 int mnt_flags = 0;
2267
2268 /* Discard magic */
2269 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2270 flags &= ~MS_MGC_MSK;
2271
2272 /* Basic sanity checks */
2273
2274 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2275 return -EINVAL;
1da177e4
LT
2276
2277 if (data_page)
2278 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2279
a27ab9f2
TH
2280 /* ... and get the mountpoint */
2281 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2282 if (retval)
2283 return retval;
2284
2285 retval = security_sb_mount(dev_name, &path,
2286 type_page, flags, data_page);
2287 if (retval)
2288 goto dput_out;
2289
613cbe3d
AK
2290 /* Default to relatime unless overriden */
2291 if (!(flags & MS_NOATIME))
2292 mnt_flags |= MNT_RELATIME;
0a1c01c9 2293
1da177e4
LT
2294 /* Separate the per-mountpoint flags */
2295 if (flags & MS_NOSUID)
2296 mnt_flags |= MNT_NOSUID;
2297 if (flags & MS_NODEV)
2298 mnt_flags |= MNT_NODEV;
2299 if (flags & MS_NOEXEC)
2300 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2301 if (flags & MS_NOATIME)
2302 mnt_flags |= MNT_NOATIME;
2303 if (flags & MS_NODIRATIME)
2304 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2305 if (flags & MS_STRICTATIME)
2306 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2307 if (flags & MS_RDONLY)
2308 mnt_flags |= MNT_READONLY;
fc33a7bb 2309
7a4dec53 2310 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2311 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2312 MS_STRICTATIME);
1da177e4 2313
1da177e4 2314 if (flags & MS_REMOUNT)
2d92ab3c 2315 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2316 data_page);
2317 else if (flags & MS_BIND)
2d92ab3c 2318 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2319 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2320 retval = do_change_type(&path, flags);
1da177e4 2321 else if (flags & MS_MOVE)
2d92ab3c 2322 retval = do_move_mount(&path, dev_name);
1da177e4 2323 else
2d92ab3c 2324 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2325 dev_name, data_page);
2326dput_out:
2d92ab3c 2327 path_put(&path);
1da177e4
LT
2328 return retval;
2329}
2330
cf8d2c11
TM
2331static struct mnt_namespace *alloc_mnt_ns(void)
2332{
2333 struct mnt_namespace *new_ns;
2334
2335 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2336 if (!new_ns)
2337 return ERR_PTR(-ENOMEM);
2338 atomic_set(&new_ns->count, 1);
2339 new_ns->root = NULL;
2340 INIT_LIST_HEAD(&new_ns->list);
2341 init_waitqueue_head(&new_ns->poll);
2342 new_ns->event = 0;
2343 return new_ns;
2344}
2345
f03c6599
AV
2346void mnt_make_longterm(struct vfsmount *mnt)
2347{
7e3d0eb0 2348 __mnt_make_longterm(mnt);
f03c6599
AV
2349}
2350
2351void mnt_make_shortterm(struct vfsmount *mnt)
2352{
7e3d0eb0 2353#ifdef CONFIG_SMP
f03c6599
AV
2354 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2355 return;
2356 br_write_lock(vfsmount_lock);
2357 atomic_dec(&mnt->mnt_longterm);
2358 br_write_unlock(vfsmount_lock);
7e3d0eb0 2359#endif
f03c6599
AV
2360}
2361
741a2951
JD
2362/*
2363 * Allocate a new namespace structure and populate it with contents
2364 * copied from the namespace of the passed in task structure.
2365 */
e3222c4e 2366static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2367 struct fs_struct *fs)
1da177e4 2368{
6b3286ed 2369 struct mnt_namespace *new_ns;
7f2da1e7 2370 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2371 struct vfsmount *p, *q;
2372
cf8d2c11
TM
2373 new_ns = alloc_mnt_ns();
2374 if (IS_ERR(new_ns))
2375 return new_ns;
1da177e4 2376
390c6843 2377 down_write(&namespace_sem);
1da177e4 2378 /* First pass: copy the tree topology */
6b3286ed 2379 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2380 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2381 if (!new_ns->root) {
390c6843 2382 up_write(&namespace_sem);
1da177e4 2383 kfree(new_ns);
5cc4a034 2384 return ERR_PTR(-ENOMEM);
1da177e4 2385 }
99b7db7b 2386 br_write_lock(vfsmount_lock);
1da177e4 2387 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2388 br_write_unlock(vfsmount_lock);
1da177e4
LT
2389
2390 /*
2391 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2392 * as belonging to new namespace. We have already acquired a private
2393 * fs_struct, so tsk->fs->lock is not needed.
2394 */
6b3286ed 2395 p = mnt_ns->root;
1da177e4
LT
2396 q = new_ns->root;
2397 while (p) {
6b3286ed 2398 q->mnt_ns = new_ns;
7e3d0eb0 2399 __mnt_make_longterm(q);
1da177e4 2400 if (fs) {
6ac08c39 2401 if (p == fs->root.mnt) {
f03c6599 2402 fs->root.mnt = mntget(q);
7e3d0eb0 2403 __mnt_make_longterm(q);
f03c6599 2404 mnt_make_shortterm(p);
1da177e4 2405 rootmnt = p;
1da177e4 2406 }
6ac08c39 2407 if (p == fs->pwd.mnt) {
f03c6599 2408 fs->pwd.mnt = mntget(q);
7e3d0eb0 2409 __mnt_make_longterm(q);
f03c6599 2410 mnt_make_shortterm(p);
1da177e4 2411 pwdmnt = p;
1da177e4 2412 }
1da177e4 2413 }
6b3286ed 2414 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2415 q = next_mnt(q, new_ns->root);
2416 }
390c6843 2417 up_write(&namespace_sem);
1da177e4 2418
1da177e4 2419 if (rootmnt)
f03c6599 2420 mntput(rootmnt);
1da177e4 2421 if (pwdmnt)
f03c6599 2422 mntput(pwdmnt);
1da177e4 2423
741a2951
JD
2424 return new_ns;
2425}
2426
213dd266 2427struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2428 struct fs_struct *new_fs)
741a2951 2429{
6b3286ed 2430 struct mnt_namespace *new_ns;
741a2951 2431
e3222c4e 2432 BUG_ON(!ns);
6b3286ed 2433 get_mnt_ns(ns);
741a2951
JD
2434
2435 if (!(flags & CLONE_NEWNS))
e3222c4e 2436 return ns;
741a2951 2437
e3222c4e 2438 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2439
6b3286ed 2440 put_mnt_ns(ns);
e3222c4e 2441 return new_ns;
1da177e4
LT
2442}
2443
cf8d2c11
TM
2444/**
2445 * create_mnt_ns - creates a private namespace and adds a root filesystem
2446 * @mnt: pointer to the new root filesystem mountpoint
2447 */
a2770d86 2448struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2449{
2450 struct mnt_namespace *new_ns;
2451
2452 new_ns = alloc_mnt_ns();
2453 if (!IS_ERR(new_ns)) {
2454 mnt->mnt_ns = new_ns;
7e3d0eb0 2455 __mnt_make_longterm(mnt);
cf8d2c11
TM
2456 new_ns->root = mnt;
2457 list_add(&new_ns->list, &new_ns->root->mnt_list);
c1334495
AV
2458 } else {
2459 mntput(mnt);
cf8d2c11
TM
2460 }
2461 return new_ns;
2462}
a2770d86 2463EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2464
ea441d11
AV
2465struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2466{
2467 struct mnt_namespace *ns;
d31da0f0 2468 struct super_block *s;
ea441d11
AV
2469 struct path path;
2470 int err;
2471
2472 ns = create_mnt_ns(mnt);
2473 if (IS_ERR(ns))
2474 return ERR_CAST(ns);
2475
2476 err = vfs_path_lookup(mnt->mnt_root, mnt,
2477 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2478
2479 put_mnt_ns(ns);
2480
2481 if (err)
2482 return ERR_PTR(err);
2483
2484 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2485 s = path.mnt->mnt_sb;
2486 atomic_inc(&s->s_active);
ea441d11
AV
2487 mntput(path.mnt);
2488 /* lock the sucker */
d31da0f0 2489 down_write(&s->s_umount);
ea441d11
AV
2490 /* ... and return the root of (sub)tree on it */
2491 return path.dentry;
2492}
2493EXPORT_SYMBOL(mount_subtree);
2494
bdc480e3
HC
2495SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2496 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2497{
eca6f534
VN
2498 int ret;
2499 char *kernel_type;
2500 char *kernel_dir;
2501 char *kernel_dev;
1da177e4 2502 unsigned long data_page;
1da177e4 2503
eca6f534
VN
2504 ret = copy_mount_string(type, &kernel_type);
2505 if (ret < 0)
2506 goto out_type;
1da177e4 2507
eca6f534
VN
2508 kernel_dir = getname(dir_name);
2509 if (IS_ERR(kernel_dir)) {
2510 ret = PTR_ERR(kernel_dir);
2511 goto out_dir;
2512 }
1da177e4 2513
eca6f534
VN
2514 ret = copy_mount_string(dev_name, &kernel_dev);
2515 if (ret < 0)
2516 goto out_dev;
1da177e4 2517
eca6f534
VN
2518 ret = copy_mount_options(data, &data_page);
2519 if (ret < 0)
2520 goto out_data;
1da177e4 2521
eca6f534
VN
2522 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2523 (void *) data_page);
1da177e4 2524
eca6f534
VN
2525 free_page(data_page);
2526out_data:
2527 kfree(kernel_dev);
2528out_dev:
2529 putname(kernel_dir);
2530out_dir:
2531 kfree(kernel_type);
2532out_type:
2533 return ret;
1da177e4
LT
2534}
2535
1da177e4
LT
2536/*
2537 * pivot_root Semantics:
2538 * Moves the root file system of the current process to the directory put_old,
2539 * makes new_root as the new root file system of the current process, and sets
2540 * root/cwd of all processes which had them on the current root to new_root.
2541 *
2542 * Restrictions:
2543 * The new_root and put_old must be directories, and must not be on the
2544 * same file system as the current process root. The put_old must be
2545 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2546 * pointed to by put_old must yield the same directory as new_root. No other
2547 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2548 *
4a0d11fa
NB
2549 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2550 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2551 * in this situation.
2552 *
1da177e4
LT
2553 * Notes:
2554 * - we don't move root/cwd if they are not at the root (reason: if something
2555 * cared enough to change them, it's probably wrong to force them elsewhere)
2556 * - it's okay to pick a root that isn't the root of a file system, e.g.
2557 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2558 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2559 * first.
2560 */
3480b257
HC
2561SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2562 const char __user *, put_old)
1da177e4
LT
2563{
2564 struct vfsmount *tmp;
2d8f3038 2565 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2566 int error;
2567
2568 if (!capable(CAP_SYS_ADMIN))
2569 return -EPERM;
2570
2d8f3038 2571 error = user_path_dir(new_root, &new);
1da177e4
LT
2572 if (error)
2573 goto out0;
1da177e4 2574
2d8f3038 2575 error = user_path_dir(put_old, &old);
1da177e4
LT
2576 if (error)
2577 goto out1;
2578
2d8f3038 2579 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2580 if (error)
2581 goto out2;
1da177e4 2582
f7ad3c6b 2583 get_fs_root(current->fs, &root);
b12cea91
AV
2584 error = lock_mount(&old);
2585 if (error)
2586 goto out3;
2587
1da177e4 2588 error = -EINVAL;
2d8f3038
AV
2589 if (IS_MNT_SHARED(old.mnt) ||
2590 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2591 IS_MNT_SHARED(root.mnt->mnt_parent))
b12cea91 2592 goto out4;
27cb1572 2593 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
b12cea91 2594 goto out4;
1da177e4 2595 error = -ENOENT;
f3da392e 2596 if (d_unlinked(new.dentry))
b12cea91 2597 goto out4;
f3da392e 2598 if (d_unlinked(old.dentry))
b12cea91 2599 goto out4;
1da177e4 2600 error = -EBUSY;
2d8f3038
AV
2601 if (new.mnt == root.mnt ||
2602 old.mnt == root.mnt)
b12cea91 2603 goto out4; /* loop, on the same file system */
1da177e4 2604 error = -EINVAL;
8c3ee42e 2605 if (root.mnt->mnt_root != root.dentry)
b12cea91 2606 goto out4; /* not a mountpoint */
b2dba1af 2607 if (!mnt_has_parent(root.mnt))
b12cea91 2608 goto out4; /* not attached */
2d8f3038 2609 if (new.mnt->mnt_root != new.dentry)
b12cea91 2610 goto out4; /* not a mountpoint */
b2dba1af 2611 if (!mnt_has_parent(new.mnt))
b12cea91 2612 goto out4; /* not attached */
4ac91378 2613 /* make sure we can reach put_old from new_root */
2d8f3038 2614 tmp = old.mnt;
2d8f3038 2615 if (tmp != new.mnt) {
1da177e4 2616 for (;;) {
b2dba1af 2617 if (!mnt_has_parent(tmp))
b12cea91 2618 goto out4; /* already mounted on put_old */
2d8f3038 2619 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2620 break;
2621 tmp = tmp->mnt_parent;
2622 }
2d8f3038 2623 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
b12cea91 2624 goto out4;
2d8f3038 2625 } else if (!is_subdir(old.dentry, new.dentry))
b12cea91 2626 goto out4;
27cb1572 2627 br_write_lock(vfsmount_lock);
2d8f3038 2628 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2629 detach_mnt(root.mnt, &root_parent);
4ac91378 2630 /* mount old root on put_old */
2d8f3038 2631 attach_mnt(root.mnt, &old);
4ac91378 2632 /* mount new_root on / */
2d8f3038 2633 attach_mnt(new.mnt, &root_parent);
6b3286ed 2634 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2635 br_write_unlock(vfsmount_lock);
2d8f3038 2636 chroot_fs_refs(&root, &new);
1da177e4 2637 error = 0;
b12cea91
AV
2638out4:
2639 unlock_mount(&old);
2640 if (!error) {
2641 path_put(&root_parent);
2642 path_put(&parent_path);
2643 }
2644out3:
8c3ee42e 2645 path_put(&root);
b12cea91 2646out2:
2d8f3038 2647 path_put(&old);
1da177e4 2648out1:
2d8f3038 2649 path_put(&new);
1da177e4 2650out0:
1da177e4 2651 return error;
1da177e4
LT
2652}
2653
2654static void __init init_mount_tree(void)
2655{
2656 struct vfsmount *mnt;
6b3286ed 2657 struct mnt_namespace *ns;
ac748a09 2658 struct path root;
1da177e4
LT
2659
2660 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2661 if (IS_ERR(mnt))
2662 panic("Can't create rootfs");
b3e19d92 2663
3b22edc5
TM
2664 ns = create_mnt_ns(mnt);
2665 if (IS_ERR(ns))
1da177e4 2666 panic("Can't allocate initial namespace");
6b3286ed
KK
2667
2668 init_task.nsproxy->mnt_ns = ns;
2669 get_mnt_ns(ns);
2670
ac748a09
JB
2671 root.mnt = ns->root;
2672 root.dentry = ns->root->mnt_root;
2673
2674 set_fs_pwd(current->fs, &root);
2675 set_fs_root(current->fs, &root);
1da177e4
LT
2676}
2677
74bf17cf 2678void __init mnt_init(void)
1da177e4 2679{
13f14b4d 2680 unsigned u;
15a67dd8 2681 int err;
1da177e4 2682
390c6843
RP
2683 init_rwsem(&namespace_sem);
2684
1da177e4 2685 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2686 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2687
b58fed8b 2688 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2689
2690 if (!mount_hashtable)
2691 panic("Failed to allocate mount hash table\n");
2692
80cdc6da 2693 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2694
2695 for (u = 0; u < HASH_SIZE; u++)
2696 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2697
99b7db7b
NP
2698 br_lock_init(vfsmount_lock);
2699
15a67dd8
RD
2700 err = sysfs_init();
2701 if (err)
2702 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2703 __func__, err);
00d26666
GKH
2704 fs_kobj = kobject_create_and_add("fs", NULL);
2705 if (!fs_kobj)
8e24eea7 2706 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2707 init_rootfs();
2708 init_mount_tree();
2709}
2710
616511d0 2711void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2712{
70fbcdf4 2713 LIST_HEAD(umount_list);
616511d0 2714
d498b25a 2715 if (!atomic_dec_and_test(&ns->count))
616511d0 2716 return;
390c6843 2717 down_write(&namespace_sem);
99b7db7b 2718 br_write_lock(vfsmount_lock);
d498b25a 2719 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2720 br_write_unlock(vfsmount_lock);
390c6843 2721 up_write(&namespace_sem);
70fbcdf4 2722 release_mounts(&umount_list);
6b3286ed 2723 kfree(ns);
1da177e4 2724}
cf8d2c11 2725EXPORT_SYMBOL(put_mnt_ns);
9d412a43
AV
2726
2727struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2728{
423e0ab0
TC
2729 struct vfsmount *mnt;
2730 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2731 if (!IS_ERR(mnt)) {
2732 /*
2733 * it is a longterm mount, don't release mnt until
2734 * we unmount before file sys is unregistered
2735 */
2736 mnt_make_longterm(mnt);
2737 }
2738 return mnt;
9d412a43
AV
2739}
2740EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2741
2742void kern_unmount(struct vfsmount *mnt)
2743{
2744 /* release long term mount so mount point can be released */
2745 if (!IS_ERR_OR_NULL(mnt)) {
2746 mnt_make_shortterm(mnt);
2747 mntput(mnt);
2748 }
2749}
2750EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2751
2752bool our_mnt(struct vfsmount *mnt)
2753{
2754 return check_mnt(mnt);
2755}