]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/nvme/host/core.c
nvme: don't intialize hwmon for discovery controllers
[people/ms/linux.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
68 *
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
74 */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 unsigned nsid);
95
96 /*
97 * Prepare a queue for teardown.
98 *
99 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100 * the capacity to 0 after that to avoid blocking dispatchers that may be
101 * holding bd_butex. This will end buffered writers dirtying pages that can't
102 * be synced.
103 */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107 return;
108
109 blk_set_queue_dying(ns->queue);
110 blk_mq_unquiesce_queue(ns->queue);
111
112 set_capacity_and_notify(ns->disk, 0);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117 /*
118 * Only new queue scan work when admin and IO queues are both alive
119 */
120 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125 * Use this function to proceed with scheduling reset_work for a controller
126 * that had previously been set to the resetting state. This is intended for
127 * code paths that can't be interrupted by other reset attempts. A hot removal
128 * may prevent this from succeeding.
129 */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132 if (ctrl->state != NVME_CTRL_RESETTING)
133 return -EBUSY;
134 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 return -EBUSY;
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143 struct nvme_ctrl, failfast_work);
144
145 if (ctrl->state != NVME_CTRL_CONNECTING)
146 return;
147
148 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149 dev_info(ctrl->device, "failfast expired\n");
150 nvme_kick_requeue_lists(ctrl);
151 }
152
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156 return;
157
158 schedule_delayed_work(&ctrl->failfast_work,
159 ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164 if (!ctrl->opts)
165 return;
166
167 cancel_delayed_work_sync(&ctrl->failfast_work);
168 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170
171
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175 return -EBUSY;
176 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177 return -EBUSY;
178 return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184 int ret;
185
186 ret = nvme_reset_ctrl(ctrl);
187 if (!ret) {
188 flush_work(&ctrl->reset_work);
189 if (ctrl->state != NVME_CTRL_LIVE)
190 ret = -ENETRESET;
191 }
192
193 return ret;
194 }
195
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198 dev_info(ctrl->device,
199 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200
201 flush_work(&ctrl->reset_work);
202 nvme_stop_ctrl(ctrl);
203 nvme_remove_namespaces(ctrl);
204 ctrl->ops->delete_ctrl(ctrl);
205 nvme_uninit_ctrl(ctrl);
206 }
207
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210 struct nvme_ctrl *ctrl =
211 container_of(work, struct nvme_ctrl, delete_work);
212
213 nvme_do_delete_ctrl(ctrl);
214 }
215
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219 return -EBUSY;
220 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221 return -EBUSY;
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228 /*
229 * Keep a reference until nvme_do_delete_ctrl() complete,
230 * since ->delete_ctrl can free the controller.
231 */
232 nvme_get_ctrl(ctrl);
233 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 nvme_do_delete_ctrl(ctrl);
235 nvme_put_ctrl(ctrl);
236 }
237
238 static blk_status_t nvme_error_status(u16 status)
239 {
240 switch (status & 0x7ff) {
241 case NVME_SC_SUCCESS:
242 return BLK_STS_OK;
243 case NVME_SC_CAP_EXCEEDED:
244 return BLK_STS_NOSPC;
245 case NVME_SC_LBA_RANGE:
246 case NVME_SC_CMD_INTERRUPTED:
247 case NVME_SC_NS_NOT_READY:
248 return BLK_STS_TARGET;
249 case NVME_SC_BAD_ATTRIBUTES:
250 case NVME_SC_ONCS_NOT_SUPPORTED:
251 case NVME_SC_INVALID_OPCODE:
252 case NVME_SC_INVALID_FIELD:
253 case NVME_SC_INVALID_NS:
254 return BLK_STS_NOTSUPP;
255 case NVME_SC_WRITE_FAULT:
256 case NVME_SC_READ_ERROR:
257 case NVME_SC_UNWRITTEN_BLOCK:
258 case NVME_SC_ACCESS_DENIED:
259 case NVME_SC_READ_ONLY:
260 case NVME_SC_COMPARE_FAILED:
261 return BLK_STS_MEDIUM;
262 case NVME_SC_GUARD_CHECK:
263 case NVME_SC_APPTAG_CHECK:
264 case NVME_SC_REFTAG_CHECK:
265 case NVME_SC_INVALID_PI:
266 return BLK_STS_PROTECTION;
267 case NVME_SC_RESERVATION_CONFLICT:
268 return BLK_STS_NEXUS;
269 case NVME_SC_HOST_PATH_ERROR:
270 return BLK_STS_TRANSPORT;
271 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273 case NVME_SC_ZONE_TOO_MANY_OPEN:
274 return BLK_STS_ZONE_OPEN_RESOURCE;
275 default:
276 return BLK_STS_IOERR;
277 }
278 }
279
280 static void nvme_retry_req(struct request *req)
281 {
282 struct nvme_ns *ns = req->q->queuedata;
283 unsigned long delay = 0;
284 u16 crd;
285
286 /* The mask and shift result must be <= 3 */
287 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
288 if (ns && crd)
289 delay = ns->ctrl->crdt[crd - 1] * 100;
290
291 nvme_req(req)->retries++;
292 blk_mq_requeue_request(req, false);
293 blk_mq_delay_kick_requeue_list(req->q, delay);
294 }
295
296 enum nvme_disposition {
297 COMPLETE,
298 RETRY,
299 FAILOVER,
300 };
301
302 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
303 {
304 if (likely(nvme_req(req)->status == 0))
305 return COMPLETE;
306
307 if (blk_noretry_request(req) ||
308 (nvme_req(req)->status & NVME_SC_DNR) ||
309 nvme_req(req)->retries >= nvme_max_retries)
310 return COMPLETE;
311
312 if (req->cmd_flags & REQ_NVME_MPATH) {
313 if (nvme_is_path_error(nvme_req(req)->status) ||
314 blk_queue_dying(req->q))
315 return FAILOVER;
316 } else {
317 if (blk_queue_dying(req->q))
318 return COMPLETE;
319 }
320
321 return RETRY;
322 }
323
324 static inline void nvme_end_req(struct request *req)
325 {
326 blk_status_t status = nvme_error_status(nvme_req(req)->status);
327
328 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
329 req_op(req) == REQ_OP_ZONE_APPEND)
330 req->__sector = nvme_lba_to_sect(req->q->queuedata,
331 le64_to_cpu(nvme_req(req)->result.u64));
332
333 nvme_trace_bio_complete(req);
334 blk_mq_end_request(req, status);
335 }
336
337 void nvme_complete_rq(struct request *req)
338 {
339 trace_nvme_complete_rq(req);
340 nvme_cleanup_cmd(req);
341
342 if (nvme_req(req)->ctrl->kas)
343 nvme_req(req)->ctrl->comp_seen = true;
344
345 switch (nvme_decide_disposition(req)) {
346 case COMPLETE:
347 nvme_end_req(req);
348 return;
349 case RETRY:
350 nvme_retry_req(req);
351 return;
352 case FAILOVER:
353 nvme_failover_req(req);
354 return;
355 }
356 }
357 EXPORT_SYMBOL_GPL(nvme_complete_rq);
358
359 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
360 {
361 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
362 "Cancelling I/O %d", req->tag);
363
364 /* don't abort one completed request */
365 if (blk_mq_request_completed(req))
366 return true;
367
368 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
369 blk_mq_complete_request(req);
370 return true;
371 }
372 EXPORT_SYMBOL_GPL(nvme_cancel_request);
373
374 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
375 enum nvme_ctrl_state new_state)
376 {
377 enum nvme_ctrl_state old_state;
378 unsigned long flags;
379 bool changed = false;
380
381 spin_lock_irqsave(&ctrl->lock, flags);
382
383 old_state = ctrl->state;
384 switch (new_state) {
385 case NVME_CTRL_LIVE:
386 switch (old_state) {
387 case NVME_CTRL_NEW:
388 case NVME_CTRL_RESETTING:
389 case NVME_CTRL_CONNECTING:
390 changed = true;
391 fallthrough;
392 default:
393 break;
394 }
395 break;
396 case NVME_CTRL_RESETTING:
397 switch (old_state) {
398 case NVME_CTRL_NEW:
399 case NVME_CTRL_LIVE:
400 changed = true;
401 fallthrough;
402 default:
403 break;
404 }
405 break;
406 case NVME_CTRL_CONNECTING:
407 switch (old_state) {
408 case NVME_CTRL_NEW:
409 case NVME_CTRL_RESETTING:
410 changed = true;
411 fallthrough;
412 default:
413 break;
414 }
415 break;
416 case NVME_CTRL_DELETING:
417 switch (old_state) {
418 case NVME_CTRL_LIVE:
419 case NVME_CTRL_RESETTING:
420 case NVME_CTRL_CONNECTING:
421 changed = true;
422 fallthrough;
423 default:
424 break;
425 }
426 break;
427 case NVME_CTRL_DELETING_NOIO:
428 switch (old_state) {
429 case NVME_CTRL_DELETING:
430 case NVME_CTRL_DEAD:
431 changed = true;
432 fallthrough;
433 default:
434 break;
435 }
436 break;
437 case NVME_CTRL_DEAD:
438 switch (old_state) {
439 case NVME_CTRL_DELETING:
440 changed = true;
441 fallthrough;
442 default:
443 break;
444 }
445 break;
446 default:
447 break;
448 }
449
450 if (changed) {
451 ctrl->state = new_state;
452 wake_up_all(&ctrl->state_wq);
453 }
454
455 spin_unlock_irqrestore(&ctrl->lock, flags);
456 if (!changed)
457 return false;
458
459 if (ctrl->state == NVME_CTRL_LIVE) {
460 if (old_state == NVME_CTRL_CONNECTING)
461 nvme_stop_failfast_work(ctrl);
462 nvme_kick_requeue_lists(ctrl);
463 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
464 old_state == NVME_CTRL_RESETTING) {
465 nvme_start_failfast_work(ctrl);
466 }
467 return changed;
468 }
469 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
470
471 /*
472 * Returns true for sink states that can't ever transition back to live.
473 */
474 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
475 {
476 switch (ctrl->state) {
477 case NVME_CTRL_NEW:
478 case NVME_CTRL_LIVE:
479 case NVME_CTRL_RESETTING:
480 case NVME_CTRL_CONNECTING:
481 return false;
482 case NVME_CTRL_DELETING:
483 case NVME_CTRL_DELETING_NOIO:
484 case NVME_CTRL_DEAD:
485 return true;
486 default:
487 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
488 return true;
489 }
490 }
491
492 /*
493 * Waits for the controller state to be resetting, or returns false if it is
494 * not possible to ever transition to that state.
495 */
496 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
497 {
498 wait_event(ctrl->state_wq,
499 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
500 nvme_state_terminal(ctrl));
501 return ctrl->state == NVME_CTRL_RESETTING;
502 }
503 EXPORT_SYMBOL_GPL(nvme_wait_reset);
504
505 static void nvme_free_ns_head(struct kref *ref)
506 {
507 struct nvme_ns_head *head =
508 container_of(ref, struct nvme_ns_head, ref);
509
510 nvme_mpath_remove_disk(head);
511 ida_simple_remove(&head->subsys->ns_ida, head->instance);
512 cleanup_srcu_struct(&head->srcu);
513 nvme_put_subsystem(head->subsys);
514 kfree(head);
515 }
516
517 static void nvme_put_ns_head(struct nvme_ns_head *head)
518 {
519 kref_put(&head->ref, nvme_free_ns_head);
520 }
521
522 static void nvme_free_ns(struct kref *kref)
523 {
524 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
525
526 if (ns->ndev)
527 nvme_nvm_unregister(ns);
528
529 put_disk(ns->disk);
530 nvme_put_ns_head(ns->head);
531 nvme_put_ctrl(ns->ctrl);
532 kfree(ns);
533 }
534
535 void nvme_put_ns(struct nvme_ns *ns)
536 {
537 kref_put(&ns->kref, nvme_free_ns);
538 }
539 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
540
541 static inline void nvme_clear_nvme_request(struct request *req)
542 {
543 if (!(req->rq_flags & RQF_DONTPREP)) {
544 nvme_req(req)->retries = 0;
545 nvme_req(req)->flags = 0;
546 req->rq_flags |= RQF_DONTPREP;
547 }
548 }
549
550 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
551 {
552 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
553 }
554
555 static inline void nvme_init_request(struct request *req,
556 struct nvme_command *cmd)
557 {
558 if (req->q->queuedata)
559 req->timeout = NVME_IO_TIMEOUT;
560 else /* no queuedata implies admin queue */
561 req->timeout = NVME_ADMIN_TIMEOUT;
562
563 req->cmd_flags |= REQ_FAILFAST_DRIVER;
564 nvme_clear_nvme_request(req);
565 nvme_req(req)->cmd = cmd;
566 }
567
568 struct request *nvme_alloc_request(struct request_queue *q,
569 struct nvme_command *cmd, blk_mq_req_flags_t flags)
570 {
571 struct request *req;
572
573 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
574 if (!IS_ERR(req))
575 nvme_init_request(req, cmd);
576 return req;
577 }
578 EXPORT_SYMBOL_GPL(nvme_alloc_request);
579
580 static struct request *nvme_alloc_request_qid(struct request_queue *q,
581 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
582 {
583 struct request *req;
584
585 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
586 qid ? qid - 1 : 0);
587 if (!IS_ERR(req))
588 nvme_init_request(req, cmd);
589 return req;
590 }
591
592 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
593 {
594 struct nvme_command c;
595
596 memset(&c, 0, sizeof(c));
597
598 c.directive.opcode = nvme_admin_directive_send;
599 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
600 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
601 c.directive.dtype = NVME_DIR_IDENTIFY;
602 c.directive.tdtype = NVME_DIR_STREAMS;
603 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
604
605 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
606 }
607
608 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
609 {
610 return nvme_toggle_streams(ctrl, false);
611 }
612
613 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
614 {
615 return nvme_toggle_streams(ctrl, true);
616 }
617
618 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
619 struct streams_directive_params *s, u32 nsid)
620 {
621 struct nvme_command c;
622
623 memset(&c, 0, sizeof(c));
624 memset(s, 0, sizeof(*s));
625
626 c.directive.opcode = nvme_admin_directive_recv;
627 c.directive.nsid = cpu_to_le32(nsid);
628 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
629 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
630 c.directive.dtype = NVME_DIR_STREAMS;
631
632 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
633 }
634
635 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
636 {
637 struct streams_directive_params s;
638 int ret;
639
640 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
641 return 0;
642 if (!streams)
643 return 0;
644
645 ret = nvme_enable_streams(ctrl);
646 if (ret)
647 return ret;
648
649 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
650 if (ret)
651 goto out_disable_stream;
652
653 ctrl->nssa = le16_to_cpu(s.nssa);
654 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
655 dev_info(ctrl->device, "too few streams (%u) available\n",
656 ctrl->nssa);
657 goto out_disable_stream;
658 }
659
660 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
661 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
662 return 0;
663
664 out_disable_stream:
665 nvme_disable_streams(ctrl);
666 return ret;
667 }
668
669 /*
670 * Check if 'req' has a write hint associated with it. If it does, assign
671 * a valid namespace stream to the write.
672 */
673 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
674 struct request *req, u16 *control,
675 u32 *dsmgmt)
676 {
677 enum rw_hint streamid = req->write_hint;
678
679 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
680 streamid = 0;
681 else {
682 streamid--;
683 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
684 return;
685
686 *control |= NVME_RW_DTYPE_STREAMS;
687 *dsmgmt |= streamid << 16;
688 }
689
690 if (streamid < ARRAY_SIZE(req->q->write_hints))
691 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
692 }
693
694 static void nvme_setup_passthrough(struct request *req,
695 struct nvme_command *cmd)
696 {
697 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
698 /* passthru commands should let the driver set the SGL flags */
699 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
700 }
701
702 static inline void nvme_setup_flush(struct nvme_ns *ns,
703 struct nvme_command *cmnd)
704 {
705 cmnd->common.opcode = nvme_cmd_flush;
706 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
707 }
708
709 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
710 struct nvme_command *cmnd)
711 {
712 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
713 struct nvme_dsm_range *range;
714 struct bio *bio;
715
716 /*
717 * Some devices do not consider the DSM 'Number of Ranges' field when
718 * determining how much data to DMA. Always allocate memory for maximum
719 * number of segments to prevent device reading beyond end of buffer.
720 */
721 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
722
723 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
724 if (!range) {
725 /*
726 * If we fail allocation our range, fallback to the controller
727 * discard page. If that's also busy, it's safe to return
728 * busy, as we know we can make progress once that's freed.
729 */
730 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
731 return BLK_STS_RESOURCE;
732
733 range = page_address(ns->ctrl->discard_page);
734 }
735
736 __rq_for_each_bio(bio, req) {
737 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
738 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
739
740 if (n < segments) {
741 range[n].cattr = cpu_to_le32(0);
742 range[n].nlb = cpu_to_le32(nlb);
743 range[n].slba = cpu_to_le64(slba);
744 }
745 n++;
746 }
747
748 if (WARN_ON_ONCE(n != segments)) {
749 if (virt_to_page(range) == ns->ctrl->discard_page)
750 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
751 else
752 kfree(range);
753 return BLK_STS_IOERR;
754 }
755
756 cmnd->dsm.opcode = nvme_cmd_dsm;
757 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
758 cmnd->dsm.nr = cpu_to_le32(segments - 1);
759 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
760
761 req->special_vec.bv_page = virt_to_page(range);
762 req->special_vec.bv_offset = offset_in_page(range);
763 req->special_vec.bv_len = alloc_size;
764 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
765
766 return BLK_STS_OK;
767 }
768
769 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
770 struct request *req, struct nvme_command *cmnd)
771 {
772 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
773 return nvme_setup_discard(ns, req, cmnd);
774
775 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
776 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
777 cmnd->write_zeroes.slba =
778 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
779 cmnd->write_zeroes.length =
780 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
781 cmnd->write_zeroes.control = 0;
782 return BLK_STS_OK;
783 }
784
785 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
786 struct request *req, struct nvme_command *cmnd,
787 enum nvme_opcode op)
788 {
789 struct nvme_ctrl *ctrl = ns->ctrl;
790 u16 control = 0;
791 u32 dsmgmt = 0;
792
793 if (req->cmd_flags & REQ_FUA)
794 control |= NVME_RW_FUA;
795 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796 control |= NVME_RW_LR;
797
798 if (req->cmd_flags & REQ_RAHEAD)
799 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800
801 cmnd->rw.opcode = op;
802 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
803 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
804 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
805
806 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
807 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
808
809 if (ns->ms) {
810 /*
811 * If formated with metadata, the block layer always provides a
812 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
813 * we enable the PRACT bit for protection information or set the
814 * namespace capacity to zero to prevent any I/O.
815 */
816 if (!blk_integrity_rq(req)) {
817 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
818 return BLK_STS_NOTSUPP;
819 control |= NVME_RW_PRINFO_PRACT;
820 }
821
822 switch (ns->pi_type) {
823 case NVME_NS_DPS_PI_TYPE3:
824 control |= NVME_RW_PRINFO_PRCHK_GUARD;
825 break;
826 case NVME_NS_DPS_PI_TYPE1:
827 case NVME_NS_DPS_PI_TYPE2:
828 control |= NVME_RW_PRINFO_PRCHK_GUARD |
829 NVME_RW_PRINFO_PRCHK_REF;
830 if (op == nvme_cmd_zone_append)
831 control |= NVME_RW_APPEND_PIREMAP;
832 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
833 break;
834 }
835 }
836
837 cmnd->rw.control = cpu_to_le16(control);
838 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
839 return 0;
840 }
841
842 void nvme_cleanup_cmd(struct request *req)
843 {
844 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
845 struct nvme_ns *ns = req->rq_disk->private_data;
846 struct page *page = req->special_vec.bv_page;
847
848 if (page == ns->ctrl->discard_page)
849 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
850 else
851 kfree(page_address(page) + req->special_vec.bv_offset);
852 }
853 }
854 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
855
856 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
857 struct nvme_command *cmd)
858 {
859 blk_status_t ret = BLK_STS_OK;
860
861 nvme_clear_nvme_request(req);
862
863 memset(cmd, 0, sizeof(*cmd));
864 switch (req_op(req)) {
865 case REQ_OP_DRV_IN:
866 case REQ_OP_DRV_OUT:
867 nvme_setup_passthrough(req, cmd);
868 break;
869 case REQ_OP_FLUSH:
870 nvme_setup_flush(ns, cmd);
871 break;
872 case REQ_OP_ZONE_RESET_ALL:
873 case REQ_OP_ZONE_RESET:
874 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
875 break;
876 case REQ_OP_ZONE_OPEN:
877 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
878 break;
879 case REQ_OP_ZONE_CLOSE:
880 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
881 break;
882 case REQ_OP_ZONE_FINISH:
883 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
884 break;
885 case REQ_OP_WRITE_ZEROES:
886 ret = nvme_setup_write_zeroes(ns, req, cmd);
887 break;
888 case REQ_OP_DISCARD:
889 ret = nvme_setup_discard(ns, req, cmd);
890 break;
891 case REQ_OP_READ:
892 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
893 break;
894 case REQ_OP_WRITE:
895 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
896 break;
897 case REQ_OP_ZONE_APPEND:
898 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
899 break;
900 default:
901 WARN_ON_ONCE(1);
902 return BLK_STS_IOERR;
903 }
904
905 cmd->common.command_id = req->tag;
906 trace_nvme_setup_cmd(req, cmd);
907 return ret;
908 }
909 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
910
911 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
912 {
913 struct completion *waiting = rq->end_io_data;
914
915 rq->end_io_data = NULL;
916 complete(waiting);
917 }
918
919 static void nvme_execute_rq_polled(struct request_queue *q,
920 struct gendisk *bd_disk, struct request *rq, int at_head)
921 {
922 DECLARE_COMPLETION_ONSTACK(wait);
923
924 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
925
926 rq->cmd_flags |= REQ_HIPRI;
927 rq->end_io_data = &wait;
928 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
929
930 while (!completion_done(&wait)) {
931 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
932 cond_resched();
933 }
934 }
935
936 /*
937 * Returns 0 on success. If the result is negative, it's a Linux error code;
938 * if the result is positive, it's an NVM Express status code
939 */
940 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
941 union nvme_result *result, void *buffer, unsigned bufflen,
942 unsigned timeout, int qid, int at_head,
943 blk_mq_req_flags_t flags, bool poll)
944 {
945 struct request *req;
946 int ret;
947
948 if (qid == NVME_QID_ANY)
949 req = nvme_alloc_request(q, cmd, flags);
950 else
951 req = nvme_alloc_request_qid(q, cmd, flags, qid);
952 if (IS_ERR(req))
953 return PTR_ERR(req);
954
955 if (timeout)
956 req->timeout = timeout;
957
958 if (buffer && bufflen) {
959 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
960 if (ret)
961 goto out;
962 }
963
964 if (poll)
965 nvme_execute_rq_polled(req->q, NULL, req, at_head);
966 else
967 blk_execute_rq(req->q, NULL, req, at_head);
968 if (result)
969 *result = nvme_req(req)->result;
970 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
971 ret = -EINTR;
972 else
973 ret = nvme_req(req)->status;
974 out:
975 blk_mq_free_request(req);
976 return ret;
977 }
978 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
979
980 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981 void *buffer, unsigned bufflen)
982 {
983 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
984 NVME_QID_ANY, 0, 0, false);
985 }
986 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
987
988 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
989 unsigned len, u32 seed, bool write)
990 {
991 struct bio_integrity_payload *bip;
992 int ret = -ENOMEM;
993 void *buf;
994
995 buf = kmalloc(len, GFP_KERNEL);
996 if (!buf)
997 goto out;
998
999 ret = -EFAULT;
1000 if (write && copy_from_user(buf, ubuf, len))
1001 goto out_free_meta;
1002
1003 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1004 if (IS_ERR(bip)) {
1005 ret = PTR_ERR(bip);
1006 goto out_free_meta;
1007 }
1008
1009 bip->bip_iter.bi_size = len;
1010 bip->bip_iter.bi_sector = seed;
1011 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1012 offset_in_page(buf));
1013 if (ret == len)
1014 return buf;
1015 ret = -ENOMEM;
1016 out_free_meta:
1017 kfree(buf);
1018 out:
1019 return ERR_PTR(ret);
1020 }
1021
1022 static u32 nvme_known_admin_effects(u8 opcode)
1023 {
1024 switch (opcode) {
1025 case nvme_admin_format_nvm:
1026 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1027 NVME_CMD_EFFECTS_CSE_MASK;
1028 case nvme_admin_sanitize_nvm:
1029 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1030 default:
1031 break;
1032 }
1033 return 0;
1034 }
1035
1036 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1037 {
1038 u32 effects = 0;
1039
1040 if (ns) {
1041 if (ns->head->effects)
1042 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1043 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1044 dev_warn(ctrl->device,
1045 "IO command:%02x has unhandled effects:%08x\n",
1046 opcode, effects);
1047 return 0;
1048 }
1049
1050 if (ctrl->effects)
1051 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1052 effects |= nvme_known_admin_effects(opcode);
1053
1054 return effects;
1055 }
1056 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1057
1058 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1059 u8 opcode)
1060 {
1061 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1062
1063 /*
1064 * For simplicity, IO to all namespaces is quiesced even if the command
1065 * effects say only one namespace is affected.
1066 */
1067 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1068 mutex_lock(&ctrl->scan_lock);
1069 mutex_lock(&ctrl->subsys->lock);
1070 nvme_mpath_start_freeze(ctrl->subsys);
1071 nvme_mpath_wait_freeze(ctrl->subsys);
1072 nvme_start_freeze(ctrl);
1073 nvme_wait_freeze(ctrl);
1074 }
1075 return effects;
1076 }
1077
1078 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1079 {
1080 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1081 nvme_unfreeze(ctrl);
1082 nvme_mpath_unfreeze(ctrl->subsys);
1083 mutex_unlock(&ctrl->subsys->lock);
1084 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1085 mutex_unlock(&ctrl->scan_lock);
1086 }
1087 if (effects & NVME_CMD_EFFECTS_CCC)
1088 nvme_init_identify(ctrl);
1089 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1090 nvme_queue_scan(ctrl);
1091 flush_work(&ctrl->scan_work);
1092 }
1093 }
1094
1095 void nvme_execute_passthru_rq(struct request *rq)
1096 {
1097 struct nvme_command *cmd = nvme_req(rq)->cmd;
1098 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1099 struct nvme_ns *ns = rq->q->queuedata;
1100 struct gendisk *disk = ns ? ns->disk : NULL;
1101 u32 effects;
1102
1103 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1104 blk_execute_rq(rq->q, disk, rq, 0);
1105 nvme_passthru_end(ctrl, effects);
1106 }
1107 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1108
1109 static int nvme_submit_user_cmd(struct request_queue *q,
1110 struct nvme_command *cmd, void __user *ubuffer,
1111 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1112 u32 meta_seed, u64 *result, unsigned timeout)
1113 {
1114 bool write = nvme_is_write(cmd);
1115 struct nvme_ns *ns = q->queuedata;
1116 struct gendisk *disk = ns ? ns->disk : NULL;
1117 struct request *req;
1118 struct bio *bio = NULL;
1119 void *meta = NULL;
1120 int ret;
1121
1122 req = nvme_alloc_request(q, cmd, 0);
1123 if (IS_ERR(req))
1124 return PTR_ERR(req);
1125
1126 if (timeout)
1127 req->timeout = timeout;
1128 nvme_req(req)->flags |= NVME_REQ_USERCMD;
1129
1130 if (ubuffer && bufflen) {
1131 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1132 GFP_KERNEL);
1133 if (ret)
1134 goto out;
1135 bio = req->bio;
1136 bio->bi_disk = disk;
1137 if (disk && meta_buffer && meta_len) {
1138 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1139 meta_seed, write);
1140 if (IS_ERR(meta)) {
1141 ret = PTR_ERR(meta);
1142 goto out_unmap;
1143 }
1144 req->cmd_flags |= REQ_INTEGRITY;
1145 }
1146 }
1147
1148 nvme_execute_passthru_rq(req);
1149 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1150 ret = -EINTR;
1151 else
1152 ret = nvme_req(req)->status;
1153 if (result)
1154 *result = le64_to_cpu(nvme_req(req)->result.u64);
1155 if (meta && !ret && !write) {
1156 if (copy_to_user(meta_buffer, meta, meta_len))
1157 ret = -EFAULT;
1158 }
1159 kfree(meta);
1160 out_unmap:
1161 if (bio)
1162 blk_rq_unmap_user(bio);
1163 out:
1164 blk_mq_free_request(req);
1165 return ret;
1166 }
1167
1168 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1169 {
1170 struct nvme_ctrl *ctrl = rq->end_io_data;
1171 unsigned long flags;
1172 bool startka = false;
1173
1174 blk_mq_free_request(rq);
1175
1176 if (status) {
1177 dev_err(ctrl->device,
1178 "failed nvme_keep_alive_end_io error=%d\n",
1179 status);
1180 return;
1181 }
1182
1183 ctrl->comp_seen = false;
1184 spin_lock_irqsave(&ctrl->lock, flags);
1185 if (ctrl->state == NVME_CTRL_LIVE ||
1186 ctrl->state == NVME_CTRL_CONNECTING)
1187 startka = true;
1188 spin_unlock_irqrestore(&ctrl->lock, flags);
1189 if (startka)
1190 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1191 }
1192
1193 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1194 {
1195 struct request *rq;
1196
1197 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1198 BLK_MQ_REQ_RESERVED);
1199 if (IS_ERR(rq))
1200 return PTR_ERR(rq);
1201
1202 rq->timeout = ctrl->kato * HZ;
1203 rq->end_io_data = ctrl;
1204
1205 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1206
1207 return 0;
1208 }
1209
1210 static void nvme_keep_alive_work(struct work_struct *work)
1211 {
1212 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1213 struct nvme_ctrl, ka_work);
1214 bool comp_seen = ctrl->comp_seen;
1215
1216 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1217 dev_dbg(ctrl->device,
1218 "reschedule traffic based keep-alive timer\n");
1219 ctrl->comp_seen = false;
1220 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1221 return;
1222 }
1223
1224 if (nvme_keep_alive(ctrl)) {
1225 /* allocation failure, reset the controller */
1226 dev_err(ctrl->device, "keep-alive failed\n");
1227 nvme_reset_ctrl(ctrl);
1228 return;
1229 }
1230 }
1231
1232 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1233 {
1234 if (unlikely(ctrl->kato == 0))
1235 return;
1236
1237 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1238 }
1239
1240 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1241 {
1242 if (unlikely(ctrl->kato == 0))
1243 return;
1244
1245 cancel_delayed_work_sync(&ctrl->ka_work);
1246 }
1247 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1248
1249 /*
1250 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1251 * flag, thus sending any new CNS opcodes has a big chance of not working.
1252 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1253 * (but not for any later version).
1254 */
1255 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1256 {
1257 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1258 return ctrl->vs < NVME_VS(1, 2, 0);
1259 return ctrl->vs < NVME_VS(1, 1, 0);
1260 }
1261
1262 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1263 {
1264 struct nvme_command c = { };
1265 int error;
1266
1267 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1268 c.identify.opcode = nvme_admin_identify;
1269 c.identify.cns = NVME_ID_CNS_CTRL;
1270
1271 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1272 if (!*id)
1273 return -ENOMEM;
1274
1275 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1276 sizeof(struct nvme_id_ctrl));
1277 if (error)
1278 kfree(*id);
1279 return error;
1280 }
1281
1282 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1283 {
1284 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1285 }
1286
1287 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1288 struct nvme_ns_id_desc *cur, bool *csi_seen)
1289 {
1290 const char *warn_str = "ctrl returned bogus length:";
1291 void *data = cur;
1292
1293 switch (cur->nidt) {
1294 case NVME_NIDT_EUI64:
1295 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1296 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1297 warn_str, cur->nidl);
1298 return -1;
1299 }
1300 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1301 return NVME_NIDT_EUI64_LEN;
1302 case NVME_NIDT_NGUID:
1303 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1304 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1305 warn_str, cur->nidl);
1306 return -1;
1307 }
1308 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1309 return NVME_NIDT_NGUID_LEN;
1310 case NVME_NIDT_UUID:
1311 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1312 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1313 warn_str, cur->nidl);
1314 return -1;
1315 }
1316 uuid_copy(&ids->uuid, data + sizeof(*cur));
1317 return NVME_NIDT_UUID_LEN;
1318 case NVME_NIDT_CSI:
1319 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1320 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1321 warn_str, cur->nidl);
1322 return -1;
1323 }
1324 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1325 *csi_seen = true;
1326 return NVME_NIDT_CSI_LEN;
1327 default:
1328 /* Skip unknown types */
1329 return cur->nidl;
1330 }
1331 }
1332
1333 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1334 struct nvme_ns_ids *ids)
1335 {
1336 struct nvme_command c = { };
1337 bool csi_seen = false;
1338 int status, pos, len;
1339 void *data;
1340
1341 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1342 return 0;
1343 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1344 return 0;
1345
1346 c.identify.opcode = nvme_admin_identify;
1347 c.identify.nsid = cpu_to_le32(nsid);
1348 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1349
1350 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1351 if (!data)
1352 return -ENOMEM;
1353
1354 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1355 NVME_IDENTIFY_DATA_SIZE);
1356 if (status) {
1357 dev_warn(ctrl->device,
1358 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1359 nsid, status);
1360 goto free_data;
1361 }
1362
1363 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1364 struct nvme_ns_id_desc *cur = data + pos;
1365
1366 if (cur->nidl == 0)
1367 break;
1368
1369 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1370 if (len < 0)
1371 break;
1372
1373 len += sizeof(*cur);
1374 }
1375
1376 if (nvme_multi_css(ctrl) && !csi_seen) {
1377 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1378 nsid);
1379 status = -EINVAL;
1380 }
1381
1382 free_data:
1383 kfree(data);
1384 return status;
1385 }
1386
1387 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1388 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1389 {
1390 struct nvme_command c = { };
1391 int error;
1392
1393 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1394 c.identify.opcode = nvme_admin_identify;
1395 c.identify.nsid = cpu_to_le32(nsid);
1396 c.identify.cns = NVME_ID_CNS_NS;
1397
1398 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1399 if (!*id)
1400 return -ENOMEM;
1401
1402 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1403 if (error) {
1404 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1405 goto out_free_id;
1406 }
1407
1408 error = -ENODEV;
1409 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1410 goto out_free_id;
1411
1412 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1413 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1414 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1415 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1416 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1417 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1418
1419 return 0;
1420
1421 out_free_id:
1422 kfree(*id);
1423 return error;
1424 }
1425
1426 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1427 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1428 {
1429 union nvme_result res = { 0 };
1430 struct nvme_command c;
1431 int ret;
1432
1433 memset(&c, 0, sizeof(c));
1434 c.features.opcode = op;
1435 c.features.fid = cpu_to_le32(fid);
1436 c.features.dword11 = cpu_to_le32(dword11);
1437
1438 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1439 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1440 if (ret >= 0 && result)
1441 *result = le32_to_cpu(res.u32);
1442 return ret;
1443 }
1444
1445 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1446 unsigned int dword11, void *buffer, size_t buflen,
1447 u32 *result)
1448 {
1449 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1450 buflen, result);
1451 }
1452 EXPORT_SYMBOL_GPL(nvme_set_features);
1453
1454 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1455 unsigned int dword11, void *buffer, size_t buflen,
1456 u32 *result)
1457 {
1458 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1459 buflen, result);
1460 }
1461 EXPORT_SYMBOL_GPL(nvme_get_features);
1462
1463 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1464 {
1465 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1466 u32 result;
1467 int status, nr_io_queues;
1468
1469 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1470 &result);
1471 if (status < 0)
1472 return status;
1473
1474 /*
1475 * Degraded controllers might return an error when setting the queue
1476 * count. We still want to be able to bring them online and offer
1477 * access to the admin queue, as that might be only way to fix them up.
1478 */
1479 if (status > 0) {
1480 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1481 *count = 0;
1482 } else {
1483 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1484 *count = min(*count, nr_io_queues);
1485 }
1486
1487 return 0;
1488 }
1489 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1490
1491 #define NVME_AEN_SUPPORTED \
1492 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1493 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1494
1495 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1496 {
1497 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1498 int status;
1499
1500 if (!supported_aens)
1501 return;
1502
1503 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1504 NULL, 0, &result);
1505 if (status)
1506 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1507 supported_aens);
1508
1509 queue_work(nvme_wq, &ctrl->async_event_work);
1510 }
1511
1512 /*
1513 * Convert integer values from ioctl structures to user pointers, silently
1514 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1515 * kernels.
1516 */
1517 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1518 {
1519 if (in_compat_syscall())
1520 ptrval = (compat_uptr_t)ptrval;
1521 return (void __user *)ptrval;
1522 }
1523
1524 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1525 {
1526 struct nvme_user_io io;
1527 struct nvme_command c;
1528 unsigned length, meta_len;
1529 void __user *metadata;
1530
1531 if (copy_from_user(&io, uio, sizeof(io)))
1532 return -EFAULT;
1533 if (io.flags)
1534 return -EINVAL;
1535
1536 switch (io.opcode) {
1537 case nvme_cmd_write:
1538 case nvme_cmd_read:
1539 case nvme_cmd_compare:
1540 break;
1541 default:
1542 return -EINVAL;
1543 }
1544
1545 length = (io.nblocks + 1) << ns->lba_shift;
1546 meta_len = (io.nblocks + 1) * ns->ms;
1547 metadata = nvme_to_user_ptr(io.metadata);
1548
1549 if (ns->features & NVME_NS_EXT_LBAS) {
1550 length += meta_len;
1551 meta_len = 0;
1552 } else if (meta_len) {
1553 if ((io.metadata & 3) || !io.metadata)
1554 return -EINVAL;
1555 }
1556
1557 memset(&c, 0, sizeof(c));
1558 c.rw.opcode = io.opcode;
1559 c.rw.flags = io.flags;
1560 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1561 c.rw.slba = cpu_to_le64(io.slba);
1562 c.rw.length = cpu_to_le16(io.nblocks);
1563 c.rw.control = cpu_to_le16(io.control);
1564 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1565 c.rw.reftag = cpu_to_le32(io.reftag);
1566 c.rw.apptag = cpu_to_le16(io.apptag);
1567 c.rw.appmask = cpu_to_le16(io.appmask);
1568
1569 return nvme_submit_user_cmd(ns->queue, &c,
1570 nvme_to_user_ptr(io.addr), length,
1571 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1572 }
1573
1574 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1575 struct nvme_passthru_cmd __user *ucmd)
1576 {
1577 struct nvme_passthru_cmd cmd;
1578 struct nvme_command c;
1579 unsigned timeout = 0;
1580 u64 result;
1581 int status;
1582
1583 if (!capable(CAP_SYS_ADMIN))
1584 return -EACCES;
1585 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1586 return -EFAULT;
1587 if (cmd.flags)
1588 return -EINVAL;
1589
1590 memset(&c, 0, sizeof(c));
1591 c.common.opcode = cmd.opcode;
1592 c.common.flags = cmd.flags;
1593 c.common.nsid = cpu_to_le32(cmd.nsid);
1594 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1595 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1596 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1597 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1598 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1599 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1600 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1601 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1602
1603 if (cmd.timeout_ms)
1604 timeout = msecs_to_jiffies(cmd.timeout_ms);
1605
1606 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1607 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1608 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1609 0, &result, timeout);
1610
1611 if (status >= 0) {
1612 if (put_user(result, &ucmd->result))
1613 return -EFAULT;
1614 }
1615
1616 return status;
1617 }
1618
1619 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1620 struct nvme_passthru_cmd64 __user *ucmd)
1621 {
1622 struct nvme_passthru_cmd64 cmd;
1623 struct nvme_command c;
1624 unsigned timeout = 0;
1625 int status;
1626
1627 if (!capable(CAP_SYS_ADMIN))
1628 return -EACCES;
1629 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1630 return -EFAULT;
1631 if (cmd.flags)
1632 return -EINVAL;
1633
1634 memset(&c, 0, sizeof(c));
1635 c.common.opcode = cmd.opcode;
1636 c.common.flags = cmd.flags;
1637 c.common.nsid = cpu_to_le32(cmd.nsid);
1638 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1639 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1640 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1641 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1642 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1643 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1644 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1645 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1646
1647 if (cmd.timeout_ms)
1648 timeout = msecs_to_jiffies(cmd.timeout_ms);
1649
1650 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1651 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1652 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1653 0, &cmd.result, timeout);
1654
1655 if (status >= 0) {
1656 if (put_user(cmd.result, &ucmd->result))
1657 return -EFAULT;
1658 }
1659
1660 return status;
1661 }
1662
1663 /*
1664 * Issue ioctl requests on the first available path. Note that unlike normal
1665 * block layer requests we will not retry failed request on another controller.
1666 */
1667 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1668 struct nvme_ns_head **head, int *srcu_idx)
1669 {
1670 #ifdef CONFIG_NVME_MULTIPATH
1671 if (disk->fops == &nvme_ns_head_ops) {
1672 struct nvme_ns *ns;
1673
1674 *head = disk->private_data;
1675 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1676 ns = nvme_find_path(*head);
1677 if (!ns)
1678 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1679 return ns;
1680 }
1681 #endif
1682 *head = NULL;
1683 *srcu_idx = -1;
1684 return disk->private_data;
1685 }
1686
1687 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1688 {
1689 if (head)
1690 srcu_read_unlock(&head->srcu, idx);
1691 }
1692
1693 static bool is_ctrl_ioctl(unsigned int cmd)
1694 {
1695 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1696 return true;
1697 if (is_sed_ioctl(cmd))
1698 return true;
1699 return false;
1700 }
1701
1702 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1703 void __user *argp,
1704 struct nvme_ns_head *head,
1705 int srcu_idx)
1706 {
1707 struct nvme_ctrl *ctrl = ns->ctrl;
1708 int ret;
1709
1710 nvme_get_ctrl(ns->ctrl);
1711 nvme_put_ns_from_disk(head, srcu_idx);
1712
1713 switch (cmd) {
1714 case NVME_IOCTL_ADMIN_CMD:
1715 ret = nvme_user_cmd(ctrl, NULL, argp);
1716 break;
1717 case NVME_IOCTL_ADMIN64_CMD:
1718 ret = nvme_user_cmd64(ctrl, NULL, argp);
1719 break;
1720 default:
1721 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1722 break;
1723 }
1724 nvme_put_ctrl(ctrl);
1725 return ret;
1726 }
1727
1728 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1729 unsigned int cmd, unsigned long arg)
1730 {
1731 struct nvme_ns_head *head = NULL;
1732 void __user *argp = (void __user *)arg;
1733 struct nvme_ns *ns;
1734 int srcu_idx, ret;
1735
1736 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1737 if (unlikely(!ns))
1738 return -EWOULDBLOCK;
1739
1740 /*
1741 * Handle ioctls that apply to the controller instead of the namespace
1742 * seperately and drop the ns SRCU reference early. This avoids a
1743 * deadlock when deleting namespaces using the passthrough interface.
1744 */
1745 if (is_ctrl_ioctl(cmd))
1746 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1747
1748 switch (cmd) {
1749 case NVME_IOCTL_ID:
1750 force_successful_syscall_return();
1751 ret = ns->head->ns_id;
1752 break;
1753 case NVME_IOCTL_IO_CMD:
1754 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1755 break;
1756 case NVME_IOCTL_SUBMIT_IO:
1757 ret = nvme_submit_io(ns, argp);
1758 break;
1759 case NVME_IOCTL_IO64_CMD:
1760 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1761 break;
1762 default:
1763 if (ns->ndev)
1764 ret = nvme_nvm_ioctl(ns, cmd, arg);
1765 else
1766 ret = -ENOTTY;
1767 }
1768
1769 nvme_put_ns_from_disk(head, srcu_idx);
1770 return ret;
1771 }
1772
1773 #ifdef CONFIG_COMPAT
1774 struct nvme_user_io32 {
1775 __u8 opcode;
1776 __u8 flags;
1777 __u16 control;
1778 __u16 nblocks;
1779 __u16 rsvd;
1780 __u64 metadata;
1781 __u64 addr;
1782 __u64 slba;
1783 __u32 dsmgmt;
1784 __u32 reftag;
1785 __u16 apptag;
1786 __u16 appmask;
1787 } __attribute__((__packed__));
1788
1789 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1790
1791 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1792 unsigned int cmd, unsigned long arg)
1793 {
1794 /*
1795 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1796 * between 32 bit programs and 64 bit kernel.
1797 * The cause is that the results of sizeof(struct nvme_user_io),
1798 * which is used to define NVME_IOCTL_SUBMIT_IO,
1799 * are not same between 32 bit compiler and 64 bit compiler.
1800 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1801 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1802 * Other IOCTL numbers are same between 32 bit and 64 bit.
1803 * So there is nothing to do regarding to other IOCTL numbers.
1804 */
1805 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1806 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1807
1808 return nvme_ioctl(bdev, mode, cmd, arg);
1809 }
1810 #else
1811 #define nvme_compat_ioctl NULL
1812 #endif /* CONFIG_COMPAT */
1813
1814 static int nvme_open(struct block_device *bdev, fmode_t mode)
1815 {
1816 struct nvme_ns *ns = bdev->bd_disk->private_data;
1817
1818 #ifdef CONFIG_NVME_MULTIPATH
1819 /* should never be called due to GENHD_FL_HIDDEN */
1820 if (WARN_ON_ONCE(ns->head->disk))
1821 goto fail;
1822 #endif
1823 if (!kref_get_unless_zero(&ns->kref))
1824 goto fail;
1825 if (!try_module_get(ns->ctrl->ops->module))
1826 goto fail_put_ns;
1827
1828 return 0;
1829
1830 fail_put_ns:
1831 nvme_put_ns(ns);
1832 fail:
1833 return -ENXIO;
1834 }
1835
1836 static void nvme_release(struct gendisk *disk, fmode_t mode)
1837 {
1838 struct nvme_ns *ns = disk->private_data;
1839
1840 module_put(ns->ctrl->ops->module);
1841 nvme_put_ns(ns);
1842 }
1843
1844 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1845 {
1846 /* some standard values */
1847 geo->heads = 1 << 6;
1848 geo->sectors = 1 << 5;
1849 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1850 return 0;
1851 }
1852
1853 #ifdef CONFIG_BLK_DEV_INTEGRITY
1854 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1855 u32 max_integrity_segments)
1856 {
1857 struct blk_integrity integrity;
1858
1859 memset(&integrity, 0, sizeof(integrity));
1860 switch (pi_type) {
1861 case NVME_NS_DPS_PI_TYPE3:
1862 integrity.profile = &t10_pi_type3_crc;
1863 integrity.tag_size = sizeof(u16) + sizeof(u32);
1864 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1865 break;
1866 case NVME_NS_DPS_PI_TYPE1:
1867 case NVME_NS_DPS_PI_TYPE2:
1868 integrity.profile = &t10_pi_type1_crc;
1869 integrity.tag_size = sizeof(u16);
1870 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1871 break;
1872 default:
1873 integrity.profile = NULL;
1874 break;
1875 }
1876 integrity.tuple_size = ms;
1877 blk_integrity_register(disk, &integrity);
1878 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1879 }
1880 #else
1881 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1882 u32 max_integrity_segments)
1883 {
1884 }
1885 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1886
1887 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1888 {
1889 struct nvme_ctrl *ctrl = ns->ctrl;
1890 struct request_queue *queue = disk->queue;
1891 u32 size = queue_logical_block_size(queue);
1892
1893 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1894 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1895 return;
1896 }
1897
1898 if (ctrl->nr_streams && ns->sws && ns->sgs)
1899 size *= ns->sws * ns->sgs;
1900
1901 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1902 NVME_DSM_MAX_RANGES);
1903
1904 queue->limits.discard_alignment = 0;
1905 queue->limits.discard_granularity = size;
1906
1907 /* If discard is already enabled, don't reset queue limits */
1908 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1909 return;
1910
1911 blk_queue_max_discard_sectors(queue, UINT_MAX);
1912 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1913
1914 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1915 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1916 }
1917
1918 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1919 {
1920 u64 max_blocks;
1921
1922 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1923 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1924 return;
1925 /*
1926 * Even though NVMe spec explicitly states that MDTS is not
1927 * applicable to the write-zeroes:- "The restriction does not apply to
1928 * commands that do not transfer data between the host and the
1929 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1930 * In order to be more cautious use controller's max_hw_sectors value
1931 * to configure the maximum sectors for the write-zeroes which is
1932 * configured based on the controller's MDTS field in the
1933 * nvme_init_identify() if available.
1934 */
1935 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1936 max_blocks = (u64)USHRT_MAX + 1;
1937 else
1938 max_blocks = ns->ctrl->max_hw_sectors + 1;
1939
1940 blk_queue_max_write_zeroes_sectors(disk->queue,
1941 nvme_lba_to_sect(ns, max_blocks));
1942 }
1943
1944 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1945 {
1946 return !uuid_is_null(&ids->uuid) ||
1947 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1948 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1949 }
1950
1951 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1952 {
1953 return uuid_equal(&a->uuid, &b->uuid) &&
1954 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1955 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1956 a->csi == b->csi;
1957 }
1958
1959 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1960 u32 *phys_bs, u32 *io_opt)
1961 {
1962 struct streams_directive_params s;
1963 int ret;
1964
1965 if (!ctrl->nr_streams)
1966 return 0;
1967
1968 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1969 if (ret)
1970 return ret;
1971
1972 ns->sws = le32_to_cpu(s.sws);
1973 ns->sgs = le16_to_cpu(s.sgs);
1974
1975 if (ns->sws) {
1976 *phys_bs = ns->sws * (1 << ns->lba_shift);
1977 if (ns->sgs)
1978 *io_opt = *phys_bs * ns->sgs;
1979 }
1980
1981 return 0;
1982 }
1983
1984 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1985 {
1986 struct nvme_ctrl *ctrl = ns->ctrl;
1987
1988 /*
1989 * The PI implementation requires the metadata size to be equal to the
1990 * t10 pi tuple size.
1991 */
1992 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1993 if (ns->ms == sizeof(struct t10_pi_tuple))
1994 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1995 else
1996 ns->pi_type = 0;
1997
1998 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1999 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2000 return 0;
2001 if (ctrl->ops->flags & NVME_F_FABRICS) {
2002 /*
2003 * The NVMe over Fabrics specification only supports metadata as
2004 * part of the extended data LBA. We rely on HCA/HBA support to
2005 * remap the separate metadata buffer from the block layer.
2006 */
2007 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2008 return -EINVAL;
2009 if (ctrl->max_integrity_segments)
2010 ns->features |=
2011 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2012 } else {
2013 /*
2014 * For PCIe controllers, we can't easily remap the separate
2015 * metadata buffer from the block layer and thus require a
2016 * separate metadata buffer for block layer metadata/PI support.
2017 * We allow extended LBAs for the passthrough interface, though.
2018 */
2019 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2020 ns->features |= NVME_NS_EXT_LBAS;
2021 else
2022 ns->features |= NVME_NS_METADATA_SUPPORTED;
2023 }
2024
2025 return 0;
2026 }
2027
2028 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2029 struct request_queue *q)
2030 {
2031 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2032
2033 if (ctrl->max_hw_sectors) {
2034 u32 max_segments =
2035 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2036
2037 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2038 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2039 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2040 }
2041 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2042 blk_queue_dma_alignment(q, 7);
2043 blk_queue_write_cache(q, vwc, vwc);
2044 }
2045
2046 static void nvme_update_disk_info(struct gendisk *disk,
2047 struct nvme_ns *ns, struct nvme_id_ns *id)
2048 {
2049 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2050 unsigned short bs = 1 << ns->lba_shift;
2051 u32 atomic_bs, phys_bs, io_opt = 0;
2052
2053 /*
2054 * The block layer can't support LBA sizes larger than the page size
2055 * yet, so catch this early and don't allow block I/O.
2056 */
2057 if (ns->lba_shift > PAGE_SHIFT) {
2058 capacity = 0;
2059 bs = (1 << 9);
2060 }
2061
2062 blk_integrity_unregister(disk);
2063
2064 atomic_bs = phys_bs = bs;
2065 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2066 if (id->nabo == 0) {
2067 /*
2068 * Bit 1 indicates whether NAWUPF is defined for this namespace
2069 * and whether it should be used instead of AWUPF. If NAWUPF ==
2070 * 0 then AWUPF must be used instead.
2071 */
2072 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2073 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2074 else
2075 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2076 }
2077
2078 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2079 /* NPWG = Namespace Preferred Write Granularity */
2080 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2081 /* NOWS = Namespace Optimal Write Size */
2082 io_opt = bs * (1 + le16_to_cpu(id->nows));
2083 }
2084
2085 blk_queue_logical_block_size(disk->queue, bs);
2086 /*
2087 * Linux filesystems assume writing a single physical block is
2088 * an atomic operation. Hence limit the physical block size to the
2089 * value of the Atomic Write Unit Power Fail parameter.
2090 */
2091 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2092 blk_queue_io_min(disk->queue, phys_bs);
2093 blk_queue_io_opt(disk->queue, io_opt);
2094
2095 /*
2096 * Register a metadata profile for PI, or the plain non-integrity NVMe
2097 * metadata masquerading as Type 0 if supported, otherwise reject block
2098 * I/O to namespaces with metadata except when the namespace supports
2099 * PI, as it can strip/insert in that case.
2100 */
2101 if (ns->ms) {
2102 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2103 (ns->features & NVME_NS_METADATA_SUPPORTED))
2104 nvme_init_integrity(disk, ns->ms, ns->pi_type,
2105 ns->ctrl->max_integrity_segments);
2106 else if (!nvme_ns_has_pi(ns))
2107 capacity = 0;
2108 }
2109
2110 set_capacity_and_notify(disk, capacity);
2111
2112 nvme_config_discard(disk, ns);
2113 nvme_config_write_zeroes(disk, ns);
2114
2115 if ((id->nsattr & NVME_NS_ATTR_RO) ||
2116 test_bit(NVME_NS_FORCE_RO, &ns->flags))
2117 set_disk_ro(disk, true);
2118 }
2119
2120 static inline bool nvme_first_scan(struct gendisk *disk)
2121 {
2122 /* nvme_alloc_ns() scans the disk prior to adding it */
2123 return !(disk->flags & GENHD_FL_UP);
2124 }
2125
2126 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2127 {
2128 struct nvme_ctrl *ctrl = ns->ctrl;
2129 u32 iob;
2130
2131 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2132 is_power_of_2(ctrl->max_hw_sectors))
2133 iob = ctrl->max_hw_sectors;
2134 else
2135 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2136
2137 if (!iob)
2138 return;
2139
2140 if (!is_power_of_2(iob)) {
2141 if (nvme_first_scan(ns->disk))
2142 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2143 ns->disk->disk_name, iob);
2144 return;
2145 }
2146
2147 if (blk_queue_is_zoned(ns->disk->queue)) {
2148 if (nvme_first_scan(ns->disk))
2149 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2150 ns->disk->disk_name);
2151 return;
2152 }
2153
2154 blk_queue_chunk_sectors(ns->queue, iob);
2155 }
2156
2157 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2158 {
2159 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2160 int ret;
2161
2162 blk_mq_freeze_queue(ns->disk->queue);
2163 ns->lba_shift = id->lbaf[lbaf].ds;
2164 nvme_set_queue_limits(ns->ctrl, ns->queue);
2165
2166 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2167 ret = nvme_update_zone_info(ns, lbaf);
2168 if (ret)
2169 goto out_unfreeze;
2170 }
2171
2172 ret = nvme_configure_metadata(ns, id);
2173 if (ret)
2174 goto out_unfreeze;
2175 nvme_set_chunk_sectors(ns, id);
2176 nvme_update_disk_info(ns->disk, ns, id);
2177 blk_mq_unfreeze_queue(ns->disk->queue);
2178
2179 if (blk_queue_is_zoned(ns->queue)) {
2180 ret = nvme_revalidate_zones(ns);
2181 if (ret && !nvme_first_scan(ns->disk))
2182 return ret;
2183 }
2184
2185 #ifdef CONFIG_NVME_MULTIPATH
2186 if (ns->head->disk) {
2187 blk_mq_freeze_queue(ns->head->disk->queue);
2188 nvme_update_disk_info(ns->head->disk, ns, id);
2189 blk_stack_limits(&ns->head->disk->queue->limits,
2190 &ns->queue->limits, 0);
2191 blk_queue_update_readahead(ns->head->disk->queue);
2192 blk_mq_unfreeze_queue(ns->head->disk->queue);
2193 }
2194 #endif
2195 return 0;
2196
2197 out_unfreeze:
2198 blk_mq_unfreeze_queue(ns->disk->queue);
2199 return ret;
2200 }
2201
2202 static char nvme_pr_type(enum pr_type type)
2203 {
2204 switch (type) {
2205 case PR_WRITE_EXCLUSIVE:
2206 return 1;
2207 case PR_EXCLUSIVE_ACCESS:
2208 return 2;
2209 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2210 return 3;
2211 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2212 return 4;
2213 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2214 return 5;
2215 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2216 return 6;
2217 default:
2218 return 0;
2219 }
2220 };
2221
2222 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2223 u64 key, u64 sa_key, u8 op)
2224 {
2225 struct nvme_ns_head *head = NULL;
2226 struct nvme_ns *ns;
2227 struct nvme_command c;
2228 int srcu_idx, ret;
2229 u8 data[16] = { 0, };
2230
2231 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2232 if (unlikely(!ns))
2233 return -EWOULDBLOCK;
2234
2235 put_unaligned_le64(key, &data[0]);
2236 put_unaligned_le64(sa_key, &data[8]);
2237
2238 memset(&c, 0, sizeof(c));
2239 c.common.opcode = op;
2240 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2241 c.common.cdw10 = cpu_to_le32(cdw10);
2242
2243 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2244 nvme_put_ns_from_disk(head, srcu_idx);
2245 return ret;
2246 }
2247
2248 static int nvme_pr_register(struct block_device *bdev, u64 old,
2249 u64 new, unsigned flags)
2250 {
2251 u32 cdw10;
2252
2253 if (flags & ~PR_FL_IGNORE_KEY)
2254 return -EOPNOTSUPP;
2255
2256 cdw10 = old ? 2 : 0;
2257 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2258 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2259 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2260 }
2261
2262 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2263 enum pr_type type, unsigned flags)
2264 {
2265 u32 cdw10;
2266
2267 if (flags & ~PR_FL_IGNORE_KEY)
2268 return -EOPNOTSUPP;
2269
2270 cdw10 = nvme_pr_type(type) << 8;
2271 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2272 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2273 }
2274
2275 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2276 enum pr_type type, bool abort)
2277 {
2278 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2279 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2280 }
2281
2282 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2283 {
2284 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2285 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2286 }
2287
2288 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2289 {
2290 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2291 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2292 }
2293
2294 static const struct pr_ops nvme_pr_ops = {
2295 .pr_register = nvme_pr_register,
2296 .pr_reserve = nvme_pr_reserve,
2297 .pr_release = nvme_pr_release,
2298 .pr_preempt = nvme_pr_preempt,
2299 .pr_clear = nvme_pr_clear,
2300 };
2301
2302 #ifdef CONFIG_BLK_SED_OPAL
2303 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2304 bool send)
2305 {
2306 struct nvme_ctrl *ctrl = data;
2307 struct nvme_command cmd;
2308
2309 memset(&cmd, 0, sizeof(cmd));
2310 if (send)
2311 cmd.common.opcode = nvme_admin_security_send;
2312 else
2313 cmd.common.opcode = nvme_admin_security_recv;
2314 cmd.common.nsid = 0;
2315 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2316 cmd.common.cdw11 = cpu_to_le32(len);
2317
2318 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2319 NVME_QID_ANY, 1, 0, false);
2320 }
2321 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2322 #endif /* CONFIG_BLK_SED_OPAL */
2323
2324 static const struct block_device_operations nvme_bdev_ops = {
2325 .owner = THIS_MODULE,
2326 .ioctl = nvme_ioctl,
2327 .compat_ioctl = nvme_compat_ioctl,
2328 .open = nvme_open,
2329 .release = nvme_release,
2330 .getgeo = nvme_getgeo,
2331 .report_zones = nvme_report_zones,
2332 .pr_ops = &nvme_pr_ops,
2333 };
2334
2335 #ifdef CONFIG_NVME_MULTIPATH
2336 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2337 {
2338 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2339
2340 if (!kref_get_unless_zero(&head->ref))
2341 return -ENXIO;
2342 return 0;
2343 }
2344
2345 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2346 {
2347 nvme_put_ns_head(disk->private_data);
2348 }
2349
2350 const struct block_device_operations nvme_ns_head_ops = {
2351 .owner = THIS_MODULE,
2352 .submit_bio = nvme_ns_head_submit_bio,
2353 .open = nvme_ns_head_open,
2354 .release = nvme_ns_head_release,
2355 .ioctl = nvme_ioctl,
2356 .compat_ioctl = nvme_compat_ioctl,
2357 .getgeo = nvme_getgeo,
2358 .report_zones = nvme_report_zones,
2359 .pr_ops = &nvme_pr_ops,
2360 };
2361 #endif /* CONFIG_NVME_MULTIPATH */
2362
2363 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2364 {
2365 unsigned long timeout =
2366 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2367 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2368 int ret;
2369
2370 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2371 if (csts == ~0)
2372 return -ENODEV;
2373 if ((csts & NVME_CSTS_RDY) == bit)
2374 break;
2375
2376 usleep_range(1000, 2000);
2377 if (fatal_signal_pending(current))
2378 return -EINTR;
2379 if (time_after(jiffies, timeout)) {
2380 dev_err(ctrl->device,
2381 "Device not ready; aborting %s, CSTS=0x%x\n",
2382 enabled ? "initialisation" : "reset", csts);
2383 return -ENODEV;
2384 }
2385 }
2386
2387 return ret;
2388 }
2389
2390 /*
2391 * If the device has been passed off to us in an enabled state, just clear
2392 * the enabled bit. The spec says we should set the 'shutdown notification
2393 * bits', but doing so may cause the device to complete commands to the
2394 * admin queue ... and we don't know what memory that might be pointing at!
2395 */
2396 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2397 {
2398 int ret;
2399
2400 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2401 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2402
2403 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2404 if (ret)
2405 return ret;
2406
2407 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2408 msleep(NVME_QUIRK_DELAY_AMOUNT);
2409
2410 return nvme_wait_ready(ctrl, ctrl->cap, false);
2411 }
2412 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2413
2414 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2415 {
2416 unsigned dev_page_min;
2417 int ret;
2418
2419 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2420 if (ret) {
2421 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2422 return ret;
2423 }
2424 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2425
2426 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2427 dev_err(ctrl->device,
2428 "Minimum device page size %u too large for host (%u)\n",
2429 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2430 return -ENODEV;
2431 }
2432
2433 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2434 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2435 else
2436 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2437 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2438 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2439 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2440 ctrl->ctrl_config |= NVME_CC_ENABLE;
2441
2442 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2443 if (ret)
2444 return ret;
2445 return nvme_wait_ready(ctrl, ctrl->cap, true);
2446 }
2447 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2448
2449 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2450 {
2451 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2452 u32 csts;
2453 int ret;
2454
2455 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2456 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2457
2458 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2459 if (ret)
2460 return ret;
2461
2462 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2463 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2464 break;
2465
2466 msleep(100);
2467 if (fatal_signal_pending(current))
2468 return -EINTR;
2469 if (time_after(jiffies, timeout)) {
2470 dev_err(ctrl->device,
2471 "Device shutdown incomplete; abort shutdown\n");
2472 return -ENODEV;
2473 }
2474 }
2475
2476 return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2479
2480 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2481 {
2482 __le64 ts;
2483 int ret;
2484
2485 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2486 return 0;
2487
2488 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2489 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2490 NULL);
2491 if (ret)
2492 dev_warn_once(ctrl->device,
2493 "could not set timestamp (%d)\n", ret);
2494 return ret;
2495 }
2496
2497 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2498 {
2499 struct nvme_feat_host_behavior *host;
2500 int ret;
2501
2502 /* Don't bother enabling the feature if retry delay is not reported */
2503 if (!ctrl->crdt[0])
2504 return 0;
2505
2506 host = kzalloc(sizeof(*host), GFP_KERNEL);
2507 if (!host)
2508 return 0;
2509
2510 host->acre = NVME_ENABLE_ACRE;
2511 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2512 host, sizeof(*host), NULL);
2513 kfree(host);
2514 return ret;
2515 }
2516
2517 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2518 {
2519 /*
2520 * APST (Autonomous Power State Transition) lets us program a
2521 * table of power state transitions that the controller will
2522 * perform automatically. We configure it with a simple
2523 * heuristic: we are willing to spend at most 2% of the time
2524 * transitioning between power states. Therefore, when running
2525 * in any given state, we will enter the next lower-power
2526 * non-operational state after waiting 50 * (enlat + exlat)
2527 * microseconds, as long as that state's exit latency is under
2528 * the requested maximum latency.
2529 *
2530 * We will not autonomously enter any non-operational state for
2531 * which the total latency exceeds ps_max_latency_us. Users
2532 * can set ps_max_latency_us to zero to turn off APST.
2533 */
2534
2535 unsigned apste;
2536 struct nvme_feat_auto_pst *table;
2537 u64 max_lat_us = 0;
2538 int max_ps = -1;
2539 int ret;
2540
2541 /*
2542 * If APST isn't supported or if we haven't been initialized yet,
2543 * then don't do anything.
2544 */
2545 if (!ctrl->apsta)
2546 return 0;
2547
2548 if (ctrl->npss > 31) {
2549 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2550 return 0;
2551 }
2552
2553 table = kzalloc(sizeof(*table), GFP_KERNEL);
2554 if (!table)
2555 return 0;
2556
2557 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2558 /* Turn off APST. */
2559 apste = 0;
2560 dev_dbg(ctrl->device, "APST disabled\n");
2561 } else {
2562 __le64 target = cpu_to_le64(0);
2563 int state;
2564
2565 /*
2566 * Walk through all states from lowest- to highest-power.
2567 * According to the spec, lower-numbered states use more
2568 * power. NPSS, despite the name, is the index of the
2569 * lowest-power state, not the number of states.
2570 */
2571 for (state = (int)ctrl->npss; state >= 0; state--) {
2572 u64 total_latency_us, exit_latency_us, transition_ms;
2573
2574 if (target)
2575 table->entries[state] = target;
2576
2577 /*
2578 * Don't allow transitions to the deepest state
2579 * if it's quirked off.
2580 */
2581 if (state == ctrl->npss &&
2582 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2583 continue;
2584
2585 /*
2586 * Is this state a useful non-operational state for
2587 * higher-power states to autonomously transition to?
2588 */
2589 if (!(ctrl->psd[state].flags &
2590 NVME_PS_FLAGS_NON_OP_STATE))
2591 continue;
2592
2593 exit_latency_us =
2594 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2595 if (exit_latency_us > ctrl->ps_max_latency_us)
2596 continue;
2597
2598 total_latency_us =
2599 exit_latency_us +
2600 le32_to_cpu(ctrl->psd[state].entry_lat);
2601
2602 /*
2603 * This state is good. Use it as the APST idle
2604 * target for higher power states.
2605 */
2606 transition_ms = total_latency_us + 19;
2607 do_div(transition_ms, 20);
2608 if (transition_ms > (1 << 24) - 1)
2609 transition_ms = (1 << 24) - 1;
2610
2611 target = cpu_to_le64((state << 3) |
2612 (transition_ms << 8));
2613
2614 if (max_ps == -1)
2615 max_ps = state;
2616
2617 if (total_latency_us > max_lat_us)
2618 max_lat_us = total_latency_us;
2619 }
2620
2621 apste = 1;
2622
2623 if (max_ps == -1) {
2624 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2625 } else {
2626 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2627 max_ps, max_lat_us, (int)sizeof(*table), table);
2628 }
2629 }
2630
2631 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2632 table, sizeof(*table), NULL);
2633 if (ret)
2634 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2635
2636 kfree(table);
2637 return ret;
2638 }
2639
2640 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2641 {
2642 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2643 u64 latency;
2644
2645 switch (val) {
2646 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2647 case PM_QOS_LATENCY_ANY:
2648 latency = U64_MAX;
2649 break;
2650
2651 default:
2652 latency = val;
2653 }
2654
2655 if (ctrl->ps_max_latency_us != latency) {
2656 ctrl->ps_max_latency_us = latency;
2657 nvme_configure_apst(ctrl);
2658 }
2659 }
2660
2661 struct nvme_core_quirk_entry {
2662 /*
2663 * NVMe model and firmware strings are padded with spaces. For
2664 * simplicity, strings in the quirk table are padded with NULLs
2665 * instead.
2666 */
2667 u16 vid;
2668 const char *mn;
2669 const char *fr;
2670 unsigned long quirks;
2671 };
2672
2673 static const struct nvme_core_quirk_entry core_quirks[] = {
2674 {
2675 /*
2676 * This Toshiba device seems to die using any APST states. See:
2677 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2678 */
2679 .vid = 0x1179,
2680 .mn = "THNSF5256GPUK TOSHIBA",
2681 .quirks = NVME_QUIRK_NO_APST,
2682 },
2683 {
2684 /*
2685 * This LiteON CL1-3D*-Q11 firmware version has a race
2686 * condition associated with actions related to suspend to idle
2687 * LiteON has resolved the problem in future firmware
2688 */
2689 .vid = 0x14a4,
2690 .fr = "22301111",
2691 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2692 }
2693 };
2694
2695 /* match is null-terminated but idstr is space-padded. */
2696 static bool string_matches(const char *idstr, const char *match, size_t len)
2697 {
2698 size_t matchlen;
2699
2700 if (!match)
2701 return true;
2702
2703 matchlen = strlen(match);
2704 WARN_ON_ONCE(matchlen > len);
2705
2706 if (memcmp(idstr, match, matchlen))
2707 return false;
2708
2709 for (; matchlen < len; matchlen++)
2710 if (idstr[matchlen] != ' ')
2711 return false;
2712
2713 return true;
2714 }
2715
2716 static bool quirk_matches(const struct nvme_id_ctrl *id,
2717 const struct nvme_core_quirk_entry *q)
2718 {
2719 return q->vid == le16_to_cpu(id->vid) &&
2720 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2721 string_matches(id->fr, q->fr, sizeof(id->fr));
2722 }
2723
2724 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2725 struct nvme_id_ctrl *id)
2726 {
2727 size_t nqnlen;
2728 int off;
2729
2730 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2731 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2732 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2733 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2734 return;
2735 }
2736
2737 if (ctrl->vs >= NVME_VS(1, 2, 1))
2738 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2739 }
2740
2741 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2742 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2743 "nqn.2014.08.org.nvmexpress:%04x%04x",
2744 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2745 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2746 off += sizeof(id->sn);
2747 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2748 off += sizeof(id->mn);
2749 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2750 }
2751
2752 static void nvme_release_subsystem(struct device *dev)
2753 {
2754 struct nvme_subsystem *subsys =
2755 container_of(dev, struct nvme_subsystem, dev);
2756
2757 if (subsys->instance >= 0)
2758 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2759 kfree(subsys);
2760 }
2761
2762 static void nvme_destroy_subsystem(struct kref *ref)
2763 {
2764 struct nvme_subsystem *subsys =
2765 container_of(ref, struct nvme_subsystem, ref);
2766
2767 mutex_lock(&nvme_subsystems_lock);
2768 list_del(&subsys->entry);
2769 mutex_unlock(&nvme_subsystems_lock);
2770
2771 ida_destroy(&subsys->ns_ida);
2772 device_del(&subsys->dev);
2773 put_device(&subsys->dev);
2774 }
2775
2776 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2777 {
2778 kref_put(&subsys->ref, nvme_destroy_subsystem);
2779 }
2780
2781 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2782 {
2783 struct nvme_subsystem *subsys;
2784
2785 lockdep_assert_held(&nvme_subsystems_lock);
2786
2787 /*
2788 * Fail matches for discovery subsystems. This results
2789 * in each discovery controller bound to a unique subsystem.
2790 * This avoids issues with validating controller values
2791 * that can only be true when there is a single unique subsystem.
2792 * There may be multiple and completely independent entities
2793 * that provide discovery controllers.
2794 */
2795 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2796 return NULL;
2797
2798 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2799 if (strcmp(subsys->subnqn, subsysnqn))
2800 continue;
2801 if (!kref_get_unless_zero(&subsys->ref))
2802 continue;
2803 return subsys;
2804 }
2805
2806 return NULL;
2807 }
2808
2809 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2810 struct device_attribute subsys_attr_##_name = \
2811 __ATTR(_name, _mode, _show, NULL)
2812
2813 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2814 struct device_attribute *attr,
2815 char *buf)
2816 {
2817 struct nvme_subsystem *subsys =
2818 container_of(dev, struct nvme_subsystem, dev);
2819
2820 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2821 }
2822 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2823
2824 #define nvme_subsys_show_str_function(field) \
2825 static ssize_t subsys_##field##_show(struct device *dev, \
2826 struct device_attribute *attr, char *buf) \
2827 { \
2828 struct nvme_subsystem *subsys = \
2829 container_of(dev, struct nvme_subsystem, dev); \
2830 return sprintf(buf, "%.*s\n", \
2831 (int)sizeof(subsys->field), subsys->field); \
2832 } \
2833 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2834
2835 nvme_subsys_show_str_function(model);
2836 nvme_subsys_show_str_function(serial);
2837 nvme_subsys_show_str_function(firmware_rev);
2838
2839 static struct attribute *nvme_subsys_attrs[] = {
2840 &subsys_attr_model.attr,
2841 &subsys_attr_serial.attr,
2842 &subsys_attr_firmware_rev.attr,
2843 &subsys_attr_subsysnqn.attr,
2844 #ifdef CONFIG_NVME_MULTIPATH
2845 &subsys_attr_iopolicy.attr,
2846 #endif
2847 NULL,
2848 };
2849
2850 static struct attribute_group nvme_subsys_attrs_group = {
2851 .attrs = nvme_subsys_attrs,
2852 };
2853
2854 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2855 &nvme_subsys_attrs_group,
2856 NULL,
2857 };
2858
2859 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2860 {
2861 return ctrl->opts && ctrl->opts->discovery_nqn;
2862 }
2863
2864 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2865 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2866 {
2867 struct nvme_ctrl *tmp;
2868
2869 lockdep_assert_held(&nvme_subsystems_lock);
2870
2871 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2872 if (nvme_state_terminal(tmp))
2873 continue;
2874
2875 if (tmp->cntlid == ctrl->cntlid) {
2876 dev_err(ctrl->device,
2877 "Duplicate cntlid %u with %s, rejecting\n",
2878 ctrl->cntlid, dev_name(tmp->device));
2879 return false;
2880 }
2881
2882 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2883 nvme_discovery_ctrl(ctrl))
2884 continue;
2885
2886 dev_err(ctrl->device,
2887 "Subsystem does not support multiple controllers\n");
2888 return false;
2889 }
2890
2891 return true;
2892 }
2893
2894 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2895 {
2896 struct nvme_subsystem *subsys, *found;
2897 int ret;
2898
2899 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2900 if (!subsys)
2901 return -ENOMEM;
2902
2903 subsys->instance = -1;
2904 mutex_init(&subsys->lock);
2905 kref_init(&subsys->ref);
2906 INIT_LIST_HEAD(&subsys->ctrls);
2907 INIT_LIST_HEAD(&subsys->nsheads);
2908 nvme_init_subnqn(subsys, ctrl, id);
2909 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2910 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2911 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2912 subsys->vendor_id = le16_to_cpu(id->vid);
2913 subsys->cmic = id->cmic;
2914 subsys->awupf = le16_to_cpu(id->awupf);
2915 #ifdef CONFIG_NVME_MULTIPATH
2916 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2917 #endif
2918
2919 subsys->dev.class = nvme_subsys_class;
2920 subsys->dev.release = nvme_release_subsystem;
2921 subsys->dev.groups = nvme_subsys_attrs_groups;
2922 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2923 device_initialize(&subsys->dev);
2924
2925 mutex_lock(&nvme_subsystems_lock);
2926 found = __nvme_find_get_subsystem(subsys->subnqn);
2927 if (found) {
2928 put_device(&subsys->dev);
2929 subsys = found;
2930
2931 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2932 ret = -EINVAL;
2933 goto out_put_subsystem;
2934 }
2935 } else {
2936 ret = device_add(&subsys->dev);
2937 if (ret) {
2938 dev_err(ctrl->device,
2939 "failed to register subsystem device.\n");
2940 put_device(&subsys->dev);
2941 goto out_unlock;
2942 }
2943 ida_init(&subsys->ns_ida);
2944 list_add_tail(&subsys->entry, &nvme_subsystems);
2945 }
2946
2947 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2948 dev_name(ctrl->device));
2949 if (ret) {
2950 dev_err(ctrl->device,
2951 "failed to create sysfs link from subsystem.\n");
2952 goto out_put_subsystem;
2953 }
2954
2955 if (!found)
2956 subsys->instance = ctrl->instance;
2957 ctrl->subsys = subsys;
2958 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2959 mutex_unlock(&nvme_subsystems_lock);
2960 return 0;
2961
2962 out_put_subsystem:
2963 nvme_put_subsystem(subsys);
2964 out_unlock:
2965 mutex_unlock(&nvme_subsystems_lock);
2966 return ret;
2967 }
2968
2969 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2970 void *log, size_t size, u64 offset)
2971 {
2972 struct nvme_command c = { };
2973 u32 dwlen = nvme_bytes_to_numd(size);
2974
2975 c.get_log_page.opcode = nvme_admin_get_log_page;
2976 c.get_log_page.nsid = cpu_to_le32(nsid);
2977 c.get_log_page.lid = log_page;
2978 c.get_log_page.lsp = lsp;
2979 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2980 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2981 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2982 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2983 c.get_log_page.csi = csi;
2984
2985 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2986 }
2987
2988 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2989 struct nvme_effects_log **log)
2990 {
2991 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2992 int ret;
2993
2994 if (cel)
2995 goto out;
2996
2997 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2998 if (!cel)
2999 return -ENOMEM;
3000
3001 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3002 cel, sizeof(*cel), 0);
3003 if (ret) {
3004 kfree(cel);
3005 return ret;
3006 }
3007
3008 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3009 out:
3010 *log = cel;
3011 return 0;
3012 }
3013
3014 /*
3015 * Initialize the cached copies of the Identify data and various controller
3016 * register in our nvme_ctrl structure. This should be called as soon as
3017 * the admin queue is fully up and running.
3018 */
3019 int nvme_init_identify(struct nvme_ctrl *ctrl)
3020 {
3021 struct nvme_id_ctrl *id;
3022 int ret, page_shift;
3023 u32 max_hw_sectors;
3024 bool prev_apst_enabled;
3025
3026 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3027 if (ret) {
3028 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3029 return ret;
3030 }
3031 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3032 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3033
3034 if (ctrl->vs >= NVME_VS(1, 1, 0))
3035 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3036
3037 ret = nvme_identify_ctrl(ctrl, &id);
3038 if (ret) {
3039 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3040 return -EIO;
3041 }
3042
3043 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3044 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3045 if (ret < 0)
3046 goto out_free;
3047 }
3048
3049 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3050 ctrl->cntlid = le16_to_cpu(id->cntlid);
3051
3052 if (!ctrl->identified) {
3053 int i;
3054
3055 ret = nvme_init_subsystem(ctrl, id);
3056 if (ret)
3057 goto out_free;
3058
3059 /*
3060 * Check for quirks. Quirk can depend on firmware version,
3061 * so, in principle, the set of quirks present can change
3062 * across a reset. As a possible future enhancement, we
3063 * could re-scan for quirks every time we reinitialize
3064 * the device, but we'd have to make sure that the driver
3065 * behaves intelligently if the quirks change.
3066 */
3067 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3068 if (quirk_matches(id, &core_quirks[i]))
3069 ctrl->quirks |= core_quirks[i].quirks;
3070 }
3071 }
3072
3073 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3074 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3075 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3076 }
3077
3078 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3079 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3080 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3081
3082 ctrl->oacs = le16_to_cpu(id->oacs);
3083 ctrl->oncs = le16_to_cpu(id->oncs);
3084 ctrl->mtfa = le16_to_cpu(id->mtfa);
3085 ctrl->oaes = le32_to_cpu(id->oaes);
3086 ctrl->wctemp = le16_to_cpu(id->wctemp);
3087 ctrl->cctemp = le16_to_cpu(id->cctemp);
3088
3089 atomic_set(&ctrl->abort_limit, id->acl + 1);
3090 ctrl->vwc = id->vwc;
3091 if (id->mdts)
3092 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3093 else
3094 max_hw_sectors = UINT_MAX;
3095 ctrl->max_hw_sectors =
3096 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3097
3098 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3099 ctrl->sgls = le32_to_cpu(id->sgls);
3100 ctrl->kas = le16_to_cpu(id->kas);
3101 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3102 ctrl->ctratt = le32_to_cpu(id->ctratt);
3103
3104 if (id->rtd3e) {
3105 /* us -> s */
3106 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3107
3108 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3109 shutdown_timeout, 60);
3110
3111 if (ctrl->shutdown_timeout != shutdown_timeout)
3112 dev_info(ctrl->device,
3113 "Shutdown timeout set to %u seconds\n",
3114 ctrl->shutdown_timeout);
3115 } else
3116 ctrl->shutdown_timeout = shutdown_timeout;
3117
3118 ctrl->npss = id->npss;
3119 ctrl->apsta = id->apsta;
3120 prev_apst_enabled = ctrl->apst_enabled;
3121 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3122 if (force_apst && id->apsta) {
3123 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3124 ctrl->apst_enabled = true;
3125 } else {
3126 ctrl->apst_enabled = false;
3127 }
3128 } else {
3129 ctrl->apst_enabled = id->apsta;
3130 }
3131 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3132
3133 if (ctrl->ops->flags & NVME_F_FABRICS) {
3134 ctrl->icdoff = le16_to_cpu(id->icdoff);
3135 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3136 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3137 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3138
3139 /*
3140 * In fabrics we need to verify the cntlid matches the
3141 * admin connect
3142 */
3143 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3144 dev_err(ctrl->device,
3145 "Mismatching cntlid: Connect %u vs Identify "
3146 "%u, rejecting\n",
3147 ctrl->cntlid, le16_to_cpu(id->cntlid));
3148 ret = -EINVAL;
3149 goto out_free;
3150 }
3151
3152 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3153 dev_err(ctrl->device,
3154 "keep-alive support is mandatory for fabrics\n");
3155 ret = -EINVAL;
3156 goto out_free;
3157 }
3158 } else {
3159 ctrl->hmpre = le32_to_cpu(id->hmpre);
3160 ctrl->hmmin = le32_to_cpu(id->hmmin);
3161 ctrl->hmminds = le32_to_cpu(id->hmminds);
3162 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3163 }
3164
3165 ret = nvme_mpath_init(ctrl, id);
3166 kfree(id);
3167
3168 if (ret < 0)
3169 return ret;
3170
3171 if (ctrl->apst_enabled && !prev_apst_enabled)
3172 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3173 else if (!ctrl->apst_enabled && prev_apst_enabled)
3174 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3175
3176 ret = nvme_configure_apst(ctrl);
3177 if (ret < 0)
3178 return ret;
3179
3180 ret = nvme_configure_timestamp(ctrl);
3181 if (ret < 0)
3182 return ret;
3183
3184 ret = nvme_configure_directives(ctrl);
3185 if (ret < 0)
3186 return ret;
3187
3188 ret = nvme_configure_acre(ctrl);
3189 if (ret < 0)
3190 return ret;
3191
3192 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3193 ret = nvme_hwmon_init(ctrl);
3194 if (ret < 0)
3195 return ret;
3196 }
3197
3198 ctrl->identified = true;
3199
3200 return 0;
3201
3202 out_free:
3203 kfree(id);
3204 return ret;
3205 }
3206 EXPORT_SYMBOL_GPL(nvme_init_identify);
3207
3208 static int nvme_dev_open(struct inode *inode, struct file *file)
3209 {
3210 struct nvme_ctrl *ctrl =
3211 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3212
3213 switch (ctrl->state) {
3214 case NVME_CTRL_LIVE:
3215 break;
3216 default:
3217 return -EWOULDBLOCK;
3218 }
3219
3220 nvme_get_ctrl(ctrl);
3221 if (!try_module_get(ctrl->ops->module)) {
3222 nvme_put_ctrl(ctrl);
3223 return -EINVAL;
3224 }
3225
3226 file->private_data = ctrl;
3227 return 0;
3228 }
3229
3230 static int nvme_dev_release(struct inode *inode, struct file *file)
3231 {
3232 struct nvme_ctrl *ctrl =
3233 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3234
3235 module_put(ctrl->ops->module);
3236 nvme_put_ctrl(ctrl);
3237 return 0;
3238 }
3239
3240 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3241 {
3242 struct nvme_ns *ns;
3243 int ret;
3244
3245 down_read(&ctrl->namespaces_rwsem);
3246 if (list_empty(&ctrl->namespaces)) {
3247 ret = -ENOTTY;
3248 goto out_unlock;
3249 }
3250
3251 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3252 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3253 dev_warn(ctrl->device,
3254 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3255 ret = -EINVAL;
3256 goto out_unlock;
3257 }
3258
3259 dev_warn(ctrl->device,
3260 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3261 kref_get(&ns->kref);
3262 up_read(&ctrl->namespaces_rwsem);
3263
3264 ret = nvme_user_cmd(ctrl, ns, argp);
3265 nvme_put_ns(ns);
3266 return ret;
3267
3268 out_unlock:
3269 up_read(&ctrl->namespaces_rwsem);
3270 return ret;
3271 }
3272
3273 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3274 unsigned long arg)
3275 {
3276 struct nvme_ctrl *ctrl = file->private_data;
3277 void __user *argp = (void __user *)arg;
3278
3279 switch (cmd) {
3280 case NVME_IOCTL_ADMIN_CMD:
3281 return nvme_user_cmd(ctrl, NULL, argp);
3282 case NVME_IOCTL_ADMIN64_CMD:
3283 return nvme_user_cmd64(ctrl, NULL, argp);
3284 case NVME_IOCTL_IO_CMD:
3285 return nvme_dev_user_cmd(ctrl, argp);
3286 case NVME_IOCTL_RESET:
3287 dev_warn(ctrl->device, "resetting controller\n");
3288 return nvme_reset_ctrl_sync(ctrl);
3289 case NVME_IOCTL_SUBSYS_RESET:
3290 return nvme_reset_subsystem(ctrl);
3291 case NVME_IOCTL_RESCAN:
3292 nvme_queue_scan(ctrl);
3293 return 0;
3294 default:
3295 return -ENOTTY;
3296 }
3297 }
3298
3299 static const struct file_operations nvme_dev_fops = {
3300 .owner = THIS_MODULE,
3301 .open = nvme_dev_open,
3302 .release = nvme_dev_release,
3303 .unlocked_ioctl = nvme_dev_ioctl,
3304 .compat_ioctl = compat_ptr_ioctl,
3305 };
3306
3307 static ssize_t nvme_sysfs_reset(struct device *dev,
3308 struct device_attribute *attr, const char *buf,
3309 size_t count)
3310 {
3311 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3312 int ret;
3313
3314 ret = nvme_reset_ctrl_sync(ctrl);
3315 if (ret < 0)
3316 return ret;
3317 return count;
3318 }
3319 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3320
3321 static ssize_t nvme_sysfs_rescan(struct device *dev,
3322 struct device_attribute *attr, const char *buf,
3323 size_t count)
3324 {
3325 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3326
3327 nvme_queue_scan(ctrl);
3328 return count;
3329 }
3330 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3331
3332 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3333 {
3334 struct gendisk *disk = dev_to_disk(dev);
3335
3336 if (disk->fops == &nvme_bdev_ops)
3337 return nvme_get_ns_from_dev(dev)->head;
3338 else
3339 return disk->private_data;
3340 }
3341
3342 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3343 char *buf)
3344 {
3345 struct nvme_ns_head *head = dev_to_ns_head(dev);
3346 struct nvme_ns_ids *ids = &head->ids;
3347 struct nvme_subsystem *subsys = head->subsys;
3348 int serial_len = sizeof(subsys->serial);
3349 int model_len = sizeof(subsys->model);
3350
3351 if (!uuid_is_null(&ids->uuid))
3352 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3353
3354 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3355 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3356
3357 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3358 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3359
3360 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3361 subsys->serial[serial_len - 1] == '\0'))
3362 serial_len--;
3363 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3364 subsys->model[model_len - 1] == '\0'))
3365 model_len--;
3366
3367 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3368 serial_len, subsys->serial, model_len, subsys->model,
3369 head->ns_id);
3370 }
3371 static DEVICE_ATTR_RO(wwid);
3372
3373 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3374 char *buf)
3375 {
3376 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3377 }
3378 static DEVICE_ATTR_RO(nguid);
3379
3380 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3381 char *buf)
3382 {
3383 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3384
3385 /* For backward compatibility expose the NGUID to userspace if
3386 * we have no UUID set
3387 */
3388 if (uuid_is_null(&ids->uuid)) {
3389 printk_ratelimited(KERN_WARNING
3390 "No UUID available providing old NGUID\n");
3391 return sprintf(buf, "%pU\n", ids->nguid);
3392 }
3393 return sprintf(buf, "%pU\n", &ids->uuid);
3394 }
3395 static DEVICE_ATTR_RO(uuid);
3396
3397 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3398 char *buf)
3399 {
3400 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3401 }
3402 static DEVICE_ATTR_RO(eui);
3403
3404 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3405 char *buf)
3406 {
3407 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3408 }
3409 static DEVICE_ATTR_RO(nsid);
3410
3411 static struct attribute *nvme_ns_id_attrs[] = {
3412 &dev_attr_wwid.attr,
3413 &dev_attr_uuid.attr,
3414 &dev_attr_nguid.attr,
3415 &dev_attr_eui.attr,
3416 &dev_attr_nsid.attr,
3417 #ifdef CONFIG_NVME_MULTIPATH
3418 &dev_attr_ana_grpid.attr,
3419 &dev_attr_ana_state.attr,
3420 #endif
3421 NULL,
3422 };
3423
3424 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3425 struct attribute *a, int n)
3426 {
3427 struct device *dev = container_of(kobj, struct device, kobj);
3428 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3429
3430 if (a == &dev_attr_uuid.attr) {
3431 if (uuid_is_null(&ids->uuid) &&
3432 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3433 return 0;
3434 }
3435 if (a == &dev_attr_nguid.attr) {
3436 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3437 return 0;
3438 }
3439 if (a == &dev_attr_eui.attr) {
3440 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3441 return 0;
3442 }
3443 #ifdef CONFIG_NVME_MULTIPATH
3444 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3445 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3446 return 0;
3447 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3448 return 0;
3449 }
3450 #endif
3451 return a->mode;
3452 }
3453
3454 static const struct attribute_group nvme_ns_id_attr_group = {
3455 .attrs = nvme_ns_id_attrs,
3456 .is_visible = nvme_ns_id_attrs_are_visible,
3457 };
3458
3459 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3460 &nvme_ns_id_attr_group,
3461 #ifdef CONFIG_NVM
3462 &nvme_nvm_attr_group,
3463 #endif
3464 NULL,
3465 };
3466
3467 #define nvme_show_str_function(field) \
3468 static ssize_t field##_show(struct device *dev, \
3469 struct device_attribute *attr, char *buf) \
3470 { \
3471 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3472 return sprintf(buf, "%.*s\n", \
3473 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3474 } \
3475 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3476
3477 nvme_show_str_function(model);
3478 nvme_show_str_function(serial);
3479 nvme_show_str_function(firmware_rev);
3480
3481 #define nvme_show_int_function(field) \
3482 static ssize_t field##_show(struct device *dev, \
3483 struct device_attribute *attr, char *buf) \
3484 { \
3485 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3486 return sprintf(buf, "%d\n", ctrl->field); \
3487 } \
3488 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3489
3490 nvme_show_int_function(cntlid);
3491 nvme_show_int_function(numa_node);
3492 nvme_show_int_function(queue_count);
3493 nvme_show_int_function(sqsize);
3494
3495 static ssize_t nvme_sysfs_delete(struct device *dev,
3496 struct device_attribute *attr, const char *buf,
3497 size_t count)
3498 {
3499 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3500
3501 if (device_remove_file_self(dev, attr))
3502 nvme_delete_ctrl_sync(ctrl);
3503 return count;
3504 }
3505 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3506
3507 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3508 struct device_attribute *attr,
3509 char *buf)
3510 {
3511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3512
3513 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3514 }
3515 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3516
3517 static ssize_t nvme_sysfs_show_state(struct device *dev,
3518 struct device_attribute *attr,
3519 char *buf)
3520 {
3521 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3522 static const char *const state_name[] = {
3523 [NVME_CTRL_NEW] = "new",
3524 [NVME_CTRL_LIVE] = "live",
3525 [NVME_CTRL_RESETTING] = "resetting",
3526 [NVME_CTRL_CONNECTING] = "connecting",
3527 [NVME_CTRL_DELETING] = "deleting",
3528 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3529 [NVME_CTRL_DEAD] = "dead",
3530 };
3531
3532 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3533 state_name[ctrl->state])
3534 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3535
3536 return sprintf(buf, "unknown state\n");
3537 }
3538
3539 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3540
3541 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3542 struct device_attribute *attr,
3543 char *buf)
3544 {
3545 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3546
3547 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3548 }
3549 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3550
3551 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3552 struct device_attribute *attr,
3553 char *buf)
3554 {
3555 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3556
3557 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3558 }
3559 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3560
3561 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3562 struct device_attribute *attr,
3563 char *buf)
3564 {
3565 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3566
3567 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3568 }
3569 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3570
3571 static ssize_t nvme_sysfs_show_address(struct device *dev,
3572 struct device_attribute *attr,
3573 char *buf)
3574 {
3575 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3576
3577 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3578 }
3579 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3580
3581 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3582 struct device_attribute *attr, char *buf)
3583 {
3584 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3585 struct nvmf_ctrl_options *opts = ctrl->opts;
3586
3587 if (ctrl->opts->max_reconnects == -1)
3588 return sprintf(buf, "off\n");
3589 return sprintf(buf, "%d\n",
3590 opts->max_reconnects * opts->reconnect_delay);
3591 }
3592
3593 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3594 struct device_attribute *attr, const char *buf, size_t count)
3595 {
3596 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3597 struct nvmf_ctrl_options *opts = ctrl->opts;
3598 int ctrl_loss_tmo, err;
3599
3600 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3601 if (err)
3602 return -EINVAL;
3603
3604 else if (ctrl_loss_tmo < 0)
3605 opts->max_reconnects = -1;
3606 else
3607 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3608 opts->reconnect_delay);
3609 return count;
3610 }
3611 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3612 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3613
3614 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3615 struct device_attribute *attr, char *buf)
3616 {
3617 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3618
3619 if (ctrl->opts->reconnect_delay == -1)
3620 return sprintf(buf, "off\n");
3621 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3622 }
3623
3624 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3625 struct device_attribute *attr, const char *buf, size_t count)
3626 {
3627 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3628 unsigned int v;
3629 int err;
3630
3631 err = kstrtou32(buf, 10, &v);
3632 if (err)
3633 return err;
3634
3635 ctrl->opts->reconnect_delay = v;
3636 return count;
3637 }
3638 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3639 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3640
3641 static struct attribute *nvme_dev_attrs[] = {
3642 &dev_attr_reset_controller.attr,
3643 &dev_attr_rescan_controller.attr,
3644 &dev_attr_model.attr,
3645 &dev_attr_serial.attr,
3646 &dev_attr_firmware_rev.attr,
3647 &dev_attr_cntlid.attr,
3648 &dev_attr_delete_controller.attr,
3649 &dev_attr_transport.attr,
3650 &dev_attr_subsysnqn.attr,
3651 &dev_attr_address.attr,
3652 &dev_attr_state.attr,
3653 &dev_attr_numa_node.attr,
3654 &dev_attr_queue_count.attr,
3655 &dev_attr_sqsize.attr,
3656 &dev_attr_hostnqn.attr,
3657 &dev_attr_hostid.attr,
3658 &dev_attr_ctrl_loss_tmo.attr,
3659 &dev_attr_reconnect_delay.attr,
3660 NULL
3661 };
3662
3663 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3664 struct attribute *a, int n)
3665 {
3666 struct device *dev = container_of(kobj, struct device, kobj);
3667 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3668
3669 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3670 return 0;
3671 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3672 return 0;
3673 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3674 return 0;
3675 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3676 return 0;
3677 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3678 return 0;
3679 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3680 return 0;
3681
3682 return a->mode;
3683 }
3684
3685 static struct attribute_group nvme_dev_attrs_group = {
3686 .attrs = nvme_dev_attrs,
3687 .is_visible = nvme_dev_attrs_are_visible,
3688 };
3689
3690 static const struct attribute_group *nvme_dev_attr_groups[] = {
3691 &nvme_dev_attrs_group,
3692 NULL,
3693 };
3694
3695 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3696 unsigned nsid)
3697 {
3698 struct nvme_ns_head *h;
3699
3700 lockdep_assert_held(&subsys->lock);
3701
3702 list_for_each_entry(h, &subsys->nsheads, entry) {
3703 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3704 return h;
3705 }
3706
3707 return NULL;
3708 }
3709
3710 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3711 struct nvme_ns_head *new)
3712 {
3713 struct nvme_ns_head *h;
3714
3715 lockdep_assert_held(&subsys->lock);
3716
3717 list_for_each_entry(h, &subsys->nsheads, entry) {
3718 if (nvme_ns_ids_valid(&new->ids) &&
3719 nvme_ns_ids_equal(&new->ids, &h->ids))
3720 return -EINVAL;
3721 }
3722
3723 return 0;
3724 }
3725
3726 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3727 unsigned nsid, struct nvme_ns_ids *ids)
3728 {
3729 struct nvme_ns_head *head;
3730 size_t size = sizeof(*head);
3731 int ret = -ENOMEM;
3732
3733 #ifdef CONFIG_NVME_MULTIPATH
3734 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3735 #endif
3736
3737 head = kzalloc(size, GFP_KERNEL);
3738 if (!head)
3739 goto out;
3740 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3741 if (ret < 0)
3742 goto out_free_head;
3743 head->instance = ret;
3744 INIT_LIST_HEAD(&head->list);
3745 ret = init_srcu_struct(&head->srcu);
3746 if (ret)
3747 goto out_ida_remove;
3748 head->subsys = ctrl->subsys;
3749 head->ns_id = nsid;
3750 head->ids = *ids;
3751 kref_init(&head->ref);
3752
3753 ret = __nvme_check_ids(ctrl->subsys, head);
3754 if (ret) {
3755 dev_err(ctrl->device,
3756 "duplicate IDs for nsid %d\n", nsid);
3757 goto out_cleanup_srcu;
3758 }
3759
3760 if (head->ids.csi) {
3761 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3762 if (ret)
3763 goto out_cleanup_srcu;
3764 } else
3765 head->effects = ctrl->effects;
3766
3767 ret = nvme_mpath_alloc_disk(ctrl, head);
3768 if (ret)
3769 goto out_cleanup_srcu;
3770
3771 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3772
3773 kref_get(&ctrl->subsys->ref);
3774
3775 return head;
3776 out_cleanup_srcu:
3777 cleanup_srcu_struct(&head->srcu);
3778 out_ida_remove:
3779 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3780 out_free_head:
3781 kfree(head);
3782 out:
3783 if (ret > 0)
3784 ret = blk_status_to_errno(nvme_error_status(ret));
3785 return ERR_PTR(ret);
3786 }
3787
3788 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3789 struct nvme_ns_ids *ids, bool is_shared)
3790 {
3791 struct nvme_ctrl *ctrl = ns->ctrl;
3792 struct nvme_ns_head *head = NULL;
3793 int ret = 0;
3794
3795 mutex_lock(&ctrl->subsys->lock);
3796 head = nvme_find_ns_head(ctrl->subsys, nsid);
3797 if (!head) {
3798 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3799 if (IS_ERR(head)) {
3800 ret = PTR_ERR(head);
3801 goto out_unlock;
3802 }
3803 head->shared = is_shared;
3804 } else {
3805 ret = -EINVAL;
3806 if (!is_shared || !head->shared) {
3807 dev_err(ctrl->device,
3808 "Duplicate unshared namespace %d\n", nsid);
3809 goto out_put_ns_head;
3810 }
3811 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3812 dev_err(ctrl->device,
3813 "IDs don't match for shared namespace %d\n",
3814 nsid);
3815 goto out_put_ns_head;
3816 }
3817 }
3818
3819 list_add_tail(&ns->siblings, &head->list);
3820 ns->head = head;
3821 mutex_unlock(&ctrl->subsys->lock);
3822 return 0;
3823
3824 out_put_ns_head:
3825 nvme_put_ns_head(head);
3826 out_unlock:
3827 mutex_unlock(&ctrl->subsys->lock);
3828 return ret;
3829 }
3830
3831 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3832 {
3833 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3834 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3835
3836 return nsa->head->ns_id - nsb->head->ns_id;
3837 }
3838
3839 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3840 {
3841 struct nvme_ns *ns, *ret = NULL;
3842
3843 down_read(&ctrl->namespaces_rwsem);
3844 list_for_each_entry(ns, &ctrl->namespaces, list) {
3845 if (ns->head->ns_id == nsid) {
3846 if (!kref_get_unless_zero(&ns->kref))
3847 continue;
3848 ret = ns;
3849 break;
3850 }
3851 if (ns->head->ns_id > nsid)
3852 break;
3853 }
3854 up_read(&ctrl->namespaces_rwsem);
3855 return ret;
3856 }
3857 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3858
3859 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3860 struct nvme_ns_ids *ids)
3861 {
3862 struct nvme_ns *ns;
3863 struct gendisk *disk;
3864 struct nvme_id_ns *id;
3865 char disk_name[DISK_NAME_LEN];
3866 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3867
3868 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3869 return;
3870
3871 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3872 if (!ns)
3873 goto out_free_id;
3874
3875 ns->queue = blk_mq_init_queue(ctrl->tagset);
3876 if (IS_ERR(ns->queue))
3877 goto out_free_ns;
3878
3879 if (ctrl->opts && ctrl->opts->data_digest)
3880 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3881
3882 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3883 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3884 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3885
3886 ns->queue->queuedata = ns;
3887 ns->ctrl = ctrl;
3888 kref_init(&ns->kref);
3889
3890 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3891 goto out_free_queue;
3892 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3893
3894 disk = alloc_disk_node(0, node);
3895 if (!disk)
3896 goto out_unlink_ns;
3897
3898 disk->fops = &nvme_bdev_ops;
3899 disk->private_data = ns;
3900 disk->queue = ns->queue;
3901 disk->flags = flags;
3902 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3903 ns->disk = disk;
3904
3905 if (nvme_update_ns_info(ns, id))
3906 goto out_put_disk;
3907
3908 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3909 if (nvme_nvm_register(ns, disk_name, node)) {
3910 dev_warn(ctrl->device, "LightNVM init failure\n");
3911 goto out_put_disk;
3912 }
3913 }
3914
3915 down_write(&ctrl->namespaces_rwsem);
3916 list_add_tail(&ns->list, &ctrl->namespaces);
3917 up_write(&ctrl->namespaces_rwsem);
3918
3919 nvme_get_ctrl(ctrl);
3920
3921 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3922
3923 nvme_mpath_add_disk(ns, id);
3924 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3925 kfree(id);
3926
3927 return;
3928 out_put_disk:
3929 /* prevent double queue cleanup */
3930 ns->disk->queue = NULL;
3931 put_disk(ns->disk);
3932 out_unlink_ns:
3933 mutex_lock(&ctrl->subsys->lock);
3934 list_del_rcu(&ns->siblings);
3935 if (list_empty(&ns->head->list))
3936 list_del_init(&ns->head->entry);
3937 mutex_unlock(&ctrl->subsys->lock);
3938 nvme_put_ns_head(ns->head);
3939 out_free_queue:
3940 blk_cleanup_queue(ns->queue);
3941 out_free_ns:
3942 kfree(ns);
3943 out_free_id:
3944 kfree(id);
3945 }
3946
3947 static void nvme_ns_remove(struct nvme_ns *ns)
3948 {
3949 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3950 return;
3951
3952 set_capacity(ns->disk, 0);
3953 nvme_fault_inject_fini(&ns->fault_inject);
3954
3955 mutex_lock(&ns->ctrl->subsys->lock);
3956 list_del_rcu(&ns->siblings);
3957 if (list_empty(&ns->head->list))
3958 list_del_init(&ns->head->entry);
3959 mutex_unlock(&ns->ctrl->subsys->lock);
3960
3961 synchronize_rcu(); /* guarantee not available in head->list */
3962 nvme_mpath_clear_current_path(ns);
3963 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3964
3965 if (ns->disk->flags & GENHD_FL_UP) {
3966 del_gendisk(ns->disk);
3967 blk_cleanup_queue(ns->queue);
3968 if (blk_get_integrity(ns->disk))
3969 blk_integrity_unregister(ns->disk);
3970 }
3971
3972 down_write(&ns->ctrl->namespaces_rwsem);
3973 list_del_init(&ns->list);
3974 up_write(&ns->ctrl->namespaces_rwsem);
3975
3976 nvme_mpath_check_last_path(ns);
3977 nvme_put_ns(ns);
3978 }
3979
3980 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3981 {
3982 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3983
3984 if (ns) {
3985 nvme_ns_remove(ns);
3986 nvme_put_ns(ns);
3987 }
3988 }
3989
3990 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3991 {
3992 struct nvme_id_ns *id;
3993 int ret = -ENODEV;
3994
3995 if (test_bit(NVME_NS_DEAD, &ns->flags))
3996 goto out;
3997
3998 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3999 if (ret)
4000 goto out;
4001
4002 ret = -ENODEV;
4003 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4004 dev_err(ns->ctrl->device,
4005 "identifiers changed for nsid %d\n", ns->head->ns_id);
4006 goto out_free_id;
4007 }
4008
4009 ret = nvme_update_ns_info(ns, id);
4010
4011 out_free_id:
4012 kfree(id);
4013 out:
4014 /*
4015 * Only remove the namespace if we got a fatal error back from the
4016 * device, otherwise ignore the error and just move on.
4017 *
4018 * TODO: we should probably schedule a delayed retry here.
4019 */
4020 if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4021 nvme_ns_remove(ns);
4022 }
4023
4024 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4025 {
4026 struct nvme_ns_ids ids = { };
4027 struct nvme_ns *ns;
4028
4029 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4030 return;
4031
4032 ns = nvme_find_get_ns(ctrl, nsid);
4033 if (ns) {
4034 nvme_validate_ns(ns, &ids);
4035 nvme_put_ns(ns);
4036 return;
4037 }
4038
4039 switch (ids.csi) {
4040 case NVME_CSI_NVM:
4041 nvme_alloc_ns(ctrl, nsid, &ids);
4042 break;
4043 case NVME_CSI_ZNS:
4044 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4045 dev_warn(ctrl->device,
4046 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4047 nsid);
4048 break;
4049 }
4050 nvme_alloc_ns(ctrl, nsid, &ids);
4051 break;
4052 default:
4053 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4054 ids.csi, nsid);
4055 break;
4056 }
4057 }
4058
4059 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4060 unsigned nsid)
4061 {
4062 struct nvme_ns *ns, *next;
4063 LIST_HEAD(rm_list);
4064
4065 down_write(&ctrl->namespaces_rwsem);
4066 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4067 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4068 list_move_tail(&ns->list, &rm_list);
4069 }
4070 up_write(&ctrl->namespaces_rwsem);
4071
4072 list_for_each_entry_safe(ns, next, &rm_list, list)
4073 nvme_ns_remove(ns);
4074
4075 }
4076
4077 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4078 {
4079 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4080 __le32 *ns_list;
4081 u32 prev = 0;
4082 int ret = 0, i;
4083
4084 if (nvme_ctrl_limited_cns(ctrl))
4085 return -EOPNOTSUPP;
4086
4087 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4088 if (!ns_list)
4089 return -ENOMEM;
4090
4091 for (;;) {
4092 struct nvme_command cmd = {
4093 .identify.opcode = nvme_admin_identify,
4094 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4095 .identify.nsid = cpu_to_le32(prev),
4096 };
4097
4098 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4099 NVME_IDENTIFY_DATA_SIZE);
4100 if (ret) {
4101 dev_warn(ctrl->device,
4102 "Identify NS List failed (status=0x%x)\n", ret);
4103 goto free;
4104 }
4105
4106 for (i = 0; i < nr_entries; i++) {
4107 u32 nsid = le32_to_cpu(ns_list[i]);
4108
4109 if (!nsid) /* end of the list? */
4110 goto out;
4111 nvme_validate_or_alloc_ns(ctrl, nsid);
4112 while (++prev < nsid)
4113 nvme_ns_remove_by_nsid(ctrl, prev);
4114 }
4115 }
4116 out:
4117 nvme_remove_invalid_namespaces(ctrl, prev);
4118 free:
4119 kfree(ns_list);
4120 return ret;
4121 }
4122
4123 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4124 {
4125 struct nvme_id_ctrl *id;
4126 u32 nn, i;
4127
4128 if (nvme_identify_ctrl(ctrl, &id))
4129 return;
4130 nn = le32_to_cpu(id->nn);
4131 kfree(id);
4132
4133 for (i = 1; i <= nn; i++)
4134 nvme_validate_or_alloc_ns(ctrl, i);
4135
4136 nvme_remove_invalid_namespaces(ctrl, nn);
4137 }
4138
4139 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4140 {
4141 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4142 __le32 *log;
4143 int error;
4144
4145 log = kzalloc(log_size, GFP_KERNEL);
4146 if (!log)
4147 return;
4148
4149 /*
4150 * We need to read the log to clear the AEN, but we don't want to rely
4151 * on it for the changed namespace information as userspace could have
4152 * raced with us in reading the log page, which could cause us to miss
4153 * updates.
4154 */
4155 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4156 NVME_CSI_NVM, log, log_size, 0);
4157 if (error)
4158 dev_warn(ctrl->device,
4159 "reading changed ns log failed: %d\n", error);
4160
4161 kfree(log);
4162 }
4163
4164 static void nvme_scan_work(struct work_struct *work)
4165 {
4166 struct nvme_ctrl *ctrl =
4167 container_of(work, struct nvme_ctrl, scan_work);
4168
4169 /* No tagset on a live ctrl means IO queues could not created */
4170 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4171 return;
4172
4173 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4174 dev_info(ctrl->device, "rescanning namespaces.\n");
4175 nvme_clear_changed_ns_log(ctrl);
4176 }
4177
4178 mutex_lock(&ctrl->scan_lock);
4179 if (nvme_scan_ns_list(ctrl) != 0)
4180 nvme_scan_ns_sequential(ctrl);
4181 mutex_unlock(&ctrl->scan_lock);
4182
4183 down_write(&ctrl->namespaces_rwsem);
4184 list_sort(NULL, &ctrl->namespaces, ns_cmp);
4185 up_write(&ctrl->namespaces_rwsem);
4186 }
4187
4188 /*
4189 * This function iterates the namespace list unlocked to allow recovery from
4190 * controller failure. It is up to the caller to ensure the namespace list is
4191 * not modified by scan work while this function is executing.
4192 */
4193 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4194 {
4195 struct nvme_ns *ns, *next;
4196 LIST_HEAD(ns_list);
4197
4198 /*
4199 * make sure to requeue I/O to all namespaces as these
4200 * might result from the scan itself and must complete
4201 * for the scan_work to make progress
4202 */
4203 nvme_mpath_clear_ctrl_paths(ctrl);
4204
4205 /* prevent racing with ns scanning */
4206 flush_work(&ctrl->scan_work);
4207
4208 /*
4209 * The dead states indicates the controller was not gracefully
4210 * disconnected. In that case, we won't be able to flush any data while
4211 * removing the namespaces' disks; fail all the queues now to avoid
4212 * potentially having to clean up the failed sync later.
4213 */
4214 if (ctrl->state == NVME_CTRL_DEAD)
4215 nvme_kill_queues(ctrl);
4216
4217 /* this is a no-op when called from the controller reset handler */
4218 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4219
4220 down_write(&ctrl->namespaces_rwsem);
4221 list_splice_init(&ctrl->namespaces, &ns_list);
4222 up_write(&ctrl->namespaces_rwsem);
4223
4224 list_for_each_entry_safe(ns, next, &ns_list, list)
4225 nvme_ns_remove(ns);
4226 }
4227 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4228
4229 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4230 {
4231 struct nvme_ctrl *ctrl =
4232 container_of(dev, struct nvme_ctrl, ctrl_device);
4233 struct nvmf_ctrl_options *opts = ctrl->opts;
4234 int ret;
4235
4236 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4237 if (ret)
4238 return ret;
4239
4240 if (opts) {
4241 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4242 if (ret)
4243 return ret;
4244
4245 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4246 opts->trsvcid ?: "none");
4247 if (ret)
4248 return ret;
4249
4250 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4251 opts->host_traddr ?: "none");
4252 }
4253 return ret;
4254 }
4255
4256 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4257 {
4258 char *envp[2] = { NULL, NULL };
4259 u32 aen_result = ctrl->aen_result;
4260
4261 ctrl->aen_result = 0;
4262 if (!aen_result)
4263 return;
4264
4265 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4266 if (!envp[0])
4267 return;
4268 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4269 kfree(envp[0]);
4270 }
4271
4272 static void nvme_async_event_work(struct work_struct *work)
4273 {
4274 struct nvme_ctrl *ctrl =
4275 container_of(work, struct nvme_ctrl, async_event_work);
4276
4277 nvme_aen_uevent(ctrl);
4278 ctrl->ops->submit_async_event(ctrl);
4279 }
4280
4281 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4282 {
4283
4284 u32 csts;
4285
4286 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4287 return false;
4288
4289 if (csts == ~0)
4290 return false;
4291
4292 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4293 }
4294
4295 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4296 {
4297 struct nvme_fw_slot_info_log *log;
4298
4299 log = kmalloc(sizeof(*log), GFP_KERNEL);
4300 if (!log)
4301 return;
4302
4303 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4304 log, sizeof(*log), 0))
4305 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4306 kfree(log);
4307 }
4308
4309 static void nvme_fw_act_work(struct work_struct *work)
4310 {
4311 struct nvme_ctrl *ctrl = container_of(work,
4312 struct nvme_ctrl, fw_act_work);
4313 unsigned long fw_act_timeout;
4314
4315 if (ctrl->mtfa)
4316 fw_act_timeout = jiffies +
4317 msecs_to_jiffies(ctrl->mtfa * 100);
4318 else
4319 fw_act_timeout = jiffies +
4320 msecs_to_jiffies(admin_timeout * 1000);
4321
4322 nvme_stop_queues(ctrl);
4323 while (nvme_ctrl_pp_status(ctrl)) {
4324 if (time_after(jiffies, fw_act_timeout)) {
4325 dev_warn(ctrl->device,
4326 "Fw activation timeout, reset controller\n");
4327 nvme_try_sched_reset(ctrl);
4328 return;
4329 }
4330 msleep(100);
4331 }
4332
4333 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4334 return;
4335
4336 nvme_start_queues(ctrl);
4337 /* read FW slot information to clear the AER */
4338 nvme_get_fw_slot_info(ctrl);
4339 }
4340
4341 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4342 {
4343 u32 aer_notice_type = (result & 0xff00) >> 8;
4344
4345 trace_nvme_async_event(ctrl, aer_notice_type);
4346
4347 switch (aer_notice_type) {
4348 case NVME_AER_NOTICE_NS_CHANGED:
4349 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4350 nvme_queue_scan(ctrl);
4351 break;
4352 case NVME_AER_NOTICE_FW_ACT_STARTING:
4353 /*
4354 * We are (ab)using the RESETTING state to prevent subsequent
4355 * recovery actions from interfering with the controller's
4356 * firmware activation.
4357 */
4358 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4359 queue_work(nvme_wq, &ctrl->fw_act_work);
4360 break;
4361 #ifdef CONFIG_NVME_MULTIPATH
4362 case NVME_AER_NOTICE_ANA:
4363 if (!ctrl->ana_log_buf)
4364 break;
4365 queue_work(nvme_wq, &ctrl->ana_work);
4366 break;
4367 #endif
4368 case NVME_AER_NOTICE_DISC_CHANGED:
4369 ctrl->aen_result = result;
4370 break;
4371 default:
4372 dev_warn(ctrl->device, "async event result %08x\n", result);
4373 }
4374 }
4375
4376 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4377 volatile union nvme_result *res)
4378 {
4379 u32 result = le32_to_cpu(res->u32);
4380 u32 aer_type = result & 0x07;
4381
4382 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4383 return;
4384
4385 switch (aer_type) {
4386 case NVME_AER_NOTICE:
4387 nvme_handle_aen_notice(ctrl, result);
4388 break;
4389 case NVME_AER_ERROR:
4390 case NVME_AER_SMART:
4391 case NVME_AER_CSS:
4392 case NVME_AER_VS:
4393 trace_nvme_async_event(ctrl, aer_type);
4394 ctrl->aen_result = result;
4395 break;
4396 default:
4397 break;
4398 }
4399 queue_work(nvme_wq, &ctrl->async_event_work);
4400 }
4401 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4402
4403 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4404 {
4405 nvme_mpath_stop(ctrl);
4406 nvme_stop_keep_alive(ctrl);
4407 nvme_stop_failfast_work(ctrl);
4408 flush_work(&ctrl->async_event_work);
4409 cancel_work_sync(&ctrl->fw_act_work);
4410 }
4411 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4412
4413 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4414 {
4415 nvme_start_keep_alive(ctrl);
4416
4417 nvme_enable_aen(ctrl);
4418
4419 if (ctrl->queue_count > 1) {
4420 nvme_queue_scan(ctrl);
4421 nvme_start_queues(ctrl);
4422 }
4423 }
4424 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4425
4426 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4427 {
4428 nvme_fault_inject_fini(&ctrl->fault_inject);
4429 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4430 cdev_device_del(&ctrl->cdev, ctrl->device);
4431 nvme_put_ctrl(ctrl);
4432 }
4433 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4434
4435 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4436 {
4437 struct nvme_effects_log *cel;
4438 unsigned long i;
4439
4440 xa_for_each (&ctrl->cels, i, cel) {
4441 xa_erase(&ctrl->cels, i);
4442 kfree(cel);
4443 }
4444
4445 xa_destroy(&ctrl->cels);
4446 }
4447
4448 static void nvme_free_ctrl(struct device *dev)
4449 {
4450 struct nvme_ctrl *ctrl =
4451 container_of(dev, struct nvme_ctrl, ctrl_device);
4452 struct nvme_subsystem *subsys = ctrl->subsys;
4453
4454 if (!subsys || ctrl->instance != subsys->instance)
4455 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4456
4457 nvme_free_cels(ctrl);
4458 nvme_mpath_uninit(ctrl);
4459 __free_page(ctrl->discard_page);
4460
4461 if (subsys) {
4462 mutex_lock(&nvme_subsystems_lock);
4463 list_del(&ctrl->subsys_entry);
4464 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4465 mutex_unlock(&nvme_subsystems_lock);
4466 }
4467
4468 ctrl->ops->free_ctrl(ctrl);
4469
4470 if (subsys)
4471 nvme_put_subsystem(subsys);
4472 }
4473
4474 /*
4475 * Initialize a NVMe controller structures. This needs to be called during
4476 * earliest initialization so that we have the initialized structured around
4477 * during probing.
4478 */
4479 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4480 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4481 {
4482 int ret;
4483
4484 ctrl->state = NVME_CTRL_NEW;
4485 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4486 spin_lock_init(&ctrl->lock);
4487 mutex_init(&ctrl->scan_lock);
4488 INIT_LIST_HEAD(&ctrl->namespaces);
4489 xa_init(&ctrl->cels);
4490 init_rwsem(&ctrl->namespaces_rwsem);
4491 ctrl->dev = dev;
4492 ctrl->ops = ops;
4493 ctrl->quirks = quirks;
4494 ctrl->numa_node = NUMA_NO_NODE;
4495 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4496 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4497 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4498 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4499 init_waitqueue_head(&ctrl->state_wq);
4500
4501 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4502 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4503 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4504 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4505
4506 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4507 PAGE_SIZE);
4508 ctrl->discard_page = alloc_page(GFP_KERNEL);
4509 if (!ctrl->discard_page) {
4510 ret = -ENOMEM;
4511 goto out;
4512 }
4513
4514 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4515 if (ret < 0)
4516 goto out;
4517 ctrl->instance = ret;
4518
4519 device_initialize(&ctrl->ctrl_device);
4520 ctrl->device = &ctrl->ctrl_device;
4521 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4522 ctrl->instance);
4523 ctrl->device->class = nvme_class;
4524 ctrl->device->parent = ctrl->dev;
4525 ctrl->device->groups = nvme_dev_attr_groups;
4526 ctrl->device->release = nvme_free_ctrl;
4527 dev_set_drvdata(ctrl->device, ctrl);
4528 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4529 if (ret)
4530 goto out_release_instance;
4531
4532 nvme_get_ctrl(ctrl);
4533 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4534 ctrl->cdev.owner = ops->module;
4535 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4536 if (ret)
4537 goto out_free_name;
4538
4539 /*
4540 * Initialize latency tolerance controls. The sysfs files won't
4541 * be visible to userspace unless the device actually supports APST.
4542 */
4543 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4544 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4545 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4546
4547 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4548
4549 return 0;
4550 out_free_name:
4551 nvme_put_ctrl(ctrl);
4552 kfree_const(ctrl->device->kobj.name);
4553 out_release_instance:
4554 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4555 out:
4556 if (ctrl->discard_page)
4557 __free_page(ctrl->discard_page);
4558 return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4561
4562 /**
4563 * nvme_kill_queues(): Ends all namespace queues
4564 * @ctrl: the dead controller that needs to end
4565 *
4566 * Call this function when the driver determines it is unable to get the
4567 * controller in a state capable of servicing IO.
4568 */
4569 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4570 {
4571 struct nvme_ns *ns;
4572
4573 down_read(&ctrl->namespaces_rwsem);
4574
4575 /* Forcibly unquiesce queues to avoid blocking dispatch */
4576 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4577 blk_mq_unquiesce_queue(ctrl->admin_q);
4578
4579 list_for_each_entry(ns, &ctrl->namespaces, list)
4580 nvme_set_queue_dying(ns);
4581
4582 up_read(&ctrl->namespaces_rwsem);
4583 }
4584 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4585
4586 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4587 {
4588 struct nvme_ns *ns;
4589
4590 down_read(&ctrl->namespaces_rwsem);
4591 list_for_each_entry(ns, &ctrl->namespaces, list)
4592 blk_mq_unfreeze_queue(ns->queue);
4593 up_read(&ctrl->namespaces_rwsem);
4594 }
4595 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4596
4597 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4598 {
4599 struct nvme_ns *ns;
4600
4601 down_read(&ctrl->namespaces_rwsem);
4602 list_for_each_entry(ns, &ctrl->namespaces, list) {
4603 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4604 if (timeout <= 0)
4605 break;
4606 }
4607 up_read(&ctrl->namespaces_rwsem);
4608 return timeout;
4609 }
4610 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4611
4612 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4613 {
4614 struct nvme_ns *ns;
4615
4616 down_read(&ctrl->namespaces_rwsem);
4617 list_for_each_entry(ns, &ctrl->namespaces, list)
4618 blk_mq_freeze_queue_wait(ns->queue);
4619 up_read(&ctrl->namespaces_rwsem);
4620 }
4621 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4622
4623 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4624 {
4625 struct nvme_ns *ns;
4626
4627 down_read(&ctrl->namespaces_rwsem);
4628 list_for_each_entry(ns, &ctrl->namespaces, list)
4629 blk_freeze_queue_start(ns->queue);
4630 up_read(&ctrl->namespaces_rwsem);
4631 }
4632 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4633
4634 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4635 {
4636 struct nvme_ns *ns;
4637
4638 down_read(&ctrl->namespaces_rwsem);
4639 list_for_each_entry(ns, &ctrl->namespaces, list)
4640 blk_mq_quiesce_queue(ns->queue);
4641 up_read(&ctrl->namespaces_rwsem);
4642 }
4643 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4644
4645 void nvme_start_queues(struct nvme_ctrl *ctrl)
4646 {
4647 struct nvme_ns *ns;
4648
4649 down_read(&ctrl->namespaces_rwsem);
4650 list_for_each_entry(ns, &ctrl->namespaces, list)
4651 blk_mq_unquiesce_queue(ns->queue);
4652 up_read(&ctrl->namespaces_rwsem);
4653 }
4654 EXPORT_SYMBOL_GPL(nvme_start_queues);
4655
4656 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4657 {
4658 struct nvme_ns *ns;
4659
4660 down_read(&ctrl->namespaces_rwsem);
4661 list_for_each_entry(ns, &ctrl->namespaces, list)
4662 blk_sync_queue(ns->queue);
4663 up_read(&ctrl->namespaces_rwsem);
4664 }
4665 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4666
4667 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4668 {
4669 nvme_sync_io_queues(ctrl);
4670 if (ctrl->admin_q)
4671 blk_sync_queue(ctrl->admin_q);
4672 }
4673 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4674
4675 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4676 {
4677 if (file->f_op != &nvme_dev_fops)
4678 return NULL;
4679 return file->private_data;
4680 }
4681 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4682
4683 /*
4684 * Check we didn't inadvertently grow the command structure sizes:
4685 */
4686 static inline void _nvme_check_size(void)
4687 {
4688 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4689 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4690 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4691 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4692 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4693 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4694 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4695 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4696 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4697 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4698 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4699 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4700 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4701 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4702 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4703 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4704 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4705 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4706 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4707 }
4708
4709
4710 static int __init nvme_core_init(void)
4711 {
4712 int result = -ENOMEM;
4713
4714 _nvme_check_size();
4715
4716 nvme_wq = alloc_workqueue("nvme-wq",
4717 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4718 if (!nvme_wq)
4719 goto out;
4720
4721 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4722 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4723 if (!nvme_reset_wq)
4724 goto destroy_wq;
4725
4726 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4727 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4728 if (!nvme_delete_wq)
4729 goto destroy_reset_wq;
4730
4731 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4732 NVME_MINORS, "nvme");
4733 if (result < 0)
4734 goto destroy_delete_wq;
4735
4736 nvme_class = class_create(THIS_MODULE, "nvme");
4737 if (IS_ERR(nvme_class)) {
4738 result = PTR_ERR(nvme_class);
4739 goto unregister_chrdev;
4740 }
4741 nvme_class->dev_uevent = nvme_class_uevent;
4742
4743 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4744 if (IS_ERR(nvme_subsys_class)) {
4745 result = PTR_ERR(nvme_subsys_class);
4746 goto destroy_class;
4747 }
4748 return 0;
4749
4750 destroy_class:
4751 class_destroy(nvme_class);
4752 unregister_chrdev:
4753 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4754 destroy_delete_wq:
4755 destroy_workqueue(nvme_delete_wq);
4756 destroy_reset_wq:
4757 destroy_workqueue(nvme_reset_wq);
4758 destroy_wq:
4759 destroy_workqueue(nvme_wq);
4760 out:
4761 return result;
4762 }
4763
4764 static void __exit nvme_core_exit(void)
4765 {
4766 class_destroy(nvme_subsys_class);
4767 class_destroy(nvme_class);
4768 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4769 destroy_workqueue(nvme_delete_wq);
4770 destroy_workqueue(nvme_reset_wq);
4771 destroy_workqueue(nvme_wq);
4772 ida_destroy(&nvme_instance_ida);
4773 }
4774
4775 MODULE_LICENSE("GPL");
4776 MODULE_VERSION("1.0");
4777 module_init(nvme_core_init);
4778 module_exit(nvme_core_exit);