]> git.ipfire.org Git - people/ms/linux.git/blob - include/rdma/ib_verbs.h
IB/core: use RCU for uverbs id lookup
[people/ms/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <uapi/linux/if_ether.h>
53
54 #include <linux/atomic.h>
55 #include <linux/mmu_notifier.h>
56 #include <asm/uaccess.h>
57
58 extern struct workqueue_struct *ib_wq;
59
60 union ib_gid {
61 u8 raw[16];
62 struct {
63 __be64 subnet_prefix;
64 __be64 interface_id;
65 } global;
66 };
67
68 extern union ib_gid zgid;
69
70 struct ib_gid_attr {
71 struct net_device *ndev;
72 };
73
74 enum rdma_node_type {
75 /* IB values map to NodeInfo:NodeType. */
76 RDMA_NODE_IB_CA = 1,
77 RDMA_NODE_IB_SWITCH,
78 RDMA_NODE_IB_ROUTER,
79 RDMA_NODE_RNIC,
80 RDMA_NODE_USNIC,
81 RDMA_NODE_USNIC_UDP,
82 };
83
84 enum rdma_transport_type {
85 RDMA_TRANSPORT_IB,
86 RDMA_TRANSPORT_IWARP,
87 RDMA_TRANSPORT_USNIC,
88 RDMA_TRANSPORT_USNIC_UDP
89 };
90
91 enum rdma_protocol_type {
92 RDMA_PROTOCOL_IB,
93 RDMA_PROTOCOL_IBOE,
94 RDMA_PROTOCOL_IWARP,
95 RDMA_PROTOCOL_USNIC_UDP
96 };
97
98 __attribute_const__ enum rdma_transport_type
99 rdma_node_get_transport(enum rdma_node_type node_type);
100
101 enum rdma_link_layer {
102 IB_LINK_LAYER_UNSPECIFIED,
103 IB_LINK_LAYER_INFINIBAND,
104 IB_LINK_LAYER_ETHERNET,
105 };
106
107 enum ib_device_cap_flags {
108 IB_DEVICE_RESIZE_MAX_WR = 1,
109 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
110 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
111 IB_DEVICE_RAW_MULTI = (1<<3),
112 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
113 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
114 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
115 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
116 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
117 IB_DEVICE_INIT_TYPE = (1<<9),
118 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
119 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
120 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
121 IB_DEVICE_SRQ_RESIZE = (1<<13),
122 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
123 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
124 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
125 IB_DEVICE_MEM_WINDOW = (1<<17),
126 /*
127 * Devices should set IB_DEVICE_UD_IP_SUM if they support
128 * insertion of UDP and TCP checksum on outgoing UD IPoIB
129 * messages and can verify the validity of checksum for
130 * incoming messages. Setting this flag implies that the
131 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
132 */
133 IB_DEVICE_UD_IP_CSUM = (1<<18),
134 IB_DEVICE_UD_TSO = (1<<19),
135 IB_DEVICE_XRC = (1<<20),
136 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
137 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
138 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
139 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
140 IB_DEVICE_RC_IP_CSUM = (1<<25),
141 IB_DEVICE_RAW_IP_CSUM = (1<<26),
142 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
143 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
144 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
145 };
146
147 enum ib_signature_prot_cap {
148 IB_PROT_T10DIF_TYPE_1 = 1,
149 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
150 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
151 };
152
153 enum ib_signature_guard_cap {
154 IB_GUARD_T10DIF_CRC = 1,
155 IB_GUARD_T10DIF_CSUM = 1 << 1,
156 };
157
158 enum ib_atomic_cap {
159 IB_ATOMIC_NONE,
160 IB_ATOMIC_HCA,
161 IB_ATOMIC_GLOB
162 };
163
164 enum ib_odp_general_cap_bits {
165 IB_ODP_SUPPORT = 1 << 0,
166 };
167
168 enum ib_odp_transport_cap_bits {
169 IB_ODP_SUPPORT_SEND = 1 << 0,
170 IB_ODP_SUPPORT_RECV = 1 << 1,
171 IB_ODP_SUPPORT_WRITE = 1 << 2,
172 IB_ODP_SUPPORT_READ = 1 << 3,
173 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
174 };
175
176 struct ib_odp_caps {
177 uint64_t general_caps;
178 struct {
179 uint32_t rc_odp_caps;
180 uint32_t uc_odp_caps;
181 uint32_t ud_odp_caps;
182 } per_transport_caps;
183 };
184
185 enum ib_cq_creation_flags {
186 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
187 };
188
189 struct ib_cq_init_attr {
190 unsigned int cqe;
191 int comp_vector;
192 u32 flags;
193 };
194
195 struct ib_device_attr {
196 u64 fw_ver;
197 __be64 sys_image_guid;
198 u64 max_mr_size;
199 u64 page_size_cap;
200 u32 vendor_id;
201 u32 vendor_part_id;
202 u32 hw_ver;
203 int max_qp;
204 int max_qp_wr;
205 int device_cap_flags;
206 int max_sge;
207 int max_sge_rd;
208 int max_cq;
209 int max_cqe;
210 int max_mr;
211 int max_pd;
212 int max_qp_rd_atom;
213 int max_ee_rd_atom;
214 int max_res_rd_atom;
215 int max_qp_init_rd_atom;
216 int max_ee_init_rd_atom;
217 enum ib_atomic_cap atomic_cap;
218 enum ib_atomic_cap masked_atomic_cap;
219 int max_ee;
220 int max_rdd;
221 int max_mw;
222 int max_raw_ipv6_qp;
223 int max_raw_ethy_qp;
224 int max_mcast_grp;
225 int max_mcast_qp_attach;
226 int max_total_mcast_qp_attach;
227 int max_ah;
228 int max_fmr;
229 int max_map_per_fmr;
230 int max_srq;
231 int max_srq_wr;
232 int max_srq_sge;
233 unsigned int max_fast_reg_page_list_len;
234 u16 max_pkeys;
235 u8 local_ca_ack_delay;
236 int sig_prot_cap;
237 int sig_guard_cap;
238 struct ib_odp_caps odp_caps;
239 uint64_t timestamp_mask;
240 uint64_t hca_core_clock; /* in KHZ */
241 };
242
243 enum ib_mtu {
244 IB_MTU_256 = 1,
245 IB_MTU_512 = 2,
246 IB_MTU_1024 = 3,
247 IB_MTU_2048 = 4,
248 IB_MTU_4096 = 5
249 };
250
251 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
252 {
253 switch (mtu) {
254 case IB_MTU_256: return 256;
255 case IB_MTU_512: return 512;
256 case IB_MTU_1024: return 1024;
257 case IB_MTU_2048: return 2048;
258 case IB_MTU_4096: return 4096;
259 default: return -1;
260 }
261 }
262
263 enum ib_port_state {
264 IB_PORT_NOP = 0,
265 IB_PORT_DOWN = 1,
266 IB_PORT_INIT = 2,
267 IB_PORT_ARMED = 3,
268 IB_PORT_ACTIVE = 4,
269 IB_PORT_ACTIVE_DEFER = 5
270 };
271
272 enum ib_port_cap_flags {
273 IB_PORT_SM = 1 << 1,
274 IB_PORT_NOTICE_SUP = 1 << 2,
275 IB_PORT_TRAP_SUP = 1 << 3,
276 IB_PORT_OPT_IPD_SUP = 1 << 4,
277 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
278 IB_PORT_SL_MAP_SUP = 1 << 6,
279 IB_PORT_MKEY_NVRAM = 1 << 7,
280 IB_PORT_PKEY_NVRAM = 1 << 8,
281 IB_PORT_LED_INFO_SUP = 1 << 9,
282 IB_PORT_SM_DISABLED = 1 << 10,
283 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
284 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
285 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
286 IB_PORT_CM_SUP = 1 << 16,
287 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
288 IB_PORT_REINIT_SUP = 1 << 18,
289 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
290 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
291 IB_PORT_DR_NOTICE_SUP = 1 << 21,
292 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
293 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
294 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
295 IB_PORT_CLIENT_REG_SUP = 1 << 25,
296 IB_PORT_IP_BASED_GIDS = 1 << 26,
297 };
298
299 enum ib_port_width {
300 IB_WIDTH_1X = 1,
301 IB_WIDTH_4X = 2,
302 IB_WIDTH_8X = 4,
303 IB_WIDTH_12X = 8
304 };
305
306 static inline int ib_width_enum_to_int(enum ib_port_width width)
307 {
308 switch (width) {
309 case IB_WIDTH_1X: return 1;
310 case IB_WIDTH_4X: return 4;
311 case IB_WIDTH_8X: return 8;
312 case IB_WIDTH_12X: return 12;
313 default: return -1;
314 }
315 }
316
317 enum ib_port_speed {
318 IB_SPEED_SDR = 1,
319 IB_SPEED_DDR = 2,
320 IB_SPEED_QDR = 4,
321 IB_SPEED_FDR10 = 8,
322 IB_SPEED_FDR = 16,
323 IB_SPEED_EDR = 32
324 };
325
326 struct ib_protocol_stats {
327 /* TBD... */
328 };
329
330 struct iw_protocol_stats {
331 u64 ipInReceives;
332 u64 ipInHdrErrors;
333 u64 ipInTooBigErrors;
334 u64 ipInNoRoutes;
335 u64 ipInAddrErrors;
336 u64 ipInUnknownProtos;
337 u64 ipInTruncatedPkts;
338 u64 ipInDiscards;
339 u64 ipInDelivers;
340 u64 ipOutForwDatagrams;
341 u64 ipOutRequests;
342 u64 ipOutDiscards;
343 u64 ipOutNoRoutes;
344 u64 ipReasmTimeout;
345 u64 ipReasmReqds;
346 u64 ipReasmOKs;
347 u64 ipReasmFails;
348 u64 ipFragOKs;
349 u64 ipFragFails;
350 u64 ipFragCreates;
351 u64 ipInMcastPkts;
352 u64 ipOutMcastPkts;
353 u64 ipInBcastPkts;
354 u64 ipOutBcastPkts;
355
356 u64 tcpRtoAlgorithm;
357 u64 tcpRtoMin;
358 u64 tcpRtoMax;
359 u64 tcpMaxConn;
360 u64 tcpActiveOpens;
361 u64 tcpPassiveOpens;
362 u64 tcpAttemptFails;
363 u64 tcpEstabResets;
364 u64 tcpCurrEstab;
365 u64 tcpInSegs;
366 u64 tcpOutSegs;
367 u64 tcpRetransSegs;
368 u64 tcpInErrs;
369 u64 tcpOutRsts;
370 };
371
372 union rdma_protocol_stats {
373 struct ib_protocol_stats ib;
374 struct iw_protocol_stats iw;
375 };
376
377 /* Define bits for the various functionality this port needs to be supported by
378 * the core.
379 */
380 /* Management 0x00000FFF */
381 #define RDMA_CORE_CAP_IB_MAD 0x00000001
382 #define RDMA_CORE_CAP_IB_SMI 0x00000002
383 #define RDMA_CORE_CAP_IB_CM 0x00000004
384 #define RDMA_CORE_CAP_IW_CM 0x00000008
385 #define RDMA_CORE_CAP_IB_SA 0x00000010
386 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
387
388 /* Address format 0x000FF000 */
389 #define RDMA_CORE_CAP_AF_IB 0x00001000
390 #define RDMA_CORE_CAP_ETH_AH 0x00002000
391
392 /* Protocol 0xFFF00000 */
393 #define RDMA_CORE_CAP_PROT_IB 0x00100000
394 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
395 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
396
397 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
398 | RDMA_CORE_CAP_IB_MAD \
399 | RDMA_CORE_CAP_IB_SMI \
400 | RDMA_CORE_CAP_IB_CM \
401 | RDMA_CORE_CAP_IB_SA \
402 | RDMA_CORE_CAP_AF_IB)
403 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
404 | RDMA_CORE_CAP_IB_MAD \
405 | RDMA_CORE_CAP_IB_CM \
406 | RDMA_CORE_CAP_AF_IB \
407 | RDMA_CORE_CAP_ETH_AH)
408 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
409 | RDMA_CORE_CAP_IW_CM)
410 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
411 | RDMA_CORE_CAP_OPA_MAD)
412
413 struct ib_port_attr {
414 enum ib_port_state state;
415 enum ib_mtu max_mtu;
416 enum ib_mtu active_mtu;
417 int gid_tbl_len;
418 u32 port_cap_flags;
419 u32 max_msg_sz;
420 u32 bad_pkey_cntr;
421 u32 qkey_viol_cntr;
422 u16 pkey_tbl_len;
423 u16 lid;
424 u16 sm_lid;
425 u8 lmc;
426 u8 max_vl_num;
427 u8 sm_sl;
428 u8 subnet_timeout;
429 u8 init_type_reply;
430 u8 active_width;
431 u8 active_speed;
432 u8 phys_state;
433 };
434
435 enum ib_device_modify_flags {
436 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
437 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
438 };
439
440 struct ib_device_modify {
441 u64 sys_image_guid;
442 char node_desc[64];
443 };
444
445 enum ib_port_modify_flags {
446 IB_PORT_SHUTDOWN = 1,
447 IB_PORT_INIT_TYPE = (1<<2),
448 IB_PORT_RESET_QKEY_CNTR = (1<<3)
449 };
450
451 struct ib_port_modify {
452 u32 set_port_cap_mask;
453 u32 clr_port_cap_mask;
454 u8 init_type;
455 };
456
457 enum ib_event_type {
458 IB_EVENT_CQ_ERR,
459 IB_EVENT_QP_FATAL,
460 IB_EVENT_QP_REQ_ERR,
461 IB_EVENT_QP_ACCESS_ERR,
462 IB_EVENT_COMM_EST,
463 IB_EVENT_SQ_DRAINED,
464 IB_EVENT_PATH_MIG,
465 IB_EVENT_PATH_MIG_ERR,
466 IB_EVENT_DEVICE_FATAL,
467 IB_EVENT_PORT_ACTIVE,
468 IB_EVENT_PORT_ERR,
469 IB_EVENT_LID_CHANGE,
470 IB_EVENT_PKEY_CHANGE,
471 IB_EVENT_SM_CHANGE,
472 IB_EVENT_SRQ_ERR,
473 IB_EVENT_SRQ_LIMIT_REACHED,
474 IB_EVENT_QP_LAST_WQE_REACHED,
475 IB_EVENT_CLIENT_REREGISTER,
476 IB_EVENT_GID_CHANGE,
477 };
478
479 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
480
481 struct ib_event {
482 struct ib_device *device;
483 union {
484 struct ib_cq *cq;
485 struct ib_qp *qp;
486 struct ib_srq *srq;
487 u8 port_num;
488 } element;
489 enum ib_event_type event;
490 };
491
492 struct ib_event_handler {
493 struct ib_device *device;
494 void (*handler)(struct ib_event_handler *, struct ib_event *);
495 struct list_head list;
496 };
497
498 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
499 do { \
500 (_ptr)->device = _device; \
501 (_ptr)->handler = _handler; \
502 INIT_LIST_HEAD(&(_ptr)->list); \
503 } while (0)
504
505 struct ib_global_route {
506 union ib_gid dgid;
507 u32 flow_label;
508 u8 sgid_index;
509 u8 hop_limit;
510 u8 traffic_class;
511 };
512
513 struct ib_grh {
514 __be32 version_tclass_flow;
515 __be16 paylen;
516 u8 next_hdr;
517 u8 hop_limit;
518 union ib_gid sgid;
519 union ib_gid dgid;
520 };
521
522 enum {
523 IB_MULTICAST_QPN = 0xffffff
524 };
525
526 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
527
528 enum ib_ah_flags {
529 IB_AH_GRH = 1
530 };
531
532 enum ib_rate {
533 IB_RATE_PORT_CURRENT = 0,
534 IB_RATE_2_5_GBPS = 2,
535 IB_RATE_5_GBPS = 5,
536 IB_RATE_10_GBPS = 3,
537 IB_RATE_20_GBPS = 6,
538 IB_RATE_30_GBPS = 4,
539 IB_RATE_40_GBPS = 7,
540 IB_RATE_60_GBPS = 8,
541 IB_RATE_80_GBPS = 9,
542 IB_RATE_120_GBPS = 10,
543 IB_RATE_14_GBPS = 11,
544 IB_RATE_56_GBPS = 12,
545 IB_RATE_112_GBPS = 13,
546 IB_RATE_168_GBPS = 14,
547 IB_RATE_25_GBPS = 15,
548 IB_RATE_100_GBPS = 16,
549 IB_RATE_200_GBPS = 17,
550 IB_RATE_300_GBPS = 18
551 };
552
553 /**
554 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
555 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
556 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
557 * @rate: rate to convert.
558 */
559 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
560
561 /**
562 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
563 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
564 * @rate: rate to convert.
565 */
566 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
567
568
569 /**
570 * enum ib_mr_type - memory region type
571 * @IB_MR_TYPE_MEM_REG: memory region that is used for
572 * normal registration
573 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
574 * signature operations (data-integrity
575 * capable regions)
576 */
577 enum ib_mr_type {
578 IB_MR_TYPE_MEM_REG,
579 IB_MR_TYPE_SIGNATURE,
580 };
581
582 /**
583 * Signature types
584 * IB_SIG_TYPE_NONE: Unprotected.
585 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
586 */
587 enum ib_signature_type {
588 IB_SIG_TYPE_NONE,
589 IB_SIG_TYPE_T10_DIF,
590 };
591
592 /**
593 * Signature T10-DIF block-guard types
594 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
595 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
596 */
597 enum ib_t10_dif_bg_type {
598 IB_T10DIF_CRC,
599 IB_T10DIF_CSUM
600 };
601
602 /**
603 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
604 * domain.
605 * @bg_type: T10-DIF block guard type (CRC|CSUM)
606 * @pi_interval: protection information interval.
607 * @bg: seed of guard computation.
608 * @app_tag: application tag of guard block
609 * @ref_tag: initial guard block reference tag.
610 * @ref_remap: Indicate wethear the reftag increments each block
611 * @app_escape: Indicate to skip block check if apptag=0xffff
612 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
613 * @apptag_check_mask: check bitmask of application tag.
614 */
615 struct ib_t10_dif_domain {
616 enum ib_t10_dif_bg_type bg_type;
617 u16 pi_interval;
618 u16 bg;
619 u16 app_tag;
620 u32 ref_tag;
621 bool ref_remap;
622 bool app_escape;
623 bool ref_escape;
624 u16 apptag_check_mask;
625 };
626
627 /**
628 * struct ib_sig_domain - Parameters for signature domain
629 * @sig_type: specific signauture type
630 * @sig: union of all signature domain attributes that may
631 * be used to set domain layout.
632 */
633 struct ib_sig_domain {
634 enum ib_signature_type sig_type;
635 union {
636 struct ib_t10_dif_domain dif;
637 } sig;
638 };
639
640 /**
641 * struct ib_sig_attrs - Parameters for signature handover operation
642 * @check_mask: bitmask for signature byte check (8 bytes)
643 * @mem: memory domain layout desciptor.
644 * @wire: wire domain layout desciptor.
645 */
646 struct ib_sig_attrs {
647 u8 check_mask;
648 struct ib_sig_domain mem;
649 struct ib_sig_domain wire;
650 };
651
652 enum ib_sig_err_type {
653 IB_SIG_BAD_GUARD,
654 IB_SIG_BAD_REFTAG,
655 IB_SIG_BAD_APPTAG,
656 };
657
658 /**
659 * struct ib_sig_err - signature error descriptor
660 */
661 struct ib_sig_err {
662 enum ib_sig_err_type err_type;
663 u32 expected;
664 u32 actual;
665 u64 sig_err_offset;
666 u32 key;
667 };
668
669 enum ib_mr_status_check {
670 IB_MR_CHECK_SIG_STATUS = 1,
671 };
672
673 /**
674 * struct ib_mr_status - Memory region status container
675 *
676 * @fail_status: Bitmask of MR checks status. For each
677 * failed check a corresponding status bit is set.
678 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
679 * failure.
680 */
681 struct ib_mr_status {
682 u32 fail_status;
683 struct ib_sig_err sig_err;
684 };
685
686 /**
687 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
688 * enum.
689 * @mult: multiple to convert.
690 */
691 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
692
693 struct ib_ah_attr {
694 struct ib_global_route grh;
695 u16 dlid;
696 u8 sl;
697 u8 src_path_bits;
698 u8 static_rate;
699 u8 ah_flags;
700 u8 port_num;
701 u8 dmac[ETH_ALEN];
702 };
703
704 enum ib_wc_status {
705 IB_WC_SUCCESS,
706 IB_WC_LOC_LEN_ERR,
707 IB_WC_LOC_QP_OP_ERR,
708 IB_WC_LOC_EEC_OP_ERR,
709 IB_WC_LOC_PROT_ERR,
710 IB_WC_WR_FLUSH_ERR,
711 IB_WC_MW_BIND_ERR,
712 IB_WC_BAD_RESP_ERR,
713 IB_WC_LOC_ACCESS_ERR,
714 IB_WC_REM_INV_REQ_ERR,
715 IB_WC_REM_ACCESS_ERR,
716 IB_WC_REM_OP_ERR,
717 IB_WC_RETRY_EXC_ERR,
718 IB_WC_RNR_RETRY_EXC_ERR,
719 IB_WC_LOC_RDD_VIOL_ERR,
720 IB_WC_REM_INV_RD_REQ_ERR,
721 IB_WC_REM_ABORT_ERR,
722 IB_WC_INV_EECN_ERR,
723 IB_WC_INV_EEC_STATE_ERR,
724 IB_WC_FATAL_ERR,
725 IB_WC_RESP_TIMEOUT_ERR,
726 IB_WC_GENERAL_ERR
727 };
728
729 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
730
731 enum ib_wc_opcode {
732 IB_WC_SEND,
733 IB_WC_RDMA_WRITE,
734 IB_WC_RDMA_READ,
735 IB_WC_COMP_SWAP,
736 IB_WC_FETCH_ADD,
737 IB_WC_BIND_MW,
738 IB_WC_LSO,
739 IB_WC_LOCAL_INV,
740 IB_WC_REG_MR,
741 IB_WC_MASKED_COMP_SWAP,
742 IB_WC_MASKED_FETCH_ADD,
743 /*
744 * Set value of IB_WC_RECV so consumers can test if a completion is a
745 * receive by testing (opcode & IB_WC_RECV).
746 */
747 IB_WC_RECV = 1 << 7,
748 IB_WC_RECV_RDMA_WITH_IMM
749 };
750
751 enum ib_wc_flags {
752 IB_WC_GRH = 1,
753 IB_WC_WITH_IMM = (1<<1),
754 IB_WC_WITH_INVALIDATE = (1<<2),
755 IB_WC_IP_CSUM_OK = (1<<3),
756 IB_WC_WITH_SMAC = (1<<4),
757 IB_WC_WITH_VLAN = (1<<5),
758 };
759
760 struct ib_wc {
761 u64 wr_id;
762 enum ib_wc_status status;
763 enum ib_wc_opcode opcode;
764 u32 vendor_err;
765 u32 byte_len;
766 struct ib_qp *qp;
767 union {
768 __be32 imm_data;
769 u32 invalidate_rkey;
770 } ex;
771 u32 src_qp;
772 int wc_flags;
773 u16 pkey_index;
774 u16 slid;
775 u8 sl;
776 u8 dlid_path_bits;
777 u8 port_num; /* valid only for DR SMPs on switches */
778 u8 smac[ETH_ALEN];
779 u16 vlan_id;
780 };
781
782 enum ib_cq_notify_flags {
783 IB_CQ_SOLICITED = 1 << 0,
784 IB_CQ_NEXT_COMP = 1 << 1,
785 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
786 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
787 };
788
789 enum ib_srq_type {
790 IB_SRQT_BASIC,
791 IB_SRQT_XRC
792 };
793
794 enum ib_srq_attr_mask {
795 IB_SRQ_MAX_WR = 1 << 0,
796 IB_SRQ_LIMIT = 1 << 1,
797 };
798
799 struct ib_srq_attr {
800 u32 max_wr;
801 u32 max_sge;
802 u32 srq_limit;
803 };
804
805 struct ib_srq_init_attr {
806 void (*event_handler)(struct ib_event *, void *);
807 void *srq_context;
808 struct ib_srq_attr attr;
809 enum ib_srq_type srq_type;
810
811 union {
812 struct {
813 struct ib_xrcd *xrcd;
814 struct ib_cq *cq;
815 } xrc;
816 } ext;
817 };
818
819 struct ib_qp_cap {
820 u32 max_send_wr;
821 u32 max_recv_wr;
822 u32 max_send_sge;
823 u32 max_recv_sge;
824 u32 max_inline_data;
825 };
826
827 enum ib_sig_type {
828 IB_SIGNAL_ALL_WR,
829 IB_SIGNAL_REQ_WR
830 };
831
832 enum ib_qp_type {
833 /*
834 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
835 * here (and in that order) since the MAD layer uses them as
836 * indices into a 2-entry table.
837 */
838 IB_QPT_SMI,
839 IB_QPT_GSI,
840
841 IB_QPT_RC,
842 IB_QPT_UC,
843 IB_QPT_UD,
844 IB_QPT_RAW_IPV6,
845 IB_QPT_RAW_ETHERTYPE,
846 IB_QPT_RAW_PACKET = 8,
847 IB_QPT_XRC_INI = 9,
848 IB_QPT_XRC_TGT,
849 IB_QPT_MAX,
850 /* Reserve a range for qp types internal to the low level driver.
851 * These qp types will not be visible at the IB core layer, so the
852 * IB_QPT_MAX usages should not be affected in the core layer
853 */
854 IB_QPT_RESERVED1 = 0x1000,
855 IB_QPT_RESERVED2,
856 IB_QPT_RESERVED3,
857 IB_QPT_RESERVED4,
858 IB_QPT_RESERVED5,
859 IB_QPT_RESERVED6,
860 IB_QPT_RESERVED7,
861 IB_QPT_RESERVED8,
862 IB_QPT_RESERVED9,
863 IB_QPT_RESERVED10,
864 };
865
866 enum ib_qp_create_flags {
867 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
868 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
869 IB_QP_CREATE_NETIF_QP = 1 << 5,
870 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
871 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
872 /* reserve bits 26-31 for low level drivers' internal use */
873 IB_QP_CREATE_RESERVED_START = 1 << 26,
874 IB_QP_CREATE_RESERVED_END = 1 << 31,
875 };
876
877 /*
878 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
879 * callback to destroy the passed in QP.
880 */
881
882 struct ib_qp_init_attr {
883 void (*event_handler)(struct ib_event *, void *);
884 void *qp_context;
885 struct ib_cq *send_cq;
886 struct ib_cq *recv_cq;
887 struct ib_srq *srq;
888 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
889 struct ib_qp_cap cap;
890 enum ib_sig_type sq_sig_type;
891 enum ib_qp_type qp_type;
892 enum ib_qp_create_flags create_flags;
893 u8 port_num; /* special QP types only */
894 };
895
896 struct ib_qp_open_attr {
897 void (*event_handler)(struct ib_event *, void *);
898 void *qp_context;
899 u32 qp_num;
900 enum ib_qp_type qp_type;
901 };
902
903 enum ib_rnr_timeout {
904 IB_RNR_TIMER_655_36 = 0,
905 IB_RNR_TIMER_000_01 = 1,
906 IB_RNR_TIMER_000_02 = 2,
907 IB_RNR_TIMER_000_03 = 3,
908 IB_RNR_TIMER_000_04 = 4,
909 IB_RNR_TIMER_000_06 = 5,
910 IB_RNR_TIMER_000_08 = 6,
911 IB_RNR_TIMER_000_12 = 7,
912 IB_RNR_TIMER_000_16 = 8,
913 IB_RNR_TIMER_000_24 = 9,
914 IB_RNR_TIMER_000_32 = 10,
915 IB_RNR_TIMER_000_48 = 11,
916 IB_RNR_TIMER_000_64 = 12,
917 IB_RNR_TIMER_000_96 = 13,
918 IB_RNR_TIMER_001_28 = 14,
919 IB_RNR_TIMER_001_92 = 15,
920 IB_RNR_TIMER_002_56 = 16,
921 IB_RNR_TIMER_003_84 = 17,
922 IB_RNR_TIMER_005_12 = 18,
923 IB_RNR_TIMER_007_68 = 19,
924 IB_RNR_TIMER_010_24 = 20,
925 IB_RNR_TIMER_015_36 = 21,
926 IB_RNR_TIMER_020_48 = 22,
927 IB_RNR_TIMER_030_72 = 23,
928 IB_RNR_TIMER_040_96 = 24,
929 IB_RNR_TIMER_061_44 = 25,
930 IB_RNR_TIMER_081_92 = 26,
931 IB_RNR_TIMER_122_88 = 27,
932 IB_RNR_TIMER_163_84 = 28,
933 IB_RNR_TIMER_245_76 = 29,
934 IB_RNR_TIMER_327_68 = 30,
935 IB_RNR_TIMER_491_52 = 31
936 };
937
938 enum ib_qp_attr_mask {
939 IB_QP_STATE = 1,
940 IB_QP_CUR_STATE = (1<<1),
941 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
942 IB_QP_ACCESS_FLAGS = (1<<3),
943 IB_QP_PKEY_INDEX = (1<<4),
944 IB_QP_PORT = (1<<5),
945 IB_QP_QKEY = (1<<6),
946 IB_QP_AV = (1<<7),
947 IB_QP_PATH_MTU = (1<<8),
948 IB_QP_TIMEOUT = (1<<9),
949 IB_QP_RETRY_CNT = (1<<10),
950 IB_QP_RNR_RETRY = (1<<11),
951 IB_QP_RQ_PSN = (1<<12),
952 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
953 IB_QP_ALT_PATH = (1<<14),
954 IB_QP_MIN_RNR_TIMER = (1<<15),
955 IB_QP_SQ_PSN = (1<<16),
956 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
957 IB_QP_PATH_MIG_STATE = (1<<18),
958 IB_QP_CAP = (1<<19),
959 IB_QP_DEST_QPN = (1<<20),
960 IB_QP_RESERVED1 = (1<<21),
961 IB_QP_RESERVED2 = (1<<22),
962 IB_QP_RESERVED3 = (1<<23),
963 IB_QP_RESERVED4 = (1<<24),
964 };
965
966 enum ib_qp_state {
967 IB_QPS_RESET,
968 IB_QPS_INIT,
969 IB_QPS_RTR,
970 IB_QPS_RTS,
971 IB_QPS_SQD,
972 IB_QPS_SQE,
973 IB_QPS_ERR
974 };
975
976 enum ib_mig_state {
977 IB_MIG_MIGRATED,
978 IB_MIG_REARM,
979 IB_MIG_ARMED
980 };
981
982 enum ib_mw_type {
983 IB_MW_TYPE_1 = 1,
984 IB_MW_TYPE_2 = 2
985 };
986
987 struct ib_qp_attr {
988 enum ib_qp_state qp_state;
989 enum ib_qp_state cur_qp_state;
990 enum ib_mtu path_mtu;
991 enum ib_mig_state path_mig_state;
992 u32 qkey;
993 u32 rq_psn;
994 u32 sq_psn;
995 u32 dest_qp_num;
996 int qp_access_flags;
997 struct ib_qp_cap cap;
998 struct ib_ah_attr ah_attr;
999 struct ib_ah_attr alt_ah_attr;
1000 u16 pkey_index;
1001 u16 alt_pkey_index;
1002 u8 en_sqd_async_notify;
1003 u8 sq_draining;
1004 u8 max_rd_atomic;
1005 u8 max_dest_rd_atomic;
1006 u8 min_rnr_timer;
1007 u8 port_num;
1008 u8 timeout;
1009 u8 retry_cnt;
1010 u8 rnr_retry;
1011 u8 alt_port_num;
1012 u8 alt_timeout;
1013 };
1014
1015 enum ib_wr_opcode {
1016 IB_WR_RDMA_WRITE,
1017 IB_WR_RDMA_WRITE_WITH_IMM,
1018 IB_WR_SEND,
1019 IB_WR_SEND_WITH_IMM,
1020 IB_WR_RDMA_READ,
1021 IB_WR_ATOMIC_CMP_AND_SWP,
1022 IB_WR_ATOMIC_FETCH_AND_ADD,
1023 IB_WR_LSO,
1024 IB_WR_SEND_WITH_INV,
1025 IB_WR_RDMA_READ_WITH_INV,
1026 IB_WR_LOCAL_INV,
1027 IB_WR_REG_MR,
1028 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1029 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1030 IB_WR_BIND_MW,
1031 IB_WR_REG_SIG_MR,
1032 /* reserve values for low level drivers' internal use.
1033 * These values will not be used at all in the ib core layer.
1034 */
1035 IB_WR_RESERVED1 = 0xf0,
1036 IB_WR_RESERVED2,
1037 IB_WR_RESERVED3,
1038 IB_WR_RESERVED4,
1039 IB_WR_RESERVED5,
1040 IB_WR_RESERVED6,
1041 IB_WR_RESERVED7,
1042 IB_WR_RESERVED8,
1043 IB_WR_RESERVED9,
1044 IB_WR_RESERVED10,
1045 };
1046
1047 enum ib_send_flags {
1048 IB_SEND_FENCE = 1,
1049 IB_SEND_SIGNALED = (1<<1),
1050 IB_SEND_SOLICITED = (1<<2),
1051 IB_SEND_INLINE = (1<<3),
1052 IB_SEND_IP_CSUM = (1<<4),
1053
1054 /* reserve bits 26-31 for low level drivers' internal use */
1055 IB_SEND_RESERVED_START = (1 << 26),
1056 IB_SEND_RESERVED_END = (1 << 31),
1057 };
1058
1059 struct ib_sge {
1060 u64 addr;
1061 u32 length;
1062 u32 lkey;
1063 };
1064
1065 /**
1066 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1067 * @mr: A memory region to bind the memory window to.
1068 * @addr: The address where the memory window should begin.
1069 * @length: The length of the memory window, in bytes.
1070 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1071 *
1072 * This struct contains the shared parameters for type 1 and type 2
1073 * memory window bind operations.
1074 */
1075 struct ib_mw_bind_info {
1076 struct ib_mr *mr;
1077 u64 addr;
1078 u64 length;
1079 int mw_access_flags;
1080 };
1081
1082 struct ib_send_wr {
1083 struct ib_send_wr *next;
1084 u64 wr_id;
1085 struct ib_sge *sg_list;
1086 int num_sge;
1087 enum ib_wr_opcode opcode;
1088 int send_flags;
1089 union {
1090 __be32 imm_data;
1091 u32 invalidate_rkey;
1092 } ex;
1093 };
1094
1095 struct ib_rdma_wr {
1096 struct ib_send_wr wr;
1097 u64 remote_addr;
1098 u32 rkey;
1099 };
1100
1101 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1102 {
1103 return container_of(wr, struct ib_rdma_wr, wr);
1104 }
1105
1106 struct ib_atomic_wr {
1107 struct ib_send_wr wr;
1108 u64 remote_addr;
1109 u64 compare_add;
1110 u64 swap;
1111 u64 compare_add_mask;
1112 u64 swap_mask;
1113 u32 rkey;
1114 };
1115
1116 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1117 {
1118 return container_of(wr, struct ib_atomic_wr, wr);
1119 }
1120
1121 struct ib_ud_wr {
1122 struct ib_send_wr wr;
1123 struct ib_ah *ah;
1124 void *header;
1125 int hlen;
1126 int mss;
1127 u32 remote_qpn;
1128 u32 remote_qkey;
1129 u16 pkey_index; /* valid for GSI only */
1130 u8 port_num; /* valid for DR SMPs on switch only */
1131 };
1132
1133 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1134 {
1135 return container_of(wr, struct ib_ud_wr, wr);
1136 }
1137
1138 struct ib_reg_wr {
1139 struct ib_send_wr wr;
1140 struct ib_mr *mr;
1141 u32 key;
1142 int access;
1143 };
1144
1145 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1146 {
1147 return container_of(wr, struct ib_reg_wr, wr);
1148 }
1149
1150 struct ib_bind_mw_wr {
1151 struct ib_send_wr wr;
1152 struct ib_mw *mw;
1153 /* The new rkey for the memory window. */
1154 u32 rkey;
1155 struct ib_mw_bind_info bind_info;
1156 };
1157
1158 static inline struct ib_bind_mw_wr *bind_mw_wr(struct ib_send_wr *wr)
1159 {
1160 return container_of(wr, struct ib_bind_mw_wr, wr);
1161 }
1162
1163 struct ib_sig_handover_wr {
1164 struct ib_send_wr wr;
1165 struct ib_sig_attrs *sig_attrs;
1166 struct ib_mr *sig_mr;
1167 int access_flags;
1168 struct ib_sge *prot;
1169 };
1170
1171 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1172 {
1173 return container_of(wr, struct ib_sig_handover_wr, wr);
1174 }
1175
1176 struct ib_recv_wr {
1177 struct ib_recv_wr *next;
1178 u64 wr_id;
1179 struct ib_sge *sg_list;
1180 int num_sge;
1181 };
1182
1183 enum ib_access_flags {
1184 IB_ACCESS_LOCAL_WRITE = 1,
1185 IB_ACCESS_REMOTE_WRITE = (1<<1),
1186 IB_ACCESS_REMOTE_READ = (1<<2),
1187 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1188 IB_ACCESS_MW_BIND = (1<<4),
1189 IB_ZERO_BASED = (1<<5),
1190 IB_ACCESS_ON_DEMAND = (1<<6),
1191 };
1192
1193 struct ib_phys_buf {
1194 u64 addr;
1195 u64 size;
1196 };
1197
1198 struct ib_mr_attr {
1199 struct ib_pd *pd;
1200 u64 device_virt_addr;
1201 u64 size;
1202 int mr_access_flags;
1203 u32 lkey;
1204 u32 rkey;
1205 };
1206
1207 enum ib_mr_rereg_flags {
1208 IB_MR_REREG_TRANS = 1,
1209 IB_MR_REREG_PD = (1<<1),
1210 IB_MR_REREG_ACCESS = (1<<2),
1211 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1212 };
1213
1214 /**
1215 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1216 * @wr_id: Work request id.
1217 * @send_flags: Flags from ib_send_flags enum.
1218 * @bind_info: More parameters of the bind operation.
1219 */
1220 struct ib_mw_bind {
1221 u64 wr_id;
1222 int send_flags;
1223 struct ib_mw_bind_info bind_info;
1224 };
1225
1226 struct ib_fmr_attr {
1227 int max_pages;
1228 int max_maps;
1229 u8 page_shift;
1230 };
1231
1232 struct ib_umem;
1233
1234 struct ib_ucontext {
1235 struct ib_device *device;
1236 struct list_head pd_list;
1237 struct list_head mr_list;
1238 struct list_head mw_list;
1239 struct list_head cq_list;
1240 struct list_head qp_list;
1241 struct list_head srq_list;
1242 struct list_head ah_list;
1243 struct list_head xrcd_list;
1244 struct list_head rule_list;
1245 int closing;
1246
1247 struct pid *tgid;
1248 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1249 struct rb_root umem_tree;
1250 /*
1251 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1252 * mmu notifiers registration.
1253 */
1254 struct rw_semaphore umem_rwsem;
1255 void (*invalidate_range)(struct ib_umem *umem,
1256 unsigned long start, unsigned long end);
1257
1258 struct mmu_notifier mn;
1259 atomic_t notifier_count;
1260 /* A list of umems that don't have private mmu notifier counters yet. */
1261 struct list_head no_private_counters;
1262 int odp_mrs_count;
1263 #endif
1264 };
1265
1266 struct ib_uobject {
1267 u64 user_handle; /* handle given to us by userspace */
1268 struct ib_ucontext *context; /* associated user context */
1269 void *object; /* containing object */
1270 struct list_head list; /* link to context's list */
1271 int id; /* index into kernel idr */
1272 struct kref ref;
1273 struct rw_semaphore mutex; /* protects .live */
1274 struct rcu_head rcu; /* kfree_rcu() overhead */
1275 int live;
1276 };
1277
1278 struct ib_udata {
1279 const void __user *inbuf;
1280 void __user *outbuf;
1281 size_t inlen;
1282 size_t outlen;
1283 };
1284
1285 struct ib_pd {
1286 u32 local_dma_lkey;
1287 struct ib_device *device;
1288 struct ib_uobject *uobject;
1289 atomic_t usecnt; /* count all resources */
1290 struct ib_mr *local_mr;
1291 };
1292
1293 struct ib_xrcd {
1294 struct ib_device *device;
1295 atomic_t usecnt; /* count all exposed resources */
1296 struct inode *inode;
1297
1298 struct mutex tgt_qp_mutex;
1299 struct list_head tgt_qp_list;
1300 };
1301
1302 struct ib_ah {
1303 struct ib_device *device;
1304 struct ib_pd *pd;
1305 struct ib_uobject *uobject;
1306 };
1307
1308 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1309
1310 struct ib_cq {
1311 struct ib_device *device;
1312 struct ib_uobject *uobject;
1313 ib_comp_handler comp_handler;
1314 void (*event_handler)(struct ib_event *, void *);
1315 void *cq_context;
1316 int cqe;
1317 atomic_t usecnt; /* count number of work queues */
1318 };
1319
1320 struct ib_srq {
1321 struct ib_device *device;
1322 struct ib_pd *pd;
1323 struct ib_uobject *uobject;
1324 void (*event_handler)(struct ib_event *, void *);
1325 void *srq_context;
1326 enum ib_srq_type srq_type;
1327 atomic_t usecnt;
1328
1329 union {
1330 struct {
1331 struct ib_xrcd *xrcd;
1332 struct ib_cq *cq;
1333 u32 srq_num;
1334 } xrc;
1335 } ext;
1336 };
1337
1338 struct ib_qp {
1339 struct ib_device *device;
1340 struct ib_pd *pd;
1341 struct ib_cq *send_cq;
1342 struct ib_cq *recv_cq;
1343 struct ib_srq *srq;
1344 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1345 struct list_head xrcd_list;
1346 /* count times opened, mcast attaches, flow attaches */
1347 atomic_t usecnt;
1348 struct list_head open_list;
1349 struct ib_qp *real_qp;
1350 struct ib_uobject *uobject;
1351 void (*event_handler)(struct ib_event *, void *);
1352 void *qp_context;
1353 u32 qp_num;
1354 enum ib_qp_type qp_type;
1355 };
1356
1357 struct ib_mr {
1358 struct ib_device *device;
1359 struct ib_pd *pd;
1360 struct ib_uobject *uobject;
1361 u32 lkey;
1362 u32 rkey;
1363 u64 iova;
1364 u32 length;
1365 unsigned int page_size;
1366 atomic_t usecnt; /* count number of MWs */
1367 };
1368
1369 struct ib_mw {
1370 struct ib_device *device;
1371 struct ib_pd *pd;
1372 struct ib_uobject *uobject;
1373 u32 rkey;
1374 enum ib_mw_type type;
1375 };
1376
1377 struct ib_fmr {
1378 struct ib_device *device;
1379 struct ib_pd *pd;
1380 struct list_head list;
1381 u32 lkey;
1382 u32 rkey;
1383 };
1384
1385 /* Supported steering options */
1386 enum ib_flow_attr_type {
1387 /* steering according to rule specifications */
1388 IB_FLOW_ATTR_NORMAL = 0x0,
1389 /* default unicast and multicast rule -
1390 * receive all Eth traffic which isn't steered to any QP
1391 */
1392 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1393 /* default multicast rule -
1394 * receive all Eth multicast traffic which isn't steered to any QP
1395 */
1396 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1397 /* sniffer rule - receive all port traffic */
1398 IB_FLOW_ATTR_SNIFFER = 0x3
1399 };
1400
1401 /* Supported steering header types */
1402 enum ib_flow_spec_type {
1403 /* L2 headers*/
1404 IB_FLOW_SPEC_ETH = 0x20,
1405 IB_FLOW_SPEC_IB = 0x22,
1406 /* L3 header*/
1407 IB_FLOW_SPEC_IPV4 = 0x30,
1408 /* L4 headers*/
1409 IB_FLOW_SPEC_TCP = 0x40,
1410 IB_FLOW_SPEC_UDP = 0x41
1411 };
1412 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1413 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1414
1415 /* Flow steering rule priority is set according to it's domain.
1416 * Lower domain value means higher priority.
1417 */
1418 enum ib_flow_domain {
1419 IB_FLOW_DOMAIN_USER,
1420 IB_FLOW_DOMAIN_ETHTOOL,
1421 IB_FLOW_DOMAIN_RFS,
1422 IB_FLOW_DOMAIN_NIC,
1423 IB_FLOW_DOMAIN_NUM /* Must be last */
1424 };
1425
1426 struct ib_flow_eth_filter {
1427 u8 dst_mac[6];
1428 u8 src_mac[6];
1429 __be16 ether_type;
1430 __be16 vlan_tag;
1431 };
1432
1433 struct ib_flow_spec_eth {
1434 enum ib_flow_spec_type type;
1435 u16 size;
1436 struct ib_flow_eth_filter val;
1437 struct ib_flow_eth_filter mask;
1438 };
1439
1440 struct ib_flow_ib_filter {
1441 __be16 dlid;
1442 __u8 sl;
1443 };
1444
1445 struct ib_flow_spec_ib {
1446 enum ib_flow_spec_type type;
1447 u16 size;
1448 struct ib_flow_ib_filter val;
1449 struct ib_flow_ib_filter mask;
1450 };
1451
1452 struct ib_flow_ipv4_filter {
1453 __be32 src_ip;
1454 __be32 dst_ip;
1455 };
1456
1457 struct ib_flow_spec_ipv4 {
1458 enum ib_flow_spec_type type;
1459 u16 size;
1460 struct ib_flow_ipv4_filter val;
1461 struct ib_flow_ipv4_filter mask;
1462 };
1463
1464 struct ib_flow_tcp_udp_filter {
1465 __be16 dst_port;
1466 __be16 src_port;
1467 };
1468
1469 struct ib_flow_spec_tcp_udp {
1470 enum ib_flow_spec_type type;
1471 u16 size;
1472 struct ib_flow_tcp_udp_filter val;
1473 struct ib_flow_tcp_udp_filter mask;
1474 };
1475
1476 union ib_flow_spec {
1477 struct {
1478 enum ib_flow_spec_type type;
1479 u16 size;
1480 };
1481 struct ib_flow_spec_eth eth;
1482 struct ib_flow_spec_ib ib;
1483 struct ib_flow_spec_ipv4 ipv4;
1484 struct ib_flow_spec_tcp_udp tcp_udp;
1485 };
1486
1487 struct ib_flow_attr {
1488 enum ib_flow_attr_type type;
1489 u16 size;
1490 u16 priority;
1491 u32 flags;
1492 u8 num_of_specs;
1493 u8 port;
1494 /* Following are the optional layers according to user request
1495 * struct ib_flow_spec_xxx
1496 * struct ib_flow_spec_yyy
1497 */
1498 };
1499
1500 struct ib_flow {
1501 struct ib_qp *qp;
1502 struct ib_uobject *uobject;
1503 };
1504
1505 struct ib_mad_hdr;
1506 struct ib_grh;
1507
1508 enum ib_process_mad_flags {
1509 IB_MAD_IGNORE_MKEY = 1,
1510 IB_MAD_IGNORE_BKEY = 2,
1511 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1512 };
1513
1514 enum ib_mad_result {
1515 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1516 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1517 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1518 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1519 };
1520
1521 #define IB_DEVICE_NAME_MAX 64
1522
1523 struct ib_cache {
1524 rwlock_t lock;
1525 struct ib_event_handler event_handler;
1526 struct ib_pkey_cache **pkey_cache;
1527 struct ib_gid_table **gid_cache;
1528 u8 *lmc_cache;
1529 };
1530
1531 struct ib_dma_mapping_ops {
1532 int (*mapping_error)(struct ib_device *dev,
1533 u64 dma_addr);
1534 u64 (*map_single)(struct ib_device *dev,
1535 void *ptr, size_t size,
1536 enum dma_data_direction direction);
1537 void (*unmap_single)(struct ib_device *dev,
1538 u64 addr, size_t size,
1539 enum dma_data_direction direction);
1540 u64 (*map_page)(struct ib_device *dev,
1541 struct page *page, unsigned long offset,
1542 size_t size,
1543 enum dma_data_direction direction);
1544 void (*unmap_page)(struct ib_device *dev,
1545 u64 addr, size_t size,
1546 enum dma_data_direction direction);
1547 int (*map_sg)(struct ib_device *dev,
1548 struct scatterlist *sg, int nents,
1549 enum dma_data_direction direction);
1550 void (*unmap_sg)(struct ib_device *dev,
1551 struct scatterlist *sg, int nents,
1552 enum dma_data_direction direction);
1553 void (*sync_single_for_cpu)(struct ib_device *dev,
1554 u64 dma_handle,
1555 size_t size,
1556 enum dma_data_direction dir);
1557 void (*sync_single_for_device)(struct ib_device *dev,
1558 u64 dma_handle,
1559 size_t size,
1560 enum dma_data_direction dir);
1561 void *(*alloc_coherent)(struct ib_device *dev,
1562 size_t size,
1563 u64 *dma_handle,
1564 gfp_t flag);
1565 void (*free_coherent)(struct ib_device *dev,
1566 size_t size, void *cpu_addr,
1567 u64 dma_handle);
1568 };
1569
1570 struct iw_cm_verbs;
1571
1572 struct ib_port_immutable {
1573 int pkey_tbl_len;
1574 int gid_tbl_len;
1575 u32 core_cap_flags;
1576 u32 max_mad_size;
1577 };
1578
1579 struct ib_device {
1580 struct device *dma_device;
1581
1582 char name[IB_DEVICE_NAME_MAX];
1583
1584 struct list_head event_handler_list;
1585 spinlock_t event_handler_lock;
1586
1587 spinlock_t client_data_lock;
1588 struct list_head core_list;
1589 /* Access to the client_data_list is protected by the client_data_lock
1590 * spinlock and the lists_rwsem read-write semaphore */
1591 struct list_head client_data_list;
1592
1593 struct ib_cache cache;
1594 /**
1595 * port_immutable is indexed by port number
1596 */
1597 struct ib_port_immutable *port_immutable;
1598
1599 int num_comp_vectors;
1600
1601 struct iw_cm_verbs *iwcm;
1602
1603 int (*get_protocol_stats)(struct ib_device *device,
1604 union rdma_protocol_stats *stats);
1605 int (*query_device)(struct ib_device *device,
1606 struct ib_device_attr *device_attr,
1607 struct ib_udata *udata);
1608 int (*query_port)(struct ib_device *device,
1609 u8 port_num,
1610 struct ib_port_attr *port_attr);
1611 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1612 u8 port_num);
1613 /* When calling get_netdev, the HW vendor's driver should return the
1614 * net device of device @device at port @port_num or NULL if such
1615 * a net device doesn't exist. The vendor driver should call dev_hold
1616 * on this net device. The HW vendor's device driver must guarantee
1617 * that this function returns NULL before the net device reaches
1618 * NETDEV_UNREGISTER_FINAL state.
1619 */
1620 struct net_device *(*get_netdev)(struct ib_device *device,
1621 u8 port_num);
1622 int (*query_gid)(struct ib_device *device,
1623 u8 port_num, int index,
1624 union ib_gid *gid);
1625 /* When calling add_gid, the HW vendor's driver should
1626 * add the gid of device @device at gid index @index of
1627 * port @port_num to be @gid. Meta-info of that gid (for example,
1628 * the network device related to this gid is available
1629 * at @attr. @context allows the HW vendor driver to store extra
1630 * information together with a GID entry. The HW vendor may allocate
1631 * memory to contain this information and store it in @context when a
1632 * new GID entry is written to. Params are consistent until the next
1633 * call of add_gid or delete_gid. The function should return 0 on
1634 * success or error otherwise. The function could be called
1635 * concurrently for different ports. This function is only called
1636 * when roce_gid_table is used.
1637 */
1638 int (*add_gid)(struct ib_device *device,
1639 u8 port_num,
1640 unsigned int index,
1641 const union ib_gid *gid,
1642 const struct ib_gid_attr *attr,
1643 void **context);
1644 /* When calling del_gid, the HW vendor's driver should delete the
1645 * gid of device @device at gid index @index of port @port_num.
1646 * Upon the deletion of a GID entry, the HW vendor must free any
1647 * allocated memory. The caller will clear @context afterwards.
1648 * This function is only called when roce_gid_table is used.
1649 */
1650 int (*del_gid)(struct ib_device *device,
1651 u8 port_num,
1652 unsigned int index,
1653 void **context);
1654 int (*query_pkey)(struct ib_device *device,
1655 u8 port_num, u16 index, u16 *pkey);
1656 int (*modify_device)(struct ib_device *device,
1657 int device_modify_mask,
1658 struct ib_device_modify *device_modify);
1659 int (*modify_port)(struct ib_device *device,
1660 u8 port_num, int port_modify_mask,
1661 struct ib_port_modify *port_modify);
1662 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1663 struct ib_udata *udata);
1664 int (*dealloc_ucontext)(struct ib_ucontext *context);
1665 int (*mmap)(struct ib_ucontext *context,
1666 struct vm_area_struct *vma);
1667 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1668 struct ib_ucontext *context,
1669 struct ib_udata *udata);
1670 int (*dealloc_pd)(struct ib_pd *pd);
1671 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1672 struct ib_ah_attr *ah_attr);
1673 int (*modify_ah)(struct ib_ah *ah,
1674 struct ib_ah_attr *ah_attr);
1675 int (*query_ah)(struct ib_ah *ah,
1676 struct ib_ah_attr *ah_attr);
1677 int (*destroy_ah)(struct ib_ah *ah);
1678 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1679 struct ib_srq_init_attr *srq_init_attr,
1680 struct ib_udata *udata);
1681 int (*modify_srq)(struct ib_srq *srq,
1682 struct ib_srq_attr *srq_attr,
1683 enum ib_srq_attr_mask srq_attr_mask,
1684 struct ib_udata *udata);
1685 int (*query_srq)(struct ib_srq *srq,
1686 struct ib_srq_attr *srq_attr);
1687 int (*destroy_srq)(struct ib_srq *srq);
1688 int (*post_srq_recv)(struct ib_srq *srq,
1689 struct ib_recv_wr *recv_wr,
1690 struct ib_recv_wr **bad_recv_wr);
1691 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1692 struct ib_qp_init_attr *qp_init_attr,
1693 struct ib_udata *udata);
1694 int (*modify_qp)(struct ib_qp *qp,
1695 struct ib_qp_attr *qp_attr,
1696 int qp_attr_mask,
1697 struct ib_udata *udata);
1698 int (*query_qp)(struct ib_qp *qp,
1699 struct ib_qp_attr *qp_attr,
1700 int qp_attr_mask,
1701 struct ib_qp_init_attr *qp_init_attr);
1702 int (*destroy_qp)(struct ib_qp *qp);
1703 int (*post_send)(struct ib_qp *qp,
1704 struct ib_send_wr *send_wr,
1705 struct ib_send_wr **bad_send_wr);
1706 int (*post_recv)(struct ib_qp *qp,
1707 struct ib_recv_wr *recv_wr,
1708 struct ib_recv_wr **bad_recv_wr);
1709 struct ib_cq * (*create_cq)(struct ib_device *device,
1710 const struct ib_cq_init_attr *attr,
1711 struct ib_ucontext *context,
1712 struct ib_udata *udata);
1713 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1714 u16 cq_period);
1715 int (*destroy_cq)(struct ib_cq *cq);
1716 int (*resize_cq)(struct ib_cq *cq, int cqe,
1717 struct ib_udata *udata);
1718 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1719 struct ib_wc *wc);
1720 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1721 int (*req_notify_cq)(struct ib_cq *cq,
1722 enum ib_cq_notify_flags flags);
1723 int (*req_ncomp_notif)(struct ib_cq *cq,
1724 int wc_cnt);
1725 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1726 int mr_access_flags);
1727 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1728 struct ib_phys_buf *phys_buf_array,
1729 int num_phys_buf,
1730 int mr_access_flags,
1731 u64 *iova_start);
1732 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1733 u64 start, u64 length,
1734 u64 virt_addr,
1735 int mr_access_flags,
1736 struct ib_udata *udata);
1737 int (*rereg_user_mr)(struct ib_mr *mr,
1738 int flags,
1739 u64 start, u64 length,
1740 u64 virt_addr,
1741 int mr_access_flags,
1742 struct ib_pd *pd,
1743 struct ib_udata *udata);
1744 int (*query_mr)(struct ib_mr *mr,
1745 struct ib_mr_attr *mr_attr);
1746 int (*dereg_mr)(struct ib_mr *mr);
1747 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1748 enum ib_mr_type mr_type,
1749 u32 max_num_sg);
1750 int (*map_mr_sg)(struct ib_mr *mr,
1751 struct scatterlist *sg,
1752 int sg_nents);
1753 int (*rereg_phys_mr)(struct ib_mr *mr,
1754 int mr_rereg_mask,
1755 struct ib_pd *pd,
1756 struct ib_phys_buf *phys_buf_array,
1757 int num_phys_buf,
1758 int mr_access_flags,
1759 u64 *iova_start);
1760 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1761 enum ib_mw_type type);
1762 int (*bind_mw)(struct ib_qp *qp,
1763 struct ib_mw *mw,
1764 struct ib_mw_bind *mw_bind);
1765 int (*dealloc_mw)(struct ib_mw *mw);
1766 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1767 int mr_access_flags,
1768 struct ib_fmr_attr *fmr_attr);
1769 int (*map_phys_fmr)(struct ib_fmr *fmr,
1770 u64 *page_list, int list_len,
1771 u64 iova);
1772 int (*unmap_fmr)(struct list_head *fmr_list);
1773 int (*dealloc_fmr)(struct ib_fmr *fmr);
1774 int (*attach_mcast)(struct ib_qp *qp,
1775 union ib_gid *gid,
1776 u16 lid);
1777 int (*detach_mcast)(struct ib_qp *qp,
1778 union ib_gid *gid,
1779 u16 lid);
1780 int (*process_mad)(struct ib_device *device,
1781 int process_mad_flags,
1782 u8 port_num,
1783 const struct ib_wc *in_wc,
1784 const struct ib_grh *in_grh,
1785 const struct ib_mad_hdr *in_mad,
1786 size_t in_mad_size,
1787 struct ib_mad_hdr *out_mad,
1788 size_t *out_mad_size,
1789 u16 *out_mad_pkey_index);
1790 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1791 struct ib_ucontext *ucontext,
1792 struct ib_udata *udata);
1793 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1794 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1795 struct ib_flow_attr
1796 *flow_attr,
1797 int domain);
1798 int (*destroy_flow)(struct ib_flow *flow_id);
1799 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1800 struct ib_mr_status *mr_status);
1801 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1802
1803 struct ib_dma_mapping_ops *dma_ops;
1804
1805 struct module *owner;
1806 struct device dev;
1807 struct kobject *ports_parent;
1808 struct list_head port_list;
1809
1810 enum {
1811 IB_DEV_UNINITIALIZED,
1812 IB_DEV_REGISTERED,
1813 IB_DEV_UNREGISTERED
1814 } reg_state;
1815
1816 int uverbs_abi_ver;
1817 u64 uverbs_cmd_mask;
1818 u64 uverbs_ex_cmd_mask;
1819
1820 char node_desc[64];
1821 __be64 node_guid;
1822 u32 local_dma_lkey;
1823 u16 is_switch:1;
1824 u8 node_type;
1825 u8 phys_port_cnt;
1826
1827 /**
1828 * The following mandatory functions are used only at device
1829 * registration. Keep functions such as these at the end of this
1830 * structure to avoid cache line misses when accessing struct ib_device
1831 * in fast paths.
1832 */
1833 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1834 };
1835
1836 struct ib_client {
1837 char *name;
1838 void (*add) (struct ib_device *);
1839 void (*remove)(struct ib_device *, void *client_data);
1840
1841 /* Returns the net_dev belonging to this ib_client and matching the
1842 * given parameters.
1843 * @dev: An RDMA device that the net_dev use for communication.
1844 * @port: A physical port number on the RDMA device.
1845 * @pkey: P_Key that the net_dev uses if applicable.
1846 * @gid: A GID that the net_dev uses to communicate.
1847 * @addr: An IP address the net_dev is configured with.
1848 * @client_data: The device's client data set by ib_set_client_data().
1849 *
1850 * An ib_client that implements a net_dev on top of RDMA devices
1851 * (such as IP over IB) should implement this callback, allowing the
1852 * rdma_cm module to find the right net_dev for a given request.
1853 *
1854 * The caller is responsible for calling dev_put on the returned
1855 * netdev. */
1856 struct net_device *(*get_net_dev_by_params)(
1857 struct ib_device *dev,
1858 u8 port,
1859 u16 pkey,
1860 const union ib_gid *gid,
1861 const struct sockaddr *addr,
1862 void *client_data);
1863 struct list_head list;
1864 };
1865
1866 struct ib_device *ib_alloc_device(size_t size);
1867 void ib_dealloc_device(struct ib_device *device);
1868
1869 int ib_register_device(struct ib_device *device,
1870 int (*port_callback)(struct ib_device *,
1871 u8, struct kobject *));
1872 void ib_unregister_device(struct ib_device *device);
1873
1874 int ib_register_client (struct ib_client *client);
1875 void ib_unregister_client(struct ib_client *client);
1876
1877 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1878 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1879 void *data);
1880
1881 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1882 {
1883 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1884 }
1885
1886 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1887 {
1888 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1889 }
1890
1891 /**
1892 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1893 * contains all required attributes and no attributes not allowed for
1894 * the given QP state transition.
1895 * @cur_state: Current QP state
1896 * @next_state: Next QP state
1897 * @type: QP type
1898 * @mask: Mask of supplied QP attributes
1899 * @ll : link layer of port
1900 *
1901 * This function is a helper function that a low-level driver's
1902 * modify_qp method can use to validate the consumer's input. It
1903 * checks that cur_state and next_state are valid QP states, that a
1904 * transition from cur_state to next_state is allowed by the IB spec,
1905 * and that the attribute mask supplied is allowed for the transition.
1906 */
1907 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1908 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1909 enum rdma_link_layer ll);
1910
1911 int ib_register_event_handler (struct ib_event_handler *event_handler);
1912 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1913 void ib_dispatch_event(struct ib_event *event);
1914
1915 int ib_query_device(struct ib_device *device,
1916 struct ib_device_attr *device_attr);
1917
1918 int ib_query_port(struct ib_device *device,
1919 u8 port_num, struct ib_port_attr *port_attr);
1920
1921 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1922 u8 port_num);
1923
1924 /**
1925 * rdma_cap_ib_switch - Check if the device is IB switch
1926 * @device: Device to check
1927 *
1928 * Device driver is responsible for setting is_switch bit on
1929 * in ib_device structure at init time.
1930 *
1931 * Return: true if the device is IB switch.
1932 */
1933 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1934 {
1935 return device->is_switch;
1936 }
1937
1938 /**
1939 * rdma_start_port - Return the first valid port number for the device
1940 * specified
1941 *
1942 * @device: Device to be checked
1943 *
1944 * Return start port number
1945 */
1946 static inline u8 rdma_start_port(const struct ib_device *device)
1947 {
1948 return rdma_cap_ib_switch(device) ? 0 : 1;
1949 }
1950
1951 /**
1952 * rdma_end_port - Return the last valid port number for the device
1953 * specified
1954 *
1955 * @device: Device to be checked
1956 *
1957 * Return last port number
1958 */
1959 static inline u8 rdma_end_port(const struct ib_device *device)
1960 {
1961 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
1962 }
1963
1964 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
1965 {
1966 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
1967 }
1968
1969 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
1970 {
1971 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
1972 }
1973
1974 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
1975 {
1976 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
1977 }
1978
1979 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
1980 {
1981 return device->port_immutable[port_num].core_cap_flags &
1982 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
1983 }
1984
1985 /**
1986 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
1987 * Management Datagrams.
1988 * @device: Device to check
1989 * @port_num: Port number to check
1990 *
1991 * Management Datagrams (MAD) are a required part of the InfiniBand
1992 * specification and are supported on all InfiniBand devices. A slightly
1993 * extended version are also supported on OPA interfaces.
1994 *
1995 * Return: true if the port supports sending/receiving of MAD packets.
1996 */
1997 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
1998 {
1999 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2000 }
2001
2002 /**
2003 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2004 * Management Datagrams.
2005 * @device: Device to check
2006 * @port_num: Port number to check
2007 *
2008 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2009 * datagrams with their own versions. These OPA MADs share many but not all of
2010 * the characteristics of InfiniBand MADs.
2011 *
2012 * OPA MADs differ in the following ways:
2013 *
2014 * 1) MADs are variable size up to 2K
2015 * IBTA defined MADs remain fixed at 256 bytes
2016 * 2) OPA SMPs must carry valid PKeys
2017 * 3) OPA SMP packets are a different format
2018 *
2019 * Return: true if the port supports OPA MAD packet formats.
2020 */
2021 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2022 {
2023 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2024 == RDMA_CORE_CAP_OPA_MAD;
2025 }
2026
2027 /**
2028 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2029 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2030 * @device: Device to check
2031 * @port_num: Port number to check
2032 *
2033 * Each InfiniBand node is required to provide a Subnet Management Agent
2034 * that the subnet manager can access. Prior to the fabric being fully
2035 * configured by the subnet manager, the SMA is accessed via a well known
2036 * interface called the Subnet Management Interface (SMI). This interface
2037 * uses directed route packets to communicate with the SM to get around the
2038 * chicken and egg problem of the SM needing to know what's on the fabric
2039 * in order to configure the fabric, and needing to configure the fabric in
2040 * order to send packets to the devices on the fabric. These directed
2041 * route packets do not need the fabric fully configured in order to reach
2042 * their destination. The SMI is the only method allowed to send
2043 * directed route packets on an InfiniBand fabric.
2044 *
2045 * Return: true if the port provides an SMI.
2046 */
2047 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2048 {
2049 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2050 }
2051
2052 /**
2053 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2054 * Communication Manager.
2055 * @device: Device to check
2056 * @port_num: Port number to check
2057 *
2058 * The InfiniBand Communication Manager is one of many pre-defined General
2059 * Service Agents (GSA) that are accessed via the General Service
2060 * Interface (GSI). It's role is to facilitate establishment of connections
2061 * between nodes as well as other management related tasks for established
2062 * connections.
2063 *
2064 * Return: true if the port supports an IB CM (this does not guarantee that
2065 * a CM is actually running however).
2066 */
2067 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2068 {
2069 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2070 }
2071
2072 /**
2073 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2074 * Communication Manager.
2075 * @device: Device to check
2076 * @port_num: Port number to check
2077 *
2078 * Similar to above, but specific to iWARP connections which have a different
2079 * managment protocol than InfiniBand.
2080 *
2081 * Return: true if the port supports an iWARP CM (this does not guarantee that
2082 * a CM is actually running however).
2083 */
2084 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2085 {
2086 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2087 }
2088
2089 /**
2090 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2091 * Subnet Administration.
2092 * @device: Device to check
2093 * @port_num: Port number to check
2094 *
2095 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2096 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2097 * fabrics, devices should resolve routes to other hosts by contacting the
2098 * SA to query the proper route.
2099 *
2100 * Return: true if the port should act as a client to the fabric Subnet
2101 * Administration interface. This does not imply that the SA service is
2102 * running locally.
2103 */
2104 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2105 {
2106 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2107 }
2108
2109 /**
2110 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2111 * Multicast.
2112 * @device: Device to check
2113 * @port_num: Port number to check
2114 *
2115 * InfiniBand multicast registration is more complex than normal IPv4 or
2116 * IPv6 multicast registration. Each Host Channel Adapter must register
2117 * with the Subnet Manager when it wishes to join a multicast group. It
2118 * should do so only once regardless of how many queue pairs it subscribes
2119 * to this group. And it should leave the group only after all queue pairs
2120 * attached to the group have been detached.
2121 *
2122 * Return: true if the port must undertake the additional adminstrative
2123 * overhead of registering/unregistering with the SM and tracking of the
2124 * total number of queue pairs attached to the multicast group.
2125 */
2126 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2127 {
2128 return rdma_cap_ib_sa(device, port_num);
2129 }
2130
2131 /**
2132 * rdma_cap_af_ib - Check if the port of device has the capability
2133 * Native Infiniband Address.
2134 * @device: Device to check
2135 * @port_num: Port number to check
2136 *
2137 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2138 * GID. RoCE uses a different mechanism, but still generates a GID via
2139 * a prescribed mechanism and port specific data.
2140 *
2141 * Return: true if the port uses a GID address to identify devices on the
2142 * network.
2143 */
2144 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2145 {
2146 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2147 }
2148
2149 /**
2150 * rdma_cap_eth_ah - Check if the port of device has the capability
2151 * Ethernet Address Handle.
2152 * @device: Device to check
2153 * @port_num: Port number to check
2154 *
2155 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2156 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2157 * port. Normally, packet headers are generated by the sending host
2158 * adapter, but when sending connectionless datagrams, we must manually
2159 * inject the proper headers for the fabric we are communicating over.
2160 *
2161 * Return: true if we are running as a RoCE port and must force the
2162 * addition of a Global Route Header built from our Ethernet Address
2163 * Handle into our header list for connectionless packets.
2164 */
2165 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2166 {
2167 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2168 }
2169
2170 /**
2171 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2172 *
2173 * @device: Device
2174 * @port_num: Port number
2175 *
2176 * This MAD size includes the MAD headers and MAD payload. No other headers
2177 * are included.
2178 *
2179 * Return the max MAD size required by the Port. Will return 0 if the port
2180 * does not support MADs
2181 */
2182 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2183 {
2184 return device->port_immutable[port_num].max_mad_size;
2185 }
2186
2187 /**
2188 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2189 * @device: Device to check
2190 * @port_num: Port number to check
2191 *
2192 * RoCE GID table mechanism manages the various GIDs for a device.
2193 *
2194 * NOTE: if allocating the port's GID table has failed, this call will still
2195 * return true, but any RoCE GID table API will fail.
2196 *
2197 * Return: true if the port uses RoCE GID table mechanism in order to manage
2198 * its GIDs.
2199 */
2200 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2201 u8 port_num)
2202 {
2203 return rdma_protocol_roce(device, port_num) &&
2204 device->add_gid && device->del_gid;
2205 }
2206
2207 int ib_query_gid(struct ib_device *device,
2208 u8 port_num, int index, union ib_gid *gid,
2209 struct ib_gid_attr *attr);
2210
2211 int ib_query_pkey(struct ib_device *device,
2212 u8 port_num, u16 index, u16 *pkey);
2213
2214 int ib_modify_device(struct ib_device *device,
2215 int device_modify_mask,
2216 struct ib_device_modify *device_modify);
2217
2218 int ib_modify_port(struct ib_device *device,
2219 u8 port_num, int port_modify_mask,
2220 struct ib_port_modify *port_modify);
2221
2222 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2223 struct net_device *ndev, u8 *port_num, u16 *index);
2224
2225 int ib_find_pkey(struct ib_device *device,
2226 u8 port_num, u16 pkey, u16 *index);
2227
2228 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2229
2230 void ib_dealloc_pd(struct ib_pd *pd);
2231
2232 /**
2233 * ib_create_ah - Creates an address handle for the given address vector.
2234 * @pd: The protection domain associated with the address handle.
2235 * @ah_attr: The attributes of the address vector.
2236 *
2237 * The address handle is used to reference a local or global destination
2238 * in all UD QP post sends.
2239 */
2240 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2241
2242 /**
2243 * ib_init_ah_from_wc - Initializes address handle attributes from a
2244 * work completion.
2245 * @device: Device on which the received message arrived.
2246 * @port_num: Port on which the received message arrived.
2247 * @wc: Work completion associated with the received message.
2248 * @grh: References the received global route header. This parameter is
2249 * ignored unless the work completion indicates that the GRH is valid.
2250 * @ah_attr: Returned attributes that can be used when creating an address
2251 * handle for replying to the message.
2252 */
2253 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2254 const struct ib_wc *wc, const struct ib_grh *grh,
2255 struct ib_ah_attr *ah_attr);
2256
2257 /**
2258 * ib_create_ah_from_wc - Creates an address handle associated with the
2259 * sender of the specified work completion.
2260 * @pd: The protection domain associated with the address handle.
2261 * @wc: Work completion information associated with a received message.
2262 * @grh: References the received global route header. This parameter is
2263 * ignored unless the work completion indicates that the GRH is valid.
2264 * @port_num: The outbound port number to associate with the address.
2265 *
2266 * The address handle is used to reference a local or global destination
2267 * in all UD QP post sends.
2268 */
2269 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2270 const struct ib_grh *grh, u8 port_num);
2271
2272 /**
2273 * ib_modify_ah - Modifies the address vector associated with an address
2274 * handle.
2275 * @ah: The address handle to modify.
2276 * @ah_attr: The new address vector attributes to associate with the
2277 * address handle.
2278 */
2279 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2280
2281 /**
2282 * ib_query_ah - Queries the address vector associated with an address
2283 * handle.
2284 * @ah: The address handle to query.
2285 * @ah_attr: The address vector attributes associated with the address
2286 * handle.
2287 */
2288 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2289
2290 /**
2291 * ib_destroy_ah - Destroys an address handle.
2292 * @ah: The address handle to destroy.
2293 */
2294 int ib_destroy_ah(struct ib_ah *ah);
2295
2296 /**
2297 * ib_create_srq - Creates a SRQ associated with the specified protection
2298 * domain.
2299 * @pd: The protection domain associated with the SRQ.
2300 * @srq_init_attr: A list of initial attributes required to create the
2301 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2302 * the actual capabilities of the created SRQ.
2303 *
2304 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2305 * requested size of the SRQ, and set to the actual values allocated
2306 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2307 * will always be at least as large as the requested values.
2308 */
2309 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2310 struct ib_srq_init_attr *srq_init_attr);
2311
2312 /**
2313 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2314 * @srq: The SRQ to modify.
2315 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2316 * the current values of selected SRQ attributes are returned.
2317 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2318 * are being modified.
2319 *
2320 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2321 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2322 * the number of receives queued drops below the limit.
2323 */
2324 int ib_modify_srq(struct ib_srq *srq,
2325 struct ib_srq_attr *srq_attr,
2326 enum ib_srq_attr_mask srq_attr_mask);
2327
2328 /**
2329 * ib_query_srq - Returns the attribute list and current values for the
2330 * specified SRQ.
2331 * @srq: The SRQ to query.
2332 * @srq_attr: The attributes of the specified SRQ.
2333 */
2334 int ib_query_srq(struct ib_srq *srq,
2335 struct ib_srq_attr *srq_attr);
2336
2337 /**
2338 * ib_destroy_srq - Destroys the specified SRQ.
2339 * @srq: The SRQ to destroy.
2340 */
2341 int ib_destroy_srq(struct ib_srq *srq);
2342
2343 /**
2344 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2345 * @srq: The SRQ to post the work request on.
2346 * @recv_wr: A list of work requests to post on the receive queue.
2347 * @bad_recv_wr: On an immediate failure, this parameter will reference
2348 * the work request that failed to be posted on the QP.
2349 */
2350 static inline int ib_post_srq_recv(struct ib_srq *srq,
2351 struct ib_recv_wr *recv_wr,
2352 struct ib_recv_wr **bad_recv_wr)
2353 {
2354 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2355 }
2356
2357 /**
2358 * ib_create_qp - Creates a QP associated with the specified protection
2359 * domain.
2360 * @pd: The protection domain associated with the QP.
2361 * @qp_init_attr: A list of initial attributes required to create the
2362 * QP. If QP creation succeeds, then the attributes are updated to
2363 * the actual capabilities of the created QP.
2364 */
2365 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2366 struct ib_qp_init_attr *qp_init_attr);
2367
2368 /**
2369 * ib_modify_qp - Modifies the attributes for the specified QP and then
2370 * transitions the QP to the given state.
2371 * @qp: The QP to modify.
2372 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2373 * the current values of selected QP attributes are returned.
2374 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2375 * are being modified.
2376 */
2377 int ib_modify_qp(struct ib_qp *qp,
2378 struct ib_qp_attr *qp_attr,
2379 int qp_attr_mask);
2380
2381 /**
2382 * ib_query_qp - Returns the attribute list and current values for the
2383 * specified QP.
2384 * @qp: The QP to query.
2385 * @qp_attr: The attributes of the specified QP.
2386 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2387 * @qp_init_attr: Additional attributes of the selected QP.
2388 *
2389 * The qp_attr_mask may be used to limit the query to gathering only the
2390 * selected attributes.
2391 */
2392 int ib_query_qp(struct ib_qp *qp,
2393 struct ib_qp_attr *qp_attr,
2394 int qp_attr_mask,
2395 struct ib_qp_init_attr *qp_init_attr);
2396
2397 /**
2398 * ib_destroy_qp - Destroys the specified QP.
2399 * @qp: The QP to destroy.
2400 */
2401 int ib_destroy_qp(struct ib_qp *qp);
2402
2403 /**
2404 * ib_open_qp - Obtain a reference to an existing sharable QP.
2405 * @xrcd - XRC domain
2406 * @qp_open_attr: Attributes identifying the QP to open.
2407 *
2408 * Returns a reference to a sharable QP.
2409 */
2410 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2411 struct ib_qp_open_attr *qp_open_attr);
2412
2413 /**
2414 * ib_close_qp - Release an external reference to a QP.
2415 * @qp: The QP handle to release
2416 *
2417 * The opened QP handle is released by the caller. The underlying
2418 * shared QP is not destroyed until all internal references are released.
2419 */
2420 int ib_close_qp(struct ib_qp *qp);
2421
2422 /**
2423 * ib_post_send - Posts a list of work requests to the send queue of
2424 * the specified QP.
2425 * @qp: The QP to post the work request on.
2426 * @send_wr: A list of work requests to post on the send queue.
2427 * @bad_send_wr: On an immediate failure, this parameter will reference
2428 * the work request that failed to be posted on the QP.
2429 *
2430 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2431 * error is returned, the QP state shall not be affected,
2432 * ib_post_send() will return an immediate error after queueing any
2433 * earlier work requests in the list.
2434 */
2435 static inline int ib_post_send(struct ib_qp *qp,
2436 struct ib_send_wr *send_wr,
2437 struct ib_send_wr **bad_send_wr)
2438 {
2439 return qp->device->post_send(qp, send_wr, bad_send_wr);
2440 }
2441
2442 /**
2443 * ib_post_recv - Posts a list of work requests to the receive queue of
2444 * the specified QP.
2445 * @qp: The QP to post the work request on.
2446 * @recv_wr: A list of work requests to post on the receive queue.
2447 * @bad_recv_wr: On an immediate failure, this parameter will reference
2448 * the work request that failed to be posted on the QP.
2449 */
2450 static inline int ib_post_recv(struct ib_qp *qp,
2451 struct ib_recv_wr *recv_wr,
2452 struct ib_recv_wr **bad_recv_wr)
2453 {
2454 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2455 }
2456
2457 /**
2458 * ib_create_cq - Creates a CQ on the specified device.
2459 * @device: The device on which to create the CQ.
2460 * @comp_handler: A user-specified callback that is invoked when a
2461 * completion event occurs on the CQ.
2462 * @event_handler: A user-specified callback that is invoked when an
2463 * asynchronous event not associated with a completion occurs on the CQ.
2464 * @cq_context: Context associated with the CQ returned to the user via
2465 * the associated completion and event handlers.
2466 * @cq_attr: The attributes the CQ should be created upon.
2467 *
2468 * Users can examine the cq structure to determine the actual CQ size.
2469 */
2470 struct ib_cq *ib_create_cq(struct ib_device *device,
2471 ib_comp_handler comp_handler,
2472 void (*event_handler)(struct ib_event *, void *),
2473 void *cq_context,
2474 const struct ib_cq_init_attr *cq_attr);
2475
2476 /**
2477 * ib_resize_cq - Modifies the capacity of the CQ.
2478 * @cq: The CQ to resize.
2479 * @cqe: The minimum size of the CQ.
2480 *
2481 * Users can examine the cq structure to determine the actual CQ size.
2482 */
2483 int ib_resize_cq(struct ib_cq *cq, int cqe);
2484
2485 /**
2486 * ib_modify_cq - Modifies moderation params of the CQ
2487 * @cq: The CQ to modify.
2488 * @cq_count: number of CQEs that will trigger an event
2489 * @cq_period: max period of time in usec before triggering an event
2490 *
2491 */
2492 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2493
2494 /**
2495 * ib_destroy_cq - Destroys the specified CQ.
2496 * @cq: The CQ to destroy.
2497 */
2498 int ib_destroy_cq(struct ib_cq *cq);
2499
2500 /**
2501 * ib_poll_cq - poll a CQ for completion(s)
2502 * @cq:the CQ being polled
2503 * @num_entries:maximum number of completions to return
2504 * @wc:array of at least @num_entries &struct ib_wc where completions
2505 * will be returned
2506 *
2507 * Poll a CQ for (possibly multiple) completions. If the return value
2508 * is < 0, an error occurred. If the return value is >= 0, it is the
2509 * number of completions returned. If the return value is
2510 * non-negative and < num_entries, then the CQ was emptied.
2511 */
2512 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2513 struct ib_wc *wc)
2514 {
2515 return cq->device->poll_cq(cq, num_entries, wc);
2516 }
2517
2518 /**
2519 * ib_peek_cq - Returns the number of unreaped completions currently
2520 * on the specified CQ.
2521 * @cq: The CQ to peek.
2522 * @wc_cnt: A minimum number of unreaped completions to check for.
2523 *
2524 * If the number of unreaped completions is greater than or equal to wc_cnt,
2525 * this function returns wc_cnt, otherwise, it returns the actual number of
2526 * unreaped completions.
2527 */
2528 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2529
2530 /**
2531 * ib_req_notify_cq - Request completion notification on a CQ.
2532 * @cq: The CQ to generate an event for.
2533 * @flags:
2534 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2535 * to request an event on the next solicited event or next work
2536 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2537 * may also be |ed in to request a hint about missed events, as
2538 * described below.
2539 *
2540 * Return Value:
2541 * < 0 means an error occurred while requesting notification
2542 * == 0 means notification was requested successfully, and if
2543 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2544 * were missed and it is safe to wait for another event. In
2545 * this case is it guaranteed that any work completions added
2546 * to the CQ since the last CQ poll will trigger a completion
2547 * notification event.
2548 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2549 * in. It means that the consumer must poll the CQ again to
2550 * make sure it is empty to avoid missing an event because of a
2551 * race between requesting notification and an entry being
2552 * added to the CQ. This return value means it is possible
2553 * (but not guaranteed) that a work completion has been added
2554 * to the CQ since the last poll without triggering a
2555 * completion notification event.
2556 */
2557 static inline int ib_req_notify_cq(struct ib_cq *cq,
2558 enum ib_cq_notify_flags flags)
2559 {
2560 return cq->device->req_notify_cq(cq, flags);
2561 }
2562
2563 /**
2564 * ib_req_ncomp_notif - Request completion notification when there are
2565 * at least the specified number of unreaped completions on the CQ.
2566 * @cq: The CQ to generate an event for.
2567 * @wc_cnt: The number of unreaped completions that should be on the
2568 * CQ before an event is generated.
2569 */
2570 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2571 {
2572 return cq->device->req_ncomp_notif ?
2573 cq->device->req_ncomp_notif(cq, wc_cnt) :
2574 -ENOSYS;
2575 }
2576
2577 /**
2578 * ib_get_dma_mr - Returns a memory region for system memory that is
2579 * usable for DMA.
2580 * @pd: The protection domain associated with the memory region.
2581 * @mr_access_flags: Specifies the memory access rights.
2582 *
2583 * Note that the ib_dma_*() functions defined below must be used
2584 * to create/destroy addresses used with the Lkey or Rkey returned
2585 * by ib_get_dma_mr().
2586 */
2587 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2588
2589 /**
2590 * ib_dma_mapping_error - check a DMA addr for error
2591 * @dev: The device for which the dma_addr was created
2592 * @dma_addr: The DMA address to check
2593 */
2594 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2595 {
2596 if (dev->dma_ops)
2597 return dev->dma_ops->mapping_error(dev, dma_addr);
2598 return dma_mapping_error(dev->dma_device, dma_addr);
2599 }
2600
2601 /**
2602 * ib_dma_map_single - Map a kernel virtual address to DMA address
2603 * @dev: The device for which the dma_addr is to be created
2604 * @cpu_addr: The kernel virtual address
2605 * @size: The size of the region in bytes
2606 * @direction: The direction of the DMA
2607 */
2608 static inline u64 ib_dma_map_single(struct ib_device *dev,
2609 void *cpu_addr, size_t size,
2610 enum dma_data_direction direction)
2611 {
2612 if (dev->dma_ops)
2613 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2614 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2615 }
2616
2617 /**
2618 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2619 * @dev: The device for which the DMA address was created
2620 * @addr: The DMA address
2621 * @size: The size of the region in bytes
2622 * @direction: The direction of the DMA
2623 */
2624 static inline void ib_dma_unmap_single(struct ib_device *dev,
2625 u64 addr, size_t size,
2626 enum dma_data_direction direction)
2627 {
2628 if (dev->dma_ops)
2629 dev->dma_ops->unmap_single(dev, addr, size, direction);
2630 else
2631 dma_unmap_single(dev->dma_device, addr, size, direction);
2632 }
2633
2634 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2635 void *cpu_addr, size_t size,
2636 enum dma_data_direction direction,
2637 struct dma_attrs *attrs)
2638 {
2639 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2640 direction, attrs);
2641 }
2642
2643 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2644 u64 addr, size_t size,
2645 enum dma_data_direction direction,
2646 struct dma_attrs *attrs)
2647 {
2648 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2649 direction, attrs);
2650 }
2651
2652 /**
2653 * ib_dma_map_page - Map a physical page to DMA address
2654 * @dev: The device for which the dma_addr is to be created
2655 * @page: The page to be mapped
2656 * @offset: The offset within the page
2657 * @size: The size of the region in bytes
2658 * @direction: The direction of the DMA
2659 */
2660 static inline u64 ib_dma_map_page(struct ib_device *dev,
2661 struct page *page,
2662 unsigned long offset,
2663 size_t size,
2664 enum dma_data_direction direction)
2665 {
2666 if (dev->dma_ops)
2667 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2668 return dma_map_page(dev->dma_device, page, offset, size, direction);
2669 }
2670
2671 /**
2672 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2673 * @dev: The device for which the DMA address was created
2674 * @addr: The DMA address
2675 * @size: The size of the region in bytes
2676 * @direction: The direction of the DMA
2677 */
2678 static inline void ib_dma_unmap_page(struct ib_device *dev,
2679 u64 addr, size_t size,
2680 enum dma_data_direction direction)
2681 {
2682 if (dev->dma_ops)
2683 dev->dma_ops->unmap_page(dev, addr, size, direction);
2684 else
2685 dma_unmap_page(dev->dma_device, addr, size, direction);
2686 }
2687
2688 /**
2689 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2690 * @dev: The device for which the DMA addresses are to be created
2691 * @sg: The array of scatter/gather entries
2692 * @nents: The number of scatter/gather entries
2693 * @direction: The direction of the DMA
2694 */
2695 static inline int ib_dma_map_sg(struct ib_device *dev,
2696 struct scatterlist *sg, int nents,
2697 enum dma_data_direction direction)
2698 {
2699 if (dev->dma_ops)
2700 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2701 return dma_map_sg(dev->dma_device, sg, nents, direction);
2702 }
2703
2704 /**
2705 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2706 * @dev: The device for which the DMA addresses were created
2707 * @sg: The array of scatter/gather entries
2708 * @nents: The number of scatter/gather entries
2709 * @direction: The direction of the DMA
2710 */
2711 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2712 struct scatterlist *sg, int nents,
2713 enum dma_data_direction direction)
2714 {
2715 if (dev->dma_ops)
2716 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2717 else
2718 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2719 }
2720
2721 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2722 struct scatterlist *sg, int nents,
2723 enum dma_data_direction direction,
2724 struct dma_attrs *attrs)
2725 {
2726 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2727 }
2728
2729 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2730 struct scatterlist *sg, int nents,
2731 enum dma_data_direction direction,
2732 struct dma_attrs *attrs)
2733 {
2734 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2735 }
2736 /**
2737 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2738 * @dev: The device for which the DMA addresses were created
2739 * @sg: The scatter/gather entry
2740 *
2741 * Note: this function is obsolete. To do: change all occurrences of
2742 * ib_sg_dma_address() into sg_dma_address().
2743 */
2744 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2745 struct scatterlist *sg)
2746 {
2747 return sg_dma_address(sg);
2748 }
2749
2750 /**
2751 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2752 * @dev: The device for which the DMA addresses were created
2753 * @sg: The scatter/gather entry
2754 *
2755 * Note: this function is obsolete. To do: change all occurrences of
2756 * ib_sg_dma_len() into sg_dma_len().
2757 */
2758 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2759 struct scatterlist *sg)
2760 {
2761 return sg_dma_len(sg);
2762 }
2763
2764 /**
2765 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2766 * @dev: The device for which the DMA address was created
2767 * @addr: The DMA address
2768 * @size: The size of the region in bytes
2769 * @dir: The direction of the DMA
2770 */
2771 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2772 u64 addr,
2773 size_t size,
2774 enum dma_data_direction dir)
2775 {
2776 if (dev->dma_ops)
2777 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2778 else
2779 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2780 }
2781
2782 /**
2783 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2784 * @dev: The device for which the DMA address was created
2785 * @addr: The DMA address
2786 * @size: The size of the region in bytes
2787 * @dir: The direction of the DMA
2788 */
2789 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2790 u64 addr,
2791 size_t size,
2792 enum dma_data_direction dir)
2793 {
2794 if (dev->dma_ops)
2795 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2796 else
2797 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2798 }
2799
2800 /**
2801 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2802 * @dev: The device for which the DMA address is requested
2803 * @size: The size of the region to allocate in bytes
2804 * @dma_handle: A pointer for returning the DMA address of the region
2805 * @flag: memory allocator flags
2806 */
2807 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2808 size_t size,
2809 u64 *dma_handle,
2810 gfp_t flag)
2811 {
2812 if (dev->dma_ops)
2813 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2814 else {
2815 dma_addr_t handle;
2816 void *ret;
2817
2818 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2819 *dma_handle = handle;
2820 return ret;
2821 }
2822 }
2823
2824 /**
2825 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2826 * @dev: The device for which the DMA addresses were allocated
2827 * @size: The size of the region
2828 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2829 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2830 */
2831 static inline void ib_dma_free_coherent(struct ib_device *dev,
2832 size_t size, void *cpu_addr,
2833 u64 dma_handle)
2834 {
2835 if (dev->dma_ops)
2836 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2837 else
2838 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2839 }
2840
2841 /**
2842 * ib_query_mr - Retrieves information about a specific memory region.
2843 * @mr: The memory region to retrieve information about.
2844 * @mr_attr: The attributes of the specified memory region.
2845 */
2846 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2847
2848 /**
2849 * ib_dereg_mr - Deregisters a memory region and removes it from the
2850 * HCA translation table.
2851 * @mr: The memory region to deregister.
2852 *
2853 * This function can fail, if the memory region has memory windows bound to it.
2854 */
2855 int ib_dereg_mr(struct ib_mr *mr);
2856
2857 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2858 enum ib_mr_type mr_type,
2859 u32 max_num_sg);
2860
2861 /**
2862 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2863 * R_Key and L_Key.
2864 * @mr - struct ib_mr pointer to be updated.
2865 * @newkey - new key to be used.
2866 */
2867 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2868 {
2869 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2870 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2871 }
2872
2873 /**
2874 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2875 * for calculating a new rkey for type 2 memory windows.
2876 * @rkey - the rkey to increment.
2877 */
2878 static inline u32 ib_inc_rkey(u32 rkey)
2879 {
2880 const u32 mask = 0x000000ff;
2881 return ((rkey + 1) & mask) | (rkey & ~mask);
2882 }
2883
2884 /**
2885 * ib_alloc_mw - Allocates a memory window.
2886 * @pd: The protection domain associated with the memory window.
2887 * @type: The type of the memory window (1 or 2).
2888 */
2889 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2890
2891 /**
2892 * ib_bind_mw - Posts a work request to the send queue of the specified
2893 * QP, which binds the memory window to the given address range and
2894 * remote access attributes.
2895 * @qp: QP to post the bind work request on.
2896 * @mw: The memory window to bind.
2897 * @mw_bind: Specifies information about the memory window, including
2898 * its address range, remote access rights, and associated memory region.
2899 *
2900 * If there is no immediate error, the function will update the rkey member
2901 * of the mw parameter to its new value. The bind operation can still fail
2902 * asynchronously.
2903 */
2904 static inline int ib_bind_mw(struct ib_qp *qp,
2905 struct ib_mw *mw,
2906 struct ib_mw_bind *mw_bind)
2907 {
2908 /* XXX reference counting in corresponding MR? */
2909 return mw->device->bind_mw ?
2910 mw->device->bind_mw(qp, mw, mw_bind) :
2911 -ENOSYS;
2912 }
2913
2914 /**
2915 * ib_dealloc_mw - Deallocates a memory window.
2916 * @mw: The memory window to deallocate.
2917 */
2918 int ib_dealloc_mw(struct ib_mw *mw);
2919
2920 /**
2921 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2922 * @pd: The protection domain associated with the unmapped region.
2923 * @mr_access_flags: Specifies the memory access rights.
2924 * @fmr_attr: Attributes of the unmapped region.
2925 *
2926 * A fast memory region must be mapped before it can be used as part of
2927 * a work request.
2928 */
2929 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2930 int mr_access_flags,
2931 struct ib_fmr_attr *fmr_attr);
2932
2933 /**
2934 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2935 * @fmr: The fast memory region to associate with the pages.
2936 * @page_list: An array of physical pages to map to the fast memory region.
2937 * @list_len: The number of pages in page_list.
2938 * @iova: The I/O virtual address to use with the mapped region.
2939 */
2940 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2941 u64 *page_list, int list_len,
2942 u64 iova)
2943 {
2944 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2945 }
2946
2947 /**
2948 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2949 * @fmr_list: A linked list of fast memory regions to unmap.
2950 */
2951 int ib_unmap_fmr(struct list_head *fmr_list);
2952
2953 /**
2954 * ib_dealloc_fmr - Deallocates a fast memory region.
2955 * @fmr: The fast memory region to deallocate.
2956 */
2957 int ib_dealloc_fmr(struct ib_fmr *fmr);
2958
2959 /**
2960 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2961 * @qp: QP to attach to the multicast group. The QP must be type
2962 * IB_QPT_UD.
2963 * @gid: Multicast group GID.
2964 * @lid: Multicast group LID in host byte order.
2965 *
2966 * In order to send and receive multicast packets, subnet
2967 * administration must have created the multicast group and configured
2968 * the fabric appropriately. The port associated with the specified
2969 * QP must also be a member of the multicast group.
2970 */
2971 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2972
2973 /**
2974 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2975 * @qp: QP to detach from the multicast group.
2976 * @gid: Multicast group GID.
2977 * @lid: Multicast group LID in host byte order.
2978 */
2979 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2980
2981 /**
2982 * ib_alloc_xrcd - Allocates an XRC domain.
2983 * @device: The device on which to allocate the XRC domain.
2984 */
2985 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2986
2987 /**
2988 * ib_dealloc_xrcd - Deallocates an XRC domain.
2989 * @xrcd: The XRC domain to deallocate.
2990 */
2991 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2992
2993 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2994 struct ib_flow_attr *flow_attr, int domain);
2995 int ib_destroy_flow(struct ib_flow *flow_id);
2996
2997 static inline int ib_check_mr_access(int flags)
2998 {
2999 /*
3000 * Local write permission is required if remote write or
3001 * remote atomic permission is also requested.
3002 */
3003 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3004 !(flags & IB_ACCESS_LOCAL_WRITE))
3005 return -EINVAL;
3006
3007 return 0;
3008 }
3009
3010 /**
3011 * ib_check_mr_status: lightweight check of MR status.
3012 * This routine may provide status checks on a selected
3013 * ib_mr. first use is for signature status check.
3014 *
3015 * @mr: A memory region.
3016 * @check_mask: Bitmask of which checks to perform from
3017 * ib_mr_status_check enumeration.
3018 * @mr_status: The container of relevant status checks.
3019 * failed checks will be indicated in the status bitmask
3020 * and the relevant info shall be in the error item.
3021 */
3022 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3023 struct ib_mr_status *mr_status);
3024
3025 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3026 u16 pkey, const union ib_gid *gid,
3027 const struct sockaddr *addr);
3028
3029 int ib_map_mr_sg(struct ib_mr *mr,
3030 struct scatterlist *sg,
3031 int sg_nents,
3032 unsigned int page_size);
3033
3034 static inline int
3035 ib_map_mr_sg_zbva(struct ib_mr *mr,
3036 struct scatterlist *sg,
3037 int sg_nents,
3038 unsigned int page_size)
3039 {
3040 int n;
3041
3042 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3043 mr->iova = 0;
3044
3045 return n;
3046 }
3047
3048 int ib_sg_to_pages(struct ib_mr *mr,
3049 struct scatterlist *sgl,
3050 int sg_nents,
3051 int (*set_page)(struct ib_mr *, u64));
3052
3053 #endif /* IB_VERBS_H */