]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
EfikaMX: Enable EXT2 booting
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
34
35DECLARE_GLOBAL_DATA_PTR;
36
37#ifndef CONFIG_MII
38#error "CONFIG_MII has to be defined!"
39#endif
40
41#undef DEBUG
42
43struct nbuf {
44 uint8_t data[1500]; /**< actual data */
45 int length; /**< actual length */
46 int used; /**< buffer in use or not */
47 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
48};
49
50struct fec_priv gfec = {
51 .eth = (struct ethernet_regs *)IMX_FEC_BASE,
52 .xcv_type = MII100,
53 .rbd_base = NULL,
54 .rbd_index = 0,
55 .tbd_base = NULL,
56 .tbd_index = 0,
57 .bd = NULL,
651ef90f
M
58 .rdb_ptr = NULL,
59 .base_ptr = NULL,
0b23fb36
IY
60};
61
62/*
63 * MII-interface related functions
64 */
5700bb63 65static int fec_miiphy_read(const char *dev, uint8_t phyAddr, uint8_t regAddr,
0b23fb36
IY
66 uint16_t *retVal)
67{
68 struct eth_device *edev = eth_get_dev_by_name(dev);
69 struct fec_priv *fec = (struct fec_priv *)edev->priv;
70
71 uint32_t reg; /* convenient holder for the PHY register */
72 uint32_t phy; /* convenient holder for the PHY */
73 uint32_t start;
74
75 /*
76 * reading from any PHY's register is done by properly
77 * programming the FEC's MII data register.
78 */
79 writel(FEC_IEVENT_MII, &fec->eth->ievent);
80 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
81 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
82
83 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
84 phy | reg, &fec->eth->mii_data);
85
86 /*
87 * wait for the related interrupt
88 */
89 start = get_timer_masked();
90 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
91 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
92 printf("Read MDIO failed...\n");
93 return -1;
94 }
95 }
96
97 /*
98 * clear mii interrupt bit
99 */
100 writel(FEC_IEVENT_MII, &fec->eth->ievent);
101
102 /*
103 * it's now safe to read the PHY's register
104 */
105 *retVal = readl(&fec->eth->mii_data);
106 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
107 regAddr, *retVal);
108 return 0;
109}
110
4294b248
SB
111static void fec_mii_setspeed(struct fec_priv *fec)
112{
113 /*
114 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
115 * and do not drop the Preamble.
116 */
117 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
118 &fec->eth->mii_speed);
119 debug("fec_init: mii_speed %#lx\n",
120 fec->eth->mii_speed);
121}
5700bb63 122static int fec_miiphy_write(const char *dev, uint8_t phyAddr, uint8_t regAddr,
0b23fb36
IY
123 uint16_t data)
124{
125 struct eth_device *edev = eth_get_dev_by_name(dev);
126 struct fec_priv *fec = (struct fec_priv *)edev->priv;
127
128 uint32_t reg; /* convenient holder for the PHY register */
129 uint32_t phy; /* convenient holder for the PHY */
130 uint32_t start;
131
132 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
133 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
134
135 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
136 FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
137
138 /*
139 * wait for the MII interrupt
140 */
141 start = get_timer_masked();
142 while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
143 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
144 printf("Write MDIO failed...\n");
145 return -1;
146 }
147 }
148
149 /*
150 * clear MII interrupt bit
151 */
152 writel(FEC_IEVENT_MII, &fec->eth->ievent);
153 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
154 regAddr, data);
155
156 return 0;
157}
158
159static int miiphy_restart_aneg(struct eth_device *dev)
160{
161 /*
162 * Wake up from sleep if necessary
163 * Reset PHY, then delay 300ns
164 */
cb17b92d 165#ifdef CONFIG_MX27
8ef583a0 166 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, MII_DCOUNTER, 0x00FF);
cb17b92d 167#endif
8ef583a0
MF
168 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, MII_BMCR,
169 BMCR_RESET);
0b23fb36
IY
170 udelay(1000);
171
172 /*
173 * Set the auto-negotiation advertisement register bits
174 */
8ef583a0
MF
175 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, MII_ADVERTISE,
176 LPA_100FULL | LPA_100HALF | LPA_10FULL |
177 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
178 miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, MII_BMCR,
179 BMCR_ANENABLE | BMCR_ANRESTART);
0b23fb36
IY
180
181 return 0;
182}
183
184static int miiphy_wait_aneg(struct eth_device *dev)
185{
186 uint32_t start;
187 uint16_t status;
188
189 /*
190 * Wait for AN completion
191 */
192 start = get_timer_masked();
193 do {
194 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
195 printf("%s: Autonegotiation timeout\n", dev->name);
196 return -1;
197 }
198
199 if (miiphy_read(dev->name, CONFIG_FEC_MXC_PHYADDR,
8ef583a0 200 MII_BMSR, &status)) {
0b23fb36
IY
201 printf("%s: Autonegotiation failed. status: 0x%04x\n",
202 dev->name, status);
203 return -1;
204 }
8ef583a0 205 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
206
207 return 0;
208}
209static int fec_rx_task_enable(struct fec_priv *fec)
210{
211 writel(1 << 24, &fec->eth->r_des_active);
212 return 0;
213}
214
215static int fec_rx_task_disable(struct fec_priv *fec)
216{
217 return 0;
218}
219
220static int fec_tx_task_enable(struct fec_priv *fec)
221{
222 writel(1 << 24, &fec->eth->x_des_active);
223 return 0;
224}
225
226static int fec_tx_task_disable(struct fec_priv *fec)
227{
228 return 0;
229}
230
231/**
232 * Initialize receive task's buffer descriptors
233 * @param[in] fec all we know about the device yet
234 * @param[in] count receive buffer count to be allocated
235 * @param[in] size size of each receive buffer
236 * @return 0 on success
237 *
238 * For this task we need additional memory for the data buffers. And each
239 * data buffer requires some alignment. Thy must be aligned to a specific
240 * boundary each (DB_DATA_ALIGNMENT).
241 */
242static int fec_rbd_init(struct fec_priv *fec, int count, int size)
243{
244 int ix;
245 uint32_t p = 0;
246
247 /* reserve data memory and consider alignment */
651ef90f
M
248 if (fec->rdb_ptr == NULL)
249 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
0b23fb36
IY
250 p = (uint32_t)fec->rdb_ptr;
251 if (!p) {
4294b248 252 puts("fec_mxc: not enough malloc memory\n");
0b23fb36
IY
253 return -ENOMEM;
254 }
255 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
256 p += DB_DATA_ALIGNMENT-1;
257 p &= ~(DB_DATA_ALIGNMENT-1);
258
259 for (ix = 0; ix < count; ix++) {
260 writel(p, &fec->rbd_base[ix].data_pointer);
261 p += size;
262 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
263 writew(0, &fec->rbd_base[ix].data_length);
264 }
265 /*
266 * mark the last RBD to close the ring
267 */
268 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
269 fec->rbd_index = 0;
270
271 return 0;
272}
273
274/**
275 * Initialize transmit task's buffer descriptors
276 * @param[in] fec all we know about the device yet
277 *
278 * Transmit buffers are created externally. We only have to init the BDs here.\n
279 * Note: There is a race condition in the hardware. When only one BD is in
280 * use it must be marked with the WRAP bit to use it for every transmitt.
281 * This bit in combination with the READY bit results into double transmit
282 * of each data buffer. It seems the state machine checks READY earlier then
283 * resetting it after the first transfer.
284 * Using two BDs solves this issue.
285 */
286static void fec_tbd_init(struct fec_priv *fec)
287{
288 writew(0x0000, &fec->tbd_base[0].status);
289 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
290 fec->tbd_index = 0;
291}
292
293/**
294 * Mark the given read buffer descriptor as free
295 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
296 * @param[in] pRbd buffer descriptor to mark free again
297 */
298static void fec_rbd_clean(int last, struct fec_bd *pRbd)
299{
300 /*
301 * Reset buffer descriptor as empty
302 */
303 if (last)
304 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
305 else
306 writew(FEC_RBD_EMPTY, &pRbd->status);
307 /*
308 * no data in it
309 */
310 writew(0, &pRbd->data_length);
311}
312
313static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
314{
565e39c5 315 imx_get_mac_from_fuse(mac);
2e236bf2 316 return !is_valid_ether_addr(mac);
0b23fb36
IY
317}
318
4294b248 319static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 320{
4294b248 321 uchar *mac = dev->enetaddr;
0b23fb36
IY
322 struct fec_priv *fec = (struct fec_priv *)dev->priv;
323
324 writel(0, &fec->eth->iaddr1);
325 writel(0, &fec->eth->iaddr2);
326 writel(0, &fec->eth->gaddr1);
327 writel(0, &fec->eth->gaddr2);
328
329 /*
330 * Set physical address
331 */
332 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
333 &fec->eth->paddr1);
334 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
335
336 return 0;
337}
338
339/**
340 * Start the FEC engine
341 * @param[in] dev Our device to handle
342 */
343static int fec_open(struct eth_device *edev)
344{
345 struct fec_priv *fec = (struct fec_priv *)edev->priv;
346
347 debug("fec_open: fec_open(dev)\n");
348 /* full-duplex, heartbeat disabled */
349 writel(1 << 2, &fec->eth->x_cntrl);
350 fec->rbd_index = 0;
351
352 /*
353 * Enable FEC-Lite controller
354 */
cb17b92d
JR
355 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
356 &fec->eth->ecntrl);
96912453 357#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
358 udelay(100);
359 /*
360 * setup the MII gasket for RMII mode
361 */
362
363 /* disable the gasket */
364 writew(0, &fec->eth->miigsk_enr);
365
366 /* wait for the gasket to be disabled */
367 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
368 udelay(2);
369
370 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
371 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
372
373 /* re-enable the gasket */
374 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
375
376 /* wait until MII gasket is ready */
377 int max_loops = 10;
378 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
379 if (--max_loops <= 0) {
380 printf("WAIT for MII Gasket ready timed out\n");
381 break;
382 }
383 }
384#endif
0b23fb36
IY
385
386 miiphy_wait_aneg(edev);
e8f1546a
M
387 miiphy_speed(edev->name, CONFIG_FEC_MXC_PHYADDR);
388 miiphy_duplex(edev->name, CONFIG_FEC_MXC_PHYADDR);
0b23fb36
IY
389
390 /*
391 * Enable SmartDMA receive task
392 */
393 fec_rx_task_enable(fec);
394
395 udelay(100000);
396 return 0;
397}
398
399static int fec_init(struct eth_device *dev, bd_t* bd)
400{
401 uint32_t base;
402 struct fec_priv *fec = (struct fec_priv *)dev->priv;
403
e9319f11
JR
404 /* Initialize MAC address */
405 fec_set_hwaddr(dev);
406
0b23fb36
IY
407 /*
408 * reserve memory for both buffer descriptor chains at once
409 * Datasheet forces the startaddress of each chain is 16 byte
410 * aligned
411 */
651ef90f
M
412 if (fec->base_ptr == NULL)
413 fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
414 sizeof(struct fec_bd) + DB_ALIGNMENT);
0b23fb36
IY
415 base = (uint32_t)fec->base_ptr;
416 if (!base) {
4294b248 417 puts("fec_mxc: not enough malloc memory\n");
0b23fb36
IY
418 return -ENOMEM;
419 }
420 memset((void *)base, 0, (2 + FEC_RBD_NUM) *
421 sizeof(struct fec_bd) + DB_ALIGNMENT);
422 base += (DB_ALIGNMENT-1);
423 base &= ~(DB_ALIGNMENT-1);
424
425 fec->rbd_base = (struct fec_bd *)base;
426
427 base += FEC_RBD_NUM * sizeof(struct fec_bd);
428
429 fec->tbd_base = (struct fec_bd *)base;
430
431 /*
432 * Set interrupt mask register
433 */
434 writel(0x00000000, &fec->eth->imask);
435
436 /*
437 * Clear FEC-Lite interrupt event register(IEVENT)
438 */
439 writel(0xffffffff, &fec->eth->ievent);
440
441
442 /*
443 * Set FEC-Lite receive control register(R_CNTRL):
444 */
445 if (fec->xcv_type == SEVENWIRE) {
446 /*
447 * Frame length=1518; 7-wire mode
448 */
449 writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */
450 } else {
451 /*
452 * Frame length=1518; MII mode;
453 */
454 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
4294b248
SB
455
456 fec_mii_setspeed(fec);
0b23fb36
IY
457 }
458 /*
459 * Set Opcode/Pause Duration Register
460 */
461 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
462 writel(0x2, &fec->eth->x_wmrk);
463 /*
464 * Set multicast address filter
465 */
466 writel(0x00000000, &fec->eth->gaddr1);
467 writel(0x00000000, &fec->eth->gaddr2);
468
469
470 /* clear MIB RAM */
471 long *mib_ptr = (long *)(IMX_FEC_BASE + 0x200);
472 while (mib_ptr <= (long *)(IMX_FEC_BASE + 0x2FC))
473 *mib_ptr++ = 0;
474
475 /* FIFO receive start register */
476 writel(0x520, &fec->eth->r_fstart);
477
478 /* size and address of each buffer */
479 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
480 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
481 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
482
483 /*
484 * Initialize RxBD/TxBD rings
485 */
486 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
487 free(fec->base_ptr);
c179a289 488 fec->base_ptr = NULL;
0b23fb36
IY
489 return -ENOMEM;
490 }
491 fec_tbd_init(fec);
492
493
494 if (fec->xcv_type != SEVENWIRE)
495 miiphy_restart_aneg(dev);
496
497 fec_open(dev);
498 return 0;
499}
500
501/**
502 * Halt the FEC engine
503 * @param[in] dev Our device to handle
504 */
505static void fec_halt(struct eth_device *dev)
506{
507 struct fec_priv *fec = &gfec;
508 int counter = 0xffff;
509
510 /*
511 * issue graceful stop command to the FEC transmitter if necessary
512 */
cb17b92d 513 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
514 &fec->eth->x_cntrl);
515
516 debug("eth_halt: wait for stop regs\n");
517 /*
518 * wait for graceful stop to register
519 */
520 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 521 udelay(1);
0b23fb36
IY
522
523 /*
524 * Disable SmartDMA tasks
525 */
526 fec_tx_task_disable(fec);
527 fec_rx_task_disable(fec);
528
529 /*
530 * Disable the Ethernet Controller
531 * Note: this will also reset the BD index counter!
532 */
740d6ae5
JR
533 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
534 &fec->eth->ecntrl);
0b23fb36
IY
535 fec->rbd_index = 0;
536 fec->tbd_index = 0;
0b23fb36
IY
537 debug("eth_halt: done\n");
538}
539
540/**
541 * Transmit one frame
542 * @param[in] dev Our ethernet device to handle
543 * @param[in] packet Pointer to the data to be transmitted
544 * @param[in] length Data count in bytes
545 * @return 0 on success
546 */
547static int fec_send(struct eth_device *dev, volatile void* packet, int length)
548{
549 unsigned int status;
550
551 /*
552 * This routine transmits one frame. This routine only accepts
553 * 6-byte Ethernet addresses.
554 */
555 struct fec_priv *fec = (struct fec_priv *)dev->priv;
556
557 /*
558 * Check for valid length of data.
559 */
560 if ((length > 1500) || (length <= 0)) {
4294b248 561 printf("Payload (%d) too large\n", length);
0b23fb36
IY
562 return -1;
563 }
564
565 /*
566 * Setup the transmit buffer
567 * Note: We are always using the first buffer for transmission,
568 * the second will be empty and only used to stop the DMA engine
569 */
570 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
571 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
572 /*
573 * update BD's status now
574 * This block:
575 * - is always the last in a chain (means no chain)
576 * - should transmitt the CRC
577 * - might be the last BD in the list, so the address counter should
578 * wrap (-> keep the WRAP flag)
579 */
580 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
581 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
582 writew(status, &fec->tbd_base[fec->tbd_index].status);
583
584 /*
585 * Enable SmartDMA transmit task
586 */
587 fec_tx_task_enable(fec);
588
589 /*
590 * wait until frame is sent .
591 */
592 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
cb17b92d 593 udelay(1);
0b23fb36
IY
594 }
595 debug("fec_send: status 0x%x index %d\n",
596 readw(&fec->tbd_base[fec->tbd_index].status),
597 fec->tbd_index);
598 /* for next transmission use the other buffer */
599 if (fec->tbd_index)
600 fec->tbd_index = 0;
601 else
602 fec->tbd_index = 1;
603
604 return 0;
605}
606
607/**
608 * Pull one frame from the card
609 * @param[in] dev Our ethernet device to handle
610 * @return Length of packet read
611 */
612static int fec_recv(struct eth_device *dev)
613{
614 struct fec_priv *fec = (struct fec_priv *)dev->priv;
615 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
616 unsigned long ievent;
617 int frame_length, len = 0;
618 struct nbuf *frame;
619 uint16_t bd_status;
620 uchar buff[FEC_MAX_PKT_SIZE];
621
622 /*
623 * Check if any critical events have happened
624 */
625 ievent = readl(&fec->eth->ievent);
626 writel(ievent, &fec->eth->ievent);
627 debug("fec_recv: ievent 0x%x\n", ievent);
628 if (ievent & FEC_IEVENT_BABR) {
629 fec_halt(dev);
630 fec_init(dev, fec->bd);
631 printf("some error: 0x%08lx\n", ievent);
632 return 0;
633 }
634 if (ievent & FEC_IEVENT_HBERR) {
635 /* Heartbeat error */
636 writel(0x00000001 | readl(&fec->eth->x_cntrl),
637 &fec->eth->x_cntrl);
638 }
639 if (ievent & FEC_IEVENT_GRA) {
640 /* Graceful stop complete */
641 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
642 fec_halt(dev);
643 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
644 &fec->eth->x_cntrl);
645 fec_init(dev, fec->bd);
646 }
647 }
648
649 /*
650 * ensure reading the right buffer status
651 */
652 bd_status = readw(&rbd->status);
653 debug("fec_recv: status 0x%x\n", bd_status);
654
655 if (!(bd_status & FEC_RBD_EMPTY)) {
656 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
657 ((readw(&rbd->data_length) - 4) > 14)) {
658 /*
659 * Get buffer address and size
660 */
661 frame = (struct nbuf *)readl(&rbd->data_pointer);
662 frame_length = readw(&rbd->data_length) - 4;
663 /*
664 * Fill the buffer and pass it to upper layers
665 */
666 memcpy(buff, frame->data, frame_length);
667 NetReceive(buff, frame_length);
668 len = frame_length;
669 } else {
670 if (bd_status & FEC_RBD_ERR)
671 printf("error frame: 0x%08lx 0x%08x\n",
672 (ulong)rbd->data_pointer,
673 bd_status);
674 }
675 /*
676 * free the current buffer, restart the engine
677 * and move forward to the next buffer
678 */
679 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
680 fec_rx_task_enable(fec);
681 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
682 }
683 debug("fec_recv: stop\n");
684
685 return len;
686}
687
688static int fec_probe(bd_t *bd)
689{
0b23fb36
IY
690 struct eth_device *edev;
691 struct fec_priv *fec = &gfec;
0b23fb36 692 unsigned char ethaddr[6];
0b23fb36
IY
693
694 /* create and fill edev struct */
695 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
696 if (!edev) {
4294b248 697 puts("fec_mxc: not enough malloc memory\n");
0b23fb36
IY
698 return -ENOMEM;
699 }
de0b9576 700 memset(edev, 0, sizeof(*edev));
0b23fb36
IY
701 edev->priv = fec;
702 edev->init = fec_init;
703 edev->send = fec_send;
704 edev->recv = fec_recv;
705 edev->halt = fec_halt;
fb57ec97 706 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36
IY
707
708 fec->eth = (struct ethernet_regs *)IMX_FEC_BASE;
709 fec->bd = bd;
710
711 fec->xcv_type = MII100;
712
713 /* Reset chip. */
cb17b92d 714 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
0b23fb36
IY
715 while (readl(&fec->eth->ecntrl) & 1)
716 udelay(10);
717
718 /*
719 * Set interrupt mask register
720 */
721 writel(0x00000000, &fec->eth->imask);
722
723 /*
724 * Clear FEC-Lite interrupt event register(IEVENT)
725 */
726 writel(0xffffffff, &fec->eth->ievent);
727
728 /*
729 * Set FEC-Lite receive control register(R_CNTRL):
730 */
731 /*
732 * Frame length=1518; MII mode;
733 */
734 writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
4294b248 735 fec_mii_setspeed(fec);
0b23fb36 736
f699fe1e 737 sprintf(edev->name, "FEC");
0b23fb36
IY
738
739 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
740
741 eth_register(edev);
742
4294b248 743 if (fec_get_hwaddr(edev, ethaddr) == 0) {
565e39c5 744 printf("got MAC address from fuse: %pM\n", ethaddr);
4294b248 745 memcpy(edev->enetaddr, ethaddr, 6);
0b23fb36 746 }
0b23fb36
IY
747
748 return 0;
749}
750
751int fecmxc_initialize(bd_t *bd)
752{
753 int lout = 1;
754
755 debug("eth_init: fec_probe(bd)\n");
756 lout = fec_probe(bd);
757
758 return lout;
759}