]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mmc/mmc.c
mmc: sdhci: Enable 8-bit bus width only for 3.0 spec onwards
[people/ms/u-boot.git] / drivers / mmc / mmc.c
1 /*
2 * Copyright 2008, Freescale Semiconductor, Inc
3 * Andy Fleming
4 *
5 * Based vaguely on the Linux code
6 *
7 * See file CREDITS for list of people who contributed to this
8 * project.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of
13 * the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23 * MA 02111-1307 USA
24 */
25
26 #include <config.h>
27 #include <common.h>
28 #include <command.h>
29 #include <mmc.h>
30 #include <part.h>
31 #include <malloc.h>
32 #include <linux/list.h>
33 #include <div64.h>
34
35 /* Set block count limit because of 16 bit register limit on some hardware*/
36 #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
37 #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
38 #endif
39
40 static struct list_head mmc_devices;
41 static int cur_dev_num = -1;
42
43 int __weak board_mmc_getwp(struct mmc *mmc)
44 {
45 return -1;
46 }
47
48 int mmc_getwp(struct mmc *mmc)
49 {
50 int wp;
51
52 wp = board_mmc_getwp(mmc);
53
54 if (wp < 0) {
55 if (mmc->getwp)
56 wp = mmc->getwp(mmc);
57 else
58 wp = 0;
59 }
60
61 return wp;
62 }
63
64 int __board_mmc_getcd(struct mmc *mmc) {
65 return -1;
66 }
67
68 int board_mmc_getcd(struct mmc *mmc)__attribute__((weak,
69 alias("__board_mmc_getcd")));
70
71 static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
72 struct mmc_data *data)
73 {
74 struct mmc_data backup;
75 int ret;
76
77 memset(&backup, 0, sizeof(backup));
78
79 #ifdef CONFIG_MMC_TRACE
80 int i;
81 u8 *ptr;
82
83 printf("CMD_SEND:%d\n", cmd->cmdidx);
84 printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
85 ret = mmc->send_cmd(mmc, cmd, data);
86 switch (cmd->resp_type) {
87 case MMC_RSP_NONE:
88 printf("\t\tMMC_RSP_NONE\n");
89 break;
90 case MMC_RSP_R1:
91 printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
92 cmd->response[0]);
93 break;
94 case MMC_RSP_R1b:
95 printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
96 cmd->response[0]);
97 break;
98 case MMC_RSP_R2:
99 printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
100 cmd->response[0]);
101 printf("\t\t \t\t 0x%08X \n",
102 cmd->response[1]);
103 printf("\t\t \t\t 0x%08X \n",
104 cmd->response[2]);
105 printf("\t\t \t\t 0x%08X \n",
106 cmd->response[3]);
107 printf("\n");
108 printf("\t\t\t\t\tDUMPING DATA\n");
109 for (i = 0; i < 4; i++) {
110 int j;
111 printf("\t\t\t\t\t%03d - ", i*4);
112 ptr = (u8 *)&cmd->response[i];
113 ptr += 3;
114 for (j = 0; j < 4; j++)
115 printf("%02X ", *ptr--);
116 printf("\n");
117 }
118 break;
119 case MMC_RSP_R3:
120 printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
121 cmd->response[0]);
122 break;
123 default:
124 printf("\t\tERROR MMC rsp not supported\n");
125 break;
126 }
127 #else
128 ret = mmc->send_cmd(mmc, cmd, data);
129 #endif
130 return ret;
131 }
132
133 static int mmc_send_status(struct mmc *mmc, int timeout)
134 {
135 struct mmc_cmd cmd;
136 int err, retries = 5;
137 #ifdef CONFIG_MMC_TRACE
138 int status;
139 #endif
140
141 cmd.cmdidx = MMC_CMD_SEND_STATUS;
142 cmd.resp_type = MMC_RSP_R1;
143 if (!mmc_host_is_spi(mmc))
144 cmd.cmdarg = mmc->rca << 16;
145
146 do {
147 err = mmc_send_cmd(mmc, &cmd, NULL);
148 if (!err) {
149 if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
150 (cmd.response[0] & MMC_STATUS_CURR_STATE) !=
151 MMC_STATE_PRG)
152 break;
153 else if (cmd.response[0] & MMC_STATUS_MASK) {
154 printf("Status Error: 0x%08X\n",
155 cmd.response[0]);
156 return COMM_ERR;
157 }
158 } else if (--retries < 0)
159 return err;
160
161 udelay(1000);
162
163 } while (timeout--);
164
165 #ifdef CONFIG_MMC_TRACE
166 status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
167 printf("CURR STATE:%d\n", status);
168 #endif
169 if (timeout <= 0) {
170 printf("Timeout waiting card ready\n");
171 return TIMEOUT;
172 }
173
174 return 0;
175 }
176
177 static int mmc_set_blocklen(struct mmc *mmc, int len)
178 {
179 struct mmc_cmd cmd;
180
181 cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
182 cmd.resp_type = MMC_RSP_R1;
183 cmd.cmdarg = len;
184
185 return mmc_send_cmd(mmc, &cmd, NULL);
186 }
187
188 struct mmc *find_mmc_device(int dev_num)
189 {
190 struct mmc *m;
191 struct list_head *entry;
192
193 list_for_each(entry, &mmc_devices) {
194 m = list_entry(entry, struct mmc, link);
195
196 if (m->block_dev.dev == dev_num)
197 return m;
198 }
199
200 printf("MMC Device %d not found\n", dev_num);
201
202 return NULL;
203 }
204
205 static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt)
206 {
207 struct mmc_cmd cmd;
208 ulong end;
209 int err, start_cmd, end_cmd;
210
211 if (mmc->high_capacity)
212 end = start + blkcnt - 1;
213 else {
214 end = (start + blkcnt - 1) * mmc->write_bl_len;
215 start *= mmc->write_bl_len;
216 }
217
218 if (IS_SD(mmc)) {
219 start_cmd = SD_CMD_ERASE_WR_BLK_START;
220 end_cmd = SD_CMD_ERASE_WR_BLK_END;
221 } else {
222 start_cmd = MMC_CMD_ERASE_GROUP_START;
223 end_cmd = MMC_CMD_ERASE_GROUP_END;
224 }
225
226 cmd.cmdidx = start_cmd;
227 cmd.cmdarg = start;
228 cmd.resp_type = MMC_RSP_R1;
229
230 err = mmc_send_cmd(mmc, &cmd, NULL);
231 if (err)
232 goto err_out;
233
234 cmd.cmdidx = end_cmd;
235 cmd.cmdarg = end;
236
237 err = mmc_send_cmd(mmc, &cmd, NULL);
238 if (err)
239 goto err_out;
240
241 cmd.cmdidx = MMC_CMD_ERASE;
242 cmd.cmdarg = SECURE_ERASE;
243 cmd.resp_type = MMC_RSP_R1b;
244
245 err = mmc_send_cmd(mmc, &cmd, NULL);
246 if (err)
247 goto err_out;
248
249 return 0;
250
251 err_out:
252 puts("mmc erase failed\n");
253 return err;
254 }
255
256 static unsigned long
257 mmc_berase(int dev_num, unsigned long start, lbaint_t blkcnt)
258 {
259 int err = 0;
260 struct mmc *mmc = find_mmc_device(dev_num);
261 lbaint_t blk = 0, blk_r = 0;
262 int timeout = 1000;
263
264 if (!mmc)
265 return -1;
266
267 if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size))
268 printf("\n\nCaution! Your devices Erase group is 0x%x\n"
269 "The erase range would be change to 0x%lx~0x%lx\n\n",
270 mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
271 ((start + blkcnt + mmc->erase_grp_size)
272 & ~(mmc->erase_grp_size - 1)) - 1);
273
274 while (blk < blkcnt) {
275 blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
276 mmc->erase_grp_size : (blkcnt - blk);
277 err = mmc_erase_t(mmc, start + blk, blk_r);
278 if (err)
279 break;
280
281 blk += blk_r;
282
283 /* Waiting for the ready status */
284 if (mmc_send_status(mmc, timeout))
285 return 0;
286 }
287
288 return blk;
289 }
290
291 static ulong
292 mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
293 {
294 struct mmc_cmd cmd;
295 struct mmc_data data;
296 int timeout = 1000;
297
298 if ((start + blkcnt) > mmc->block_dev.lba) {
299 printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
300 start + blkcnt, mmc->block_dev.lba);
301 return 0;
302 }
303
304 if (blkcnt > 1)
305 cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
306 else
307 cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
308
309 if (mmc->high_capacity)
310 cmd.cmdarg = start;
311 else
312 cmd.cmdarg = start * mmc->write_bl_len;
313
314 cmd.resp_type = MMC_RSP_R1;
315
316 data.src = src;
317 data.blocks = blkcnt;
318 data.blocksize = mmc->write_bl_len;
319 data.flags = MMC_DATA_WRITE;
320
321 if (mmc_send_cmd(mmc, &cmd, &data)) {
322 printf("mmc write failed\n");
323 return 0;
324 }
325
326 /* SPI multiblock writes terminate using a special
327 * token, not a STOP_TRANSMISSION request.
328 */
329 if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
330 cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
331 cmd.cmdarg = 0;
332 cmd.resp_type = MMC_RSP_R1b;
333 if (mmc_send_cmd(mmc, &cmd, NULL)) {
334 printf("mmc fail to send stop cmd\n");
335 return 0;
336 }
337 }
338
339 /* Waiting for the ready status */
340 if (mmc_send_status(mmc, timeout))
341 return 0;
342
343 return blkcnt;
344 }
345
346 static ulong
347 mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
348 {
349 lbaint_t cur, blocks_todo = blkcnt;
350
351 struct mmc *mmc = find_mmc_device(dev_num);
352 if (!mmc)
353 return 0;
354
355 if (mmc_set_blocklen(mmc, mmc->write_bl_len))
356 return 0;
357
358 do {
359 cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
360 if(mmc_write_blocks(mmc, start, cur, src) != cur)
361 return 0;
362 blocks_todo -= cur;
363 start += cur;
364 src += cur * mmc->write_bl_len;
365 } while (blocks_todo > 0);
366
367 return blkcnt;
368 }
369
370 static int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start,
371 lbaint_t blkcnt)
372 {
373 struct mmc_cmd cmd;
374 struct mmc_data data;
375
376 if (blkcnt > 1)
377 cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
378 else
379 cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
380
381 if (mmc->high_capacity)
382 cmd.cmdarg = start;
383 else
384 cmd.cmdarg = start * mmc->read_bl_len;
385
386 cmd.resp_type = MMC_RSP_R1;
387
388 data.dest = dst;
389 data.blocks = blkcnt;
390 data.blocksize = mmc->read_bl_len;
391 data.flags = MMC_DATA_READ;
392
393 if (mmc_send_cmd(mmc, &cmd, &data))
394 return 0;
395
396 if (blkcnt > 1) {
397 cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
398 cmd.cmdarg = 0;
399 cmd.resp_type = MMC_RSP_R1b;
400 if (mmc_send_cmd(mmc, &cmd, NULL)) {
401 printf("mmc fail to send stop cmd\n");
402 return 0;
403 }
404 }
405
406 return blkcnt;
407 }
408
409 static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
410 {
411 lbaint_t cur, blocks_todo = blkcnt;
412
413 if (blkcnt == 0)
414 return 0;
415
416 struct mmc *mmc = find_mmc_device(dev_num);
417 if (!mmc)
418 return 0;
419
420 if ((start + blkcnt) > mmc->block_dev.lba) {
421 printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
422 start + blkcnt, mmc->block_dev.lba);
423 return 0;
424 }
425
426 if (mmc_set_blocklen(mmc, mmc->read_bl_len))
427 return 0;
428
429 do {
430 cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
431 if(mmc_read_blocks(mmc, dst, start, cur) != cur)
432 return 0;
433 blocks_todo -= cur;
434 start += cur;
435 dst += cur * mmc->read_bl_len;
436 } while (blocks_todo > 0);
437
438 return blkcnt;
439 }
440
441 static int mmc_go_idle(struct mmc *mmc)
442 {
443 struct mmc_cmd cmd;
444 int err;
445
446 udelay(1000);
447
448 cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
449 cmd.cmdarg = 0;
450 cmd.resp_type = MMC_RSP_NONE;
451
452 err = mmc_send_cmd(mmc, &cmd, NULL);
453
454 if (err)
455 return err;
456
457 udelay(2000);
458
459 return 0;
460 }
461
462 static int sd_send_op_cond(struct mmc *mmc)
463 {
464 int timeout = 1000;
465 int err;
466 struct mmc_cmd cmd;
467
468 do {
469 cmd.cmdidx = MMC_CMD_APP_CMD;
470 cmd.resp_type = MMC_RSP_R1;
471 cmd.cmdarg = 0;
472
473 err = mmc_send_cmd(mmc, &cmd, NULL);
474
475 if (err)
476 return err;
477
478 cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
479 cmd.resp_type = MMC_RSP_R3;
480
481 /*
482 * Most cards do not answer if some reserved bits
483 * in the ocr are set. However, Some controller
484 * can set bit 7 (reserved for low voltages), but
485 * how to manage low voltages SD card is not yet
486 * specified.
487 */
488 cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
489 (mmc->voltages & 0xff8000);
490
491 if (mmc->version == SD_VERSION_2)
492 cmd.cmdarg |= OCR_HCS;
493
494 err = mmc_send_cmd(mmc, &cmd, NULL);
495
496 if (err)
497 return err;
498
499 udelay(1000);
500 } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
501
502 if (timeout <= 0)
503 return UNUSABLE_ERR;
504
505 if (mmc->version != SD_VERSION_2)
506 mmc->version = SD_VERSION_1_0;
507
508 if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
509 cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
510 cmd.resp_type = MMC_RSP_R3;
511 cmd.cmdarg = 0;
512
513 err = mmc_send_cmd(mmc, &cmd, NULL);
514
515 if (err)
516 return err;
517 }
518
519 mmc->ocr = cmd.response[0];
520
521 mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
522 mmc->rca = 0;
523
524 return 0;
525 }
526
527 /* We pass in the cmd since otherwise the init seems to fail */
528 static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd,
529 int use_arg)
530 {
531 int err;
532
533 cmd->cmdidx = MMC_CMD_SEND_OP_COND;
534 cmd->resp_type = MMC_RSP_R3;
535 cmd->cmdarg = 0;
536 if (use_arg && !mmc_host_is_spi(mmc)) {
537 cmd->cmdarg =
538 (mmc->voltages &
539 (mmc->op_cond_response & OCR_VOLTAGE_MASK)) |
540 (mmc->op_cond_response & OCR_ACCESS_MODE);
541
542 if (mmc->host_caps & MMC_MODE_HC)
543 cmd->cmdarg |= OCR_HCS;
544 }
545 err = mmc_send_cmd(mmc, cmd, NULL);
546 if (err)
547 return err;
548 mmc->op_cond_response = cmd->response[0];
549 return 0;
550 }
551
552 int mmc_send_op_cond(struct mmc *mmc)
553 {
554 struct mmc_cmd cmd;
555 int err, i;
556
557 /* Some cards seem to need this */
558 mmc_go_idle(mmc);
559
560 /* Asking to the card its capabilities */
561 mmc->op_cond_pending = 1;
562 for (i = 0; i < 2; i++) {
563 err = mmc_send_op_cond_iter(mmc, &cmd, i != 0);
564 if (err)
565 return err;
566
567 /* exit if not busy (flag seems to be inverted) */
568 if (mmc->op_cond_response & OCR_BUSY)
569 return 0;
570 }
571 return IN_PROGRESS;
572 }
573
574 int mmc_complete_op_cond(struct mmc *mmc)
575 {
576 struct mmc_cmd cmd;
577 int timeout = 1000;
578 uint start;
579 int err;
580
581 mmc->op_cond_pending = 0;
582 start = get_timer(0);
583 do {
584 err = mmc_send_op_cond_iter(mmc, &cmd, 1);
585 if (err)
586 return err;
587 if (get_timer(start) > timeout)
588 return UNUSABLE_ERR;
589 udelay(100);
590 } while (!(mmc->op_cond_response & OCR_BUSY));
591
592 if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
593 cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
594 cmd.resp_type = MMC_RSP_R3;
595 cmd.cmdarg = 0;
596
597 err = mmc_send_cmd(mmc, &cmd, NULL);
598
599 if (err)
600 return err;
601 }
602
603 mmc->version = MMC_VERSION_UNKNOWN;
604 mmc->ocr = cmd.response[0];
605
606 mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
607 mmc->rca = 0;
608
609 return 0;
610 }
611
612
613 static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd)
614 {
615 struct mmc_cmd cmd;
616 struct mmc_data data;
617 int err;
618
619 /* Get the Card Status Register */
620 cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
621 cmd.resp_type = MMC_RSP_R1;
622 cmd.cmdarg = 0;
623
624 data.dest = (char *)ext_csd;
625 data.blocks = 1;
626 data.blocksize = MMC_MAX_BLOCK_LEN;
627 data.flags = MMC_DATA_READ;
628
629 err = mmc_send_cmd(mmc, &cmd, &data);
630
631 return err;
632 }
633
634
635 static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
636 {
637 struct mmc_cmd cmd;
638 int timeout = 1000;
639 int ret;
640
641 cmd.cmdidx = MMC_CMD_SWITCH;
642 cmd.resp_type = MMC_RSP_R1b;
643 cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
644 (index << 16) |
645 (value << 8);
646
647 ret = mmc_send_cmd(mmc, &cmd, NULL);
648
649 /* Waiting for the ready status */
650 if (!ret)
651 ret = mmc_send_status(mmc, timeout);
652
653 return ret;
654
655 }
656
657 static int mmc_change_freq(struct mmc *mmc)
658 {
659 ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
660 char cardtype;
661 int err;
662
663 mmc->card_caps = 0;
664
665 if (mmc_host_is_spi(mmc))
666 return 0;
667
668 /* Only version 4 supports high-speed */
669 if (mmc->version < MMC_VERSION_4)
670 return 0;
671
672 err = mmc_send_ext_csd(mmc, ext_csd);
673
674 if (err)
675 return err;
676
677 cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
678
679 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
680
681 if (err)
682 return err;
683
684 /* Now check to see that it worked */
685 err = mmc_send_ext_csd(mmc, ext_csd);
686
687 if (err)
688 return err;
689
690 /* No high-speed support */
691 if (!ext_csd[EXT_CSD_HS_TIMING])
692 return 0;
693
694 /* High Speed is set, there are two types: 52MHz and 26MHz */
695 if (cardtype & MMC_HS_52MHZ)
696 mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
697 else
698 mmc->card_caps |= MMC_MODE_HS;
699
700 return 0;
701 }
702
703 int mmc_switch_part(int dev_num, unsigned int part_num)
704 {
705 struct mmc *mmc = find_mmc_device(dev_num);
706
707 if (!mmc)
708 return -1;
709
710 return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
711 (mmc->part_config & ~PART_ACCESS_MASK)
712 | (part_num & PART_ACCESS_MASK));
713 }
714
715 int mmc_getcd(struct mmc *mmc)
716 {
717 int cd;
718
719 cd = board_mmc_getcd(mmc);
720
721 if (cd < 0) {
722 if (mmc->getcd)
723 cd = mmc->getcd(mmc);
724 else
725 cd = 1;
726 }
727
728 return cd;
729 }
730
731 static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
732 {
733 struct mmc_cmd cmd;
734 struct mmc_data data;
735
736 /* Switch the frequency */
737 cmd.cmdidx = SD_CMD_SWITCH_FUNC;
738 cmd.resp_type = MMC_RSP_R1;
739 cmd.cmdarg = (mode << 31) | 0xffffff;
740 cmd.cmdarg &= ~(0xf << (group * 4));
741 cmd.cmdarg |= value << (group * 4);
742
743 data.dest = (char *)resp;
744 data.blocksize = 64;
745 data.blocks = 1;
746 data.flags = MMC_DATA_READ;
747
748 return mmc_send_cmd(mmc, &cmd, &data);
749 }
750
751
752 static int sd_change_freq(struct mmc *mmc)
753 {
754 int err;
755 struct mmc_cmd cmd;
756 ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
757 ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
758 struct mmc_data data;
759 int timeout;
760
761 mmc->card_caps = 0;
762
763 if (mmc_host_is_spi(mmc))
764 return 0;
765
766 /* Read the SCR to find out if this card supports higher speeds */
767 cmd.cmdidx = MMC_CMD_APP_CMD;
768 cmd.resp_type = MMC_RSP_R1;
769 cmd.cmdarg = mmc->rca << 16;
770
771 err = mmc_send_cmd(mmc, &cmd, NULL);
772
773 if (err)
774 return err;
775
776 cmd.cmdidx = SD_CMD_APP_SEND_SCR;
777 cmd.resp_type = MMC_RSP_R1;
778 cmd.cmdarg = 0;
779
780 timeout = 3;
781
782 retry_scr:
783 data.dest = (char *)scr;
784 data.blocksize = 8;
785 data.blocks = 1;
786 data.flags = MMC_DATA_READ;
787
788 err = mmc_send_cmd(mmc, &cmd, &data);
789
790 if (err) {
791 if (timeout--)
792 goto retry_scr;
793
794 return err;
795 }
796
797 mmc->scr[0] = __be32_to_cpu(scr[0]);
798 mmc->scr[1] = __be32_to_cpu(scr[1]);
799
800 switch ((mmc->scr[0] >> 24) & 0xf) {
801 case 0:
802 mmc->version = SD_VERSION_1_0;
803 break;
804 case 1:
805 mmc->version = SD_VERSION_1_10;
806 break;
807 case 2:
808 mmc->version = SD_VERSION_2;
809 if ((mmc->scr[0] >> 15) & 0x1)
810 mmc->version = SD_VERSION_3;
811 break;
812 default:
813 mmc->version = SD_VERSION_1_0;
814 break;
815 }
816
817 if (mmc->scr[0] & SD_DATA_4BIT)
818 mmc->card_caps |= MMC_MODE_4BIT;
819
820 /* Version 1.0 doesn't support switching */
821 if (mmc->version == SD_VERSION_1_0)
822 return 0;
823
824 timeout = 4;
825 while (timeout--) {
826 err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
827 (u8 *)switch_status);
828
829 if (err)
830 return err;
831
832 /* The high-speed function is busy. Try again */
833 if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
834 break;
835 }
836
837 /* If high-speed isn't supported, we return */
838 if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
839 return 0;
840
841 /*
842 * If the host doesn't support SD_HIGHSPEED, do not switch card to
843 * HIGHSPEED mode even if the card support SD_HIGHSPPED.
844 * This can avoid furthur problem when the card runs in different
845 * mode between the host.
846 */
847 if (!((mmc->host_caps & MMC_MODE_HS_52MHz) &&
848 (mmc->host_caps & MMC_MODE_HS)))
849 return 0;
850
851 err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
852
853 if (err)
854 return err;
855
856 if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
857 mmc->card_caps |= MMC_MODE_HS;
858
859 return 0;
860 }
861
862 /* frequency bases */
863 /* divided by 10 to be nice to platforms without floating point */
864 static const int fbase[] = {
865 10000,
866 100000,
867 1000000,
868 10000000,
869 };
870
871 /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
872 * to platforms without floating point.
873 */
874 static const int multipliers[] = {
875 0, /* reserved */
876 10,
877 12,
878 13,
879 15,
880 20,
881 25,
882 30,
883 35,
884 40,
885 45,
886 50,
887 55,
888 60,
889 70,
890 80,
891 };
892
893 static void mmc_set_ios(struct mmc *mmc)
894 {
895 mmc->set_ios(mmc);
896 }
897
898 void mmc_set_clock(struct mmc *mmc, uint clock)
899 {
900 if (clock > mmc->f_max)
901 clock = mmc->f_max;
902
903 if (clock < mmc->f_min)
904 clock = mmc->f_min;
905
906 mmc->clock = clock;
907
908 mmc_set_ios(mmc);
909 }
910
911 static void mmc_set_bus_width(struct mmc *mmc, uint width)
912 {
913 mmc->bus_width = width;
914
915 mmc_set_ios(mmc);
916 }
917
918 static int mmc_startup(struct mmc *mmc)
919 {
920 int err;
921 uint mult, freq;
922 u64 cmult, csize, capacity;
923 struct mmc_cmd cmd;
924 ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
925 ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
926 int timeout = 1000;
927
928 #ifdef CONFIG_MMC_SPI_CRC_ON
929 if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
930 cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
931 cmd.resp_type = MMC_RSP_R1;
932 cmd.cmdarg = 1;
933 err = mmc_send_cmd(mmc, &cmd, NULL);
934
935 if (err)
936 return err;
937 }
938 #endif
939
940 /* Put the Card in Identify Mode */
941 cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
942 MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
943 cmd.resp_type = MMC_RSP_R2;
944 cmd.cmdarg = 0;
945
946 err = mmc_send_cmd(mmc, &cmd, NULL);
947
948 if (err)
949 return err;
950
951 memcpy(mmc->cid, cmd.response, 16);
952
953 /*
954 * For MMC cards, set the Relative Address.
955 * For SD cards, get the Relatvie Address.
956 * This also puts the cards into Standby State
957 */
958 if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
959 cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
960 cmd.cmdarg = mmc->rca << 16;
961 cmd.resp_type = MMC_RSP_R6;
962
963 err = mmc_send_cmd(mmc, &cmd, NULL);
964
965 if (err)
966 return err;
967
968 if (IS_SD(mmc))
969 mmc->rca = (cmd.response[0] >> 16) & 0xffff;
970 }
971
972 /* Get the Card-Specific Data */
973 cmd.cmdidx = MMC_CMD_SEND_CSD;
974 cmd.resp_type = MMC_RSP_R2;
975 cmd.cmdarg = mmc->rca << 16;
976
977 err = mmc_send_cmd(mmc, &cmd, NULL);
978
979 /* Waiting for the ready status */
980 mmc_send_status(mmc, timeout);
981
982 if (err)
983 return err;
984
985 mmc->csd[0] = cmd.response[0];
986 mmc->csd[1] = cmd.response[1];
987 mmc->csd[2] = cmd.response[2];
988 mmc->csd[3] = cmd.response[3];
989
990 if (mmc->version == MMC_VERSION_UNKNOWN) {
991 int version = (cmd.response[0] >> 26) & 0xf;
992
993 switch (version) {
994 case 0:
995 mmc->version = MMC_VERSION_1_2;
996 break;
997 case 1:
998 mmc->version = MMC_VERSION_1_4;
999 break;
1000 case 2:
1001 mmc->version = MMC_VERSION_2_2;
1002 break;
1003 case 3:
1004 mmc->version = MMC_VERSION_3;
1005 break;
1006 case 4:
1007 mmc->version = MMC_VERSION_4;
1008 break;
1009 default:
1010 mmc->version = MMC_VERSION_1_2;
1011 break;
1012 }
1013 }
1014
1015 /* divide frequency by 10, since the mults are 10x bigger */
1016 freq = fbase[(cmd.response[0] & 0x7)];
1017 mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
1018
1019 mmc->tran_speed = freq * mult;
1020
1021 mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
1022
1023 if (IS_SD(mmc))
1024 mmc->write_bl_len = mmc->read_bl_len;
1025 else
1026 mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
1027
1028 if (mmc->high_capacity) {
1029 csize = (mmc->csd[1] & 0x3f) << 16
1030 | (mmc->csd[2] & 0xffff0000) >> 16;
1031 cmult = 8;
1032 } else {
1033 csize = (mmc->csd[1] & 0x3ff) << 2
1034 | (mmc->csd[2] & 0xc0000000) >> 30;
1035 cmult = (mmc->csd[2] & 0x00038000) >> 15;
1036 }
1037
1038 mmc->capacity = (csize + 1) << (cmult + 2);
1039 mmc->capacity *= mmc->read_bl_len;
1040
1041 if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN)
1042 mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
1043
1044 if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN)
1045 mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
1046
1047 /* Select the card, and put it into Transfer Mode */
1048 if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
1049 cmd.cmdidx = MMC_CMD_SELECT_CARD;
1050 cmd.resp_type = MMC_RSP_R1;
1051 cmd.cmdarg = mmc->rca << 16;
1052 err = mmc_send_cmd(mmc, &cmd, NULL);
1053
1054 if (err)
1055 return err;
1056 }
1057
1058 /*
1059 * For SD, its erase group is always one sector
1060 */
1061 mmc->erase_grp_size = 1;
1062 mmc->part_config = MMCPART_NOAVAILABLE;
1063 if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
1064 /* check ext_csd version and capacity */
1065 err = mmc_send_ext_csd(mmc, ext_csd);
1066 if (!err && (ext_csd[EXT_CSD_REV] >= 2)) {
1067 /*
1068 * According to the JEDEC Standard, the value of
1069 * ext_csd's capacity is valid if the value is more
1070 * than 2GB
1071 */
1072 capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
1073 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8
1074 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16
1075 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
1076 capacity *= MMC_MAX_BLOCK_LEN;
1077 if ((capacity >> 20) > 2 * 1024)
1078 mmc->capacity = capacity;
1079 }
1080
1081 switch (ext_csd[EXT_CSD_REV]) {
1082 case 1:
1083 mmc->version = MMC_VERSION_4_1;
1084 break;
1085 case 2:
1086 mmc->version = MMC_VERSION_4_2;
1087 break;
1088 case 3:
1089 mmc->version = MMC_VERSION_4_3;
1090 break;
1091 case 5:
1092 mmc->version = MMC_VERSION_4_41;
1093 break;
1094 case 6:
1095 mmc->version = MMC_VERSION_4_5;
1096 break;
1097 }
1098
1099 /*
1100 * Check whether GROUP_DEF is set, if yes, read out
1101 * group size from ext_csd directly, or calculate
1102 * the group size from the csd value.
1103 */
1104 if (ext_csd[EXT_CSD_ERASE_GROUP_DEF]) {
1105 mmc->erase_grp_size =
1106 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] *
1107 MMC_MAX_BLOCK_LEN * 1024;
1108 } else {
1109 int erase_gsz, erase_gmul;
1110 erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
1111 erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
1112 mmc->erase_grp_size = (erase_gsz + 1)
1113 * (erase_gmul + 1);
1114 }
1115
1116 /* store the partition info of emmc */
1117 if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) ||
1118 ext_csd[EXT_CSD_BOOT_MULT])
1119 mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
1120 }
1121
1122 if (IS_SD(mmc))
1123 err = sd_change_freq(mmc);
1124 else
1125 err = mmc_change_freq(mmc);
1126
1127 if (err)
1128 return err;
1129
1130 /* Restrict card's capabilities by what the host can do */
1131 mmc->card_caps &= mmc->host_caps;
1132
1133 if (IS_SD(mmc)) {
1134 if (mmc->card_caps & MMC_MODE_4BIT) {
1135 cmd.cmdidx = MMC_CMD_APP_CMD;
1136 cmd.resp_type = MMC_RSP_R1;
1137 cmd.cmdarg = mmc->rca << 16;
1138
1139 err = mmc_send_cmd(mmc, &cmd, NULL);
1140 if (err)
1141 return err;
1142
1143 cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
1144 cmd.resp_type = MMC_RSP_R1;
1145 cmd.cmdarg = 2;
1146 err = mmc_send_cmd(mmc, &cmd, NULL);
1147 if (err)
1148 return err;
1149
1150 mmc_set_bus_width(mmc, 4);
1151 }
1152
1153 if (mmc->card_caps & MMC_MODE_HS)
1154 mmc->tran_speed = 50000000;
1155 else
1156 mmc->tran_speed = 25000000;
1157 } else {
1158 int idx;
1159
1160 /* An array of possible bus widths in order of preference */
1161 static unsigned ext_csd_bits[] = {
1162 EXT_CSD_BUS_WIDTH_8,
1163 EXT_CSD_BUS_WIDTH_4,
1164 EXT_CSD_BUS_WIDTH_1,
1165 };
1166
1167 /* An array to map CSD bus widths to host cap bits */
1168 static unsigned ext_to_hostcaps[] = {
1169 [EXT_CSD_BUS_WIDTH_4] = MMC_MODE_4BIT,
1170 [EXT_CSD_BUS_WIDTH_8] = MMC_MODE_8BIT,
1171 };
1172
1173 /* An array to map chosen bus width to an integer */
1174 static unsigned widths[] = {
1175 8, 4, 1,
1176 };
1177
1178 for (idx=0; idx < ARRAY_SIZE(ext_csd_bits); idx++) {
1179 unsigned int extw = ext_csd_bits[idx];
1180
1181 /*
1182 * Check to make sure the controller supports
1183 * this bus width, if it's more than 1
1184 */
1185 if (extw != EXT_CSD_BUS_WIDTH_1 &&
1186 !(mmc->host_caps & ext_to_hostcaps[extw]))
1187 continue;
1188
1189 err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
1190 EXT_CSD_BUS_WIDTH, extw);
1191
1192 if (err)
1193 continue;
1194
1195 mmc_set_bus_width(mmc, widths[idx]);
1196
1197 err = mmc_send_ext_csd(mmc, test_csd);
1198 if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \
1199 == test_csd[EXT_CSD_PARTITIONING_SUPPORT]
1200 && ext_csd[EXT_CSD_ERASE_GROUP_DEF] \
1201 == test_csd[EXT_CSD_ERASE_GROUP_DEF] \
1202 && ext_csd[EXT_CSD_REV] \
1203 == test_csd[EXT_CSD_REV]
1204 && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \
1205 == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
1206 && memcmp(&ext_csd[EXT_CSD_SEC_CNT], \
1207 &test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
1208
1209 mmc->card_caps |= ext_to_hostcaps[extw];
1210 break;
1211 }
1212 }
1213
1214 if (mmc->card_caps & MMC_MODE_HS) {
1215 if (mmc->card_caps & MMC_MODE_HS_52MHz)
1216 mmc->tran_speed = 52000000;
1217 else
1218 mmc->tran_speed = 26000000;
1219 }
1220 }
1221
1222 mmc_set_clock(mmc, mmc->tran_speed);
1223
1224 /* fill in device description */
1225 mmc->block_dev.lun = 0;
1226 mmc->block_dev.type = 0;
1227 mmc->block_dev.blksz = mmc->read_bl_len;
1228 mmc->block_dev.log2blksz = LOG2(mmc->block_dev.blksz);
1229 mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
1230 sprintf(mmc->block_dev.vendor, "Man %06x Snr %04x%04x",
1231 mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff),
1232 (mmc->cid[3] >> 16) & 0xffff);
1233 sprintf(mmc->block_dev.product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff,
1234 (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
1235 (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff,
1236 (mmc->cid[2] >> 24) & 0xff);
1237 sprintf(mmc->block_dev.revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf,
1238 (mmc->cid[2] >> 16) & 0xf);
1239 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT)
1240 init_part(&mmc->block_dev);
1241 #endif
1242
1243 return 0;
1244 }
1245
1246 static int mmc_send_if_cond(struct mmc *mmc)
1247 {
1248 struct mmc_cmd cmd;
1249 int err;
1250
1251 cmd.cmdidx = SD_CMD_SEND_IF_COND;
1252 /* We set the bit if the host supports voltages between 2.7 and 3.6 V */
1253 cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
1254 cmd.resp_type = MMC_RSP_R7;
1255
1256 err = mmc_send_cmd(mmc, &cmd, NULL);
1257
1258 if (err)
1259 return err;
1260
1261 if ((cmd.response[0] & 0xff) != 0xaa)
1262 return UNUSABLE_ERR;
1263 else
1264 mmc->version = SD_VERSION_2;
1265
1266 return 0;
1267 }
1268
1269 int mmc_register(struct mmc *mmc)
1270 {
1271 /* Setup the universal parts of the block interface just once */
1272 mmc->block_dev.if_type = IF_TYPE_MMC;
1273 mmc->block_dev.dev = cur_dev_num++;
1274 mmc->block_dev.removable = 1;
1275 mmc->block_dev.block_read = mmc_bread;
1276 mmc->block_dev.block_write = mmc_bwrite;
1277 mmc->block_dev.block_erase = mmc_berase;
1278 if (!mmc->b_max)
1279 mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1280
1281 INIT_LIST_HEAD (&mmc->link);
1282
1283 list_add_tail (&mmc->link, &mmc_devices);
1284
1285 return 0;
1286 }
1287
1288 #ifdef CONFIG_PARTITIONS
1289 block_dev_desc_t *mmc_get_dev(int dev)
1290 {
1291 struct mmc *mmc = find_mmc_device(dev);
1292 if (!mmc || mmc_init(mmc))
1293 return NULL;
1294
1295 return &mmc->block_dev;
1296 }
1297 #endif
1298
1299 int mmc_start_init(struct mmc *mmc)
1300 {
1301 int err;
1302
1303 if (mmc_getcd(mmc) == 0) {
1304 mmc->has_init = 0;
1305 printf("MMC: no card present\n");
1306 return NO_CARD_ERR;
1307 }
1308
1309 if (mmc->has_init)
1310 return 0;
1311
1312 err = mmc->init(mmc);
1313
1314 if (err)
1315 return err;
1316
1317 mmc_set_bus_width(mmc, 1);
1318 mmc_set_clock(mmc, 1);
1319
1320 /* Reset the Card */
1321 err = mmc_go_idle(mmc);
1322
1323 if (err)
1324 return err;
1325
1326 /* The internal partition reset to user partition(0) at every CMD0*/
1327 mmc->part_num = 0;
1328
1329 /* Test for SD version 2 */
1330 err = mmc_send_if_cond(mmc);
1331
1332 /* Now try to get the SD card's operating condition */
1333 err = sd_send_op_cond(mmc);
1334
1335 /* If the command timed out, we check for an MMC card */
1336 if (err == TIMEOUT) {
1337 err = mmc_send_op_cond(mmc);
1338
1339 if (err && err != IN_PROGRESS) {
1340 printf("Card did not respond to voltage select!\n");
1341 return UNUSABLE_ERR;
1342 }
1343 }
1344
1345 if (err == IN_PROGRESS)
1346 mmc->init_in_progress = 1;
1347
1348 return err;
1349 }
1350
1351 static int mmc_complete_init(struct mmc *mmc)
1352 {
1353 int err = 0;
1354
1355 if (mmc->op_cond_pending)
1356 err = mmc_complete_op_cond(mmc);
1357
1358 if (!err)
1359 err = mmc_startup(mmc);
1360 if (err)
1361 mmc->has_init = 0;
1362 else
1363 mmc->has_init = 1;
1364 mmc->init_in_progress = 0;
1365 return err;
1366 }
1367
1368 int mmc_init(struct mmc *mmc)
1369 {
1370 int err = IN_PROGRESS;
1371 unsigned start = get_timer(0);
1372
1373 if (mmc->has_init)
1374 return 0;
1375 if (!mmc->init_in_progress)
1376 err = mmc_start_init(mmc);
1377
1378 if (!err || err == IN_PROGRESS)
1379 err = mmc_complete_init(mmc);
1380 debug("%s: %d, time %lu\n", __func__, err, get_timer(start));
1381 return err;
1382 }
1383
1384 /*
1385 * CPU and board-specific MMC initializations. Aliased function
1386 * signals caller to move on
1387 */
1388 static int __def_mmc_init(bd_t *bis)
1389 {
1390 return -1;
1391 }
1392
1393 int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
1394 int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
1395
1396 void print_mmc_devices(char separator)
1397 {
1398 struct mmc *m;
1399 struct list_head *entry;
1400
1401 list_for_each(entry, &mmc_devices) {
1402 m = list_entry(entry, struct mmc, link);
1403
1404 printf("%s: %d", m->name, m->block_dev.dev);
1405
1406 if (entry->next != &mmc_devices)
1407 printf("%c ", separator);
1408 }
1409
1410 printf("\n");
1411 }
1412
1413 int get_mmc_num(void)
1414 {
1415 return cur_dev_num;
1416 }
1417
1418 void mmc_set_preinit(struct mmc *mmc, int preinit)
1419 {
1420 mmc->preinit = preinit;
1421 }
1422
1423 static void do_preinit(void)
1424 {
1425 struct mmc *m;
1426 struct list_head *entry;
1427
1428 list_for_each(entry, &mmc_devices) {
1429 m = list_entry(entry, struct mmc, link);
1430
1431 if (m->preinit)
1432 mmc_start_init(m);
1433 }
1434 }
1435
1436
1437 int mmc_initialize(bd_t *bis)
1438 {
1439 INIT_LIST_HEAD (&mmc_devices);
1440 cur_dev_num = 0;
1441
1442 if (board_mmc_init(bis) < 0)
1443 cpu_mmc_init(bis);
1444
1445 print_mmc_devices(',');
1446
1447 do_preinit();
1448 return 0;
1449 }