]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
mtd: nand: Add page argument to write_page() etc.
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 *
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
10 *
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Credits:
15 * David Woodhouse for adding multichip support
16 *
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
20 * TODO:
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <common.h>
34 #include <malloc.h>
35 #include <watchdog.h>
36 #include <linux/err.h>
37 #include <linux/compat.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/nand.h>
40 #include <linux/mtd/nand_ecc.h>
41 #include <linux/mtd/nand_bch.h>
42 #ifdef CONFIG_MTD_PARTITIONS
43 #include <linux/mtd/partitions.h>
44 #endif
45 #include <asm/io.h>
46 #include <asm/errno.h>
47
48 static bool is_module_text_address(unsigned long addr) {return 0;}
49
50 /* Define default oob placement schemes for large and small page devices */
51 static struct nand_ecclayout nand_oob_8 = {
52 .eccbytes = 3,
53 .eccpos = {0, 1, 2},
54 .oobfree = {
55 {.offset = 3,
56 .length = 2},
57 {.offset = 6,
58 .length = 2} }
59 };
60
61 static struct nand_ecclayout nand_oob_16 = {
62 .eccbytes = 6,
63 .eccpos = {0, 1, 2, 3, 6, 7},
64 .oobfree = {
65 {.offset = 8,
66 . length = 8} }
67 };
68
69 static struct nand_ecclayout nand_oob_64 = {
70 .eccbytes = 24,
71 .eccpos = {
72 40, 41, 42, 43, 44, 45, 46, 47,
73 48, 49, 50, 51, 52, 53, 54, 55,
74 56, 57, 58, 59, 60, 61, 62, 63},
75 .oobfree = {
76 {.offset = 2,
77 .length = 38} }
78 };
79
80 static struct nand_ecclayout nand_oob_128 = {
81 .eccbytes = 48,
82 .eccpos = {
83 80, 81, 82, 83, 84, 85, 86, 87,
84 88, 89, 90, 91, 92, 93, 94, 95,
85 96, 97, 98, 99, 100, 101, 102, 103,
86 104, 105, 106, 107, 108, 109, 110, 111,
87 112, 113, 114, 115, 116, 117, 118, 119,
88 120, 121, 122, 123, 124, 125, 126, 127},
89 .oobfree = {
90 {.offset = 2,
91 .length = 78} }
92 };
93
94 static int nand_get_device(struct mtd_info *mtd, int new_state);
95
96 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
97 struct mtd_oob_ops *ops);
98
99 /*
100 * For devices which display every fart in the system on a separate LED. Is
101 * compiled away when LED support is disabled.
102 */
103 DEFINE_LED_TRIGGER(nand_led_trigger);
104
105 static int check_offs_len(struct mtd_info *mtd,
106 loff_t ofs, uint64_t len)
107 {
108 struct nand_chip *chip = mtd_to_nand(mtd);
109 int ret = 0;
110
111 /* Start address must align on block boundary */
112 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
113 pr_debug("%s: unaligned address\n", __func__);
114 ret = -EINVAL;
115 }
116
117 /* Length must align on block boundary */
118 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
119 pr_debug("%s: length not block aligned\n", __func__);
120 ret = -EINVAL;
121 }
122
123 return ret;
124 }
125
126 /**
127 * nand_release_device - [GENERIC] release chip
128 * @mtd: MTD device structure
129 *
130 * Release chip lock and wake up anyone waiting on the device.
131 */
132 static void nand_release_device(struct mtd_info *mtd)
133 {
134 struct nand_chip *chip = mtd_to_nand(mtd);
135
136 /* De-select the NAND device */
137 chip->select_chip(mtd, -1);
138 }
139
140 /**
141 * nand_read_byte - [DEFAULT] read one byte from the chip
142 * @mtd: MTD device structure
143 *
144 * Default read function for 8bit buswidth
145 */
146 uint8_t nand_read_byte(struct mtd_info *mtd)
147 {
148 struct nand_chip *chip = mtd_to_nand(mtd);
149 return readb(chip->IO_ADDR_R);
150 }
151
152 /**
153 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
154 * @mtd: MTD device structure
155 *
156 * Default read function for 16bit buswidth with endianness conversion.
157 *
158 */
159 static uint8_t nand_read_byte16(struct mtd_info *mtd)
160 {
161 struct nand_chip *chip = mtd_to_nand(mtd);
162 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
163 }
164
165 /**
166 * nand_read_word - [DEFAULT] read one word from the chip
167 * @mtd: MTD device structure
168 *
169 * Default read function for 16bit buswidth without endianness conversion.
170 */
171 static u16 nand_read_word(struct mtd_info *mtd)
172 {
173 struct nand_chip *chip = mtd_to_nand(mtd);
174 return readw(chip->IO_ADDR_R);
175 }
176
177 /**
178 * nand_select_chip - [DEFAULT] control CE line
179 * @mtd: MTD device structure
180 * @chipnr: chipnumber to select, -1 for deselect
181 *
182 * Default select function for 1 chip devices.
183 */
184 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
185 {
186 struct nand_chip *chip = mtd_to_nand(mtd);
187
188 switch (chipnr) {
189 case -1:
190 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
191 break;
192 case 0:
193 break;
194
195 default:
196 BUG();
197 }
198 }
199
200 /**
201 * nand_write_byte - [DEFAULT] write single byte to chip
202 * @mtd: MTD device structure
203 * @byte: value to write
204 *
205 * Default function to write a byte to I/O[7:0]
206 */
207 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
208 {
209 struct nand_chip *chip = mtd_to_nand(mtd);
210
211 chip->write_buf(mtd, &byte, 1);
212 }
213
214 /**
215 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
216 * @mtd: MTD device structure
217 * @byte: value to write
218 *
219 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
220 */
221 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
222 {
223 struct nand_chip *chip = mtd_to_nand(mtd);
224 uint16_t word = byte;
225
226 /*
227 * It's not entirely clear what should happen to I/O[15:8] when writing
228 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
229 *
230 * When the host supports a 16-bit bus width, only data is
231 * transferred at the 16-bit width. All address and command line
232 * transfers shall use only the lower 8-bits of the data bus. During
233 * command transfers, the host may place any value on the upper
234 * 8-bits of the data bus. During address transfers, the host shall
235 * set the upper 8-bits of the data bus to 00h.
236 *
237 * One user of the write_byte callback is nand_onfi_set_features. The
238 * four parameters are specified to be written to I/O[7:0], but this is
239 * neither an address nor a command transfer. Let's assume a 0 on the
240 * upper I/O lines is OK.
241 */
242 chip->write_buf(mtd, (uint8_t *)&word, 2);
243 }
244
245 #if !defined(CONFIG_BLACKFIN)
246 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
247 {
248 int i;
249
250 for (i = 0; i < len; i++)
251 writeb(buf[i], addr);
252 }
253 static void ioread8_rep(void *addr, uint8_t *buf, int len)
254 {
255 int i;
256
257 for (i = 0; i < len; i++)
258 buf[i] = readb(addr);
259 }
260
261 static void ioread16_rep(void *addr, void *buf, int len)
262 {
263 int i;
264 u16 *p = (u16 *) buf;
265
266 for (i = 0; i < len; i++)
267 p[i] = readw(addr);
268 }
269
270 static void iowrite16_rep(void *addr, void *buf, int len)
271 {
272 int i;
273 u16 *p = (u16 *) buf;
274
275 for (i = 0; i < len; i++)
276 writew(p[i], addr);
277 }
278 #endif
279
280 /**
281 * nand_write_buf - [DEFAULT] write buffer to chip
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
285 *
286 * Default write function for 8bit buswidth.
287 */
288 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 struct nand_chip *chip = mtd_to_nand(mtd);
291
292 iowrite8_rep(chip->IO_ADDR_W, buf, len);
293 }
294
295 /**
296 * nand_read_buf - [DEFAULT] read chip data into buffer
297 * @mtd: MTD device structure
298 * @buf: buffer to store date
299 * @len: number of bytes to read
300 *
301 * Default read function for 8bit buswidth.
302 */
303 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
304 {
305 struct nand_chip *chip = mtd_to_nand(mtd);
306
307 ioread8_rep(chip->IO_ADDR_R, buf, len);
308 }
309
310 /**
311 * nand_write_buf16 - [DEFAULT] write buffer to chip
312 * @mtd: MTD device structure
313 * @buf: data buffer
314 * @len: number of bytes to write
315 *
316 * Default write function for 16bit buswidth.
317 */
318 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
319 {
320 struct nand_chip *chip = mtd_to_nand(mtd);
321 u16 *p = (u16 *) buf;
322
323 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
324 }
325
326 /**
327 * nand_read_buf16 - [DEFAULT] read chip data into buffer
328 * @mtd: MTD device structure
329 * @buf: buffer to store date
330 * @len: number of bytes to read
331 *
332 * Default read function for 16bit buswidth.
333 */
334 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
335 {
336 struct nand_chip *chip = mtd_to_nand(mtd);
337 u16 *p = (u16 *) buf;
338
339 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
340 }
341
342 /**
343 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
344 * @mtd: MTD device structure
345 * @ofs: offset from device start
346 * @getchip: 0, if the chip is already selected
347 *
348 * Check, if the block is bad.
349 */
350 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
351 {
352 int page, chipnr, res = 0, i = 0;
353 struct nand_chip *chip = mtd_to_nand(mtd);
354 u16 bad;
355
356 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
357 ofs += mtd->erasesize - mtd->writesize;
358
359 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
360
361 if (getchip) {
362 chipnr = (int)(ofs >> chip->chip_shift);
363
364 nand_get_device(mtd, FL_READING);
365
366 /* Select the NAND device */
367 chip->select_chip(mtd, chipnr);
368 }
369
370 do {
371 if (chip->options & NAND_BUSWIDTH_16) {
372 chip->cmdfunc(mtd, NAND_CMD_READOOB,
373 chip->badblockpos & 0xFE, page);
374 bad = cpu_to_le16(chip->read_word(mtd));
375 if (chip->badblockpos & 0x1)
376 bad >>= 8;
377 else
378 bad &= 0xFF;
379 } else {
380 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
381 page);
382 bad = chip->read_byte(mtd);
383 }
384
385 if (likely(chip->badblockbits == 8))
386 res = bad != 0xFF;
387 else
388 res = hweight8(bad) < chip->badblockbits;
389 ofs += mtd->writesize;
390 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
391 i++;
392 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
393
394 if (getchip) {
395 chip->select_chip(mtd, -1);
396 nand_release_device(mtd);
397 }
398
399 return res;
400 }
401
402 /**
403 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
404 * @mtd: MTD device structure
405 * @ofs: offset from device start
406 *
407 * This is the default implementation, which can be overridden by a hardware
408 * specific driver. It provides the details for writing a bad block marker to a
409 * block.
410 */
411 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
412 {
413 struct nand_chip *chip = mtd_to_nand(mtd);
414 struct mtd_oob_ops ops;
415 uint8_t buf[2] = { 0, 0 };
416 int ret = 0, res, i = 0;
417
418 memset(&ops, 0, sizeof(ops));
419 ops.oobbuf = buf;
420 ops.ooboffs = chip->badblockpos;
421 if (chip->options & NAND_BUSWIDTH_16) {
422 ops.ooboffs &= ~0x01;
423 ops.len = ops.ooblen = 2;
424 } else {
425 ops.len = ops.ooblen = 1;
426 }
427 ops.mode = MTD_OPS_PLACE_OOB;
428
429 /* Write to first/last page(s) if necessary */
430 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
431 ofs += mtd->erasesize - mtd->writesize;
432 do {
433 res = nand_do_write_oob(mtd, ofs, &ops);
434 if (!ret)
435 ret = res;
436
437 i++;
438 ofs += mtd->writesize;
439 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
440
441 return ret;
442 }
443
444 /**
445 * nand_block_markbad_lowlevel - mark a block bad
446 * @mtd: MTD device structure
447 * @ofs: offset from device start
448 *
449 * This function performs the generic NAND bad block marking steps (i.e., bad
450 * block table(s) and/or marker(s)). We only allow the hardware driver to
451 * specify how to write bad block markers to OOB (chip->block_markbad).
452 *
453 * We try operations in the following order:
454 * (1) erase the affected block, to allow OOB marker to be written cleanly
455 * (2) write bad block marker to OOB area of affected block (unless flag
456 * NAND_BBT_NO_OOB_BBM is present)
457 * (3) update the BBT
458 * Note that we retain the first error encountered in (2) or (3), finish the
459 * procedures, and dump the error in the end.
460 */
461 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
462 {
463 struct nand_chip *chip = mtd_to_nand(mtd);
464 int res, ret = 0;
465
466 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
467 struct erase_info einfo;
468
469 /* Attempt erase before marking OOB */
470 memset(&einfo, 0, sizeof(einfo));
471 einfo.mtd = mtd;
472 einfo.addr = ofs;
473 einfo.len = 1ULL << chip->phys_erase_shift;
474 nand_erase_nand(mtd, &einfo, 0);
475
476 /* Write bad block marker to OOB */
477 nand_get_device(mtd, FL_WRITING);
478 ret = chip->block_markbad(mtd, ofs);
479 nand_release_device(mtd);
480 }
481
482 /* Mark block bad in BBT */
483 if (chip->bbt) {
484 res = nand_markbad_bbt(mtd, ofs);
485 if (!ret)
486 ret = res;
487 }
488
489 if (!ret)
490 mtd->ecc_stats.badblocks++;
491
492 return ret;
493 }
494
495 /**
496 * nand_check_wp - [GENERIC] check if the chip is write protected
497 * @mtd: MTD device structure
498 *
499 * Check, if the device is write protected. The function expects, that the
500 * device is already selected.
501 */
502 static int nand_check_wp(struct mtd_info *mtd)
503 {
504 struct nand_chip *chip = mtd_to_nand(mtd);
505
506 /* Broken xD cards report WP despite being writable */
507 if (chip->options & NAND_BROKEN_XD)
508 return 0;
509
510 /* Check the WP bit */
511 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
512 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
513 }
514
515 /**
516 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
517 * @mtd: MTD device structure
518 * @ofs: offset from device start
519 *
520 * Check if the block is marked as reserved.
521 */
522 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
523 {
524 struct nand_chip *chip = mtd_to_nand(mtd);
525
526 if (!chip->bbt)
527 return 0;
528 /* Return info from the table */
529 return nand_isreserved_bbt(mtd, ofs);
530 }
531
532 /**
533 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
534 * @mtd: MTD device structure
535 * @ofs: offset from device start
536 * @getchip: 0, if the chip is already selected
537 * @allowbbt: 1, if its allowed to access the bbt area
538 *
539 * Check, if the block is bad. Either by reading the bad block table or
540 * calling of the scan function.
541 */
542 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
543 int allowbbt)
544 {
545 struct nand_chip *chip = mtd_to_nand(mtd);
546
547 if (!(chip->options & NAND_SKIP_BBTSCAN) &&
548 !(chip->options & NAND_BBT_SCANNED)) {
549 chip->options |= NAND_BBT_SCANNED;
550 chip->scan_bbt(mtd);
551 }
552
553 if (!chip->bbt)
554 return chip->block_bad(mtd, ofs, getchip);
555
556 /* Return info from the table */
557 return nand_isbad_bbt(mtd, ofs, allowbbt);
558 }
559
560 /* Wait for the ready pin, after a command. The timeout is caught later. */
561 void nand_wait_ready(struct mtd_info *mtd)
562 {
563 struct nand_chip *chip = mtd_to_nand(mtd);
564 u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
565 u32 time_start;
566
567 time_start = get_timer(0);
568 /* Wait until command is processed or timeout occurs */
569 while (get_timer(time_start) < timeo) {
570 if (chip->dev_ready)
571 if (chip->dev_ready(mtd))
572 break;
573 }
574 }
575 EXPORT_SYMBOL_GPL(nand_wait_ready);
576
577 /**
578 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
579 * @mtd: MTD device structure
580 * @timeo: Timeout in ms
581 *
582 * Wait for status ready (i.e. command done) or timeout.
583 */
584 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
585 {
586 register struct nand_chip *chip = mtd_to_nand(mtd);
587 u32 time_start;
588
589 timeo = (CONFIG_SYS_HZ * timeo) / 1000;
590 time_start = get_timer(0);
591 while (get_timer(time_start) < timeo) {
592 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
593 break;
594 WATCHDOG_RESET();
595 }
596 };
597
598 /**
599 * nand_command - [DEFAULT] Send command to NAND device
600 * @mtd: MTD device structure
601 * @command: the command to be sent
602 * @column: the column address for this command, -1 if none
603 * @page_addr: the page address for this command, -1 if none
604 *
605 * Send command to NAND device. This function is used for small page devices
606 * (512 Bytes per page).
607 */
608 static void nand_command(struct mtd_info *mtd, unsigned int command,
609 int column, int page_addr)
610 {
611 register struct nand_chip *chip = mtd_to_nand(mtd);
612 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
613
614 /* Write out the command to the device */
615 if (command == NAND_CMD_SEQIN) {
616 int readcmd;
617
618 if (column >= mtd->writesize) {
619 /* OOB area */
620 column -= mtd->writesize;
621 readcmd = NAND_CMD_READOOB;
622 } else if (column < 256) {
623 /* First 256 bytes --> READ0 */
624 readcmd = NAND_CMD_READ0;
625 } else {
626 column -= 256;
627 readcmd = NAND_CMD_READ1;
628 }
629 chip->cmd_ctrl(mtd, readcmd, ctrl);
630 ctrl &= ~NAND_CTRL_CHANGE;
631 }
632 chip->cmd_ctrl(mtd, command, ctrl);
633
634 /* Address cycle, when necessary */
635 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
636 /* Serially input address */
637 if (column != -1) {
638 /* Adjust columns for 16 bit buswidth */
639 if (chip->options & NAND_BUSWIDTH_16 &&
640 !nand_opcode_8bits(command))
641 column >>= 1;
642 chip->cmd_ctrl(mtd, column, ctrl);
643 ctrl &= ~NAND_CTRL_CHANGE;
644 }
645 if (page_addr != -1) {
646 chip->cmd_ctrl(mtd, page_addr, ctrl);
647 ctrl &= ~NAND_CTRL_CHANGE;
648 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
649 /* One more address cycle for devices > 32MiB */
650 if (chip->chipsize > (32 << 20))
651 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
652 }
653 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
654
655 /*
656 * Program and erase have their own busy handlers status and sequential
657 * in needs no delay
658 */
659 switch (command) {
660
661 case NAND_CMD_PAGEPROG:
662 case NAND_CMD_ERASE1:
663 case NAND_CMD_ERASE2:
664 case NAND_CMD_SEQIN:
665 case NAND_CMD_STATUS:
666 return;
667
668 case NAND_CMD_RESET:
669 if (chip->dev_ready)
670 break;
671 udelay(chip->chip_delay);
672 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
673 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
674 chip->cmd_ctrl(mtd,
675 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
676 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
677 nand_wait_status_ready(mtd, 250);
678 return;
679
680 /* This applies to read commands */
681 default:
682 /*
683 * If we don't have access to the busy pin, we apply the given
684 * command delay
685 */
686 if (!chip->dev_ready) {
687 udelay(chip->chip_delay);
688 return;
689 }
690 }
691 /*
692 * Apply this short delay always to ensure that we do wait tWB in
693 * any case on any machine.
694 */
695 ndelay(100);
696
697 nand_wait_ready(mtd);
698 }
699
700 /**
701 * nand_command_lp - [DEFAULT] Send command to NAND large page device
702 * @mtd: MTD device structure
703 * @command: the command to be sent
704 * @column: the column address for this command, -1 if none
705 * @page_addr: the page address for this command, -1 if none
706 *
707 * Send command to NAND device. This is the version for the new large page
708 * devices. We don't have the separate regions as we have in the small page
709 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
710 */
711 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
712 int column, int page_addr)
713 {
714 register struct nand_chip *chip = mtd_to_nand(mtd);
715
716 /* Emulate NAND_CMD_READOOB */
717 if (command == NAND_CMD_READOOB) {
718 column += mtd->writesize;
719 command = NAND_CMD_READ0;
720 }
721
722 /* Command latch cycle */
723 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724
725 if (column != -1 || page_addr != -1) {
726 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
727
728 /* Serially input address */
729 if (column != -1) {
730 /* Adjust columns for 16 bit buswidth */
731 if (chip->options & NAND_BUSWIDTH_16 &&
732 !nand_opcode_8bits(command))
733 column >>= 1;
734 chip->cmd_ctrl(mtd, column, ctrl);
735 ctrl &= ~NAND_CTRL_CHANGE;
736 chip->cmd_ctrl(mtd, column >> 8, ctrl);
737 }
738 if (page_addr != -1) {
739 chip->cmd_ctrl(mtd, page_addr, ctrl);
740 chip->cmd_ctrl(mtd, page_addr >> 8,
741 NAND_NCE | NAND_ALE);
742 /* One more address cycle for devices > 128MiB */
743 if (chip->chipsize > (128 << 20))
744 chip->cmd_ctrl(mtd, page_addr >> 16,
745 NAND_NCE | NAND_ALE);
746 }
747 }
748 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
749
750 /*
751 * Program and erase have their own busy handlers status, sequential
752 * in and status need no delay.
753 */
754 switch (command) {
755
756 case NAND_CMD_CACHEDPROG:
757 case NAND_CMD_PAGEPROG:
758 case NAND_CMD_ERASE1:
759 case NAND_CMD_ERASE2:
760 case NAND_CMD_SEQIN:
761 case NAND_CMD_RNDIN:
762 case NAND_CMD_STATUS:
763 return;
764
765 case NAND_CMD_RESET:
766 if (chip->dev_ready)
767 break;
768 udelay(chip->chip_delay);
769 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
770 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
771 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
772 NAND_NCE | NAND_CTRL_CHANGE);
773 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
774 nand_wait_status_ready(mtd, 250);
775 return;
776
777 case NAND_CMD_RNDOUT:
778 /* No ready / busy check necessary */
779 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
780 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
781 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
782 NAND_NCE | NAND_CTRL_CHANGE);
783 return;
784
785 case NAND_CMD_READ0:
786 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
787 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
788 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
789 NAND_NCE | NAND_CTRL_CHANGE);
790
791 /* This applies to read commands */
792 default:
793 /*
794 * If we don't have access to the busy pin, we apply the given
795 * command delay.
796 */
797 if (!chip->dev_ready) {
798 udelay(chip->chip_delay);
799 return;
800 }
801 }
802
803 /*
804 * Apply this short delay always to ensure that we do wait tWB in
805 * any case on any machine.
806 */
807 ndelay(100);
808
809 nand_wait_ready(mtd);
810 }
811
812 /**
813 * panic_nand_get_device - [GENERIC] Get chip for selected access
814 * @chip: the nand chip descriptor
815 * @mtd: MTD device structure
816 * @new_state: the state which is requested
817 *
818 * Used when in panic, no locks are taken.
819 */
820 static void panic_nand_get_device(struct nand_chip *chip,
821 struct mtd_info *mtd, int new_state)
822 {
823 /* Hardware controller shared among independent devices */
824 chip->controller->active = chip;
825 chip->state = new_state;
826 }
827
828 /**
829 * nand_get_device - [GENERIC] Get chip for selected access
830 * @mtd: MTD device structure
831 * @new_state: the state which is requested
832 *
833 * Get the device and lock it for exclusive access
834 */
835 static int
836 nand_get_device(struct mtd_info *mtd, int new_state)
837 {
838 struct nand_chip *chip = mtd_to_nand(mtd);
839 chip->state = new_state;
840 return 0;
841 }
842
843 /**
844 * panic_nand_wait - [GENERIC] wait until the command is done
845 * @mtd: MTD device structure
846 * @chip: NAND chip structure
847 * @timeo: timeout
848 *
849 * Wait for command done. This is a helper function for nand_wait used when
850 * we are in interrupt context. May happen when in panic and trying to write
851 * an oops through mtdoops.
852 */
853 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
854 unsigned long timeo)
855 {
856 int i;
857 for (i = 0; i < timeo; i++) {
858 if (chip->dev_ready) {
859 if (chip->dev_ready(mtd))
860 break;
861 } else {
862 if (chip->read_byte(mtd) & NAND_STATUS_READY)
863 break;
864 }
865 mdelay(1);
866 }
867 }
868
869 /**
870 * nand_wait - [DEFAULT] wait until the command is done
871 * @mtd: MTD device structure
872 * @chip: NAND chip structure
873 *
874 * Wait for command done. This applies to erase and program only. Erase can
875 * take up to 400ms and program up to 20ms according to general NAND and
876 * SmartMedia specs.
877 */
878 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
879 {
880
881 int status, state = chip->state;
882 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
883
884 led_trigger_event(nand_led_trigger, LED_FULL);
885
886 /*
887 * Apply this short delay always to ensure that we do wait tWB in any
888 * case on any machine.
889 */
890 ndelay(100);
891
892 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
893
894 u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
895 u32 time_start;
896
897 time_start = get_timer(0);
898 while (get_timer(time_start) < timer) {
899 if (chip->dev_ready) {
900 if (chip->dev_ready(mtd))
901 break;
902 } else {
903 if (chip->read_byte(mtd) & NAND_STATUS_READY)
904 break;
905 }
906 }
907 led_trigger_event(nand_led_trigger, LED_OFF);
908
909 status = (int)chip->read_byte(mtd);
910 /* This can happen if in case of timeout or buggy dev_ready */
911 WARN_ON(!(status & NAND_STATUS_READY));
912 return status;
913 }
914
915 /**
916 * nand_read_page_raw - [INTERN] read raw page data without ecc
917 * @mtd: mtd info structure
918 * @chip: nand chip info structure
919 * @buf: buffer to store read data
920 * @oob_required: caller requires OOB data read to chip->oob_poi
921 * @page: page number to read
922 *
923 * Not for syndrome calculating ECC controllers, which use a special oob layout.
924 */
925 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
926 uint8_t *buf, int oob_required, int page)
927 {
928 chip->read_buf(mtd, buf, mtd->writesize);
929 if (oob_required)
930 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
931 return 0;
932 }
933
934 /**
935 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
936 * @mtd: mtd info structure
937 * @chip: nand chip info structure
938 * @buf: buffer to store read data
939 * @oob_required: caller requires OOB data read to chip->oob_poi
940 * @page: page number to read
941 *
942 * We need a special oob layout and handling even when OOB isn't used.
943 */
944 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
945 struct nand_chip *chip, uint8_t *buf,
946 int oob_required, int page)
947 {
948 int eccsize = chip->ecc.size;
949 int eccbytes = chip->ecc.bytes;
950 uint8_t *oob = chip->oob_poi;
951 int steps, size;
952
953 for (steps = chip->ecc.steps; steps > 0; steps--) {
954 chip->read_buf(mtd, buf, eccsize);
955 buf += eccsize;
956
957 if (chip->ecc.prepad) {
958 chip->read_buf(mtd, oob, chip->ecc.prepad);
959 oob += chip->ecc.prepad;
960 }
961
962 chip->read_buf(mtd, oob, eccbytes);
963 oob += eccbytes;
964
965 if (chip->ecc.postpad) {
966 chip->read_buf(mtd, oob, chip->ecc.postpad);
967 oob += chip->ecc.postpad;
968 }
969 }
970
971 size = mtd->oobsize - (oob - chip->oob_poi);
972 if (size)
973 chip->read_buf(mtd, oob, size);
974
975 return 0;
976 }
977
978 /**
979 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
980 * @mtd: mtd info structure
981 * @chip: nand chip info structure
982 * @buf: buffer to store read data
983 * @oob_required: caller requires OOB data read to chip->oob_poi
984 * @page: page number to read
985 */
986 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
987 uint8_t *buf, int oob_required, int page)
988 {
989 int i, eccsize = chip->ecc.size;
990 int eccbytes = chip->ecc.bytes;
991 int eccsteps = chip->ecc.steps;
992 uint8_t *p = buf;
993 uint8_t *ecc_calc = chip->buffers->ecccalc;
994 uint8_t *ecc_code = chip->buffers->ecccode;
995 uint32_t *eccpos = chip->ecc.layout->eccpos;
996 unsigned int max_bitflips = 0;
997
998 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
999
1000 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1001 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1002
1003 for (i = 0; i < chip->ecc.total; i++)
1004 ecc_code[i] = chip->oob_poi[eccpos[i]];
1005
1006 eccsteps = chip->ecc.steps;
1007 p = buf;
1008
1009 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1010 int stat;
1011
1012 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1013 if (stat < 0) {
1014 mtd->ecc_stats.failed++;
1015 } else {
1016 mtd->ecc_stats.corrected += stat;
1017 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1018 }
1019 }
1020 return max_bitflips;
1021 }
1022
1023 /**
1024 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1025 * @mtd: mtd info structure
1026 * @chip: nand chip info structure
1027 * @data_offs: offset of requested data within the page
1028 * @readlen: data length
1029 * @bufpoi: buffer to store read data
1030 * @page: page number to read
1031 */
1032 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1033 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1034 int page)
1035 {
1036 int start_step, end_step, num_steps;
1037 uint32_t *eccpos = chip->ecc.layout->eccpos;
1038 uint8_t *p;
1039 int data_col_addr, i, gaps = 0;
1040 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1041 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1042 int index;
1043 unsigned int max_bitflips = 0;
1044
1045 /* Column address within the page aligned to ECC size (256bytes) */
1046 start_step = data_offs / chip->ecc.size;
1047 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1048 num_steps = end_step - start_step + 1;
1049 index = start_step * chip->ecc.bytes;
1050
1051 /* Data size aligned to ECC ecc.size */
1052 datafrag_len = num_steps * chip->ecc.size;
1053 eccfrag_len = num_steps * chip->ecc.bytes;
1054
1055 data_col_addr = start_step * chip->ecc.size;
1056 /* If we read not a page aligned data */
1057 if (data_col_addr != 0)
1058 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1059
1060 p = bufpoi + data_col_addr;
1061 chip->read_buf(mtd, p, datafrag_len);
1062
1063 /* Calculate ECC */
1064 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1065 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1066
1067 /*
1068 * The performance is faster if we position offsets according to
1069 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1070 */
1071 for (i = 0; i < eccfrag_len - 1; i++) {
1072 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1073 gaps = 1;
1074 break;
1075 }
1076 }
1077 if (gaps) {
1078 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1079 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1080 } else {
1081 /*
1082 * Send the command to read the particular ECC bytes take care
1083 * about buswidth alignment in read_buf.
1084 */
1085 aligned_pos = eccpos[index] & ~(busw - 1);
1086 aligned_len = eccfrag_len;
1087 if (eccpos[index] & (busw - 1))
1088 aligned_len++;
1089 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1090 aligned_len++;
1091
1092 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1093 mtd->writesize + aligned_pos, -1);
1094 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1095 }
1096
1097 for (i = 0; i < eccfrag_len; i++)
1098 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1099
1100 p = bufpoi + data_col_addr;
1101 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1102 int stat;
1103
1104 stat = chip->ecc.correct(mtd, p,
1105 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1106 if (stat < 0) {
1107 mtd->ecc_stats.failed++;
1108 } else {
1109 mtd->ecc_stats.corrected += stat;
1110 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1111 }
1112 }
1113 return max_bitflips;
1114 }
1115
1116 /**
1117 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1118 * @mtd: mtd info structure
1119 * @chip: nand chip info structure
1120 * @buf: buffer to store read data
1121 * @oob_required: caller requires OOB data read to chip->oob_poi
1122 * @page: page number to read
1123 *
1124 * Not for syndrome calculating ECC controllers which need a special oob layout.
1125 */
1126 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1127 uint8_t *buf, int oob_required, int page)
1128 {
1129 int i, eccsize = chip->ecc.size;
1130 int eccbytes = chip->ecc.bytes;
1131 int eccsteps = chip->ecc.steps;
1132 uint8_t *p = buf;
1133 uint8_t *ecc_calc = chip->buffers->ecccalc;
1134 uint8_t *ecc_code = chip->buffers->ecccode;
1135 uint32_t *eccpos = chip->ecc.layout->eccpos;
1136 unsigned int max_bitflips = 0;
1137
1138 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1139 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1140 chip->read_buf(mtd, p, eccsize);
1141 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1142 }
1143 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1144
1145 for (i = 0; i < chip->ecc.total; i++)
1146 ecc_code[i] = chip->oob_poi[eccpos[i]];
1147
1148 eccsteps = chip->ecc.steps;
1149 p = buf;
1150
1151 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1152 int stat;
1153
1154 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1155 if (stat < 0) {
1156 mtd->ecc_stats.failed++;
1157 } else {
1158 mtd->ecc_stats.corrected += stat;
1159 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1160 }
1161 }
1162 return max_bitflips;
1163 }
1164
1165 /**
1166 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1167 * @mtd: mtd info structure
1168 * @chip: nand chip info structure
1169 * @buf: buffer to store read data
1170 * @oob_required: caller requires OOB data read to chip->oob_poi
1171 * @page: page number to read
1172 *
1173 * Hardware ECC for large page chips, require OOB to be read first. For this
1174 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1175 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1176 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1177 * the data area, by overwriting the NAND manufacturer bad block markings.
1178 */
1179 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1180 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1181 {
1182 int i, eccsize = chip->ecc.size;
1183 int eccbytes = chip->ecc.bytes;
1184 int eccsteps = chip->ecc.steps;
1185 uint8_t *p = buf;
1186 uint8_t *ecc_code = chip->buffers->ecccode;
1187 uint32_t *eccpos = chip->ecc.layout->eccpos;
1188 uint8_t *ecc_calc = chip->buffers->ecccalc;
1189 unsigned int max_bitflips = 0;
1190
1191 /* Read the OOB area first */
1192 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1193 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1194 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1195
1196 for (i = 0; i < chip->ecc.total; i++)
1197 ecc_code[i] = chip->oob_poi[eccpos[i]];
1198
1199 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1200 int stat;
1201
1202 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1203 chip->read_buf(mtd, p, eccsize);
1204 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1205
1206 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1207 if (stat < 0) {
1208 mtd->ecc_stats.failed++;
1209 } else {
1210 mtd->ecc_stats.corrected += stat;
1211 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1212 }
1213 }
1214 return max_bitflips;
1215 }
1216
1217 /**
1218 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1219 * @mtd: mtd info structure
1220 * @chip: nand chip info structure
1221 * @buf: buffer to store read data
1222 * @oob_required: caller requires OOB data read to chip->oob_poi
1223 * @page: page number to read
1224 *
1225 * The hw generator calculates the error syndrome automatically. Therefore we
1226 * need a special oob layout and handling.
1227 */
1228 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1229 uint8_t *buf, int oob_required, int page)
1230 {
1231 int i, eccsize = chip->ecc.size;
1232 int eccbytes = chip->ecc.bytes;
1233 int eccsteps = chip->ecc.steps;
1234 uint8_t *p = buf;
1235 uint8_t *oob = chip->oob_poi;
1236 unsigned int max_bitflips = 0;
1237
1238 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1239 int stat;
1240
1241 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1242 chip->read_buf(mtd, p, eccsize);
1243
1244 if (chip->ecc.prepad) {
1245 chip->read_buf(mtd, oob, chip->ecc.prepad);
1246 oob += chip->ecc.prepad;
1247 }
1248
1249 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1250 chip->read_buf(mtd, oob, eccbytes);
1251 stat = chip->ecc.correct(mtd, p, oob, NULL);
1252
1253 if (stat < 0) {
1254 mtd->ecc_stats.failed++;
1255 } else {
1256 mtd->ecc_stats.corrected += stat;
1257 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1258 }
1259
1260 oob += eccbytes;
1261
1262 if (chip->ecc.postpad) {
1263 chip->read_buf(mtd, oob, chip->ecc.postpad);
1264 oob += chip->ecc.postpad;
1265 }
1266 }
1267
1268 /* Calculate remaining oob bytes */
1269 i = mtd->oobsize - (oob - chip->oob_poi);
1270 if (i)
1271 chip->read_buf(mtd, oob, i);
1272
1273 return max_bitflips;
1274 }
1275
1276 /**
1277 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1278 * @chip: nand chip structure
1279 * @oob: oob destination address
1280 * @ops: oob ops structure
1281 * @len: size of oob to transfer
1282 */
1283 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1284 struct mtd_oob_ops *ops, size_t len)
1285 {
1286 switch (ops->mode) {
1287
1288 case MTD_OPS_PLACE_OOB:
1289 case MTD_OPS_RAW:
1290 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1291 return oob + len;
1292
1293 case MTD_OPS_AUTO_OOB: {
1294 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1295 uint32_t boffs = 0, roffs = ops->ooboffs;
1296 size_t bytes = 0;
1297
1298 for (; free->length && len; free++, len -= bytes) {
1299 /* Read request not from offset 0? */
1300 if (unlikely(roffs)) {
1301 if (roffs >= free->length) {
1302 roffs -= free->length;
1303 continue;
1304 }
1305 boffs = free->offset + roffs;
1306 bytes = min_t(size_t, len,
1307 (free->length - roffs));
1308 roffs = 0;
1309 } else {
1310 bytes = min_t(size_t, len, free->length);
1311 boffs = free->offset;
1312 }
1313 memcpy(oob, chip->oob_poi + boffs, bytes);
1314 oob += bytes;
1315 }
1316 return oob;
1317 }
1318 default:
1319 BUG();
1320 }
1321 return NULL;
1322 }
1323
1324 /**
1325 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1326 * @mtd: MTD device structure
1327 * @retry_mode: the retry mode to use
1328 *
1329 * Some vendors supply a special command to shift the Vt threshold, to be used
1330 * when there are too many bitflips in a page (i.e., ECC error). After setting
1331 * a new threshold, the host should retry reading the page.
1332 */
1333 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1334 {
1335 struct nand_chip *chip = mtd_to_nand(mtd);
1336
1337 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1338
1339 if (retry_mode >= chip->read_retries)
1340 return -EINVAL;
1341
1342 if (!chip->setup_read_retry)
1343 return -EOPNOTSUPP;
1344
1345 return chip->setup_read_retry(mtd, retry_mode);
1346 }
1347
1348 /**
1349 * nand_do_read_ops - [INTERN] Read data with ECC
1350 * @mtd: MTD device structure
1351 * @from: offset to read from
1352 * @ops: oob ops structure
1353 *
1354 * Internal function. Called with chip held.
1355 */
1356 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1357 struct mtd_oob_ops *ops)
1358 {
1359 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1360 struct nand_chip *chip = mtd_to_nand(mtd);
1361 int ret = 0;
1362 uint32_t readlen = ops->len;
1363 uint32_t oobreadlen = ops->ooblen;
1364 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1365 mtd->oobavail : mtd->oobsize;
1366
1367 uint8_t *bufpoi, *oob, *buf;
1368 int use_bufpoi;
1369 unsigned int max_bitflips = 0;
1370 int retry_mode = 0;
1371 bool ecc_fail = false;
1372
1373 chipnr = (int)(from >> chip->chip_shift);
1374 chip->select_chip(mtd, chipnr);
1375
1376 realpage = (int)(from >> chip->page_shift);
1377 page = realpage & chip->pagemask;
1378
1379 col = (int)(from & (mtd->writesize - 1));
1380
1381 buf = ops->datbuf;
1382 oob = ops->oobbuf;
1383 oob_required = oob ? 1 : 0;
1384
1385 while (1) {
1386 unsigned int ecc_failures = mtd->ecc_stats.failed;
1387
1388 WATCHDOG_RESET();
1389 bytes = min(mtd->writesize - col, readlen);
1390 aligned = (bytes == mtd->writesize);
1391
1392 if (!aligned)
1393 use_bufpoi = 1;
1394 else
1395 use_bufpoi = 0;
1396
1397 /* Is the current page in the buffer? */
1398 if (realpage != chip->pagebuf || oob) {
1399 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1400
1401 if (use_bufpoi && aligned)
1402 pr_debug("%s: using read bounce buffer for buf@%p\n",
1403 __func__, buf);
1404
1405 read_retry:
1406 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1407
1408 /*
1409 * Now read the page into the buffer. Absent an error,
1410 * the read methods return max bitflips per ecc step.
1411 */
1412 if (unlikely(ops->mode == MTD_OPS_RAW))
1413 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1414 oob_required,
1415 page);
1416 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1417 !oob)
1418 ret = chip->ecc.read_subpage(mtd, chip,
1419 col, bytes, bufpoi,
1420 page);
1421 else
1422 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1423 oob_required, page);
1424 if (ret < 0) {
1425 if (use_bufpoi)
1426 /* Invalidate page cache */
1427 chip->pagebuf = -1;
1428 break;
1429 }
1430
1431 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1432
1433 /* Transfer not aligned data */
1434 if (use_bufpoi) {
1435 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1436 !(mtd->ecc_stats.failed - ecc_failures) &&
1437 (ops->mode != MTD_OPS_RAW)) {
1438 chip->pagebuf = realpage;
1439 chip->pagebuf_bitflips = ret;
1440 } else {
1441 /* Invalidate page cache */
1442 chip->pagebuf = -1;
1443 }
1444 memcpy(buf, chip->buffers->databuf + col, bytes);
1445 }
1446
1447 if (unlikely(oob)) {
1448 int toread = min(oobreadlen, max_oobsize);
1449
1450 if (toread) {
1451 oob = nand_transfer_oob(chip,
1452 oob, ops, toread);
1453 oobreadlen -= toread;
1454 }
1455 }
1456
1457 if (chip->options & NAND_NEED_READRDY) {
1458 /* Apply delay or wait for ready/busy pin */
1459 if (!chip->dev_ready)
1460 udelay(chip->chip_delay);
1461 else
1462 nand_wait_ready(mtd);
1463 }
1464
1465 if (mtd->ecc_stats.failed - ecc_failures) {
1466 if (retry_mode + 1 < chip->read_retries) {
1467 retry_mode++;
1468 ret = nand_setup_read_retry(mtd,
1469 retry_mode);
1470 if (ret < 0)
1471 break;
1472
1473 /* Reset failures; retry */
1474 mtd->ecc_stats.failed = ecc_failures;
1475 goto read_retry;
1476 } else {
1477 /* No more retry modes; real failure */
1478 ecc_fail = true;
1479 }
1480 }
1481
1482 buf += bytes;
1483 } else {
1484 memcpy(buf, chip->buffers->databuf + col, bytes);
1485 buf += bytes;
1486 max_bitflips = max_t(unsigned int, max_bitflips,
1487 chip->pagebuf_bitflips);
1488 }
1489
1490 readlen -= bytes;
1491
1492 /* Reset to retry mode 0 */
1493 if (retry_mode) {
1494 ret = nand_setup_read_retry(mtd, 0);
1495 if (ret < 0)
1496 break;
1497 retry_mode = 0;
1498 }
1499
1500 if (!readlen)
1501 break;
1502
1503 /* For subsequent reads align to page boundary */
1504 col = 0;
1505 /* Increment page address */
1506 realpage++;
1507
1508 page = realpage & chip->pagemask;
1509 /* Check, if we cross a chip boundary */
1510 if (!page) {
1511 chipnr++;
1512 chip->select_chip(mtd, -1);
1513 chip->select_chip(mtd, chipnr);
1514 }
1515 }
1516 chip->select_chip(mtd, -1);
1517
1518 ops->retlen = ops->len - (size_t) readlen;
1519 if (oob)
1520 ops->oobretlen = ops->ooblen - oobreadlen;
1521
1522 if (ret < 0)
1523 return ret;
1524
1525 if (ecc_fail)
1526 return -EBADMSG;
1527
1528 return max_bitflips;
1529 }
1530
1531 /**
1532 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1533 * @mtd: MTD device structure
1534 * @from: offset to read from
1535 * @len: number of bytes to read
1536 * @retlen: pointer to variable to store the number of read bytes
1537 * @buf: the databuffer to put data
1538 *
1539 * Get hold of the chip and call nand_do_read.
1540 */
1541 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1542 size_t *retlen, uint8_t *buf)
1543 {
1544 struct mtd_oob_ops ops;
1545 int ret;
1546
1547 nand_get_device(mtd, FL_READING);
1548 memset(&ops, 0, sizeof(ops));
1549 ops.len = len;
1550 ops.datbuf = buf;
1551 ops.mode = MTD_OPS_PLACE_OOB;
1552 ret = nand_do_read_ops(mtd, from, &ops);
1553 *retlen = ops.retlen;
1554 nand_release_device(mtd);
1555 return ret;
1556 }
1557
1558 /**
1559 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1560 * @mtd: mtd info structure
1561 * @chip: nand chip info structure
1562 * @page: page number to read
1563 */
1564 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1565 int page)
1566 {
1567 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1568 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1569 return 0;
1570 }
1571
1572 /**
1573 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1574 * with syndromes
1575 * @mtd: mtd info structure
1576 * @chip: nand chip info structure
1577 * @page: page number to read
1578 */
1579 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1580 int page)
1581 {
1582 int length = mtd->oobsize;
1583 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1584 int eccsize = chip->ecc.size;
1585 uint8_t *bufpoi = chip->oob_poi;
1586 int i, toread, sndrnd = 0, pos;
1587
1588 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1589 for (i = 0; i < chip->ecc.steps; i++) {
1590 if (sndrnd) {
1591 pos = eccsize + i * (eccsize + chunk);
1592 if (mtd->writesize > 512)
1593 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1594 else
1595 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1596 } else
1597 sndrnd = 1;
1598 toread = min_t(int, length, chunk);
1599 chip->read_buf(mtd, bufpoi, toread);
1600 bufpoi += toread;
1601 length -= toread;
1602 }
1603 if (length > 0)
1604 chip->read_buf(mtd, bufpoi, length);
1605
1606 return 0;
1607 }
1608
1609 /**
1610 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1611 * @mtd: mtd info structure
1612 * @chip: nand chip info structure
1613 * @page: page number to write
1614 */
1615 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1616 int page)
1617 {
1618 int status = 0;
1619 const uint8_t *buf = chip->oob_poi;
1620 int length = mtd->oobsize;
1621
1622 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1623 chip->write_buf(mtd, buf, length);
1624 /* Send command to program the OOB data */
1625 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1626
1627 status = chip->waitfunc(mtd, chip);
1628
1629 return status & NAND_STATUS_FAIL ? -EIO : 0;
1630 }
1631
1632 /**
1633 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1634 * with syndrome - only for large page flash
1635 * @mtd: mtd info structure
1636 * @chip: nand chip info structure
1637 * @page: page number to write
1638 */
1639 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1640 struct nand_chip *chip, int page)
1641 {
1642 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1643 int eccsize = chip->ecc.size, length = mtd->oobsize;
1644 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1645 const uint8_t *bufpoi = chip->oob_poi;
1646
1647 /*
1648 * data-ecc-data-ecc ... ecc-oob
1649 * or
1650 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1651 */
1652 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1653 pos = steps * (eccsize + chunk);
1654 steps = 0;
1655 } else
1656 pos = eccsize;
1657
1658 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1659 for (i = 0; i < steps; i++) {
1660 if (sndcmd) {
1661 if (mtd->writesize <= 512) {
1662 uint32_t fill = 0xFFFFFFFF;
1663
1664 len = eccsize;
1665 while (len > 0) {
1666 int num = min_t(int, len, 4);
1667 chip->write_buf(mtd, (uint8_t *)&fill,
1668 num);
1669 len -= num;
1670 }
1671 } else {
1672 pos = eccsize + i * (eccsize + chunk);
1673 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1674 }
1675 } else
1676 sndcmd = 1;
1677 len = min_t(int, length, chunk);
1678 chip->write_buf(mtd, bufpoi, len);
1679 bufpoi += len;
1680 length -= len;
1681 }
1682 if (length > 0)
1683 chip->write_buf(mtd, bufpoi, length);
1684
1685 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1686 status = chip->waitfunc(mtd, chip);
1687
1688 return status & NAND_STATUS_FAIL ? -EIO : 0;
1689 }
1690
1691 /**
1692 * nand_do_read_oob - [INTERN] NAND read out-of-band
1693 * @mtd: MTD device structure
1694 * @from: offset to read from
1695 * @ops: oob operations description structure
1696 *
1697 * NAND read out-of-band data from the spare area.
1698 */
1699 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1700 struct mtd_oob_ops *ops)
1701 {
1702 int page, realpage, chipnr;
1703 struct nand_chip *chip = mtd_to_nand(mtd);
1704 struct mtd_ecc_stats stats;
1705 int readlen = ops->ooblen;
1706 int len;
1707 uint8_t *buf = ops->oobbuf;
1708 int ret = 0;
1709
1710 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1711 __func__, (unsigned long long)from, readlen);
1712
1713 stats = mtd->ecc_stats;
1714
1715 if (ops->mode == MTD_OPS_AUTO_OOB)
1716 len = chip->ecc.layout->oobavail;
1717 else
1718 len = mtd->oobsize;
1719
1720 if (unlikely(ops->ooboffs >= len)) {
1721 pr_debug("%s: attempt to start read outside oob\n",
1722 __func__);
1723 return -EINVAL;
1724 }
1725
1726 /* Do not allow reads past end of device */
1727 if (unlikely(from >= mtd->size ||
1728 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1729 (from >> chip->page_shift)) * len)) {
1730 pr_debug("%s: attempt to read beyond end of device\n",
1731 __func__);
1732 return -EINVAL;
1733 }
1734
1735 chipnr = (int)(from >> chip->chip_shift);
1736 chip->select_chip(mtd, chipnr);
1737
1738 /* Shift to get page */
1739 realpage = (int)(from >> chip->page_shift);
1740 page = realpage & chip->pagemask;
1741
1742 while (1) {
1743 WATCHDOG_RESET();
1744
1745 if (ops->mode == MTD_OPS_RAW)
1746 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1747 else
1748 ret = chip->ecc.read_oob(mtd, chip, page);
1749
1750 if (ret < 0)
1751 break;
1752
1753 len = min(len, readlen);
1754 buf = nand_transfer_oob(chip, buf, ops, len);
1755
1756 if (chip->options & NAND_NEED_READRDY) {
1757 /* Apply delay or wait for ready/busy pin */
1758 if (!chip->dev_ready)
1759 udelay(chip->chip_delay);
1760 else
1761 nand_wait_ready(mtd);
1762 }
1763
1764 readlen -= len;
1765 if (!readlen)
1766 break;
1767
1768 /* Increment page address */
1769 realpage++;
1770
1771 page = realpage & chip->pagemask;
1772 /* Check, if we cross a chip boundary */
1773 if (!page) {
1774 chipnr++;
1775 chip->select_chip(mtd, -1);
1776 chip->select_chip(mtd, chipnr);
1777 }
1778 }
1779 chip->select_chip(mtd, -1);
1780
1781 ops->oobretlen = ops->ooblen - readlen;
1782
1783 if (ret < 0)
1784 return ret;
1785
1786 if (mtd->ecc_stats.failed - stats.failed)
1787 return -EBADMSG;
1788
1789 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1790 }
1791
1792 /**
1793 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1794 * @mtd: MTD device structure
1795 * @from: offset to read from
1796 * @ops: oob operation description structure
1797 *
1798 * NAND read data and/or out-of-band data.
1799 */
1800 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1801 struct mtd_oob_ops *ops)
1802 {
1803 int ret = -ENOTSUPP;
1804
1805 ops->retlen = 0;
1806
1807 /* Do not allow reads past end of device */
1808 if (ops->datbuf && (from + ops->len) > mtd->size) {
1809 pr_debug("%s: attempt to read beyond end of device\n",
1810 __func__);
1811 return -EINVAL;
1812 }
1813
1814 nand_get_device(mtd, FL_READING);
1815
1816 switch (ops->mode) {
1817 case MTD_OPS_PLACE_OOB:
1818 case MTD_OPS_AUTO_OOB:
1819 case MTD_OPS_RAW:
1820 break;
1821
1822 default:
1823 goto out;
1824 }
1825
1826 if (!ops->datbuf)
1827 ret = nand_do_read_oob(mtd, from, ops);
1828 else
1829 ret = nand_do_read_ops(mtd, from, ops);
1830
1831 out:
1832 nand_release_device(mtd);
1833 return ret;
1834 }
1835
1836
1837 /**
1838 * nand_write_page_raw - [INTERN] raw page write function
1839 * @mtd: mtd info structure
1840 * @chip: nand chip info structure
1841 * @buf: data buffer
1842 * @oob_required: must write chip->oob_poi to OOB
1843 * @page: page number to write
1844 *
1845 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1846 */
1847 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1848 const uint8_t *buf, int oob_required,
1849 int page)
1850 {
1851 chip->write_buf(mtd, buf, mtd->writesize);
1852 if (oob_required)
1853 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1854
1855 return 0;
1856 }
1857
1858 /**
1859 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1860 * @mtd: mtd info structure
1861 * @chip: nand chip info structure
1862 * @buf: data buffer
1863 * @oob_required: must write chip->oob_poi to OOB
1864 *
1865 * We need a special oob layout and handling even when ECC isn't checked.
1866 */
1867 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1868 struct nand_chip *chip,
1869 const uint8_t *buf, int oob_required,
1870 int page)
1871 {
1872 int eccsize = chip->ecc.size;
1873 int eccbytes = chip->ecc.bytes;
1874 uint8_t *oob = chip->oob_poi;
1875 int steps, size;
1876
1877 for (steps = chip->ecc.steps; steps > 0; steps--) {
1878 chip->write_buf(mtd, buf, eccsize);
1879 buf += eccsize;
1880
1881 if (chip->ecc.prepad) {
1882 chip->write_buf(mtd, oob, chip->ecc.prepad);
1883 oob += chip->ecc.prepad;
1884 }
1885
1886 chip->write_buf(mtd, oob, eccbytes);
1887 oob += eccbytes;
1888
1889 if (chip->ecc.postpad) {
1890 chip->write_buf(mtd, oob, chip->ecc.postpad);
1891 oob += chip->ecc.postpad;
1892 }
1893 }
1894
1895 size = mtd->oobsize - (oob - chip->oob_poi);
1896 if (size)
1897 chip->write_buf(mtd, oob, size);
1898
1899 return 0;
1900 }
1901 /**
1902 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1903 * @mtd: mtd info structure
1904 * @chip: nand chip info structure
1905 * @buf: data buffer
1906 * @oob_required: must write chip->oob_poi to OOB
1907 * @page: page number to write
1908 */
1909 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1910 const uint8_t *buf, int oob_required,
1911 int page)
1912 {
1913 int i, eccsize = chip->ecc.size;
1914 int eccbytes = chip->ecc.bytes;
1915 int eccsteps = chip->ecc.steps;
1916 uint8_t *ecc_calc = chip->buffers->ecccalc;
1917 const uint8_t *p = buf;
1918 uint32_t *eccpos = chip->ecc.layout->eccpos;
1919
1920 /* Software ECC calculation */
1921 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1922 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1923
1924 for (i = 0; i < chip->ecc.total; i++)
1925 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1926
1927 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
1928 }
1929
1930 /**
1931 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1932 * @mtd: mtd info structure
1933 * @chip: nand chip info structure
1934 * @buf: data buffer
1935 * @oob_required: must write chip->oob_poi to OOB
1936 * @page: page number to write
1937 */
1938 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1939 const uint8_t *buf, int oob_required,
1940 int page)
1941 {
1942 int i, eccsize = chip->ecc.size;
1943 int eccbytes = chip->ecc.bytes;
1944 int eccsteps = chip->ecc.steps;
1945 uint8_t *ecc_calc = chip->buffers->ecccalc;
1946 const uint8_t *p = buf;
1947 uint32_t *eccpos = chip->ecc.layout->eccpos;
1948
1949 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1950 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1951 chip->write_buf(mtd, p, eccsize);
1952 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1953 }
1954
1955 for (i = 0; i < chip->ecc.total; i++)
1956 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1957
1958 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1959
1960 return 0;
1961 }
1962
1963
1964 /**
1965 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
1966 * @mtd: mtd info structure
1967 * @chip: nand chip info structure
1968 * @offset: column address of subpage within the page
1969 * @data_len: data length
1970 * @buf: data buffer
1971 * @oob_required: must write chip->oob_poi to OOB
1972 * @page: page number to write
1973 */
1974 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1975 struct nand_chip *chip, uint32_t offset,
1976 uint32_t data_len, const uint8_t *buf,
1977 int oob_required, int page)
1978 {
1979 uint8_t *oob_buf = chip->oob_poi;
1980 uint8_t *ecc_calc = chip->buffers->ecccalc;
1981 int ecc_size = chip->ecc.size;
1982 int ecc_bytes = chip->ecc.bytes;
1983 int ecc_steps = chip->ecc.steps;
1984 uint32_t *eccpos = chip->ecc.layout->eccpos;
1985 uint32_t start_step = offset / ecc_size;
1986 uint32_t end_step = (offset + data_len - 1) / ecc_size;
1987 int oob_bytes = mtd->oobsize / ecc_steps;
1988 int step, i;
1989
1990 for (step = 0; step < ecc_steps; step++) {
1991 /* configure controller for WRITE access */
1992 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1993
1994 /* write data (untouched subpages already masked by 0xFF) */
1995 chip->write_buf(mtd, buf, ecc_size);
1996
1997 /* mask ECC of un-touched subpages by padding 0xFF */
1998 if ((step < start_step) || (step > end_step))
1999 memset(ecc_calc, 0xff, ecc_bytes);
2000 else
2001 chip->ecc.calculate(mtd, buf, ecc_calc);
2002
2003 /* mask OOB of un-touched subpages by padding 0xFF */
2004 /* if oob_required, preserve OOB metadata of written subpage */
2005 if (!oob_required || (step < start_step) || (step > end_step))
2006 memset(oob_buf, 0xff, oob_bytes);
2007
2008 buf += ecc_size;
2009 ecc_calc += ecc_bytes;
2010 oob_buf += oob_bytes;
2011 }
2012
2013 /* copy calculated ECC for whole page to chip->buffer->oob */
2014 /* this include masked-value(0xFF) for unwritten subpages */
2015 ecc_calc = chip->buffers->ecccalc;
2016 for (i = 0; i < chip->ecc.total; i++)
2017 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2018
2019 /* write OOB buffer to NAND device */
2020 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2021
2022 return 0;
2023 }
2024
2025
2026 /**
2027 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2028 * @mtd: mtd info structure
2029 * @chip: nand chip info structure
2030 * @buf: data buffer
2031 * @oob_required: must write chip->oob_poi to OOB
2032 *
2033 * The hw generator calculates the error syndrome automatically. Therefore we
2034 * need a special oob layout and handling.
2035 */
2036 static int nand_write_page_syndrome(struct mtd_info *mtd,
2037 struct nand_chip *chip,
2038 const uint8_t *buf, int oob_required,
2039 int page)
2040 {
2041 int i, eccsize = chip->ecc.size;
2042 int eccbytes = chip->ecc.bytes;
2043 int eccsteps = chip->ecc.steps;
2044 const uint8_t *p = buf;
2045 uint8_t *oob = chip->oob_poi;
2046
2047 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2048
2049 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2050 chip->write_buf(mtd, p, eccsize);
2051
2052 if (chip->ecc.prepad) {
2053 chip->write_buf(mtd, oob, chip->ecc.prepad);
2054 oob += chip->ecc.prepad;
2055 }
2056
2057 chip->ecc.calculate(mtd, p, oob);
2058 chip->write_buf(mtd, oob, eccbytes);
2059 oob += eccbytes;
2060
2061 if (chip->ecc.postpad) {
2062 chip->write_buf(mtd, oob, chip->ecc.postpad);
2063 oob += chip->ecc.postpad;
2064 }
2065 }
2066
2067 /* Calculate remaining oob bytes */
2068 i = mtd->oobsize - (oob - chip->oob_poi);
2069 if (i)
2070 chip->write_buf(mtd, oob, i);
2071
2072 return 0;
2073 }
2074
2075 /**
2076 * nand_write_page - [REPLACEABLE] write one page
2077 * @mtd: MTD device structure
2078 * @chip: NAND chip descriptor
2079 * @offset: address offset within the page
2080 * @data_len: length of actual data to be written
2081 * @buf: the data to write
2082 * @oob_required: must write chip->oob_poi to OOB
2083 * @page: page number to write
2084 * @cached: cached programming
2085 * @raw: use _raw version of write_page
2086 */
2087 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2088 uint32_t offset, int data_len, const uint8_t *buf,
2089 int oob_required, int page, int cached, int raw)
2090 {
2091 int status, subpage;
2092
2093 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2094 chip->ecc.write_subpage)
2095 subpage = offset || (data_len < mtd->writesize);
2096 else
2097 subpage = 0;
2098
2099 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2100
2101 if (unlikely(raw))
2102 status = chip->ecc.write_page_raw(mtd, chip, buf,
2103 oob_required, page);
2104 else if (subpage)
2105 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2106 buf, oob_required, page);
2107 else
2108 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2109 page);
2110
2111 if (status < 0)
2112 return status;
2113
2114 /*
2115 * Cached progamming disabled for now. Not sure if it's worth the
2116 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2117 */
2118 cached = 0;
2119
2120 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2121
2122 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2123 status = chip->waitfunc(mtd, chip);
2124 /*
2125 * See if operation failed and additional status checks are
2126 * available.
2127 */
2128 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2129 status = chip->errstat(mtd, chip, FL_WRITING, status,
2130 page);
2131
2132 if (status & NAND_STATUS_FAIL)
2133 return -EIO;
2134 } else {
2135 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2136 status = chip->waitfunc(mtd, chip);
2137 }
2138
2139 return 0;
2140 }
2141
2142 /**
2143 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2144 * @mtd: MTD device structure
2145 * @oob: oob data buffer
2146 * @len: oob data write length
2147 * @ops: oob ops structure
2148 * @page: page number to write
2149 */
2150 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2151 struct mtd_oob_ops *ops)
2152 {
2153 struct nand_chip *chip = mtd_to_nand(mtd);
2154
2155 /*
2156 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2157 * data from a previous OOB read.
2158 */
2159 memset(chip->oob_poi, 0xff, mtd->oobsize);
2160
2161 switch (ops->mode) {
2162
2163 case MTD_OPS_PLACE_OOB:
2164 case MTD_OPS_RAW:
2165 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2166 return oob + len;
2167
2168 case MTD_OPS_AUTO_OOB: {
2169 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2170 uint32_t boffs = 0, woffs = ops->ooboffs;
2171 size_t bytes = 0;
2172
2173 for (; free->length && len; free++, len -= bytes) {
2174 /* Write request not from offset 0? */
2175 if (unlikely(woffs)) {
2176 if (woffs >= free->length) {
2177 woffs -= free->length;
2178 continue;
2179 }
2180 boffs = free->offset + woffs;
2181 bytes = min_t(size_t, len,
2182 (free->length - woffs));
2183 woffs = 0;
2184 } else {
2185 bytes = min_t(size_t, len, free->length);
2186 boffs = free->offset;
2187 }
2188 memcpy(chip->oob_poi + boffs, oob, bytes);
2189 oob += bytes;
2190 }
2191 return oob;
2192 }
2193 default:
2194 BUG();
2195 }
2196 return NULL;
2197 }
2198
2199 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2200
2201 /**
2202 * nand_do_write_ops - [INTERN] NAND write with ECC
2203 * @mtd: MTD device structure
2204 * @to: offset to write to
2205 * @ops: oob operations description structure
2206 *
2207 * NAND write with ECC.
2208 */
2209 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2210 struct mtd_oob_ops *ops)
2211 {
2212 int chipnr, realpage, page, blockmask, column;
2213 struct nand_chip *chip = mtd_to_nand(mtd);
2214 uint32_t writelen = ops->len;
2215
2216 uint32_t oobwritelen = ops->ooblen;
2217 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2218 mtd->oobavail : mtd->oobsize;
2219
2220 uint8_t *oob = ops->oobbuf;
2221 uint8_t *buf = ops->datbuf;
2222 int ret;
2223 int oob_required = oob ? 1 : 0;
2224
2225 ops->retlen = 0;
2226 if (!writelen)
2227 return 0;
2228
2229 /* Reject writes, which are not page aligned */
2230 if (NOTALIGNED(to)) {
2231 pr_notice("%s: attempt to write non page aligned data\n",
2232 __func__);
2233 return -EINVAL;
2234 }
2235
2236 column = to & (mtd->writesize - 1);
2237
2238 chipnr = (int)(to >> chip->chip_shift);
2239 chip->select_chip(mtd, chipnr);
2240
2241 /* Check, if it is write protected */
2242 if (nand_check_wp(mtd)) {
2243 ret = -EIO;
2244 goto err_out;
2245 }
2246
2247 realpage = (int)(to >> chip->page_shift);
2248 page = realpage & chip->pagemask;
2249 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2250
2251 /* Invalidate the page cache, when we write to the cached page */
2252 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2253 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2254 chip->pagebuf = -1;
2255
2256 /* Don't allow multipage oob writes with offset */
2257 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2258 ret = -EINVAL;
2259 goto err_out;
2260 }
2261
2262 while (1) {
2263 int bytes = mtd->writesize;
2264 int cached = writelen > bytes && page != blockmask;
2265 uint8_t *wbuf = buf;
2266 int use_bufpoi;
2267 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2268
2269 if (part_pagewr)
2270 use_bufpoi = 1;
2271 else
2272 use_bufpoi = 0;
2273
2274 WATCHDOG_RESET();
2275 /* Partial page write?, or need to use bounce buffer */
2276 if (use_bufpoi) {
2277 pr_debug("%s: using write bounce buffer for buf@%p\n",
2278 __func__, buf);
2279 cached = 0;
2280 if (part_pagewr)
2281 bytes = min_t(int, bytes - column, writelen);
2282 chip->pagebuf = -1;
2283 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2284 memcpy(&chip->buffers->databuf[column], buf, bytes);
2285 wbuf = chip->buffers->databuf;
2286 }
2287
2288 if (unlikely(oob)) {
2289 size_t len = min(oobwritelen, oobmaxlen);
2290 oob = nand_fill_oob(mtd, oob, len, ops);
2291 oobwritelen -= len;
2292 } else {
2293 /* We still need to erase leftover OOB data */
2294 memset(chip->oob_poi, 0xff, mtd->oobsize);
2295 }
2296 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2297 oob_required, page, cached,
2298 (ops->mode == MTD_OPS_RAW));
2299 if (ret)
2300 break;
2301
2302 writelen -= bytes;
2303 if (!writelen)
2304 break;
2305
2306 column = 0;
2307 buf += bytes;
2308 realpage++;
2309
2310 page = realpage & chip->pagemask;
2311 /* Check, if we cross a chip boundary */
2312 if (!page) {
2313 chipnr++;
2314 chip->select_chip(mtd, -1);
2315 chip->select_chip(mtd, chipnr);
2316 }
2317 }
2318
2319 ops->retlen = ops->len - writelen;
2320 if (unlikely(oob))
2321 ops->oobretlen = ops->ooblen;
2322
2323 err_out:
2324 chip->select_chip(mtd, -1);
2325 return ret;
2326 }
2327
2328 /**
2329 * panic_nand_write - [MTD Interface] NAND write with ECC
2330 * @mtd: MTD device structure
2331 * @to: offset to write to
2332 * @len: number of bytes to write
2333 * @retlen: pointer to variable to store the number of written bytes
2334 * @buf: the data to write
2335 *
2336 * NAND write with ECC. Used when performing writes in interrupt context, this
2337 * may for example be called by mtdoops when writing an oops while in panic.
2338 */
2339 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2340 size_t *retlen, const uint8_t *buf)
2341 {
2342 struct nand_chip *chip = mtd_to_nand(mtd);
2343 struct mtd_oob_ops ops;
2344 int ret;
2345
2346 /* Wait for the device to get ready */
2347 panic_nand_wait(mtd, chip, 400);
2348
2349 /* Grab the device */
2350 panic_nand_get_device(chip, mtd, FL_WRITING);
2351
2352 memset(&ops, 0, sizeof(ops));
2353 ops.len = len;
2354 ops.datbuf = (uint8_t *)buf;
2355 ops.mode = MTD_OPS_PLACE_OOB;
2356
2357 ret = nand_do_write_ops(mtd, to, &ops);
2358
2359 *retlen = ops.retlen;
2360 return ret;
2361 }
2362
2363 /**
2364 * nand_write - [MTD Interface] NAND write with ECC
2365 * @mtd: MTD device structure
2366 * @to: offset to write to
2367 * @len: number of bytes to write
2368 * @retlen: pointer to variable to store the number of written bytes
2369 * @buf: the data to write
2370 *
2371 * NAND write with ECC.
2372 */
2373 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2374 size_t *retlen, const uint8_t *buf)
2375 {
2376 struct mtd_oob_ops ops;
2377 int ret;
2378
2379 nand_get_device(mtd, FL_WRITING);
2380 memset(&ops, 0, sizeof(ops));
2381 ops.len = len;
2382 ops.datbuf = (uint8_t *)buf;
2383 ops.mode = MTD_OPS_PLACE_OOB;
2384 ret = nand_do_write_ops(mtd, to, &ops);
2385 *retlen = ops.retlen;
2386 nand_release_device(mtd);
2387 return ret;
2388 }
2389
2390 /**
2391 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2392 * @mtd: MTD device structure
2393 * @to: offset to write to
2394 * @ops: oob operation description structure
2395 *
2396 * NAND write out-of-band.
2397 */
2398 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2399 struct mtd_oob_ops *ops)
2400 {
2401 int chipnr, page, status, len;
2402 struct nand_chip *chip = mtd_to_nand(mtd);
2403
2404 pr_debug("%s: to = 0x%08x, len = %i\n",
2405 __func__, (unsigned int)to, (int)ops->ooblen);
2406
2407 if (ops->mode == MTD_OPS_AUTO_OOB)
2408 len = chip->ecc.layout->oobavail;
2409 else
2410 len = mtd->oobsize;
2411
2412 /* Do not allow write past end of page */
2413 if ((ops->ooboffs + ops->ooblen) > len) {
2414 pr_debug("%s: attempt to write past end of page\n",
2415 __func__);
2416 return -EINVAL;
2417 }
2418
2419 if (unlikely(ops->ooboffs >= len)) {
2420 pr_debug("%s: attempt to start write outside oob\n",
2421 __func__);
2422 return -EINVAL;
2423 }
2424
2425 /* Do not allow write past end of device */
2426 if (unlikely(to >= mtd->size ||
2427 ops->ooboffs + ops->ooblen >
2428 ((mtd->size >> chip->page_shift) -
2429 (to >> chip->page_shift)) * len)) {
2430 pr_debug("%s: attempt to write beyond end of device\n",
2431 __func__);
2432 return -EINVAL;
2433 }
2434
2435 chipnr = (int)(to >> chip->chip_shift);
2436 chip->select_chip(mtd, chipnr);
2437
2438 /* Shift to get page */
2439 page = (int)(to >> chip->page_shift);
2440
2441 /*
2442 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2443 * of my DiskOnChip 2000 test units) will clear the whole data page too
2444 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2445 * it in the doc2000 driver in August 1999. dwmw2.
2446 */
2447 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2448
2449 /* Check, if it is write protected */
2450 if (nand_check_wp(mtd)) {
2451 chip->select_chip(mtd, -1);
2452 return -EROFS;
2453 }
2454
2455 /* Invalidate the page cache, if we write to the cached page */
2456 if (page == chip->pagebuf)
2457 chip->pagebuf = -1;
2458
2459 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2460
2461 if (ops->mode == MTD_OPS_RAW)
2462 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2463 else
2464 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2465
2466 chip->select_chip(mtd, -1);
2467
2468 if (status)
2469 return status;
2470
2471 ops->oobretlen = ops->ooblen;
2472
2473 return 0;
2474 }
2475
2476 /**
2477 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2478 * @mtd: MTD device structure
2479 * @to: offset to write to
2480 * @ops: oob operation description structure
2481 */
2482 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2483 struct mtd_oob_ops *ops)
2484 {
2485 int ret = -ENOTSUPP;
2486
2487 ops->retlen = 0;
2488
2489 /* Do not allow writes past end of device */
2490 if (ops->datbuf && (to + ops->len) > mtd->size) {
2491 pr_debug("%s: attempt to write beyond end of device\n",
2492 __func__);
2493 return -EINVAL;
2494 }
2495
2496 nand_get_device(mtd, FL_WRITING);
2497
2498 switch (ops->mode) {
2499 case MTD_OPS_PLACE_OOB:
2500 case MTD_OPS_AUTO_OOB:
2501 case MTD_OPS_RAW:
2502 break;
2503
2504 default:
2505 goto out;
2506 }
2507
2508 if (!ops->datbuf)
2509 ret = nand_do_write_oob(mtd, to, ops);
2510 else
2511 ret = nand_do_write_ops(mtd, to, ops);
2512
2513 out:
2514 nand_release_device(mtd);
2515 return ret;
2516 }
2517
2518 /**
2519 * single_erase - [GENERIC] NAND standard block erase command function
2520 * @mtd: MTD device structure
2521 * @page: the page address of the block which will be erased
2522 *
2523 * Standard erase command for NAND chips. Returns NAND status.
2524 */
2525 static int single_erase(struct mtd_info *mtd, int page)
2526 {
2527 struct nand_chip *chip = mtd_to_nand(mtd);
2528 /* Send commands to erase a block */
2529 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2530 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2531
2532 return chip->waitfunc(mtd, chip);
2533 }
2534
2535 /**
2536 * nand_erase - [MTD Interface] erase block(s)
2537 * @mtd: MTD device structure
2538 * @instr: erase instruction
2539 *
2540 * Erase one ore more blocks.
2541 */
2542 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2543 {
2544 return nand_erase_nand(mtd, instr, 0);
2545 }
2546
2547 /**
2548 * nand_erase_nand - [INTERN] erase block(s)
2549 * @mtd: MTD device structure
2550 * @instr: erase instruction
2551 * @allowbbt: allow erasing the bbt area
2552 *
2553 * Erase one ore more blocks.
2554 */
2555 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2556 int allowbbt)
2557 {
2558 int page, status, pages_per_block, ret, chipnr;
2559 struct nand_chip *chip = mtd_to_nand(mtd);
2560 loff_t len;
2561
2562 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2563 __func__, (unsigned long long)instr->addr,
2564 (unsigned long long)instr->len);
2565
2566 if (check_offs_len(mtd, instr->addr, instr->len))
2567 return -EINVAL;
2568
2569 /* Grab the lock and see if the device is available */
2570 nand_get_device(mtd, FL_ERASING);
2571
2572 /* Shift to get first page */
2573 page = (int)(instr->addr >> chip->page_shift);
2574 chipnr = (int)(instr->addr >> chip->chip_shift);
2575
2576 /* Calculate pages in each block */
2577 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2578
2579 /* Select the NAND device */
2580 chip->select_chip(mtd, chipnr);
2581
2582 /* Check, if it is write protected */
2583 if (nand_check_wp(mtd)) {
2584 pr_debug("%s: device is write protected!\n",
2585 __func__);
2586 instr->state = MTD_ERASE_FAILED;
2587 goto erase_exit;
2588 }
2589
2590 /* Loop through the pages */
2591 len = instr->len;
2592
2593 instr->state = MTD_ERASING;
2594
2595 while (len) {
2596 WATCHDOG_RESET();
2597
2598 /* Check if we have a bad block, we do not erase bad blocks! */
2599 if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2600 chip->page_shift, 0, allowbbt)) {
2601 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2602 __func__, page);
2603 instr->state = MTD_ERASE_FAILED;
2604 goto erase_exit;
2605 }
2606
2607 /*
2608 * Invalidate the page cache, if we erase the block which
2609 * contains the current cached page.
2610 */
2611 if (page <= chip->pagebuf && chip->pagebuf <
2612 (page + pages_per_block))
2613 chip->pagebuf = -1;
2614
2615 status = chip->erase(mtd, page & chip->pagemask);
2616
2617 /*
2618 * See if operation failed and additional status checks are
2619 * available
2620 */
2621 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2622 status = chip->errstat(mtd, chip, FL_ERASING,
2623 status, page);
2624
2625 /* See if block erase succeeded */
2626 if (status & NAND_STATUS_FAIL) {
2627 pr_debug("%s: failed erase, page 0x%08x\n",
2628 __func__, page);
2629 instr->state = MTD_ERASE_FAILED;
2630 instr->fail_addr =
2631 ((loff_t)page << chip->page_shift);
2632 goto erase_exit;
2633 }
2634
2635 /* Increment page address and decrement length */
2636 len -= (1ULL << chip->phys_erase_shift);
2637 page += pages_per_block;
2638
2639 /* Check, if we cross a chip boundary */
2640 if (len && !(page & chip->pagemask)) {
2641 chipnr++;
2642 chip->select_chip(mtd, -1);
2643 chip->select_chip(mtd, chipnr);
2644 }
2645 }
2646 instr->state = MTD_ERASE_DONE;
2647
2648 erase_exit:
2649
2650 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2651
2652 /* Deselect and wake up anyone waiting on the device */
2653 chip->select_chip(mtd, -1);
2654 nand_release_device(mtd);
2655
2656 /* Do call back function */
2657 if (!ret)
2658 mtd_erase_callback(instr);
2659
2660 /* Return more or less happy */
2661 return ret;
2662 }
2663
2664 /**
2665 * nand_sync - [MTD Interface] sync
2666 * @mtd: MTD device structure
2667 *
2668 * Sync is actually a wait for chip ready function.
2669 */
2670 static void nand_sync(struct mtd_info *mtd)
2671 {
2672 pr_debug("%s: called\n", __func__);
2673
2674 /* Grab the lock and see if the device is available */
2675 nand_get_device(mtd, FL_SYNCING);
2676 /* Release it and go back */
2677 nand_release_device(mtd);
2678 }
2679
2680 /**
2681 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2682 * @mtd: MTD device structure
2683 * @offs: offset relative to mtd start
2684 */
2685 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2686 {
2687 return nand_block_checkbad(mtd, offs, 1, 0);
2688 }
2689
2690 /**
2691 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2692 * @mtd: MTD device structure
2693 * @ofs: offset relative to mtd start
2694 */
2695 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2696 {
2697 int ret;
2698
2699 ret = nand_block_isbad(mtd, ofs);
2700 if (ret) {
2701 /* If it was bad already, return success and do nothing */
2702 if (ret > 0)
2703 return 0;
2704 return ret;
2705 }
2706
2707 return nand_block_markbad_lowlevel(mtd, ofs);
2708 }
2709
2710 /**
2711 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2712 * @mtd: MTD device structure
2713 * @chip: nand chip info structure
2714 * @addr: feature address.
2715 * @subfeature_param: the subfeature parameters, a four bytes array.
2716 */
2717 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2718 int addr, uint8_t *subfeature_param)
2719 {
2720 int status;
2721 int i;
2722
2723 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2724 if (!chip->onfi_version ||
2725 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2726 & ONFI_OPT_CMD_SET_GET_FEATURES))
2727 return -EINVAL;
2728 #endif
2729
2730 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2731 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2732 chip->write_byte(mtd, subfeature_param[i]);
2733
2734 status = chip->waitfunc(mtd, chip);
2735 if (status & NAND_STATUS_FAIL)
2736 return -EIO;
2737 return 0;
2738 }
2739
2740 /**
2741 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2742 * @mtd: MTD device structure
2743 * @chip: nand chip info structure
2744 * @addr: feature address.
2745 * @subfeature_param: the subfeature parameters, a four bytes array.
2746 */
2747 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2748 int addr, uint8_t *subfeature_param)
2749 {
2750 int i;
2751
2752 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2753 if (!chip->onfi_version ||
2754 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2755 & ONFI_OPT_CMD_SET_GET_FEATURES))
2756 return -EINVAL;
2757 #endif
2758
2759 /* clear the sub feature parameters */
2760 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2761
2762 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2763 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2764 *subfeature_param++ = chip->read_byte(mtd);
2765 return 0;
2766 }
2767
2768 /* Set default functions */
2769 static void nand_set_defaults(struct nand_chip *chip, int busw)
2770 {
2771 /* check for proper chip_delay setup, set 20us if not */
2772 if (!chip->chip_delay)
2773 chip->chip_delay = 20;
2774
2775 /* check, if a user supplied command function given */
2776 if (chip->cmdfunc == NULL)
2777 chip->cmdfunc = nand_command;
2778
2779 /* check, if a user supplied wait function given */
2780 if (chip->waitfunc == NULL)
2781 chip->waitfunc = nand_wait;
2782
2783 if (!chip->select_chip)
2784 chip->select_chip = nand_select_chip;
2785
2786 /* set for ONFI nand */
2787 if (!chip->onfi_set_features)
2788 chip->onfi_set_features = nand_onfi_set_features;
2789 if (!chip->onfi_get_features)
2790 chip->onfi_get_features = nand_onfi_get_features;
2791
2792 /* If called twice, pointers that depend on busw may need to be reset */
2793 if (!chip->read_byte || chip->read_byte == nand_read_byte)
2794 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2795 if (!chip->read_word)
2796 chip->read_word = nand_read_word;
2797 if (!chip->block_bad)
2798 chip->block_bad = nand_block_bad;
2799 if (!chip->block_markbad)
2800 chip->block_markbad = nand_default_block_markbad;
2801 if (!chip->write_buf || chip->write_buf == nand_write_buf)
2802 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2803 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2804 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2805 if (!chip->read_buf || chip->read_buf == nand_read_buf)
2806 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2807 if (!chip->scan_bbt)
2808 chip->scan_bbt = nand_default_bbt;
2809
2810 if (!chip->controller) {
2811 chip->controller = &chip->hwcontrol;
2812 spin_lock_init(&chip->controller->lock);
2813 init_waitqueue_head(&chip->controller->wq);
2814 }
2815
2816 }
2817
2818 /* Sanitize ONFI strings so we can safely print them */
2819 static void sanitize_string(char *s, size_t len)
2820 {
2821 ssize_t i;
2822
2823 /* Null terminate */
2824 s[len - 1] = 0;
2825
2826 /* Remove non printable chars */
2827 for (i = 0; i < len - 1; i++) {
2828 if (s[i] < ' ' || s[i] > 127)
2829 s[i] = '?';
2830 }
2831
2832 /* Remove trailing spaces */
2833 strim(s);
2834 }
2835
2836 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2837 {
2838 int i;
2839 while (len--) {
2840 crc ^= *p++ << 8;
2841 for (i = 0; i < 8; i++)
2842 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2843 }
2844
2845 return crc;
2846 }
2847
2848 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2849 /* Parse the Extended Parameter Page. */
2850 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2851 struct nand_chip *chip, struct nand_onfi_params *p)
2852 {
2853 struct onfi_ext_param_page *ep;
2854 struct onfi_ext_section *s;
2855 struct onfi_ext_ecc_info *ecc;
2856 uint8_t *cursor;
2857 int ret = -EINVAL;
2858 int len;
2859 int i;
2860
2861 len = le16_to_cpu(p->ext_param_page_length) * 16;
2862 ep = kmalloc(len, GFP_KERNEL);
2863 if (!ep)
2864 return -ENOMEM;
2865
2866 /* Send our own NAND_CMD_PARAM. */
2867 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2868
2869 /* Use the Change Read Column command to skip the ONFI param pages. */
2870 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2871 sizeof(*p) * p->num_of_param_pages , -1);
2872
2873 /* Read out the Extended Parameter Page. */
2874 chip->read_buf(mtd, (uint8_t *)ep, len);
2875 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2876 != le16_to_cpu(ep->crc))) {
2877 pr_debug("fail in the CRC.\n");
2878 goto ext_out;
2879 }
2880
2881 /*
2882 * Check the signature.
2883 * Do not strictly follow the ONFI spec, maybe changed in future.
2884 */
2885 if (strncmp((char *)ep->sig, "EPPS", 4)) {
2886 pr_debug("The signature is invalid.\n");
2887 goto ext_out;
2888 }
2889
2890 /* find the ECC section. */
2891 cursor = (uint8_t *)(ep + 1);
2892 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
2893 s = ep->sections + i;
2894 if (s->type == ONFI_SECTION_TYPE_2)
2895 break;
2896 cursor += s->length * 16;
2897 }
2898 if (i == ONFI_EXT_SECTION_MAX) {
2899 pr_debug("We can not find the ECC section.\n");
2900 goto ext_out;
2901 }
2902
2903 /* get the info we want. */
2904 ecc = (struct onfi_ext_ecc_info *)cursor;
2905
2906 if (!ecc->codeword_size) {
2907 pr_debug("Invalid codeword size\n");
2908 goto ext_out;
2909 }
2910
2911 chip->ecc_strength_ds = ecc->ecc_bits;
2912 chip->ecc_step_ds = 1 << ecc->codeword_size;
2913 ret = 0;
2914
2915 ext_out:
2916 kfree(ep);
2917 return ret;
2918 }
2919
2920 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
2921 {
2922 struct nand_chip *chip = mtd_to_nand(mtd);
2923 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
2924
2925 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
2926 feature);
2927 }
2928
2929 /*
2930 * Configure chip properties from Micron vendor-specific ONFI table
2931 */
2932 static void nand_onfi_detect_micron(struct nand_chip *chip,
2933 struct nand_onfi_params *p)
2934 {
2935 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
2936
2937 if (le16_to_cpu(p->vendor_revision) < 1)
2938 return;
2939
2940 chip->read_retries = micron->read_retry_options;
2941 chip->setup_read_retry = nand_setup_read_retry_micron;
2942 }
2943
2944 /*
2945 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2946 */
2947 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2948 int *busw)
2949 {
2950 struct nand_onfi_params *p = &chip->onfi_params;
2951 int i, j;
2952 int val;
2953
2954 /* Try ONFI for unknown chip or LP */
2955 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2956 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2957 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2958 return 0;
2959
2960 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2961 for (i = 0; i < 3; i++) {
2962 for (j = 0; j < sizeof(*p); j++)
2963 ((uint8_t *)p)[j] = chip->read_byte(mtd);
2964 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2965 le16_to_cpu(p->crc)) {
2966 break;
2967 }
2968 }
2969
2970 if (i == 3) {
2971 pr_err("Could not find valid ONFI parameter page; aborting\n");
2972 return 0;
2973 }
2974
2975 /* Check version */
2976 val = le16_to_cpu(p->revision);
2977 if (val & (1 << 5))
2978 chip->onfi_version = 23;
2979 else if (val & (1 << 4))
2980 chip->onfi_version = 22;
2981 else if (val & (1 << 3))
2982 chip->onfi_version = 21;
2983 else if (val & (1 << 2))
2984 chip->onfi_version = 20;
2985 else if (val & (1 << 1))
2986 chip->onfi_version = 10;
2987
2988 if (!chip->onfi_version) {
2989 pr_info("unsupported ONFI version: %d\n", val);
2990 return 0;
2991 }
2992
2993 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2994 sanitize_string(p->model, sizeof(p->model));
2995 if (!mtd->name)
2996 mtd->name = p->model;
2997
2998 mtd->writesize = le32_to_cpu(p->byte_per_page);
2999
3000 /*
3001 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3002 * (don't ask me who thought of this...). MTD assumes that these
3003 * dimensions will be power-of-2, so just truncate the remaining area.
3004 */
3005 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3006 mtd->erasesize *= mtd->writesize;
3007
3008 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3009
3010 /* See erasesize comment */
3011 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3012 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3013 chip->bits_per_cell = p->bits_per_cell;
3014
3015 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3016 *busw = NAND_BUSWIDTH_16;
3017 else
3018 *busw = 0;
3019
3020 if (p->ecc_bits != 0xff) {
3021 chip->ecc_strength_ds = p->ecc_bits;
3022 chip->ecc_step_ds = 512;
3023 } else if (chip->onfi_version >= 21 &&
3024 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3025
3026 /*
3027 * The nand_flash_detect_ext_param_page() uses the
3028 * Change Read Column command which maybe not supported
3029 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3030 * now. We do not replace user supplied command function.
3031 */
3032 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3033 chip->cmdfunc = nand_command_lp;
3034
3035 /* The Extended Parameter Page is supported since ONFI 2.1. */
3036 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3037 pr_warn("Failed to detect ONFI extended param page\n");
3038 } else {
3039 pr_warn("Could not retrieve ONFI ECC requirements\n");
3040 }
3041
3042 if (p->jedec_id == NAND_MFR_MICRON)
3043 nand_onfi_detect_micron(chip, p);
3044
3045 return 1;
3046 }
3047 #else
3048 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3049 int *busw)
3050 {
3051 return 0;
3052 }
3053 #endif
3054
3055 /*
3056 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3057 */
3058 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3059 int *busw)
3060 {
3061 struct nand_jedec_params *p = &chip->jedec_params;
3062 struct jedec_ecc_info *ecc;
3063 int val;
3064 int i, j;
3065
3066 /* Try JEDEC for unknown chip or LP */
3067 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3068 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3069 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3070 chip->read_byte(mtd) != 'C')
3071 return 0;
3072
3073 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3074 for (i = 0; i < 3; i++) {
3075 for (j = 0; j < sizeof(*p); j++)
3076 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3077
3078 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3079 le16_to_cpu(p->crc))
3080 break;
3081 }
3082
3083 if (i == 3) {
3084 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3085 return 0;
3086 }
3087
3088 /* Check version */
3089 val = le16_to_cpu(p->revision);
3090 if (val & (1 << 2))
3091 chip->jedec_version = 10;
3092 else if (val & (1 << 1))
3093 chip->jedec_version = 1; /* vendor specific version */
3094
3095 if (!chip->jedec_version) {
3096 pr_info("unsupported JEDEC version: %d\n", val);
3097 return 0;
3098 }
3099
3100 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3101 sanitize_string(p->model, sizeof(p->model));
3102 if (!mtd->name)
3103 mtd->name = p->model;
3104
3105 mtd->writesize = le32_to_cpu(p->byte_per_page);
3106
3107 /* Please reference to the comment for nand_flash_detect_onfi. */
3108 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3109 mtd->erasesize *= mtd->writesize;
3110
3111 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3112
3113 /* Please reference to the comment for nand_flash_detect_onfi. */
3114 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3115 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3116 chip->bits_per_cell = p->bits_per_cell;
3117
3118 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3119 *busw = NAND_BUSWIDTH_16;
3120 else
3121 *busw = 0;
3122
3123 /* ECC info */
3124 ecc = &p->ecc_info[0];
3125
3126 if (ecc->codeword_size >= 9) {
3127 chip->ecc_strength_ds = ecc->ecc_bits;
3128 chip->ecc_step_ds = 1 << ecc->codeword_size;
3129 } else {
3130 pr_warn("Invalid codeword size\n");
3131 }
3132
3133 return 1;
3134 }
3135
3136 /*
3137 * nand_id_has_period - Check if an ID string has a given wraparound period
3138 * @id_data: the ID string
3139 * @arrlen: the length of the @id_data array
3140 * @period: the period of repitition
3141 *
3142 * Check if an ID string is repeated within a given sequence of bytes at
3143 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3144 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3145 * if the repetition has a period of @period; otherwise, returns zero.
3146 */
3147 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3148 {
3149 int i, j;
3150 for (i = 0; i < period; i++)
3151 for (j = i + period; j < arrlen; j += period)
3152 if (id_data[i] != id_data[j])
3153 return 0;
3154 return 1;
3155 }
3156
3157 /*
3158 * nand_id_len - Get the length of an ID string returned by CMD_READID
3159 * @id_data: the ID string
3160 * @arrlen: the length of the @id_data array
3161
3162 * Returns the length of the ID string, according to known wraparound/trailing
3163 * zero patterns. If no pattern exists, returns the length of the array.
3164 */
3165 static int nand_id_len(u8 *id_data, int arrlen)
3166 {
3167 int last_nonzero, period;
3168
3169 /* Find last non-zero byte */
3170 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3171 if (id_data[last_nonzero])
3172 break;
3173
3174 /* All zeros */
3175 if (last_nonzero < 0)
3176 return 0;
3177
3178 /* Calculate wraparound period */
3179 for (period = 1; period < arrlen; period++)
3180 if (nand_id_has_period(id_data, arrlen, period))
3181 break;
3182
3183 /* There's a repeated pattern */
3184 if (period < arrlen)
3185 return period;
3186
3187 /* There are trailing zeros */
3188 if (last_nonzero < arrlen - 1)
3189 return last_nonzero + 1;
3190
3191 /* No pattern detected */
3192 return arrlen;
3193 }
3194
3195 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3196 static int nand_get_bits_per_cell(u8 cellinfo)
3197 {
3198 int bits;
3199
3200 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3201 bits >>= NAND_CI_CELLTYPE_SHIFT;
3202 return bits + 1;
3203 }
3204
3205 /*
3206 * Many new NAND share similar device ID codes, which represent the size of the
3207 * chip. The rest of the parameters must be decoded according to generic or
3208 * manufacturer-specific "extended ID" decoding patterns.
3209 */
3210 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3211 u8 id_data[8], int *busw)
3212 {
3213 int extid, id_len;
3214 /* The 3rd id byte holds MLC / multichip data */
3215 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3216 /* The 4th id byte is the important one */
3217 extid = id_data[3];
3218
3219 id_len = nand_id_len(id_data, 8);
3220
3221 /*
3222 * Field definitions are in the following datasheets:
3223 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3224 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3225 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3226 *
3227 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3228 * ID to decide what to do.
3229 */
3230 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3231 !nand_is_slc(chip) && id_data[5] != 0x00) {
3232 /* Calc pagesize */
3233 mtd->writesize = 2048 << (extid & 0x03);
3234 extid >>= 2;
3235 /* Calc oobsize */
3236 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3237 case 1:
3238 mtd->oobsize = 128;
3239 break;
3240 case 2:
3241 mtd->oobsize = 218;
3242 break;
3243 case 3:
3244 mtd->oobsize = 400;
3245 break;
3246 case 4:
3247 mtd->oobsize = 436;
3248 break;
3249 case 5:
3250 mtd->oobsize = 512;
3251 break;
3252 case 6:
3253 mtd->oobsize = 640;
3254 break;
3255 case 7:
3256 default: /* Other cases are "reserved" (unknown) */
3257 mtd->oobsize = 1024;
3258 break;
3259 }
3260 extid >>= 2;
3261 /* Calc blocksize */
3262 mtd->erasesize = (128 * 1024) <<
3263 (((extid >> 1) & 0x04) | (extid & 0x03));
3264 *busw = 0;
3265 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3266 !nand_is_slc(chip)) {
3267 unsigned int tmp;
3268
3269 /* Calc pagesize */
3270 mtd->writesize = 2048 << (extid & 0x03);
3271 extid >>= 2;
3272 /* Calc oobsize */
3273 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3274 case 0:
3275 mtd->oobsize = 128;
3276 break;
3277 case 1:
3278 mtd->oobsize = 224;
3279 break;
3280 case 2:
3281 mtd->oobsize = 448;
3282 break;
3283 case 3:
3284 mtd->oobsize = 64;
3285 break;
3286 case 4:
3287 mtd->oobsize = 32;
3288 break;
3289 case 5:
3290 mtd->oobsize = 16;
3291 break;
3292 default:
3293 mtd->oobsize = 640;
3294 break;
3295 }
3296 extid >>= 2;
3297 /* Calc blocksize */
3298 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3299 if (tmp < 0x03)
3300 mtd->erasesize = (128 * 1024) << tmp;
3301 else if (tmp == 0x03)
3302 mtd->erasesize = 768 * 1024;
3303 else
3304 mtd->erasesize = (64 * 1024) << tmp;
3305 *busw = 0;
3306 } else {
3307 /* Calc pagesize */
3308 mtd->writesize = 1024 << (extid & 0x03);
3309 extid >>= 2;
3310 /* Calc oobsize */
3311 mtd->oobsize = (8 << (extid & 0x01)) *
3312 (mtd->writesize >> 9);
3313 extid >>= 2;
3314 /* Calc blocksize. Blocksize is multiples of 64KiB */
3315 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3316 extid >>= 2;
3317 /* Get buswidth information */
3318 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3319
3320 /*
3321 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3322 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3323 * follows:
3324 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3325 * 110b -> 24nm
3326 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3327 */
3328 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3329 nand_is_slc(chip) &&
3330 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3331 !(id_data[4] & 0x80) /* !BENAND */) {
3332 mtd->oobsize = 32 * mtd->writesize >> 9;
3333 }
3334
3335 }
3336 }
3337
3338 /*
3339 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3340 * decodes a matching ID table entry and assigns the MTD size parameters for
3341 * the chip.
3342 */
3343 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3344 struct nand_flash_dev *type, u8 id_data[8],
3345 int *busw)
3346 {
3347 int maf_id = id_data[0];
3348
3349 mtd->erasesize = type->erasesize;
3350 mtd->writesize = type->pagesize;
3351 mtd->oobsize = mtd->writesize / 32;
3352 *busw = type->options & NAND_BUSWIDTH_16;
3353
3354 /* All legacy ID NAND are small-page, SLC */
3355 chip->bits_per_cell = 1;
3356
3357 /*
3358 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3359 * some Spansion chips have erasesize that conflicts with size
3360 * listed in nand_ids table.
3361 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3362 */
3363 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3364 && id_data[6] == 0x00 && id_data[7] == 0x00
3365 && mtd->writesize == 512) {
3366 mtd->erasesize = 128 * 1024;
3367 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3368 }
3369 }
3370
3371 /*
3372 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3373 * heuristic patterns using various detected parameters (e.g., manufacturer,
3374 * page size, cell-type information).
3375 */
3376 static void nand_decode_bbm_options(struct mtd_info *mtd,
3377 struct nand_chip *chip, u8 id_data[8])
3378 {
3379 int maf_id = id_data[0];
3380
3381 /* Set the bad block position */
3382 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3383 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3384 else
3385 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3386
3387 /*
3388 * Bad block marker is stored in the last page of each block on Samsung
3389 * and Hynix MLC devices; stored in first two pages of each block on
3390 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3391 * AMD/Spansion, and Macronix. All others scan only the first page.
3392 */
3393 if (!nand_is_slc(chip) &&
3394 (maf_id == NAND_MFR_SAMSUNG ||
3395 maf_id == NAND_MFR_HYNIX))
3396 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3397 else if ((nand_is_slc(chip) &&
3398 (maf_id == NAND_MFR_SAMSUNG ||
3399 maf_id == NAND_MFR_HYNIX ||
3400 maf_id == NAND_MFR_TOSHIBA ||
3401 maf_id == NAND_MFR_AMD ||
3402 maf_id == NAND_MFR_MACRONIX)) ||
3403 (mtd->writesize == 2048 &&
3404 maf_id == NAND_MFR_MICRON))
3405 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3406 }
3407
3408 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3409 {
3410 return type->id_len;
3411 }
3412
3413 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3414 struct nand_flash_dev *type, u8 *id_data, int *busw)
3415 {
3416 if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3417 mtd->writesize = type->pagesize;
3418 mtd->erasesize = type->erasesize;
3419 mtd->oobsize = type->oobsize;
3420
3421 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3422 chip->chipsize = (uint64_t)type->chipsize << 20;
3423 chip->options |= type->options;
3424 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3425 chip->ecc_step_ds = NAND_ECC_STEP(type);
3426 chip->onfi_timing_mode_default =
3427 type->onfi_timing_mode_default;
3428
3429 *busw = type->options & NAND_BUSWIDTH_16;
3430
3431 if (!mtd->name)
3432 mtd->name = type->name;
3433
3434 return true;
3435 }
3436 return false;
3437 }
3438
3439 /*
3440 * Get the flash and manufacturer id and lookup if the type is supported.
3441 */
3442 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3443 struct nand_chip *chip,
3444 int *maf_id, int *dev_id,
3445 struct nand_flash_dev *type)
3446 {
3447 int busw;
3448 int i, maf_idx;
3449 u8 id_data[8];
3450
3451 /* Select the device */
3452 chip->select_chip(mtd, 0);
3453
3454 /*
3455 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3456 * after power-up.
3457 */
3458 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3459
3460 /* Send the command for reading device ID */
3461 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3462
3463 /* Read manufacturer and device IDs */
3464 *maf_id = chip->read_byte(mtd);
3465 *dev_id = chip->read_byte(mtd);
3466
3467 /*
3468 * Try again to make sure, as some systems the bus-hold or other
3469 * interface concerns can cause random data which looks like a
3470 * possibly credible NAND flash to appear. If the two results do
3471 * not match, ignore the device completely.
3472 */
3473
3474 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3475
3476 /* Read entire ID string */
3477 for (i = 0; i < 8; i++)
3478 id_data[i] = chip->read_byte(mtd);
3479
3480 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3481 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3482 *maf_id, *dev_id, id_data[0], id_data[1]);
3483 return ERR_PTR(-ENODEV);
3484 }
3485
3486 if (!type)
3487 type = nand_flash_ids;
3488
3489 for (; type->name != NULL; type++) {
3490 if (is_full_id_nand(type)) {
3491 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3492 goto ident_done;
3493 } else if (*dev_id == type->dev_id) {
3494 break;
3495 }
3496 }
3497
3498 chip->onfi_version = 0;
3499 if (!type->name || !type->pagesize) {
3500 /* Check if the chip is ONFI compliant */
3501 if (nand_flash_detect_onfi(mtd, chip, &busw))
3502 goto ident_done;
3503
3504 /* Check if the chip is JEDEC compliant */
3505 if (nand_flash_detect_jedec(mtd, chip, &busw))
3506 goto ident_done;
3507 }
3508
3509 if (!type->name)
3510 return ERR_PTR(-ENODEV);
3511
3512 if (!mtd->name)
3513 mtd->name = type->name;
3514
3515 chip->chipsize = (uint64_t)type->chipsize << 20;
3516
3517 if (!type->pagesize && chip->init_size) {
3518 /* Set the pagesize, oobsize, erasesize by the driver */
3519 busw = chip->init_size(mtd, chip, id_data);
3520 } else if (!type->pagesize) {
3521 /* Decode parameters from extended ID */
3522 nand_decode_ext_id(mtd, chip, id_data, &busw);
3523 } else {
3524 nand_decode_id(mtd, chip, type, id_data, &busw);
3525 }
3526 /* Get chip options */
3527 chip->options |= type->options;
3528
3529 /*
3530 * Check if chip is not a Samsung device. Do not clear the
3531 * options for chips which do not have an extended id.
3532 */
3533 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3534 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3535 ident_done:
3536
3537 /* Try to identify manufacturer */
3538 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3539 if (nand_manuf_ids[maf_idx].id == *maf_id)
3540 break;
3541 }
3542
3543 if (chip->options & NAND_BUSWIDTH_AUTO) {
3544 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3545 chip->options |= busw;
3546 nand_set_defaults(chip, busw);
3547 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3548 /*
3549 * Check, if buswidth is correct. Hardware drivers should set
3550 * chip correct!
3551 */
3552 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3553 *maf_id, *dev_id);
3554 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3555 pr_warn("bus width %d instead %d bit\n",
3556 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3557 busw ? 16 : 8);
3558 return ERR_PTR(-EINVAL);
3559 }
3560
3561 nand_decode_bbm_options(mtd, chip, id_data);
3562
3563 /* Calculate the address shift from the page size */
3564 chip->page_shift = ffs(mtd->writesize) - 1;
3565 /* Convert chipsize to number of pages per chip -1 */
3566 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3567
3568 chip->bbt_erase_shift = chip->phys_erase_shift =
3569 ffs(mtd->erasesize) - 1;
3570 if (chip->chipsize & 0xffffffff)
3571 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3572 else {
3573 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3574 chip->chip_shift += 32 - 1;
3575 }
3576
3577 chip->badblockbits = 8;
3578 chip->erase = single_erase;
3579
3580 /* Do not replace user supplied command function! */
3581 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3582 chip->cmdfunc = nand_command_lp;
3583
3584 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3585 *maf_id, *dev_id);
3586
3587 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3588 if (chip->onfi_version)
3589 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3590 chip->onfi_params.model);
3591 else if (chip->jedec_version)
3592 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3593 chip->jedec_params.model);
3594 else
3595 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3596 type->name);
3597 #else
3598 if (chip->jedec_version)
3599 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3600 chip->jedec_params.model);
3601 else
3602 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3603 type->name);
3604
3605 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3606 type->name);
3607 #endif
3608
3609 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3610 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3611 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3612 return type;
3613 }
3614
3615 /**
3616 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3617 * @mtd: MTD device structure
3618 * @maxchips: number of chips to scan for
3619 * @table: alternative NAND ID table
3620 *
3621 * This is the first phase of the normal nand_scan() function. It reads the
3622 * flash ID and sets up MTD fields accordingly.
3623 *
3624 * The mtd->owner field must be set to the module of the caller.
3625 */
3626 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3627 struct nand_flash_dev *table)
3628 {
3629 int i, nand_maf_id, nand_dev_id;
3630 struct nand_chip *chip = mtd_to_nand(mtd);
3631 struct nand_flash_dev *type;
3632
3633 /* Set the default functions */
3634 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3635
3636 /* Read the flash type */
3637 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3638 &nand_dev_id, table);
3639
3640 if (IS_ERR(type)) {
3641 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3642 pr_warn("No NAND device found\n");
3643 chip->select_chip(mtd, -1);
3644 return PTR_ERR(type);
3645 }
3646
3647 chip->select_chip(mtd, -1);
3648
3649 /* Check for a chip array */
3650 for (i = 1; i < maxchips; i++) {
3651 chip->select_chip(mtd, i);
3652 /* See comment in nand_get_flash_type for reset */
3653 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3654 /* Send the command for reading device ID */
3655 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3656 /* Read manufacturer and device IDs */
3657 if (nand_maf_id != chip->read_byte(mtd) ||
3658 nand_dev_id != chip->read_byte(mtd)) {
3659 chip->select_chip(mtd, -1);
3660 break;
3661 }
3662 chip->select_chip(mtd, -1);
3663 }
3664
3665 #ifdef DEBUG
3666 if (i > 1)
3667 pr_info("%d chips detected\n", i);
3668 #endif
3669
3670 /* Store the number of chips and calc total size for mtd */
3671 chip->numchips = i;
3672 mtd->size = i * chip->chipsize;
3673
3674 return 0;
3675 }
3676 EXPORT_SYMBOL(nand_scan_ident);
3677
3678 /*
3679 * Check if the chip configuration meet the datasheet requirements.
3680
3681 * If our configuration corrects A bits per B bytes and the minimum
3682 * required correction level is X bits per Y bytes, then we must ensure
3683 * both of the following are true:
3684 *
3685 * (1) A / B >= X / Y
3686 * (2) A >= X
3687 *
3688 * Requirement (1) ensures we can correct for the required bitflip density.
3689 * Requirement (2) ensures we can correct even when all bitflips are clumped
3690 * in the same sector.
3691 */
3692 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3693 {
3694 struct nand_chip *chip = mtd_to_nand(mtd);
3695 struct nand_ecc_ctrl *ecc = &chip->ecc;
3696 int corr, ds_corr;
3697
3698 if (ecc->size == 0 || chip->ecc_step_ds == 0)
3699 /* Not enough information */
3700 return true;
3701
3702 /*
3703 * We get the number of corrected bits per page to compare
3704 * the correction density.
3705 */
3706 corr = (mtd->writesize * ecc->strength) / ecc->size;
3707 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3708
3709 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3710 }
3711
3712 /**
3713 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3714 * @mtd: MTD device structure
3715 *
3716 * This is the second phase of the normal nand_scan() function. It fills out
3717 * all the uninitialized function pointers with the defaults and scans for a
3718 * bad block table if appropriate.
3719 */
3720 int nand_scan_tail(struct mtd_info *mtd)
3721 {
3722 int i;
3723 struct nand_chip *chip = mtd_to_nand(mtd);
3724 struct nand_ecc_ctrl *ecc = &chip->ecc;
3725 struct nand_buffers *nbuf;
3726
3727 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3728 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3729 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3730
3731 if (!(chip->options & NAND_OWN_BUFFERS)) {
3732 nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
3733 chip->buffers = nbuf;
3734 } else {
3735 if (!chip->buffers)
3736 return -ENOMEM;
3737 }
3738
3739 /* Set the internal oob buffer location, just after the page data */
3740 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3741
3742 /*
3743 * If no default placement scheme is given, select an appropriate one.
3744 */
3745 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3746 switch (mtd->oobsize) {
3747 case 8:
3748 ecc->layout = &nand_oob_8;
3749 break;
3750 case 16:
3751 ecc->layout = &nand_oob_16;
3752 break;
3753 case 64:
3754 ecc->layout = &nand_oob_64;
3755 break;
3756 case 128:
3757 ecc->layout = &nand_oob_128;
3758 break;
3759 default:
3760 pr_warn("No oob scheme defined for oobsize %d\n",
3761 mtd->oobsize);
3762 BUG();
3763 }
3764 }
3765
3766 if (!chip->write_page)
3767 chip->write_page = nand_write_page;
3768
3769 /*
3770 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3771 * selected and we have 256 byte pagesize fallback to software ECC
3772 */
3773
3774 switch (ecc->mode) {
3775 case NAND_ECC_HW_OOB_FIRST:
3776 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3777 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3778 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3779 BUG();
3780 }
3781 if (!ecc->read_page)
3782 ecc->read_page = nand_read_page_hwecc_oob_first;
3783
3784 case NAND_ECC_HW:
3785 /* Use standard hwecc read page function? */
3786 if (!ecc->read_page)
3787 ecc->read_page = nand_read_page_hwecc;
3788 if (!ecc->write_page)
3789 ecc->write_page = nand_write_page_hwecc;
3790 if (!ecc->read_page_raw)
3791 ecc->read_page_raw = nand_read_page_raw;
3792 if (!ecc->write_page_raw)
3793 ecc->write_page_raw = nand_write_page_raw;
3794 if (!ecc->read_oob)
3795 ecc->read_oob = nand_read_oob_std;
3796 if (!ecc->write_oob)
3797 ecc->write_oob = nand_write_oob_std;
3798 if (!ecc->read_subpage)
3799 ecc->read_subpage = nand_read_subpage;
3800 if (!ecc->write_subpage)
3801 ecc->write_subpage = nand_write_subpage_hwecc;
3802
3803 case NAND_ECC_HW_SYNDROME:
3804 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3805 (!ecc->read_page ||
3806 ecc->read_page == nand_read_page_hwecc ||
3807 !ecc->write_page ||
3808 ecc->write_page == nand_write_page_hwecc)) {
3809 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3810 BUG();
3811 }
3812 /* Use standard syndrome read/write page function? */
3813 if (!ecc->read_page)
3814 ecc->read_page = nand_read_page_syndrome;
3815 if (!ecc->write_page)
3816 ecc->write_page = nand_write_page_syndrome;
3817 if (!ecc->read_page_raw)
3818 ecc->read_page_raw = nand_read_page_raw_syndrome;
3819 if (!ecc->write_page_raw)
3820 ecc->write_page_raw = nand_write_page_raw_syndrome;
3821 if (!ecc->read_oob)
3822 ecc->read_oob = nand_read_oob_syndrome;
3823 if (!ecc->write_oob)
3824 ecc->write_oob = nand_write_oob_syndrome;
3825
3826 if (mtd->writesize >= ecc->size) {
3827 if (!ecc->strength) {
3828 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3829 BUG();
3830 }
3831 break;
3832 }
3833 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
3834 ecc->size, mtd->writesize);
3835 ecc->mode = NAND_ECC_SOFT;
3836
3837 case NAND_ECC_SOFT:
3838 ecc->calculate = nand_calculate_ecc;
3839 ecc->correct = nand_correct_data;
3840 ecc->read_page = nand_read_page_swecc;
3841 ecc->read_subpage = nand_read_subpage;
3842 ecc->write_page = nand_write_page_swecc;
3843 ecc->read_page_raw = nand_read_page_raw;
3844 ecc->write_page_raw = nand_write_page_raw;
3845 ecc->read_oob = nand_read_oob_std;
3846 ecc->write_oob = nand_write_oob_std;
3847 if (!ecc->size)
3848 ecc->size = 256;
3849 ecc->bytes = 3;
3850 ecc->strength = 1;
3851 break;
3852
3853 case NAND_ECC_SOFT_BCH:
3854 if (!mtd_nand_has_bch()) {
3855 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
3856 BUG();
3857 }
3858 ecc->calculate = nand_bch_calculate_ecc;
3859 ecc->correct = nand_bch_correct_data;
3860 ecc->read_page = nand_read_page_swecc;
3861 ecc->read_subpage = nand_read_subpage;
3862 ecc->write_page = nand_write_page_swecc;
3863 ecc->read_page_raw = nand_read_page_raw;
3864 ecc->write_page_raw = nand_write_page_raw;
3865 ecc->read_oob = nand_read_oob_std;
3866 ecc->write_oob = nand_write_oob_std;
3867 /*
3868 * Board driver should supply ecc.size and ecc.strength values
3869 * to select how many bits are correctable. Otherwise, default
3870 * to 4 bits for large page devices.
3871 */
3872 if (!ecc->size && (mtd->oobsize >= 64)) {
3873 ecc->size = 512;
3874 ecc->strength = 4;
3875 }
3876
3877 /* See nand_bch_init() for details. */
3878 ecc->bytes = DIV_ROUND_UP(
3879 ecc->strength * fls(8 * ecc->size), 8);
3880 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
3881 &ecc->layout);
3882 if (!ecc->priv) {
3883 pr_warn("BCH ECC initialization failed!\n");
3884 BUG();
3885 }
3886 break;
3887
3888 case NAND_ECC_NONE:
3889 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
3890 ecc->read_page = nand_read_page_raw;
3891 ecc->write_page = nand_write_page_raw;
3892 ecc->read_oob = nand_read_oob_std;
3893 ecc->read_page_raw = nand_read_page_raw;
3894 ecc->write_page_raw = nand_write_page_raw;
3895 ecc->write_oob = nand_write_oob_std;
3896 ecc->size = mtd->writesize;
3897 ecc->bytes = 0;
3898 ecc->strength = 0;
3899 break;
3900
3901 default:
3902 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
3903 BUG();
3904 }
3905
3906 /* For many systems, the standard OOB write also works for raw */
3907 if (!ecc->read_oob_raw)
3908 ecc->read_oob_raw = ecc->read_oob;
3909 if (!ecc->write_oob_raw)
3910 ecc->write_oob_raw = ecc->write_oob;
3911
3912 /*
3913 * The number of bytes available for a client to place data into
3914 * the out of band area.
3915 */
3916 ecc->layout->oobavail = 0;
3917 for (i = 0; ecc->layout->oobfree[i].length
3918 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
3919 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
3920 mtd->oobavail = ecc->layout->oobavail;
3921
3922 /* ECC sanity check: warn if it's too weak */
3923 if (!nand_ecc_strength_good(mtd))
3924 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
3925 mtd->name);
3926
3927 /*
3928 * Set the number of read / write steps for one page depending on ECC
3929 * mode.
3930 */
3931 ecc->steps = mtd->writesize / ecc->size;
3932 if (ecc->steps * ecc->size != mtd->writesize) {
3933 pr_warn("Invalid ECC parameters\n");
3934 BUG();
3935 }
3936 ecc->total = ecc->steps * ecc->bytes;
3937
3938 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3939 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
3940 switch (ecc->steps) {
3941 case 2:
3942 mtd->subpage_sft = 1;
3943 break;
3944 case 4:
3945 case 8:
3946 case 16:
3947 mtd->subpage_sft = 2;
3948 break;
3949 }
3950 }
3951 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3952
3953 /* Initialize state */
3954 chip->state = FL_READY;
3955
3956 /* Invalidate the pagebuffer reference */
3957 chip->pagebuf = -1;
3958
3959 /* Large page NAND with SOFT_ECC should support subpage reads */
3960 switch (ecc->mode) {
3961 case NAND_ECC_SOFT:
3962 case NAND_ECC_SOFT_BCH:
3963 if (chip->page_shift > 9)
3964 chip->options |= NAND_SUBPAGE_READ;
3965 break;
3966
3967 default:
3968 break;
3969 }
3970
3971 /* Fill in remaining MTD driver data */
3972 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
3973 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3974 MTD_CAP_NANDFLASH;
3975 mtd->_erase = nand_erase;
3976 mtd->_read = nand_read;
3977 mtd->_write = nand_write;
3978 mtd->_panic_write = panic_nand_write;
3979 mtd->_read_oob = nand_read_oob;
3980 mtd->_write_oob = nand_write_oob;
3981 mtd->_sync = nand_sync;
3982 mtd->_lock = NULL;
3983 mtd->_unlock = NULL;
3984 mtd->_block_isreserved = nand_block_isreserved;
3985 mtd->_block_isbad = nand_block_isbad;
3986 mtd->_block_markbad = nand_block_markbad;
3987 mtd->writebufsize = mtd->writesize;
3988
3989 /* propagate ecc info to mtd_info */
3990 mtd->ecclayout = ecc->layout;
3991 mtd->ecc_strength = ecc->strength;
3992 mtd->ecc_step_size = ecc->size;
3993 /*
3994 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3995 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3996 * properly set.
3997 */
3998 if (!mtd->bitflip_threshold)
3999 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4000
4001 return 0;
4002 }
4003 EXPORT_SYMBOL(nand_scan_tail);
4004
4005 /*
4006 * is_module_text_address() isn't exported, and it's mostly a pointless
4007 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4008 * to call us from in-kernel code if the core NAND support is modular.
4009 */
4010 #ifdef MODULE
4011 #define caller_is_module() (1)
4012 #else
4013 #define caller_is_module() \
4014 is_module_text_address((unsigned long)__builtin_return_address(0))
4015 #endif
4016
4017 /**
4018 * nand_scan - [NAND Interface] Scan for the NAND device
4019 * @mtd: MTD device structure
4020 * @maxchips: number of chips to scan for
4021 *
4022 * This fills out all the uninitialized function pointers with the defaults.
4023 * The flash ID is read and the mtd/chip structures are filled with the
4024 * appropriate values. The mtd->owner field must be set to the module of the
4025 * caller.
4026 */
4027 int nand_scan(struct mtd_info *mtd, int maxchips)
4028 {
4029 int ret;
4030
4031 /* Many callers got this wrong, so check for it for a while... */
4032 if (!mtd->owner && caller_is_module()) {
4033 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4034 BUG();
4035 }
4036
4037 ret = nand_scan_ident(mtd, maxchips, NULL);
4038 if (!ret)
4039 ret = nand_scan_tail(mtd);
4040 return ret;
4041 }
4042 EXPORT_SYMBOL(nand_scan);
4043
4044 module_init(nand_base_init);
4045 module_exit(nand_base_exit);
4046
4047 MODULE_LICENSE("GPL");
4048 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4049 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4050 MODULE_DESCRIPTION("Generic NAND flash driver code");