]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
mtd: nand: add generic helpers to check, match, maximize ECC settings
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
5 *
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
8 *
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
11 *
12 * Credits:
13 * David Woodhouse for adding multichip support
14 *
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <common.h>
32 #if CONFIG_IS_ENABLED(OF_CONTROL)
33 #include <fdtdec.h>
34 #endif
35 #include <malloc.h>
36 #include <watchdog.h>
37 #include <linux/err.h>
38 #include <linux/compat.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #ifdef CONFIG_MTD_PARTITIONS
44 #include <linux/mtd/partitions.h>
45 #endif
46 #include <asm/io.h>
47 #include <linux/errno.h>
48
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
51 .eccbytes = 3,
52 .eccpos = {0, 1, 2},
53 .oobfree = {
54 {.offset = 3,
55 .length = 2},
56 {.offset = 6,
57 .length = 2} }
58 };
59
60 static struct nand_ecclayout nand_oob_16 = {
61 .eccbytes = 6,
62 .eccpos = {0, 1, 2, 3, 6, 7},
63 .oobfree = {
64 {.offset = 8,
65 . length = 8} }
66 };
67
68 static struct nand_ecclayout nand_oob_64 = {
69 .eccbytes = 24,
70 .eccpos = {
71 40, 41, 42, 43, 44, 45, 46, 47,
72 48, 49, 50, 51, 52, 53, 54, 55,
73 56, 57, 58, 59, 60, 61, 62, 63},
74 .oobfree = {
75 {.offset = 2,
76 .length = 38} }
77 };
78
79 static struct nand_ecclayout nand_oob_128 = {
80 .eccbytes = 48,
81 .eccpos = {
82 80, 81, 82, 83, 84, 85, 86, 87,
83 88, 89, 90, 91, 92, 93, 94, 95,
84 96, 97, 98, 99, 100, 101, 102, 103,
85 104, 105, 106, 107, 108, 109, 110, 111,
86 112, 113, 114, 115, 116, 117, 118, 119,
87 120, 121, 122, 123, 124, 125, 126, 127},
88 .oobfree = {
89 {.offset = 2,
90 .length = 78} }
91 };
92
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
94
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96 struct mtd_oob_ops *ops);
97
98 /*
99 * For devices which display every fart in the system on a separate LED. Is
100 * compiled away when LED support is disabled.
101 */
102 DEFINE_LED_TRIGGER(nand_led_trigger);
103
104 static int check_offs_len(struct mtd_info *mtd,
105 loff_t ofs, uint64_t len)
106 {
107 struct nand_chip *chip = mtd_to_nand(mtd);
108 int ret = 0;
109
110 /* Start address must align on block boundary */
111 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
112 pr_debug("%s: unaligned address\n", __func__);
113 ret = -EINVAL;
114 }
115
116 /* Length must align on block boundary */
117 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
118 pr_debug("%s: length not block aligned\n", __func__);
119 ret = -EINVAL;
120 }
121
122 return ret;
123 }
124
125 /**
126 * nand_release_device - [GENERIC] release chip
127 * @mtd: MTD device structure
128 *
129 * Release chip lock and wake up anyone waiting on the device.
130 */
131 static void nand_release_device(struct mtd_info *mtd)
132 {
133 struct nand_chip *chip = mtd_to_nand(mtd);
134
135 /* De-select the NAND device */
136 chip->select_chip(mtd, -1);
137 }
138
139 /**
140 * nand_read_byte - [DEFAULT] read one byte from the chip
141 * @mtd: MTD device structure
142 *
143 * Default read function for 8bit buswidth
144 */
145 uint8_t nand_read_byte(struct mtd_info *mtd)
146 {
147 struct nand_chip *chip = mtd_to_nand(mtd);
148 return readb(chip->IO_ADDR_R);
149 }
150
151 /**
152 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
153 * @mtd: MTD device structure
154 *
155 * Default read function for 16bit buswidth with endianness conversion.
156 *
157 */
158 static uint8_t nand_read_byte16(struct mtd_info *mtd)
159 {
160 struct nand_chip *chip = mtd_to_nand(mtd);
161 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
162 }
163
164 /**
165 * nand_read_word - [DEFAULT] read one word from the chip
166 * @mtd: MTD device structure
167 *
168 * Default read function for 16bit buswidth without endianness conversion.
169 */
170 static u16 nand_read_word(struct mtd_info *mtd)
171 {
172 struct nand_chip *chip = mtd_to_nand(mtd);
173 return readw(chip->IO_ADDR_R);
174 }
175
176 /**
177 * nand_select_chip - [DEFAULT] control CE line
178 * @mtd: MTD device structure
179 * @chipnr: chipnumber to select, -1 for deselect
180 *
181 * Default select function for 1 chip devices.
182 */
183 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
184 {
185 struct nand_chip *chip = mtd_to_nand(mtd);
186
187 switch (chipnr) {
188 case -1:
189 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
190 break;
191 case 0:
192 break;
193
194 default:
195 BUG();
196 }
197 }
198
199 /**
200 * nand_write_byte - [DEFAULT] write single byte to chip
201 * @mtd: MTD device structure
202 * @byte: value to write
203 *
204 * Default function to write a byte to I/O[7:0]
205 */
206 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
207 {
208 struct nand_chip *chip = mtd_to_nand(mtd);
209
210 chip->write_buf(mtd, &byte, 1);
211 }
212
213 /**
214 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
215 * @mtd: MTD device structure
216 * @byte: value to write
217 *
218 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
219 */
220 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
221 {
222 struct nand_chip *chip = mtd_to_nand(mtd);
223 uint16_t word = byte;
224
225 /*
226 * It's not entirely clear what should happen to I/O[15:8] when writing
227 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
228 *
229 * When the host supports a 16-bit bus width, only data is
230 * transferred at the 16-bit width. All address and command line
231 * transfers shall use only the lower 8-bits of the data bus. During
232 * command transfers, the host may place any value on the upper
233 * 8-bits of the data bus. During address transfers, the host shall
234 * set the upper 8-bits of the data bus to 00h.
235 *
236 * One user of the write_byte callback is nand_onfi_set_features. The
237 * four parameters are specified to be written to I/O[7:0], but this is
238 * neither an address nor a command transfer. Let's assume a 0 on the
239 * upper I/O lines is OK.
240 */
241 chip->write_buf(mtd, (uint8_t *)&word, 2);
242 }
243
244 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
245 {
246 int i;
247
248 for (i = 0; i < len; i++)
249 writeb(buf[i], addr);
250 }
251 static void ioread8_rep(void *addr, uint8_t *buf, int len)
252 {
253 int i;
254
255 for (i = 0; i < len; i++)
256 buf[i] = readb(addr);
257 }
258
259 static void ioread16_rep(void *addr, void *buf, int len)
260 {
261 int i;
262 u16 *p = (u16 *) buf;
263
264 for (i = 0; i < len; i++)
265 p[i] = readw(addr);
266 }
267
268 static void iowrite16_rep(void *addr, void *buf, int len)
269 {
270 int i;
271 u16 *p = (u16 *) buf;
272
273 for (i = 0; i < len; i++)
274 writew(p[i], addr);
275 }
276
277 /**
278 * nand_write_buf - [DEFAULT] write buffer to chip
279 * @mtd: MTD device structure
280 * @buf: data buffer
281 * @len: number of bytes to write
282 *
283 * Default write function for 8bit buswidth.
284 */
285 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
286 {
287 struct nand_chip *chip = mtd_to_nand(mtd);
288
289 iowrite8_rep(chip->IO_ADDR_W, buf, len);
290 }
291
292 /**
293 * nand_read_buf - [DEFAULT] read chip data into buffer
294 * @mtd: MTD device structure
295 * @buf: buffer to store date
296 * @len: number of bytes to read
297 *
298 * Default read function for 8bit buswidth.
299 */
300 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
301 {
302 struct nand_chip *chip = mtd_to_nand(mtd);
303
304 ioread8_rep(chip->IO_ADDR_R, buf, len);
305 }
306
307 /**
308 * nand_write_buf16 - [DEFAULT] write buffer to chip
309 * @mtd: MTD device structure
310 * @buf: data buffer
311 * @len: number of bytes to write
312 *
313 * Default write function for 16bit buswidth.
314 */
315 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
316 {
317 struct nand_chip *chip = mtd_to_nand(mtd);
318 u16 *p = (u16 *) buf;
319
320 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
321 }
322
323 /**
324 * nand_read_buf16 - [DEFAULT] read chip data into buffer
325 * @mtd: MTD device structure
326 * @buf: buffer to store date
327 * @len: number of bytes to read
328 *
329 * Default read function for 16bit buswidth.
330 */
331 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
332 {
333 struct nand_chip *chip = mtd_to_nand(mtd);
334 u16 *p = (u16 *) buf;
335
336 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
337 }
338
339 /**
340 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
341 * @mtd: MTD device structure
342 * @ofs: offset from device start
343 *
344 * Check, if the block is bad.
345 */
346 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
347 {
348 int page, res = 0, i = 0;
349 struct nand_chip *chip = mtd_to_nand(mtd);
350 u16 bad;
351
352 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
353 ofs += mtd->erasesize - mtd->writesize;
354
355 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
356
357 do {
358 if (chip->options & NAND_BUSWIDTH_16) {
359 chip->cmdfunc(mtd, NAND_CMD_READOOB,
360 chip->badblockpos & 0xFE, page);
361 bad = cpu_to_le16(chip->read_word(mtd));
362 if (chip->badblockpos & 0x1)
363 bad >>= 8;
364 else
365 bad &= 0xFF;
366 } else {
367 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
368 page);
369 bad = chip->read_byte(mtd);
370 }
371
372 if (likely(chip->badblockbits == 8))
373 res = bad != 0xFF;
374 else
375 res = hweight8(bad) < chip->badblockbits;
376 ofs += mtd->writesize;
377 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
378 i++;
379 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
380
381 return res;
382 }
383
384 /**
385 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
386 * @mtd: MTD device structure
387 * @ofs: offset from device start
388 *
389 * This is the default implementation, which can be overridden by a hardware
390 * specific driver. It provides the details for writing a bad block marker to a
391 * block.
392 */
393 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394 {
395 struct nand_chip *chip = mtd_to_nand(mtd);
396 struct mtd_oob_ops ops;
397 uint8_t buf[2] = { 0, 0 };
398 int ret = 0, res, i = 0;
399
400 memset(&ops, 0, sizeof(ops));
401 ops.oobbuf = buf;
402 ops.ooboffs = chip->badblockpos;
403 if (chip->options & NAND_BUSWIDTH_16) {
404 ops.ooboffs &= ~0x01;
405 ops.len = ops.ooblen = 2;
406 } else {
407 ops.len = ops.ooblen = 1;
408 }
409 ops.mode = MTD_OPS_PLACE_OOB;
410
411 /* Write to first/last page(s) if necessary */
412 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
413 ofs += mtd->erasesize - mtd->writesize;
414 do {
415 res = nand_do_write_oob(mtd, ofs, &ops);
416 if (!ret)
417 ret = res;
418
419 i++;
420 ofs += mtd->writesize;
421 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
422
423 return ret;
424 }
425
426 /**
427 * nand_block_markbad_lowlevel - mark a block bad
428 * @mtd: MTD device structure
429 * @ofs: offset from device start
430 *
431 * This function performs the generic NAND bad block marking steps (i.e., bad
432 * block table(s) and/or marker(s)). We only allow the hardware driver to
433 * specify how to write bad block markers to OOB (chip->block_markbad).
434 *
435 * We try operations in the following order:
436 * (1) erase the affected block, to allow OOB marker to be written cleanly
437 * (2) write bad block marker to OOB area of affected block (unless flag
438 * NAND_BBT_NO_OOB_BBM is present)
439 * (3) update the BBT
440 * Note that we retain the first error encountered in (2) or (3), finish the
441 * procedures, and dump the error in the end.
442 */
443 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
444 {
445 struct nand_chip *chip = mtd_to_nand(mtd);
446 int res, ret = 0;
447
448 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
449 struct erase_info einfo;
450
451 /* Attempt erase before marking OOB */
452 memset(&einfo, 0, sizeof(einfo));
453 einfo.mtd = mtd;
454 einfo.addr = ofs;
455 einfo.len = 1ULL << chip->phys_erase_shift;
456 nand_erase_nand(mtd, &einfo, 0);
457
458 /* Write bad block marker to OOB */
459 nand_get_device(mtd, FL_WRITING);
460 ret = chip->block_markbad(mtd, ofs);
461 nand_release_device(mtd);
462 }
463
464 /* Mark block bad in BBT */
465 if (chip->bbt) {
466 res = nand_markbad_bbt(mtd, ofs);
467 if (!ret)
468 ret = res;
469 }
470
471 if (!ret)
472 mtd->ecc_stats.badblocks++;
473
474 return ret;
475 }
476
477 /**
478 * nand_check_wp - [GENERIC] check if the chip is write protected
479 * @mtd: MTD device structure
480 *
481 * Check, if the device is write protected. The function expects, that the
482 * device is already selected.
483 */
484 static int nand_check_wp(struct mtd_info *mtd)
485 {
486 struct nand_chip *chip = mtd_to_nand(mtd);
487
488 /* Broken xD cards report WP despite being writable */
489 if (chip->options & NAND_BROKEN_XD)
490 return 0;
491
492 /* Check the WP bit */
493 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
494 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
495 }
496
497 /**
498 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
499 * @mtd: MTD device structure
500 * @ofs: offset from device start
501 *
502 * Check if the block is marked as reserved.
503 */
504 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
505 {
506 struct nand_chip *chip = mtd_to_nand(mtd);
507
508 if (!chip->bbt)
509 return 0;
510 /* Return info from the table */
511 return nand_isreserved_bbt(mtd, ofs);
512 }
513
514 /**
515 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
516 * @mtd: MTD device structure
517 * @ofs: offset from device start
518 * @allowbbt: 1, if its allowed to access the bbt area
519 *
520 * Check, if the block is bad. Either by reading the bad block table or
521 * calling of the scan function.
522 */
523 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
524 {
525 struct nand_chip *chip = mtd_to_nand(mtd);
526
527 if (!(chip->options & NAND_SKIP_BBTSCAN) &&
528 !(chip->options & NAND_BBT_SCANNED)) {
529 chip->options |= NAND_BBT_SCANNED;
530 chip->scan_bbt(mtd);
531 }
532
533 if (!chip->bbt)
534 return chip->block_bad(mtd, ofs);
535
536 /* Return info from the table */
537 return nand_isbad_bbt(mtd, ofs, allowbbt);
538 }
539
540 /**
541 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
542 * @mtd: MTD device structure
543 *
544 * Wait for the ready pin after a command, and warn if a timeout occurs.
545 */
546 void nand_wait_ready(struct mtd_info *mtd)
547 {
548 struct nand_chip *chip = mtd_to_nand(mtd);
549 u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
550 u32 time_start;
551
552 time_start = get_timer(0);
553 /* Wait until command is processed or timeout occurs */
554 while (get_timer(time_start) < timeo) {
555 if (chip->dev_ready)
556 if (chip->dev_ready(mtd))
557 break;
558 }
559
560 if (!chip->dev_ready(mtd))
561 pr_warn("timeout while waiting for chip to become ready\n");
562 }
563 EXPORT_SYMBOL_GPL(nand_wait_ready);
564
565 /**
566 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
567 * @mtd: MTD device structure
568 * @timeo: Timeout in ms
569 *
570 * Wait for status ready (i.e. command done) or timeout.
571 */
572 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
573 {
574 register struct nand_chip *chip = mtd_to_nand(mtd);
575 u32 time_start;
576
577 timeo = (CONFIG_SYS_HZ * timeo) / 1000;
578 time_start = get_timer(0);
579 while (get_timer(time_start) < timeo) {
580 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
581 break;
582 WATCHDOG_RESET();
583 }
584 };
585
586 /**
587 * nand_command - [DEFAULT] Send command to NAND device
588 * @mtd: MTD device structure
589 * @command: the command to be sent
590 * @column: the column address for this command, -1 if none
591 * @page_addr: the page address for this command, -1 if none
592 *
593 * Send command to NAND device. This function is used for small page devices
594 * (512 Bytes per page).
595 */
596 static void nand_command(struct mtd_info *mtd, unsigned int command,
597 int column, int page_addr)
598 {
599 register struct nand_chip *chip = mtd_to_nand(mtd);
600 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
601
602 /* Write out the command to the device */
603 if (command == NAND_CMD_SEQIN) {
604 int readcmd;
605
606 if (column >= mtd->writesize) {
607 /* OOB area */
608 column -= mtd->writesize;
609 readcmd = NAND_CMD_READOOB;
610 } else if (column < 256) {
611 /* First 256 bytes --> READ0 */
612 readcmd = NAND_CMD_READ0;
613 } else {
614 column -= 256;
615 readcmd = NAND_CMD_READ1;
616 }
617 chip->cmd_ctrl(mtd, readcmd, ctrl);
618 ctrl &= ~NAND_CTRL_CHANGE;
619 }
620 chip->cmd_ctrl(mtd, command, ctrl);
621
622 /* Address cycle, when necessary */
623 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
624 /* Serially input address */
625 if (column != -1) {
626 /* Adjust columns for 16 bit buswidth */
627 if (chip->options & NAND_BUSWIDTH_16 &&
628 !nand_opcode_8bits(command))
629 column >>= 1;
630 chip->cmd_ctrl(mtd, column, ctrl);
631 ctrl &= ~NAND_CTRL_CHANGE;
632 }
633 if (page_addr != -1) {
634 chip->cmd_ctrl(mtd, page_addr, ctrl);
635 ctrl &= ~NAND_CTRL_CHANGE;
636 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
637 /* One more address cycle for devices > 32MiB */
638 if (chip->chipsize > (32 << 20))
639 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
640 }
641 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
642
643 /*
644 * Program and erase have their own busy handlers status and sequential
645 * in needs no delay
646 */
647 switch (command) {
648
649 case NAND_CMD_PAGEPROG:
650 case NAND_CMD_ERASE1:
651 case NAND_CMD_ERASE2:
652 case NAND_CMD_SEQIN:
653 case NAND_CMD_STATUS:
654 case NAND_CMD_READID:
655 case NAND_CMD_SET_FEATURES:
656 return;
657
658 case NAND_CMD_RESET:
659 if (chip->dev_ready)
660 break;
661 udelay(chip->chip_delay);
662 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
663 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
664 chip->cmd_ctrl(mtd,
665 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
667 nand_wait_status_ready(mtd, 250);
668 return;
669
670 /* This applies to read commands */
671 default:
672 /*
673 * If we don't have access to the busy pin, we apply the given
674 * command delay
675 */
676 if (!chip->dev_ready) {
677 udelay(chip->chip_delay);
678 return;
679 }
680 }
681 /*
682 * Apply this short delay always to ensure that we do wait tWB in
683 * any case on any machine.
684 */
685 ndelay(100);
686
687 nand_wait_ready(mtd);
688 }
689
690 /**
691 * nand_command_lp - [DEFAULT] Send command to NAND large page device
692 * @mtd: MTD device structure
693 * @command: the command to be sent
694 * @column: the column address for this command, -1 if none
695 * @page_addr: the page address for this command, -1 if none
696 *
697 * Send command to NAND device. This is the version for the new large page
698 * devices. We don't have the separate regions as we have in the small page
699 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
700 */
701 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
702 int column, int page_addr)
703 {
704 register struct nand_chip *chip = mtd_to_nand(mtd);
705
706 /* Emulate NAND_CMD_READOOB */
707 if (command == NAND_CMD_READOOB) {
708 column += mtd->writesize;
709 command = NAND_CMD_READ0;
710 }
711
712 /* Command latch cycle */
713 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
714
715 if (column != -1 || page_addr != -1) {
716 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
717
718 /* Serially input address */
719 if (column != -1) {
720 /* Adjust columns for 16 bit buswidth */
721 if (chip->options & NAND_BUSWIDTH_16 &&
722 !nand_opcode_8bits(command))
723 column >>= 1;
724 chip->cmd_ctrl(mtd, column, ctrl);
725 ctrl &= ~NAND_CTRL_CHANGE;
726 chip->cmd_ctrl(mtd, column >> 8, ctrl);
727 }
728 if (page_addr != -1) {
729 chip->cmd_ctrl(mtd, page_addr, ctrl);
730 chip->cmd_ctrl(mtd, page_addr >> 8,
731 NAND_NCE | NAND_ALE);
732 /* One more address cycle for devices > 128MiB */
733 if (chip->chipsize > (128 << 20))
734 chip->cmd_ctrl(mtd, page_addr >> 16,
735 NAND_NCE | NAND_ALE);
736 }
737 }
738 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
739
740 /*
741 * Program and erase have their own busy handlers status, sequential
742 * in and status need no delay.
743 */
744 switch (command) {
745
746 case NAND_CMD_CACHEDPROG:
747 case NAND_CMD_PAGEPROG:
748 case NAND_CMD_ERASE1:
749 case NAND_CMD_ERASE2:
750 case NAND_CMD_SEQIN:
751 case NAND_CMD_RNDIN:
752 case NAND_CMD_STATUS:
753 case NAND_CMD_READID:
754 case NAND_CMD_SET_FEATURES:
755 return;
756
757 case NAND_CMD_RESET:
758 if (chip->dev_ready)
759 break;
760 udelay(chip->chip_delay);
761 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
762 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
763 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
764 NAND_NCE | NAND_CTRL_CHANGE);
765 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
766 nand_wait_status_ready(mtd, 250);
767 return;
768
769 case NAND_CMD_RNDOUT:
770 /* No ready / busy check necessary */
771 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
772 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
773 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
774 NAND_NCE | NAND_CTRL_CHANGE);
775 return;
776
777 case NAND_CMD_READ0:
778 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
779 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
780 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
781 NAND_NCE | NAND_CTRL_CHANGE);
782
783 /* This applies to read commands */
784 default:
785 /*
786 * If we don't have access to the busy pin, we apply the given
787 * command delay.
788 */
789 if (!chip->dev_ready) {
790 udelay(chip->chip_delay);
791 return;
792 }
793 }
794
795 /*
796 * Apply this short delay always to ensure that we do wait tWB in
797 * any case on any machine.
798 */
799 ndelay(100);
800
801 nand_wait_ready(mtd);
802 }
803
804 /**
805 * panic_nand_get_device - [GENERIC] Get chip for selected access
806 * @chip: the nand chip descriptor
807 * @mtd: MTD device structure
808 * @new_state: the state which is requested
809 *
810 * Used when in panic, no locks are taken.
811 */
812 static void panic_nand_get_device(struct nand_chip *chip,
813 struct mtd_info *mtd, int new_state)
814 {
815 /* Hardware controller shared among independent devices */
816 chip->controller->active = chip;
817 chip->state = new_state;
818 }
819
820 /**
821 * nand_get_device - [GENERIC] Get chip for selected access
822 * @mtd: MTD device structure
823 * @new_state: the state which is requested
824 *
825 * Get the device and lock it for exclusive access
826 */
827 static int
828 nand_get_device(struct mtd_info *mtd, int new_state)
829 {
830 struct nand_chip *chip = mtd_to_nand(mtd);
831 chip->state = new_state;
832 return 0;
833 }
834
835 /**
836 * panic_nand_wait - [GENERIC] wait until the command is done
837 * @mtd: MTD device structure
838 * @chip: NAND chip structure
839 * @timeo: timeout
840 *
841 * Wait for command done. This is a helper function for nand_wait used when
842 * we are in interrupt context. May happen when in panic and trying to write
843 * an oops through mtdoops.
844 */
845 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
846 unsigned long timeo)
847 {
848 int i;
849 for (i = 0; i < timeo; i++) {
850 if (chip->dev_ready) {
851 if (chip->dev_ready(mtd))
852 break;
853 } else {
854 if (chip->read_byte(mtd) & NAND_STATUS_READY)
855 break;
856 }
857 mdelay(1);
858 }
859 }
860
861 /**
862 * nand_wait - [DEFAULT] wait until the command is done
863 * @mtd: MTD device structure
864 * @chip: NAND chip structure
865 *
866 * Wait for command done. This applies to erase and program only.
867 */
868 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
869 {
870 int status;
871 unsigned long timeo = 400;
872
873 led_trigger_event(nand_led_trigger, LED_FULL);
874
875 /*
876 * Apply this short delay always to ensure that we do wait tWB in any
877 * case on any machine.
878 */
879 ndelay(100);
880
881 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
882
883 u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
884 u32 time_start;
885
886 time_start = get_timer(0);
887 while (get_timer(time_start) < timer) {
888 if (chip->dev_ready) {
889 if (chip->dev_ready(mtd))
890 break;
891 } else {
892 if (chip->read_byte(mtd) & NAND_STATUS_READY)
893 break;
894 }
895 }
896 led_trigger_event(nand_led_trigger, LED_OFF);
897
898 status = (int)chip->read_byte(mtd);
899 /* This can happen if in case of timeout or buggy dev_ready */
900 WARN_ON(!(status & NAND_STATUS_READY));
901 return status;
902 }
903
904 /**
905 * nand_reset_data_interface - Reset data interface and timings
906 * @chip: The NAND chip
907 * @chipnr: Internal die id
908 *
909 * Reset the Data interface and timings to ONFI mode 0.
910 *
911 * Returns 0 for success or negative error code otherwise.
912 */
913 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
914 {
915 struct mtd_info *mtd = nand_to_mtd(chip);
916 const struct nand_data_interface *conf;
917 int ret;
918
919 if (!chip->setup_data_interface)
920 return 0;
921
922 /*
923 * The ONFI specification says:
924 * "
925 * To transition from NV-DDR or NV-DDR2 to the SDR data
926 * interface, the host shall use the Reset (FFh) command
927 * using SDR timing mode 0. A device in any timing mode is
928 * required to recognize Reset (FFh) command issued in SDR
929 * timing mode 0.
930 * "
931 *
932 * Configure the data interface in SDR mode and set the
933 * timings to timing mode 0.
934 */
935
936 conf = nand_get_default_data_interface();
937 ret = chip->setup_data_interface(mtd, chipnr, conf);
938 if (ret)
939 pr_err("Failed to configure data interface to SDR timing mode 0\n");
940
941 return ret;
942 }
943
944 /**
945 * nand_setup_data_interface - Setup the best data interface and timings
946 * @chip: The NAND chip
947 * @chipnr: Internal die id
948 *
949 * Find and configure the best data interface and NAND timings supported by
950 * the chip and the driver.
951 * First tries to retrieve supported timing modes from ONFI information,
952 * and if the NAND chip does not support ONFI, relies on the
953 * ->onfi_timing_mode_default specified in the nand_ids table.
954 *
955 * Returns 0 for success or negative error code otherwise.
956 */
957 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
958 {
959 struct mtd_info *mtd = nand_to_mtd(chip);
960 int ret;
961
962 if (!chip->setup_data_interface || !chip->data_interface)
963 return 0;
964
965 /*
966 * Ensure the timing mode has been changed on the chip side
967 * before changing timings on the controller side.
968 */
969 if (chip->onfi_version) {
970 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
971 chip->onfi_timing_mode_default,
972 };
973
974 ret = chip->onfi_set_features(mtd, chip,
975 ONFI_FEATURE_ADDR_TIMING_MODE,
976 tmode_param);
977 if (ret)
978 goto err;
979 }
980
981 ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
982 err:
983 return ret;
984 }
985
986 /**
987 * nand_init_data_interface - find the best data interface and timings
988 * @chip: The NAND chip
989 *
990 * Find the best data interface and NAND timings supported by the chip
991 * and the driver.
992 * First tries to retrieve supported timing modes from ONFI information,
993 * and if the NAND chip does not support ONFI, relies on the
994 * ->onfi_timing_mode_default specified in the nand_ids table. After this
995 * function nand_chip->data_interface is initialized with the best timing mode
996 * available.
997 *
998 * Returns 0 for success or negative error code otherwise.
999 */
1000 static int nand_init_data_interface(struct nand_chip *chip)
1001 {
1002 struct mtd_info *mtd = nand_to_mtd(chip);
1003 int modes, mode, ret;
1004
1005 if (!chip->setup_data_interface)
1006 return 0;
1007
1008 /*
1009 * First try to identify the best timings from ONFI parameters and
1010 * if the NAND does not support ONFI, fallback to the default ONFI
1011 * timing mode.
1012 */
1013 modes = onfi_get_async_timing_mode(chip);
1014 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1015 if (!chip->onfi_timing_mode_default)
1016 return 0;
1017
1018 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1019 }
1020
1021 chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1022 GFP_KERNEL);
1023 if (!chip->data_interface)
1024 return -ENOMEM;
1025
1026 for (mode = fls(modes) - 1; mode >= 0; mode--) {
1027 ret = onfi_init_data_interface(chip, chip->data_interface,
1028 NAND_SDR_IFACE, mode);
1029 if (ret)
1030 continue;
1031
1032 /* Pass -1 to only */
1033 ret = chip->setup_data_interface(mtd,
1034 NAND_DATA_IFACE_CHECK_ONLY,
1035 chip->data_interface);
1036 if (!ret) {
1037 chip->onfi_timing_mode_default = mode;
1038 break;
1039 }
1040 }
1041
1042 return 0;
1043 }
1044
1045 static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
1046 {
1047 kfree(chip->data_interface);
1048 }
1049
1050 /**
1051 * nand_reset - Reset and initialize a NAND device
1052 * @chip: The NAND chip
1053 * @chipnr: Internal die id
1054 *
1055 * Returns 0 for success or negative error code otherwise
1056 */
1057 int nand_reset(struct nand_chip *chip, int chipnr)
1058 {
1059 struct mtd_info *mtd = nand_to_mtd(chip);
1060 int ret;
1061
1062 ret = nand_reset_data_interface(chip, chipnr);
1063 if (ret)
1064 return ret;
1065
1066 /*
1067 * The CS line has to be released before we can apply the new NAND
1068 * interface settings, hence this weird ->select_chip() dance.
1069 */
1070 chip->select_chip(mtd, chipnr);
1071 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1072 chip->select_chip(mtd, -1);
1073
1074 chip->select_chip(mtd, chipnr);
1075 ret = nand_setup_data_interface(chip, chipnr);
1076 chip->select_chip(mtd, -1);
1077 if (ret)
1078 return ret;
1079
1080 return 0;
1081 }
1082
1083 /**
1084 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1085 * @buf: buffer to test
1086 * @len: buffer length
1087 * @bitflips_threshold: maximum number of bitflips
1088 *
1089 * Check if a buffer contains only 0xff, which means the underlying region
1090 * has been erased and is ready to be programmed.
1091 * The bitflips_threshold specify the maximum number of bitflips before
1092 * considering the region is not erased.
1093 * Note: The logic of this function has been extracted from the memweight
1094 * implementation, except that nand_check_erased_buf function exit before
1095 * testing the whole buffer if the number of bitflips exceed the
1096 * bitflips_threshold value.
1097 *
1098 * Returns a positive number of bitflips less than or equal to
1099 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1100 * threshold.
1101 */
1102 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1103 {
1104 const unsigned char *bitmap = buf;
1105 int bitflips = 0;
1106 int weight;
1107
1108 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1109 len--, bitmap++) {
1110 weight = hweight8(*bitmap);
1111 bitflips += BITS_PER_BYTE - weight;
1112 if (unlikely(bitflips > bitflips_threshold))
1113 return -EBADMSG;
1114 }
1115
1116 for (; len >= 4; len -= 4, bitmap += 4) {
1117 weight = hweight32(*((u32 *)bitmap));
1118 bitflips += 32 - weight;
1119 if (unlikely(bitflips > bitflips_threshold))
1120 return -EBADMSG;
1121 }
1122
1123 for (; len > 0; len--, bitmap++) {
1124 weight = hweight8(*bitmap);
1125 bitflips += BITS_PER_BYTE - weight;
1126 if (unlikely(bitflips > bitflips_threshold))
1127 return -EBADMSG;
1128 }
1129
1130 return bitflips;
1131 }
1132
1133 /**
1134 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1135 * 0xff data
1136 * @data: data buffer to test
1137 * @datalen: data length
1138 * @ecc: ECC buffer
1139 * @ecclen: ECC length
1140 * @extraoob: extra OOB buffer
1141 * @extraooblen: extra OOB length
1142 * @bitflips_threshold: maximum number of bitflips
1143 *
1144 * Check if a data buffer and its associated ECC and OOB data contains only
1145 * 0xff pattern, which means the underlying region has been erased and is
1146 * ready to be programmed.
1147 * The bitflips_threshold specify the maximum number of bitflips before
1148 * considering the region as not erased.
1149 *
1150 * Note:
1151 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1152 * different from the NAND page size. When fixing bitflips, ECC engines will
1153 * report the number of errors per chunk, and the NAND core infrastructure
1154 * expect you to return the maximum number of bitflips for the whole page.
1155 * This is why you should always use this function on a single chunk and
1156 * not on the whole page. After checking each chunk you should update your
1157 * max_bitflips value accordingly.
1158 * 2/ When checking for bitflips in erased pages you should not only check
1159 * the payload data but also their associated ECC data, because a user might
1160 * have programmed almost all bits to 1 but a few. In this case, we
1161 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1162 * this case.
1163 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1164 * data are protected by the ECC engine.
1165 * It could also be used if you support subpages and want to attach some
1166 * extra OOB data to an ECC chunk.
1167 *
1168 * Returns a positive number of bitflips less than or equal to
1169 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1170 * threshold. In case of success, the passed buffers are filled with 0xff.
1171 */
1172 int nand_check_erased_ecc_chunk(void *data, int datalen,
1173 void *ecc, int ecclen,
1174 void *extraoob, int extraooblen,
1175 int bitflips_threshold)
1176 {
1177 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1178
1179 data_bitflips = nand_check_erased_buf(data, datalen,
1180 bitflips_threshold);
1181 if (data_bitflips < 0)
1182 return data_bitflips;
1183
1184 bitflips_threshold -= data_bitflips;
1185
1186 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1187 if (ecc_bitflips < 0)
1188 return ecc_bitflips;
1189
1190 bitflips_threshold -= ecc_bitflips;
1191
1192 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1193 bitflips_threshold);
1194 if (extraoob_bitflips < 0)
1195 return extraoob_bitflips;
1196
1197 if (data_bitflips)
1198 memset(data, 0xff, datalen);
1199
1200 if (ecc_bitflips)
1201 memset(ecc, 0xff, ecclen);
1202
1203 if (extraoob_bitflips)
1204 memset(extraoob, 0xff, extraooblen);
1205
1206 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1207 }
1208 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1209
1210 /**
1211 * nand_read_page_raw - [INTERN] read raw page data without ecc
1212 * @mtd: mtd info structure
1213 * @chip: nand chip info structure
1214 * @buf: buffer to store read data
1215 * @oob_required: caller requires OOB data read to chip->oob_poi
1216 * @page: page number to read
1217 *
1218 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1219 */
1220 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1221 uint8_t *buf, int oob_required, int page)
1222 {
1223 chip->read_buf(mtd, buf, mtd->writesize);
1224 if (oob_required)
1225 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1226 return 0;
1227 }
1228
1229 /**
1230 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1231 * @mtd: mtd info structure
1232 * @chip: nand chip info structure
1233 * @buf: buffer to store read data
1234 * @oob_required: caller requires OOB data read to chip->oob_poi
1235 * @page: page number to read
1236 *
1237 * We need a special oob layout and handling even when OOB isn't used.
1238 */
1239 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1240 struct nand_chip *chip, uint8_t *buf,
1241 int oob_required, int page)
1242 {
1243 int eccsize = chip->ecc.size;
1244 int eccbytes = chip->ecc.bytes;
1245 uint8_t *oob = chip->oob_poi;
1246 int steps, size;
1247
1248 for (steps = chip->ecc.steps; steps > 0; steps--) {
1249 chip->read_buf(mtd, buf, eccsize);
1250 buf += eccsize;
1251
1252 if (chip->ecc.prepad) {
1253 chip->read_buf(mtd, oob, chip->ecc.prepad);
1254 oob += chip->ecc.prepad;
1255 }
1256
1257 chip->read_buf(mtd, oob, eccbytes);
1258 oob += eccbytes;
1259
1260 if (chip->ecc.postpad) {
1261 chip->read_buf(mtd, oob, chip->ecc.postpad);
1262 oob += chip->ecc.postpad;
1263 }
1264 }
1265
1266 size = mtd->oobsize - (oob - chip->oob_poi);
1267 if (size)
1268 chip->read_buf(mtd, oob, size);
1269
1270 return 0;
1271 }
1272
1273 /**
1274 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1275 * @mtd: mtd info structure
1276 * @chip: nand chip info structure
1277 * @buf: buffer to store read data
1278 * @oob_required: caller requires OOB data read to chip->oob_poi
1279 * @page: page number to read
1280 */
1281 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1282 uint8_t *buf, int oob_required, int page)
1283 {
1284 int i, eccsize = chip->ecc.size;
1285 int eccbytes = chip->ecc.bytes;
1286 int eccsteps = chip->ecc.steps;
1287 uint8_t *p = buf;
1288 uint8_t *ecc_calc = chip->buffers->ecccalc;
1289 uint8_t *ecc_code = chip->buffers->ecccode;
1290 uint32_t *eccpos = chip->ecc.layout->eccpos;
1291 unsigned int max_bitflips = 0;
1292
1293 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1294
1295 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1296 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1297
1298 for (i = 0; i < chip->ecc.total; i++)
1299 ecc_code[i] = chip->oob_poi[eccpos[i]];
1300
1301 eccsteps = chip->ecc.steps;
1302 p = buf;
1303
1304 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305 int stat;
1306
1307 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1308 if (stat < 0) {
1309 mtd->ecc_stats.failed++;
1310 } else {
1311 mtd->ecc_stats.corrected += stat;
1312 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1313 }
1314 }
1315 return max_bitflips;
1316 }
1317
1318 /**
1319 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1320 * @mtd: mtd info structure
1321 * @chip: nand chip info structure
1322 * @data_offs: offset of requested data within the page
1323 * @readlen: data length
1324 * @bufpoi: buffer to store read data
1325 * @page: page number to read
1326 */
1327 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1328 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1329 int page)
1330 {
1331 int start_step, end_step, num_steps;
1332 uint32_t *eccpos = chip->ecc.layout->eccpos;
1333 uint8_t *p;
1334 int data_col_addr, i, gaps = 0;
1335 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1336 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1337 int index;
1338 unsigned int max_bitflips = 0;
1339
1340 /* Column address within the page aligned to ECC size (256bytes) */
1341 start_step = data_offs / chip->ecc.size;
1342 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1343 num_steps = end_step - start_step + 1;
1344 index = start_step * chip->ecc.bytes;
1345
1346 /* Data size aligned to ECC ecc.size */
1347 datafrag_len = num_steps * chip->ecc.size;
1348 eccfrag_len = num_steps * chip->ecc.bytes;
1349
1350 data_col_addr = start_step * chip->ecc.size;
1351 /* If we read not a page aligned data */
1352 if (data_col_addr != 0)
1353 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1354
1355 p = bufpoi + data_col_addr;
1356 chip->read_buf(mtd, p, datafrag_len);
1357
1358 /* Calculate ECC */
1359 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1360 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1361
1362 /*
1363 * The performance is faster if we position offsets according to
1364 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1365 */
1366 for (i = 0; i < eccfrag_len - 1; i++) {
1367 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1368 gaps = 1;
1369 break;
1370 }
1371 }
1372 if (gaps) {
1373 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1374 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1375 } else {
1376 /*
1377 * Send the command to read the particular ECC bytes take care
1378 * about buswidth alignment in read_buf.
1379 */
1380 aligned_pos = eccpos[index] & ~(busw - 1);
1381 aligned_len = eccfrag_len;
1382 if (eccpos[index] & (busw - 1))
1383 aligned_len++;
1384 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1385 aligned_len++;
1386
1387 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1388 mtd->writesize + aligned_pos, -1);
1389 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1390 }
1391
1392 for (i = 0; i < eccfrag_len; i++)
1393 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1394
1395 p = bufpoi + data_col_addr;
1396 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1397 int stat;
1398
1399 stat = chip->ecc.correct(mtd, p,
1400 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1401 if (stat == -EBADMSG &&
1402 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1403 /* check for empty pages with bitflips */
1404 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1405 &chip->buffers->ecccode[i],
1406 chip->ecc.bytes,
1407 NULL, 0,
1408 chip->ecc.strength);
1409 }
1410
1411 if (stat < 0) {
1412 mtd->ecc_stats.failed++;
1413 } else {
1414 mtd->ecc_stats.corrected += stat;
1415 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1416 }
1417 }
1418 return max_bitflips;
1419 }
1420
1421 /**
1422 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1423 * @mtd: mtd info structure
1424 * @chip: nand chip info structure
1425 * @buf: buffer to store read data
1426 * @oob_required: caller requires OOB data read to chip->oob_poi
1427 * @page: page number to read
1428 *
1429 * Not for syndrome calculating ECC controllers which need a special oob layout.
1430 */
1431 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1432 uint8_t *buf, int oob_required, int page)
1433 {
1434 int i, eccsize = chip->ecc.size;
1435 int eccbytes = chip->ecc.bytes;
1436 int eccsteps = chip->ecc.steps;
1437 uint8_t *p = buf;
1438 uint8_t *ecc_calc = chip->buffers->ecccalc;
1439 uint8_t *ecc_code = chip->buffers->ecccode;
1440 uint32_t *eccpos = chip->ecc.layout->eccpos;
1441 unsigned int max_bitflips = 0;
1442
1443 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1444 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1445 chip->read_buf(mtd, p, eccsize);
1446 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1447 }
1448 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1449
1450 for (i = 0; i < chip->ecc.total; i++)
1451 ecc_code[i] = chip->oob_poi[eccpos[i]];
1452
1453 eccsteps = chip->ecc.steps;
1454 p = buf;
1455
1456 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1457 int stat;
1458
1459 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1460 if (stat == -EBADMSG &&
1461 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1462 /* check for empty pages with bitflips */
1463 stat = nand_check_erased_ecc_chunk(p, eccsize,
1464 &ecc_code[i], eccbytes,
1465 NULL, 0,
1466 chip->ecc.strength);
1467 }
1468
1469 if (stat < 0) {
1470 mtd->ecc_stats.failed++;
1471 } else {
1472 mtd->ecc_stats.corrected += stat;
1473 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1474 }
1475 }
1476 return max_bitflips;
1477 }
1478
1479 /**
1480 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1481 * @mtd: mtd info structure
1482 * @chip: nand chip info structure
1483 * @buf: buffer to store read data
1484 * @oob_required: caller requires OOB data read to chip->oob_poi
1485 * @page: page number to read
1486 *
1487 * Hardware ECC for large page chips, require OOB to be read first. For this
1488 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1489 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1490 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1491 * the data area, by overwriting the NAND manufacturer bad block markings.
1492 */
1493 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1494 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1495 {
1496 int i, eccsize = chip->ecc.size;
1497 int eccbytes = chip->ecc.bytes;
1498 int eccsteps = chip->ecc.steps;
1499 uint8_t *p = buf;
1500 uint8_t *ecc_code = chip->buffers->ecccode;
1501 uint32_t *eccpos = chip->ecc.layout->eccpos;
1502 uint8_t *ecc_calc = chip->buffers->ecccalc;
1503 unsigned int max_bitflips = 0;
1504
1505 /* Read the OOB area first */
1506 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1507 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1508 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1509
1510 for (i = 0; i < chip->ecc.total; i++)
1511 ecc_code[i] = chip->oob_poi[eccpos[i]];
1512
1513 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1514 int stat;
1515
1516 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1517 chip->read_buf(mtd, p, eccsize);
1518 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1519
1520 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1521 if (stat == -EBADMSG &&
1522 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1523 /* check for empty pages with bitflips */
1524 stat = nand_check_erased_ecc_chunk(p, eccsize,
1525 &ecc_code[i], eccbytes,
1526 NULL, 0,
1527 chip->ecc.strength);
1528 }
1529
1530 if (stat < 0) {
1531 mtd->ecc_stats.failed++;
1532 } else {
1533 mtd->ecc_stats.corrected += stat;
1534 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1535 }
1536 }
1537 return max_bitflips;
1538 }
1539
1540 /**
1541 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1542 * @mtd: mtd info structure
1543 * @chip: nand chip info structure
1544 * @buf: buffer to store read data
1545 * @oob_required: caller requires OOB data read to chip->oob_poi
1546 * @page: page number to read
1547 *
1548 * The hw generator calculates the error syndrome automatically. Therefore we
1549 * need a special oob layout and handling.
1550 */
1551 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1552 uint8_t *buf, int oob_required, int page)
1553 {
1554 int i, eccsize = chip->ecc.size;
1555 int eccbytes = chip->ecc.bytes;
1556 int eccsteps = chip->ecc.steps;
1557 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1558 uint8_t *p = buf;
1559 uint8_t *oob = chip->oob_poi;
1560 unsigned int max_bitflips = 0;
1561
1562 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1563 int stat;
1564
1565 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1566 chip->read_buf(mtd, p, eccsize);
1567
1568 if (chip->ecc.prepad) {
1569 chip->read_buf(mtd, oob, chip->ecc.prepad);
1570 oob += chip->ecc.prepad;
1571 }
1572
1573 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1574 chip->read_buf(mtd, oob, eccbytes);
1575 stat = chip->ecc.correct(mtd, p, oob, NULL);
1576
1577 oob += eccbytes;
1578
1579 if (chip->ecc.postpad) {
1580 chip->read_buf(mtd, oob, chip->ecc.postpad);
1581 oob += chip->ecc.postpad;
1582 }
1583
1584 if (stat == -EBADMSG &&
1585 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1586 /* check for empty pages with bitflips */
1587 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1588 oob - eccpadbytes,
1589 eccpadbytes,
1590 NULL, 0,
1591 chip->ecc.strength);
1592 }
1593
1594 if (stat < 0) {
1595 mtd->ecc_stats.failed++;
1596 } else {
1597 mtd->ecc_stats.corrected += stat;
1598 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1599 }
1600 }
1601
1602 /* Calculate remaining oob bytes */
1603 i = mtd->oobsize - (oob - chip->oob_poi);
1604 if (i)
1605 chip->read_buf(mtd, oob, i);
1606
1607 return max_bitflips;
1608 }
1609
1610 /**
1611 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1612 * @chip: nand chip structure
1613 * @oob: oob destination address
1614 * @ops: oob ops structure
1615 * @len: size of oob to transfer
1616 */
1617 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1618 struct mtd_oob_ops *ops, size_t len)
1619 {
1620 switch (ops->mode) {
1621
1622 case MTD_OPS_PLACE_OOB:
1623 case MTD_OPS_RAW:
1624 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1625 return oob + len;
1626
1627 case MTD_OPS_AUTO_OOB: {
1628 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1629 uint32_t boffs = 0, roffs = ops->ooboffs;
1630 size_t bytes = 0;
1631
1632 for (; free->length && len; free++, len -= bytes) {
1633 /* Read request not from offset 0? */
1634 if (unlikely(roffs)) {
1635 if (roffs >= free->length) {
1636 roffs -= free->length;
1637 continue;
1638 }
1639 boffs = free->offset + roffs;
1640 bytes = min_t(size_t, len,
1641 (free->length - roffs));
1642 roffs = 0;
1643 } else {
1644 bytes = min_t(size_t, len, free->length);
1645 boffs = free->offset;
1646 }
1647 memcpy(oob, chip->oob_poi + boffs, bytes);
1648 oob += bytes;
1649 }
1650 return oob;
1651 }
1652 default:
1653 BUG();
1654 }
1655 return NULL;
1656 }
1657
1658 /**
1659 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1660 * @mtd: MTD device structure
1661 * @retry_mode: the retry mode to use
1662 *
1663 * Some vendors supply a special command to shift the Vt threshold, to be used
1664 * when there are too many bitflips in a page (i.e., ECC error). After setting
1665 * a new threshold, the host should retry reading the page.
1666 */
1667 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1668 {
1669 struct nand_chip *chip = mtd_to_nand(mtd);
1670
1671 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1672
1673 if (retry_mode >= chip->read_retries)
1674 return -EINVAL;
1675
1676 if (!chip->setup_read_retry)
1677 return -EOPNOTSUPP;
1678
1679 return chip->setup_read_retry(mtd, retry_mode);
1680 }
1681
1682 /**
1683 * nand_do_read_ops - [INTERN] Read data with ECC
1684 * @mtd: MTD device structure
1685 * @from: offset to read from
1686 * @ops: oob ops structure
1687 *
1688 * Internal function. Called with chip held.
1689 */
1690 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1691 struct mtd_oob_ops *ops)
1692 {
1693 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1694 struct nand_chip *chip = mtd_to_nand(mtd);
1695 int ret = 0;
1696 uint32_t readlen = ops->len;
1697 uint32_t oobreadlen = ops->ooblen;
1698 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1699
1700 uint8_t *bufpoi, *oob, *buf;
1701 int use_bufpoi;
1702 unsigned int max_bitflips = 0;
1703 int retry_mode = 0;
1704 bool ecc_fail = false;
1705
1706 chipnr = (int)(from >> chip->chip_shift);
1707 chip->select_chip(mtd, chipnr);
1708
1709 realpage = (int)(from >> chip->page_shift);
1710 page = realpage & chip->pagemask;
1711
1712 col = (int)(from & (mtd->writesize - 1));
1713
1714 buf = ops->datbuf;
1715 oob = ops->oobbuf;
1716 oob_required = oob ? 1 : 0;
1717
1718 while (1) {
1719 unsigned int ecc_failures = mtd->ecc_stats.failed;
1720
1721 WATCHDOG_RESET();
1722 bytes = min(mtd->writesize - col, readlen);
1723 aligned = (bytes == mtd->writesize);
1724
1725 if (!aligned)
1726 use_bufpoi = 1;
1727 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1728 use_bufpoi = !IS_ALIGNED((unsigned long)buf,
1729 chip->buf_align);
1730 else
1731 use_bufpoi = 0;
1732
1733 /* Is the current page in the buffer? */
1734 if (realpage != chip->pagebuf || oob) {
1735 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1736
1737 if (use_bufpoi && aligned)
1738 pr_debug("%s: using read bounce buffer for buf@%p\n",
1739 __func__, buf);
1740
1741 read_retry:
1742 if (nand_standard_page_accessors(&chip->ecc))
1743 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1744
1745 /*
1746 * Now read the page into the buffer. Absent an error,
1747 * the read methods return max bitflips per ecc step.
1748 */
1749 if (unlikely(ops->mode == MTD_OPS_RAW))
1750 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1751 oob_required,
1752 page);
1753 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1754 !oob)
1755 ret = chip->ecc.read_subpage(mtd, chip,
1756 col, bytes, bufpoi,
1757 page);
1758 else
1759 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1760 oob_required, page);
1761 if (ret < 0) {
1762 if (use_bufpoi)
1763 /* Invalidate page cache */
1764 chip->pagebuf = -1;
1765 break;
1766 }
1767
1768 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1769
1770 /* Transfer not aligned data */
1771 if (use_bufpoi) {
1772 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1773 !(mtd->ecc_stats.failed - ecc_failures) &&
1774 (ops->mode != MTD_OPS_RAW)) {
1775 chip->pagebuf = realpage;
1776 chip->pagebuf_bitflips = ret;
1777 } else {
1778 /* Invalidate page cache */
1779 chip->pagebuf = -1;
1780 }
1781 memcpy(buf, chip->buffers->databuf + col, bytes);
1782 }
1783
1784 if (unlikely(oob)) {
1785 int toread = min(oobreadlen, max_oobsize);
1786
1787 if (toread) {
1788 oob = nand_transfer_oob(chip,
1789 oob, ops, toread);
1790 oobreadlen -= toread;
1791 }
1792 }
1793
1794 if (chip->options & NAND_NEED_READRDY) {
1795 /* Apply delay or wait for ready/busy pin */
1796 if (!chip->dev_ready)
1797 udelay(chip->chip_delay);
1798 else
1799 nand_wait_ready(mtd);
1800 }
1801
1802 if (mtd->ecc_stats.failed - ecc_failures) {
1803 if (retry_mode + 1 < chip->read_retries) {
1804 retry_mode++;
1805 ret = nand_setup_read_retry(mtd,
1806 retry_mode);
1807 if (ret < 0)
1808 break;
1809
1810 /* Reset failures; retry */
1811 mtd->ecc_stats.failed = ecc_failures;
1812 goto read_retry;
1813 } else {
1814 /* No more retry modes; real failure */
1815 ecc_fail = true;
1816 }
1817 }
1818
1819 buf += bytes;
1820 } else {
1821 memcpy(buf, chip->buffers->databuf + col, bytes);
1822 buf += bytes;
1823 max_bitflips = max_t(unsigned int, max_bitflips,
1824 chip->pagebuf_bitflips);
1825 }
1826
1827 readlen -= bytes;
1828
1829 /* Reset to retry mode 0 */
1830 if (retry_mode) {
1831 ret = nand_setup_read_retry(mtd, 0);
1832 if (ret < 0)
1833 break;
1834 retry_mode = 0;
1835 }
1836
1837 if (!readlen)
1838 break;
1839
1840 /* For subsequent reads align to page boundary */
1841 col = 0;
1842 /* Increment page address */
1843 realpage++;
1844
1845 page = realpage & chip->pagemask;
1846 /* Check, if we cross a chip boundary */
1847 if (!page) {
1848 chipnr++;
1849 chip->select_chip(mtd, -1);
1850 chip->select_chip(mtd, chipnr);
1851 }
1852 }
1853 chip->select_chip(mtd, -1);
1854
1855 ops->retlen = ops->len - (size_t) readlen;
1856 if (oob)
1857 ops->oobretlen = ops->ooblen - oobreadlen;
1858
1859 if (ret < 0)
1860 return ret;
1861
1862 if (ecc_fail)
1863 return -EBADMSG;
1864
1865 return max_bitflips;
1866 }
1867
1868 /**
1869 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1870 * @mtd: MTD device structure
1871 * @from: offset to read from
1872 * @len: number of bytes to read
1873 * @retlen: pointer to variable to store the number of read bytes
1874 * @buf: the databuffer to put data
1875 *
1876 * Get hold of the chip and call nand_do_read.
1877 */
1878 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1879 size_t *retlen, uint8_t *buf)
1880 {
1881 struct mtd_oob_ops ops;
1882 int ret;
1883
1884 nand_get_device(mtd, FL_READING);
1885 memset(&ops, 0, sizeof(ops));
1886 ops.len = len;
1887 ops.datbuf = buf;
1888 ops.mode = MTD_OPS_PLACE_OOB;
1889 ret = nand_do_read_ops(mtd, from, &ops);
1890 *retlen = ops.retlen;
1891 nand_release_device(mtd);
1892 return ret;
1893 }
1894
1895 /**
1896 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1897 * @mtd: mtd info structure
1898 * @chip: nand chip info structure
1899 * @page: page number to read
1900 */
1901 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1902 int page)
1903 {
1904 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1905 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1906 return 0;
1907 }
1908
1909 /**
1910 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1911 * with syndromes
1912 * @mtd: mtd info structure
1913 * @chip: nand chip info structure
1914 * @page: page number to read
1915 */
1916 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1917 int page)
1918 {
1919 int length = mtd->oobsize;
1920 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1921 int eccsize = chip->ecc.size;
1922 uint8_t *bufpoi = chip->oob_poi;
1923 int i, toread, sndrnd = 0, pos;
1924
1925 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1926 for (i = 0; i < chip->ecc.steps; i++) {
1927 if (sndrnd) {
1928 pos = eccsize + i * (eccsize + chunk);
1929 if (mtd->writesize > 512)
1930 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1931 else
1932 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1933 } else
1934 sndrnd = 1;
1935 toread = min_t(int, length, chunk);
1936 chip->read_buf(mtd, bufpoi, toread);
1937 bufpoi += toread;
1938 length -= toread;
1939 }
1940 if (length > 0)
1941 chip->read_buf(mtd, bufpoi, length);
1942
1943 return 0;
1944 }
1945
1946 /**
1947 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1948 * @mtd: mtd info structure
1949 * @chip: nand chip info structure
1950 * @page: page number to write
1951 */
1952 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1953 int page)
1954 {
1955 int status = 0;
1956 const uint8_t *buf = chip->oob_poi;
1957 int length = mtd->oobsize;
1958
1959 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1960 chip->write_buf(mtd, buf, length);
1961 /* Send command to program the OOB data */
1962 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1963
1964 status = chip->waitfunc(mtd, chip);
1965
1966 return status & NAND_STATUS_FAIL ? -EIO : 0;
1967 }
1968
1969 /**
1970 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1971 * with syndrome - only for large page flash
1972 * @mtd: mtd info structure
1973 * @chip: nand chip info structure
1974 * @page: page number to write
1975 */
1976 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1977 struct nand_chip *chip, int page)
1978 {
1979 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1980 int eccsize = chip->ecc.size, length = mtd->oobsize;
1981 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1982 const uint8_t *bufpoi = chip->oob_poi;
1983
1984 /*
1985 * data-ecc-data-ecc ... ecc-oob
1986 * or
1987 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1988 */
1989 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1990 pos = steps * (eccsize + chunk);
1991 steps = 0;
1992 } else
1993 pos = eccsize;
1994
1995 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1996 for (i = 0; i < steps; i++) {
1997 if (sndcmd) {
1998 if (mtd->writesize <= 512) {
1999 uint32_t fill = 0xFFFFFFFF;
2000
2001 len = eccsize;
2002 while (len > 0) {
2003 int num = min_t(int, len, 4);
2004 chip->write_buf(mtd, (uint8_t *)&fill,
2005 num);
2006 len -= num;
2007 }
2008 } else {
2009 pos = eccsize + i * (eccsize + chunk);
2010 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2011 }
2012 } else
2013 sndcmd = 1;
2014 len = min_t(int, length, chunk);
2015 chip->write_buf(mtd, bufpoi, len);
2016 bufpoi += len;
2017 length -= len;
2018 }
2019 if (length > 0)
2020 chip->write_buf(mtd, bufpoi, length);
2021
2022 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2023 status = chip->waitfunc(mtd, chip);
2024
2025 return status & NAND_STATUS_FAIL ? -EIO : 0;
2026 }
2027
2028 /**
2029 * nand_do_read_oob - [INTERN] NAND read out-of-band
2030 * @mtd: MTD device structure
2031 * @from: offset to read from
2032 * @ops: oob operations description structure
2033 *
2034 * NAND read out-of-band data from the spare area.
2035 */
2036 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2037 struct mtd_oob_ops *ops)
2038 {
2039 int page, realpage, chipnr;
2040 struct nand_chip *chip = mtd_to_nand(mtd);
2041 struct mtd_ecc_stats stats;
2042 int readlen = ops->ooblen;
2043 int len;
2044 uint8_t *buf = ops->oobbuf;
2045 int ret = 0;
2046
2047 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2048 __func__, (unsigned long long)from, readlen);
2049
2050 stats = mtd->ecc_stats;
2051
2052 len = mtd_oobavail(mtd, ops);
2053
2054 if (unlikely(ops->ooboffs >= len)) {
2055 pr_debug("%s: attempt to start read outside oob\n",
2056 __func__);
2057 return -EINVAL;
2058 }
2059
2060 /* Do not allow reads past end of device */
2061 if (unlikely(from >= mtd->size ||
2062 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2063 (from >> chip->page_shift)) * len)) {
2064 pr_debug("%s: attempt to read beyond end of device\n",
2065 __func__);
2066 return -EINVAL;
2067 }
2068
2069 chipnr = (int)(from >> chip->chip_shift);
2070 chip->select_chip(mtd, chipnr);
2071
2072 /* Shift to get page */
2073 realpage = (int)(from >> chip->page_shift);
2074 page = realpage & chip->pagemask;
2075
2076 while (1) {
2077 WATCHDOG_RESET();
2078
2079 if (ops->mode == MTD_OPS_RAW)
2080 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2081 else
2082 ret = chip->ecc.read_oob(mtd, chip, page);
2083
2084 if (ret < 0)
2085 break;
2086
2087 len = min(len, readlen);
2088 buf = nand_transfer_oob(chip, buf, ops, len);
2089
2090 if (chip->options & NAND_NEED_READRDY) {
2091 /* Apply delay or wait for ready/busy pin */
2092 if (!chip->dev_ready)
2093 udelay(chip->chip_delay);
2094 else
2095 nand_wait_ready(mtd);
2096 }
2097
2098 readlen -= len;
2099 if (!readlen)
2100 break;
2101
2102 /* Increment page address */
2103 realpage++;
2104
2105 page = realpage & chip->pagemask;
2106 /* Check, if we cross a chip boundary */
2107 if (!page) {
2108 chipnr++;
2109 chip->select_chip(mtd, -1);
2110 chip->select_chip(mtd, chipnr);
2111 }
2112 }
2113 chip->select_chip(mtd, -1);
2114
2115 ops->oobretlen = ops->ooblen - readlen;
2116
2117 if (ret < 0)
2118 return ret;
2119
2120 if (mtd->ecc_stats.failed - stats.failed)
2121 return -EBADMSG;
2122
2123 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2124 }
2125
2126 /**
2127 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2128 * @mtd: MTD device structure
2129 * @from: offset to read from
2130 * @ops: oob operation description structure
2131 *
2132 * NAND read data and/or out-of-band data.
2133 */
2134 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2135 struct mtd_oob_ops *ops)
2136 {
2137 int ret = -ENOTSUPP;
2138
2139 ops->retlen = 0;
2140
2141 /* Do not allow reads past end of device */
2142 if (ops->datbuf && (from + ops->len) > mtd->size) {
2143 pr_debug("%s: attempt to read beyond end of device\n",
2144 __func__);
2145 return -EINVAL;
2146 }
2147
2148 nand_get_device(mtd, FL_READING);
2149
2150 switch (ops->mode) {
2151 case MTD_OPS_PLACE_OOB:
2152 case MTD_OPS_AUTO_OOB:
2153 case MTD_OPS_RAW:
2154 break;
2155
2156 default:
2157 goto out;
2158 }
2159
2160 if (!ops->datbuf)
2161 ret = nand_do_read_oob(mtd, from, ops);
2162 else
2163 ret = nand_do_read_ops(mtd, from, ops);
2164
2165 out:
2166 nand_release_device(mtd);
2167 return ret;
2168 }
2169
2170
2171 /**
2172 * nand_write_page_raw - [INTERN] raw page write function
2173 * @mtd: mtd info structure
2174 * @chip: nand chip info structure
2175 * @buf: data buffer
2176 * @oob_required: must write chip->oob_poi to OOB
2177 * @page: page number to write
2178 *
2179 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2180 */
2181 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2182 const uint8_t *buf, int oob_required, int page)
2183 {
2184 chip->write_buf(mtd, buf, mtd->writesize);
2185 if (oob_required)
2186 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2187
2188 return 0;
2189 }
2190
2191 /**
2192 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2193 * @mtd: mtd info structure
2194 * @chip: nand chip info structure
2195 * @buf: data buffer
2196 * @oob_required: must write chip->oob_poi to OOB
2197 * @page: page number to write
2198 *
2199 * We need a special oob layout and handling even when ECC isn't checked.
2200 */
2201 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2202 struct nand_chip *chip,
2203 const uint8_t *buf, int oob_required,
2204 int page)
2205 {
2206 int eccsize = chip->ecc.size;
2207 int eccbytes = chip->ecc.bytes;
2208 uint8_t *oob = chip->oob_poi;
2209 int steps, size;
2210
2211 for (steps = chip->ecc.steps; steps > 0; steps--) {
2212 chip->write_buf(mtd, buf, eccsize);
2213 buf += eccsize;
2214
2215 if (chip->ecc.prepad) {
2216 chip->write_buf(mtd, oob, chip->ecc.prepad);
2217 oob += chip->ecc.prepad;
2218 }
2219
2220 chip->write_buf(mtd, oob, eccbytes);
2221 oob += eccbytes;
2222
2223 if (chip->ecc.postpad) {
2224 chip->write_buf(mtd, oob, chip->ecc.postpad);
2225 oob += chip->ecc.postpad;
2226 }
2227 }
2228
2229 size = mtd->oobsize - (oob - chip->oob_poi);
2230 if (size)
2231 chip->write_buf(mtd, oob, size);
2232
2233 return 0;
2234 }
2235 /**
2236 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2237 * @mtd: mtd info structure
2238 * @chip: nand chip info structure
2239 * @buf: data buffer
2240 * @oob_required: must write chip->oob_poi to OOB
2241 * @page: page number to write
2242 */
2243 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2244 const uint8_t *buf, int oob_required,
2245 int page)
2246 {
2247 int i, eccsize = chip->ecc.size;
2248 int eccbytes = chip->ecc.bytes;
2249 int eccsteps = chip->ecc.steps;
2250 uint8_t *ecc_calc = chip->buffers->ecccalc;
2251 const uint8_t *p = buf;
2252 uint32_t *eccpos = chip->ecc.layout->eccpos;
2253
2254 /* Software ECC calculation */
2255 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2256 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2257
2258 for (i = 0; i < chip->ecc.total; i++)
2259 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2260
2261 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2262 }
2263
2264 /**
2265 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2266 * @mtd: mtd info structure
2267 * @chip: nand chip info structure
2268 * @buf: data buffer
2269 * @oob_required: must write chip->oob_poi to OOB
2270 * @page: page number to write
2271 */
2272 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2273 const uint8_t *buf, int oob_required,
2274 int page)
2275 {
2276 int i, eccsize = chip->ecc.size;
2277 int eccbytes = chip->ecc.bytes;
2278 int eccsteps = chip->ecc.steps;
2279 uint8_t *ecc_calc = chip->buffers->ecccalc;
2280 const uint8_t *p = buf;
2281 uint32_t *eccpos = chip->ecc.layout->eccpos;
2282
2283 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2284 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2285 chip->write_buf(mtd, p, eccsize);
2286 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2287 }
2288
2289 for (i = 0; i < chip->ecc.total; i++)
2290 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2291
2292 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2293
2294 return 0;
2295 }
2296
2297
2298 /**
2299 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2300 * @mtd: mtd info structure
2301 * @chip: nand chip info structure
2302 * @offset: column address of subpage within the page
2303 * @data_len: data length
2304 * @buf: data buffer
2305 * @oob_required: must write chip->oob_poi to OOB
2306 * @page: page number to write
2307 */
2308 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2309 struct nand_chip *chip, uint32_t offset,
2310 uint32_t data_len, const uint8_t *buf,
2311 int oob_required, int page)
2312 {
2313 uint8_t *oob_buf = chip->oob_poi;
2314 uint8_t *ecc_calc = chip->buffers->ecccalc;
2315 int ecc_size = chip->ecc.size;
2316 int ecc_bytes = chip->ecc.bytes;
2317 int ecc_steps = chip->ecc.steps;
2318 uint32_t *eccpos = chip->ecc.layout->eccpos;
2319 uint32_t start_step = offset / ecc_size;
2320 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2321 int oob_bytes = mtd->oobsize / ecc_steps;
2322 int step, i;
2323
2324 for (step = 0; step < ecc_steps; step++) {
2325 /* configure controller for WRITE access */
2326 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2327
2328 /* write data (untouched subpages already masked by 0xFF) */
2329 chip->write_buf(mtd, buf, ecc_size);
2330
2331 /* mask ECC of un-touched subpages by padding 0xFF */
2332 if ((step < start_step) || (step > end_step))
2333 memset(ecc_calc, 0xff, ecc_bytes);
2334 else
2335 chip->ecc.calculate(mtd, buf, ecc_calc);
2336
2337 /* mask OOB of un-touched subpages by padding 0xFF */
2338 /* if oob_required, preserve OOB metadata of written subpage */
2339 if (!oob_required || (step < start_step) || (step > end_step))
2340 memset(oob_buf, 0xff, oob_bytes);
2341
2342 buf += ecc_size;
2343 ecc_calc += ecc_bytes;
2344 oob_buf += oob_bytes;
2345 }
2346
2347 /* copy calculated ECC for whole page to chip->buffer->oob */
2348 /* this include masked-value(0xFF) for unwritten subpages */
2349 ecc_calc = chip->buffers->ecccalc;
2350 for (i = 0; i < chip->ecc.total; i++)
2351 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2352
2353 /* write OOB buffer to NAND device */
2354 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2355
2356 return 0;
2357 }
2358
2359
2360 /**
2361 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2362 * @mtd: mtd info structure
2363 * @chip: nand chip info structure
2364 * @buf: data buffer
2365 * @oob_required: must write chip->oob_poi to OOB
2366 * @page: page number to write
2367 *
2368 * The hw generator calculates the error syndrome automatically. Therefore we
2369 * need a special oob layout and handling.
2370 */
2371 static int nand_write_page_syndrome(struct mtd_info *mtd,
2372 struct nand_chip *chip,
2373 const uint8_t *buf, int oob_required,
2374 int page)
2375 {
2376 int i, eccsize = chip->ecc.size;
2377 int eccbytes = chip->ecc.bytes;
2378 int eccsteps = chip->ecc.steps;
2379 const uint8_t *p = buf;
2380 uint8_t *oob = chip->oob_poi;
2381
2382 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2383
2384 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2385 chip->write_buf(mtd, p, eccsize);
2386
2387 if (chip->ecc.prepad) {
2388 chip->write_buf(mtd, oob, chip->ecc.prepad);
2389 oob += chip->ecc.prepad;
2390 }
2391
2392 chip->ecc.calculate(mtd, p, oob);
2393 chip->write_buf(mtd, oob, eccbytes);
2394 oob += eccbytes;
2395
2396 if (chip->ecc.postpad) {
2397 chip->write_buf(mtd, oob, chip->ecc.postpad);
2398 oob += chip->ecc.postpad;
2399 }
2400 }
2401
2402 /* Calculate remaining oob bytes */
2403 i = mtd->oobsize - (oob - chip->oob_poi);
2404 if (i)
2405 chip->write_buf(mtd, oob, i);
2406
2407 return 0;
2408 }
2409
2410 /**
2411 * nand_write_page - [REPLACEABLE] write one page
2412 * @mtd: MTD device structure
2413 * @chip: NAND chip descriptor
2414 * @offset: address offset within the page
2415 * @data_len: length of actual data to be written
2416 * @buf: the data to write
2417 * @oob_required: must write chip->oob_poi to OOB
2418 * @page: page number to write
2419 * @raw: use _raw version of write_page
2420 */
2421 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2422 uint32_t offset, int data_len, const uint8_t *buf,
2423 int oob_required, int page, int raw)
2424 {
2425 int status, subpage;
2426
2427 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2428 chip->ecc.write_subpage)
2429 subpage = offset || (data_len < mtd->writesize);
2430 else
2431 subpage = 0;
2432
2433 if (nand_standard_page_accessors(&chip->ecc))
2434 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2435
2436 if (unlikely(raw))
2437 status = chip->ecc.write_page_raw(mtd, chip, buf,
2438 oob_required, page);
2439 else if (subpage)
2440 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2441 buf, oob_required, page);
2442 else
2443 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2444 page);
2445
2446 if (status < 0)
2447 return status;
2448
2449 if (nand_standard_page_accessors(&chip->ecc)) {
2450 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2451
2452 status = chip->waitfunc(mtd, chip);
2453 if (status & NAND_STATUS_FAIL)
2454 return -EIO;
2455 }
2456
2457 return 0;
2458 }
2459
2460 /**
2461 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2462 * @mtd: MTD device structure
2463 * @oob: oob data buffer
2464 * @len: oob data write length
2465 * @ops: oob ops structure
2466 */
2467 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2468 struct mtd_oob_ops *ops)
2469 {
2470 struct nand_chip *chip = mtd_to_nand(mtd);
2471
2472 /*
2473 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2474 * data from a previous OOB read.
2475 */
2476 memset(chip->oob_poi, 0xff, mtd->oobsize);
2477
2478 switch (ops->mode) {
2479
2480 case MTD_OPS_PLACE_OOB:
2481 case MTD_OPS_RAW:
2482 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2483 return oob + len;
2484
2485 case MTD_OPS_AUTO_OOB: {
2486 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2487 uint32_t boffs = 0, woffs = ops->ooboffs;
2488 size_t bytes = 0;
2489
2490 for (; free->length && len; free++, len -= bytes) {
2491 /* Write request not from offset 0? */
2492 if (unlikely(woffs)) {
2493 if (woffs >= free->length) {
2494 woffs -= free->length;
2495 continue;
2496 }
2497 boffs = free->offset + woffs;
2498 bytes = min_t(size_t, len,
2499 (free->length - woffs));
2500 woffs = 0;
2501 } else {
2502 bytes = min_t(size_t, len, free->length);
2503 boffs = free->offset;
2504 }
2505 memcpy(chip->oob_poi + boffs, oob, bytes);
2506 oob += bytes;
2507 }
2508 return oob;
2509 }
2510 default:
2511 BUG();
2512 }
2513 return NULL;
2514 }
2515
2516 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2517
2518 /**
2519 * nand_do_write_ops - [INTERN] NAND write with ECC
2520 * @mtd: MTD device structure
2521 * @to: offset to write to
2522 * @ops: oob operations description structure
2523 *
2524 * NAND write with ECC.
2525 */
2526 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2527 struct mtd_oob_ops *ops)
2528 {
2529 int chipnr, realpage, page, column;
2530 struct nand_chip *chip = mtd_to_nand(mtd);
2531 uint32_t writelen = ops->len;
2532
2533 uint32_t oobwritelen = ops->ooblen;
2534 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2535
2536 uint8_t *oob = ops->oobbuf;
2537 uint8_t *buf = ops->datbuf;
2538 int ret;
2539 int oob_required = oob ? 1 : 0;
2540
2541 ops->retlen = 0;
2542 if (!writelen)
2543 return 0;
2544
2545 /* Reject writes, which are not page aligned */
2546 if (NOTALIGNED(to)) {
2547 pr_notice("%s: attempt to write non page aligned data\n",
2548 __func__);
2549 return -EINVAL;
2550 }
2551
2552 column = to & (mtd->writesize - 1);
2553
2554 chipnr = (int)(to >> chip->chip_shift);
2555 chip->select_chip(mtd, chipnr);
2556
2557 /* Check, if it is write protected */
2558 if (nand_check_wp(mtd)) {
2559 ret = -EIO;
2560 goto err_out;
2561 }
2562
2563 realpage = (int)(to >> chip->page_shift);
2564 page = realpage & chip->pagemask;
2565
2566 /* Invalidate the page cache, when we write to the cached page */
2567 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2568 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2569 chip->pagebuf = -1;
2570
2571 /* Don't allow multipage oob writes with offset */
2572 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2573 ret = -EINVAL;
2574 goto err_out;
2575 }
2576
2577 while (1) {
2578 int bytes = mtd->writesize;
2579 uint8_t *wbuf = buf;
2580 int use_bufpoi;
2581 int part_pagewr = (column || writelen < mtd->writesize);
2582
2583 if (part_pagewr)
2584 use_bufpoi = 1;
2585 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2586 use_bufpoi = !IS_ALIGNED((unsigned long)buf,
2587 chip->buf_align);
2588 else
2589 use_bufpoi = 0;
2590
2591 WATCHDOG_RESET();
2592 /* Partial page write?, or need to use bounce buffer */
2593 if (use_bufpoi) {
2594 pr_debug("%s: using write bounce buffer for buf@%p\n",
2595 __func__, buf);
2596 if (part_pagewr)
2597 bytes = min_t(int, bytes - column, writelen);
2598 chip->pagebuf = -1;
2599 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2600 memcpy(&chip->buffers->databuf[column], buf, bytes);
2601 wbuf = chip->buffers->databuf;
2602 }
2603
2604 if (unlikely(oob)) {
2605 size_t len = min(oobwritelen, oobmaxlen);
2606 oob = nand_fill_oob(mtd, oob, len, ops);
2607 oobwritelen -= len;
2608 } else {
2609 /* We still need to erase leftover OOB data */
2610 memset(chip->oob_poi, 0xff, mtd->oobsize);
2611 }
2612 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2613 oob_required, page,
2614 (ops->mode == MTD_OPS_RAW));
2615 if (ret)
2616 break;
2617
2618 writelen -= bytes;
2619 if (!writelen)
2620 break;
2621
2622 column = 0;
2623 buf += bytes;
2624 realpage++;
2625
2626 page = realpage & chip->pagemask;
2627 /* Check, if we cross a chip boundary */
2628 if (!page) {
2629 chipnr++;
2630 chip->select_chip(mtd, -1);
2631 chip->select_chip(mtd, chipnr);
2632 }
2633 }
2634
2635 ops->retlen = ops->len - writelen;
2636 if (unlikely(oob))
2637 ops->oobretlen = ops->ooblen;
2638
2639 err_out:
2640 chip->select_chip(mtd, -1);
2641 return ret;
2642 }
2643
2644 /**
2645 * panic_nand_write - [MTD Interface] NAND write with ECC
2646 * @mtd: MTD device structure
2647 * @to: offset to write to
2648 * @len: number of bytes to write
2649 * @retlen: pointer to variable to store the number of written bytes
2650 * @buf: the data to write
2651 *
2652 * NAND write with ECC. Used when performing writes in interrupt context, this
2653 * may for example be called by mtdoops when writing an oops while in panic.
2654 */
2655 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2656 size_t *retlen, const uint8_t *buf)
2657 {
2658 struct nand_chip *chip = mtd_to_nand(mtd);
2659 struct mtd_oob_ops ops;
2660 int ret;
2661
2662 /* Wait for the device to get ready */
2663 panic_nand_wait(mtd, chip, 400);
2664
2665 /* Grab the device */
2666 panic_nand_get_device(chip, mtd, FL_WRITING);
2667
2668 memset(&ops, 0, sizeof(ops));
2669 ops.len = len;
2670 ops.datbuf = (uint8_t *)buf;
2671 ops.mode = MTD_OPS_PLACE_OOB;
2672
2673 ret = nand_do_write_ops(mtd, to, &ops);
2674
2675 *retlen = ops.retlen;
2676 return ret;
2677 }
2678
2679 /**
2680 * nand_write - [MTD Interface] NAND write with ECC
2681 * @mtd: MTD device structure
2682 * @to: offset to write to
2683 * @len: number of bytes to write
2684 * @retlen: pointer to variable to store the number of written bytes
2685 * @buf: the data to write
2686 *
2687 * NAND write with ECC.
2688 */
2689 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2690 size_t *retlen, const uint8_t *buf)
2691 {
2692 struct mtd_oob_ops ops;
2693 int ret;
2694
2695 nand_get_device(mtd, FL_WRITING);
2696 memset(&ops, 0, sizeof(ops));
2697 ops.len = len;
2698 ops.datbuf = (uint8_t *)buf;
2699 ops.mode = MTD_OPS_PLACE_OOB;
2700 ret = nand_do_write_ops(mtd, to, &ops);
2701 *retlen = ops.retlen;
2702 nand_release_device(mtd);
2703 return ret;
2704 }
2705
2706 /**
2707 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2708 * @mtd: MTD device structure
2709 * @to: offset to write to
2710 * @ops: oob operation description structure
2711 *
2712 * NAND write out-of-band.
2713 */
2714 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2715 struct mtd_oob_ops *ops)
2716 {
2717 int chipnr, page, status, len;
2718 struct nand_chip *chip = mtd_to_nand(mtd);
2719
2720 pr_debug("%s: to = 0x%08x, len = %i\n",
2721 __func__, (unsigned int)to, (int)ops->ooblen);
2722
2723 len = mtd_oobavail(mtd, ops);
2724
2725 /* Do not allow write past end of page */
2726 if ((ops->ooboffs + ops->ooblen) > len) {
2727 pr_debug("%s: attempt to write past end of page\n",
2728 __func__);
2729 return -EINVAL;
2730 }
2731
2732 if (unlikely(ops->ooboffs >= len)) {
2733 pr_debug("%s: attempt to start write outside oob\n",
2734 __func__);
2735 return -EINVAL;
2736 }
2737
2738 /* Do not allow write past end of device */
2739 if (unlikely(to >= mtd->size ||
2740 ops->ooboffs + ops->ooblen >
2741 ((mtd->size >> chip->page_shift) -
2742 (to >> chip->page_shift)) * len)) {
2743 pr_debug("%s: attempt to write beyond end of device\n",
2744 __func__);
2745 return -EINVAL;
2746 }
2747
2748 chipnr = (int)(to >> chip->chip_shift);
2749
2750 /*
2751 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2752 * of my DiskOnChip 2000 test units) will clear the whole data page too
2753 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2754 * it in the doc2000 driver in August 1999. dwmw2.
2755 */
2756 nand_reset(chip, chipnr);
2757
2758 chip->select_chip(mtd, chipnr);
2759
2760 /* Shift to get page */
2761 page = (int)(to >> chip->page_shift);
2762
2763 /* Check, if it is write protected */
2764 if (nand_check_wp(mtd)) {
2765 chip->select_chip(mtd, -1);
2766 return -EROFS;
2767 }
2768
2769 /* Invalidate the page cache, if we write to the cached page */
2770 if (page == chip->pagebuf)
2771 chip->pagebuf = -1;
2772
2773 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2774
2775 if (ops->mode == MTD_OPS_RAW)
2776 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2777 else
2778 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2779
2780 chip->select_chip(mtd, -1);
2781
2782 if (status)
2783 return status;
2784
2785 ops->oobretlen = ops->ooblen;
2786
2787 return 0;
2788 }
2789
2790 /**
2791 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2792 * @mtd: MTD device structure
2793 * @to: offset to write to
2794 * @ops: oob operation description structure
2795 */
2796 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2797 struct mtd_oob_ops *ops)
2798 {
2799 int ret = -ENOTSUPP;
2800
2801 ops->retlen = 0;
2802
2803 /* Do not allow writes past end of device */
2804 if (ops->datbuf && (to + ops->len) > mtd->size) {
2805 pr_debug("%s: attempt to write beyond end of device\n",
2806 __func__);
2807 return -EINVAL;
2808 }
2809
2810 nand_get_device(mtd, FL_WRITING);
2811
2812 switch (ops->mode) {
2813 case MTD_OPS_PLACE_OOB:
2814 case MTD_OPS_AUTO_OOB:
2815 case MTD_OPS_RAW:
2816 break;
2817
2818 default:
2819 goto out;
2820 }
2821
2822 if (!ops->datbuf)
2823 ret = nand_do_write_oob(mtd, to, ops);
2824 else
2825 ret = nand_do_write_ops(mtd, to, ops);
2826
2827 out:
2828 nand_release_device(mtd);
2829 return ret;
2830 }
2831
2832 /**
2833 * single_erase - [GENERIC] NAND standard block erase command function
2834 * @mtd: MTD device structure
2835 * @page: the page address of the block which will be erased
2836 *
2837 * Standard erase command for NAND chips. Returns NAND status.
2838 */
2839 static int single_erase(struct mtd_info *mtd, int page)
2840 {
2841 struct nand_chip *chip = mtd_to_nand(mtd);
2842 /* Send commands to erase a block */
2843 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2844 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2845
2846 return chip->waitfunc(mtd, chip);
2847 }
2848
2849 /**
2850 * nand_erase - [MTD Interface] erase block(s)
2851 * @mtd: MTD device structure
2852 * @instr: erase instruction
2853 *
2854 * Erase one ore more blocks.
2855 */
2856 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2857 {
2858 return nand_erase_nand(mtd, instr, 0);
2859 }
2860
2861 /**
2862 * nand_erase_nand - [INTERN] erase block(s)
2863 * @mtd: MTD device structure
2864 * @instr: erase instruction
2865 * @allowbbt: allow erasing the bbt area
2866 *
2867 * Erase one ore more blocks.
2868 */
2869 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2870 int allowbbt)
2871 {
2872 int page, status, pages_per_block, ret, chipnr;
2873 struct nand_chip *chip = mtd_to_nand(mtd);
2874 loff_t len;
2875
2876 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2877 __func__, (unsigned long long)instr->addr,
2878 (unsigned long long)instr->len);
2879
2880 if (check_offs_len(mtd, instr->addr, instr->len))
2881 return -EINVAL;
2882
2883 /* Grab the lock and see if the device is available */
2884 nand_get_device(mtd, FL_ERASING);
2885
2886 /* Shift to get first page */
2887 page = (int)(instr->addr >> chip->page_shift);
2888 chipnr = (int)(instr->addr >> chip->chip_shift);
2889
2890 /* Calculate pages in each block */
2891 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2892
2893 /* Select the NAND device */
2894 chip->select_chip(mtd, chipnr);
2895
2896 /* Check, if it is write protected */
2897 if (nand_check_wp(mtd)) {
2898 pr_debug("%s: device is write protected!\n",
2899 __func__);
2900 instr->state = MTD_ERASE_FAILED;
2901 goto erase_exit;
2902 }
2903
2904 /* Loop through the pages */
2905 len = instr->len;
2906
2907 instr->state = MTD_ERASING;
2908
2909 while (len) {
2910 WATCHDOG_RESET();
2911
2912 /* Check if we have a bad block, we do not erase bad blocks! */
2913 if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2914 chip->page_shift, allowbbt)) {
2915 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2916 __func__, page);
2917 instr->state = MTD_ERASE_FAILED;
2918 goto erase_exit;
2919 }
2920
2921 /*
2922 * Invalidate the page cache, if we erase the block which
2923 * contains the current cached page.
2924 */
2925 if (page <= chip->pagebuf && chip->pagebuf <
2926 (page + pages_per_block))
2927 chip->pagebuf = -1;
2928
2929 status = chip->erase(mtd, page & chip->pagemask);
2930
2931 /* See if block erase succeeded */
2932 if (status & NAND_STATUS_FAIL) {
2933 pr_debug("%s: failed erase, page 0x%08x\n",
2934 __func__, page);
2935 instr->state = MTD_ERASE_FAILED;
2936 instr->fail_addr =
2937 ((loff_t)page << chip->page_shift);
2938 goto erase_exit;
2939 }
2940
2941 /* Increment page address and decrement length */
2942 len -= (1ULL << chip->phys_erase_shift);
2943 page += pages_per_block;
2944
2945 /* Check, if we cross a chip boundary */
2946 if (len && !(page & chip->pagemask)) {
2947 chipnr++;
2948 chip->select_chip(mtd, -1);
2949 chip->select_chip(mtd, chipnr);
2950 }
2951 }
2952 instr->state = MTD_ERASE_DONE;
2953
2954 erase_exit:
2955
2956 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2957
2958 /* Deselect and wake up anyone waiting on the device */
2959 chip->select_chip(mtd, -1);
2960 nand_release_device(mtd);
2961
2962 /* Do call back function */
2963 if (!ret)
2964 mtd_erase_callback(instr);
2965
2966 /* Return more or less happy */
2967 return ret;
2968 }
2969
2970 /**
2971 * nand_sync - [MTD Interface] sync
2972 * @mtd: MTD device structure
2973 *
2974 * Sync is actually a wait for chip ready function.
2975 */
2976 static void nand_sync(struct mtd_info *mtd)
2977 {
2978 pr_debug("%s: called\n", __func__);
2979
2980 /* Grab the lock and see if the device is available */
2981 nand_get_device(mtd, FL_SYNCING);
2982 /* Release it and go back */
2983 nand_release_device(mtd);
2984 }
2985
2986 /**
2987 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2988 * @mtd: MTD device structure
2989 * @offs: offset relative to mtd start
2990 */
2991 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2992 {
2993 struct nand_chip *chip = mtd_to_nand(mtd);
2994 int chipnr = (int)(offs >> chip->chip_shift);
2995 int ret;
2996
2997 /* Select the NAND device */
2998 nand_get_device(mtd, FL_READING);
2999 chip->select_chip(mtd, chipnr);
3000
3001 ret = nand_block_checkbad(mtd, offs, 0);
3002
3003 chip->select_chip(mtd, -1);
3004 nand_release_device(mtd);
3005
3006 return ret;
3007 }
3008
3009 /**
3010 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3011 * @mtd: MTD device structure
3012 * @ofs: offset relative to mtd start
3013 */
3014 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3015 {
3016 int ret;
3017
3018 ret = nand_block_isbad(mtd, ofs);
3019 if (ret) {
3020 /* If it was bad already, return success and do nothing */
3021 if (ret > 0)
3022 return 0;
3023 return ret;
3024 }
3025
3026 return nand_block_markbad_lowlevel(mtd, ofs);
3027 }
3028
3029 /**
3030 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3031 * @mtd: MTD device structure
3032 * @chip: nand chip info structure
3033 * @addr: feature address.
3034 * @subfeature_param: the subfeature parameters, a four bytes array.
3035 */
3036 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3037 int addr, uint8_t *subfeature_param)
3038 {
3039 int status;
3040 int i;
3041
3042 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3043 if (!chip->onfi_version ||
3044 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3045 & ONFI_OPT_CMD_SET_GET_FEATURES))
3046 return -EINVAL;
3047 #endif
3048
3049 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3050 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3051 chip->write_byte(mtd, subfeature_param[i]);
3052
3053 status = chip->waitfunc(mtd, chip);
3054 if (status & NAND_STATUS_FAIL)
3055 return -EIO;
3056 return 0;
3057 }
3058
3059 /**
3060 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3061 * @mtd: MTD device structure
3062 * @chip: nand chip info structure
3063 * @addr: feature address.
3064 * @subfeature_param: the subfeature parameters, a four bytes array.
3065 */
3066 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3067 int addr, uint8_t *subfeature_param)
3068 {
3069 int i;
3070
3071 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3072 if (!chip->onfi_version ||
3073 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3074 & ONFI_OPT_CMD_SET_GET_FEATURES))
3075 return -EINVAL;
3076 #endif
3077
3078 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3079 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3080 *subfeature_param++ = chip->read_byte(mtd);
3081 return 0;
3082 }
3083
3084 /* Set default functions */
3085 static void nand_set_defaults(struct nand_chip *chip, int busw)
3086 {
3087 /* check for proper chip_delay setup, set 20us if not */
3088 if (!chip->chip_delay)
3089 chip->chip_delay = 20;
3090
3091 /* check, if a user supplied command function given */
3092 if (chip->cmdfunc == NULL)
3093 chip->cmdfunc = nand_command;
3094
3095 /* check, if a user supplied wait function given */
3096 if (chip->waitfunc == NULL)
3097 chip->waitfunc = nand_wait;
3098
3099 if (!chip->select_chip)
3100 chip->select_chip = nand_select_chip;
3101
3102 /* set for ONFI nand */
3103 if (!chip->onfi_set_features)
3104 chip->onfi_set_features = nand_onfi_set_features;
3105 if (!chip->onfi_get_features)
3106 chip->onfi_get_features = nand_onfi_get_features;
3107
3108 /* If called twice, pointers that depend on busw may need to be reset */
3109 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3110 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3111 if (!chip->read_word)
3112 chip->read_word = nand_read_word;
3113 if (!chip->block_bad)
3114 chip->block_bad = nand_block_bad;
3115 if (!chip->block_markbad)
3116 chip->block_markbad = nand_default_block_markbad;
3117 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3118 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3119 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3120 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3121 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3122 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3123 if (!chip->scan_bbt)
3124 chip->scan_bbt = nand_default_bbt;
3125
3126 if (!chip->controller) {
3127 chip->controller = &chip->hwcontrol;
3128 spin_lock_init(&chip->controller->lock);
3129 init_waitqueue_head(&chip->controller->wq);
3130 }
3131
3132 if (!chip->buf_align)
3133 chip->buf_align = 1;
3134 }
3135
3136 /* Sanitize ONFI strings so we can safely print them */
3137 static void sanitize_string(char *s, size_t len)
3138 {
3139 ssize_t i;
3140
3141 /* Null terminate */
3142 s[len - 1] = 0;
3143
3144 /* Remove non printable chars */
3145 for (i = 0; i < len - 1; i++) {
3146 if (s[i] < ' ' || s[i] > 127)
3147 s[i] = '?';
3148 }
3149
3150 /* Remove trailing spaces */
3151 strim(s);
3152 }
3153
3154 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3155 {
3156 int i;
3157 while (len--) {
3158 crc ^= *p++ << 8;
3159 for (i = 0; i < 8; i++)
3160 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3161 }
3162
3163 return crc;
3164 }
3165
3166 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3167 /* Parse the Extended Parameter Page. */
3168 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3169 struct nand_chip *chip, struct nand_onfi_params *p)
3170 {
3171 struct onfi_ext_param_page *ep;
3172 struct onfi_ext_section *s;
3173 struct onfi_ext_ecc_info *ecc;
3174 uint8_t *cursor;
3175 int ret = -EINVAL;
3176 int len;
3177 int i;
3178
3179 len = le16_to_cpu(p->ext_param_page_length) * 16;
3180 ep = kmalloc(len, GFP_KERNEL);
3181 if (!ep)
3182 return -ENOMEM;
3183
3184 /* Send our own NAND_CMD_PARAM. */
3185 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3186
3187 /* Use the Change Read Column command to skip the ONFI param pages. */
3188 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3189 sizeof(*p) * p->num_of_param_pages , -1);
3190
3191 /* Read out the Extended Parameter Page. */
3192 chip->read_buf(mtd, (uint8_t *)ep, len);
3193 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3194 != le16_to_cpu(ep->crc))) {
3195 pr_debug("fail in the CRC.\n");
3196 goto ext_out;
3197 }
3198
3199 /*
3200 * Check the signature.
3201 * Do not strictly follow the ONFI spec, maybe changed in future.
3202 */
3203 if (strncmp((char *)ep->sig, "EPPS", 4)) {
3204 pr_debug("The signature is invalid.\n");
3205 goto ext_out;
3206 }
3207
3208 /* find the ECC section. */
3209 cursor = (uint8_t *)(ep + 1);
3210 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3211 s = ep->sections + i;
3212 if (s->type == ONFI_SECTION_TYPE_2)
3213 break;
3214 cursor += s->length * 16;
3215 }
3216 if (i == ONFI_EXT_SECTION_MAX) {
3217 pr_debug("We can not find the ECC section.\n");
3218 goto ext_out;
3219 }
3220
3221 /* get the info we want. */
3222 ecc = (struct onfi_ext_ecc_info *)cursor;
3223
3224 if (!ecc->codeword_size) {
3225 pr_debug("Invalid codeword size\n");
3226 goto ext_out;
3227 }
3228
3229 chip->ecc_strength_ds = ecc->ecc_bits;
3230 chip->ecc_step_ds = 1 << ecc->codeword_size;
3231 ret = 0;
3232
3233 ext_out:
3234 kfree(ep);
3235 return ret;
3236 }
3237
3238 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3239 {
3240 struct nand_chip *chip = mtd_to_nand(mtd);
3241 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3242
3243 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3244 feature);
3245 }
3246
3247 /*
3248 * Configure chip properties from Micron vendor-specific ONFI table
3249 */
3250 static void nand_onfi_detect_micron(struct nand_chip *chip,
3251 struct nand_onfi_params *p)
3252 {
3253 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3254
3255 if (le16_to_cpu(p->vendor_revision) < 1)
3256 return;
3257
3258 chip->read_retries = micron->read_retry_options;
3259 chip->setup_read_retry = nand_setup_read_retry_micron;
3260 }
3261
3262 /*
3263 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3264 */
3265 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3266 int *busw)
3267 {
3268 struct nand_onfi_params *p = &chip->onfi_params;
3269 int i, j;
3270 int val;
3271
3272 /* Try ONFI for unknown chip or LP */
3273 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3274 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3275 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3276 return 0;
3277
3278 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3279 for (i = 0; i < 3; i++) {
3280 for (j = 0; j < sizeof(*p); j++)
3281 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3282 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3283 le16_to_cpu(p->crc)) {
3284 break;
3285 }
3286 }
3287
3288 if (i == 3) {
3289 pr_err("Could not find valid ONFI parameter page; aborting\n");
3290 return 0;
3291 }
3292
3293 /* Check version */
3294 val = le16_to_cpu(p->revision);
3295 if (val & (1 << 5))
3296 chip->onfi_version = 23;
3297 else if (val & (1 << 4))
3298 chip->onfi_version = 22;
3299 else if (val & (1 << 3))
3300 chip->onfi_version = 21;
3301 else if (val & (1 << 2))
3302 chip->onfi_version = 20;
3303 else if (val & (1 << 1))
3304 chip->onfi_version = 10;
3305
3306 if (!chip->onfi_version) {
3307 pr_info("unsupported ONFI version: %d\n", val);
3308 return 0;
3309 }
3310
3311 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3312 sanitize_string(p->model, sizeof(p->model));
3313 if (!mtd->name)
3314 mtd->name = p->model;
3315
3316 mtd->writesize = le32_to_cpu(p->byte_per_page);
3317
3318 /*
3319 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3320 * (don't ask me who thought of this...). MTD assumes that these
3321 * dimensions will be power-of-2, so just truncate the remaining area.
3322 */
3323 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3324 mtd->erasesize *= mtd->writesize;
3325
3326 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3327
3328 /* See erasesize comment */
3329 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3330 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3331 chip->bits_per_cell = p->bits_per_cell;
3332
3333 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3334 *busw = NAND_BUSWIDTH_16;
3335 else
3336 *busw = 0;
3337
3338 if (p->ecc_bits != 0xff) {
3339 chip->ecc_strength_ds = p->ecc_bits;
3340 chip->ecc_step_ds = 512;
3341 } else if (chip->onfi_version >= 21 &&
3342 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3343
3344 /*
3345 * The nand_flash_detect_ext_param_page() uses the
3346 * Change Read Column command which maybe not supported
3347 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3348 * now. We do not replace user supplied command function.
3349 */
3350 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3351 chip->cmdfunc = nand_command_lp;
3352
3353 /* The Extended Parameter Page is supported since ONFI 2.1. */
3354 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3355 pr_warn("Failed to detect ONFI extended param page\n");
3356 } else {
3357 pr_warn("Could not retrieve ONFI ECC requirements\n");
3358 }
3359
3360 if (p->jedec_id == NAND_MFR_MICRON)
3361 nand_onfi_detect_micron(chip, p);
3362
3363 return 1;
3364 }
3365 #else
3366 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3367 int *busw)
3368 {
3369 return 0;
3370 }
3371 #endif
3372
3373 /*
3374 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3375 */
3376 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3377 int *busw)
3378 {
3379 struct nand_jedec_params *p = &chip->jedec_params;
3380 struct jedec_ecc_info *ecc;
3381 int val;
3382 int i, j;
3383
3384 /* Try JEDEC for unknown chip or LP */
3385 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3386 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3387 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3388 chip->read_byte(mtd) != 'C')
3389 return 0;
3390
3391 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3392 for (i = 0; i < 3; i++) {
3393 for (j = 0; j < sizeof(*p); j++)
3394 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3395
3396 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3397 le16_to_cpu(p->crc))
3398 break;
3399 }
3400
3401 if (i == 3) {
3402 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3403 return 0;
3404 }
3405
3406 /* Check version */
3407 val = le16_to_cpu(p->revision);
3408 if (val & (1 << 2))
3409 chip->jedec_version = 10;
3410 else if (val & (1 << 1))
3411 chip->jedec_version = 1; /* vendor specific version */
3412
3413 if (!chip->jedec_version) {
3414 pr_info("unsupported JEDEC version: %d\n", val);
3415 return 0;
3416 }
3417
3418 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3419 sanitize_string(p->model, sizeof(p->model));
3420 if (!mtd->name)
3421 mtd->name = p->model;
3422
3423 mtd->writesize = le32_to_cpu(p->byte_per_page);
3424
3425 /* Please reference to the comment for nand_flash_detect_onfi. */
3426 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3427 mtd->erasesize *= mtd->writesize;
3428
3429 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3430
3431 /* Please reference to the comment for nand_flash_detect_onfi. */
3432 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3433 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3434 chip->bits_per_cell = p->bits_per_cell;
3435
3436 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3437 *busw = NAND_BUSWIDTH_16;
3438 else
3439 *busw = 0;
3440
3441 /* ECC info */
3442 ecc = &p->ecc_info[0];
3443
3444 if (ecc->codeword_size >= 9) {
3445 chip->ecc_strength_ds = ecc->ecc_bits;
3446 chip->ecc_step_ds = 1 << ecc->codeword_size;
3447 } else {
3448 pr_warn("Invalid codeword size\n");
3449 }
3450
3451 return 1;
3452 }
3453
3454 /*
3455 * nand_id_has_period - Check if an ID string has a given wraparound period
3456 * @id_data: the ID string
3457 * @arrlen: the length of the @id_data array
3458 * @period: the period of repitition
3459 *
3460 * Check if an ID string is repeated within a given sequence of bytes at
3461 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3462 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3463 * if the repetition has a period of @period; otherwise, returns zero.
3464 */
3465 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3466 {
3467 int i, j;
3468 for (i = 0; i < period; i++)
3469 for (j = i + period; j < arrlen; j += period)
3470 if (id_data[i] != id_data[j])
3471 return 0;
3472 return 1;
3473 }
3474
3475 /*
3476 * nand_id_len - Get the length of an ID string returned by CMD_READID
3477 * @id_data: the ID string
3478 * @arrlen: the length of the @id_data array
3479
3480 * Returns the length of the ID string, according to known wraparound/trailing
3481 * zero patterns. If no pattern exists, returns the length of the array.
3482 */
3483 static int nand_id_len(u8 *id_data, int arrlen)
3484 {
3485 int last_nonzero, period;
3486
3487 /* Find last non-zero byte */
3488 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3489 if (id_data[last_nonzero])
3490 break;
3491
3492 /* All zeros */
3493 if (last_nonzero < 0)
3494 return 0;
3495
3496 /* Calculate wraparound period */
3497 for (period = 1; period < arrlen; period++)
3498 if (nand_id_has_period(id_data, arrlen, period))
3499 break;
3500
3501 /* There's a repeated pattern */
3502 if (period < arrlen)
3503 return period;
3504
3505 /* There are trailing zeros */
3506 if (last_nonzero < arrlen - 1)
3507 return last_nonzero + 1;
3508
3509 /* No pattern detected */
3510 return arrlen;
3511 }
3512
3513 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3514 static int nand_get_bits_per_cell(u8 cellinfo)
3515 {
3516 int bits;
3517
3518 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3519 bits >>= NAND_CI_CELLTYPE_SHIFT;
3520 return bits + 1;
3521 }
3522
3523 /*
3524 * Many new NAND share similar device ID codes, which represent the size of the
3525 * chip. The rest of the parameters must be decoded according to generic or
3526 * manufacturer-specific "extended ID" decoding patterns.
3527 */
3528 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3529 u8 id_data[8], int *busw)
3530 {
3531 int extid, id_len;
3532 /* The 3rd id byte holds MLC / multichip data */
3533 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3534 /* The 4th id byte is the important one */
3535 extid = id_data[3];
3536
3537 id_len = nand_id_len(id_data, 8);
3538
3539 /*
3540 * Field definitions are in the following datasheets:
3541 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3542 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3543 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3544 *
3545 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3546 * ID to decide what to do.
3547 */
3548 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3549 !nand_is_slc(chip) && id_data[5] != 0x00) {
3550 /* Calc pagesize */
3551 mtd->writesize = 2048 << (extid & 0x03);
3552 extid >>= 2;
3553 /* Calc oobsize */
3554 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3555 case 1:
3556 mtd->oobsize = 128;
3557 break;
3558 case 2:
3559 mtd->oobsize = 218;
3560 break;
3561 case 3:
3562 mtd->oobsize = 400;
3563 break;
3564 case 4:
3565 mtd->oobsize = 436;
3566 break;
3567 case 5:
3568 mtd->oobsize = 512;
3569 break;
3570 case 6:
3571 mtd->oobsize = 640;
3572 break;
3573 case 7:
3574 default: /* Other cases are "reserved" (unknown) */
3575 mtd->oobsize = 1024;
3576 break;
3577 }
3578 extid >>= 2;
3579 /* Calc blocksize */
3580 mtd->erasesize = (128 * 1024) <<
3581 (((extid >> 1) & 0x04) | (extid & 0x03));
3582 *busw = 0;
3583 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3584 !nand_is_slc(chip)) {
3585 unsigned int tmp;
3586
3587 /* Calc pagesize */
3588 mtd->writesize = 2048 << (extid & 0x03);
3589 extid >>= 2;
3590 /* Calc oobsize */
3591 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3592 case 0:
3593 mtd->oobsize = 128;
3594 break;
3595 case 1:
3596 mtd->oobsize = 224;
3597 break;
3598 case 2:
3599 mtd->oobsize = 448;
3600 break;
3601 case 3:
3602 mtd->oobsize = 64;
3603 break;
3604 case 4:
3605 mtd->oobsize = 32;
3606 break;
3607 case 5:
3608 mtd->oobsize = 16;
3609 break;
3610 default:
3611 mtd->oobsize = 640;
3612 break;
3613 }
3614 extid >>= 2;
3615 /* Calc blocksize */
3616 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3617 if (tmp < 0x03)
3618 mtd->erasesize = (128 * 1024) << tmp;
3619 else if (tmp == 0x03)
3620 mtd->erasesize = 768 * 1024;
3621 else
3622 mtd->erasesize = (64 * 1024) << tmp;
3623 *busw = 0;
3624 } else {
3625 /* Calc pagesize */
3626 mtd->writesize = 1024 << (extid & 0x03);
3627 extid >>= 2;
3628 /* Calc oobsize */
3629 mtd->oobsize = (8 << (extid & 0x01)) *
3630 (mtd->writesize >> 9);
3631 extid >>= 2;
3632 /* Calc blocksize. Blocksize is multiples of 64KiB */
3633 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3634 extid >>= 2;
3635 /* Get buswidth information */
3636 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3637
3638 /*
3639 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3640 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3641 * follows:
3642 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3643 * 110b -> 24nm
3644 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3645 */
3646 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3647 nand_is_slc(chip) &&
3648 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3649 !(id_data[4] & 0x80) /* !BENAND */) {
3650 mtd->oobsize = 32 * mtd->writesize >> 9;
3651 }
3652
3653 }
3654 }
3655
3656 /*
3657 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3658 * decodes a matching ID table entry and assigns the MTD size parameters for
3659 * the chip.
3660 */
3661 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3662 struct nand_flash_dev *type, u8 id_data[8],
3663 int *busw)
3664 {
3665 int maf_id = id_data[0];
3666
3667 mtd->erasesize = type->erasesize;
3668 mtd->writesize = type->pagesize;
3669 mtd->oobsize = mtd->writesize / 32;
3670 *busw = type->options & NAND_BUSWIDTH_16;
3671
3672 /* All legacy ID NAND are small-page, SLC */
3673 chip->bits_per_cell = 1;
3674
3675 /*
3676 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3677 * some Spansion chips have erasesize that conflicts with size
3678 * listed in nand_ids table.
3679 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3680 */
3681 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3682 && id_data[6] == 0x00 && id_data[7] == 0x00
3683 && mtd->writesize == 512) {
3684 mtd->erasesize = 128 * 1024;
3685 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3686 }
3687 }
3688
3689 /*
3690 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3691 * heuristic patterns using various detected parameters (e.g., manufacturer,
3692 * page size, cell-type information).
3693 */
3694 static void nand_decode_bbm_options(struct mtd_info *mtd,
3695 struct nand_chip *chip, u8 id_data[8])
3696 {
3697 int maf_id = id_data[0];
3698
3699 /* Set the bad block position */
3700 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3701 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3702 else
3703 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3704
3705 /*
3706 * Bad block marker is stored in the last page of each block on Samsung
3707 * and Hynix MLC devices; stored in first two pages of each block on
3708 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3709 * AMD/Spansion, and Macronix. All others scan only the first page.
3710 */
3711 if (!nand_is_slc(chip) &&
3712 (maf_id == NAND_MFR_SAMSUNG ||
3713 maf_id == NAND_MFR_HYNIX))
3714 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3715 else if ((nand_is_slc(chip) &&
3716 (maf_id == NAND_MFR_SAMSUNG ||
3717 maf_id == NAND_MFR_HYNIX ||
3718 maf_id == NAND_MFR_TOSHIBA ||
3719 maf_id == NAND_MFR_AMD ||
3720 maf_id == NAND_MFR_MACRONIX)) ||
3721 (mtd->writesize == 2048 &&
3722 maf_id == NAND_MFR_MICRON))
3723 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3724 }
3725
3726 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3727 {
3728 return type->id_len;
3729 }
3730
3731 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3732 struct nand_flash_dev *type, u8 *id_data, int *busw)
3733 {
3734 if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3735 mtd->writesize = type->pagesize;
3736 mtd->erasesize = type->erasesize;
3737 mtd->oobsize = type->oobsize;
3738
3739 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3740 chip->chipsize = (uint64_t)type->chipsize << 20;
3741 chip->options |= type->options;
3742 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3743 chip->ecc_step_ds = NAND_ECC_STEP(type);
3744 chip->onfi_timing_mode_default =
3745 type->onfi_timing_mode_default;
3746
3747 *busw = type->options & NAND_BUSWIDTH_16;
3748
3749 if (!mtd->name)
3750 mtd->name = type->name;
3751
3752 return true;
3753 }
3754 return false;
3755 }
3756
3757 /*
3758 * Get the flash and manufacturer id and lookup if the type is supported.
3759 */
3760 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3761 struct nand_chip *chip,
3762 int *maf_id, int *dev_id,
3763 struct nand_flash_dev *type)
3764 {
3765 int busw;
3766 int i, maf_idx;
3767 u8 id_data[8];
3768
3769 /*
3770 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3771 * after power-up.
3772 */
3773 nand_reset(chip, 0);
3774
3775 /* Select the device */
3776 chip->select_chip(mtd, 0);
3777
3778 /* Send the command for reading device ID */
3779 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3780
3781 /* Read manufacturer and device IDs */
3782 *maf_id = chip->read_byte(mtd);
3783 *dev_id = chip->read_byte(mtd);
3784
3785 /*
3786 * Try again to make sure, as some systems the bus-hold or other
3787 * interface concerns can cause random data which looks like a
3788 * possibly credible NAND flash to appear. If the two results do
3789 * not match, ignore the device completely.
3790 */
3791
3792 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3793
3794 /* Read entire ID string */
3795 for (i = 0; i < 8; i++)
3796 id_data[i] = chip->read_byte(mtd);
3797
3798 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3799 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3800 *maf_id, *dev_id, id_data[0], id_data[1]);
3801 return ERR_PTR(-ENODEV);
3802 }
3803
3804 if (!type)
3805 type = nand_flash_ids;
3806
3807 for (; type->name != NULL; type++) {
3808 if (is_full_id_nand(type)) {
3809 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3810 goto ident_done;
3811 } else if (*dev_id == type->dev_id) {
3812 break;
3813 }
3814 }
3815
3816 chip->onfi_version = 0;
3817 if (!type->name || !type->pagesize) {
3818 /* Check if the chip is ONFI compliant */
3819 if (nand_flash_detect_onfi(mtd, chip, &busw))
3820 goto ident_done;
3821
3822 /* Check if the chip is JEDEC compliant */
3823 if (nand_flash_detect_jedec(mtd, chip, &busw))
3824 goto ident_done;
3825 }
3826
3827 if (!type->name)
3828 return ERR_PTR(-ENODEV);
3829
3830 if (!mtd->name)
3831 mtd->name = type->name;
3832
3833 chip->chipsize = (uint64_t)type->chipsize << 20;
3834
3835 if (!type->pagesize) {
3836 /* Decode parameters from extended ID */
3837 nand_decode_ext_id(mtd, chip, id_data, &busw);
3838 } else {
3839 nand_decode_id(mtd, chip, type, id_data, &busw);
3840 }
3841 /* Get chip options */
3842 chip->options |= type->options;
3843
3844 /*
3845 * Check if chip is not a Samsung device. Do not clear the
3846 * options for chips which do not have an extended id.
3847 */
3848 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3849 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3850 ident_done:
3851
3852 /* Try to identify manufacturer */
3853 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3854 if (nand_manuf_ids[maf_idx].id == *maf_id)
3855 break;
3856 }
3857
3858 if (chip->options & NAND_BUSWIDTH_AUTO) {
3859 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3860 chip->options |= busw;
3861 nand_set_defaults(chip, busw);
3862 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3863 /*
3864 * Check, if buswidth is correct. Hardware drivers should set
3865 * chip correct!
3866 */
3867 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3868 *maf_id, *dev_id);
3869 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3870 pr_warn("bus width %d instead %d bit\n",
3871 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3872 busw ? 16 : 8);
3873 return ERR_PTR(-EINVAL);
3874 }
3875
3876 nand_decode_bbm_options(mtd, chip, id_data);
3877
3878 /* Calculate the address shift from the page size */
3879 chip->page_shift = ffs(mtd->writesize) - 1;
3880 /* Convert chipsize to number of pages per chip -1 */
3881 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3882
3883 chip->bbt_erase_shift = chip->phys_erase_shift =
3884 ffs(mtd->erasesize) - 1;
3885 if (chip->chipsize & 0xffffffff)
3886 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3887 else {
3888 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3889 chip->chip_shift += 32 - 1;
3890 }
3891
3892 chip->badblockbits = 8;
3893 chip->erase = single_erase;
3894
3895 /* Do not replace user supplied command function! */
3896 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3897 chip->cmdfunc = nand_command_lp;
3898
3899 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3900 *maf_id, *dev_id);
3901
3902 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3903 if (chip->onfi_version)
3904 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3905 chip->onfi_params.model);
3906 else if (chip->jedec_version)
3907 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3908 chip->jedec_params.model);
3909 else
3910 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3911 type->name);
3912 #else
3913 if (chip->jedec_version)
3914 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3915 chip->jedec_params.model);
3916 else
3917 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3918 type->name);
3919
3920 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3921 type->name);
3922 #endif
3923
3924 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3925 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3926 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3927 return type;
3928 }
3929
3930 #if CONFIG_IS_ENABLED(OF_CONTROL)
3931 DECLARE_GLOBAL_DATA_PTR;
3932
3933 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3934 {
3935 int ret, ecc_mode = -1, ecc_strength, ecc_step;
3936 const void *blob = gd->fdt_blob;
3937 const char *str;
3938
3939 ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
3940 if (ret == 16)
3941 chip->options |= NAND_BUSWIDTH_16;
3942
3943 if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
3944 chip->bbt_options |= NAND_BBT_USE_FLASH;
3945
3946 str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
3947 if (str) {
3948 if (!strcmp(str, "none"))
3949 ecc_mode = NAND_ECC_NONE;
3950 else if (!strcmp(str, "soft"))
3951 ecc_mode = NAND_ECC_SOFT;
3952 else if (!strcmp(str, "hw"))
3953 ecc_mode = NAND_ECC_HW;
3954 else if (!strcmp(str, "hw_syndrome"))
3955 ecc_mode = NAND_ECC_HW_SYNDROME;
3956 else if (!strcmp(str, "hw_oob_first"))
3957 ecc_mode = NAND_ECC_HW_OOB_FIRST;
3958 else if (!strcmp(str, "soft_bch"))
3959 ecc_mode = NAND_ECC_SOFT_BCH;
3960 }
3961
3962
3963 ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
3964 ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
3965
3966 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3967 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3968 pr_err("must set both strength and step size in DT\n");
3969 return -EINVAL;
3970 }
3971
3972 if (ecc_mode >= 0)
3973 chip->ecc.mode = ecc_mode;
3974
3975 if (ecc_strength >= 0)
3976 chip->ecc.strength = ecc_strength;
3977
3978 if (ecc_step > 0)
3979 chip->ecc.size = ecc_step;
3980
3981 if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
3982 chip->ecc.options |= NAND_ECC_MAXIMIZE;
3983
3984 return 0;
3985 }
3986 #else
3987 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3988 {
3989 return 0;
3990 }
3991 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
3992
3993 /**
3994 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3995 * @mtd: MTD device structure
3996 * @maxchips: number of chips to scan for
3997 * @table: alternative NAND ID table
3998 *
3999 * This is the first phase of the normal nand_scan() function. It reads the
4000 * flash ID and sets up MTD fields accordingly.
4001 *
4002 */
4003 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4004 struct nand_flash_dev *table)
4005 {
4006 int i, nand_maf_id, nand_dev_id;
4007 struct nand_chip *chip = mtd_to_nand(mtd);
4008 struct nand_flash_dev *type;
4009 int ret;
4010
4011 if (chip->flash_node) {
4012 ret = nand_dt_init(mtd, chip, chip->flash_node);
4013 if (ret)
4014 return ret;
4015 }
4016
4017 /* Set the default functions */
4018 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4019
4020 /* Read the flash type */
4021 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4022 &nand_dev_id, table);
4023
4024 if (IS_ERR(type)) {
4025 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4026 pr_warn("No NAND device found\n");
4027 chip->select_chip(mtd, -1);
4028 return PTR_ERR(type);
4029 }
4030
4031 /* Initialize the ->data_interface field. */
4032 ret = nand_init_data_interface(chip);
4033 if (ret)
4034 return ret;
4035
4036 /*
4037 * Setup the data interface correctly on the chip and controller side.
4038 * This explicit call to nand_setup_data_interface() is only required
4039 * for the first die, because nand_reset() has been called before
4040 * ->data_interface and ->default_onfi_timing_mode were set.
4041 * For the other dies, nand_reset() will automatically switch to the
4042 * best mode for us.
4043 */
4044 ret = nand_setup_data_interface(chip, 0);
4045 if (ret)
4046 return ret;
4047
4048 chip->select_chip(mtd, -1);
4049
4050 /* Check for a chip array */
4051 for (i = 1; i < maxchips; i++) {
4052 /* See comment in nand_get_flash_type for reset */
4053 nand_reset(chip, i);
4054
4055 chip->select_chip(mtd, i);
4056 /* Send the command for reading device ID */
4057 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4058 /* Read manufacturer and device IDs */
4059 if (nand_maf_id != chip->read_byte(mtd) ||
4060 nand_dev_id != chip->read_byte(mtd)) {
4061 chip->select_chip(mtd, -1);
4062 break;
4063 }
4064 chip->select_chip(mtd, -1);
4065 }
4066
4067 #ifdef DEBUG
4068 if (i > 1)
4069 pr_info("%d chips detected\n", i);
4070 #endif
4071
4072 /* Store the number of chips and calc total size for mtd */
4073 chip->numchips = i;
4074 mtd->size = i * chip->chipsize;
4075
4076 return 0;
4077 }
4078 EXPORT_SYMBOL(nand_scan_ident);
4079
4080 /**
4081 * nand_check_ecc_caps - check the sanity of preset ECC settings
4082 * @chip: nand chip info structure
4083 * @caps: ECC caps info structure
4084 * @oobavail: OOB size that the ECC engine can use
4085 *
4086 * When ECC step size and strength are already set, check if they are supported
4087 * by the controller and the calculated ECC bytes fit within the chip's OOB.
4088 * On success, the calculated ECC bytes is set.
4089 */
4090 int nand_check_ecc_caps(struct nand_chip *chip,
4091 const struct nand_ecc_caps *caps, int oobavail)
4092 {
4093 struct mtd_info *mtd = nand_to_mtd(chip);
4094 const struct nand_ecc_step_info *stepinfo;
4095 int preset_step = chip->ecc.size;
4096 int preset_strength = chip->ecc.strength;
4097 int nsteps, ecc_bytes;
4098 int i, j;
4099
4100 if (WARN_ON(oobavail < 0))
4101 return -EINVAL;
4102
4103 if (!preset_step || !preset_strength)
4104 return -ENODATA;
4105
4106 nsteps = mtd->writesize / preset_step;
4107
4108 for (i = 0; i < caps->nstepinfos; i++) {
4109 stepinfo = &caps->stepinfos[i];
4110
4111 if (stepinfo->stepsize != preset_step)
4112 continue;
4113
4114 for (j = 0; j < stepinfo->nstrengths; j++) {
4115 if (stepinfo->strengths[j] != preset_strength)
4116 continue;
4117
4118 ecc_bytes = caps->calc_ecc_bytes(preset_step,
4119 preset_strength);
4120 if (WARN_ON_ONCE(ecc_bytes < 0))
4121 return ecc_bytes;
4122
4123 if (ecc_bytes * nsteps > oobavail) {
4124 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4125 preset_step, preset_strength);
4126 return -ENOSPC;
4127 }
4128
4129 chip->ecc.bytes = ecc_bytes;
4130
4131 return 0;
4132 }
4133 }
4134
4135 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4136 preset_step, preset_strength);
4137
4138 return -ENOTSUPP;
4139 }
4140 EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4141
4142 /**
4143 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4144 * @chip: nand chip info structure
4145 * @caps: ECC engine caps info structure
4146 * @oobavail: OOB size that the ECC engine can use
4147 *
4148 * If a chip's ECC requirement is provided, try to meet it with the least
4149 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4150 * On success, the chosen ECC settings are set.
4151 */
4152 int nand_match_ecc_req(struct nand_chip *chip,
4153 const struct nand_ecc_caps *caps, int oobavail)
4154 {
4155 struct mtd_info *mtd = nand_to_mtd(chip);
4156 const struct nand_ecc_step_info *stepinfo;
4157 int req_step = chip->ecc_step_ds;
4158 int req_strength = chip->ecc_strength_ds;
4159 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4160 int best_step, best_strength, best_ecc_bytes;
4161 int best_ecc_bytes_total = INT_MAX;
4162 int i, j;
4163
4164 if (WARN_ON(oobavail < 0))
4165 return -EINVAL;
4166
4167 /* No information provided by the NAND chip */
4168 if (!req_step || !req_strength)
4169 return -ENOTSUPP;
4170
4171 /* number of correctable bits the chip requires in a page */
4172 req_corr = mtd->writesize / req_step * req_strength;
4173
4174 for (i = 0; i < caps->nstepinfos; i++) {
4175 stepinfo = &caps->stepinfos[i];
4176 step_size = stepinfo->stepsize;
4177
4178 for (j = 0; j < stepinfo->nstrengths; j++) {
4179 strength = stepinfo->strengths[j];
4180
4181 /*
4182 * If both step size and strength are smaller than the
4183 * chip's requirement, it is not easy to compare the
4184 * resulted reliability.
4185 */
4186 if (step_size < req_step && strength < req_strength)
4187 continue;
4188
4189 if (mtd->writesize % step_size)
4190 continue;
4191
4192 nsteps = mtd->writesize / step_size;
4193
4194 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4195 if (WARN_ON_ONCE(ecc_bytes < 0))
4196 continue;
4197 ecc_bytes_total = ecc_bytes * nsteps;
4198
4199 if (ecc_bytes_total > oobavail ||
4200 strength * nsteps < req_corr)
4201 continue;
4202
4203 /*
4204 * We assume the best is to meet the chip's requrement
4205 * with the least number of ECC bytes.
4206 */
4207 if (ecc_bytes_total < best_ecc_bytes_total) {
4208 best_ecc_bytes_total = ecc_bytes_total;
4209 best_step = step_size;
4210 best_strength = strength;
4211 best_ecc_bytes = ecc_bytes;
4212 }
4213 }
4214 }
4215
4216 if (best_ecc_bytes_total == INT_MAX)
4217 return -ENOTSUPP;
4218
4219 chip->ecc.size = best_step;
4220 chip->ecc.strength = best_strength;
4221 chip->ecc.bytes = best_ecc_bytes;
4222
4223 return 0;
4224 }
4225 EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4226
4227 /**
4228 * nand_maximize_ecc - choose the max ECC strength available
4229 * @chip: nand chip info structure
4230 * @caps: ECC engine caps info structure
4231 * @oobavail: OOB size that the ECC engine can use
4232 *
4233 * Choose the max ECC strength that is supported on the controller, and can fit
4234 * within the chip's OOB. On success, the chosen ECC settings are set.
4235 */
4236 int nand_maximize_ecc(struct nand_chip *chip,
4237 const struct nand_ecc_caps *caps, int oobavail)
4238 {
4239 struct mtd_info *mtd = nand_to_mtd(chip);
4240 const struct nand_ecc_step_info *stepinfo;
4241 int step_size, strength, nsteps, ecc_bytes, corr;
4242 int best_corr = 0;
4243 int best_step = 0;
4244 int best_strength, best_ecc_bytes;
4245 int i, j;
4246
4247 if (WARN_ON(oobavail < 0))
4248 return -EINVAL;
4249
4250 for (i = 0; i < caps->nstepinfos; i++) {
4251 stepinfo = &caps->stepinfos[i];
4252 step_size = stepinfo->stepsize;
4253
4254 /* If chip->ecc.size is already set, respect it */
4255 if (chip->ecc.size && step_size != chip->ecc.size)
4256 continue;
4257
4258 for (j = 0; j < stepinfo->nstrengths; j++) {
4259 strength = stepinfo->strengths[j];
4260
4261 if (mtd->writesize % step_size)
4262 continue;
4263
4264 nsteps = mtd->writesize / step_size;
4265
4266 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4267 if (WARN_ON_ONCE(ecc_bytes < 0))
4268 continue;
4269
4270 if (ecc_bytes * nsteps > oobavail)
4271 continue;
4272
4273 corr = strength * nsteps;
4274
4275 /*
4276 * If the number of correctable bits is the same,
4277 * bigger step_size has more reliability.
4278 */
4279 if (corr > best_corr ||
4280 (corr == best_corr && step_size > best_step)) {
4281 best_corr = corr;
4282 best_step = step_size;
4283 best_strength = strength;
4284 best_ecc_bytes = ecc_bytes;
4285 }
4286 }
4287 }
4288
4289 if (!best_corr)
4290 return -ENOTSUPP;
4291
4292 chip->ecc.size = best_step;
4293 chip->ecc.strength = best_strength;
4294 chip->ecc.bytes = best_ecc_bytes;
4295
4296 return 0;
4297 }
4298 EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4299
4300 /*
4301 * Check if the chip configuration meet the datasheet requirements.
4302
4303 * If our configuration corrects A bits per B bytes and the minimum
4304 * required correction level is X bits per Y bytes, then we must ensure
4305 * both of the following are true:
4306 *
4307 * (1) A / B >= X / Y
4308 * (2) A >= X
4309 *
4310 * Requirement (1) ensures we can correct for the required bitflip density.
4311 * Requirement (2) ensures we can correct even when all bitflips are clumped
4312 * in the same sector.
4313 */
4314 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4315 {
4316 struct nand_chip *chip = mtd_to_nand(mtd);
4317 struct nand_ecc_ctrl *ecc = &chip->ecc;
4318 int corr, ds_corr;
4319
4320 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4321 /* Not enough information */
4322 return true;
4323
4324 /*
4325 * We get the number of corrected bits per page to compare
4326 * the correction density.
4327 */
4328 corr = (mtd->writesize * ecc->strength) / ecc->size;
4329 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4330
4331 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4332 }
4333
4334 static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4335 {
4336 struct nand_ecc_ctrl *ecc = &chip->ecc;
4337
4338 if (nand_standard_page_accessors(ecc))
4339 return false;
4340
4341 /*
4342 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4343 * controller driver implements all the page accessors because
4344 * default helpers are not suitable when the core does not
4345 * send the READ0/PAGEPROG commands.
4346 */
4347 return (!ecc->read_page || !ecc->write_page ||
4348 !ecc->read_page_raw || !ecc->write_page_raw ||
4349 (NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4350 (NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4351 ecc->hwctl && ecc->calculate));
4352 }
4353
4354 /**
4355 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4356 * @mtd: MTD device structure
4357 *
4358 * This is the second phase of the normal nand_scan() function. It fills out
4359 * all the uninitialized function pointers with the defaults and scans for a
4360 * bad block table if appropriate.
4361 */
4362 int nand_scan_tail(struct mtd_info *mtd)
4363 {
4364 int i;
4365 struct nand_chip *chip = mtd_to_nand(mtd);
4366 struct nand_ecc_ctrl *ecc = &chip->ecc;
4367 struct nand_buffers *nbuf;
4368
4369 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4370 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4371 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4372
4373 if (invalid_ecc_page_accessors(chip)) {
4374 pr_err("Invalid ECC page accessors setup\n");
4375 return -EINVAL;
4376 }
4377
4378 if (!(chip->options & NAND_OWN_BUFFERS)) {
4379 nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
4380 chip->buffers = nbuf;
4381 } else {
4382 if (!chip->buffers)
4383 return -ENOMEM;
4384 }
4385
4386 /* Set the internal oob buffer location, just after the page data */
4387 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4388
4389 /*
4390 * If no default placement scheme is given, select an appropriate one.
4391 */
4392 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4393 switch (mtd->oobsize) {
4394 case 8:
4395 ecc->layout = &nand_oob_8;
4396 break;
4397 case 16:
4398 ecc->layout = &nand_oob_16;
4399 break;
4400 case 64:
4401 ecc->layout = &nand_oob_64;
4402 break;
4403 case 128:
4404 ecc->layout = &nand_oob_128;
4405 break;
4406 default:
4407 pr_warn("No oob scheme defined for oobsize %d\n",
4408 mtd->oobsize);
4409 BUG();
4410 }
4411 }
4412
4413 if (!chip->write_page)
4414 chip->write_page = nand_write_page;
4415
4416 /*
4417 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4418 * selected and we have 256 byte pagesize fallback to software ECC
4419 */
4420
4421 switch (ecc->mode) {
4422 case NAND_ECC_HW_OOB_FIRST:
4423 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4424 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4425 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4426 BUG();
4427 }
4428 if (!ecc->read_page)
4429 ecc->read_page = nand_read_page_hwecc_oob_first;
4430
4431 case NAND_ECC_HW:
4432 /* Use standard hwecc read page function? */
4433 if (!ecc->read_page)
4434 ecc->read_page = nand_read_page_hwecc;
4435 if (!ecc->write_page)
4436 ecc->write_page = nand_write_page_hwecc;
4437 if (!ecc->read_page_raw)
4438 ecc->read_page_raw = nand_read_page_raw;
4439 if (!ecc->write_page_raw)
4440 ecc->write_page_raw = nand_write_page_raw;
4441 if (!ecc->read_oob)
4442 ecc->read_oob = nand_read_oob_std;
4443 if (!ecc->write_oob)
4444 ecc->write_oob = nand_write_oob_std;
4445 if (!ecc->read_subpage)
4446 ecc->read_subpage = nand_read_subpage;
4447 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4448 ecc->write_subpage = nand_write_subpage_hwecc;
4449
4450 case NAND_ECC_HW_SYNDROME:
4451 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4452 (!ecc->read_page ||
4453 ecc->read_page == nand_read_page_hwecc ||
4454 !ecc->write_page ||
4455 ecc->write_page == nand_write_page_hwecc)) {
4456 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4457 BUG();
4458 }
4459 /* Use standard syndrome read/write page function? */
4460 if (!ecc->read_page)
4461 ecc->read_page = nand_read_page_syndrome;
4462 if (!ecc->write_page)
4463 ecc->write_page = nand_write_page_syndrome;
4464 if (!ecc->read_page_raw)
4465 ecc->read_page_raw = nand_read_page_raw_syndrome;
4466 if (!ecc->write_page_raw)
4467 ecc->write_page_raw = nand_write_page_raw_syndrome;
4468 if (!ecc->read_oob)
4469 ecc->read_oob = nand_read_oob_syndrome;
4470 if (!ecc->write_oob)
4471 ecc->write_oob = nand_write_oob_syndrome;
4472
4473 if (mtd->writesize >= ecc->size) {
4474 if (!ecc->strength) {
4475 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4476 BUG();
4477 }
4478 break;
4479 }
4480 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4481 ecc->size, mtd->writesize);
4482 ecc->mode = NAND_ECC_SOFT;
4483
4484 case NAND_ECC_SOFT:
4485 ecc->calculate = nand_calculate_ecc;
4486 ecc->correct = nand_correct_data;
4487 ecc->read_page = nand_read_page_swecc;
4488 ecc->read_subpage = nand_read_subpage;
4489 ecc->write_page = nand_write_page_swecc;
4490 ecc->read_page_raw = nand_read_page_raw;
4491 ecc->write_page_raw = nand_write_page_raw;
4492 ecc->read_oob = nand_read_oob_std;
4493 ecc->write_oob = nand_write_oob_std;
4494 if (!ecc->size)
4495 ecc->size = 256;
4496 ecc->bytes = 3;
4497 ecc->strength = 1;
4498 break;
4499
4500 case NAND_ECC_SOFT_BCH:
4501 if (!mtd_nand_has_bch()) {
4502 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4503 BUG();
4504 }
4505 ecc->calculate = nand_bch_calculate_ecc;
4506 ecc->correct = nand_bch_correct_data;
4507 ecc->read_page = nand_read_page_swecc;
4508 ecc->read_subpage = nand_read_subpage;
4509 ecc->write_page = nand_write_page_swecc;
4510 ecc->read_page_raw = nand_read_page_raw;
4511 ecc->write_page_raw = nand_write_page_raw;
4512 ecc->read_oob = nand_read_oob_std;
4513 ecc->write_oob = nand_write_oob_std;
4514 /*
4515 * Board driver should supply ecc.size and ecc.strength values
4516 * to select how many bits are correctable. Otherwise, default
4517 * to 4 bits for large page devices.
4518 */
4519 if (!ecc->size && (mtd->oobsize >= 64)) {
4520 ecc->size = 512;
4521 ecc->strength = 4;
4522 }
4523
4524 /* See nand_bch_init() for details. */
4525 ecc->bytes = 0;
4526 ecc->priv = nand_bch_init(mtd);
4527 if (!ecc->priv) {
4528 pr_warn("BCH ECC initialization failed!\n");
4529 BUG();
4530 }
4531 break;
4532
4533 case NAND_ECC_NONE:
4534 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4535 ecc->read_page = nand_read_page_raw;
4536 ecc->write_page = nand_write_page_raw;
4537 ecc->read_oob = nand_read_oob_std;
4538 ecc->read_page_raw = nand_read_page_raw;
4539 ecc->write_page_raw = nand_write_page_raw;
4540 ecc->write_oob = nand_write_oob_std;
4541 ecc->size = mtd->writesize;
4542 ecc->bytes = 0;
4543 ecc->strength = 0;
4544 break;
4545
4546 default:
4547 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4548 BUG();
4549 }
4550
4551 /* For many systems, the standard OOB write also works for raw */
4552 if (!ecc->read_oob_raw)
4553 ecc->read_oob_raw = ecc->read_oob;
4554 if (!ecc->write_oob_raw)
4555 ecc->write_oob_raw = ecc->write_oob;
4556
4557 /*
4558 * The number of bytes available for a client to place data into
4559 * the out of band area.
4560 */
4561 mtd->oobavail = 0;
4562 if (ecc->layout) {
4563 for (i = 0; ecc->layout->oobfree[i].length; i++)
4564 mtd->oobavail += ecc->layout->oobfree[i].length;
4565 }
4566
4567 /* ECC sanity check: warn if it's too weak */
4568 if (!nand_ecc_strength_good(mtd))
4569 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4570 mtd->name);
4571
4572 /*
4573 * Set the number of read / write steps for one page depending on ECC
4574 * mode.
4575 */
4576 ecc->steps = mtd->writesize / ecc->size;
4577 if (ecc->steps * ecc->size != mtd->writesize) {
4578 pr_warn("Invalid ECC parameters\n");
4579 BUG();
4580 }
4581 ecc->total = ecc->steps * ecc->bytes;
4582
4583 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4584 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4585 switch (ecc->steps) {
4586 case 2:
4587 mtd->subpage_sft = 1;
4588 break;
4589 case 4:
4590 case 8:
4591 case 16:
4592 mtd->subpage_sft = 2;
4593 break;
4594 }
4595 }
4596 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4597
4598 /* Initialize state */
4599 chip->state = FL_READY;
4600
4601 /* Invalidate the pagebuffer reference */
4602 chip->pagebuf = -1;
4603
4604 /* Large page NAND with SOFT_ECC should support subpage reads */
4605 switch (ecc->mode) {
4606 case NAND_ECC_SOFT:
4607 case NAND_ECC_SOFT_BCH:
4608 if (chip->page_shift > 9)
4609 chip->options |= NAND_SUBPAGE_READ;
4610 break;
4611
4612 default:
4613 break;
4614 }
4615
4616 /* Fill in remaining MTD driver data */
4617 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4618 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4619 MTD_CAP_NANDFLASH;
4620 mtd->_erase = nand_erase;
4621 mtd->_read = nand_read;
4622 mtd->_write = nand_write;
4623 mtd->_panic_write = panic_nand_write;
4624 mtd->_read_oob = nand_read_oob;
4625 mtd->_write_oob = nand_write_oob;
4626 mtd->_sync = nand_sync;
4627 mtd->_lock = NULL;
4628 mtd->_unlock = NULL;
4629 mtd->_block_isreserved = nand_block_isreserved;
4630 mtd->_block_isbad = nand_block_isbad;
4631 mtd->_block_markbad = nand_block_markbad;
4632 mtd->writebufsize = mtd->writesize;
4633
4634 /* propagate ecc info to mtd_info */
4635 mtd->ecclayout = ecc->layout;
4636 mtd->ecc_strength = ecc->strength;
4637 mtd->ecc_step_size = ecc->size;
4638 /*
4639 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4640 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4641 * properly set.
4642 */
4643 if (!mtd->bitflip_threshold)
4644 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4645
4646 return 0;
4647 }
4648 EXPORT_SYMBOL(nand_scan_tail);
4649
4650 /**
4651 * nand_scan - [NAND Interface] Scan for the NAND device
4652 * @mtd: MTD device structure
4653 * @maxchips: number of chips to scan for
4654 *
4655 * This fills out all the uninitialized function pointers with the defaults.
4656 * The flash ID is read and the mtd/chip structures are filled with the
4657 * appropriate values.
4658 */
4659 int nand_scan(struct mtd_info *mtd, int maxchips)
4660 {
4661 int ret;
4662
4663 ret = nand_scan_ident(mtd, maxchips, NULL);
4664 if (!ret)
4665 ret = nand_scan_tail(mtd);
4666 return ret;
4667 }
4668 EXPORT_SYMBOL(nand_scan);
4669
4670 MODULE_LICENSE("GPL");
4671 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4672 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4673 MODULE_DESCRIPTION("Generic NAND flash driver code");