]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
Big white-space cleanup.
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
17 *
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
22 *
23 * 04-14-2004 tglx: first working version for 2k page size chips
24 *
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
26 *
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
30 *
31 * Credits:
32 * David Woodhouse for adding multichip support
33 *
34 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
35 * rework for 2K page size chips
36 *
37 * TODO:
38 * Enable cached programming for 2k page size chips
39 * Check, if mtd->ecctype should be set to MTD_ECC_HW
40 * if we have HW ecc support.
41 * The AG-AND chips have nice features for speed improvement,
42 * which are not supported yet. Read / program 4 pages in one go.
43 *
44 * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
45 *
46 * This program is free software; you can redistribute it and/or modify
47 * it under the terms of the GNU General Public License version 2 as
48 * published by the Free Software Foundation.
49 *
50 */
51
52 /* XXX U-BOOT XXX */
53 #if 0
54 #include <linux/delay.h>
55 #include <linux/errno.h>
56 #include <linux/sched.h>
57 #include <linux/slab.h>
58 #include <linux/types.h>
59 #include <linux/mtd/mtd.h>
60 #include <linux/mtd/nand.h>
61 #include <linux/mtd/nand_ecc.h>
62 #include <linux/mtd/compatmac.h>
63 #include <linux/interrupt.h>
64 #include <linux/bitops.h>
65 #include <asm/io.h>
66
67 #ifdef CONFIG_MTD_PARTITIONS
68 #include <linux/mtd/partitions.h>
69 #endif
70
71 #endif
72
73 #include <common.h>
74
75 #if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
76
77 #include <malloc.h>
78 #include <watchdog.h>
79 #include <linux/mtd/compat.h>
80 #include <linux/mtd/mtd.h>
81 #include <linux/mtd/nand.h>
82 #include <linux/mtd/nand_ecc.h>
83
84 #include <asm/io.h>
85 #include <asm/errno.h>
86
87 #ifdef CONFIG_JFFS2_NAND
88 #include <jffs2/jffs2.h>
89 #endif
90
91 /* Define default oob placement schemes for large and small page devices */
92 static struct nand_oobinfo nand_oob_8 = {
93 .useecc = MTD_NANDECC_AUTOPLACE,
94 .eccbytes = 3,
95 .eccpos = {0, 1, 2},
96 .oobfree = { {3, 2}, {6, 2} }
97 };
98
99 static struct nand_oobinfo nand_oob_16 = {
100 .useecc = MTD_NANDECC_AUTOPLACE,
101 .eccbytes = 6,
102 .eccpos = {0, 1, 2, 3, 6, 7},
103 .oobfree = { {8, 8} }
104 };
105
106 static struct nand_oobinfo nand_oob_64 = {
107 .useecc = MTD_NANDECC_AUTOPLACE,
108 .eccbytes = 24,
109 .eccpos = {
110 40, 41, 42, 43, 44, 45, 46, 47,
111 48, 49, 50, 51, 52, 53, 54, 55,
112 56, 57, 58, 59, 60, 61, 62, 63},
113 .oobfree = { {2, 38} }
114 };
115
116 /* This is used for padding purposes in nand_write_oob */
117 static u_char ffchars[] = {
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 };
127
128 /*
129 * NAND low-level MTD interface functions
130 */
131 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
132 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
133 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
134
135 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
136 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
137 size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
138 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
139 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
140 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
141 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
142 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
143 /* XXX U-BOOT XXX */
144 #if 0
145 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
146 unsigned long count, loff_t to, size_t * retlen);
147 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
148 unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
149 #endif
150 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
151 static void nand_sync (struct mtd_info *mtd);
152
153 /* Some internal functions */
154 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
155 struct nand_oobinfo *oobsel, int mode);
156 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
157 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
158 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
159 #else
160 #define nand_verify_pages(...) (0)
161 #endif
162
163 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
164
165 /**
166 * nand_release_device - [GENERIC] release chip
167 * @mtd: MTD device structure
168 *
169 * Deselect, release chip lock and wake up anyone waiting on the device
170 */
171 /* XXX U-BOOT XXX */
172 #if 0
173 static void nand_release_device (struct mtd_info *mtd)
174 {
175 struct nand_chip *this = mtd->priv;
176
177 /* De-select the NAND device */
178 this->select_chip(mtd, -1);
179 /* Do we have a hardware controller ? */
180 if (this->controller) {
181 spin_lock(&this->controller->lock);
182 this->controller->active = NULL;
183 spin_unlock(&this->controller->lock);
184 }
185 /* Release the chip */
186 spin_lock (&this->chip_lock);
187 this->state = FL_READY;
188 wake_up (&this->wq);
189 spin_unlock (&this->chip_lock);
190 }
191 #else
192 static void nand_release_device (struct mtd_info *mtd)
193 {
194 struct nand_chip *this = mtd->priv;
195 this->select_chip(mtd, -1); /* De-select the NAND device */
196 }
197 #endif
198
199 /**
200 * nand_read_byte - [DEFAULT] read one byte from the chip
201 * @mtd: MTD device structure
202 *
203 * Default read function for 8bit buswith
204 */
205 static u_char nand_read_byte(struct mtd_info *mtd)
206 {
207 struct nand_chip *this = mtd->priv;
208 return readb(this->IO_ADDR_R);
209 }
210
211 /**
212 * nand_write_byte - [DEFAULT] write one byte to the chip
213 * @mtd: MTD device structure
214 * @byte: pointer to data byte to write
215 *
216 * Default write function for 8it buswith
217 */
218 static void nand_write_byte(struct mtd_info *mtd, u_char byte)
219 {
220 struct nand_chip *this = mtd->priv;
221 writeb(byte, this->IO_ADDR_W);
222 }
223
224 /**
225 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
226 * @mtd: MTD device structure
227 *
228 * Default read function for 16bit buswith with
229 * endianess conversion
230 */
231 static u_char nand_read_byte16(struct mtd_info *mtd)
232 {
233 struct nand_chip *this = mtd->priv;
234 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
235 }
236
237 /**
238 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
239 * @mtd: MTD device structure
240 * @byte: pointer to data byte to write
241 *
242 * Default write function for 16bit buswith with
243 * endianess conversion
244 */
245 static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
246 {
247 struct nand_chip *this = mtd->priv;
248 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
249 }
250
251 /**
252 * nand_read_word - [DEFAULT] read one word from the chip
253 * @mtd: MTD device structure
254 *
255 * Default read function for 16bit buswith without
256 * endianess conversion
257 */
258 static u16 nand_read_word(struct mtd_info *mtd)
259 {
260 struct nand_chip *this = mtd->priv;
261 return readw(this->IO_ADDR_R);
262 }
263
264 /**
265 * nand_write_word - [DEFAULT] write one word to the chip
266 * @mtd: MTD device structure
267 * @word: data word to write
268 *
269 * Default write function for 16bit buswith without
270 * endianess conversion
271 */
272 static void nand_write_word(struct mtd_info *mtd, u16 word)
273 {
274 struct nand_chip *this = mtd->priv;
275 writew(word, this->IO_ADDR_W);
276 }
277
278 /**
279 * nand_select_chip - [DEFAULT] control CE line
280 * @mtd: MTD device structure
281 * @chip: chipnumber to select, -1 for deselect
282 *
283 * Default select function for 1 chip devices.
284 */
285 static void nand_select_chip(struct mtd_info *mtd, int chip)
286 {
287 struct nand_chip *this = mtd->priv;
288 switch(chip) {
289 case -1:
290 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
291 break;
292 case 0:
293 this->hwcontrol(mtd, NAND_CTL_SETNCE);
294 break;
295
296 default:
297 BUG();
298 }
299 }
300
301 /**
302 * nand_write_buf - [DEFAULT] write buffer to chip
303 * @mtd: MTD device structure
304 * @buf: data buffer
305 * @len: number of bytes to write
306 *
307 * Default write function for 8bit buswith
308 */
309 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
310 {
311 int i;
312 struct nand_chip *this = mtd->priv;
313
314 for (i=0; i<len; i++)
315 writeb(buf[i], this->IO_ADDR_W);
316 }
317
318 /**
319 * nand_read_buf - [DEFAULT] read chip data into buffer
320 * @mtd: MTD device structure
321 * @buf: buffer to store date
322 * @len: number of bytes to read
323 *
324 * Default read function for 8bit buswith
325 */
326 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
327 {
328 int i;
329 struct nand_chip *this = mtd->priv;
330
331 for (i=0; i<len; i++)
332 buf[i] = readb(this->IO_ADDR_R);
333 }
334
335 /**
336 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
337 * @mtd: MTD device structure
338 * @buf: buffer containing the data to compare
339 * @len: number of bytes to compare
340 *
341 * Default verify function for 8bit buswith
342 */
343 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
344 {
345 int i;
346 struct nand_chip *this = mtd->priv;
347
348 for (i=0; i<len; i++)
349 if (buf[i] != readb(this->IO_ADDR_R))
350 return -EFAULT;
351
352 return 0;
353 }
354
355 /**
356 * nand_write_buf16 - [DEFAULT] write buffer to chip
357 * @mtd: MTD device structure
358 * @buf: data buffer
359 * @len: number of bytes to write
360 *
361 * Default write function for 16bit buswith
362 */
363 static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
364 {
365 int i;
366 struct nand_chip *this = mtd->priv;
367 u16 *p = (u16 *) buf;
368 len >>= 1;
369
370 for (i=0; i<len; i++)
371 writew(p[i], this->IO_ADDR_W);
372
373 }
374
375 /**
376 * nand_read_buf16 - [DEFAULT] read chip data into buffer
377 * @mtd: MTD device structure
378 * @buf: buffer to store date
379 * @len: number of bytes to read
380 *
381 * Default read function for 16bit buswith
382 */
383 static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
384 {
385 int i;
386 struct nand_chip *this = mtd->priv;
387 u16 *p = (u16 *) buf;
388 len >>= 1;
389
390 for (i=0; i<len; i++)
391 p[i] = readw(this->IO_ADDR_R);
392 }
393
394 /**
395 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
396 * @mtd: MTD device structure
397 * @buf: buffer containing the data to compare
398 * @len: number of bytes to compare
399 *
400 * Default verify function for 16bit buswith
401 */
402 static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
403 {
404 int i;
405 struct nand_chip *this = mtd->priv;
406 u16 *p = (u16 *) buf;
407 len >>= 1;
408
409 for (i=0; i<len; i++)
410 if (p[i] != readw(this->IO_ADDR_R))
411 return -EFAULT;
412
413 return 0;
414 }
415
416 /**
417 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
418 * @mtd: MTD device structure
419 * @ofs: offset from device start
420 * @getchip: 0, if the chip is already selected
421 *
422 * Check, if the block is bad.
423 */
424 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
425 {
426 int page, chipnr, res = 0;
427 struct nand_chip *this = mtd->priv;
428 u16 bad;
429
430 page = (int)(ofs >> this->page_shift) & this->pagemask;
431
432 if (getchip) {
433 chipnr = (int)(ofs >> this->chip_shift);
434
435 /* Grab the lock and see if the device is available */
436 nand_get_device (this, mtd, FL_READING);
437
438 /* Select the NAND device */
439 this->select_chip(mtd, chipnr);
440 }
441
442 if (this->options & NAND_BUSWIDTH_16) {
443 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page);
444 bad = cpu_to_le16(this->read_word(mtd));
445 if (this->badblockpos & 0x1)
446 bad >>= 1;
447 if ((bad & 0xFF) != 0xff)
448 res = 1;
449 } else {
450 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page);
451 if (this->read_byte(mtd) != 0xff)
452 res = 1;
453 }
454
455 if (getchip) {
456 /* Deselect and wake up anyone waiting on the device */
457 nand_release_device(mtd);
458 }
459
460 return res;
461 }
462
463 /**
464 * nand_default_block_markbad - [DEFAULT] mark a block bad
465 * @mtd: MTD device structure
466 * @ofs: offset from device start
467 *
468 * This is the default implementation, which can be overridden by
469 * a hardware specific driver.
470 */
471 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
472 {
473 struct nand_chip *this = mtd->priv;
474 u_char buf[2] = {0, 0};
475 size_t retlen;
476 int block;
477
478 /* Get block number */
479 block = ((int) ofs) >> this->bbt_erase_shift;
480 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
481
482 /* Do we have a flash based bad block table ? */
483 if (this->options & NAND_USE_FLASH_BBT)
484 return nand_update_bbt (mtd, ofs);
485
486 /* We write two bytes, so we dont have to mess with 16 bit access */
487 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
488 return nand_write_oob (mtd, ofs , 2, &retlen, buf);
489 }
490
491 /**
492 * nand_check_wp - [GENERIC] check if the chip is write protected
493 * @mtd: MTD device structure
494 * Check, if the device is write protected
495 *
496 * The function expects, that the device is already selected
497 */
498 static int nand_check_wp (struct mtd_info *mtd)
499 {
500 struct nand_chip *this = mtd->priv;
501 /* Check the WP bit */
502 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
503 return (this->read_byte(mtd) & 0x80) ? 0 : 1;
504 }
505
506 /**
507 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
508 * @mtd: MTD device structure
509 * @ofs: offset from device start
510 * @getchip: 0, if the chip is already selected
511 * @allowbbt: 1, if its allowed to access the bbt area
512 *
513 * Check, if the block is bad. Either by reading the bad block table or
514 * calling of the scan function.
515 */
516 static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
517 {
518 struct nand_chip *this = mtd->priv;
519
520 if (!this->bbt)
521 return this->block_bad(mtd, ofs, getchip);
522
523 /* Return info from the table */
524 return nand_isbad_bbt (mtd, ofs, allowbbt);
525 }
526
527 /**
528 * nand_command - [DEFAULT] Send command to NAND device
529 * @mtd: MTD device structure
530 * @command: the command to be sent
531 * @column: the column address for this command, -1 if none
532 * @page_addr: the page address for this command, -1 if none
533 *
534 * Send command to NAND device. This function is used for small page
535 * devices (256/512 Bytes per page)
536 */
537 static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
538 {
539 register struct nand_chip *this = mtd->priv;
540
541 /* Begin command latch cycle */
542 this->hwcontrol(mtd, NAND_CTL_SETCLE);
543 /*
544 * Write out the command to the device.
545 */
546 if (command == NAND_CMD_SEQIN) {
547 int readcmd;
548
549 if (column >= mtd->oobblock) {
550 /* OOB area */
551 column -= mtd->oobblock;
552 readcmd = NAND_CMD_READOOB;
553 } else if (column < 256) {
554 /* First 256 bytes --> READ0 */
555 readcmd = NAND_CMD_READ0;
556 } else {
557 column -= 256;
558 readcmd = NAND_CMD_READ1;
559 }
560 this->write_byte(mtd, readcmd);
561 }
562 this->write_byte(mtd, command);
563
564 /* Set ALE and clear CLE to start address cycle */
565 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
566
567 if (column != -1 || page_addr != -1) {
568 this->hwcontrol(mtd, NAND_CTL_SETALE);
569
570 /* Serially input address */
571 if (column != -1) {
572 /* Adjust columns for 16 bit buswidth */
573 if (this->options & NAND_BUSWIDTH_16)
574 column >>= 1;
575 this->write_byte(mtd, column);
576 }
577 if (page_addr != -1) {
578 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
579 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
580 /* One more address cycle for devices > 32MiB */
581 if (this->chipsize > (32 << 20))
582 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
583 }
584 /* Latch in address */
585 this->hwcontrol(mtd, NAND_CTL_CLRALE);
586 }
587
588 /*
589 * program and erase have their own busy handlers
590 * status and sequential in needs no delay
591 */
592 switch (command) {
593
594 case NAND_CMD_PAGEPROG:
595 case NAND_CMD_ERASE1:
596 case NAND_CMD_ERASE2:
597 case NAND_CMD_SEQIN:
598 case NAND_CMD_STATUS:
599 return;
600
601 case NAND_CMD_RESET:
602 if (this->dev_ready)
603 break;
604 udelay(this->chip_delay);
605 this->hwcontrol(mtd, NAND_CTL_SETCLE);
606 this->write_byte(mtd, NAND_CMD_STATUS);
607 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
608 while ( !(this->read_byte(mtd) & 0x40));
609 return;
610
611 /* This applies to read commands */
612 default:
613 /*
614 * If we don't have access to the busy pin, we apply the given
615 * command delay
616 */
617 if (!this->dev_ready) {
618 udelay (this->chip_delay);
619 return;
620 }
621 }
622
623 /* Apply this short delay always to ensure that we do wait tWB in
624 * any case on any machine. */
625 ndelay (100);
626 /* wait until command is processed */
627 while (!this->dev_ready(mtd));
628 }
629
630 /**
631 * nand_command_lp - [DEFAULT] Send command to NAND large page device
632 * @mtd: MTD device structure
633 * @command: the command to be sent
634 * @column: the column address for this command, -1 if none
635 * @page_addr: the page address for this command, -1 if none
636 *
637 * Send command to NAND device. This is the version for the new large page devices
638 * We dont have the seperate regions as we have in the small page devices.
639 * We must emulate NAND_CMD_READOOB to keep the code compatible.
640 *
641 */
642 static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
643 {
644 register struct nand_chip *this = mtd->priv;
645
646 /* Emulate NAND_CMD_READOOB */
647 if (command == NAND_CMD_READOOB) {
648 column += mtd->oobblock;
649 command = NAND_CMD_READ0;
650 }
651
652
653 /* Begin command latch cycle */
654 this->hwcontrol(mtd, NAND_CTL_SETCLE);
655 /* Write out the command to the device. */
656 this->write_byte(mtd, command);
657 /* End command latch cycle */
658 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
659
660 if (column != -1 || page_addr != -1) {
661 this->hwcontrol(mtd, NAND_CTL_SETALE);
662
663 /* Serially input address */
664 if (column != -1) {
665 /* Adjust columns for 16 bit buswidth */
666 if (this->options & NAND_BUSWIDTH_16)
667 column >>= 1;
668 this->write_byte(mtd, column & 0xff);
669 this->write_byte(mtd, column >> 8);
670 }
671 if (page_addr != -1) {
672 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
673 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
674 /* One more address cycle for devices > 128MiB */
675 if (this->chipsize > (128 << 20))
676 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
677 }
678 /* Latch in address */
679 this->hwcontrol(mtd, NAND_CTL_CLRALE);
680 }
681
682 /*
683 * program and erase have their own busy handlers
684 * status and sequential in needs no delay
685 */
686 switch (command) {
687
688 case NAND_CMD_CACHEDPROG:
689 case NAND_CMD_PAGEPROG:
690 case NAND_CMD_ERASE1:
691 case NAND_CMD_ERASE2:
692 case NAND_CMD_SEQIN:
693 case NAND_CMD_STATUS:
694 return;
695
696
697 case NAND_CMD_RESET:
698 if (this->dev_ready)
699 break;
700 udelay(this->chip_delay);
701 this->hwcontrol(mtd, NAND_CTL_SETCLE);
702 this->write_byte(mtd, NAND_CMD_STATUS);
703 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
704 while ( !(this->read_byte(mtd) & 0x40));
705 return;
706
707 case NAND_CMD_READ0:
708 /* Begin command latch cycle */
709 this->hwcontrol(mtd, NAND_CTL_SETCLE);
710 /* Write out the start read command */
711 this->write_byte(mtd, NAND_CMD_READSTART);
712 /* End command latch cycle */
713 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
714 /* Fall through into ready check */
715
716 /* This applies to read commands */
717 default:
718 /*
719 * If we don't have access to the busy pin, we apply the given
720 * command delay
721 */
722 if (!this->dev_ready) {
723 udelay (this->chip_delay);
724 return;
725 }
726 }
727
728 /* Apply this short delay always to ensure that we do wait tWB in
729 * any case on any machine. */
730 ndelay (100);
731 /* wait until command is processed */
732 while (!this->dev_ready(mtd));
733 }
734
735 /**
736 * nand_get_device - [GENERIC] Get chip for selected access
737 * @this: the nand chip descriptor
738 * @mtd: MTD device structure
739 * @new_state: the state which is requested
740 *
741 * Get the device and lock it for exclusive access
742 */
743 /* XXX U-BOOT XXX */
744 #if 0
745 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
746 {
747 struct nand_chip *active = this;
748
749 DECLARE_WAITQUEUE (wait, current);
750
751 /*
752 * Grab the lock and see if the device is available
753 */
754 retry:
755 /* Hardware controller shared among independend devices */
756 if (this->controller) {
757 spin_lock (&this->controller->lock);
758 if (this->controller->active)
759 active = this->controller->active;
760 else
761 this->controller->active = this;
762 spin_unlock (&this->controller->lock);
763 }
764
765 if (active == this) {
766 spin_lock (&this->chip_lock);
767 if (this->state == FL_READY) {
768 this->state = new_state;
769 spin_unlock (&this->chip_lock);
770 return;
771 }
772 }
773 set_current_state (TASK_UNINTERRUPTIBLE);
774 add_wait_queue (&active->wq, &wait);
775 spin_unlock (&active->chip_lock);
776 schedule ();
777 remove_wait_queue (&active->wq, &wait);
778 goto retry;
779 }
780 #else
781 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {}
782 #endif
783
784 /**
785 * nand_wait - [DEFAULT] wait until the command is done
786 * @mtd: MTD device structure
787 * @this: NAND chip structure
788 * @state: state to select the max. timeout value
789 *
790 * Wait for command done. This applies to erase and program only
791 * Erase can take up to 400ms and program up to 20ms according to
792 * general NAND and SmartMedia specs
793 *
794 */
795 /* XXX U-BOOT XXX */
796 #if 0
797 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
798 {
799 unsigned long timeo = jiffies;
800 int status;
801
802 if (state == FL_ERASING)
803 timeo += (HZ * 400) / 1000;
804 else
805 timeo += (HZ * 20) / 1000;
806
807 /* Apply this short delay always to ensure that we do wait tWB in
808 * any case on any machine. */
809 ndelay (100);
810
811 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
812 this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
813 else
814 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
815
816 while (time_before(jiffies, timeo)) {
817 /* Check, if we were interrupted */
818 if (this->state != state)
819 return 0;
820
821 if (this->dev_ready) {
822 if (this->dev_ready(mtd))
823 break;
824 } else {
825 if (this->read_byte(mtd) & NAND_STATUS_READY)
826 break;
827 }
828 yield ();
829 }
830 status = (int) this->read_byte(mtd);
831 return status;
832
833 return 0;
834 }
835 #else
836 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
837 {
838 unsigned long timeo;
839
840 if (state == FL_ERASING)
841 timeo = (CFG_HZ * 400) / 1000;
842 else
843 timeo = (CFG_HZ * 20) / 1000;
844
845 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
846 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
847 else
848 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
849
850 reset_timer();
851
852 while (1) {
853 if (get_timer(0) > timeo) {
854 printf("Timeout!");
855 return 0x01;
856 }
857
858 if (this->dev_ready) {
859 if (this->dev_ready(mtd))
860 break;
861 } else {
862 if (this->read_byte(mtd) & NAND_STATUS_READY)
863 break;
864 }
865 }
866 #ifdef PPCHAMELON_NAND_TIMER_HACK
867 reset_timer();
868 while (get_timer(0) < 10);
869 #endif /* PPCHAMELON_NAND_TIMER_HACK */
870
871 return this->read_byte(mtd);
872 }
873 #endif
874
875 /**
876 * nand_write_page - [GENERIC] write one page
877 * @mtd: MTD device structure
878 * @this: NAND chip structure
879 * @page: startpage inside the chip, must be called with (page & this->pagemask)
880 * @oob_buf: out of band data buffer
881 * @oobsel: out of band selecttion structre
882 * @cached: 1 = enable cached programming if supported by chip
883 *
884 * Nand_page_program function is used for write and writev !
885 * This function will always program a full page of data
886 * If you call it with a non page aligned buffer, you're lost :)
887 *
888 * Cached programming is not supported yet.
889 */
890 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
891 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
892 {
893 int i, status;
894 u_char ecc_code[32];
895 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
896 uint *oob_config = oobsel->eccpos;
897 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
898 int eccbytes = 0;
899
900 /* FIXME: Enable cached programming */
901 cached = 0;
902
903 /* Send command to begin auto page programming */
904 this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
905
906 /* Write out complete page of data, take care of eccmode */
907 switch (eccmode) {
908 /* No ecc, write all */
909 case NAND_ECC_NONE:
910 printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
911 this->write_buf(mtd, this->data_poi, mtd->oobblock);
912 break;
913
914 /* Software ecc 3/256, write all */
915 case NAND_ECC_SOFT:
916 for (; eccsteps; eccsteps--) {
917 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
918 for (i = 0; i < 3; i++, eccidx++)
919 oob_buf[oob_config[eccidx]] = ecc_code[i];
920 datidx += this->eccsize;
921 }
922 this->write_buf(mtd, this->data_poi, mtd->oobblock);
923 break;
924 default:
925 eccbytes = this->eccbytes;
926 for (; eccsteps; eccsteps--) {
927 /* enable hardware ecc logic for write */
928 this->enable_hwecc(mtd, NAND_ECC_WRITE);
929 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
930 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
931 for (i = 0; i < eccbytes; i++, eccidx++)
932 oob_buf[oob_config[eccidx]] = ecc_code[i];
933 /* If the hardware ecc provides syndromes then
934 * the ecc code must be written immediately after
935 * the data bytes (words) */
936 if (this->options & NAND_HWECC_SYNDROME)
937 this->write_buf(mtd, ecc_code, eccbytes);
938 datidx += this->eccsize;
939 }
940 break;
941 }
942
943 /* Write out OOB data */
944 if (this->options & NAND_HWECC_SYNDROME)
945 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
946 else
947 this->write_buf(mtd, oob_buf, mtd->oobsize);
948
949 /* Send command to actually program the data */
950 this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
951
952 if (!cached) {
953 /* call wait ready function */
954 status = this->waitfunc (mtd, this, FL_WRITING);
955 /* See if device thinks it succeeded */
956 if (status & 0x01) {
957 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
958 return -EIO;
959 }
960 } else {
961 /* FIXME: Implement cached programming ! */
962 /* wait until cache is ready*/
963 /* status = this->waitfunc (mtd, this, FL_CACHEDRPG); */
964 }
965 return 0;
966 }
967
968 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
969 /**
970 * nand_verify_pages - [GENERIC] verify the chip contents after a write
971 * @mtd: MTD device structure
972 * @this: NAND chip structure
973 * @page: startpage inside the chip, must be called with (page & this->pagemask)
974 * @numpages: number of pages to verify
975 * @oob_buf: out of band data buffer
976 * @oobsel: out of band selecttion structre
977 * @chipnr: number of the current chip
978 * @oobmode: 1 = full buffer verify, 0 = ecc only
979 *
980 * The NAND device assumes that it is always writing to a cleanly erased page.
981 * Hence, it performs its internal write verification only on bits that
982 * transitioned from 1 to 0. The device does NOT verify the whole page on a
983 * byte by byte basis. It is possible that the page was not completely erased
984 * or the page is becoming unusable due to wear. The read with ECC would catch
985 * the error later when the ECC page check fails, but we would rather catch
986 * it early in the page write stage. Better to write no data than invalid data.
987 */
988 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
989 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
990 {
991 int i, j, datidx = 0, oobofs = 0, res = -EIO;
992 int eccsteps = this->eccsteps;
993 int hweccbytes;
994 u_char oobdata[64];
995
996 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
997
998 /* Send command to read back the first page */
999 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
1000
1001 for(;;) {
1002 for (j = 0; j < eccsteps; j++) {
1003 /* Loop through and verify the data */
1004 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
1005 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1006 goto out;
1007 }
1008 datidx += mtd->eccsize;
1009 /* Have we a hw generator layout ? */
1010 if (!hweccbytes)
1011 continue;
1012 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
1013 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1014 goto out;
1015 }
1016 oobofs += hweccbytes;
1017 }
1018
1019 /* check, if we must compare all data or if we just have to
1020 * compare the ecc bytes
1021 */
1022 if (oobmode) {
1023 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
1024 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1025 goto out;
1026 }
1027 } else {
1028 /* Read always, else autoincrement fails */
1029 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1030
1031 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1032 int ecccnt = oobsel->eccbytes;
1033
1034 for (i = 0; i < ecccnt; i++) {
1035 int idx = oobsel->eccpos[i];
1036 if (oobdata[idx] != oob_buf[oobofs + idx] ) {
1037 DEBUG (MTD_DEBUG_LEVEL0,
1038 "%s: Failed ECC write "
1039 "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
1040 goto out;
1041 }
1042 }
1043 }
1044 }
1045 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1046 page++;
1047 numpages--;
1048
1049 /* Apply delay or wait for ready/busy pin
1050 * Do this before the AUTOINCR check, so no problems
1051 * arise if a chip which does auto increment
1052 * is marked as NOAUTOINCR by the board driver.
1053 * Do this also before returning, so the chip is
1054 * ready for the next command.
1055 */
1056 if (!this->dev_ready)
1057 udelay (this->chip_delay);
1058 else
1059 while (!this->dev_ready(mtd));
1060
1061 /* All done, return happy */
1062 if (!numpages)
1063 return 0;
1064
1065
1066 /* Check, if the chip supports auto page increment */
1067 if (!NAND_CANAUTOINCR(this))
1068 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1069 }
1070 /*
1071 * Terminate the read command. We come here in case of an error
1072 * So we must issue a reset command.
1073 */
1074 out:
1075 this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
1076 return res;
1077 }
1078 #endif
1079
1080 /**
1081 * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
1082 * @mtd: MTD device structure
1083 * @from: offset to read from
1084 * @len: number of bytes to read
1085 * @retlen: pointer to variable to store the number of read bytes
1086 * @buf: the databuffer to put data
1087 *
1088 * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
1089 */
1090 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1091 {
1092 return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
1093 }
1094
1095
1096 /**
1097 * nand_read_ecc - [MTD Interface] Read data with ECC
1098 * @mtd: MTD device structure
1099 * @from: offset to read from
1100 * @len: number of bytes to read
1101 * @retlen: pointer to variable to store the number of read bytes
1102 * @buf: the databuffer to put data
1103 * @oob_buf: filesystem supplied oob data buffer
1104 * @oobsel: oob selection structure
1105 *
1106 * NAND read with ECC
1107 */
1108 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1109 size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
1110 {
1111 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1112 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1113 struct nand_chip *this = mtd->priv;
1114 u_char *data_poi, *oob_data = oob_buf;
1115 u_char ecc_calc[32];
1116 u_char ecc_code[32];
1117 int eccmode, eccsteps;
1118 unsigned *oob_config;
1119 int datidx;
1120 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1121 int eccbytes;
1122 int compareecc = 1;
1123 int oobreadlen;
1124
1125
1126 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1127
1128 /* Do not allow reads past end of device */
1129 if ((from + len) > mtd->size) {
1130 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1131 *retlen = 0;
1132 return -EINVAL;
1133 }
1134
1135 /* Grab the lock and see if the device is available */
1136 nand_get_device (this, mtd ,FL_READING);
1137
1138 /* use userspace supplied oobinfo, if zero */
1139 if (oobsel == NULL)
1140 oobsel = &mtd->oobinfo;
1141
1142 /* Autoplace of oob data ? Use the default placement scheme */
1143 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1144 oobsel = this->autooob;
1145
1146 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1147 oob_config = oobsel->eccpos;
1148
1149 /* Select the NAND device */
1150 chipnr = (int)(from >> this->chip_shift);
1151 this->select_chip(mtd, chipnr);
1152
1153 /* First we calculate the starting page */
1154 realpage = (int) (from >> this->page_shift);
1155 page = realpage & this->pagemask;
1156
1157 /* Get raw starting column */
1158 col = from & (mtd->oobblock - 1);
1159
1160 end = mtd->oobblock;
1161 ecc = this->eccsize;
1162 eccbytes = this->eccbytes;
1163
1164 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1165 compareecc = 0;
1166
1167 oobreadlen = mtd->oobsize;
1168 if (this->options & NAND_HWECC_SYNDROME)
1169 oobreadlen -= oobsel->eccbytes;
1170
1171 /* Loop until all data read */
1172 while (read < len) {
1173
1174 int aligned = (!col && (len - read) >= end);
1175 /*
1176 * If the read is not page aligned, we have to read into data buffer
1177 * due to ecc, else we read into return buffer direct
1178 */
1179 if (aligned)
1180 data_poi = &buf[read];
1181 else
1182 data_poi = this->data_buf;
1183
1184 /* Check, if we have this page in the buffer
1185 *
1186 * FIXME: Make it work when we must provide oob data too,
1187 * check the usage of data_buf oob field
1188 */
1189 if (realpage == this->pagebuf && !oob_buf) {
1190 /* aligned read ? */
1191 if (aligned)
1192 memcpy (data_poi, this->data_buf, end);
1193 goto readdata;
1194 }
1195
1196 /* Check, if we must send the read command */
1197 if (sndcmd) {
1198 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1199 sndcmd = 0;
1200 }
1201
1202 /* get oob area, if we have no oob buffer from fs-driver */
1203 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
1204 oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1205 oob_data = &this->data_buf[end];
1206
1207 eccsteps = this->eccsteps;
1208
1209 switch (eccmode) {
1210 case NAND_ECC_NONE: { /* No ECC, Read in a page */
1211 /* XXX U-BOOT XXX */
1212 #if 0
1213 static unsigned long lastwhinge = 0;
1214 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1215 printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
1216 lastwhinge = jiffies;
1217 }
1218 #else
1219 puts("Reading data from NAND FLASH without ECC is not recommended\n");
1220 #endif
1221 this->read_buf(mtd, data_poi, end);
1222 break;
1223 }
1224
1225 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1226 this->read_buf(mtd, data_poi, end);
1227 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
1228 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1229 break;
1230
1231 default:
1232 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
1233 this->enable_hwecc(mtd, NAND_ECC_READ);
1234 this->read_buf(mtd, &data_poi[datidx], ecc);
1235
1236 /* HW ecc with syndrome calculation must read the
1237 * syndrome from flash immidiately after the data */
1238 if (!compareecc) {
1239 /* Some hw ecc generators need to know when the
1240 * syndrome is read from flash */
1241 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1242 this->read_buf(mtd, &oob_data[i], eccbytes);
1243 /* We calc error correction directly, it checks the hw
1244 * generator for an error, reads back the syndrome and
1245 * does the error correction on the fly */
1246 if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
1247 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1248 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1249 ecc_failed++;
1250 }
1251 } else {
1252 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1253 }
1254 }
1255 break;
1256 }
1257
1258 /* read oobdata */
1259 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1260
1261 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1262 if (!compareecc)
1263 goto readoob;
1264
1265 /* Pick the ECC bytes out of the oob data */
1266 for (j = 0; j < oobsel->eccbytes; j++)
1267 ecc_code[j] = oob_data[oob_config[j]];
1268
1269 /* correct data, if neccecary */
1270 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1271 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
1272
1273 /* Get next chunk of ecc bytes */
1274 j += eccbytes;
1275
1276 /* Check, if we have a fs supplied oob-buffer,
1277 * This is the legacy mode. Used by YAFFS1
1278 * Should go away some day
1279 */
1280 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1281 int *p = (int *)(&oob_data[mtd->oobsize]);
1282 p[i] = ecc_status;
1283 }
1284
1285 if (ecc_status == -1) {
1286 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1287 ecc_failed++;
1288 }
1289 }
1290
1291 readoob:
1292 /* check, if we have a fs supplied oob-buffer */
1293 if (oob_buf) {
1294 /* without autoplace. Legacy mode used by YAFFS1 */
1295 switch(oobsel->useecc) {
1296 case MTD_NANDECC_AUTOPLACE:
1297 case MTD_NANDECC_AUTOPL_USR:
1298 /* Walk through the autoplace chunks */
1299 for (i = 0, j = 0; j < mtd->oobavail; i++) {
1300 int from = oobsel->oobfree[i][0];
1301 int num = oobsel->oobfree[i][1];
1302 memcpy(&oob_buf[oob+j], &oob_data[from], num);
1303 j+= num;
1304 }
1305 oob += mtd->oobavail;
1306 break;
1307 case MTD_NANDECC_PLACE:
1308 /* YAFFS1 legacy mode */
1309 oob_data += this->eccsteps * sizeof (int);
1310 default:
1311 oob_data += mtd->oobsize;
1312 }
1313 }
1314 readdata:
1315 /* Partial page read, transfer data into fs buffer */
1316 if (!aligned) {
1317 for (j = col; j < end && read < len; j++)
1318 buf[read++] = data_poi[j];
1319 this->pagebuf = realpage;
1320 } else
1321 read += mtd->oobblock;
1322
1323 /* Apply delay or wait for ready/busy pin
1324 * Do this before the AUTOINCR check, so no problems
1325 * arise if a chip which does auto increment
1326 * is marked as NOAUTOINCR by the board driver.
1327 */
1328 if (!this->dev_ready)
1329 udelay (this->chip_delay);
1330 else
1331 while (!this->dev_ready(mtd));
1332
1333 if (read == len)
1334 break;
1335
1336 /* For subsequent reads align to page boundary. */
1337 col = 0;
1338 /* Increment page address */
1339 realpage++;
1340
1341 page = realpage & this->pagemask;
1342 /* Check, if we cross a chip boundary */
1343 if (!page) {
1344 chipnr++;
1345 this->select_chip(mtd, -1);
1346 this->select_chip(mtd, chipnr);
1347 }
1348 /* Check, if the chip supports auto page increment
1349 * or if we have hit a block boundary.
1350 */
1351 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1352 sndcmd = 1;
1353 }
1354
1355 /* Deselect and wake up anyone waiting on the device */
1356 nand_release_device(mtd);
1357
1358 /*
1359 * Return success, if no ECC failures, else -EBADMSG
1360 * fs driver will take care of that, because
1361 * retlen == desired len and result == -EBADMSG
1362 */
1363 *retlen = read;
1364 return ecc_failed ? -EBADMSG : 0;
1365 }
1366
1367 /**
1368 * nand_read_oob - [MTD Interface] NAND read out-of-band
1369 * @mtd: MTD device structure
1370 * @from: offset to read from
1371 * @len: number of bytes to read
1372 * @retlen: pointer to variable to store the number of read bytes
1373 * @buf: the databuffer to put data
1374 *
1375 * NAND read out-of-band data from the spare area
1376 */
1377 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1378 {
1379 int i, col, page, chipnr;
1380 struct nand_chip *this = mtd->priv;
1381 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1382
1383 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1384
1385 /* Shift to get page */
1386 page = (int)(from >> this->page_shift);
1387 chipnr = (int)(from >> this->chip_shift);
1388
1389 /* Mask to get column */
1390 col = from & (mtd->oobsize - 1);
1391
1392 /* Initialize return length value */
1393 *retlen = 0;
1394
1395 /* Do not allow reads past end of device */
1396 if ((from + len) > mtd->size) {
1397 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1398 *retlen = 0;
1399 return -EINVAL;
1400 }
1401
1402 /* Grab the lock and see if the device is available */
1403 nand_get_device (this, mtd , FL_READING);
1404
1405 /* Select the NAND device */
1406 this->select_chip(mtd, chipnr);
1407
1408 /* Send the read command */
1409 this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
1410 /*
1411 * Read the data, if we read more than one page
1412 * oob data, let the device transfer the data !
1413 */
1414 i = 0;
1415 while (i < len) {
1416 int thislen = mtd->oobsize - col;
1417 thislen = min_t(int, thislen, len);
1418 this->read_buf(mtd, &buf[i], thislen);
1419 i += thislen;
1420
1421 /* Apply delay or wait for ready/busy pin
1422 * Do this before the AUTOINCR check, so no problems
1423 * arise if a chip which does auto increment
1424 * is marked as NOAUTOINCR by the board driver.
1425 */
1426 if (!this->dev_ready)
1427 udelay (this->chip_delay);
1428 else
1429 while (!this->dev_ready(mtd));
1430
1431 /* Read more ? */
1432 if (i < len) {
1433 page++;
1434 col = 0;
1435
1436 /* Check, if we cross a chip boundary */
1437 if (!(page & this->pagemask)) {
1438 chipnr++;
1439 this->select_chip(mtd, -1);
1440 this->select_chip(mtd, chipnr);
1441 }
1442
1443 /* Check, if the chip supports auto page increment
1444 * or if we have hit a block boundary.
1445 */
1446 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1447 /* For subsequent page reads set offset to 0 */
1448 this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1449 }
1450 }
1451 }
1452
1453 /* Deselect and wake up anyone waiting on the device */
1454 nand_release_device(mtd);
1455
1456 /* Return happy */
1457 *retlen = len;
1458 return 0;
1459 }
1460
1461 /**
1462 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1463 * @mtd: MTD device structure
1464 * @buf: temporary buffer
1465 * @from: offset to read from
1466 * @len: number of bytes to read
1467 * @ooblen: number of oob data bytes to read
1468 *
1469 * Read raw data including oob into buffer
1470 */
1471 int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1472 {
1473 struct nand_chip *this = mtd->priv;
1474 int page = (int) (from >> this->page_shift);
1475 int chip = (int) (from >> this->chip_shift);
1476 int sndcmd = 1;
1477 int cnt = 0;
1478 int pagesize = mtd->oobblock + mtd->oobsize;
1479 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1480
1481 /* Do not allow reads past end of device */
1482 if ((from + len) > mtd->size) {
1483 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1484 return -EINVAL;
1485 }
1486
1487 /* Grab the lock and see if the device is available */
1488 nand_get_device (this, mtd , FL_READING);
1489
1490 this->select_chip (mtd, chip);
1491
1492 /* Add requested oob length */
1493 len += ooblen;
1494
1495 while (len) {
1496 if (sndcmd)
1497 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
1498 sndcmd = 0;
1499
1500 this->read_buf (mtd, &buf[cnt], pagesize);
1501
1502 len -= pagesize;
1503 cnt += pagesize;
1504 page++;
1505
1506 if (!this->dev_ready)
1507 udelay (this->chip_delay);
1508 else
1509 while (!this->dev_ready(mtd));
1510
1511 /* Check, if the chip supports auto page increment */
1512 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1513 sndcmd = 1;
1514 }
1515
1516 /* Deselect and wake up anyone waiting on the device */
1517 nand_release_device(mtd);
1518 return 0;
1519 }
1520
1521
1522 /**
1523 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1524 * @mtd: MTD device structure
1525 * @fsbuf: buffer given by fs driver
1526 * @oobsel: out of band selection structre
1527 * @autoplace: 1 = place given buffer into the oob bytes
1528 * @numpages: number of pages to prepare
1529 *
1530 * Return:
1531 * 1. Filesystem buffer available and autoplacement is off,
1532 * return filesystem buffer
1533 * 2. No filesystem buffer or autoplace is off, return internal
1534 * buffer
1535 * 3. Filesystem buffer is given and autoplace selected
1536 * put data from fs buffer into internal buffer and
1537 * retrun internal buffer
1538 *
1539 * Note: The internal buffer is filled with 0xff. This must
1540 * be done only once, when no autoplacement happens
1541 * Autoplacement sets the buffer dirty flag, which
1542 * forces the 0xff fill before using the buffer again.
1543 *
1544 */
1545 static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1546 int autoplace, int numpages)
1547 {
1548 struct nand_chip *this = mtd->priv;
1549 int i, len, ofs;
1550
1551 /* Zero copy fs supplied buffer */
1552 if (fsbuf && !autoplace)
1553 return fsbuf;
1554
1555 /* Check, if the buffer must be filled with ff again */
1556 if (this->oobdirty) {
1557 memset (this->oob_buf, 0xff,
1558 mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1559 this->oobdirty = 0;
1560 }
1561
1562 /* If we have no autoplacement or no fs buffer use the internal one */
1563 if (!autoplace || !fsbuf)
1564 return this->oob_buf;
1565
1566 /* Walk through the pages and place the data */
1567 this->oobdirty = 1;
1568 ofs = 0;
1569 while (numpages--) {
1570 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1571 int to = ofs + oobsel->oobfree[i][0];
1572 int num = oobsel->oobfree[i][1];
1573 memcpy (&this->oob_buf[to], fsbuf, num);
1574 len += num;
1575 fsbuf += num;
1576 }
1577 ofs += mtd->oobavail;
1578 }
1579 return this->oob_buf;
1580 }
1581
1582 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1583
1584 /**
1585 * nand_write - [MTD Interface] compability function for nand_write_ecc
1586 * @mtd: MTD device structure
1587 * @to: offset to write to
1588 * @len: number of bytes to write
1589 * @retlen: pointer to variable to store the number of written bytes
1590 * @buf: the data to write
1591 *
1592 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1593 *
1594 */
1595 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1596 {
1597 return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
1598 }
1599
1600 /**
1601 * nand_write_ecc - [MTD Interface] NAND write with ECC
1602 * @mtd: MTD device structure
1603 * @to: offset to write to
1604 * @len: number of bytes to write
1605 * @retlen: pointer to variable to store the number of written bytes
1606 * @buf: the data to write
1607 * @eccbuf: filesystem supplied oob data buffer
1608 * @oobsel: oob selection structure
1609 *
1610 * NAND write with ECC
1611 */
1612 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
1613 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
1614 {
1615 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1616 int autoplace = 0, numpages, totalpages;
1617 struct nand_chip *this = mtd->priv;
1618 u_char *oobbuf, *bufstart;
1619 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1620
1621 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1622
1623 /* Initialize retlen, in case of early exit */
1624 *retlen = 0;
1625
1626 /* Do not allow write past end of device */
1627 if ((to + len) > mtd->size) {
1628 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1629 return -EINVAL;
1630 }
1631
1632 /* reject writes, which are not page aligned */
1633 if (NOTALIGNED (to) || NOTALIGNED(len)) {
1634 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1635 return -EINVAL;
1636 }
1637
1638 /* Grab the lock and see if the device is available */
1639 nand_get_device (this, mtd, FL_WRITING);
1640
1641 /* Calculate chipnr */
1642 chipnr = (int)(to >> this->chip_shift);
1643 /* Select the NAND device */
1644 this->select_chip(mtd, chipnr);
1645
1646 /* Check, if it is write protected */
1647 if (nand_check_wp(mtd)) {
1648 printk (KERN_NOTICE "nand_write_ecc: Device is write protected\n");
1649 goto out;
1650 }
1651
1652 /* if oobsel is NULL, use chip defaults */
1653 if (oobsel == NULL)
1654 oobsel = &mtd->oobinfo;
1655
1656 /* Autoplace of oob data ? Use the default placement scheme */
1657 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1658 oobsel = this->autooob;
1659 autoplace = 1;
1660 }
1661 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1662 autoplace = 1;
1663
1664 /* Setup variables and oob buffer */
1665 totalpages = len >> this->page_shift;
1666 page = (int) (to >> this->page_shift);
1667 /* Invalidate the page cache, if we write to the cached page */
1668 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1669 this->pagebuf = -1;
1670
1671 /* Set it relative to chip */
1672 page &= this->pagemask;
1673 startpage = page;
1674 /* Calc number of pages we can write in one go */
1675 numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
1676 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
1677 bufstart = (u_char *)buf;
1678
1679 /* Loop until all data is written */
1680 while (written < len) {
1681
1682 this->data_poi = (u_char*) &buf[written];
1683 /* Write one page. If this is the last page to write
1684 * or the last page in this block, then use the
1685 * real pageprogram command, else select cached programming
1686 * if supported by the chip.
1687 */
1688 ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1689 if (ret) {
1690 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1691 goto out;
1692 }
1693 /* Next oob page */
1694 oob += mtd->oobsize;
1695 /* Update written bytes count */
1696 written += mtd->oobblock;
1697 if (written == len)
1698 goto cmp;
1699
1700 /* Increment page address */
1701 page++;
1702
1703 /* Have we hit a block boundary ? Then we have to verify and
1704 * if verify is ok, we have to setup the oob buffer for
1705 * the next pages.
1706 */
1707 if (!(page & (ppblock - 1))){
1708 int ofs;
1709 this->data_poi = bufstart;
1710 ret = nand_verify_pages (mtd, this, startpage,
1711 page - startpage,
1712 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1713 if (ret) {
1714 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1715 goto out;
1716 }
1717 *retlen = written;
1718 bufstart = (u_char*) &buf[written];
1719
1720 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1721 if (eccbuf)
1722 eccbuf += (page - startpage) * ofs;
1723 totalpages -= page - startpage;
1724 numpages = min (totalpages, ppblock);
1725 page &= this->pagemask;
1726 startpage = page;
1727 oob = 0;
1728 this->oobdirty = 1;
1729 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
1730 autoplace, numpages);
1731 /* Check, if we cross a chip boundary */
1732 if (!page) {
1733 chipnr++;
1734 this->select_chip(mtd, -1);
1735 this->select_chip(mtd, chipnr);
1736 }
1737 }
1738 }
1739 /* Verify the remaining pages */
1740 cmp:
1741 this->data_poi = bufstart;
1742 ret = nand_verify_pages (mtd, this, startpage, totalpages,
1743 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1744 if (!ret)
1745 *retlen = written;
1746 else
1747 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1748
1749 out:
1750 /* Deselect and wake up anyone waiting on the device */
1751 nand_release_device(mtd);
1752
1753 return ret;
1754 }
1755
1756
1757 /**
1758 * nand_write_oob - [MTD Interface] NAND write out-of-band
1759 * @mtd: MTD device structure
1760 * @to: offset to write to
1761 * @len: number of bytes to write
1762 * @retlen: pointer to variable to store the number of written bytes
1763 * @buf: the data to write
1764 *
1765 * NAND write out-of-band
1766 */
1767 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1768 {
1769 int column, page, status, ret = -EIO, chipnr;
1770 struct nand_chip *this = mtd->priv;
1771
1772 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1773
1774 /* Shift to get page */
1775 page = (int) (to >> this->page_shift);
1776 chipnr = (int) (to >> this->chip_shift);
1777
1778 /* Mask to get column */
1779 column = to & (mtd->oobsize - 1);
1780
1781 /* Initialize return length value */
1782 *retlen = 0;
1783
1784 /* Do not allow write past end of page */
1785 if ((column + len) > mtd->oobsize) {
1786 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1787 return -EINVAL;
1788 }
1789
1790 /* Grab the lock and see if the device is available */
1791 nand_get_device (this, mtd, FL_WRITING);
1792
1793 /* Select the NAND device */
1794 this->select_chip(mtd, chipnr);
1795
1796 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1797 in one of my DiskOnChip 2000 test units) will clear the whole
1798 data page too if we don't do this. I have no clue why, but
1799 I seem to have 'fixed' it in the doc2000 driver in
1800 August 1999. dwmw2. */
1801 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1802
1803 /* Check, if it is write protected */
1804 if (nand_check_wp(mtd))
1805 goto out;
1806
1807 /* Invalidate the page cache, if we write to the cached page */
1808 if (page == this->pagebuf)
1809 this->pagebuf = -1;
1810
1811 if (NAND_MUST_PAD(this)) {
1812 /* Write out desired data */
1813 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1814 /* prepad 0xff for partial programming */
1815 this->write_buf(mtd, ffchars, column);
1816 /* write data */
1817 this->write_buf(mtd, buf, len);
1818 /* postpad 0xff for partial programming */
1819 this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
1820 } else {
1821 /* Write out desired data */
1822 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1823 /* write data */
1824 this->write_buf(mtd, buf, len);
1825 }
1826 /* Send command to program the OOB data */
1827 this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
1828
1829 status = this->waitfunc (mtd, this, FL_WRITING);
1830
1831 /* See if device thinks it succeeded */
1832 if (status & 0x01) {
1833 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1834 ret = -EIO;
1835 goto out;
1836 }
1837 /* Return happy */
1838 *retlen = len;
1839
1840 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1841 /* Send command to read back the data */
1842 this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1843
1844 if (this->verify_buf(mtd, buf, len)) {
1845 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1846 ret = -EIO;
1847 goto out;
1848 }
1849 #endif
1850 ret = 0;
1851 out:
1852 /* Deselect and wake up anyone waiting on the device */
1853 nand_release_device(mtd);
1854
1855 return ret;
1856 }
1857
1858 /* XXX U-BOOT XXX */
1859 #if 0
1860 /**
1861 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1862 * @mtd: MTD device structure
1863 * @vecs: the iovectors to write
1864 * @count: number of vectors
1865 * @to: offset to write to
1866 * @retlen: pointer to variable to store the number of written bytes
1867 *
1868 * NAND write with kvec. This just calls the ecc function
1869 */
1870 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1871 loff_t to, size_t * retlen)
1872 {
1873 return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
1874 }
1875
1876 /**
1877 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1878 * @mtd: MTD device structure
1879 * @vecs: the iovectors to write
1880 * @count: number of vectors
1881 * @to: offset to write to
1882 * @retlen: pointer to variable to store the number of written bytes
1883 * @eccbuf: filesystem supplied oob data buffer
1884 * @oobsel: oob selection structure
1885 *
1886 * NAND write with iovec with ecc
1887 */
1888 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1889 loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1890 {
1891 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1892 int oob, numpages, autoplace = 0, startpage;
1893 struct nand_chip *this = mtd->priv;
1894 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1895 u_char *oobbuf, *bufstart;
1896
1897 /* Preset written len for early exit */
1898 *retlen = 0;
1899
1900 /* Calculate total length of data */
1901 total_len = 0;
1902 for (i = 0; i < count; i++)
1903 total_len += (int) vecs[i].iov_len;
1904
1905 DEBUG (MTD_DEBUG_LEVEL3,
1906 "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
1907
1908 /* Do not allow write past end of page */
1909 if ((to + total_len) > mtd->size) {
1910 DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1911 return -EINVAL;
1912 }
1913
1914 /* reject writes, which are not page aligned */
1915 if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
1916 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1917 return -EINVAL;
1918 }
1919
1920 /* Grab the lock and see if the device is available */
1921 nand_get_device (this, mtd, FL_WRITING);
1922
1923 /* Get the current chip-nr */
1924 chipnr = (int) (to >> this->chip_shift);
1925 /* Select the NAND device */
1926 this->select_chip(mtd, chipnr);
1927
1928 /* Check, if it is write protected */
1929 if (nand_check_wp(mtd))
1930 goto out;
1931
1932 /* if oobsel is NULL, use chip defaults */
1933 if (oobsel == NULL)
1934 oobsel = &mtd->oobinfo;
1935
1936 /* Autoplace of oob data ? Use the default placement scheme */
1937 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1938 oobsel = this->autooob;
1939 autoplace = 1;
1940 }
1941 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1942 autoplace = 1;
1943
1944 /* Setup start page */
1945 page = (int) (to >> this->page_shift);
1946 /* Invalidate the page cache, if we write to the cached page */
1947 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1948 this->pagebuf = -1;
1949
1950 startpage = page & this->pagemask;
1951
1952 /* Loop until all kvec' data has been written */
1953 len = 0;
1954 while (count) {
1955 /* If the given tuple is >= pagesize then
1956 * write it out from the iov
1957 */
1958 if ((vecs->iov_len - len) >= mtd->oobblock) {
1959 /* Calc number of pages we can write
1960 * out of this iov in one go */
1961 numpages = (vecs->iov_len - len) >> this->page_shift;
1962 /* Do not cross block boundaries */
1963 numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
1964 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1965 bufstart = (u_char *)vecs->iov_base;
1966 bufstart += len;
1967 this->data_poi = bufstart;
1968 oob = 0;
1969 for (i = 1; i <= numpages; i++) {
1970 /* Write one page. If this is the last page to write
1971 * then use the real pageprogram command, else select
1972 * cached programming if supported by the chip.
1973 */
1974 ret = nand_write_page (mtd, this, page & this->pagemask,
1975 &oobbuf[oob], oobsel, i != numpages);
1976 if (ret)
1977 goto out;
1978 this->data_poi += mtd->oobblock;
1979 len += mtd->oobblock;
1980 oob += mtd->oobsize;
1981 page++;
1982 }
1983 /* Check, if we have to switch to the next tuple */
1984 if (len >= (int) vecs->iov_len) {
1985 vecs++;
1986 len = 0;
1987 count--;
1988 }
1989 } else {
1990 /* We must use the internal buffer, read data out of each
1991 * tuple until we have a full page to write
1992 */
1993 int cnt = 0;
1994 while (cnt < mtd->oobblock) {
1995 if (vecs->iov_base != NULL && vecs->iov_len)
1996 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1997 /* Check, if we have to switch to the next tuple */
1998 if (len >= (int) vecs->iov_len) {
1999 vecs++;
2000 len = 0;
2001 count--;
2002 }
2003 }
2004 this->pagebuf = page;
2005 this->data_poi = this->data_buf;
2006 bufstart = this->data_poi;
2007 numpages = 1;
2008 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
2009 ret = nand_write_page (mtd, this, page & this->pagemask,
2010 oobbuf, oobsel, 0);
2011 if (ret)
2012 goto out;
2013 page++;
2014 }
2015
2016 this->data_poi = bufstart;
2017 ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
2018 if (ret)
2019 goto out;
2020
2021 written += mtd->oobblock * numpages;
2022 /* All done ? */
2023 if (!count)
2024 break;
2025
2026 startpage = page & this->pagemask;
2027 /* Check, if we cross a chip boundary */
2028 if (!startpage) {
2029 chipnr++;
2030 this->select_chip(mtd, -1);
2031 this->select_chip(mtd, chipnr);
2032 }
2033 }
2034 ret = 0;
2035 out:
2036 /* Deselect and wake up anyone waiting on the device */
2037 nand_release_device(mtd);
2038
2039 *retlen = written;
2040 return ret;
2041 }
2042 #endif
2043
2044 /**
2045 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2046 * @mtd: MTD device structure
2047 * @page: the page address of the block which will be erased
2048 *
2049 * Standard erase command for NAND chips
2050 */
2051 static void single_erase_cmd (struct mtd_info *mtd, int page)
2052 {
2053 struct nand_chip *this = mtd->priv;
2054 /* Send commands to erase a block */
2055 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2056 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2057 }
2058
2059 /**
2060 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2061 * @mtd: MTD device structure
2062 * @page: the page address of the block which will be erased
2063 *
2064 * AND multi block erase command function
2065 * Erase 4 consecutive blocks
2066 */
2067 static void multi_erase_cmd (struct mtd_info *mtd, int page)
2068 {
2069 struct nand_chip *this = mtd->priv;
2070 /* Send commands to erase a block */
2071 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2072 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2073 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2074 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2075 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2076 }
2077
2078 /**
2079 * nand_erase - [MTD Interface] erase block(s)
2080 * @mtd: MTD device structure
2081 * @instr: erase instruction
2082 *
2083 * Erase one ore more blocks
2084 */
2085 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
2086 {
2087 return nand_erase_nand (mtd, instr, 0);
2088 }
2089
2090 /**
2091 * nand_erase_intern - [NAND Interface] erase block(s)
2092 * @mtd: MTD device structure
2093 * @instr: erase instruction
2094 * @allowbbt: allow erasing the bbt area
2095 *
2096 * Erase one ore more blocks
2097 */
2098 int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
2099 {
2100 int page, len, status, pages_per_block, ret, chipnr;
2101 struct nand_chip *this = mtd->priv;
2102
2103 DEBUG (MTD_DEBUG_LEVEL3,
2104 "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
2105
2106 /* Start address must align on block boundary */
2107 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
2108 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2109 return -EINVAL;
2110 }
2111
2112 /* Length must align on block boundary */
2113 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
2114 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
2115 return -EINVAL;
2116 }
2117
2118 /* Do not allow erase past end of device */
2119 if ((instr->len + instr->addr) > mtd->size) {
2120 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
2121 return -EINVAL;
2122 }
2123
2124 instr->fail_addr = 0xffffffff;
2125
2126 /* Grab the lock and see if the device is available */
2127 nand_get_device (this, mtd, FL_ERASING);
2128
2129 /* Shift to get first page */
2130 page = (int) (instr->addr >> this->page_shift);
2131 chipnr = (int) (instr->addr >> this->chip_shift);
2132
2133 /* Calculate pages in each block */
2134 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2135
2136 /* Select the NAND device */
2137 this->select_chip(mtd, chipnr);
2138
2139 /* Check the WP bit */
2140 /* Check, if it is write protected */
2141 if (nand_check_wp(mtd)) {
2142 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
2143 instr->state = MTD_ERASE_FAILED;
2144 goto erase_exit;
2145 }
2146
2147 /* Loop through the pages */
2148 len = instr->len;
2149
2150 instr->state = MTD_ERASING;
2151
2152 while (len) {
2153 #ifndef NAND_ALLOW_ERASE_ALL
2154 /* Check if we have a bad block, we do not erase bad blocks ! */
2155 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
2156 printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
2157 instr->state = MTD_ERASE_FAILED;
2158 goto erase_exit;
2159 }
2160 #endif
2161 /* Invalidate the page cache, if we erase the block which contains
2162 the current cached page */
2163 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2164 this->pagebuf = -1;
2165
2166 this->erase_cmd (mtd, page & this->pagemask);
2167
2168 status = this->waitfunc (mtd, this, FL_ERASING);
2169
2170 /* See if block erase succeeded */
2171 if (status & 0x01) {
2172 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
2173 instr->state = MTD_ERASE_FAILED;
2174 instr->fail_addr = (page << this->page_shift);
2175 goto erase_exit;
2176 }
2177
2178 /* Increment page address and decrement length */
2179 len -= (1 << this->phys_erase_shift);
2180 page += pages_per_block;
2181
2182 /* Check, if we cross a chip boundary */
2183 if (len && !(page & this->pagemask)) {
2184 chipnr++;
2185 this->select_chip(mtd, -1);
2186 this->select_chip(mtd, chipnr);
2187 }
2188 }
2189 instr->state = MTD_ERASE_DONE;
2190
2191 erase_exit:
2192
2193 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2194 /* Do call back function */
2195 if (!ret)
2196 mtd_erase_callback(instr);
2197
2198 /* Deselect and wake up anyone waiting on the device */
2199 nand_release_device(mtd);
2200
2201 /* Return more or less happy */
2202 return ret;
2203 }
2204
2205 /**
2206 * nand_sync - [MTD Interface] sync
2207 * @mtd: MTD device structure
2208 *
2209 * Sync is actually a wait for chip ready function
2210 */
2211 static void nand_sync (struct mtd_info *mtd)
2212 {
2213 struct nand_chip *this = mtd->priv;
2214
2215 DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2216
2217 /* Grab the lock and see if the device is available */
2218 nand_get_device (this, mtd, FL_SYNCING);
2219 /* Release it and go back */
2220 nand_release_device (mtd);
2221 }
2222
2223
2224 /**
2225 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2226 * @mtd: MTD device structure
2227 * @ofs: offset relative to mtd start
2228 */
2229 static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
2230 {
2231 /* Check for invalid offset */
2232 if (ofs > mtd->size)
2233 return -EINVAL;
2234
2235 return nand_block_checkbad (mtd, ofs, 1, 0);
2236 }
2237
2238 /**
2239 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2240 * @mtd: MTD device structure
2241 * @ofs: offset relative to mtd start
2242 */
2243 static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
2244 {
2245 struct nand_chip *this = mtd->priv;
2246 int ret;
2247
2248 if ((ret = nand_block_isbad(mtd, ofs))) {
2249 /* If it was bad already, return success and do nothing. */
2250 if (ret > 0)
2251 return 0;
2252 return ret;
2253 }
2254
2255 return this->block_markbad(mtd, ofs);
2256 }
2257
2258 /**
2259 * nand_scan - [NAND Interface] Scan for the NAND device
2260 * @mtd: MTD device structure
2261 * @maxchips: Number of chips to scan for
2262 *
2263 * This fills out all the not initialized function pointers
2264 * with the defaults.
2265 * The flash ID is read and the mtd/chip structures are
2266 * filled with the appropriate values. Buffers are allocated if
2267 * they are not provided by the board driver
2268 *
2269 */
2270 int nand_scan (struct mtd_info *mtd, int maxchips)
2271 {
2272 int i, j, nand_maf_id, nand_dev_id, busw;
2273 struct nand_chip *this = mtd->priv;
2274
2275 /* Get buswidth to select the correct functions*/
2276 busw = this->options & NAND_BUSWIDTH_16;
2277
2278 /* check for proper chip_delay setup, set 20us if not */
2279 if (!this->chip_delay)
2280 this->chip_delay = 20;
2281
2282 /* check, if a user supplied command function given */
2283 if (this->cmdfunc == NULL)
2284 this->cmdfunc = nand_command;
2285
2286 /* check, if a user supplied wait function given */
2287 if (this->waitfunc == NULL)
2288 this->waitfunc = nand_wait;
2289
2290 if (!this->select_chip)
2291 this->select_chip = nand_select_chip;
2292 if (!this->write_byte)
2293 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2294 if (!this->read_byte)
2295 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2296 if (!this->write_word)
2297 this->write_word = nand_write_word;
2298 if (!this->read_word)
2299 this->read_word = nand_read_word;
2300 if (!this->block_bad)
2301 this->block_bad = nand_block_bad;
2302 if (!this->block_markbad)
2303 this->block_markbad = nand_default_block_markbad;
2304 if (!this->write_buf)
2305 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2306 if (!this->read_buf)
2307 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2308 if (!this->verify_buf)
2309 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2310 if (!this->scan_bbt)
2311 this->scan_bbt = nand_default_bbt;
2312
2313 /* Select the device */
2314 this->select_chip(mtd, 0);
2315
2316 /* Send the command for reading device ID */
2317 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2318
2319 /* Read manufacturer and device IDs */
2320 nand_maf_id = this->read_byte(mtd);
2321 nand_dev_id = this->read_byte(mtd);
2322
2323 /* Print and store flash device information */
2324 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2325
2326 if (nand_dev_id != nand_flash_ids[i].id)
2327 continue;
2328
2329 if (!mtd->name) mtd->name = nand_flash_ids[i].name;
2330 this->chipsize = nand_flash_ids[i].chipsize << 20;
2331
2332 /* New devices have all the information in additional id bytes */
2333 if (!nand_flash_ids[i].pagesize) {
2334 int extid;
2335 /* The 3rd id byte contains non relevant data ATM */
2336 extid = this->read_byte(mtd);
2337 /* The 4th id byte is the important one */
2338 extid = this->read_byte(mtd);
2339 /* Calc pagesize */
2340 mtd->oobblock = 1024 << (extid & 0x3);
2341 extid >>= 2;
2342 /* Calc oobsize */
2343 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock / 512);
2344 extid >>= 2;
2345 /* Calc blocksize. Blocksize is multiples of 64KiB */
2346 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2347 extid >>= 2;
2348 /* Get buswidth information */
2349 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2350
2351 } else {
2352 /* Old devices have this data hardcoded in the
2353 * device id table */
2354 mtd->erasesize = nand_flash_ids[i].erasesize;
2355 mtd->oobblock = nand_flash_ids[i].pagesize;
2356 mtd->oobsize = mtd->oobblock / 32;
2357 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2358 }
2359
2360 /* Check, if buswidth is correct. Hardware drivers should set
2361 * this correct ! */
2362 if (busw != (this->options & NAND_BUSWIDTH_16)) {
2363 printk (KERN_INFO "NAND device: Manufacturer ID:"
2364 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2365 nand_manuf_ids[i].name , mtd->name);
2366 printk (KERN_WARNING
2367 "NAND bus width %d instead %d bit\n",
2368 (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
2369 busw ? 16 : 8);
2370 this->select_chip(mtd, -1);
2371 return 1;
2372 }
2373
2374 /* Calculate the address shift from the page size */
2375 this->page_shift = ffs(mtd->oobblock) - 1;
2376 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2377 this->chip_shift = ffs(this->chipsize) - 1;
2378
2379 /* Set the bad block position */
2380 this->badblockpos = mtd->oobblock > 512 ?
2381 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2382
2383 /* Get chip options, preserve non chip based options */
2384 this->options &= ~NAND_CHIPOPTIONS_MSK;
2385 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
2386 /* Set this as a default. Board drivers can override it, if neccecary */
2387 this->options |= NAND_NO_AUTOINCR;
2388 /* Check if this is a not a samsung device. Do not clear the options
2389 * for chips which are not having an extended id.
2390 */
2391 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2392 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2393
2394 /* Check for AND chips with 4 page planes */
2395 if (this->options & NAND_4PAGE_ARRAY)
2396 this->erase_cmd = multi_erase_cmd;
2397 else
2398 this->erase_cmd = single_erase_cmd;
2399
2400 /* Do not replace user supplied command function ! */
2401 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2402 this->cmdfunc = nand_command_lp;
2403
2404 /* Try to identify manufacturer */
2405 for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
2406 if (nand_manuf_ids[j].id == nand_maf_id)
2407 break;
2408 }
2409 break;
2410 }
2411
2412 if (!nand_flash_ids[i].name) {
2413 #ifndef CFG_NAND_QUIET_TEST
2414 printk (KERN_WARNING "No NAND device found!!!\n");
2415 #endif
2416 this->select_chip(mtd, -1);
2417 return 1;
2418 }
2419
2420 for (i=1; i < maxchips; i++) {
2421 this->select_chip(mtd, i);
2422
2423 /* Send the command for reading device ID */
2424 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2425
2426 /* Read manufacturer and device IDs */
2427 if (nand_maf_id != this->read_byte(mtd) ||
2428 nand_dev_id != this->read_byte(mtd))
2429 break;
2430 }
2431 if (i > 1)
2432 printk(KERN_INFO "%d NAND chips detected\n", i);
2433
2434 /* Allocate buffers, if neccecary */
2435 if (!this->oob_buf) {
2436 size_t len;
2437 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
2438 this->oob_buf = kmalloc (len, GFP_KERNEL);
2439 if (!this->oob_buf) {
2440 printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
2441 return -ENOMEM;
2442 }
2443 this->options |= NAND_OOBBUF_ALLOC;
2444 }
2445
2446 if (!this->data_buf) {
2447 size_t len;
2448 len = mtd->oobblock + mtd->oobsize;
2449 this->data_buf = kmalloc (len, GFP_KERNEL);
2450 if (!this->data_buf) {
2451 if (this->options & NAND_OOBBUF_ALLOC)
2452 kfree (this->oob_buf);
2453 printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
2454 return -ENOMEM;
2455 }
2456 this->options |= NAND_DATABUF_ALLOC;
2457 }
2458
2459 /* Store the number of chips and calc total size for mtd */
2460 this->numchips = i;
2461 mtd->size = i * this->chipsize;
2462 /* Convert chipsize to number of pages per chip -1. */
2463 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2464 /* Preset the internal oob buffer */
2465 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2466
2467 /* If no default placement scheme is given, select an
2468 * appropriate one */
2469 if (!this->autooob) {
2470 /* Select the appropriate default oob placement scheme for
2471 * placement agnostic filesystems */
2472 switch (mtd->oobsize) {
2473 case 8:
2474 this->autooob = &nand_oob_8;
2475 break;
2476 case 16:
2477 this->autooob = &nand_oob_16;
2478 break;
2479 case 64:
2480 this->autooob = &nand_oob_64;
2481 break;
2482 default:
2483 printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
2484 mtd->oobsize);
2485 /* BUG(); */
2486 }
2487 }
2488
2489 /* The number of bytes available for the filesystem to place fs dependend
2490 * oob data */
2491 mtd->oobavail = 0;
2492 for (i=0; this->autooob->oobfree[i][1]; i++)
2493 mtd->oobavail += this->autooob->oobfree[i][1];
2494
2495 /*
2496 * check ECC mode, default to software
2497 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2498 * fallback to software ECC
2499 */
2500 this->eccsize = 256; /* set default eccsize */
2501 this->eccbytes = 3;
2502
2503 switch (this->eccmode) {
2504 case NAND_ECC_HW12_2048:
2505 if (mtd->oobblock < 2048) {
2506 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2507 mtd->oobblock);
2508 this->eccmode = NAND_ECC_SOFT;
2509 this->calculate_ecc = nand_calculate_ecc;
2510 this->correct_data = nand_correct_data;
2511 } else
2512 this->eccsize = 2048;
2513 break;
2514
2515 case NAND_ECC_HW3_512:
2516 case NAND_ECC_HW6_512:
2517 case NAND_ECC_HW8_512:
2518 if (mtd->oobblock == 256) {
2519 printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2520 this->eccmode = NAND_ECC_SOFT;
2521 this->calculate_ecc = nand_calculate_ecc;
2522 this->correct_data = nand_correct_data;
2523 } else
2524 this->eccsize = 512; /* set eccsize to 512 */
2525 break;
2526
2527 case NAND_ECC_HW3_256:
2528 break;
2529
2530 case NAND_ECC_NONE:
2531 printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2532 this->eccmode = NAND_ECC_NONE;
2533 break;
2534
2535 case NAND_ECC_SOFT:
2536 this->calculate_ecc = nand_calculate_ecc;
2537 this->correct_data = nand_correct_data;
2538 break;
2539
2540 default:
2541 printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
2542 /* BUG(); */
2543 }
2544
2545 /* Check hardware ecc function availability and adjust number of ecc bytes per
2546 * calculation step
2547 */
2548 switch (this->eccmode) {
2549 case NAND_ECC_HW12_2048:
2550 this->eccbytes += 4;
2551 case NAND_ECC_HW8_512:
2552 this->eccbytes += 2;
2553 case NAND_ECC_HW6_512:
2554 this->eccbytes += 3;
2555 case NAND_ECC_HW3_512:
2556 case NAND_ECC_HW3_256:
2557 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2558 break;
2559 printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
2560 /* BUG(); */
2561 }
2562
2563 mtd->eccsize = this->eccsize;
2564
2565 /* Set the number of read / write steps for one page to ensure ECC generation */
2566 switch (this->eccmode) {
2567 case NAND_ECC_HW12_2048:
2568 this->eccsteps = mtd->oobblock / 2048;
2569 break;
2570 case NAND_ECC_HW3_512:
2571 case NAND_ECC_HW6_512:
2572 case NAND_ECC_HW8_512:
2573 this->eccsteps = mtd->oobblock / 512;
2574 break;
2575 case NAND_ECC_HW3_256:
2576 case NAND_ECC_SOFT:
2577 this->eccsteps = mtd->oobblock / 256;
2578 break;
2579
2580 case NAND_ECC_NONE:
2581 this->eccsteps = 1;
2582 break;
2583 }
2584
2585 /* XXX U-BOOT XXX */
2586 #if 0
2587 /* Initialize state, waitqueue and spinlock */
2588 this->state = FL_READY;
2589 init_waitqueue_head (&this->wq);
2590 spin_lock_init (&this->chip_lock);
2591 #endif
2592
2593 /* De-select the device */
2594 this->select_chip(mtd, -1);
2595
2596 /* Invalidate the pagebuffer reference */
2597 this->pagebuf = -1;
2598
2599 /* Fill in remaining MTD driver data */
2600 mtd->type = MTD_NANDFLASH;
2601 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2602 mtd->ecctype = MTD_ECC_SW;
2603 mtd->erase = nand_erase;
2604 mtd->point = NULL;
2605 mtd->unpoint = NULL;
2606 mtd->read = nand_read;
2607 mtd->write = nand_write;
2608 mtd->read_ecc = nand_read_ecc;
2609 mtd->write_ecc = nand_write_ecc;
2610 mtd->read_oob = nand_read_oob;
2611 mtd->write_oob = nand_write_oob;
2612 /* XXX U-BOOT XXX */
2613 #if 0
2614 mtd->readv = NULL;
2615 mtd->writev = nand_writev;
2616 mtd->writev_ecc = nand_writev_ecc;
2617 #endif
2618 mtd->sync = nand_sync;
2619 /* XXX U-BOOT XXX */
2620 #if 0
2621 mtd->lock = NULL;
2622 mtd->unlock = NULL;
2623 mtd->suspend = NULL;
2624 mtd->resume = NULL;
2625 #endif
2626 mtd->block_isbad = nand_block_isbad;
2627 mtd->block_markbad = nand_block_markbad;
2628
2629 /* and make the autooob the default one */
2630 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2631 /* XXX U-BOOT XXX */
2632 #if 0
2633 mtd->owner = THIS_MODULE;
2634 #endif
2635 /* Build bad block table */
2636 return this->scan_bbt (mtd);
2637 }
2638
2639 /**
2640 * nand_release - [NAND Interface] Free resources held by the NAND device
2641 * @mtd: MTD device structure
2642 */
2643 void nand_release (struct mtd_info *mtd)
2644 {
2645 struct nand_chip *this = mtd->priv;
2646
2647 #ifdef CONFIG_MTD_PARTITIONS
2648 /* Deregister partitions */
2649 del_mtd_partitions (mtd);
2650 #endif
2651 /* Deregister the device */
2652 /* XXX U-BOOT XXX */
2653 #if 0
2654 del_mtd_device (mtd);
2655 #endif
2656 /* Free bad block table memory, if allocated */
2657 if (this->bbt)
2658 kfree (this->bbt);
2659 /* Buffer allocated by nand_scan ? */
2660 if (this->options & NAND_OOBBUF_ALLOC)
2661 kfree (this->oob_buf);
2662 /* Buffer allocated by nand_scan ? */
2663 if (this->options & NAND_DATABUF_ALLOC)
2664 kfree (this->data_buf);
2665 }
2666
2667 #endif