]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/nand_base.c
NAND: Updating comments/explanations in the NAND driver
[people/ms/u-boot.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35 /* XXX U-BOOT XXX */
36 #if 0
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/types.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/compatmac.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/leds.h>
51 #include <asm/io.h>
52
53 #ifdef CONFIG_MTD_PARTITIONS
54 #include <linux/mtd/partitions.h>
55 #endif
56
57 #endif
58
59 #include <common.h>
60
61 #define ENOTSUPP 524 /* Operation is not supported */
62
63 #include <malloc.h>
64 #include <watchdog.h>
65 #include <linux/err.h>
66 #include <linux/mtd/compat.h>
67 #include <linux/mtd/mtd.h>
68 #include <linux/mtd/nand.h>
69 #include <linux/mtd/nand_ecc.h>
70
71 #ifdef CONFIG_MTD_PARTITIONS
72 #include <linux/mtd/partitions.h>
73 #endif
74
75 #include <asm/io.h>
76 #include <asm/errno.h>
77
78 #ifdef CONFIG_JFFS2_NAND
79 #include <jffs2/jffs2.h>
80 #endif
81
82 /*
83 * CONFIG_SYS_NAND_RESET_CNT is used as a timeout mechanism when resetting
84 * a flash. NAND flash is initialized prior to interrupts so standard timers
85 * can't be used. CONFIG_SYS_NAND_RESET_CNT should be set to a value
86 * which is greater than (max NAND reset time / NAND status read time).
87 * A conservative default of 200000 (500 us / 25 ns) is used as a default.
88 */
89 #ifndef CONFIG_SYS_NAND_RESET_CNT
90 #define CONFIG_SYS_NAND_RESET_CNT 200000
91 #endif
92
93 /* Define default oob placement schemes for large and small page devices */
94 static struct nand_ecclayout nand_oob_8 = {
95 .eccbytes = 3,
96 .eccpos = {0, 1, 2},
97 .oobfree = {
98 {.offset = 3,
99 .length = 2},
100 {.offset = 6,
101 .length = 2}}
102 };
103
104 static struct nand_ecclayout nand_oob_16 = {
105 .eccbytes = 6,
106 .eccpos = {0, 1, 2, 3, 6, 7},
107 .oobfree = {
108 {.offset = 8,
109 . length = 8}}
110 };
111
112 static struct nand_ecclayout nand_oob_64 = {
113 .eccbytes = 24,
114 .eccpos = {
115 40, 41, 42, 43, 44, 45, 46, 47,
116 48, 49, 50, 51, 52, 53, 54, 55,
117 56, 57, 58, 59, 60, 61, 62, 63},
118 .oobfree = {
119 {.offset = 2,
120 .length = 38}}
121 };
122
123 static struct nand_ecclayout nand_oob_128 = {
124 .eccbytes = 48,
125 .eccpos = {
126 80, 81, 82, 83, 84, 85, 86, 87,
127 88, 89, 90, 91, 92, 93, 94, 95,
128 96, 97, 98, 99, 100, 101, 102, 103,
129 104, 105, 106, 107, 108, 109, 110, 111,
130 112, 113, 114, 115, 116, 117, 118, 119,
131 120, 121, 122, 123, 124, 125, 126, 127},
132 .oobfree = {
133 {.offset = 2,
134 .length = 78}}
135 };
136
137
138 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
139 int new_state);
140
141 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
142 struct mtd_oob_ops *ops);
143
144 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
145
146 /*
147 * For devices which display every fart in the system on a separate LED. Is
148 * compiled away when LED support is disabled.
149 */
150 /* XXX U-BOOT XXX */
151 #if 0
152 DEFINE_LED_TRIGGER(nand_led_trigger);
153 #endif
154
155 /**
156 * nand_release_device - [GENERIC] release chip
157 * @mtd: MTD device structure
158 *
159 * Deselect, release chip lock and wake up anyone waiting on the device
160 */
161 /* XXX U-BOOT XXX */
162 #if 0
163 static void nand_release_device(struct mtd_info *mtd)
164 {
165 struct nand_chip *chip = mtd->priv;
166
167 /* De-select the NAND device */
168 chip->select_chip(mtd, -1);
169
170 /* Release the controller and the chip */
171 spin_lock(&chip->controller->lock);
172 chip->controller->active = NULL;
173 chip->state = FL_READY;
174 wake_up(&chip->controller->wq);
175 spin_unlock(&chip->controller->lock);
176 }
177 #else
178 static void nand_release_device (struct mtd_info *mtd)
179 {
180 struct nand_chip *this = mtd->priv;
181 this->select_chip(mtd, -1); /* De-select the NAND device */
182 }
183 #endif
184
185 /**
186 * nand_read_byte - [DEFAULT] read one byte from the chip
187 * @mtd: MTD device structure
188 *
189 * Default read function for 8bit buswith
190 */
191 static uint8_t nand_read_byte(struct mtd_info *mtd)
192 {
193 struct nand_chip *chip = mtd->priv;
194 return readb(chip->IO_ADDR_R);
195 }
196
197 /**
198 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
199 * @mtd: MTD device structure
200 *
201 * Default read function for 16bit buswith with
202 * endianess conversion
203 */
204 static uint8_t nand_read_byte16(struct mtd_info *mtd)
205 {
206 struct nand_chip *chip = mtd->priv;
207 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
208 }
209
210 /**
211 * nand_read_word - [DEFAULT] read one word from the chip
212 * @mtd: MTD device structure
213 *
214 * Default read function for 16bit buswith without
215 * endianess conversion
216 */
217 static u16 nand_read_word(struct mtd_info *mtd)
218 {
219 struct nand_chip *chip = mtd->priv;
220 return readw(chip->IO_ADDR_R);
221 }
222
223 /**
224 * nand_select_chip - [DEFAULT] control CE line
225 * @mtd: MTD device structure
226 * @chipnr: chipnumber to select, -1 for deselect
227 *
228 * Default select function for 1 chip devices.
229 */
230 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
231 {
232 struct nand_chip *chip = mtd->priv;
233
234 switch (chipnr) {
235 case -1:
236 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
237 break;
238 case 0:
239 break;
240
241 default:
242 BUG();
243 }
244 }
245
246 /**
247 * nand_write_buf - [DEFAULT] write buffer to chip
248 * @mtd: MTD device structure
249 * @buf: data buffer
250 * @len: number of bytes to write
251 *
252 * Default write function for 8bit buswith
253 */
254 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
255 {
256 int i;
257 struct nand_chip *chip = mtd->priv;
258
259 for (i = 0; i < len; i++)
260 writeb(buf[i], chip->IO_ADDR_W);
261 }
262
263 /**
264 * nand_read_buf - [DEFAULT] read chip data into buffer
265 * @mtd: MTD device structure
266 * @buf: buffer to store date
267 * @len: number of bytes to read
268 *
269 * Default read function for 8bit buswith
270 */
271 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
272 {
273 int i;
274 struct nand_chip *chip = mtd->priv;
275
276 for (i = 0; i < len; i++)
277 buf[i] = readb(chip->IO_ADDR_R);
278 }
279
280 /**
281 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
282 * @mtd: MTD device structure
283 * @buf: buffer containing the data to compare
284 * @len: number of bytes to compare
285 *
286 * Default verify function for 8bit buswith
287 */
288 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 int i;
291 struct nand_chip *chip = mtd->priv;
292
293 for (i = 0; i < len; i++)
294 if (buf[i] != readb(chip->IO_ADDR_R))
295 return -EFAULT;
296 return 0;
297 }
298
299 /**
300 * nand_write_buf16 - [DEFAULT] write buffer to chip
301 * @mtd: MTD device structure
302 * @buf: data buffer
303 * @len: number of bytes to write
304 *
305 * Default write function for 16bit buswith
306 */
307 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
308 {
309 int i;
310 struct nand_chip *chip = mtd->priv;
311 u16 *p = (u16 *) buf;
312 len >>= 1;
313
314 for (i = 0; i < len; i++)
315 writew(p[i], chip->IO_ADDR_W);
316
317 }
318
319 /**
320 * nand_read_buf16 - [DEFAULT] read chip data into buffer
321 * @mtd: MTD device structure
322 * @buf: buffer to store date
323 * @len: number of bytes to read
324 *
325 * Default read function for 16bit buswith
326 */
327 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
328 {
329 int i;
330 struct nand_chip *chip = mtd->priv;
331 u16 *p = (u16 *) buf;
332 len >>= 1;
333
334 for (i = 0; i < len; i++)
335 p[i] = readw(chip->IO_ADDR_R);
336 }
337
338 /**
339 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
340 * @mtd: MTD device structure
341 * @buf: buffer containing the data to compare
342 * @len: number of bytes to compare
343 *
344 * Default verify function for 16bit buswith
345 */
346 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
347 {
348 int i;
349 struct nand_chip *chip = mtd->priv;
350 u16 *p = (u16 *) buf;
351 len >>= 1;
352
353 for (i = 0; i < len; i++)
354 if (p[i] != readw(chip->IO_ADDR_R))
355 return -EFAULT;
356
357 return 0;
358 }
359
360 /**
361 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
362 * @mtd: MTD device structure
363 * @ofs: offset from device start
364 * @getchip: 0, if the chip is already selected
365 *
366 * Check, if the block is bad.
367 */
368 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
369 {
370 int page, chipnr, res = 0;
371 struct nand_chip *chip = mtd->priv;
372 u16 bad;
373
374 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
375
376 if (getchip) {
377 chipnr = (int)(ofs >> chip->chip_shift);
378
379 nand_get_device(chip, mtd, FL_READING);
380
381 /* Select the NAND device */
382 chip->select_chip(mtd, chipnr);
383 }
384
385 if (chip->options & NAND_BUSWIDTH_16) {
386 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
387 page);
388 bad = cpu_to_le16(chip->read_word(mtd));
389 if (chip->badblockpos & 0x1)
390 bad >>= 8;
391 if ((bad & 0xFF) != 0xff)
392 res = 1;
393 } else {
394 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
395 if (chip->read_byte(mtd) != 0xff)
396 res = 1;
397 }
398
399 if (getchip)
400 nand_release_device(mtd);
401
402 return res;
403 }
404
405 /**
406 * nand_default_block_markbad - [DEFAULT] mark a block bad
407 * @mtd: MTD device structure
408 * @ofs: offset from device start
409 *
410 * This is the default implementation, which can be overridden by
411 * a hardware specific driver.
412 */
413 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
414 {
415 struct nand_chip *chip = mtd->priv;
416 uint8_t buf[2] = { 0, 0 };
417 int block, ret;
418
419 /* Get block number */
420 block = (int)(ofs >> chip->bbt_erase_shift);
421 if (chip->bbt)
422 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
423
424 /* Do we have a flash based bad block table ? */
425 if (chip->options & NAND_USE_FLASH_BBT)
426 ret = nand_update_bbt(mtd, ofs);
427 else {
428 /* We write two bytes, so we dont have to mess with 16 bit
429 * access
430 */
431 nand_get_device(chip, mtd, FL_WRITING);
432 ofs += mtd->oobsize;
433 chip->ops.len = chip->ops.ooblen = 2;
434 chip->ops.datbuf = NULL;
435 chip->ops.oobbuf = buf;
436 chip->ops.ooboffs = chip->badblockpos & ~0x01;
437
438 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
439 nand_release_device(mtd);
440 }
441 if (!ret)
442 mtd->ecc_stats.badblocks++;
443
444 return ret;
445 }
446
447 /**
448 * nand_check_wp - [GENERIC] check if the chip is write protected
449 * @mtd: MTD device structure
450 * Check, if the device is write protected
451 *
452 * The function expects, that the device is already selected
453 */
454 static int nand_check_wp(struct mtd_info *mtd)
455 {
456 struct nand_chip *chip = mtd->priv;
457 /* Check the WP bit */
458 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
459 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
460 }
461
462 /**
463 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
464 * @mtd: MTD device structure
465 * @ofs: offset from device start
466 * @getchip: 0, if the chip is already selected
467 * @allowbbt: 1, if its allowed to access the bbt area
468 *
469 * Check, if the block is bad. Either by reading the bad block table or
470 * calling of the scan function.
471 */
472 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
473 int allowbbt)
474 {
475 struct nand_chip *chip = mtd->priv;
476
477 if (!(chip->options & NAND_BBT_SCANNED)) {
478 chip->options |= NAND_BBT_SCANNED;
479 chip->scan_bbt(mtd);
480 }
481
482 if (!chip->bbt)
483 return chip->block_bad(mtd, ofs, getchip);
484
485 /* Return info from the table */
486 return nand_isbad_bbt(mtd, ofs, allowbbt);
487 }
488
489 /*
490 * Wait for the ready pin, after a command
491 * The timeout is catched later.
492 */
493 /* XXX U-BOOT XXX */
494 #if 0
495 void nand_wait_ready(struct mtd_info *mtd)
496 {
497 struct nand_chip *chip = mtd->priv;
498 unsigned long timeo = jiffies + 2;
499
500 led_trigger_event(nand_led_trigger, LED_FULL);
501 /* wait until command is processed or timeout occures */
502 do {
503 if (chip->dev_ready(mtd))
504 break;
505 touch_softlockup_watchdog();
506 } while (time_before(jiffies, timeo));
507 led_trigger_event(nand_led_trigger, LED_OFF);
508 }
509 EXPORT_SYMBOL_GPL(nand_wait_ready);
510 #else
511 void nand_wait_ready(struct mtd_info *mtd)
512 {
513 struct nand_chip *chip = mtd->priv;
514 u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
515
516 reset_timer();
517
518 /* wait until command is processed or timeout occures */
519 while (get_timer(0) < timeo) {
520 if (chip->dev_ready)
521 if (chip->dev_ready(mtd))
522 break;
523 }
524 }
525 #endif
526
527 /**
528 * nand_command - [DEFAULT] Send command to NAND device
529 * @mtd: MTD device structure
530 * @command: the command to be sent
531 * @column: the column address for this command, -1 if none
532 * @page_addr: the page address for this command, -1 if none
533 *
534 * Send command to NAND device. This function is used for small page
535 * devices (256/512 Bytes per page)
536 */
537 static void nand_command(struct mtd_info *mtd, unsigned int command,
538 int column, int page_addr)
539 {
540 register struct nand_chip *chip = mtd->priv;
541 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
542 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
543
544 /*
545 * Write out the command to the device.
546 */
547 if (command == NAND_CMD_SEQIN) {
548 int readcmd;
549
550 if (column >= mtd->writesize) {
551 /* OOB area */
552 column -= mtd->writesize;
553 readcmd = NAND_CMD_READOOB;
554 } else if (column < 256) {
555 /* First 256 bytes --> READ0 */
556 readcmd = NAND_CMD_READ0;
557 } else {
558 column -= 256;
559 readcmd = NAND_CMD_READ1;
560 }
561 chip->cmd_ctrl(mtd, readcmd, ctrl);
562 ctrl &= ~NAND_CTRL_CHANGE;
563 }
564 chip->cmd_ctrl(mtd, command, ctrl);
565
566 /*
567 * Address cycle, when necessary
568 */
569 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
570 /* Serially input address */
571 if (column != -1) {
572 /* Adjust columns for 16 bit buswidth */
573 if (chip->options & NAND_BUSWIDTH_16)
574 column >>= 1;
575 chip->cmd_ctrl(mtd, column, ctrl);
576 ctrl &= ~NAND_CTRL_CHANGE;
577 }
578 if (page_addr != -1) {
579 chip->cmd_ctrl(mtd, page_addr, ctrl);
580 ctrl &= ~NAND_CTRL_CHANGE;
581 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
582 /* One more address cycle for devices > 32MiB */
583 if (chip->chipsize > (32 << 20))
584 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
585 }
586 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587
588 /*
589 * program and erase have their own busy handlers
590 * status and sequential in needs no delay
591 */
592 switch (command) {
593
594 case NAND_CMD_PAGEPROG:
595 case NAND_CMD_ERASE1:
596 case NAND_CMD_ERASE2:
597 case NAND_CMD_SEQIN:
598 case NAND_CMD_STATUS:
599 return;
600
601 case NAND_CMD_RESET:
602 if (chip->dev_ready)
603 break;
604 udelay(chip->chip_delay);
605 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
606 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
607 chip->cmd_ctrl(mtd,
608 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
609 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
610 (rst_sts_cnt--));
611 return;
612
613 /* This applies to read commands */
614 default:
615 /*
616 * If we don't have access to the busy pin, we apply the given
617 * command delay
618 */
619 if (!chip->dev_ready) {
620 udelay(chip->chip_delay);
621 return;
622 }
623 }
624 /* Apply this short delay always to ensure that we do wait tWB in
625 * any case on any machine. */
626 ndelay(100);
627
628 nand_wait_ready(mtd);
629 }
630
631 /**
632 * nand_command_lp - [DEFAULT] Send command to NAND large page device
633 * @mtd: MTD device structure
634 * @command: the command to be sent
635 * @column: the column address for this command, -1 if none
636 * @page_addr: the page address for this command, -1 if none
637 *
638 * Send command to NAND device. This is the version for the new large page
639 * devices We dont have the separate regions as we have in the small page
640 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
641 */
642 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
643 int column, int page_addr)
644 {
645 register struct nand_chip *chip = mtd->priv;
646 uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
647
648 /* Emulate NAND_CMD_READOOB */
649 if (command == NAND_CMD_READOOB) {
650 column += mtd->writesize;
651 command = NAND_CMD_READ0;
652 }
653
654 /* Command latch cycle */
655 chip->cmd_ctrl(mtd, command & 0xff,
656 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
657
658 if (column != -1 || page_addr != -1) {
659 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
660
661 /* Serially input address */
662 if (column != -1) {
663 /* Adjust columns for 16 bit buswidth */
664 if (chip->options & NAND_BUSWIDTH_16)
665 column >>= 1;
666 chip->cmd_ctrl(mtd, column, ctrl);
667 ctrl &= ~NAND_CTRL_CHANGE;
668 chip->cmd_ctrl(mtd, column >> 8, ctrl);
669 }
670 if (page_addr != -1) {
671 chip->cmd_ctrl(mtd, page_addr, ctrl);
672 chip->cmd_ctrl(mtd, page_addr >> 8,
673 NAND_NCE | NAND_ALE);
674 /* One more address cycle for devices > 128MiB */
675 if (chip->chipsize > (128 << 20))
676 chip->cmd_ctrl(mtd, page_addr >> 16,
677 NAND_NCE | NAND_ALE);
678 }
679 }
680 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
681
682 /*
683 * program and erase have their own busy handlers
684 * status, sequential in, and deplete1 need no delay
685 */
686 switch (command) {
687
688 case NAND_CMD_CACHEDPROG:
689 case NAND_CMD_PAGEPROG:
690 case NAND_CMD_ERASE1:
691 case NAND_CMD_ERASE2:
692 case NAND_CMD_SEQIN:
693 case NAND_CMD_RNDIN:
694 case NAND_CMD_STATUS:
695 case NAND_CMD_DEPLETE1:
696 return;
697
698 /*
699 * read error status commands require only a short delay
700 */
701 case NAND_CMD_STATUS_ERROR:
702 case NAND_CMD_STATUS_ERROR0:
703 case NAND_CMD_STATUS_ERROR1:
704 case NAND_CMD_STATUS_ERROR2:
705 case NAND_CMD_STATUS_ERROR3:
706 udelay(chip->chip_delay);
707 return;
708
709 case NAND_CMD_RESET:
710 if (chip->dev_ready)
711 break;
712 udelay(chip->chip_delay);
713 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
714 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
716 NAND_NCE | NAND_CTRL_CHANGE);
717 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
718 (rst_sts_cnt--));
719 return;
720
721 case NAND_CMD_RNDOUT:
722 /* No ready / busy check necessary */
723 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
724 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
725 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
726 NAND_NCE | NAND_CTRL_CHANGE);
727 return;
728
729 case NAND_CMD_READ0:
730 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
731 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
732 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
733 NAND_NCE | NAND_CTRL_CHANGE);
734
735 /* This applies to read commands */
736 default:
737 /*
738 * If we don't have access to the busy pin, we apply the given
739 * command delay
740 */
741 if (!chip->dev_ready) {
742 udelay(chip->chip_delay);
743 return;
744 }
745 }
746
747 /* Apply this short delay always to ensure that we do wait tWB in
748 * any case on any machine. */
749 ndelay(100);
750
751 nand_wait_ready(mtd);
752 }
753
754 /**
755 * nand_get_device - [GENERIC] Get chip for selected access
756 * @chip: the nand chip descriptor
757 * @mtd: MTD device structure
758 * @new_state: the state which is requested
759 *
760 * Get the device and lock it for exclusive access
761 */
762 /* XXX U-BOOT XXX */
763 #if 0
764 static int
765 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
766 {
767 spinlock_t *lock = &chip->controller->lock;
768 wait_queue_head_t *wq = &chip->controller->wq;
769 DECLARE_WAITQUEUE(wait, current);
770 retry:
771 spin_lock(lock);
772
773 /* Hardware controller shared among independend devices */
774 /* Hardware controller shared among independend devices */
775 if (!chip->controller->active)
776 chip->controller->active = chip;
777
778 if (chip->controller->active == chip && chip->state == FL_READY) {
779 chip->state = new_state;
780 spin_unlock(lock);
781 return 0;
782 }
783 if (new_state == FL_PM_SUSPENDED) {
784 spin_unlock(lock);
785 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
786 }
787 set_current_state(TASK_UNINTERRUPTIBLE);
788 add_wait_queue(wq, &wait);
789 spin_unlock(lock);
790 schedule();
791 remove_wait_queue(wq, &wait);
792 goto retry;
793 }
794 #else
795 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
796 {
797 this->state = new_state;
798 return 0;
799 }
800 #endif
801
802 /**
803 * nand_wait - [DEFAULT] wait until the command is done
804 * @mtd: MTD device structure
805 * @chip: NAND chip structure
806 *
807 * Wait for command done. This applies to erase and program only
808 * Erase can take up to 400ms and program up to 20ms according to
809 * general NAND and SmartMedia specs
810 */
811 /* XXX U-BOOT XXX */
812 #if 0
813 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
814 {
815
816 unsigned long timeo = jiffies;
817 int status, state = chip->state;
818
819 if (state == FL_ERASING)
820 timeo += (HZ * 400) / 1000;
821 else
822 timeo += (HZ * 20) / 1000;
823
824 led_trigger_event(nand_led_trigger, LED_FULL);
825
826 /* Apply this short delay always to ensure that we do wait tWB in
827 * any case on any machine. */
828 ndelay(100);
829
830 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
831 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
832 else
833 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
834
835 while (time_before(jiffies, timeo)) {
836 if (chip->dev_ready) {
837 if (chip->dev_ready(mtd))
838 break;
839 } else {
840 if (chip->read_byte(mtd) & NAND_STATUS_READY)
841 break;
842 }
843 cond_resched();
844 }
845 led_trigger_event(nand_led_trigger, LED_OFF);
846
847 status = (int)chip->read_byte(mtd);
848 return status;
849 }
850 #else
851 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
852 {
853 unsigned long timeo;
854 int state = this->state;
855
856 if (state == FL_ERASING)
857 timeo = (CONFIG_SYS_HZ * 400) / 1000;
858 else
859 timeo = (CONFIG_SYS_HZ * 20) / 1000;
860
861 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
862 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
863 else
864 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
865
866 reset_timer();
867
868 while (1) {
869 if (get_timer(0) > timeo) {
870 printf("Timeout!");
871 return 0x01;
872 }
873
874 if (this->dev_ready) {
875 if (this->dev_ready(mtd))
876 break;
877 } else {
878 if (this->read_byte(mtd) & NAND_STATUS_READY)
879 break;
880 }
881 }
882 #ifdef PPCHAMELON_NAND_TIMER_HACK
883 reset_timer();
884 while (get_timer(0) < 10);
885 #endif /* PPCHAMELON_NAND_TIMER_HACK */
886
887 return this->read_byte(mtd);
888 }
889 #endif
890
891 /**
892 * nand_read_page_raw - [Intern] read raw page data without ecc
893 * @mtd: mtd info structure
894 * @chip: nand chip info structure
895 * @buf: buffer to store read data
896 * @page: page number to read
897 */
898 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
899 uint8_t *buf, int page)
900 {
901 chip->read_buf(mtd, buf, mtd->writesize);
902 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
903 return 0;
904 }
905
906 /**
907 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
908 * @mtd: mtd info structure
909 * @chip: nand chip info structure
910 * @buf: buffer to store read data
911 * @page: page number to read
912 */
913 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
914 uint8_t *buf, int page)
915 {
916 int i, eccsize = chip->ecc.size;
917 int eccbytes = chip->ecc.bytes;
918 int eccsteps = chip->ecc.steps;
919 uint8_t *p = buf;
920 uint8_t *ecc_calc = chip->buffers->ecccalc;
921 uint8_t *ecc_code = chip->buffers->ecccode;
922 uint32_t *eccpos = chip->ecc.layout->eccpos;
923
924 chip->ecc.read_page_raw(mtd, chip, buf, page);
925
926 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
927 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
928
929 for (i = 0; i < chip->ecc.total; i++)
930 ecc_code[i] = chip->oob_poi[eccpos[i]];
931
932 eccsteps = chip->ecc.steps;
933 p = buf;
934
935 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
936 int stat;
937
938 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
939 if (stat < 0)
940 mtd->ecc_stats.failed++;
941 else
942 mtd->ecc_stats.corrected += stat;
943 }
944 return 0;
945 }
946
947 /**
948 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
949 * @mtd: mtd info structure
950 * @chip: nand chip info structure
951 * @data_offs: offset of requested data within the page
952 * @readlen: data length
953 * @bufpoi: buffer to store read data
954 */
955 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
956 {
957 int start_step, end_step, num_steps;
958 uint32_t *eccpos = chip->ecc.layout->eccpos;
959 uint8_t *p;
960 int data_col_addr, i, gaps = 0;
961 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
962 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
963
964 /* Column address wihin the page aligned to ECC size (256bytes). */
965 start_step = data_offs / chip->ecc.size;
966 end_step = (data_offs + readlen - 1) / chip->ecc.size;
967 num_steps = end_step - start_step + 1;
968
969 /* Data size aligned to ECC ecc.size*/
970 datafrag_len = num_steps * chip->ecc.size;
971 eccfrag_len = num_steps * chip->ecc.bytes;
972
973 data_col_addr = start_step * chip->ecc.size;
974 /* If we read not a page aligned data */
975 if (data_col_addr != 0)
976 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
977
978 p = bufpoi + data_col_addr;
979 chip->read_buf(mtd, p, datafrag_len);
980
981 /* Calculate ECC */
982 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
983 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
984
985 /* The performance is faster if to position offsets
986 according to ecc.pos. Let make sure here that
987 there are no gaps in ecc positions */
988 for (i = 0; i < eccfrag_len - 1; i++) {
989 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
990 eccpos[i + start_step * chip->ecc.bytes + 1]) {
991 gaps = 1;
992 break;
993 }
994 }
995 if (gaps) {
996 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
997 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
998 } else {
999 /* send the command to read the particular ecc bytes */
1000 /* take care about buswidth alignment in read_buf */
1001 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1002 aligned_len = eccfrag_len;
1003 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1004 aligned_len++;
1005 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1006 aligned_len++;
1007
1008 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1009 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1010 }
1011
1012 for (i = 0; i < eccfrag_len; i++)
1013 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1014
1015 p = bufpoi + data_col_addr;
1016 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1017 int stat;
1018
1019 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1020 if (stat < 0)
1021 mtd->ecc_stats.failed++;
1022 else
1023 mtd->ecc_stats.corrected += stat;
1024 }
1025 return 0;
1026 }
1027
1028 /**
1029 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1030 * @mtd: mtd info structure
1031 * @chip: nand chip info structure
1032 * @buf: buffer to store read data
1033 * @page: page number to read
1034 *
1035 * Not for syndrome calculating ecc controllers which need a special oob layout
1036 */
1037 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1038 uint8_t *buf, int page)
1039 {
1040 int i, eccsize = chip->ecc.size;
1041 int eccbytes = chip->ecc.bytes;
1042 int eccsteps = chip->ecc.steps;
1043 uint8_t *p = buf;
1044 uint8_t *ecc_calc = chip->buffers->ecccalc;
1045 uint8_t *ecc_code = chip->buffers->ecccode;
1046 uint32_t *eccpos = chip->ecc.layout->eccpos;
1047
1048 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1049 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1050 chip->read_buf(mtd, p, eccsize);
1051 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1052 }
1053 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1054
1055 for (i = 0; i < chip->ecc.total; i++)
1056 ecc_code[i] = chip->oob_poi[eccpos[i]];
1057
1058 eccsteps = chip->ecc.steps;
1059 p = buf;
1060
1061 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1062 int stat;
1063
1064 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1065 if (stat == -1)
1066 mtd->ecc_stats.failed++;
1067 else
1068 mtd->ecc_stats.corrected += stat;
1069 }
1070 return 0;
1071 }
1072
1073 /**
1074 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1075 * @mtd: mtd info structure
1076 * @chip: nand chip info structure
1077 * @buf: buffer to store read data
1078 * @page: page number to read
1079 *
1080 * Hardware ECC for large page chips, require OOB to be read first.
1081 * For this ECC mode, the write_page method is re-used from ECC_HW.
1082 * These methods read/write ECC from the OOB area, unlike the
1083 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1084 * "infix ECC" scheme and reads/writes ECC from the data area, by
1085 * overwriting the NAND manufacturer bad block markings.
1086 */
1087 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1088 struct nand_chip *chip, uint8_t *buf, int page)
1089 {
1090 int i, eccsize = chip->ecc.size;
1091 int eccbytes = chip->ecc.bytes;
1092 int eccsteps = chip->ecc.steps;
1093 uint8_t *p = buf;
1094 uint8_t *ecc_code = chip->buffers->ecccode;
1095 uint32_t *eccpos = chip->ecc.layout->eccpos;
1096 uint8_t *ecc_calc = chip->buffers->ecccalc;
1097
1098 /* Read the OOB area first */
1099 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1100 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1101 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1102
1103 for (i = 0; i < chip->ecc.total; i++)
1104 ecc_code[i] = chip->oob_poi[eccpos[i]];
1105
1106 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1107 int stat;
1108
1109 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1110 chip->read_buf(mtd, p, eccsize);
1111 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1112
1113 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1114 if (stat < 0)
1115 mtd->ecc_stats.failed++;
1116 else
1117 mtd->ecc_stats.corrected += stat;
1118 }
1119 return 0;
1120 }
1121
1122 /**
1123 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1124 * @mtd: mtd info structure
1125 * @chip: nand chip info structure
1126 * @buf: buffer to store read data
1127 * @page: page number to read
1128 *
1129 * The hw generator calculates the error syndrome automatically. Therefor
1130 * we need a special oob layout and handling.
1131 */
1132 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1133 uint8_t *buf, int page)
1134 {
1135 int i, eccsize = chip->ecc.size;
1136 int eccbytes = chip->ecc.bytes;
1137 int eccsteps = chip->ecc.steps;
1138 uint8_t *p = buf;
1139 uint8_t *oob = chip->oob_poi;
1140
1141 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1142 int stat;
1143
1144 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1145 chip->read_buf(mtd, p, eccsize);
1146
1147 if (chip->ecc.prepad) {
1148 chip->read_buf(mtd, oob, chip->ecc.prepad);
1149 oob += chip->ecc.prepad;
1150 }
1151
1152 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1153 chip->read_buf(mtd, oob, eccbytes);
1154 stat = chip->ecc.correct(mtd, p, oob, NULL);
1155
1156 if (stat < 0)
1157 mtd->ecc_stats.failed++;
1158 else
1159 mtd->ecc_stats.corrected += stat;
1160
1161 oob += eccbytes;
1162
1163 if (chip->ecc.postpad) {
1164 chip->read_buf(mtd, oob, chip->ecc.postpad);
1165 oob += chip->ecc.postpad;
1166 }
1167 }
1168
1169 /* Calculate remaining oob bytes */
1170 i = mtd->oobsize - (oob - chip->oob_poi);
1171 if (i)
1172 chip->read_buf(mtd, oob, i);
1173
1174 return 0;
1175 }
1176
1177 /**
1178 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1179 * @chip: nand chip structure
1180 * @oob: oob destination address
1181 * @ops: oob ops structure
1182 * @len: size of oob to transfer
1183 */
1184 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1185 struct mtd_oob_ops *ops, size_t len)
1186 {
1187 switch(ops->mode) {
1188
1189 case MTD_OOB_PLACE:
1190 case MTD_OOB_RAW:
1191 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1192 return oob + len;
1193
1194 case MTD_OOB_AUTO: {
1195 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1196 uint32_t boffs = 0, roffs = ops->ooboffs;
1197 size_t bytes = 0;
1198
1199 for(; free->length && len; free++, len -= bytes) {
1200 /* Read request not from offset 0 ? */
1201 if (unlikely(roffs)) {
1202 if (roffs >= free->length) {
1203 roffs -= free->length;
1204 continue;
1205 }
1206 boffs = free->offset + roffs;
1207 bytes = min_t(size_t, len,
1208 (free->length - roffs));
1209 roffs = 0;
1210 } else {
1211 bytes = min_t(size_t, len, free->length);
1212 boffs = free->offset;
1213 }
1214 memcpy(oob, chip->oob_poi + boffs, bytes);
1215 oob += bytes;
1216 }
1217 return oob;
1218 }
1219 default:
1220 BUG();
1221 }
1222 return NULL;
1223 }
1224
1225 /**
1226 * nand_do_read_ops - [Internal] Read data with ECC
1227 *
1228 * @mtd: MTD device structure
1229 * @from: offset to read from
1230 * @ops: oob ops structure
1231 *
1232 * Internal function. Called with chip held.
1233 */
1234 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1235 struct mtd_oob_ops *ops)
1236 {
1237 int chipnr, page, realpage, col, bytes, aligned;
1238 struct nand_chip *chip = mtd->priv;
1239 struct mtd_ecc_stats stats;
1240 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1241 int sndcmd = 1;
1242 int ret = 0;
1243 uint32_t readlen = ops->len;
1244 uint32_t oobreadlen = ops->ooblen;
1245 uint8_t *bufpoi, *oob, *buf;
1246
1247 stats = mtd->ecc_stats;
1248
1249 chipnr = (int)(from >> chip->chip_shift);
1250 chip->select_chip(mtd, chipnr);
1251
1252 realpage = (int)(from >> chip->page_shift);
1253 page = realpage & chip->pagemask;
1254
1255 col = (int)(from & (mtd->writesize - 1));
1256
1257 buf = ops->datbuf;
1258 oob = ops->oobbuf;
1259
1260 while(1) {
1261 bytes = min(mtd->writesize - col, readlen);
1262 aligned = (bytes == mtd->writesize);
1263
1264 /* Is the current page in the buffer ? */
1265 if (realpage != chip->pagebuf || oob) {
1266 bufpoi = aligned ? buf : chip->buffers->databuf;
1267
1268 if (likely(sndcmd)) {
1269 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1270 sndcmd = 0;
1271 }
1272
1273 /* Now read the page into the buffer */
1274 if (unlikely(ops->mode == MTD_OOB_RAW))
1275 ret = chip->ecc.read_page_raw(mtd, chip,
1276 bufpoi, page);
1277 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1278 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1279 else
1280 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1281 page);
1282 if (ret < 0)
1283 break;
1284
1285 /* Transfer not aligned data */
1286 if (!aligned) {
1287 if (!NAND_SUBPAGE_READ(chip) && !oob)
1288 chip->pagebuf = realpage;
1289 memcpy(buf, chip->buffers->databuf + col, bytes);
1290 }
1291
1292 buf += bytes;
1293
1294 if (unlikely(oob)) {
1295 /* Raw mode does data:oob:data:oob */
1296 if (ops->mode != MTD_OOB_RAW) {
1297 int toread = min(oobreadlen,
1298 chip->ecc.layout->oobavail);
1299 if (toread) {
1300 oob = nand_transfer_oob(chip,
1301 oob, ops, toread);
1302 oobreadlen -= toread;
1303 }
1304 } else
1305 buf = nand_transfer_oob(chip,
1306 buf, ops, mtd->oobsize);
1307 }
1308
1309 if (!(chip->options & NAND_NO_READRDY)) {
1310 /*
1311 * Apply delay or wait for ready/busy pin. Do
1312 * this before the AUTOINCR check, so no
1313 * problems arise if a chip which does auto
1314 * increment is marked as NOAUTOINCR by the
1315 * board driver.
1316 */
1317 if (!chip->dev_ready)
1318 udelay(chip->chip_delay);
1319 else
1320 nand_wait_ready(mtd);
1321 }
1322 } else {
1323 memcpy(buf, chip->buffers->databuf + col, bytes);
1324 buf += bytes;
1325 }
1326
1327 readlen -= bytes;
1328
1329 if (!readlen)
1330 break;
1331
1332 /* For subsequent reads align to page boundary. */
1333 col = 0;
1334 /* Increment page address */
1335 realpage++;
1336
1337 page = realpage & chip->pagemask;
1338 /* Check, if we cross a chip boundary */
1339 if (!page) {
1340 chipnr++;
1341 chip->select_chip(mtd, -1);
1342 chip->select_chip(mtd, chipnr);
1343 }
1344
1345 /* Check, if the chip supports auto page increment
1346 * or if we have hit a block boundary.
1347 */
1348 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1349 sndcmd = 1;
1350 }
1351
1352 ops->retlen = ops->len - (size_t) readlen;
1353 if (oob)
1354 ops->oobretlen = ops->ooblen - oobreadlen;
1355
1356 if (ret)
1357 return ret;
1358
1359 if (mtd->ecc_stats.failed - stats.failed)
1360 return -EBADMSG;
1361
1362 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1363 }
1364
1365 /**
1366 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1367 * @mtd: MTD device structure
1368 * @from: offset to read from
1369 * @len: number of bytes to read
1370 * @retlen: pointer to variable to store the number of read bytes
1371 * @buf: the databuffer to put data
1372 *
1373 * Get hold of the chip and call nand_do_read
1374 */
1375 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1376 size_t *retlen, uint8_t *buf)
1377 {
1378 struct nand_chip *chip = mtd->priv;
1379 int ret;
1380
1381 /* Do not allow reads past end of device */
1382 if ((from + len) > mtd->size)
1383 return -EINVAL;
1384 if (!len)
1385 return 0;
1386
1387 nand_get_device(chip, mtd, FL_READING);
1388
1389 chip->ops.len = len;
1390 chip->ops.datbuf = buf;
1391 chip->ops.oobbuf = NULL;
1392
1393 ret = nand_do_read_ops(mtd, from, &chip->ops);
1394
1395 *retlen = chip->ops.retlen;
1396
1397 nand_release_device(mtd);
1398
1399 return ret;
1400 }
1401
1402 /**
1403 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1404 * @mtd: mtd info structure
1405 * @chip: nand chip info structure
1406 * @page: page number to read
1407 * @sndcmd: flag whether to issue read command or not
1408 */
1409 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1410 int page, int sndcmd)
1411 {
1412 if (sndcmd) {
1413 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1414 sndcmd = 0;
1415 }
1416 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1417 return sndcmd;
1418 }
1419
1420 /**
1421 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1422 * with syndromes
1423 * @mtd: mtd info structure
1424 * @chip: nand chip info structure
1425 * @page: page number to read
1426 * @sndcmd: flag whether to issue read command or not
1427 */
1428 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1429 int page, int sndcmd)
1430 {
1431 uint8_t *buf = chip->oob_poi;
1432 int length = mtd->oobsize;
1433 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1434 int eccsize = chip->ecc.size;
1435 uint8_t *bufpoi = buf;
1436 int i, toread, sndrnd = 0, pos;
1437
1438 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1439 for (i = 0; i < chip->ecc.steps; i++) {
1440 if (sndrnd) {
1441 pos = eccsize + i * (eccsize + chunk);
1442 if (mtd->writesize > 512)
1443 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1444 else
1445 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1446 } else
1447 sndrnd = 1;
1448 toread = min_t(int, length, chunk);
1449 chip->read_buf(mtd, bufpoi, toread);
1450 bufpoi += toread;
1451 length -= toread;
1452 }
1453 if (length > 0)
1454 chip->read_buf(mtd, bufpoi, length);
1455
1456 return 1;
1457 }
1458
1459 /**
1460 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1461 * @mtd: mtd info structure
1462 * @chip: nand chip info structure
1463 * @page: page number to write
1464 */
1465 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1466 int page)
1467 {
1468 int status = 0;
1469 const uint8_t *buf = chip->oob_poi;
1470 int length = mtd->oobsize;
1471
1472 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1473 chip->write_buf(mtd, buf, length);
1474 /* Send command to program the OOB data */
1475 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1476
1477 status = chip->waitfunc(mtd, chip);
1478
1479 return status & NAND_STATUS_FAIL ? -EIO : 0;
1480 }
1481
1482 /**
1483 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1484 * with syndrome - only for large page flash !
1485 * @mtd: mtd info structure
1486 * @chip: nand chip info structure
1487 * @page: page number to write
1488 */
1489 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1490 struct nand_chip *chip, int page)
1491 {
1492 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1493 int eccsize = chip->ecc.size, length = mtd->oobsize;
1494 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1495 const uint8_t *bufpoi = chip->oob_poi;
1496
1497 /*
1498 * data-ecc-data-ecc ... ecc-oob
1499 * or
1500 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1501 */
1502 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1503 pos = steps * (eccsize + chunk);
1504 steps = 0;
1505 } else
1506 pos = eccsize;
1507
1508 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1509 for (i = 0; i < steps; i++) {
1510 if (sndcmd) {
1511 if (mtd->writesize <= 512) {
1512 uint32_t fill = 0xFFFFFFFF;
1513
1514 len = eccsize;
1515 while (len > 0) {
1516 int num = min_t(int, len, 4);
1517 chip->write_buf(mtd, (uint8_t *)&fill,
1518 num);
1519 len -= num;
1520 }
1521 } else {
1522 pos = eccsize + i * (eccsize + chunk);
1523 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1524 }
1525 } else
1526 sndcmd = 1;
1527 len = min_t(int, length, chunk);
1528 chip->write_buf(mtd, bufpoi, len);
1529 bufpoi += len;
1530 length -= len;
1531 }
1532 if (length > 0)
1533 chip->write_buf(mtd, bufpoi, length);
1534
1535 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1536 status = chip->waitfunc(mtd, chip);
1537
1538 return status & NAND_STATUS_FAIL ? -EIO : 0;
1539 }
1540
1541 /**
1542 * nand_do_read_oob - [Intern] NAND read out-of-band
1543 * @mtd: MTD device structure
1544 * @from: offset to read from
1545 * @ops: oob operations description structure
1546 *
1547 * NAND read out-of-band data from the spare area
1548 */
1549 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1550 struct mtd_oob_ops *ops)
1551 {
1552 int page, realpage, chipnr, sndcmd = 1;
1553 struct nand_chip *chip = mtd->priv;
1554 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1555 int readlen = ops->ooblen;
1556 int len;
1557 uint8_t *buf = ops->oobbuf;
1558
1559 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1560 (unsigned long long)from, readlen);
1561
1562 if (ops->mode == MTD_OOB_AUTO)
1563 len = chip->ecc.layout->oobavail;
1564 else
1565 len = mtd->oobsize;
1566
1567 if (unlikely(ops->ooboffs >= len)) {
1568 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1569 "Attempt to start read outside oob\n");
1570 return -EINVAL;
1571 }
1572
1573 /* Do not allow reads past end of device */
1574 if (unlikely(from >= mtd->size ||
1575 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1576 (from >> chip->page_shift)) * len)) {
1577 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1578 "Attempt read beyond end of device\n");
1579 return -EINVAL;
1580 }
1581
1582 chipnr = (int)(from >> chip->chip_shift);
1583 chip->select_chip(mtd, chipnr);
1584
1585 /* Shift to get page */
1586 realpage = (int)(from >> chip->page_shift);
1587 page = realpage & chip->pagemask;
1588
1589 while(1) {
1590 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1591
1592 len = min(len, readlen);
1593 buf = nand_transfer_oob(chip, buf, ops, len);
1594
1595 if (!(chip->options & NAND_NO_READRDY)) {
1596 /*
1597 * Apply delay or wait for ready/busy pin. Do this
1598 * before the AUTOINCR check, so no problems arise if a
1599 * chip which does auto increment is marked as
1600 * NOAUTOINCR by the board driver.
1601 */
1602 if (!chip->dev_ready)
1603 udelay(chip->chip_delay);
1604 else
1605 nand_wait_ready(mtd);
1606 }
1607
1608 readlen -= len;
1609 if (!readlen)
1610 break;
1611
1612 /* Increment page address */
1613 realpage++;
1614
1615 page = realpage & chip->pagemask;
1616 /* Check, if we cross a chip boundary */
1617 if (!page) {
1618 chipnr++;
1619 chip->select_chip(mtd, -1);
1620 chip->select_chip(mtd, chipnr);
1621 }
1622
1623 /* Check, if the chip supports auto page increment
1624 * or if we have hit a block boundary.
1625 */
1626 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1627 sndcmd = 1;
1628 }
1629
1630 ops->oobretlen = ops->ooblen;
1631 return 0;
1632 }
1633
1634 /**
1635 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1636 * @mtd: MTD device structure
1637 * @from: offset to read from
1638 * @ops: oob operation description structure
1639 *
1640 * NAND read data and/or out-of-band data
1641 */
1642 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1643 struct mtd_oob_ops *ops)
1644 {
1645 struct nand_chip *chip = mtd->priv;
1646 int ret = -ENOTSUPP;
1647
1648 ops->retlen = 0;
1649
1650 /* Do not allow reads past end of device */
1651 if (ops->datbuf && (from + ops->len) > mtd->size) {
1652 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1653 "Attempt read beyond end of device\n");
1654 return -EINVAL;
1655 }
1656
1657 nand_get_device(chip, mtd, FL_READING);
1658
1659 switch(ops->mode) {
1660 case MTD_OOB_PLACE:
1661 case MTD_OOB_AUTO:
1662 case MTD_OOB_RAW:
1663 break;
1664
1665 default:
1666 goto out;
1667 }
1668
1669 if (!ops->datbuf)
1670 ret = nand_do_read_oob(mtd, from, ops);
1671 else
1672 ret = nand_do_read_ops(mtd, from, ops);
1673
1674 out:
1675 nand_release_device(mtd);
1676 return ret;
1677 }
1678
1679
1680 /**
1681 * nand_write_page_raw - [Intern] raw page write function
1682 * @mtd: mtd info structure
1683 * @chip: nand chip info structure
1684 * @buf: data buffer
1685 */
1686 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1687 const uint8_t *buf)
1688 {
1689 chip->write_buf(mtd, buf, mtd->writesize);
1690 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1691 }
1692
1693 /**
1694 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1695 * @mtd: mtd info structure
1696 * @chip: nand chip info structure
1697 * @buf: data buffer
1698 */
1699 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1700 const uint8_t *buf)
1701 {
1702 int i, eccsize = chip->ecc.size;
1703 int eccbytes = chip->ecc.bytes;
1704 int eccsteps = chip->ecc.steps;
1705 uint8_t *ecc_calc = chip->buffers->ecccalc;
1706 const uint8_t *p = buf;
1707 uint32_t *eccpos = chip->ecc.layout->eccpos;
1708
1709 /* Software ecc calculation */
1710 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1711 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1712
1713 for (i = 0; i < chip->ecc.total; i++)
1714 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1715
1716 chip->ecc.write_page_raw(mtd, chip, buf);
1717 }
1718
1719 /**
1720 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1721 * @mtd: mtd info structure
1722 * @chip: nand chip info structure
1723 * @buf: data buffer
1724 */
1725 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1726 const uint8_t *buf)
1727 {
1728 int i, eccsize = chip->ecc.size;
1729 int eccbytes = chip->ecc.bytes;
1730 int eccsteps = chip->ecc.steps;
1731 uint8_t *ecc_calc = chip->buffers->ecccalc;
1732 const uint8_t *p = buf;
1733 uint32_t *eccpos = chip->ecc.layout->eccpos;
1734
1735 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1736 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1737 chip->write_buf(mtd, p, eccsize);
1738 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1739 }
1740
1741 for (i = 0; i < chip->ecc.total; i++)
1742 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1743
1744 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1745 }
1746
1747 /**
1748 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1749 * @mtd: mtd info structure
1750 * @chip: nand chip info structure
1751 * @buf: data buffer
1752 *
1753 * The hw generator calculates the error syndrome automatically. Therefor
1754 * we need a special oob layout and handling.
1755 */
1756 static void nand_write_page_syndrome(struct mtd_info *mtd,
1757 struct nand_chip *chip, const uint8_t *buf)
1758 {
1759 int i, eccsize = chip->ecc.size;
1760 int eccbytes = chip->ecc.bytes;
1761 int eccsteps = chip->ecc.steps;
1762 const uint8_t *p = buf;
1763 uint8_t *oob = chip->oob_poi;
1764
1765 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1766
1767 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1768 chip->write_buf(mtd, p, eccsize);
1769
1770 if (chip->ecc.prepad) {
1771 chip->write_buf(mtd, oob, chip->ecc.prepad);
1772 oob += chip->ecc.prepad;
1773 }
1774
1775 chip->ecc.calculate(mtd, p, oob);
1776 chip->write_buf(mtd, oob, eccbytes);
1777 oob += eccbytes;
1778
1779 if (chip->ecc.postpad) {
1780 chip->write_buf(mtd, oob, chip->ecc.postpad);
1781 oob += chip->ecc.postpad;
1782 }
1783 }
1784
1785 /* Calculate remaining oob bytes */
1786 i = mtd->oobsize - (oob - chip->oob_poi);
1787 if (i)
1788 chip->write_buf(mtd, oob, i);
1789 }
1790
1791 /**
1792 * nand_write_page - [REPLACEABLE] write one page
1793 * @mtd: MTD device structure
1794 * @chip: NAND chip descriptor
1795 * @buf: the data to write
1796 * @page: page number to write
1797 * @cached: cached programming
1798 * @raw: use _raw version of write_page
1799 */
1800 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1801 const uint8_t *buf, int page, int cached, int raw)
1802 {
1803 int status;
1804
1805 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1806
1807 if (unlikely(raw))
1808 chip->ecc.write_page_raw(mtd, chip, buf);
1809 else
1810 chip->ecc.write_page(mtd, chip, buf);
1811
1812 /*
1813 * Cached progamming disabled for now, Not sure if its worth the
1814 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1815 */
1816 cached = 0;
1817
1818 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1819
1820 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1821 status = chip->waitfunc(mtd, chip);
1822 /*
1823 * See if operation failed and additional status checks are
1824 * available
1825 */
1826 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1827 status = chip->errstat(mtd, chip, FL_WRITING, status,
1828 page);
1829
1830 if (status & NAND_STATUS_FAIL)
1831 return -EIO;
1832 } else {
1833 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1834 status = chip->waitfunc(mtd, chip);
1835 }
1836
1837 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1838 /* Send command to read back the data */
1839 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1840
1841 if (chip->verify_buf(mtd, buf, mtd->writesize))
1842 return -EIO;
1843 #endif
1844 return 0;
1845 }
1846
1847 /**
1848 * nand_fill_oob - [Internal] Transfer client buffer to oob
1849 * @chip: nand chip structure
1850 * @oob: oob data buffer
1851 * @ops: oob ops structure
1852 */
1853 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1854 struct mtd_oob_ops *ops)
1855 {
1856 size_t len = ops->ooblen;
1857
1858 switch(ops->mode) {
1859
1860 case MTD_OOB_PLACE:
1861 case MTD_OOB_RAW:
1862 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1863 return oob + len;
1864
1865 case MTD_OOB_AUTO: {
1866 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1867 uint32_t boffs = 0, woffs = ops->ooboffs;
1868 size_t bytes = 0;
1869
1870 for(; free->length && len; free++, len -= bytes) {
1871 /* Write request not from offset 0 ? */
1872 if (unlikely(woffs)) {
1873 if (woffs >= free->length) {
1874 woffs -= free->length;
1875 continue;
1876 }
1877 boffs = free->offset + woffs;
1878 bytes = min_t(size_t, len,
1879 (free->length - woffs));
1880 woffs = 0;
1881 } else {
1882 bytes = min_t(size_t, len, free->length);
1883 boffs = free->offset;
1884 }
1885 memcpy(chip->oob_poi + boffs, oob, bytes);
1886 oob += bytes;
1887 }
1888 return oob;
1889 }
1890 default:
1891 BUG();
1892 }
1893 return NULL;
1894 }
1895
1896 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1897
1898 /**
1899 * nand_do_write_ops - [Internal] NAND write with ECC
1900 * @mtd: MTD device structure
1901 * @to: offset to write to
1902 * @ops: oob operations description structure
1903 *
1904 * NAND write with ECC
1905 */
1906 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1907 struct mtd_oob_ops *ops)
1908 {
1909 int chipnr, realpage, page, blockmask, column;
1910 struct nand_chip *chip = mtd->priv;
1911 uint32_t writelen = ops->len;
1912 uint8_t *oob = ops->oobbuf;
1913 uint8_t *buf = ops->datbuf;
1914 int ret, subpage;
1915
1916 ops->retlen = 0;
1917 if (!writelen)
1918 return 0;
1919
1920 /* reject writes, which are not page aligned */
1921 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1922 printk(KERN_NOTICE "nand_write: "
1923 "Attempt to write not page aligned data\n");
1924 return -EINVAL;
1925 }
1926
1927 column = to & (mtd->writesize - 1);
1928 subpage = column || (writelen & (mtd->writesize - 1));
1929
1930 if (subpage && oob)
1931 return -EINVAL;
1932
1933 chipnr = (int)(to >> chip->chip_shift);
1934 chip->select_chip(mtd, chipnr);
1935
1936 /* Check, if it is write protected */
1937 if (nand_check_wp(mtd)) {
1938 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1939 return -EIO;
1940 }
1941
1942 realpage = (int)(to >> chip->page_shift);
1943 page = realpage & chip->pagemask;
1944 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1945
1946 /* Invalidate the page cache, when we write to the cached page */
1947 if (to <= (chip->pagebuf << chip->page_shift) &&
1948 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1949 chip->pagebuf = -1;
1950
1951 /* If we're not given explicit OOB data, let it be 0xFF */
1952 if (likely(!oob))
1953 memset(chip->oob_poi, 0xff, mtd->oobsize);
1954
1955 while(1) {
1956 int bytes = mtd->writesize;
1957 int cached = writelen > bytes && page != blockmask;
1958 uint8_t *wbuf = buf;
1959
1960 /* Partial page write ? */
1961 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1962 cached = 0;
1963 bytes = min_t(int, bytes - column, (int) writelen);
1964 chip->pagebuf = -1;
1965 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1966 memcpy(&chip->buffers->databuf[column], buf, bytes);
1967 wbuf = chip->buffers->databuf;
1968 }
1969
1970 if (unlikely(oob))
1971 oob = nand_fill_oob(chip, oob, ops);
1972
1973 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1974 (ops->mode == MTD_OOB_RAW));
1975 if (ret)
1976 break;
1977
1978 writelen -= bytes;
1979 if (!writelen)
1980 break;
1981
1982 column = 0;
1983 buf += bytes;
1984 realpage++;
1985
1986 page = realpage & chip->pagemask;
1987 /* Check, if we cross a chip boundary */
1988 if (!page) {
1989 chipnr++;
1990 chip->select_chip(mtd, -1);
1991 chip->select_chip(mtd, chipnr);
1992 }
1993 }
1994
1995 ops->retlen = ops->len - writelen;
1996 if (unlikely(oob))
1997 ops->oobretlen = ops->ooblen;
1998 return ret;
1999 }
2000
2001 /**
2002 * nand_write - [MTD Interface] NAND write with ECC
2003 * @mtd: MTD device structure
2004 * @to: offset to write to
2005 * @len: number of bytes to write
2006 * @retlen: pointer to variable to store the number of written bytes
2007 * @buf: the data to write
2008 *
2009 * NAND write with ECC
2010 */
2011 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2012 size_t *retlen, const uint8_t *buf)
2013 {
2014 struct nand_chip *chip = mtd->priv;
2015 int ret;
2016
2017 /* Do not allow reads past end of device */
2018 if ((to + len) > mtd->size)
2019 return -EINVAL;
2020 if (!len)
2021 return 0;
2022
2023 nand_get_device(chip, mtd, FL_WRITING);
2024
2025 chip->ops.len = len;
2026 chip->ops.datbuf = (uint8_t *)buf;
2027 chip->ops.oobbuf = NULL;
2028
2029 ret = nand_do_write_ops(mtd, to, &chip->ops);
2030
2031 *retlen = chip->ops.retlen;
2032
2033 nand_release_device(mtd);
2034
2035 return ret;
2036 }
2037
2038 /**
2039 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2040 * @mtd: MTD device structure
2041 * @to: offset to write to
2042 * @ops: oob operation description structure
2043 *
2044 * NAND write out-of-band
2045 */
2046 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2047 struct mtd_oob_ops *ops)
2048 {
2049 int chipnr, page, status, len;
2050 struct nand_chip *chip = mtd->priv;
2051
2052 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
2053 (unsigned int)to, (int)ops->ooblen);
2054
2055 if (ops->mode == MTD_OOB_AUTO)
2056 len = chip->ecc.layout->oobavail;
2057 else
2058 len = mtd->oobsize;
2059
2060 /* Do not allow write past end of page */
2061 if ((ops->ooboffs + ops->ooblen) > len) {
2062 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
2063 "Attempt to write past end of page\n");
2064 return -EINVAL;
2065 }
2066
2067 if (unlikely(ops->ooboffs >= len)) {
2068 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2069 "Attempt to start write outside oob\n");
2070 return -EINVAL;
2071 }
2072
2073 /* Do not allow reads past end of device */
2074 if (unlikely(to >= mtd->size ||
2075 ops->ooboffs + ops->ooblen >
2076 ((mtd->size >> chip->page_shift) -
2077 (to >> chip->page_shift)) * len)) {
2078 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2079 "Attempt write beyond end of device\n");
2080 return -EINVAL;
2081 }
2082
2083 chipnr = (int)(to >> chip->chip_shift);
2084 chip->select_chip(mtd, chipnr);
2085
2086 /* Shift to get page */
2087 page = (int)(to >> chip->page_shift);
2088
2089 /*
2090 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2091 * of my DiskOnChip 2000 test units) will clear the whole data page too
2092 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2093 * it in the doc2000 driver in August 1999. dwmw2.
2094 */
2095 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2096
2097 /* Check, if it is write protected */
2098 if (nand_check_wp(mtd))
2099 return -EROFS;
2100
2101 /* Invalidate the page cache, if we write to the cached page */
2102 if (page == chip->pagebuf)
2103 chip->pagebuf = -1;
2104
2105 memset(chip->oob_poi, 0xff, mtd->oobsize);
2106 nand_fill_oob(chip, ops->oobbuf, ops);
2107 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2108 memset(chip->oob_poi, 0xff, mtd->oobsize);
2109
2110 if (status)
2111 return status;
2112
2113 ops->oobretlen = ops->ooblen;
2114
2115 return 0;
2116 }
2117
2118 /**
2119 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2120 * @mtd: MTD device structure
2121 * @to: offset to write to
2122 * @ops: oob operation description structure
2123 */
2124 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2125 struct mtd_oob_ops *ops)
2126 {
2127 struct nand_chip *chip = mtd->priv;
2128 int ret = -ENOTSUPP;
2129
2130 ops->retlen = 0;
2131
2132 /* Do not allow writes past end of device */
2133 if (ops->datbuf && (to + ops->len) > mtd->size) {
2134 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2135 "Attempt read beyond end of device\n");
2136 return -EINVAL;
2137 }
2138
2139 nand_get_device(chip, mtd, FL_WRITING);
2140
2141 switch(ops->mode) {
2142 case MTD_OOB_PLACE:
2143 case MTD_OOB_AUTO:
2144 case MTD_OOB_RAW:
2145 break;
2146
2147 default:
2148 goto out;
2149 }
2150
2151 if (!ops->datbuf)
2152 ret = nand_do_write_oob(mtd, to, ops);
2153 else
2154 ret = nand_do_write_ops(mtd, to, ops);
2155
2156 out:
2157 nand_release_device(mtd);
2158 return ret;
2159 }
2160
2161 /**
2162 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2163 * @mtd: MTD device structure
2164 * @page: the page address of the block which will be erased
2165 *
2166 * Standard erase command for NAND chips
2167 */
2168 static void single_erase_cmd(struct mtd_info *mtd, int page)
2169 {
2170 struct nand_chip *chip = mtd->priv;
2171 /* Send commands to erase a block */
2172 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2173 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2174 }
2175
2176 /**
2177 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2178 * @mtd: MTD device structure
2179 * @page: the page address of the block which will be erased
2180 *
2181 * AND multi block erase command function
2182 * Erase 4 consecutive blocks
2183 */
2184 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2185 {
2186 struct nand_chip *chip = mtd->priv;
2187 /* Send commands to erase a block */
2188 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2189 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2190 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2191 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2192 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2193 }
2194
2195 /**
2196 * nand_erase - [MTD Interface] erase block(s)
2197 * @mtd: MTD device structure
2198 * @instr: erase instruction
2199 *
2200 * Erase one ore more blocks
2201 */
2202 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2203 {
2204 return nand_erase_nand(mtd, instr, 0);
2205 }
2206
2207 #define BBT_PAGE_MASK 0xffffff3f
2208 /**
2209 * nand_erase_nand - [Internal] erase block(s)
2210 * @mtd: MTD device structure
2211 * @instr: erase instruction
2212 * @allowbbt: allow erasing the bbt area
2213 *
2214 * Erase one ore more blocks
2215 */
2216 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2217 int allowbbt)
2218 {
2219 int page, status, pages_per_block, ret, chipnr;
2220 struct nand_chip *chip = mtd->priv;
2221 loff_t rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS] = {0};
2222 unsigned int bbt_masked_page = 0xffffffff;
2223 loff_t len;
2224
2225 MTDDEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%012llx, "
2226 "len = %llu\n", (unsigned long long) instr->addr,
2227 (unsigned long long) instr->len);
2228
2229 /* Start address must align on block boundary */
2230 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2231 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2232 return -EINVAL;
2233 }
2234
2235 /* Length must align on block boundary */
2236 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2237 MTDDEBUG (MTD_DEBUG_LEVEL0,
2238 "nand_erase: Length not block aligned\n");
2239 return -EINVAL;
2240 }
2241
2242 /* Do not allow erase past end of device */
2243 if ((instr->len + instr->addr) > mtd->size) {
2244 MTDDEBUG (MTD_DEBUG_LEVEL0,
2245 "nand_erase: Erase past end of device\n");
2246 return -EINVAL;
2247 }
2248
2249 instr->fail_addr = 0xffffffff;
2250
2251 /* Grab the lock and see if the device is available */
2252 nand_get_device(chip, mtd, FL_ERASING);
2253
2254 /* Shift to get first page */
2255 page = (int)(instr->addr >> chip->page_shift);
2256 chipnr = (int)(instr->addr >> chip->chip_shift);
2257
2258 /* Calculate pages in each block */
2259 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2260
2261 /* Select the NAND device */
2262 chip->select_chip(mtd, chipnr);
2263
2264 /* Check, if it is write protected */
2265 if (nand_check_wp(mtd)) {
2266 MTDDEBUG (MTD_DEBUG_LEVEL0,
2267 "nand_erase: Device is write protected!!!\n");
2268 instr->state = MTD_ERASE_FAILED;
2269 goto erase_exit;
2270 }
2271
2272 /*
2273 * If BBT requires refresh, set the BBT page mask to see if the BBT
2274 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2275 * can not be matched. This is also done when the bbt is actually
2276 * erased to avoid recusrsive updates
2277 */
2278 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2279 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2280
2281 /* Loop through the pages */
2282 len = instr->len;
2283
2284 instr->state = MTD_ERASING;
2285
2286 while (len) {
2287 /*
2288 * heck if we have a bad block, we do not erase bad blocks !
2289 */
2290 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2291 chip->page_shift, 0, allowbbt)) {
2292 printk(KERN_WARNING "nand_erase: attempt to erase a "
2293 "bad block at page 0x%08x\n", page);
2294 instr->state = MTD_ERASE_FAILED;
2295 goto erase_exit;
2296 }
2297
2298 /*
2299 * Invalidate the page cache, if we erase the block which
2300 * contains the current cached page
2301 */
2302 if (page <= chip->pagebuf && chip->pagebuf <
2303 (page + pages_per_block))
2304 chip->pagebuf = -1;
2305
2306 chip->erase_cmd(mtd, page & chip->pagemask);
2307
2308 status = chip->waitfunc(mtd, chip);
2309
2310 /*
2311 * See if operation failed and additional status checks are
2312 * available
2313 */
2314 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2315 status = chip->errstat(mtd, chip, FL_ERASING,
2316 status, page);
2317
2318 /* See if block erase succeeded */
2319 if (status & NAND_STATUS_FAIL) {
2320 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2321 "Failed erase, page 0x%08x\n", page);
2322 instr->state = MTD_ERASE_FAILED;
2323 instr->fail_addr = ((loff_t)page << chip->page_shift);
2324 goto erase_exit;
2325 }
2326
2327 /*
2328 * If BBT requires refresh, set the BBT rewrite flag to the
2329 * page being erased
2330 */
2331 if (bbt_masked_page != 0xffffffff &&
2332 (page & BBT_PAGE_MASK) == bbt_masked_page)
2333 rewrite_bbt[chipnr] =
2334 ((loff_t)page << chip->page_shift);
2335
2336 /* Increment page address and decrement length */
2337 len -= (1 << chip->phys_erase_shift);
2338 page += pages_per_block;
2339
2340 /* Check, if we cross a chip boundary */
2341 if (len && !(page & chip->pagemask)) {
2342 chipnr++;
2343 chip->select_chip(mtd, -1);
2344 chip->select_chip(mtd, chipnr);
2345
2346 /*
2347 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2348 * page mask to see if this BBT should be rewritten
2349 */
2350 if (bbt_masked_page != 0xffffffff &&
2351 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2352 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2353 BBT_PAGE_MASK;
2354 }
2355 }
2356 instr->state = MTD_ERASE_DONE;
2357
2358 erase_exit:
2359
2360 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2361
2362 /* Deselect and wake up anyone waiting on the device */
2363 nand_release_device(mtd);
2364
2365 /* Do call back function */
2366 if (!ret)
2367 mtd_erase_callback(instr);
2368
2369 /*
2370 * If BBT requires refresh and erase was successful, rewrite any
2371 * selected bad block tables
2372 */
2373 if (bbt_masked_page == 0xffffffff || ret)
2374 return ret;
2375
2376 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2377 if (!rewrite_bbt[chipnr])
2378 continue;
2379 /* update the BBT for chip */
2380 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2381 "(%d:0x%0llx 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2382 chip->bbt_td->pages[chipnr]);
2383 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2384 }
2385
2386 /* Return more or less happy */
2387 return ret;
2388 }
2389
2390 /**
2391 * nand_sync - [MTD Interface] sync
2392 * @mtd: MTD device structure
2393 *
2394 * Sync is actually a wait for chip ready function
2395 */
2396 static void nand_sync(struct mtd_info *mtd)
2397 {
2398 struct nand_chip *chip = mtd->priv;
2399
2400 MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2401
2402 /* Grab the lock and see if the device is available */
2403 nand_get_device(chip, mtd, FL_SYNCING);
2404 /* Release it and go back */
2405 nand_release_device(mtd);
2406 }
2407
2408 /**
2409 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2410 * @mtd: MTD device structure
2411 * @offs: offset relative to mtd start
2412 */
2413 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2414 {
2415 /* Check for invalid offset */
2416 if (offs > mtd->size)
2417 return -EINVAL;
2418
2419 return nand_block_checkbad(mtd, offs, 1, 0);
2420 }
2421
2422 /**
2423 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2424 * @mtd: MTD device structure
2425 * @ofs: offset relative to mtd start
2426 */
2427 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2428 {
2429 struct nand_chip *chip = mtd->priv;
2430 int ret;
2431
2432 if ((ret = nand_block_isbad(mtd, ofs))) {
2433 /* If it was bad already, return success and do nothing. */
2434 if (ret > 0)
2435 return 0;
2436 return ret;
2437 }
2438
2439 return chip->block_markbad(mtd, ofs);
2440 }
2441
2442 /**
2443 * nand_suspend - [MTD Interface] Suspend the NAND flash
2444 * @mtd: MTD device structure
2445 */
2446 static int nand_suspend(struct mtd_info *mtd)
2447 {
2448 struct nand_chip *chip = mtd->priv;
2449
2450 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2451 }
2452
2453 /**
2454 * nand_resume - [MTD Interface] Resume the NAND flash
2455 * @mtd: MTD device structure
2456 */
2457 static void nand_resume(struct mtd_info *mtd)
2458 {
2459 struct nand_chip *chip = mtd->priv;
2460
2461 if (chip->state == FL_PM_SUSPENDED)
2462 nand_release_device(mtd);
2463 else
2464 printk(KERN_ERR "nand_resume() called for a chip which is not "
2465 "in suspended state\n");
2466 }
2467
2468 /*
2469 * Set default functions
2470 */
2471 static void nand_set_defaults(struct nand_chip *chip, int busw)
2472 {
2473 /* check for proper chip_delay setup, set 20us if not */
2474 if (!chip->chip_delay)
2475 chip->chip_delay = 20;
2476
2477 /* check, if a user supplied command function given */
2478 if (chip->cmdfunc == NULL)
2479 chip->cmdfunc = nand_command;
2480
2481 /* check, if a user supplied wait function given */
2482 if (chip->waitfunc == NULL)
2483 chip->waitfunc = nand_wait;
2484
2485 if (!chip->select_chip)
2486 chip->select_chip = nand_select_chip;
2487 if (!chip->read_byte)
2488 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2489 if (!chip->read_word)
2490 chip->read_word = nand_read_word;
2491 if (!chip->block_bad)
2492 chip->block_bad = nand_block_bad;
2493 if (!chip->block_markbad)
2494 chip->block_markbad = nand_default_block_markbad;
2495 if (!chip->write_buf)
2496 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2497 if (!chip->read_buf)
2498 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2499 if (!chip->verify_buf)
2500 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2501 if (!chip->scan_bbt)
2502 chip->scan_bbt = nand_default_bbt;
2503
2504 if (!chip->controller) {
2505 chip->controller = &chip->hwcontrol;
2506
2507 /* XXX U-BOOT XXX */
2508 #if 0
2509 spin_lock_init(&chip->controller->lock);
2510 init_waitqueue_head(&chip->controller->wq);
2511 #endif
2512 }
2513
2514 }
2515
2516 /*
2517 * Get the flash and manufacturer id and lookup if the type is supported
2518 */
2519 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2520 struct nand_chip *chip,
2521 int busw, int *maf_id)
2522 {
2523 struct nand_flash_dev *type = NULL;
2524 int i, dev_id, maf_idx;
2525 int tmp_id, tmp_manf;
2526
2527 /* Select the device */
2528 chip->select_chip(mtd, 0);
2529
2530 /*
2531 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2532 * after power-up
2533 */
2534 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2535
2536 /* Send the command for reading device ID */
2537 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2538
2539 /* Read manufacturer and device IDs */
2540 *maf_id = chip->read_byte(mtd);
2541 dev_id = chip->read_byte(mtd);
2542
2543 /* Try again to make sure, as some systems the bus-hold or other
2544 * interface concerns can cause random data which looks like a
2545 * possibly credible NAND flash to appear. If the two results do
2546 * not match, ignore the device completely.
2547 */
2548
2549 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2550
2551 /* Read manufacturer and device IDs */
2552
2553 tmp_manf = chip->read_byte(mtd);
2554 tmp_id = chip->read_byte(mtd);
2555
2556 if (tmp_manf != *maf_id || tmp_id != dev_id) {
2557 printk(KERN_INFO "%s: second ID read did not match "
2558 "%02x,%02x against %02x,%02x\n", __func__,
2559 *maf_id, dev_id, tmp_manf, tmp_id);
2560 return ERR_PTR(-ENODEV);
2561 }
2562
2563 /* Lookup the flash id */
2564 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2565 if (dev_id == nand_flash_ids[i].id) {
2566 type = &nand_flash_ids[i];
2567 break;
2568 }
2569 }
2570
2571 if (!type)
2572 return ERR_PTR(-ENODEV);
2573
2574 if (!mtd->name)
2575 mtd->name = type->name;
2576
2577 chip->chipsize = (uint64_t)type->chipsize << 20;
2578
2579 /* Newer devices have all the information in additional id bytes */
2580 if (!type->pagesize) {
2581 int extid;
2582 /* The 3rd id byte holds MLC / multichip data */
2583 chip->cellinfo = chip->read_byte(mtd);
2584 /* The 4th id byte is the important one */
2585 extid = chip->read_byte(mtd);
2586 /* Calc pagesize */
2587 mtd->writesize = 1024 << (extid & 0x3);
2588 extid >>= 2;
2589 /* Calc oobsize */
2590 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2591 extid >>= 2;
2592 /* Calc blocksize. Blocksize is multiples of 64KiB */
2593 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2594 extid >>= 2;
2595 /* Get buswidth information */
2596 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2597
2598 } else {
2599 /*
2600 * Old devices have chip data hardcoded in the device id table
2601 */
2602 mtd->erasesize = type->erasesize;
2603 mtd->writesize = type->pagesize;
2604 mtd->oobsize = mtd->writesize / 32;
2605 busw = type->options & NAND_BUSWIDTH_16;
2606 }
2607
2608 /* Try to identify manufacturer */
2609 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2610 if (nand_manuf_ids[maf_idx].id == *maf_id)
2611 break;
2612 }
2613
2614 /*
2615 * Check, if buswidth is correct. Hardware drivers should set
2616 * chip correct !
2617 */
2618 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2619 printk(KERN_INFO "NAND device: Manufacturer ID:"
2620 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2621 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2622 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2623 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2624 busw ? 16 : 8);
2625 return ERR_PTR(-EINVAL);
2626 }
2627
2628 /* Calculate the address shift from the page size */
2629 chip->page_shift = ffs(mtd->writesize) - 1;
2630 /* Convert chipsize to number of pages per chip -1. */
2631 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2632
2633 chip->bbt_erase_shift = chip->phys_erase_shift =
2634 ffs(mtd->erasesize) - 1;
2635 if (chip->chipsize & 0xffffffff)
2636 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2637 else
2638 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 31;
2639
2640 /* Set the bad block position */
2641 chip->badblockpos = mtd->writesize > 512 ?
2642 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2643
2644 /* Get chip options, preserve non chip based options */
2645 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2646 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2647
2648 /*
2649 * Set chip as a default. Board drivers can override it, if necessary
2650 */
2651 chip->options |= NAND_NO_AUTOINCR;
2652
2653 /* Check if chip is a not a samsung device. Do not clear the
2654 * options for chips which are not having an extended id.
2655 */
2656 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2657 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2658
2659 /* Check for AND chips with 4 page planes */
2660 if (chip->options & NAND_4PAGE_ARRAY)
2661 chip->erase_cmd = multi_erase_cmd;
2662 else
2663 chip->erase_cmd = single_erase_cmd;
2664
2665 /* Do not replace user supplied command function ! */
2666 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2667 chip->cmdfunc = nand_command_lp;
2668
2669 MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2670 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2671 nand_manuf_ids[maf_idx].name, type->name);
2672
2673 return type;
2674 }
2675
2676 /**
2677 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2678 * @mtd: MTD device structure
2679 * @maxchips: Number of chips to scan for
2680 *
2681 * This is the first phase of the normal nand_scan() function. It
2682 * reads the flash ID and sets up MTD fields accordingly.
2683 *
2684 * The mtd->owner field must be set to the module of the caller.
2685 */
2686 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2687 {
2688 int i, busw, nand_maf_id;
2689 struct nand_chip *chip = mtd->priv;
2690 struct nand_flash_dev *type;
2691
2692 /* Get buswidth to select the correct functions */
2693 busw = chip->options & NAND_BUSWIDTH_16;
2694 /* Set the default functions */
2695 nand_set_defaults(chip, busw);
2696
2697 /* Read the flash type */
2698 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2699
2700 if (IS_ERR(type)) {
2701 #ifndef CONFIG_SYS_NAND_QUIET_TEST
2702 printk(KERN_WARNING "No NAND device found!!!\n");
2703 #endif
2704 chip->select_chip(mtd, -1);
2705 return PTR_ERR(type);
2706 }
2707
2708 /* Check for a chip array */
2709 for (i = 1; i < maxchips; i++) {
2710 chip->select_chip(mtd, i);
2711 /* See comment in nand_get_flash_type for reset */
2712 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2713 /* Send the command for reading device ID */
2714 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2715 /* Read manufacturer and device IDs */
2716 if (nand_maf_id != chip->read_byte(mtd) ||
2717 type->id != chip->read_byte(mtd))
2718 break;
2719 }
2720 #ifdef DEBUG
2721 if (i > 1)
2722 printk(KERN_INFO "%d NAND chips detected\n", i);
2723 #endif
2724
2725 /* Store the number of chips and calc total size for mtd */
2726 chip->numchips = i;
2727 mtd->size = i * chip->chipsize;
2728
2729 return 0;
2730 }
2731
2732
2733 /**
2734 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2735 * @mtd: MTD device structure
2736 *
2737 * This is the second phase of the normal nand_scan() function. It
2738 * fills out all the uninitialized function pointers with the defaults
2739 * and scans for a bad block table if appropriate.
2740 */
2741 int nand_scan_tail(struct mtd_info *mtd)
2742 {
2743 int i;
2744 struct nand_chip *chip = mtd->priv;
2745
2746 if (!(chip->options & NAND_OWN_BUFFERS))
2747 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2748 if (!chip->buffers)
2749 return -ENOMEM;
2750
2751 /* Set the internal oob buffer location, just after the page data */
2752 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2753
2754 /*
2755 * If no default placement scheme is given, select an appropriate one
2756 */
2757 if (!chip->ecc.layout) {
2758 switch (mtd->oobsize) {
2759 case 8:
2760 chip->ecc.layout = &nand_oob_8;
2761 break;
2762 case 16:
2763 chip->ecc.layout = &nand_oob_16;
2764 break;
2765 case 64:
2766 chip->ecc.layout = &nand_oob_64;
2767 break;
2768 case 128:
2769 chip->ecc.layout = &nand_oob_128;
2770 break;
2771 default:
2772 printk(KERN_WARNING "No oob scheme defined for "
2773 "oobsize %d\n", mtd->oobsize);
2774 }
2775 }
2776
2777 if (!chip->write_page)
2778 chip->write_page = nand_write_page;
2779
2780 /*
2781 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2782 * selected and we have 256 byte pagesize fallback to software ECC
2783 */
2784 if (!chip->ecc.read_page_raw)
2785 chip->ecc.read_page_raw = nand_read_page_raw;
2786 if (!chip->ecc.write_page_raw)
2787 chip->ecc.write_page_raw = nand_write_page_raw;
2788
2789 switch (chip->ecc.mode) {
2790 case NAND_ECC_HW_OOB_FIRST:
2791 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2792 if (!chip->ecc.calculate || !chip->ecc.correct ||
2793 !chip->ecc.hwctl) {
2794 printk(KERN_WARNING "No ECC functions supplied, "
2795 "Hardware ECC not possible\n");
2796 BUG();
2797 }
2798 if (!chip->ecc.read_page)
2799 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2800
2801 case NAND_ECC_HW:
2802 /* Use standard hwecc read page function ? */
2803 if (!chip->ecc.read_page)
2804 chip->ecc.read_page = nand_read_page_hwecc;
2805 if (!chip->ecc.write_page)
2806 chip->ecc.write_page = nand_write_page_hwecc;
2807 if (!chip->ecc.read_oob)
2808 chip->ecc.read_oob = nand_read_oob_std;
2809 if (!chip->ecc.write_oob)
2810 chip->ecc.write_oob = nand_write_oob_std;
2811
2812 case NAND_ECC_HW_SYNDROME:
2813 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2814 !chip->ecc.hwctl) &&
2815 (!chip->ecc.read_page ||
2816 chip->ecc.read_page == nand_read_page_hwecc ||
2817 !chip->ecc.write_page ||
2818 chip->ecc.write_page == nand_write_page_hwecc)) {
2819 printk(KERN_WARNING "No ECC functions supplied, "
2820 "Hardware ECC not possible\n");
2821 BUG();
2822 }
2823 /* Use standard syndrome read/write page function ? */
2824 if (!chip->ecc.read_page)
2825 chip->ecc.read_page = nand_read_page_syndrome;
2826 if (!chip->ecc.write_page)
2827 chip->ecc.write_page = nand_write_page_syndrome;
2828 if (!chip->ecc.read_oob)
2829 chip->ecc.read_oob = nand_read_oob_syndrome;
2830 if (!chip->ecc.write_oob)
2831 chip->ecc.write_oob = nand_write_oob_syndrome;
2832
2833 if (mtd->writesize >= chip->ecc.size)
2834 break;
2835 printk(KERN_WARNING "%d byte HW ECC not possible on "
2836 "%d byte page size, fallback to SW ECC\n",
2837 chip->ecc.size, mtd->writesize);
2838 chip->ecc.mode = NAND_ECC_SOFT;
2839
2840 case NAND_ECC_SOFT:
2841 chip->ecc.calculate = nand_calculate_ecc;
2842 chip->ecc.correct = nand_correct_data;
2843 chip->ecc.read_page = nand_read_page_swecc;
2844 chip->ecc.read_subpage = nand_read_subpage;
2845 chip->ecc.write_page = nand_write_page_swecc;
2846 chip->ecc.read_oob = nand_read_oob_std;
2847 chip->ecc.write_oob = nand_write_oob_std;
2848 chip->ecc.size = 256;
2849 chip->ecc.bytes = 3;
2850 break;
2851
2852 case NAND_ECC_NONE:
2853 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2854 "This is not recommended !!\n");
2855 chip->ecc.read_page = nand_read_page_raw;
2856 chip->ecc.write_page = nand_write_page_raw;
2857 chip->ecc.read_oob = nand_read_oob_std;
2858 chip->ecc.write_oob = nand_write_oob_std;
2859 chip->ecc.size = mtd->writesize;
2860 chip->ecc.bytes = 0;
2861 break;
2862
2863 default:
2864 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2865 chip->ecc.mode);
2866 BUG();
2867 }
2868
2869 /*
2870 * The number of bytes available for a client to place data into
2871 * the out of band area
2872 */
2873 chip->ecc.layout->oobavail = 0;
2874 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2875 chip->ecc.layout->oobavail +=
2876 chip->ecc.layout->oobfree[i].length;
2877 mtd->oobavail = chip->ecc.layout->oobavail;
2878
2879 /*
2880 * Set the number of read / write steps for one page depending on ECC
2881 * mode
2882 */
2883 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2884 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2885 printk(KERN_WARNING "Invalid ecc parameters\n");
2886 BUG();
2887 }
2888 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2889
2890 /*
2891 * Allow subpage writes up to ecc.steps. Not possible for MLC
2892 * FLASH.
2893 */
2894 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2895 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2896 switch(chip->ecc.steps) {
2897 case 2:
2898 mtd->subpage_sft = 1;
2899 break;
2900 case 4:
2901 case 8:
2902 case 16:
2903 mtd->subpage_sft = 2;
2904 break;
2905 }
2906 }
2907 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2908
2909 /* Initialize state */
2910 chip->state = FL_READY;
2911
2912 /* De-select the device */
2913 chip->select_chip(mtd, -1);
2914
2915 /* Invalidate the pagebuffer reference */
2916 chip->pagebuf = -1;
2917
2918 /* Fill in remaining MTD driver data */
2919 mtd->type = MTD_NANDFLASH;
2920 mtd->flags = MTD_CAP_NANDFLASH;
2921 mtd->erase = nand_erase;
2922 mtd->point = NULL;
2923 mtd->unpoint = NULL;
2924 mtd->read = nand_read;
2925 mtd->write = nand_write;
2926 mtd->read_oob = nand_read_oob;
2927 mtd->write_oob = nand_write_oob;
2928 mtd->sync = nand_sync;
2929 mtd->lock = NULL;
2930 mtd->unlock = NULL;
2931 mtd->suspend = nand_suspend;
2932 mtd->resume = nand_resume;
2933 mtd->block_isbad = nand_block_isbad;
2934 mtd->block_markbad = nand_block_markbad;
2935
2936 /* propagate ecc.layout to mtd_info */
2937 mtd->ecclayout = chip->ecc.layout;
2938
2939 /* Check, if we should skip the bad block table scan */
2940 if (chip->options & NAND_SKIP_BBTSCAN)
2941 chip->options |= NAND_BBT_SCANNED;
2942
2943 return 0;
2944 }
2945
2946 /* module_text_address() isn't exported, and it's mostly a pointless
2947 test if this is a module _anyway_ -- they'd have to try _really_ hard
2948 to call us from in-kernel code if the core NAND support is modular. */
2949 #ifdef MODULE
2950 #define caller_is_module() (1)
2951 #else
2952 #define caller_is_module() \
2953 module_text_address((unsigned long)__builtin_return_address(0))
2954 #endif
2955
2956 /**
2957 * nand_scan - [NAND Interface] Scan for the NAND device
2958 * @mtd: MTD device structure
2959 * @maxchips: Number of chips to scan for
2960 *
2961 * This fills out all the uninitialized function pointers
2962 * with the defaults.
2963 * The flash ID is read and the mtd/chip structures are
2964 * filled with the appropriate values.
2965 * The mtd->owner field must be set to the module of the caller
2966 *
2967 */
2968 int nand_scan(struct mtd_info *mtd, int maxchips)
2969 {
2970 int ret;
2971
2972 /* Many callers got this wrong, so check for it for a while... */
2973 /* XXX U-BOOT XXX */
2974 #if 0
2975 if (!mtd->owner && caller_is_module()) {
2976 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2977 BUG();
2978 }
2979 #endif
2980
2981 ret = nand_scan_ident(mtd, maxchips);
2982 if (!ret)
2983 ret = nand_scan_tail(mtd);
2984 return ret;
2985 }
2986
2987 /**
2988 * nand_release - [NAND Interface] Free resources held by the NAND device
2989 * @mtd: MTD device structure
2990 */
2991 void nand_release(struct mtd_info *mtd)
2992 {
2993 struct nand_chip *chip = mtd->priv;
2994
2995 #ifdef CONFIG_MTD_PARTITIONS
2996 /* Deregister partitions */
2997 del_mtd_partitions(mtd);
2998 #endif
2999 /* Deregister the device */
3000 /* XXX U-BOOT XXX */
3001 #if 0
3002 del_mtd_device(mtd);
3003 #endif
3004
3005 /* Free bad block table memory */
3006 kfree(chip->bbt);
3007 if (!(chip->options & NAND_OWN_BUFFERS))
3008 kfree(chip->buffers);
3009 }
3010
3011 /* XXX U-BOOT XXX */
3012 #if 0
3013 EXPORT_SYMBOL_GPL(nand_scan);
3014 EXPORT_SYMBOL_GPL(nand_scan_ident);
3015 EXPORT_SYMBOL_GPL(nand_scan_tail);
3016 EXPORT_SYMBOL_GPL(nand_release);
3017
3018 static int __init nand_base_init(void)
3019 {
3020 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3021 return 0;
3022 }
3023
3024 static void __exit nand_base_exit(void)
3025 {
3026 led_trigger_unregister_simple(nand_led_trigger);
3027 }
3028
3029 module_init(nand_base_init);
3030 module_exit(nand_base_exit);
3031
3032 MODULE_LICENSE("GPL");
3033 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3034 MODULE_DESCRIPTION("Generic NAND flash driver code");
3035 #endif