]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/coff-sh.c
Remove useless assignment from tui_remove_hooks
[thirdparty/binutils-gdb.git] / bfd / coff-sh.c
CommitLineData
c2dcd04e 1/* BFD back-end for Renesas Super-H COFF binaries.
82704155 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
6
c2dcd04e 7 This file is part of BFD, the Binary File Descriptor library.
252b5132 8
c2dcd04e
NC
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
cd123cb7 11 the Free Software Foundation; either version 3 of the License, or
c2dcd04e 12 (at your option) any later version.
252b5132 13
c2dcd04e
NC
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
252b5132 18
c2dcd04e
NC
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
cd123cb7
NC
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
252b5132 23
252b5132 24#include "sysdep.h"
3db64b00 25#include "bfd.h"
993e9275 26#include "libiberty.h"
252b5132
RH
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "coff/sh.h"
30#include "coff/internal.h"
17505c5c 31
799c00e0
NC
32#undef bfd_pe_print_pdata
33
17505c5c
NC
34#ifdef COFF_WITH_PE
35#include "coff/pe.h"
86033394
NC
36
37#ifndef COFF_IMAGE_WITH_PE
b34976b6 38static bfd_boolean sh_align_load_span
2c3fc389
NC
39 (bfd *, asection *, bfd_byte *,
40 bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
86033394
NC
42
43#define _bfd_sh_align_load_span sh_align_load_span
44#endif
17505c5c 45
799c00e0
NC
46#define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
47
48#else
49
50#define bfd_pe_print_pdata NULL
51
52#endif /* COFF_WITH_PE. */
2b5c217d 53
252b5132
RH
54#include "libcoff.h"
55
56/* Internal functions. */
252b5132 57
17505c5c
NC
58#ifdef COFF_WITH_PE
59/* Can't build import tables with 2**4 alignment. */
60#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
61#else
252b5132 62/* Default section alignment to 2**4. */
17505c5c
NC
63#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
64#endif
65
66#ifdef COFF_IMAGE_WITH_PE
67/* Align PE executables. */
68#define COFF_PAGE_SIZE 0x1000
69#endif
252b5132
RH
70
71/* Generate long file names. */
72#define COFF_LONG_FILENAMES
73
17505c5c 74#ifdef COFF_WITH_PE
b34976b6 75/* Return TRUE if this relocation should
17505c5c 76 appear in the output .reloc section. */
2c3fc389
NC
77
78static bfd_boolean
79in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80 reloc_howto_type * howto)
17505c5c
NC
81{
82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
cbfe05c4 83}
17505c5c
NC
84#endif
85
2c3fc389
NC
86static bfd_reloc_status_type
87sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
88static bfd_boolean
89sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90 bfd_byte *, struct internal_reloc *,
91 struct internal_syment *, asection **);
92static bfd_boolean
93sh_align_loads (bfd *, asection *, struct internal_reloc *,
94 bfd_byte *, bfd_boolean *);
95
252b5132
RH
96/* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98static reloc_howto_type sh_coff_howtos[] =
99{
5f771d47
ILT
100 EMPTY_HOWTO (0),
101 EMPTY_HOWTO (1),
17505c5c
NC
102#ifdef COFF_WITH_PE
103 /* Windows CE */
104 HOWTO (R_SH_IMM32CE, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
b34976b6 108 FALSE, /* pc_relative */
17505c5c
NC
109 0, /* bitpos */
110 complain_overflow_bitfield, /* complain_on_overflow */
111 sh_reloc, /* special_function */
112 "r_imm32ce", /* name */
b34976b6 113 TRUE, /* partial_inplace */
17505c5c
NC
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
b34976b6 116 FALSE), /* pcrel_offset */
17505c5c 117#else
5f771d47 118 EMPTY_HOWTO (2),
17505c5c 119#endif
5f771d47
ILT
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
125 EMPTY_HOWTO (8),
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
252b5132
RH
127
128 HOWTO (R_SH_PCDISP8BY2, /* type */
129 1, /* rightshift */
130 1, /* size (0 = byte, 1 = short, 2 = long) */
131 8, /* bitsize */
b34976b6 132 TRUE, /* pc_relative */
252b5132
RH
133 0, /* bitpos */
134 complain_overflow_signed, /* complain_on_overflow */
135 sh_reloc, /* special_function */
136 "r_pcdisp8by2", /* name */
b34976b6 137 TRUE, /* partial_inplace */
252b5132
RH
138 0xff, /* src_mask */
139 0xff, /* dst_mask */
b34976b6 140 TRUE), /* pcrel_offset */
252b5132 141
5f771d47 142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
252b5132
RH
143
144 HOWTO (R_SH_PCDISP, /* type */
145 1, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 12, /* bitsize */
b34976b6 148 TRUE, /* pc_relative */
252b5132
RH
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 sh_reloc, /* special_function */
152 "r_pcdisp12by2", /* name */
b34976b6 153 TRUE, /* partial_inplace */
252b5132
RH
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
b34976b6 156 TRUE), /* pcrel_offset */
252b5132 157
5f771d47 158 EMPTY_HOWTO (13),
252b5132
RH
159
160 HOWTO (R_SH_IMM32, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 32, /* bitsize */
b34976b6 164 FALSE, /* pc_relative */
252b5132
RH
165 0, /* bitpos */
166 complain_overflow_bitfield, /* complain_on_overflow */
167 sh_reloc, /* special_function */
168 "r_imm32", /* name */
b34976b6 169 TRUE, /* partial_inplace */
252b5132
RH
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
b34976b6 172 FALSE), /* pcrel_offset */
252b5132 173
5f771d47 174 EMPTY_HOWTO (15),
17505c5c 175#ifdef COFF_WITH_PE
07d6d2b8
AM
176 HOWTO (R_SH_IMAGEBASE, /* type */
177 0, /* rightshift */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
179 32, /* bitsize */
180 FALSE, /* pc_relative */
181 0, /* bitpos */
17505c5c 182 complain_overflow_bitfield, /* complain_on_overflow */
07d6d2b8
AM
183 sh_reloc, /* special_function */
184 "rva32", /* name */
185 TRUE, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
17505c5c 189#else
5f771d47 190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
17505c5c 191#endif
5f771d47
ILT
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
252b5132
RH
197
198 HOWTO (R_SH_PCRELIMM8BY2, /* type */
199 1, /* rightshift */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
b34976b6 202 TRUE, /* pc_relative */
252b5132
RH
203 0, /* bitpos */
204 complain_overflow_unsigned, /* complain_on_overflow */
205 sh_reloc, /* special_function */
206 "r_pcrelimm8by2", /* name */
b34976b6 207 TRUE, /* partial_inplace */
252b5132
RH
208 0xff, /* src_mask */
209 0xff, /* dst_mask */
b34976b6 210 TRUE), /* pcrel_offset */
252b5132
RH
211
212 HOWTO (R_SH_PCRELIMM8BY4, /* type */
213 2, /* rightshift */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
215 8, /* bitsize */
b34976b6 216 TRUE, /* pc_relative */
252b5132
RH
217 0, /* bitpos */
218 complain_overflow_unsigned, /* complain_on_overflow */
219 sh_reloc, /* special_function */
220 "r_pcrelimm8by4", /* name */
b34976b6 221 TRUE, /* partial_inplace */
252b5132
RH
222 0xff, /* src_mask */
223 0xff, /* dst_mask */
b34976b6 224 TRUE), /* pcrel_offset */
252b5132
RH
225
226 HOWTO (R_SH_IMM16, /* type */
227 0, /* rightshift */
228 1, /* size (0 = byte, 1 = short, 2 = long) */
229 16, /* bitsize */
b34976b6 230 FALSE, /* pc_relative */
252b5132
RH
231 0, /* bitpos */
232 complain_overflow_bitfield, /* complain_on_overflow */
233 sh_reloc, /* special_function */
234 "r_imm16", /* name */
b34976b6 235 TRUE, /* partial_inplace */
252b5132
RH
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
b34976b6 238 FALSE), /* pcrel_offset */
252b5132
RH
239
240 HOWTO (R_SH_SWITCH16, /* type */
241 0, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 16, /* bitsize */
b34976b6 244 FALSE, /* pc_relative */
252b5132
RH
245 0, /* bitpos */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 sh_reloc, /* special_function */
248 "r_switch16", /* name */
b34976b6 249 TRUE, /* partial_inplace */
252b5132
RH
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
b34976b6 252 FALSE), /* pcrel_offset */
252b5132
RH
253
254 HOWTO (R_SH_SWITCH32, /* type */
255 0, /* rightshift */
256 2, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
b34976b6 258 FALSE, /* pc_relative */
252b5132
RH
259 0, /* bitpos */
260 complain_overflow_bitfield, /* complain_on_overflow */
261 sh_reloc, /* special_function */
262 "r_switch32", /* name */
b34976b6 263 TRUE, /* partial_inplace */
252b5132
RH
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
b34976b6 266 FALSE), /* pcrel_offset */
252b5132
RH
267
268 HOWTO (R_SH_USES, /* type */
269 0, /* rightshift */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
271 16, /* bitsize */
b34976b6 272 FALSE, /* pc_relative */
252b5132
RH
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 sh_reloc, /* special_function */
276 "r_uses", /* name */
b34976b6 277 TRUE, /* partial_inplace */
252b5132
RH
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
b34976b6 280 FALSE), /* pcrel_offset */
252b5132
RH
281
282 HOWTO (R_SH_COUNT, /* type */
283 0, /* rightshift */
284 2, /* size (0 = byte, 1 = short, 2 = long) */
285 32, /* bitsize */
b34976b6 286 FALSE, /* pc_relative */
252b5132
RH
287 0, /* bitpos */
288 complain_overflow_bitfield, /* complain_on_overflow */
289 sh_reloc, /* special_function */
290 "r_count", /* name */
b34976b6 291 TRUE, /* partial_inplace */
252b5132
RH
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
b34976b6 294 FALSE), /* pcrel_offset */
252b5132
RH
295
296 HOWTO (R_SH_ALIGN, /* type */
297 0, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 32, /* bitsize */
b34976b6 300 FALSE, /* pc_relative */
252b5132
RH
301 0, /* bitpos */
302 complain_overflow_bitfield, /* complain_on_overflow */
303 sh_reloc, /* special_function */
304 "r_align", /* name */
b34976b6 305 TRUE, /* partial_inplace */
252b5132
RH
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
b34976b6 308 FALSE), /* pcrel_offset */
252b5132
RH
309
310 HOWTO (R_SH_CODE, /* type */
311 0, /* rightshift */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
313 32, /* bitsize */
b34976b6 314 FALSE, /* pc_relative */
252b5132
RH
315 0, /* bitpos */
316 complain_overflow_bitfield, /* complain_on_overflow */
317 sh_reloc, /* special_function */
318 "r_code", /* name */
b34976b6 319 TRUE, /* partial_inplace */
252b5132
RH
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
b34976b6 322 FALSE), /* pcrel_offset */
252b5132
RH
323
324 HOWTO (R_SH_DATA, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
b34976b6 328 FALSE, /* pc_relative */
252b5132
RH
329 0, /* bitpos */
330 complain_overflow_bitfield, /* complain_on_overflow */
331 sh_reloc, /* special_function */
332 "r_data", /* name */
b34976b6 333 TRUE, /* partial_inplace */
252b5132
RH
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
b34976b6 336 FALSE), /* pcrel_offset */
252b5132
RH
337
338 HOWTO (R_SH_LABEL, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
b34976b6 342 FALSE, /* pc_relative */
252b5132
RH
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 sh_reloc, /* special_function */
346 "r_label", /* name */
b34976b6 347 TRUE, /* partial_inplace */
252b5132
RH
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
b34976b6 350 FALSE), /* pcrel_offset */
252b5132
RH
351
352 HOWTO (R_SH_SWITCH8, /* type */
353 0, /* rightshift */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
355 8, /* bitsize */
b34976b6 356 FALSE, /* pc_relative */
252b5132
RH
357 0, /* bitpos */
358 complain_overflow_bitfield, /* complain_on_overflow */
359 sh_reloc, /* special_function */
360 "r_switch8", /* name */
b34976b6 361 TRUE, /* partial_inplace */
252b5132
RH
362 0xff, /* src_mask */
363 0xff, /* dst_mask */
b34976b6 364 FALSE) /* pcrel_offset */
252b5132
RH
365};
366
367#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
368
369/* Check for a bad magic number. */
370#define BADMAG(x) SHBADMAG(x)
371
372/* Customize coffcode.h (this is not currently used). */
373#define SH 1
374
375/* FIXME: This should not be set here. */
376#define __A_MAGIC_SET__
377
17505c5c 378#ifndef COFF_WITH_PE
252b5132 379/* Swap the r_offset field in and out. */
dc810e39
AM
380#define SWAP_IN_RELOC_OFFSET H_GET_32
381#define SWAP_OUT_RELOC_OFFSET H_PUT_32
252b5132
RH
382
383/* Swap out extra information in the reloc structure. */
384#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
385 do \
386 { \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
389 } \
390 while (0)
17505c5c 391#endif
252b5132
RH
392
393/* Get the value of a symbol, when performing a relocation. */
394
395static long
2c3fc389 396get_symbol_value (asymbol *symbol)
cbfe05c4 397{
252b5132
RH
398 bfd_vma relocation;
399
400 if (bfd_is_com_section (symbol->section))
cbfe05c4
KH
401 relocation = 0;
402 else
252b5132
RH
403 relocation = (symbol->value +
404 symbol->section->output_section->vma +
405 symbol->section->output_offset);
406
407 return relocation;
408}
409
17505c5c
NC
410#ifdef COFF_WITH_PE
411/* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413#define coff_rtype_to_howto coff_sh_rtype_to_howto
2c3fc389 414
17505c5c
NC
415
416static reloc_howto_type *
2c3fc389
NC
417coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
418 asection * sec,
419 struct internal_reloc * rel,
420 struct coff_link_hash_entry * h,
421 struct internal_syment * sym,
422 bfd_vma * addendp)
17505c5c
NC
423{
424 reloc_howto_type * howto;
425
426 howto = sh_coff_howtos + rel->r_type;
427
428 *addendp = 0;
429
430 if (howto->pc_relative)
431 *addendp += sec->vma;
432
433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
434 {
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
439 correct result. */
440 BFD_ASSERT (h != NULL);
441 }
442
443 if (howto->pc_relative)
444 {
445 *addendp -= 4;
446
447 /* If the symbol is defined, then the generic code is going to
07d6d2b8
AM
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
17505c5c
NC
453 if (sym != NULL && sym->n_scnum != 0)
454 *addendp -= sym->n_value;
455 }
456
457 if (rel->r_type == R_SH_IMAGEBASE)
458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
459
460 return howto;
461}
462
993e9275
NC
463#endif /* COFF_WITH_PE */
464
17505c5c
NC
465/* This structure is used to map BFD reloc codes to SH PE relocs. */
466struct shcoff_reloc_map
467{
aa066ac8 468 bfd_reloc_code_real_type bfd_reloc_val;
17505c5c
NC
469 unsigned char shcoff_reloc_val;
470};
471
a9a32010 472#ifdef COFF_WITH_PE
17505c5c
NC
473/* An array mapping BFD reloc codes to SH PE relocs. */
474static const struct shcoff_reloc_map sh_reloc_map[] =
475{
476 { BFD_RELOC_32, R_SH_IMM32CE },
477 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478 { BFD_RELOC_CTOR, R_SH_IMM32CE },
479};
a9a32010
DJ
480#else
481/* An array mapping BFD reloc codes to SH PE relocs. */
482static const struct shcoff_reloc_map sh_reloc_map[] =
483{
484 { BFD_RELOC_32, R_SH_IMM32 },
485 { BFD_RELOC_CTOR, R_SH_IMM32 },
486};
487#endif
17505c5c
NC
488
489/* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491#define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
157090f7 492#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
17505c5c
NC
493
494static reloc_howto_type *
0aa13fee 495sh_coff_reloc_type_lookup (bfd *abfd,
2c3fc389 496 bfd_reloc_code_real_type code)
17505c5c
NC
497{
498 unsigned int i;
499
993e9275
NC
500 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501 if (sh_reloc_map[i].bfd_reloc_val == code)
502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
17505c5c 503
0aa13fee
AM
504 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505 abfd, (unsigned int) code);
17505c5c
NC
506 return NULL;
507}
17505c5c 508
157090f7
AM
509static reloc_howto_type *
510sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
511 const char *r_name)
512{
513 unsigned int i;
514
515 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
516 if (sh_coff_howtos[i].name != NULL
517 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
518 return &sh_coff_howtos[i];
519
520 return NULL;
521}
522
252b5132
RH
523/* This macro is used in coffcode.h to get the howto corresponding to
524 an internal reloc. */
525
526#define RTYPE2HOWTO(relent, internal) \
527 ((relent)->howto = \
528 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
529 ? &sh_coff_howtos[(internal)->r_type] \
530 : (reloc_howto_type *) NULL))
531
532/* This is the same as the macro in coffcode.h, except that it copies
533 r_offset into reloc_entry->addend for some relocs. */
f4943d82
AM
534#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
535 { \
536 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
537 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
538 coffsym = (obj_symbols (abfd) \
539 + (cache_ptr->sym_ptr_ptr - symbols)); \
540 else if (ptr) \
541 coffsym = coff_symbol_from (ptr); \
542 if (coffsym != (coff_symbol_type *) NULL \
543 && coffsym->native->u.syment.n_scnum == 0) \
544 cache_ptr->addend = 0; \
545 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
546 && ptr->section != (asection *) NULL) \
547 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
548 else \
549 cache_ptr->addend = 0; \
252b5132
RH
550 if ((reloc).r_type == R_SH_SWITCH8 \
551 || (reloc).r_type == R_SH_SWITCH16 \
552 || (reloc).r_type == R_SH_SWITCH32 \
553 || (reloc).r_type == R_SH_USES \
554 || (reloc).r_type == R_SH_COUNT \
555 || (reloc).r_type == R_SH_ALIGN) \
556 cache_ptr->addend = (reloc).r_offset; \
557 }
558
559/* This is the howto function for the SH relocations. */
560
561static bfd_reloc_status_type
2c3fc389
NC
562sh_reloc (bfd * abfd,
563 arelent * reloc_entry,
564 asymbol * symbol_in,
565 void * data,
566 asection * input_section,
567 bfd * output_bfd,
568 char ** error_message ATTRIBUTE_UNUSED)
252b5132
RH
569{
570 unsigned long insn;
571 bfd_vma sym_value;
572 unsigned short r_type;
573 bfd_vma addr = reloc_entry->address;
574 bfd_byte *hit_data = addr + (bfd_byte *) data;
575
576 r_type = reloc_entry->howto->type;
577
578 if (output_bfd != NULL)
579 {
580 /* Partial linking--do nothing. */
581 reloc_entry->address += input_section->output_offset;
582 return bfd_reloc_ok;
583 }
584
585 /* Almost all relocs have to do with relaxing. If any work must be
586 done for them, it has been done in sh_relax_section. */
587 if (r_type != R_SH_IMM32
17505c5c
NC
588#ifdef COFF_WITH_PE
589 && r_type != R_SH_IMM32CE
590 && r_type != R_SH_IMAGEBASE
591#endif
252b5132
RH
592 && (r_type != R_SH_PCDISP
593 || (symbol_in->flags & BSF_LOCAL) != 0))
594 return bfd_reloc_ok;
595
596 if (symbol_in != NULL
597 && bfd_is_und_section (symbol_in->section))
598 return bfd_reloc_undefined;
599
6879f5a9
NC
600 if (addr > input_section->size)
601 return bfd_reloc_outofrange;
602
252b5132
RH
603 sym_value = get_symbol_value (symbol_in);
604
605 switch (r_type)
606 {
607 case R_SH_IMM32:
17505c5c
NC
608#ifdef COFF_WITH_PE
609 case R_SH_IMM32CE:
610#endif
252b5132
RH
611 insn = bfd_get_32 (abfd, hit_data);
612 insn += sym_value + reloc_entry->addend;
dc810e39 613 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
252b5132 614 break;
17505c5c
NC
615#ifdef COFF_WITH_PE
616 case R_SH_IMAGEBASE:
617 insn = bfd_get_32 (abfd, hit_data);
dc810e39
AM
618 insn += sym_value + reloc_entry->addend;
619 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
620 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
17505c5c
NC
621 break;
622#endif
252b5132
RH
623 case R_SH_PCDISP:
624 insn = bfd_get_16 (abfd, hit_data);
625 sym_value += reloc_entry->addend;
626 sym_value -= (input_section->output_section->vma
627 + input_section->output_offset
628 + addr
629 + 4);
630 sym_value += (insn & 0xfff) << 1;
631 if (insn & 0x800)
632 sym_value -= 0x1000;
633 insn = (insn & 0xf000) | (sym_value & 0xfff);
dc810e39 634 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
252b5132
RH
635 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
636 return bfd_reloc_overflow;
637 break;
638 default:
639 abort ();
640 break;
641 }
642
643 return bfd_reloc_ok;
644}
645
875f7f69 646#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
252b5132
RH
647
648/* We can do relaxing. */
649#define coff_bfd_relax_section sh_relax_section
650
651/* We use the special COFF backend linker. */
652#define coff_relocate_section sh_relocate_section
653
654/* When relaxing, we need to use special code to get the relocated
655 section contents. */
656#define coff_bfd_get_relocated_section_contents \
657 sh_coff_get_relocated_section_contents
658
659#include "coffcode.h"
660\f
2c3fc389
NC
661static bfd_boolean
662sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
663
252b5132
RH
664/* This function handles relaxing on the SH.
665
666 Function calls on the SH look like this:
667
668 movl L1,r0
669 ...
670 jsr @r0
671 ...
672 L1:
673 .long function
674
675 The compiler and assembler will cooperate to create R_SH_USES
676 relocs on the jsr instructions. The r_offset field of the
677 R_SH_USES reloc is the PC relative offset to the instruction which
678 loads the register (the r_offset field is computed as though it
679 were a jump instruction, so the offset value is actually from four
680 bytes past the instruction). The linker can use this reloc to
681 determine just which function is being called, and thus decide
682 whether it is possible to replace the jsr with a bsr.
683
684 If multiple function calls are all based on a single register load
685 (i.e., the same function is called multiple times), the compiler
686 guarantees that each function call will have an R_SH_USES reloc.
687 Therefore, if the linker is able to convert each R_SH_USES reloc
688 which refers to that address, it can safely eliminate the register
689 load.
690
691 When the assembler creates an R_SH_USES reloc, it examines it to
692 determine which address is being loaded (L1 in the above example).
693 It then counts the number of references to that address, and
694 creates an R_SH_COUNT reloc at that address. The r_offset field of
695 the R_SH_COUNT reloc will be the number of references. If the
696 linker is able to eliminate a register load, it can use the
697 R_SH_COUNT reloc to see whether it can also eliminate the function
698 address.
699
700 SH relaxing also handles another, unrelated, matter. On the SH, if
701 a load or store instruction is not aligned on a four byte boundary,
702 the memory cycle interferes with the 32 bit instruction fetch,
703 causing a one cycle bubble in the pipeline. Therefore, we try to
704 align load and store instructions on four byte boundaries if we
705 can, by swapping them with one of the adjacent instructions. */
706
b34976b6 707static bfd_boolean
2c3fc389
NC
708sh_relax_section (bfd *abfd,
709 asection *sec,
710 struct bfd_link_info *link_info,
711 bfd_boolean *again)
252b5132
RH
712{
713 struct internal_reloc *internal_relocs;
b34976b6 714 bfd_boolean have_code;
252b5132
RH
715 struct internal_reloc *irel, *irelend;
716 bfd_byte *contents = NULL;
252b5132 717
b34976b6 718 *again = FALSE;
252b5132 719
0e1862bb 720 if (bfd_link_relocatable (link_info)
252b5132
RH
721 || (sec->flags & SEC_RELOC) == 0
722 || sec->reloc_count == 0)
b34976b6 723 return TRUE;
252b5132 724
eea6121a
AM
725 if (coff_section_data (abfd, sec) == NULL)
726 {
727 bfd_size_type amt = sizeof (struct coff_section_tdata);
2c3fc389 728 sec->used_by_bfd = bfd_zalloc (abfd, amt);
eea6121a
AM
729 if (sec->used_by_bfd == NULL)
730 return FALSE;
731 }
252b5132
RH
732
733 internal_relocs = (_bfd_coff_read_internal_relocs
734 (abfd, sec, link_info->keep_memory,
b34976b6 735 (bfd_byte *) NULL, FALSE,
252b5132
RH
736 (struct internal_reloc *) NULL));
737 if (internal_relocs == NULL)
738 goto error_return;
252b5132 739
b34976b6 740 have_code = FALSE;
252b5132
RH
741
742 irelend = internal_relocs + sec->reloc_count;
743 for (irel = internal_relocs; irel < irelend; irel++)
744 {
745 bfd_vma laddr, paddr, symval;
746 unsigned short insn;
747 struct internal_reloc *irelfn, *irelscan, *irelcount;
748 struct internal_syment sym;
749 bfd_signed_vma foff;
750
751 if (irel->r_type == R_SH_CODE)
b34976b6 752 have_code = TRUE;
252b5132
RH
753
754 if (irel->r_type != R_SH_USES)
755 continue;
756
757 /* Get the section contents. */
758 if (contents == NULL)
759 {
eea6121a 760 if (coff_section_data (abfd, sec)->contents != NULL)
252b5132
RH
761 contents = coff_section_data (abfd, sec)->contents;
762 else
763 {
eea6121a 764 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
765 goto error_return;
766 }
767 }
768
769 /* The r_offset field of the R_SH_USES reloc will point us to
07d6d2b8
AM
770 the register load. The 4 is because the r_offset field is
771 computed as though it were a jump offset, which are based
772 from 4 bytes after the jump instruction. */
252b5132
RH
773 laddr = irel->r_vaddr - sec->vma + 4;
774 /* Careful to sign extend the 32-bit offset. */
775 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
eea6121a 776 if (laddr >= sec->size)
252b5132 777 {
695344c0 778 /* xgettext: c-format */
2dcf00ce
AM
779 _bfd_error_handler
780 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
781 abfd, (uint64_t) irel->r_vaddr);
252b5132
RH
782 continue;
783 }
784 insn = bfd_get_16 (abfd, contents + laddr);
785
786 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
787 if ((insn & 0xf000) != 0xd000)
788 {
4eca0228 789 _bfd_error_handler
695344c0 790 /* xgettext: c-format */
2dcf00ce
AM
791 (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
792 abfd, (uint64_t) irel->r_vaddr, insn);
252b5132
RH
793 continue;
794 }
795
796 /* Get the address from which the register is being loaded. The
07d6d2b8
AM
797 displacement in the mov.l instruction is quadrupled. It is a
798 displacement from four bytes after the movl instruction, but,
799 before adding in the PC address, two least significant bits
800 of the PC are cleared. We assume that the section is aligned
801 on a four byte boundary. */
252b5132
RH
802 paddr = insn & 0xff;
803 paddr *= 4;
dc810e39 804 paddr += (laddr + 4) &~ (bfd_vma) 3;
eea6121a 805 if (paddr >= sec->size)
252b5132 806 {
4eca0228 807 _bfd_error_handler
695344c0 808 /* xgettext: c-format */
2dcf00ce
AM
809 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
810 abfd, (uint64_t) irel->r_vaddr);
252b5132
RH
811 continue;
812 }
813
814 /* Get the reloc for the address from which the register is
07d6d2b8
AM
815 being loaded. This reloc will tell us which function is
816 actually being called. */
252b5132
RH
817 paddr += sec->vma;
818 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
819 if (irelfn->r_vaddr == paddr
17505c5c
NC
820#ifdef COFF_WITH_PE
821 && (irelfn->r_type == R_SH_IMM32
822 || irelfn->r_type == R_SH_IMM32CE
eea6121a 823 || irelfn->r_type == R_SH_IMAGEBASE)
17505c5c
NC
824
825#else
eea6121a 826 && irelfn->r_type == R_SH_IMM32
17505c5c 827#endif
eea6121a 828 )
252b5132
RH
829 break;
830 if (irelfn >= irelend)
831 {
4eca0228 832 _bfd_error_handler
695344c0 833 /* xgettext: c-format */
2dcf00ce
AM
834 (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
835 abfd, (uint64_t) paddr);
252b5132
RH
836 continue;
837 }
838
839 /* Get the value of the symbol referred to by the reloc. */
840 if (! _bfd_coff_get_external_symbols (abfd))
841 goto error_return;
842 bfd_coff_swap_sym_in (abfd,
843 ((bfd_byte *) obj_coff_external_syms (abfd)
844 + (irelfn->r_symndx
845 * bfd_coff_symesz (abfd))),
846 &sym);
847 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
848 {
4eca0228 849 _bfd_error_handler
695344c0 850 /* xgettext: c-format */
2dcf00ce
AM
851 (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
852 abfd, (uint64_t) paddr);
252b5132
RH
853 continue;
854 }
855
856 if (sym.n_sclass != C_EXT)
857 {
858 symval = (sym.n_value
859 - sec->vma
860 + sec->output_section->vma
861 + sec->output_offset);
862 }
863 else
864 {
865 struct coff_link_hash_entry *h;
866
867 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
868 BFD_ASSERT (h != NULL);
869 if (h->root.type != bfd_link_hash_defined
870 && h->root.type != bfd_link_hash_defweak)
871 {
872 /* This appears to be a reference to an undefined
07d6d2b8
AM
873 symbol. Just ignore it--it will be caught by the
874 regular reloc processing. */
252b5132
RH
875 continue;
876 }
877
878 symval = (h->root.u.def.value
879 + h->root.u.def.section->output_section->vma
880 + h->root.u.def.section->output_offset);
881 }
882
883 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
884
885 /* See if this function call can be shortened. */
886 foff = (symval
887 - (irel->r_vaddr
888 - sec->vma
889 + sec->output_section->vma
890 + sec->output_offset
891 + 4));
892 if (foff < -0x1000 || foff >= 0x1000)
893 {
894 /* After all that work, we can't shorten this function call. */
895 continue;
896 }
897
898 /* Shorten the function call. */
899
900 /* For simplicity of coding, we are going to modify the section
901 contents, the section relocs, and the BFD symbol table. We
902 must tell the rest of the code not to free up this
903 information. It would be possible to instead create a table
904 of changes which have to be made, as is done in coff-mips.c;
905 that would be more work, but would require less memory when
906 the linker is run. */
907
252b5132 908 coff_section_data (abfd, sec)->relocs = internal_relocs;
b34976b6 909 coff_section_data (abfd, sec)->keep_relocs = TRUE;
252b5132
RH
910
911 coff_section_data (abfd, sec)->contents = contents;
b34976b6 912 coff_section_data (abfd, sec)->keep_contents = TRUE;
252b5132 913
b34976b6 914 obj_coff_keep_syms (abfd) = TRUE;
252b5132
RH
915
916 /* Replace the jsr with a bsr. */
917
918 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
07d6d2b8 919 replace the jsr with a bsr. */
252b5132
RH
920 irel->r_type = R_SH_PCDISP;
921 irel->r_symndx = irelfn->r_symndx;
922 if (sym.n_sclass != C_EXT)
923 {
924 /* If this needs to be changed because of future relaxing,
07d6d2b8
AM
925 it will be handled here like other internal PCDISP
926 relocs. */
252b5132 927 bfd_put_16 (abfd,
dc810e39 928 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
252b5132
RH
929 contents + irel->r_vaddr - sec->vma);
930 }
931 else
932 {
933 /* We can't fully resolve this yet, because the external
07d6d2b8
AM
934 symbol value may be changed by future relaxing. We let
935 the final link phase handle it. */
dc810e39
AM
936 bfd_put_16 (abfd, (bfd_vma) 0xb000,
937 contents + irel->r_vaddr - sec->vma);
252b5132
RH
938 }
939
940 /* See if there is another R_SH_USES reloc referring to the same
07d6d2b8 941 register load. */
252b5132
RH
942 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
943 if (irelscan->r_type == R_SH_USES
944 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
945 break;
946 if (irelscan < irelend)
947 {
948 /* Some other function call depends upon this register load,
949 and we have not yet converted that function call.
950 Indeed, we may never be able to convert it. There is
951 nothing else we can do at this point. */
952 continue;
953 }
954
955 /* Look for a R_SH_COUNT reloc on the location where the
07d6d2b8
AM
956 function address is stored. Do this before deleting any
957 bytes, to avoid confusion about the address. */
252b5132
RH
958 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
959 if (irelcount->r_vaddr == paddr
960 && irelcount->r_type == R_SH_COUNT)
961 break;
962
963 /* Delete the register load. */
964 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
965 goto error_return;
966
967 /* That will change things, so, just in case it permits some
07d6d2b8
AM
968 other function call to come within range, we should relax
969 again. Note that this is not required, and it may be slow. */
b34976b6 970 *again = TRUE;
252b5132
RH
971
972 /* Now check whether we got a COUNT reloc. */
973 if (irelcount >= irelend)
974 {
4eca0228 975 _bfd_error_handler
695344c0 976 /* xgettext: c-format */
2dcf00ce
AM
977 (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
978 abfd, (uint64_t) paddr);
252b5132
RH
979 continue;
980 }
981
982 /* The number of uses is stored in the r_offset field. We've
07d6d2b8 983 just deleted one. */
252b5132
RH
984 if (irelcount->r_offset == 0)
985 {
695344c0 986 /* xgettext: c-format */
2dcf00ce
AM
987 _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
988 abfd, (uint64_t) paddr);
252b5132
RH
989 continue;
990 }
991
992 --irelcount->r_offset;
993
994 /* If there are no more uses, we can delete the address. Reload
07d6d2b8
AM
995 the address from irelfn, in case it was changed by the
996 previous call to sh_relax_delete_bytes. */
252b5132
RH
997 if (irelcount->r_offset == 0)
998 {
999 if (! sh_relax_delete_bytes (abfd, sec,
1000 irelfn->r_vaddr - sec->vma, 4))
1001 goto error_return;
1002 }
1003
1004 /* We've done all we can with that function call. */
1005 }
1006
1007 /* Look for load and store instructions that we can align on four
1008 byte boundaries. */
1009 if (have_code)
1010 {
b34976b6 1011 bfd_boolean swapped;
252b5132
RH
1012
1013 /* Get the section contents. */
1014 if (contents == NULL)
1015 {
eea6121a 1016 if (coff_section_data (abfd, sec)->contents != NULL)
252b5132
RH
1017 contents = coff_section_data (abfd, sec)->contents;
1018 else
1019 {
eea6121a 1020 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
1021 goto error_return;
1022 }
1023 }
1024
1025 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1026 goto error_return;
1027
1028 if (swapped)
1029 {
252b5132 1030 coff_section_data (abfd, sec)->relocs = internal_relocs;
b34976b6 1031 coff_section_data (abfd, sec)->keep_relocs = TRUE;
252b5132
RH
1032
1033 coff_section_data (abfd, sec)->contents = contents;
b34976b6 1034 coff_section_data (abfd, sec)->keep_contents = TRUE;
252b5132 1035
b34976b6 1036 obj_coff_keep_syms (abfd) = TRUE;
252b5132
RH
1037 }
1038 }
1039
eea6121a
AM
1040 if (internal_relocs != NULL
1041 && internal_relocs != coff_section_data (abfd, sec)->relocs)
252b5132 1042 {
eea6121a
AM
1043 if (! link_info->keep_memory)
1044 free (internal_relocs);
1045 else
1046 coff_section_data (abfd, sec)->relocs = internal_relocs;
252b5132
RH
1047 }
1048
eea6121a 1049 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
252b5132
RH
1050 {
1051 if (! link_info->keep_memory)
eea6121a 1052 free (contents);
252b5132 1053 else
eea6121a
AM
1054 /* Cache the section contents for coff_link_input_bfd. */
1055 coff_section_data (abfd, sec)->contents = contents;
252b5132
RH
1056 }
1057
b34976b6 1058 return TRUE;
252b5132
RH
1059
1060 error_return:
eea6121a
AM
1061 if (internal_relocs != NULL
1062 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1063 free (internal_relocs);
1064 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1065 free (contents);
b34976b6 1066 return FALSE;
252b5132
RH
1067}
1068
1069/* Delete some bytes from a section while relaxing. */
1070
b34976b6 1071static bfd_boolean
2c3fc389
NC
1072sh_relax_delete_bytes (bfd *abfd,
1073 asection *sec,
1074 bfd_vma addr,
1075 int count)
252b5132
RH
1076{
1077 bfd_byte *contents;
1078 struct internal_reloc *irel, *irelend;
1079 struct internal_reloc *irelalign;
1080 bfd_vma toaddr;
1081 bfd_byte *esym, *esymend;
1082 bfd_size_type symesz;
1083 struct coff_link_hash_entry **sym_hash;
1084 asection *o;
1085
1086 contents = coff_section_data (abfd, sec)->contents;
1087
de194d85 1088 /* The deletion must stop at the next ALIGN reloc for an alignment
252b5132
RH
1089 power larger than the number of bytes we are deleting. */
1090
1091 irelalign = NULL;
eea6121a 1092 toaddr = sec->size;
252b5132
RH
1093
1094 irel = coff_section_data (abfd, sec)->relocs;
1095 irelend = irel + sec->reloc_count;
1096 for (; irel < irelend; irel++)
1097 {
1098 if (irel->r_type == R_SH_ALIGN
1099 && irel->r_vaddr - sec->vma > addr
1100 && count < (1 << irel->r_offset))
1101 {
1102 irelalign = irel;
1103 toaddr = irel->r_vaddr - sec->vma;
1104 break;
1105 }
1106 }
1107
1108 /* Actually delete the bytes. */
dc810e39
AM
1109 memmove (contents + addr, contents + addr + count,
1110 (size_t) (toaddr - addr - count));
252b5132 1111 if (irelalign == NULL)
eea6121a 1112 sec->size -= count;
252b5132
RH
1113 else
1114 {
1115 int i;
1116
1117#define NOP_OPCODE (0x0009)
1118
1119 BFD_ASSERT ((count & 1) == 0);
1120 for (i = 0; i < count; i += 2)
dc810e39 1121 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
252b5132
RH
1122 }
1123
1124 /* Adjust all the relocs. */
1125 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1126 {
1127 bfd_vma nraddr, stop;
1128 bfd_vma start = 0;
1129 int insn = 0;
1130 struct internal_syment sym;
1131 int off, adjust, oinsn;
1132 bfd_signed_vma voff = 0;
b34976b6 1133 bfd_boolean overflow;
252b5132
RH
1134
1135 /* Get the new reloc address. */
1136 nraddr = irel->r_vaddr - sec->vma;
1137 if ((irel->r_vaddr - sec->vma > addr
1138 && irel->r_vaddr - sec->vma < toaddr)
1139 || (irel->r_type == R_SH_ALIGN
1140 && irel->r_vaddr - sec->vma == toaddr))
1141 nraddr -= count;
1142
1143 /* See if this reloc was for the bytes we have deleted, in which
1144 case we no longer care about it. Don't delete relocs which
1145 represent addresses, though. */
1146 if (irel->r_vaddr - sec->vma >= addr
1147 && irel->r_vaddr - sec->vma < addr + count
1148 && irel->r_type != R_SH_ALIGN
1149 && irel->r_type != R_SH_CODE
1150 && irel->r_type != R_SH_DATA
1151 && irel->r_type != R_SH_LABEL)
1152 irel->r_type = R_SH_UNUSED;
1153
1154 /* If this is a PC relative reloc, see if the range it covers
07d6d2b8 1155 includes the bytes we have deleted. */
252b5132
RH
1156 switch (irel->r_type)
1157 {
1158 default:
1159 break;
1160
1161 case R_SH_PCDISP8BY2:
1162 case R_SH_PCDISP:
1163 case R_SH_PCRELIMM8BY2:
1164 case R_SH_PCRELIMM8BY4:
1165 start = irel->r_vaddr - sec->vma;
1166 insn = bfd_get_16 (abfd, contents + nraddr);
1167 break;
1168 }
1169
1170 switch (irel->r_type)
1171 {
1172 default:
1173 start = stop = addr;
1174 break;
1175
1176 case R_SH_IMM32:
17505c5c
NC
1177#ifdef COFF_WITH_PE
1178 case R_SH_IMM32CE:
1179 case R_SH_IMAGEBASE:
1180#endif
252b5132 1181 /* If this reloc is against a symbol defined in this
07d6d2b8
AM
1182 section, and the symbol will not be adjusted below, we
1183 must check the addend to see it will put the value in
1184 range to be adjusted, and hence must be changed. */
252b5132
RH
1185 bfd_coff_swap_sym_in (abfd,
1186 ((bfd_byte *) obj_coff_external_syms (abfd)
1187 + (irel->r_symndx
1188 * bfd_coff_symesz (abfd))),
1189 &sym);
1190 if (sym.n_sclass != C_EXT
1191 && sym.n_scnum == sec->target_index
1192 && ((bfd_vma) sym.n_value <= addr
1193 || (bfd_vma) sym.n_value >= toaddr))
1194 {
1195 bfd_vma val;
1196
1197 val = bfd_get_32 (abfd, contents + nraddr);
1198 val += sym.n_value;
1199 if (val > addr && val < toaddr)
1200 bfd_put_32 (abfd, val - count, contents + nraddr);
1201 }
1202 start = stop = addr;
1203 break;
1204
1205 case R_SH_PCDISP8BY2:
1206 off = insn & 0xff;
1207 if (off & 0x80)
1208 off -= 0x100;
1209 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1210 break;
1211
1212 case R_SH_PCDISP:
1213 bfd_coff_swap_sym_in (abfd,
1214 ((bfd_byte *) obj_coff_external_syms (abfd)
1215 + (irel->r_symndx
1216 * bfd_coff_symesz (abfd))),
1217 &sym);
1218 if (sym.n_sclass == C_EXT)
1219 start = stop = addr;
1220 else
1221 {
1222 off = insn & 0xfff;
1223 if (off & 0x800)
1224 off -= 0x1000;
1225 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1226 }
1227 break;
1228
1229 case R_SH_PCRELIMM8BY2:
1230 off = insn & 0xff;
1231 stop = start + 4 + off * 2;
1232 break;
1233
1234 case R_SH_PCRELIMM8BY4:
1235 off = insn & 0xff;
1236 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1237 break;
1238
1239 case R_SH_SWITCH8:
1240 case R_SH_SWITCH16:
1241 case R_SH_SWITCH32:
1242 /* These relocs types represent
1243 .word L2-L1
1244 The r_offset field holds the difference between the reloc
1245 address and L1. That is the start of the reloc, and
1246 adding in the contents gives us the top. We must adjust
1247 both the r_offset field and the section contents. */
1248
1249 start = irel->r_vaddr - sec->vma;
1250 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1251
1252 if (start > addr
1253 && start < toaddr
1254 && (stop <= addr || stop >= toaddr))
1255 irel->r_offset += count;
1256 else if (stop > addr
1257 && stop < toaddr
1258 && (start <= addr || start >= toaddr))
1259 irel->r_offset -= count;
1260
1261 start = stop;
1262
1263 if (irel->r_type == R_SH_SWITCH16)
1264 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1265 else if (irel->r_type == R_SH_SWITCH8)
1266 voff = bfd_get_8 (abfd, contents + nraddr);
1267 else
1268 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1269 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1270
1271 break;
1272
1273 case R_SH_USES:
1274 start = irel->r_vaddr - sec->vma;
1275 stop = (bfd_vma) ((bfd_signed_vma) start
1276 + (long) irel->r_offset
1277 + 4);
1278 break;
1279 }
1280
1281 if (start > addr
1282 && start < toaddr
1283 && (stop <= addr || stop >= toaddr))
1284 adjust = count;
1285 else if (stop > addr
1286 && stop < toaddr
1287 && (start <= addr || start >= toaddr))
1288 adjust = - count;
1289 else
1290 adjust = 0;
1291
1292 if (adjust != 0)
1293 {
1294 oinsn = insn;
b34976b6 1295 overflow = FALSE;
252b5132
RH
1296 switch (irel->r_type)
1297 {
1298 default:
1299 abort ();
1300 break;
1301
1302 case R_SH_PCDISP8BY2:
1303 case R_SH_PCRELIMM8BY2:
1304 insn += adjust / 2;
1305 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 1306 overflow = TRUE;
dc810e39 1307 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1308 break;
1309
1310 case R_SH_PCDISP:
1311 insn += adjust / 2;
1312 if ((oinsn & 0xf000) != (insn & 0xf000))
b34976b6 1313 overflow = TRUE;
dc810e39 1314 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1315 break;
1316
1317 case R_SH_PCRELIMM8BY4:
1318 BFD_ASSERT (adjust == count || count >= 4);
1319 if (count >= 4)
1320 insn += adjust / 4;
1321 else
1322 {
1323 if ((irel->r_vaddr & 3) == 0)
1324 ++insn;
1325 }
1326 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 1327 overflow = TRUE;
dc810e39 1328 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1329 break;
1330
1331 case R_SH_SWITCH8:
1332 voff += adjust;
1333 if (voff < 0 || voff >= 0xff)
b34976b6 1334 overflow = TRUE;
dc810e39 1335 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1336 break;
1337
1338 case R_SH_SWITCH16:
1339 voff += adjust;
1340 if (voff < - 0x8000 || voff >= 0x8000)
b34976b6 1341 overflow = TRUE;
dc810e39 1342 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1343 break;
1344
1345 case R_SH_SWITCH32:
1346 voff += adjust;
dc810e39 1347 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1348 break;
1349
1350 case R_SH_USES:
1351 irel->r_offset += adjust;
1352 break;
1353 }
1354
1355 if (overflow)
1356 {
4eca0228 1357 _bfd_error_handler
695344c0 1358 /* xgettext: c-format */
2dcf00ce
AM
1359 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
1360 abfd, (uint64_t) irel->r_vaddr);
252b5132 1361 bfd_set_error (bfd_error_bad_value);
b34976b6 1362 return FALSE;
252b5132
RH
1363 }
1364 }
1365
1366 irel->r_vaddr = nraddr + sec->vma;
1367 }
1368
1369 /* Look through all the other sections. If there contain any IMM32
1370 relocs against internal symbols which we are not going to adjust
1371 below, we may need to adjust the addends. */
1372 for (o = abfd->sections; o != NULL; o = o->next)
1373 {
1374 struct internal_reloc *internal_relocs;
1375 struct internal_reloc *irelscan, *irelscanend;
1376 bfd_byte *ocontents;
1377
1378 if (o == sec
1379 || (o->flags & SEC_RELOC) == 0
1380 || o->reloc_count == 0)
1381 continue;
1382
1383 /* We always cache the relocs. Perhaps, if info->keep_memory is
07d6d2b8
AM
1384 FALSE, we should free them, if we are permitted to, when we
1385 leave sh_coff_relax_section. */
252b5132 1386 internal_relocs = (_bfd_coff_read_internal_relocs
b34976b6 1387 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
252b5132
RH
1388 (struct internal_reloc *) NULL));
1389 if (internal_relocs == NULL)
b34976b6 1390 return FALSE;
252b5132
RH
1391
1392 ocontents = NULL;
1393 irelscanend = internal_relocs + o->reloc_count;
1394 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1395 {
1396 struct internal_syment sym;
1397
17505c5c
NC
1398#ifdef COFF_WITH_PE
1399 if (irelscan->r_type != R_SH_IMM32
1400 && irelscan->r_type != R_SH_IMAGEBASE
1401 && irelscan->r_type != R_SH_IMM32CE)
1402#else
252b5132 1403 if (irelscan->r_type != R_SH_IMM32)
17505c5c 1404#endif
252b5132
RH
1405 continue;
1406
1407 bfd_coff_swap_sym_in (abfd,
1408 ((bfd_byte *) obj_coff_external_syms (abfd)
1409 + (irelscan->r_symndx
1410 * bfd_coff_symesz (abfd))),
1411 &sym);
1412 if (sym.n_sclass != C_EXT
1413 && sym.n_scnum == sec->target_index
1414 && ((bfd_vma) sym.n_value <= addr
1415 || (bfd_vma) sym.n_value >= toaddr))
1416 {
1417 bfd_vma val;
1418
1419 if (ocontents == NULL)
1420 {
1421 if (coff_section_data (abfd, o)->contents != NULL)
1422 ocontents = coff_section_data (abfd, o)->contents;
1423 else
1424 {
eea6121a
AM
1425 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1426 return FALSE;
252b5132 1427 /* We always cache the section contents.
07d6d2b8
AM
1428 Perhaps, if info->keep_memory is FALSE, we
1429 should free them, if we are permitted to,
1430 when we leave sh_coff_relax_section. */
252b5132
RH
1431 coff_section_data (abfd, o)->contents = ocontents;
1432 }
1433 }
1434
1435 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1436 val += sym.n_value;
1437 if (val > addr && val < toaddr)
1438 bfd_put_32 (abfd, val - count,
1439 ocontents + irelscan->r_vaddr - o->vma);
1440
b34976b6 1441 coff_section_data (abfd, o)->keep_contents = TRUE;
252b5132
RH
1442 }
1443 }
1444 }
1445
1446 /* Adjusting the internal symbols will not work if something has
1447 already retrieved the generic symbols. It would be possible to
1448 make this work by adjusting the generic symbols at the same time.
1449 However, this case should not arise in normal usage. */
1450 if (obj_symbols (abfd) != NULL
1451 || obj_raw_syments (abfd) != NULL)
1452 {
4eca0228 1453 _bfd_error_handler
871b3ab2 1454 (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
252b5132 1455 bfd_set_error (bfd_error_invalid_operation);
b34976b6 1456 return FALSE;
252b5132
RH
1457 }
1458
1459 /* Adjust all the symbols. */
1460 sym_hash = obj_coff_sym_hashes (abfd);
1461 symesz = bfd_coff_symesz (abfd);
1462 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1463 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1464 while (esym < esymend)
1465 {
1466 struct internal_syment isym;
1467
2c3fc389 1468 bfd_coff_swap_sym_in (abfd, esym, &isym);
252b5132
RH
1469
1470 if (isym.n_scnum == sec->target_index
1471 && (bfd_vma) isym.n_value > addr
1472 && (bfd_vma) isym.n_value < toaddr)
1473 {
1474 isym.n_value -= count;
1475
2c3fc389 1476 bfd_coff_swap_sym_out (abfd, &isym, esym);
252b5132
RH
1477
1478 if (*sym_hash != NULL)
1479 {
1480 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1481 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1482 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1483 && (*sym_hash)->root.u.def.value < toaddr);
1484 (*sym_hash)->root.u.def.value -= count;
1485 }
1486 }
1487
1488 esym += (isym.n_numaux + 1) * symesz;
1489 sym_hash += isym.n_numaux + 1;
1490 }
1491
1492 /* See if we can move the ALIGN reloc forward. We have adjusted
1493 r_vaddr for it already. */
1494 if (irelalign != NULL)
1495 {
1496 bfd_vma alignto, alignaddr;
1497
1498 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1499 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1500 1 << irelalign->r_offset);
1501 if (alignto != alignaddr)
1502 {
1503 /* Tail recursion. */
1504 return sh_relax_delete_bytes (abfd, sec, alignaddr,
dc810e39 1505 (int) (alignto - alignaddr));
252b5132
RH
1506 }
1507 }
1508
b34976b6 1509 return TRUE;
252b5132
RH
1510}
1511\f
1512/* This is yet another version of the SH opcode table, used to rapidly
1513 get information about a particular instruction. */
1514
1515/* The opcode map is represented by an array of these structures. The
1516 array is indexed by the high order four bits in the instruction. */
1517
1518struct sh_major_opcode
1519{
1520 /* A pointer to the instruction list. This is an array which
1521 contains all the instructions with this major opcode. */
1522 const struct sh_minor_opcode *minor_opcodes;
1523 /* The number of elements in minor_opcodes. */
1524 unsigned short count;
1525};
1526
1527/* This structure holds information for a set of SH opcodes. The
1528 instruction code is anded with the mask value, and the resulting
1529 value is used to search the order opcode list. */
1530
1531struct sh_minor_opcode
1532{
1533 /* The sorted opcode list. */
1534 const struct sh_opcode *opcodes;
1535 /* The number of elements in opcodes. */
1536 unsigned short count;
1537 /* The mask value to use when searching the opcode list. */
1538 unsigned short mask;
1539};
1540
1541/* This structure holds information for an SH instruction. An array
1542 of these structures is sorted in order by opcode. */
1543
1544struct sh_opcode
1545{
1546 /* The code for this instruction, after it has been anded with the
1547 mask value in the sh_major_opcode structure. */
1548 unsigned short opcode;
1549 /* Flags for this instruction. */
86033394 1550 unsigned long flags;
252b5132
RH
1551};
1552
1553/* Flag which appear in the sh_opcode structure. */
1554
1555/* This instruction loads a value from memory. */
1556#define LOAD (0x1)
1557
1558/* This instruction stores a value to memory. */
1559#define STORE (0x2)
1560
1561/* This instruction is a branch. */
1562#define BRANCH (0x4)
1563
1564/* This instruction has a delay slot. */
1565#define DELAY (0x8)
1566
1567/* This instruction uses the value in the register in the field at
1568 mask 0x0f00 of the instruction. */
1569#define USES1 (0x10)
84dcfba7 1570#define USES1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1571
1572/* This instruction uses the value in the register in the field at
1573 mask 0x00f0 of the instruction. */
1574#define USES2 (0x20)
84dcfba7 1575#define USES2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1576
1577/* This instruction uses the value in register 0. */
1578#define USESR0 (0x40)
1579
1580/* This instruction sets the value in the register in the field at
1581 mask 0x0f00 of the instruction. */
1582#define SETS1 (0x80)
84dcfba7 1583#define SETS1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1584
1585/* This instruction sets the value in the register in the field at
1586 mask 0x00f0 of the instruction. */
1587#define SETS2 (0x100)
84dcfba7 1588#define SETS2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1589
1590/* This instruction sets register 0. */
1591#define SETSR0 (0x200)
1592
1593/* This instruction sets a special register. */
1594#define SETSSP (0x400)
1595
1596/* This instruction uses a special register. */
1597#define USESSP (0x800)
1598
1599/* This instruction uses the floating point register in the field at
1600 mask 0x0f00 of the instruction. */
1601#define USESF1 (0x1000)
84dcfba7 1602#define USESF1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1603
1604/* This instruction uses the floating point register in the field at
1605 mask 0x00f0 of the instruction. */
1606#define USESF2 (0x2000)
84dcfba7 1607#define USESF2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1608
1609/* This instruction uses floating point register 0. */
1610#define USESF0 (0x4000)
1611
1612/* This instruction sets the floating point register in the field at
1613 mask 0x0f00 of the instruction. */
1614#define SETSF1 (0x8000)
84dcfba7 1615#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
252b5132 1616
d4845d57
JR
1617#define USESAS (0x10000)
1618#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1619#define USESR8 (0x20000)
1620#define SETSAS (0x40000)
1621#define SETSAS_REG(x) USESAS_REG (x)
1622
8d6ad26e
AM
1623#define MAP(a) a, sizeof a / sizeof a[0]
1624
86033394 1625#ifndef COFF_IMAGE_WITH_PE
252b5132 1626
8d6ad26e 1627/* The opcode maps. */
252b5132
RH
1628
1629static const struct sh_opcode sh_opcode00[] =
1630{
1631 { 0x0008, SETSSP }, /* clrt */
1632 { 0x0009, 0 }, /* nop */
1633 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1634 { 0x0018, SETSSP }, /* sett */
1635 { 0x0019, SETSSP }, /* div0u */
1636 { 0x001b, 0 }, /* sleep */
1637 { 0x0028, SETSSP }, /* clrmac */
1638 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1639 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1640 { 0x0048, SETSSP }, /* clrs */
1641 { 0x0058, SETSSP } /* sets */
1642};
1643
1644static const struct sh_opcode sh_opcode01[] =
1645{
252b5132
RH
1646 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1647 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
252b5132 1648 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
252b5132
RH
1649 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1650 { 0x0029, SETS1 | USESSP }, /* movt rn */
1651 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
d4845d57
JR
1652 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1653 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1654 { 0x0083, LOAD | USES1 }, /* pref @rn */
1655 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1656 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1657 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1658 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1659 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1660};
1661
252b5132
RH
1662static const struct sh_opcode sh_opcode02[] =
1663{
d4845d57 1664 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
252b5132
RH
1665 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1666 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1667 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1668 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1669 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1670 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1671 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1672 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1673};
1674
1675static const struct sh_minor_opcode sh_opcode0[] =
1676{
1677 { MAP (sh_opcode00), 0xffff },
1678 { MAP (sh_opcode01), 0xf0ff },
1679 { MAP (sh_opcode02), 0xf00f }
1680};
1681
1682static const struct sh_opcode sh_opcode10[] =
1683{
1684 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1685};
1686
1687static const struct sh_minor_opcode sh_opcode1[] =
1688{
1689 { MAP (sh_opcode10), 0xf000 }
1690};
1691
1692static const struct sh_opcode sh_opcode20[] =
1693{
1694 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1695 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1696 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1697 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1698 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1699 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1700 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1701 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1702 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1703 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1704 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1705 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1706 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1707 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1708 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1709};
1710
1711static const struct sh_minor_opcode sh_opcode2[] =
1712{
1713 { MAP (sh_opcode20), 0xf00f }
1714};
1715
1716static const struct sh_opcode sh_opcode30[] =
1717{
1718 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1719 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1720 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1721 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1722 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1723 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1724 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1725 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1726 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1727 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1728 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1729 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1730 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1731 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1732};
1733
1734static const struct sh_minor_opcode sh_opcode3[] =
1735{
1736 { MAP (sh_opcode30), 0xf00f }
1737};
1738
1739static const struct sh_opcode sh_opcode40[] =
1740{
1741 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1742 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1743 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
252b5132
RH
1744 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1745 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1746 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
252b5132
RH
1747 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1748 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1749 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1750 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
252b5132
RH
1751 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1752 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1753 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
d4845d57 1754 { 0x4014, SETSSP | USES1 }, /* setrc rm */
252b5132
RH
1755 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1756 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
252b5132
RH
1757 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1758 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1759 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1760 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
252b5132
RH
1761 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1762 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1763 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
252b5132
RH
1764 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1765 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1766 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
252b5132
RH
1767 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1768 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1769 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1770 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
d4845d57
JR
1771 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1772 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1773 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1774 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1775 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1776 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1777 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1778 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1779 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1780 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1781 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1782 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1783 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1784 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1785 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1786 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1787 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1788 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1789 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1790 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1791 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
252b5132
RH
1792};
1793
1794static const struct sh_opcode sh_opcode41[] =
1795{
d4845d57
JR
1796 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1797 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1798 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1799 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1800 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
252b5132
RH
1801 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1802};
1803
1804static const struct sh_minor_opcode sh_opcode4[] =
1805{
1806 { MAP (sh_opcode40), 0xf0ff },
d4845d57 1807 { MAP (sh_opcode41), 0xf00f }
252b5132
RH
1808};
1809
1810static const struct sh_opcode sh_opcode50[] =
1811{
1812 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1813};
1814
1815static const struct sh_minor_opcode sh_opcode5[] =
1816{
1817 { MAP (sh_opcode50), 0xf000 }
1818};
1819
1820static const struct sh_opcode sh_opcode60[] =
1821{
1822 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1823 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1824 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1825 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1826 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1827 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1828 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1829 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1830 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1831 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1832 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1833 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1834 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1835 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1836 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1837 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1838};
1839
1840static const struct sh_minor_opcode sh_opcode6[] =
1841{
1842 { MAP (sh_opcode60), 0xf00f }
1843};
1844
1845static const struct sh_opcode sh_opcode70[] =
1846{
1847 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1848};
1849
1850static const struct sh_minor_opcode sh_opcode7[] =
1851{
1852 { MAP (sh_opcode70), 0xf000 }
1853};
1854
1855static const struct sh_opcode sh_opcode80[] =
1856{
1857 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1858 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
d4845d57 1859 { 0x8200, SETSSP }, /* setrc #imm */
252b5132
RH
1860 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1861 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1862 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1863 { 0x8900, BRANCH | USESSP }, /* bt label */
1864 { 0x8b00, BRANCH | USESSP }, /* bf label */
d4845d57 1865 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
252b5132 1866 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
d4845d57 1867 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
252b5132
RH
1868 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1869};
1870
1871static const struct sh_minor_opcode sh_opcode8[] =
1872{
1873 { MAP (sh_opcode80), 0xff00 }
1874};
1875
1876static const struct sh_opcode sh_opcode90[] =
1877{
1878 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1879};
1880
1881static const struct sh_minor_opcode sh_opcode9[] =
1882{
1883 { MAP (sh_opcode90), 0xf000 }
1884};
1885
1886static const struct sh_opcode sh_opcodea0[] =
1887{
1888 { 0xa000, BRANCH | DELAY } /* bra label */
1889};
1890
1891static const struct sh_minor_opcode sh_opcodea[] =
1892{
1893 { MAP (sh_opcodea0), 0xf000 }
1894};
1895
1896static const struct sh_opcode sh_opcodeb0[] =
1897{
1898 { 0xb000, BRANCH | DELAY } /* bsr label */
1899};
1900
1901static const struct sh_minor_opcode sh_opcodeb[] =
1902{
1903 { MAP (sh_opcodeb0), 0xf000 }
1904};
1905
1906static const struct sh_opcode sh_opcodec0[] =
1907{
1908 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1909 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1910 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1911 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1912 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1913 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1914 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1915 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1916 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1917 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1918 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1919 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1920 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1921 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1922 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1923 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1924};
1925
1926static const struct sh_minor_opcode sh_opcodec[] =
1927{
1928 { MAP (sh_opcodec0), 0xff00 }
1929};
1930
1931static const struct sh_opcode sh_opcoded0[] =
1932{
1933 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1934};
1935
1936static const struct sh_minor_opcode sh_opcoded[] =
1937{
1938 { MAP (sh_opcoded0), 0xf000 }
1939};
1940
1941static const struct sh_opcode sh_opcodee0[] =
1942{
1943 { 0xe000, SETS1 } /* mov #imm,rn */
1944};
1945
1946static const struct sh_minor_opcode sh_opcodee[] =
1947{
1948 { MAP (sh_opcodee0), 0xf000 }
1949};
1950
1951static const struct sh_opcode sh_opcodef0[] =
1952{
1953 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1954 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1955 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1956 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1957 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1958 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1959 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1960 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1961 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1962 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1963 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1964 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1965 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1966 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1967};
1968
1969static const struct sh_opcode sh_opcodef1[] =
1970{
1971 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1972 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1973 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1974 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1975 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1976 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1977 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1978 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1979 { 0xf08d, SETSF1 }, /* fldi0 fn */
1980 { 0xf09d, SETSF1 } /* fldi1 fn */
1981};
1982
1983static const struct sh_minor_opcode sh_opcodef[] =
1984{
1985 { MAP (sh_opcodef0), 0xf00f },
1986 { MAP (sh_opcodef1), 0xf0ff }
1987};
1988
d4845d57 1989static struct sh_major_opcode sh_opcodes[] =
252b5132
RH
1990{
1991 { MAP (sh_opcode0) },
1992 { MAP (sh_opcode1) },
1993 { MAP (sh_opcode2) },
1994 { MAP (sh_opcode3) },
1995 { MAP (sh_opcode4) },
1996 { MAP (sh_opcode5) },
1997 { MAP (sh_opcode6) },
1998 { MAP (sh_opcode7) },
1999 { MAP (sh_opcode8) },
2000 { MAP (sh_opcode9) },
2001 { MAP (sh_opcodea) },
2002 { MAP (sh_opcodeb) },
2003 { MAP (sh_opcodec) },
2004 { MAP (sh_opcoded) },
2005 { MAP (sh_opcodee) },
2006 { MAP (sh_opcodef) }
2007};
2008
d4845d57
JR
2009/* The double data transfer / parallel processing insns are not
2010 described here. This will cause sh_align_load_span to leave them alone. */
2011
2012static const struct sh_opcode sh_dsp_opcodef0[] =
2013{
2014 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2015 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2016 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2017 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2018 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2019 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2020 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2021 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2022};
2023
2024static const struct sh_minor_opcode sh_dsp_opcodef[] =
2025{
2026 { MAP (sh_dsp_opcodef0), 0xfc0d }
2027};
2028
252b5132
RH
2029/* Given an instruction, return a pointer to the corresponding
2030 sh_opcode structure. Return NULL if the instruction is not
2031 recognized. */
2032
2033static const struct sh_opcode *
2c3fc389 2034sh_insn_info (unsigned int insn)
252b5132
RH
2035{
2036 const struct sh_major_opcode *maj;
2037 const struct sh_minor_opcode *min, *minend;
2038
2039 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2040 min = maj->minor_opcodes;
2041 minend = min + maj->count;
2042 for (; min < minend; min++)
2043 {
2044 unsigned int l;
2045 const struct sh_opcode *op, *opend;
2046
2047 l = insn & min->mask;
2048 op = min->opcodes;
2049 opend = op + min->count;
2050
2051 /* Since the opcodes tables are sorted, we could use a binary
07d6d2b8 2052 search here if the count were above some cutoff value. */
252b5132
RH
2053 for (; op < opend; op++)
2054 if (op->opcode == l)
2055 return op;
2056 }
2057
cbfe05c4 2058 return NULL;
252b5132
RH
2059}
2060
2061/* See whether an instruction uses a general purpose register. */
2062
b34976b6 2063static bfd_boolean
2c3fc389
NC
2064sh_insn_uses_reg (unsigned int insn,
2065 const struct sh_opcode *op,
2066 unsigned int reg)
252b5132
RH
2067{
2068 unsigned int f;
2069
2070 f = op->flags;
2071
2072 if ((f & USES1) != 0
84dcfba7 2073 && USES1_REG (insn) == reg)
b34976b6 2074 return TRUE;
252b5132 2075 if ((f & USES2) != 0
84dcfba7 2076 && USES2_REG (insn) == reg)
b34976b6 2077 return TRUE;
252b5132
RH
2078 if ((f & USESR0) != 0
2079 && reg == 0)
b34976b6 2080 return TRUE;
d4845d57 2081 if ((f & USESAS) && reg == USESAS_REG (insn))
b34976b6 2082 return TRUE;
d4845d57 2083 if ((f & USESR8) && reg == 8)
b34976b6 2084 return TRUE;
252b5132 2085
b34976b6 2086 return FALSE;
252b5132 2087}
17505c5c 2088
84dcfba7
JR
2089/* See whether an instruction sets a general purpose register. */
2090
b34976b6 2091static bfd_boolean
2c3fc389
NC
2092sh_insn_sets_reg (unsigned int insn,
2093 const struct sh_opcode *op,
2094 unsigned int reg)
84dcfba7
JR
2095{
2096 unsigned int f;
2097
2098 f = op->flags;
2099
2100 if ((f & SETS1) != 0
2101 && SETS1_REG (insn) == reg)
b34976b6 2102 return TRUE;
84dcfba7
JR
2103 if ((f & SETS2) != 0
2104 && SETS2_REG (insn) == reg)
b34976b6 2105 return TRUE;
84dcfba7
JR
2106 if ((f & SETSR0) != 0
2107 && reg == 0)
b34976b6 2108 return TRUE;
d4845d57 2109 if ((f & SETSAS) && reg == SETSAS_REG (insn))
b34976b6 2110 return TRUE;
84dcfba7 2111
b34976b6 2112 return FALSE;
84dcfba7
JR
2113}
2114
2c3fc389 2115/* See whether an instruction uses or sets a general purpose register */
84dcfba7 2116
b34976b6 2117static bfd_boolean
2c3fc389
NC
2118sh_insn_uses_or_sets_reg (unsigned int insn,
2119 const struct sh_opcode *op,
2120 unsigned int reg)
84dcfba7 2121{
2c3fc389 2122 if (sh_insn_uses_reg (insn, op, reg))
b34976b6 2123 return TRUE;
84dcfba7 2124
2c3fc389 2125 return sh_insn_sets_reg (insn, op, reg);
84dcfba7 2126}
252b5132
RH
2127
2128/* See whether an instruction uses a floating point register. */
2129
b34976b6 2130static bfd_boolean
2c3fc389
NC
2131sh_insn_uses_freg (unsigned int insn,
2132 const struct sh_opcode *op,
2133 unsigned int freg)
252b5132
RH
2134{
2135 unsigned int f;
2136
2137 f = op->flags;
2138
2139 /* We can't tell if this is a double-precision insn, so just play safe
2140 and assume that it might be. So not only have we test FREG against
2141 itself, but also even FREG against FREG+1 - if the using insn uses
2142 just the low part of a double precision value - but also an odd
2143 FREG against FREG-1 - if the setting insn sets just the low part
2144 of a double precision value.
2145 So what this all boils down to is that we have to ignore the lowest
2146 bit of the register number. */
cbfe05c4 2147
252b5132 2148 if ((f & USESF1) != 0
84dcfba7 2149 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2150 return TRUE;
252b5132 2151 if ((f & USESF2) != 0
84dcfba7 2152 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2153 return TRUE;
252b5132
RH
2154 if ((f & USESF0) != 0
2155 && freg == 0)
b34976b6 2156 return TRUE;
252b5132 2157
b34976b6 2158 return FALSE;
252b5132
RH
2159}
2160
84dcfba7
JR
2161/* See whether an instruction sets a floating point register. */
2162
b34976b6 2163static bfd_boolean
2c3fc389
NC
2164sh_insn_sets_freg (unsigned int insn,
2165 const struct sh_opcode *op,
2166 unsigned int freg)
84dcfba7
JR
2167{
2168 unsigned int f;
2169
2170 f = op->flags;
2171
2172 /* We can't tell if this is a double-precision insn, so just play safe
2173 and assume that it might be. So not only have we test FREG against
2174 itself, but also even FREG against FREG+1 - if the using insn uses
2175 just the low part of a double precision value - but also an odd
2176 FREG against FREG-1 - if the setting insn sets just the low part
2177 of a double precision value.
2178 So what this all boils down to is that we have to ignore the lowest
2179 bit of the register number. */
cbfe05c4 2180
84dcfba7
JR
2181 if ((f & SETSF1) != 0
2182 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2183 return TRUE;
84dcfba7 2184
b34976b6 2185 return FALSE;
84dcfba7
JR
2186}
2187
2c3fc389
NC
2188/* See whether an instruction uses or sets a floating point register */
2189
2190static bfd_boolean
2191sh_insn_uses_or_sets_freg (unsigned int insn,
2192 const struct sh_opcode *op,
2193 unsigned int reg)
2194{
2195 if (sh_insn_uses_freg (insn, op, reg))
2196 return TRUE;
2197
2198 return sh_insn_sets_freg (insn, op, reg);
2199}
2200
252b5132
RH
2201/* See whether instructions I1 and I2 conflict, assuming I1 comes
2202 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
b34976b6 2203 This should return TRUE if there is a conflict, or FALSE if the
252b5132
RH
2204 instructions can be swapped safely. */
2205
b34976b6 2206static bfd_boolean
2c3fc389
NC
2207sh_insns_conflict (unsigned int i1,
2208 const struct sh_opcode *op1,
2209 unsigned int i2,
2210 const struct sh_opcode *op2)
252b5132
RH
2211{
2212 unsigned int f1, f2;
2213
2214 f1 = op1->flags;
2215 f2 = op2->flags;
2216
2217 /* Load of fpscr conflicts with floating point operations.
2218 FIXME: shouldn't test raw opcodes here. */
2219 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2220 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
b34976b6 2221 return TRUE;
252b5132
RH
2222
2223 if ((f1 & (BRANCH | DELAY)) != 0
2224 || (f2 & (BRANCH | DELAY)) != 0)
b34976b6 2225 return TRUE;
252b5132 2226
84dcfba7
JR
2227 if (((f1 | f2) & SETSSP)
2228 && (f1 & (SETSSP | USESSP))
2229 && (f2 & (SETSSP | USESSP)))
b34976b6 2230 return TRUE;
252b5132
RH
2231
2232 if ((f1 & SETS1) != 0
84dcfba7 2233 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
b34976b6 2234 return TRUE;
252b5132 2235 if ((f1 & SETS2) != 0
84dcfba7 2236 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
b34976b6 2237 return TRUE;
252b5132 2238 if ((f1 & SETSR0) != 0
84dcfba7 2239 && sh_insn_uses_or_sets_reg (i2, op2, 0))
b34976b6 2240 return TRUE;
d4845d57
JR
2241 if ((f1 & SETSAS)
2242 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
b34976b6 2243 return TRUE;
252b5132 2244 if ((f1 & SETSF1) != 0
84dcfba7 2245 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
b34976b6 2246 return TRUE;
252b5132
RH
2247
2248 if ((f2 & SETS1) != 0
84dcfba7 2249 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
b34976b6 2250 return TRUE;
252b5132 2251 if ((f2 & SETS2) != 0
84dcfba7 2252 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
b34976b6 2253 return TRUE;
252b5132 2254 if ((f2 & SETSR0) != 0
84dcfba7 2255 && sh_insn_uses_or_sets_reg (i1, op1, 0))
b34976b6 2256 return TRUE;
d4845d57
JR
2257 if ((f2 & SETSAS)
2258 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
b34976b6 2259 return TRUE;
252b5132 2260 if ((f2 & SETSF1) != 0
84dcfba7 2261 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
b34976b6 2262 return TRUE;
252b5132
RH
2263
2264 /* The instructions do not conflict. */
b34976b6 2265 return FALSE;
252b5132
RH
2266}
2267
2268/* I1 is a load instruction, and I2 is some other instruction. Return
b34976b6 2269 TRUE if I1 loads a register which I2 uses. */
252b5132 2270
b34976b6 2271static bfd_boolean
2c3fc389
NC
2272sh_load_use (unsigned int i1,
2273 const struct sh_opcode *op1,
2274 unsigned int i2,
2275 const struct sh_opcode *op2)
252b5132
RH
2276{
2277 unsigned int f1;
2278
2279 f1 = op1->flags;
2280
2281 if ((f1 & LOAD) == 0)
b34976b6 2282 return FALSE;
252b5132
RH
2283
2284 /* If both SETS1 and SETSSP are set, that means a load to a special
2285 register using postincrement addressing mode, which we don't care
2286 about here. */
2287 if ((f1 & SETS1) != 0
2288 && (f1 & SETSSP) == 0
2289 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
b34976b6 2290 return TRUE;
252b5132
RH
2291
2292 if ((f1 & SETSR0) != 0
2293 && sh_insn_uses_reg (i2, op2, 0))
b34976b6 2294 return TRUE;
252b5132
RH
2295
2296 if ((f1 & SETSF1) != 0
2297 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
b34976b6 2298 return TRUE;
252b5132 2299
b34976b6 2300 return FALSE;
252b5132
RH
2301}
2302
2303/* Try to align loads and stores within a span of memory. This is
2304 called by both the ELF and the COFF sh targets. ABFD and SEC are
2305 the BFD and section we are examining. CONTENTS is the contents of
2306 the section. SWAP is the routine to call to swap two instructions.
2307 RELOCS is a pointer to the internal relocation information, to be
2308 passed to SWAP. PLABEL is a pointer to the current label in a
2309 sorted list of labels; LABEL_END is the end of the list. START and
2310 STOP are the range of memory to examine. If a swap is made,
b34976b6 2311 *PSWAPPED is set to TRUE. */
252b5132 2312
86033394
NC
2313#ifdef COFF_WITH_PE
2314static
2315#endif
b34976b6 2316bfd_boolean
2c3fc389
NC
2317_bfd_sh_align_load_span (bfd *abfd,
2318 asection *sec,
2319 bfd_byte *contents,
2320 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2321 void * relocs,
2322 bfd_vma **plabel,
2323 bfd_vma *label_end,
2324 bfd_vma start,
2325 bfd_vma stop,
2326 bfd_boolean *pswapped)
252b5132 2327{
d4845d57
JR
2328 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2329 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
252b5132
RH
2330 bfd_vma i;
2331
d4845d57
JR
2332 /* The SH4 has a Harvard architecture, hence aligning loads is not
2333 desirable. In fact, it is counter-productive, since it interferes
2334 with the schedules generated by the compiler. */
2335 if (abfd->arch_info->mach == bfd_mach_sh4)
b34976b6 2336 return TRUE;
d4845d57
JR
2337
2338 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2339 instructions. */
2340 if (dsp)
2341 {
2342 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
4c0160b8 2343 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
d4845d57
JR
2344 }
2345
252b5132
RH
2346 /* Instructions should be aligned on 2 byte boundaries. */
2347 if ((start & 1) == 1)
2348 ++start;
2349
2350 /* Now look through the unaligned addresses. */
2351 i = start;
2352 if ((i & 2) == 0)
2353 i += 2;
2354 for (; i < stop; i += 4)
2355 {
2356 unsigned int insn;
2357 const struct sh_opcode *op;
2358 unsigned int prev_insn = 0;
2359 const struct sh_opcode *prev_op = NULL;
2360
2361 insn = bfd_get_16 (abfd, contents + i);
2362 op = sh_insn_info (insn);
2363 if (op == NULL
2364 || (op->flags & (LOAD | STORE)) == 0)
2365 continue;
2366
2367 /* This is a load or store which is not on a four byte boundary. */
2368
2369 while (*plabel < label_end && **plabel < i)
2370 ++*plabel;
2371
2372 if (i > start)
2373 {
2374 prev_insn = bfd_get_16 (abfd, contents + i - 2);
d4845d57
JR
2375 /* If INSN is the field b of a parallel processing insn, it is not
2376 a load / store after all. Note that the test here might mistake
2377 the field_b of a pcopy insn for the starting code of a parallel
2378 processing insn; this might miss a swapping opportunity, but at
2379 least we're on the safe side. */
2380 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2381 continue;
2382
2383 /* Check if prev_insn is actually the field b of a parallel
2384 processing insn. Again, this can give a spurious match
2385 after a pcopy. */
2386 if (dsp && i - 2 > start)
2387 {
2388 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
cbfe05c4 2389
d4845d57
JR
2390 if ((pprev_insn & 0xfc00) == 0xf800)
2391 prev_op = NULL;
2392 else
2393 prev_op = sh_insn_info (prev_insn);
2394 }
2395 else
2396 prev_op = sh_insn_info (prev_insn);
252b5132
RH
2397
2398 /* If the load/store instruction is in a delay slot, we
2399 can't swap. */
2400 if (prev_op == NULL
2401 || (prev_op->flags & DELAY) != 0)
2402 continue;
2403 }
2404 if (i > start
2405 && (*plabel >= label_end || **plabel != i)
2406 && prev_op != NULL
2407 && (prev_op->flags & (LOAD | STORE)) == 0
2408 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2409 {
b34976b6 2410 bfd_boolean ok;
252b5132
RH
2411
2412 /* The load/store instruction does not have a label, and
2413 there is a previous instruction; PREV_INSN is not
2414 itself a load/store instruction, and PREV_INSN and
2415 INSN do not conflict. */
2416
b34976b6 2417 ok = TRUE;
252b5132
RH
2418
2419 if (i >= start + 4)
2420 {
2421 unsigned int prev2_insn;
2422 const struct sh_opcode *prev2_op;
2423
2424 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2425 prev2_op = sh_insn_info (prev2_insn);
2426
2427 /* If the instruction before PREV_INSN has a delay
2428 slot--that is, PREV_INSN is in a delay slot--we
2429 can not swap. */
2430 if (prev2_op == NULL
2431 || (prev2_op->flags & DELAY) != 0)
b34976b6 2432 ok = FALSE;
252b5132
RH
2433
2434 /* If the instruction before PREV_INSN is a load,
2435 and it sets a register which INSN uses, then
2436 putting INSN immediately after PREV_INSN will
2437 cause a pipeline bubble, so there is no point to
2438 making the swap. */
2439 if (ok
2440 && (prev2_op->flags & LOAD) != 0
2441 && sh_load_use (prev2_insn, prev2_op, insn, op))
b34976b6 2442 ok = FALSE;
252b5132
RH
2443 }
2444
2445 if (ok)
2446 {
2447 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
b34976b6
AM
2448 return FALSE;
2449 *pswapped = TRUE;
252b5132
RH
2450 continue;
2451 }
2452 }
2453
2454 while (*plabel < label_end && **plabel < i + 2)
2455 ++*plabel;
2456
2457 if (i + 2 < stop
2458 && (*plabel >= label_end || **plabel != i + 2))
2459 {
2460 unsigned int next_insn;
2461 const struct sh_opcode *next_op;
2462
2463 /* There is an instruction after the load/store
2464 instruction, and it does not have a label. */
2465 next_insn = bfd_get_16 (abfd, contents + i + 2);
2466 next_op = sh_insn_info (next_insn);
2467 if (next_op != NULL
2468 && (next_op->flags & (LOAD | STORE)) == 0
2469 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2470 {
b34976b6 2471 bfd_boolean ok;
252b5132
RH
2472
2473 /* NEXT_INSN is not itself a load/store instruction,
2474 and it does not conflict with INSN. */
2475
b34976b6 2476 ok = TRUE;
252b5132
RH
2477
2478 /* If PREV_INSN is a load, and it sets a register
2479 which NEXT_INSN uses, then putting NEXT_INSN
2480 immediately after PREV_INSN will cause a pipeline
2481 bubble, so there is no reason to make this swap. */
2482 if (prev_op != NULL
2483 && (prev_op->flags & LOAD) != 0
2484 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
b34976b6 2485 ok = FALSE;
252b5132
RH
2486
2487 /* If INSN is a load, and it sets a register which
2488 the insn after NEXT_INSN uses, then doing the
2489 swap will cause a pipeline bubble, so there is no
2490 reason to make the swap. However, if the insn
2491 after NEXT_INSN is itself a load or store
2492 instruction, then it is misaligned, so
2493 optimistically hope that it will be swapped
2494 itself, and just live with the pipeline bubble if
2495 it isn't. */
2496 if (ok
2497 && i + 4 < stop
2498 && (op->flags & LOAD) != 0)
2499 {
2500 unsigned int next2_insn;
2501 const struct sh_opcode *next2_op;
2502
2503 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2504 next2_op = sh_insn_info (next2_insn);
230d6d81
NC
2505 if (next2_op == NULL
2506 || ((next2_op->flags & (LOAD | STORE)) == 0
2507 && sh_load_use (insn, op, next2_insn, next2_op)))
b34976b6 2508 ok = FALSE;
252b5132
RH
2509 }
2510
2511 if (ok)
2512 {
2513 if (! (*swap) (abfd, sec, relocs, contents, i))
b34976b6
AM
2514 return FALSE;
2515 *pswapped = TRUE;
252b5132
RH
2516 continue;
2517 }
2518 }
2519 }
2520 }
2521
b34976b6 2522 return TRUE;
252b5132 2523}
86033394 2524#endif /* not COFF_IMAGE_WITH_PE */
252b5132 2525
252b5132
RH
2526/* Swap two SH instructions. */
2527
b34976b6 2528static bfd_boolean
2c3fc389
NC
2529sh_swap_insns (bfd * abfd,
2530 asection * sec,
2531 void * relocs,
2532 bfd_byte * contents,
2533 bfd_vma addr)
252b5132
RH
2534{
2535 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2536 unsigned short i1, i2;
2537 struct internal_reloc *irel, *irelend;
2538
2539 /* Swap the instructions themselves. */
2540 i1 = bfd_get_16 (abfd, contents + addr);
2541 i2 = bfd_get_16 (abfd, contents + addr + 2);
dc810e39
AM
2542 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2543 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
252b5132
RH
2544
2545 /* Adjust all reloc addresses. */
2546 irelend = internal_relocs + sec->reloc_count;
2547 for (irel = internal_relocs; irel < irelend; irel++)
2548 {
2549 int type, add;
2550
2551 /* There are a few special types of relocs that we don't want to
07d6d2b8
AM
2552 adjust. These relocs do not apply to the instruction itself,
2553 but are only associated with the address. */
252b5132
RH
2554 type = irel->r_type;
2555 if (type == R_SH_ALIGN
2556 || type == R_SH_CODE
2557 || type == R_SH_DATA
2558 || type == R_SH_LABEL)
2559 continue;
2560
2561 /* If an R_SH_USES reloc points to one of the addresses being
07d6d2b8
AM
2562 swapped, we must adjust it. It would be incorrect to do this
2563 for a jump, though, since we want to execute both
2564 instructions after the jump. (We have avoided swapping
2565 around a label, so the jump will not wind up executing an
2566 instruction it shouldn't). */
252b5132
RH
2567 if (type == R_SH_USES)
2568 {
2569 bfd_vma off;
2570
2571 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2572 if (off == addr)
2573 irel->r_offset += 2;
2574 else if (off == addr + 2)
2575 irel->r_offset -= 2;
2576 }
2577
2578 if (irel->r_vaddr - sec->vma == addr)
2579 {
2580 irel->r_vaddr += 2;
2581 add = -2;
2582 }
2583 else if (irel->r_vaddr - sec->vma == addr + 2)
2584 {
2585 irel->r_vaddr -= 2;
2586 add = 2;
2587 }
2588 else
2589 add = 0;
2590
2591 if (add != 0)
2592 {
2593 bfd_byte *loc;
2594 unsigned short insn, oinsn;
b34976b6 2595 bfd_boolean overflow;
252b5132
RH
2596
2597 loc = contents + irel->r_vaddr - sec->vma;
b34976b6 2598 overflow = FALSE;
252b5132
RH
2599 switch (type)
2600 {
2601 default:
2602 break;
2603
2604 case R_SH_PCDISP8BY2:
2605 case R_SH_PCRELIMM8BY2:
2606 insn = bfd_get_16 (abfd, loc);
2607 oinsn = insn;
2608 insn += add / 2;
2609 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 2610 overflow = TRUE;
dc810e39 2611 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2612 break;
2613
2614 case R_SH_PCDISP:
2615 insn = bfd_get_16 (abfd, loc);
2616 oinsn = insn;
2617 insn += add / 2;
2618 if ((oinsn & 0xf000) != (insn & 0xf000))
b34976b6 2619 overflow = TRUE;
dc810e39 2620 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2621 break;
2622
2623 case R_SH_PCRELIMM8BY4:
2624 /* This reloc ignores the least significant 3 bits of
07d6d2b8
AM
2625 the program counter before adding in the offset.
2626 This means that if ADDR is at an even address, the
2627 swap will not affect the offset. If ADDR is an at an
2628 odd address, then the instruction will be crossing a
2629 four byte boundary, and must be adjusted. */
252b5132
RH
2630 if ((addr & 3) != 0)
2631 {
2632 insn = bfd_get_16 (abfd, loc);
2633 oinsn = insn;
2634 insn += add / 2;
2635 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 2636 overflow = TRUE;
dc810e39 2637 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2638 }
2639
2640 break;
2641 }
2642
2643 if (overflow)
2644 {
4eca0228 2645 _bfd_error_handler
695344c0 2646 /* xgettext: c-format */
2dcf00ce
AM
2647 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
2648 abfd, (uint64_t) irel->r_vaddr);
252b5132 2649 bfd_set_error (bfd_error_bad_value);
b34976b6 2650 return FALSE;
252b5132
RH
2651 }
2652 }
2653 }
2654
b34976b6 2655 return TRUE;
252b5132 2656}
2c3fc389
NC
2657
2658/* Look for loads and stores which we can align to four byte
2659 boundaries. See the longer comment above sh_relax_section for why
2660 this is desirable. This sets *PSWAPPED if some instruction was
2661 swapped. */
2662
2663static bfd_boolean
2664sh_align_loads (bfd *abfd,
2665 asection *sec,
2666 struct internal_reloc *internal_relocs,
2667 bfd_byte *contents,
2668 bfd_boolean *pswapped)
2669{
2670 struct internal_reloc *irel, *irelend;
2671 bfd_vma *labels = NULL;
2672 bfd_vma *label, *label_end;
2673 bfd_size_type amt;
2674
2675 *pswapped = FALSE;
2676
2677 irelend = internal_relocs + sec->reloc_count;
2678
2679 /* Get all the addresses with labels on them. */
2680 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2681 labels = (bfd_vma *) bfd_malloc (amt);
2682 if (labels == NULL)
2683 goto error_return;
2684 label_end = labels;
2685 for (irel = internal_relocs; irel < irelend; irel++)
2686 {
2687 if (irel->r_type == R_SH_LABEL)
2688 {
2689 *label_end = irel->r_vaddr - sec->vma;
2690 ++label_end;
2691 }
2692 }
2693
2694 /* Note that the assembler currently always outputs relocs in
2695 address order. If that ever changes, this code will need to sort
2696 the label values and the relocs. */
2697
2698 label = labels;
2699
2700 for (irel = internal_relocs; irel < irelend; irel++)
2701 {
2702 bfd_vma start, stop;
2703
2704 if (irel->r_type != R_SH_CODE)
2705 continue;
2706
2707 start = irel->r_vaddr - sec->vma;
2708
2709 for (irel++; irel < irelend; irel++)
2710 if (irel->r_type == R_SH_DATA)
2711 break;
2712 if (irel < irelend)
2713 stop = irel->r_vaddr - sec->vma;
2714 else
2715 stop = sec->size;
2716
2717 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2718 internal_relocs, &label,
2719 label_end, start, stop, pswapped))
2720 goto error_return;
2721 }
2722
2723 free (labels);
2724
2725 return TRUE;
2726
2727 error_return:
2728 if (labels != NULL)
2729 free (labels);
2730 return FALSE;
2731}
252b5132
RH
2732\f
2733/* This is a modification of _bfd_coff_generic_relocate_section, which
2734 will handle SH relaxing. */
2735
b34976b6 2736static bfd_boolean
2c3fc389
NC
2737sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2738 struct bfd_link_info *info,
2739 bfd *input_bfd,
2740 asection *input_section,
2741 bfd_byte *contents,
2742 struct internal_reloc *relocs,
2743 struct internal_syment *syms,
2744 asection **sections)
252b5132
RH
2745{
2746 struct internal_reloc *rel;
2747 struct internal_reloc *relend;
2748
2749 rel = relocs;
2750 relend = rel + input_section->reloc_count;
2751 for (; rel < relend; rel++)
2752 {
2753 long symndx;
2754 struct coff_link_hash_entry *h;
2755 struct internal_syment *sym;
2756 bfd_vma addend;
2757 bfd_vma val;
2758 reloc_howto_type *howto;
2759 bfd_reloc_status_type rstat;
2760
2761 /* Almost all relocs have to do with relaxing. If any work must
07d6d2b8 2762 be done for them, it has been done in sh_relax_section. */
252b5132 2763 if (rel->r_type != R_SH_IMM32
17505c5c
NC
2764#ifdef COFF_WITH_PE
2765 && rel->r_type != R_SH_IMM32CE
2766 && rel->r_type != R_SH_IMAGEBASE
2767#endif
252b5132
RH
2768 && rel->r_type != R_SH_PCDISP)
2769 continue;
2770
2771 symndx = rel->r_symndx;
2772
2773 if (symndx == -1)
2774 {
2775 h = NULL;
2776 sym = NULL;
2777 }
2778 else
cbfe05c4 2779 {
252b5132
RH
2780 if (symndx < 0
2781 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2782 {
4eca0228 2783 _bfd_error_handler
695344c0 2784 /* xgettext: c-format */
871b3ab2 2785 (_("%pB: illegal symbol index %ld in relocs"),
d003868e 2786 input_bfd, symndx);
252b5132 2787 bfd_set_error (bfd_error_bad_value);
b34976b6 2788 return FALSE;
252b5132
RH
2789 }
2790 h = obj_coff_sym_hashes (input_bfd)[symndx];
2791 sym = syms + symndx;
2792 }
2793
2794 if (sym != NULL && sym->n_scnum != 0)
2795 addend = - sym->n_value;
2796 else
2797 addend = 0;
2798
2799 if (rel->r_type == R_SH_PCDISP)
2800 addend -= 4;
2801
2802 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2803 howto = NULL;
2804 else
2805 howto = &sh_coff_howtos[rel->r_type];
2806
2807 if (howto == NULL)
2808 {
2809 bfd_set_error (bfd_error_bad_value);
b34976b6 2810 return FALSE;
252b5132
RH
2811 }
2812
17505c5c
NC
2813#ifdef COFF_WITH_PE
2814 if (rel->r_type == R_SH_IMAGEBASE)
2815 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2816#endif
cbfe05c4 2817
252b5132
RH
2818 val = 0;
2819
2820 if (h == NULL)
2821 {
2822 asection *sec;
2823
2824 /* There is nothing to do for an internal PCDISP reloc. */
2825 if (rel->r_type == R_SH_PCDISP)
2826 continue;
2827
2828 if (symndx == -1)
2829 {
2830 sec = bfd_abs_section_ptr;
2831 val = 0;
2832 }
2833 else
2834 {
2835 sec = sections[symndx];
07d6d2b8 2836 val = (sec->output_section->vma
252b5132
RH
2837 + sec->output_offset
2838 + sym->n_value
2839 - sec->vma);
2840 }
2841 }
2842 else
2843 {
2844 if (h->root.type == bfd_link_hash_defined
2845 || h->root.type == bfd_link_hash_defweak)
2846 {
2847 asection *sec;
2848
2849 sec = h->root.u.def.section;
2850 val = (h->root.u.def.value
2851 + sec->output_section->vma
2852 + sec->output_offset);
2853 }
0e1862bb 2854 else if (! bfd_link_relocatable (info))
1a72702b
AM
2855 (*info->callbacks->undefined_symbol)
2856 (info, h->root.root.string, input_bfd, input_section,
2857 rel->r_vaddr - input_section->vma, TRUE);
252b5132
RH
2858 }
2859
2860 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2861 contents,
2862 rel->r_vaddr - input_section->vma,
2863 val, addend);
2864
2865 switch (rstat)
2866 {
2867 default:
2868 abort ();
2869 case bfd_reloc_ok:
2870 break;
2871 case bfd_reloc_overflow:
2872 {
2873 const char *name;
2874 char buf[SYMNMLEN + 1];
2875
2876 if (symndx == -1)
2877 name = "*ABS*";
2878 else if (h != NULL)
dfeffb9f 2879 name = NULL;
252b5132
RH
2880 else if (sym->_n._n_n._n_zeroes == 0
2881 && sym->_n._n_n._n_offset != 0)
2882 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2883 else
2884 {
07d6d2b8 2885 strncpy (buf, sym->_n._n_name, SYMNMLEN);
252b5132
RH
2886 buf[SYMNMLEN] = '\0';
2887 name = buf;
2888 }
2889
1a72702b
AM
2890 (*info->callbacks->reloc_overflow)
2891 (info, (h ? &h->root : NULL), name, howto->name,
2892 (bfd_vma) 0, input_bfd, input_section,
2893 rel->r_vaddr - input_section->vma);
252b5132
RH
2894 }
2895 }
2896 }
2897
b34976b6 2898 return TRUE;
252b5132
RH
2899}
2900
2901/* This is a version of bfd_generic_get_relocated_section_contents
2902 which uses sh_relocate_section. */
2903
2904static bfd_byte *
2c3fc389
NC
2905sh_coff_get_relocated_section_contents (bfd *output_bfd,
2906 struct bfd_link_info *link_info,
2907 struct bfd_link_order *link_order,
2908 bfd_byte *data,
2909 bfd_boolean relocatable,
2910 asymbol **symbols)
252b5132
RH
2911{
2912 asection *input_section = link_order->u.indirect.section;
2913 bfd *input_bfd = input_section->owner;
2914 asection **sections = NULL;
2915 struct internal_reloc *internal_relocs = NULL;
2916 struct internal_syment *internal_syms = NULL;
2917
2918 /* We only need to handle the case of relaxing, or of having a
2919 particular set of section contents, specially. */
1049f94e 2920 if (relocatable
252b5132
RH
2921 || coff_section_data (input_bfd, input_section) == NULL
2922 || coff_section_data (input_bfd, input_section)->contents == NULL)
2923 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2924 link_order, data,
1049f94e 2925 relocatable,
252b5132
RH
2926 symbols);
2927
2928 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
eea6121a 2929 (size_t) input_section->size);
252b5132
RH
2930
2931 if ((input_section->flags & SEC_RELOC) != 0
2932 && input_section->reloc_count > 0)
2933 {
2934 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2935 bfd_byte *esym, *esymend;
2936 struct internal_syment *isymp;
2937 asection **secpp;
dc810e39 2938 bfd_size_type amt;
252b5132
RH
2939
2940 if (! _bfd_coff_get_external_symbols (input_bfd))
2941 goto error_return;
2942
2943 internal_relocs = (_bfd_coff_read_internal_relocs
b34976b6
AM
2944 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2945 FALSE, (struct internal_reloc *) NULL));
252b5132
RH
2946 if (internal_relocs == NULL)
2947 goto error_return;
2948
dc810e39
AM
2949 amt = obj_raw_syment_count (input_bfd);
2950 amt *= sizeof (struct internal_syment);
2951 internal_syms = (struct internal_syment *) bfd_malloc (amt);
252b5132
RH
2952 if (internal_syms == NULL)
2953 goto error_return;
2954
dc810e39
AM
2955 amt = obj_raw_syment_count (input_bfd);
2956 amt *= sizeof (asection *);
2957 sections = (asection **) bfd_malloc (amt);
252b5132
RH
2958 if (sections == NULL)
2959 goto error_return;
2960
2961 isymp = internal_syms;
2962 secpp = sections;
2963 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2964 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2965 while (esym < esymend)
2966 {
2c3fc389 2967 bfd_coff_swap_sym_in (input_bfd, esym, isymp);
252b5132
RH
2968
2969 if (isymp->n_scnum != 0)
2970 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2971 else
2972 {
2973 if (isymp->n_value == 0)
2974 *secpp = bfd_und_section_ptr;
2975 else
2976 *secpp = bfd_com_section_ptr;
2977 }
2978
2979 esym += (isymp->n_numaux + 1) * symesz;
2980 secpp += isymp->n_numaux + 1;
2981 isymp += isymp->n_numaux + 1;
2982 }
2983
2984 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2985 input_section, data, internal_relocs,
2986 internal_syms, sections))
2987 goto error_return;
2988
2989 free (sections);
2990 sections = NULL;
2991 free (internal_syms);
2992 internal_syms = NULL;
2993 free (internal_relocs);
2994 internal_relocs = NULL;
2995 }
2996
2997 return data;
2998
2999 error_return:
3000 if (internal_relocs != NULL)
3001 free (internal_relocs);
3002 if (internal_syms != NULL)
3003 free (internal_syms);
3004 if (sections != NULL)
3005 free (sections);
3006 return NULL;
3007}
3008
3009/* The target vectors. */
3010
17505c5c 3011#ifndef TARGET_SHL_SYM
6d00b590 3012CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
17505c5c 3013#endif
252b5132 3014
c3c89269
NC
3015#ifdef TARGET_SHL_SYM
3016#define TARGET_SYM TARGET_SHL_SYM
3017#else
6d00b590 3018#define TARGET_SYM sh_coff_le_vec
c3c89269 3019#endif
cbfe05c4 3020
c3c89269
NC
3021#ifndef TARGET_SHL_NAME
3022#define TARGET_SHL_NAME "coff-shl"
3023#endif
252b5132 3024
17505c5c
NC
3025#ifdef COFF_WITH_PE
3026CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3fa78519 3027 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
17505c5c 3028#else
86033394 3029CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3fa78519 3030 0, '_', NULL, COFF_SWAP_TABLE)
17505c5c 3031#endif
86033394 3032
17505c5c 3033#ifndef TARGET_SHL_SYM
2c3fc389 3034
252b5132
RH
3035/* Some people want versions of the SH COFF target which do not align
3036 to 16 byte boundaries. We implement that by adding a couple of new
3037 target vectors. These are just like the ones above, but they
3038 change the default section alignment. To generate them in the
3039 assembler, use -small. To use them in the linker, use -b
3040 coff-sh{l}-small and -oformat coff-sh{l}-small.
3041
3042 Yes, this is a horrible hack. A general solution for setting
3043 section alignment in COFF is rather complex. ELF handles this
3044 correctly. */
3045
3046/* Only recognize the small versions if the target was not defaulted.
3047 Otherwise we won't recognize the non default endianness. */
3048
3049static const bfd_target *
2c3fc389 3050coff_small_object_p (bfd *abfd)
252b5132
RH
3051{
3052 if (abfd->target_defaulted)
3053 {
3054 bfd_set_error (bfd_error_wrong_format);
3055 return NULL;
3056 }
3057 return coff_object_p (abfd);
3058}
3059
3060/* Set the section alignment for the small versions. */
3061
b34976b6 3062static bfd_boolean
2c3fc389 3063coff_small_new_section_hook (bfd *abfd, asection *section)
252b5132
RH
3064{
3065 if (! coff_new_section_hook (abfd, section))
b34976b6 3066 return FALSE;
252b5132
RH
3067
3068 /* We must align to at least a four byte boundary, because longword
3069 accesses must be on a four byte boundary. */
3070 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3071 section->alignment_power = 2;
3072
b34976b6 3073 return TRUE;
252b5132
RH
3074}
3075
3076/* This is copied from bfd_coff_std_swap_table so that we can change
3077 the default section alignment power. */
3078
88183869 3079static bfd_coff_backend_data bfd_coff_small_swap_table =
252b5132
RH
3080{
3081 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3082 coff_swap_aux_out, coff_swap_sym_out,
3083 coff_swap_lineno_out, coff_swap_reloc_out,
3084 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3085 coff_swap_scnhdr_out,
692b7d62 3086 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
252b5132 3087#ifdef COFF_LONG_FILENAMES
b34976b6 3088 TRUE,
252b5132 3089#else
b34976b6 3090 FALSE,
252b5132 3091#endif
88183869 3092 COFF_DEFAULT_LONG_SECTION_NAMES,
252b5132 3093 2,
ecefdb58 3094#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
b34976b6 3095 TRUE,
ecefdb58 3096#else
b34976b6 3097 FALSE,
ecefdb58
CP
3098#endif
3099#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3100 4,
3101#else
3102 2,
3103#endif
167ad85b 3104 32768,
252b5132
RH
3105 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3106 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3107 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3108 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3109 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
5d54c628 3110 coff_classify_symbol, coff_compute_section_file_positions,
252b5132
RH
3111 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3112 coff_adjust_symndx, coff_link_add_one_symbol,
2b5c217d
NC
3113 coff_link_output_has_begun, coff_final_link_postscript,
3114 bfd_pe_print_pdata
252b5132
RH
3115};
3116
3117#define coff_small_close_and_cleanup \
3118 coff_close_and_cleanup
3119#define coff_small_bfd_free_cached_info \
3120 coff_bfd_free_cached_info
3121#define coff_small_get_section_contents \
3122 coff_get_section_contents
3123#define coff_small_get_section_contents_in_window \
3124 coff_get_section_contents_in_window
3125
6d00b590 3126extern const bfd_target sh_coff_small_le_vec;
c3c89269 3127
6d00b590 3128const bfd_target sh_coff_small_vec =
252b5132
RH
3129{
3130 "coff-sh-small", /* name */
3131 bfd_target_coff_flavour,
3132 BFD_ENDIAN_BIG, /* data byte order is big */
3133 BFD_ENDIAN_BIG, /* header byte order is big */
3134
d00dd7dc
AM
3135 (HAS_RELOC | EXEC_P /* object flags */
3136 | HAS_LINENO | HAS_DEBUG
3137 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
252b5132
RH
3138
3139 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3140 '_', /* leading symbol underscore */
3141 '/', /* ar_pad_char */
3142 15, /* ar_max_namelen */
0aabe54e 3143 0, /* match priority. */
252b5132
RH
3144 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3145 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3146 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3147 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3148 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3149 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3150
d00dd7dc
AM
3151 { /* bfd_check_format */
3152 _bfd_dummy_target,
3153 coff_small_object_p,
3154 bfd_generic_archive_p,
3155 _bfd_dummy_target
3156 },
3157 { /* bfd_set_format */
3158 _bfd_bool_bfd_false_error,
3159 coff_mkobject,
3160 _bfd_generic_mkarchive,
3161 _bfd_bool_bfd_false_error
3162 },
3163 { /* bfd_write_contents */
3164 _bfd_bool_bfd_false_error,
3165 coff_write_object_contents,
3166 _bfd_write_archive_contents,
3167 _bfd_bool_bfd_false_error
3168 },
252b5132
RH
3169
3170 BFD_JUMP_TABLE_GENERIC (coff_small),
3171 BFD_JUMP_TABLE_COPY (coff),
3172 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3173 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3174 BFD_JUMP_TABLE_SYMBOLS (coff),
3175 BFD_JUMP_TABLE_RELOCS (coff),
3176 BFD_JUMP_TABLE_WRITE (coff),
3177 BFD_JUMP_TABLE_LINK (coff),
3178 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3179
d00dd7dc 3180 &sh_coff_small_le_vec,
cbfe05c4 3181
d00dd7dc 3182 &bfd_coff_small_swap_table
252b5132
RH
3183};
3184
6d00b590 3185const bfd_target sh_coff_small_le_vec =
252b5132
RH
3186{
3187 "coff-shl-small", /* name */
3188 bfd_target_coff_flavour,
3189 BFD_ENDIAN_LITTLE, /* data byte order is little */
3190 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3191
d00dd7dc
AM
3192 (HAS_RELOC | EXEC_P /* object flags */
3193 | HAS_LINENO | HAS_DEBUG
3194 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
252b5132
RH
3195
3196 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3197 '_', /* leading symbol underscore */
3198 '/', /* ar_pad_char */
3199 15, /* ar_max_namelen */
0aabe54e 3200 0, /* match priority. */
252b5132
RH
3201 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3202 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3203 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3204 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3205 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3206 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3207
d00dd7dc
AM
3208 { /* bfd_check_format */
3209 _bfd_dummy_target,
3210 coff_small_object_p,
3211 bfd_generic_archive_p,
3212 _bfd_dummy_target
3213 },
3214 { /* bfd_set_format */
3215 _bfd_bool_bfd_false_error,
3216 coff_mkobject,
3217 _bfd_generic_mkarchive,
3218 _bfd_bool_bfd_false_error
3219 },
3220 { /* bfd_write_contents */
3221 _bfd_bool_bfd_false_error,
3222 coff_write_object_contents,
3223 _bfd_write_archive_contents,
3224 _bfd_bool_bfd_false_error
3225 },
252b5132
RH
3226
3227 BFD_JUMP_TABLE_GENERIC (coff_small),
3228 BFD_JUMP_TABLE_COPY (coff),
3229 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3230 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3231 BFD_JUMP_TABLE_SYMBOLS (coff),
3232 BFD_JUMP_TABLE_RELOCS (coff),
3233 BFD_JUMP_TABLE_WRITE (coff),
3234 BFD_JUMP_TABLE_LINK (coff),
3235 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3236
d00dd7dc 3237 &sh_coff_small_vec,
cbfe05c4 3238
d00dd7dc 3239 &bfd_coff_small_swap_table
252b5132 3240};
17505c5c 3241#endif