]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-hppa.c
daily update
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
CommitLineData
252b5132 1/* BFD back-end for HP PA-RISC ELF files.
e5094212 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
b2a8e766 3 2002, 2003, 2004 Free Software Foundation, Inc.
252b5132 4
30667bf3 5 Original code by
252b5132
RH
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
30667bf3 9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
252b5132 10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
252b5132 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
252b5132 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
252b5132 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
26
27#include "bfd.h"
28#include "sysdep.h"
252b5132
RH
29#include "libbfd.h"
30#include "elf-bfd.h"
9e103c9c
JL
31#include "elf/hppa.h"
32#include "libhppa.h"
33#include "elf32-hppa.h"
34#define ARCH_SIZE 32
edd21aca 35#include "elf32-hppa.h"
189c6563 36#include "elf-hppa.h"
9e103c9c 37
74d1c347
AM
38/* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
edd21aca 49/* We use two hash tables to hold information for linking PA ELF objects.
252b5132
RH
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
30667bf3
AM
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
3ee1d854
AM
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
30667bf3
AM
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
3ee1d854
AM
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
46fe4e66 74 : bv %r0(%r21)
3ee1d854 75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
3ee1d854
AM
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
46fe4e66 81 : bv %r0(%r21)
3ee1d854 82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
3ee1d854
AM
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
3ee1d854
AM
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
ae9a127f 114 : be,n 0(%sr0,%rp) ; inter-space return. */
30667bf3
AM
115
116#define PLT_ENTRY_SIZE 8
117#define GOT_ENTRY_SIZE 4
118#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
47d89dba
AM
120static const bfd_byte plt_stub[] =
121{
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125#define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130};
131
30667bf3
AM
132/* Section name for stubs is the associated section name plus this
133 string. */
134#define STUB_SUFFIX ".stub"
135
98ceb8ce
AM
136/* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139#ifndef RELATIVE_DYNRELOCS
140#define RELATIVE_DYNRELOCS 0
446f2863 141#define IS_ABSOLUTE_RELOC(r_type) 1
30667bf3
AM
142#endif
143
4fc8051d
AM
144/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148#define ELIMINATE_COPY_RELOCS 1
149
30667bf3
AM
150enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
157};
158
30667bf3 159struct elf32_hppa_stub_hash_entry {
252b5132 160
edd21aca 161 /* Base hash table entry structure. */
252b5132
RH
162 struct bfd_hash_entry root;
163
edd21aca
AM
164 /* The stub section. */
165 asection *stub_sec;
166
167 /* Offset within stub_sec of the beginning of this stub. */
30667bf3 168 bfd_vma stub_offset;
252b5132
RH
169
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
30667bf3 172 bfd_vma target_value;
252b5132 173 asection *target_section;
30667bf3
AM
174
175 enum elf32_hppa_stub_type stub_type;
176
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
179
25f72752
AM
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
252b5132
RH
183};
184
30667bf3
AM
185struct elf32_hppa_link_hash_entry {
186
187 struct elf_link_hash_entry elf;
188
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
192
30667bf3
AM
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
196
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
199
98ceb8ce
AM
200 /* The input section of the reloc. */
201 asection *sec;
30667bf3
AM
202
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
98ceb8ce
AM
205
206#if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209#endif
210 } *dyn_relocs;
30667bf3 211
74d1c347
AM
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
30667bf3
AM
214};
215
30667bf3
AM
216struct elf32_hppa_link_hash_table {
217
252b5132 218 /* The main hash table. */
ebe50bae 219 struct elf_link_hash_table elf;
252b5132
RH
220
221 /* The stub hash table. */
edd21aca 222 struct bfd_hash_table stub_hash_table;
252b5132 223
30667bf3
AM
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
226
30667bf3 227 /* Linker call-backs. */
c39a58e6
AM
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
30667bf3 230
25f72752
AM
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
25f72752 239 } *stub_group;
30667bf3 240
b4655ea9
AM
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
246
30667bf3
AM
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
47d89dba 254
c46b7515
AM
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
259
47d89dba
AM
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
262
067fa4a6 263 /* Flags set when various size branches are detected. Used to
47d89dba
AM
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
067fa4a6 267 unsigned int has_22bit_branch:1;
47d89dba
AM
268
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
ec338859
AM
271
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
252b5132
RH
274};
275
30667bf3
AM
276/* Various hash macros and functions. */
277#define hppa_link_hash_table(p) \
edd21aca 278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
252b5132 279
30667bf3
AM
280#define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
283
252b5132
RH
284/* Assorted hash table functions. */
285
286/* Initialize an entry in the stub hash table. */
287
288static struct bfd_hash_entry *
c39a58e6
AM
289stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
252b5132 292{
252b5132
RH
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
ebe50bae 295 if (entry == NULL)
30667bf3 296 {
ebe50bae
AM
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
30667bf3 301 }
252b5132
RH
302
303 /* Call the allocation method of the superclass. */
ebe50bae
AM
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
252b5132 306 {
ebe50bae
AM
307 struct elf32_hppa_stub_hash_entry *eh;
308
252b5132 309 /* Initialize the local fields. */
ebe50bae
AM
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
30667bf3
AM
318 }
319
ebe50bae 320 return entry;
30667bf3
AM
321}
322
30667bf3
AM
323/* Initialize an entry in the link hash table. */
324
325static struct bfd_hash_entry *
c39a58e6
AM
326hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
30667bf3 329{
30667bf3
AM
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
ebe50bae 332 if (entry == NULL)
30667bf3 333 {
ebe50bae
AM
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
30667bf3
AM
338 }
339
340 /* Call the allocation method of the superclass. */
ebe50bae
AM
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
30667bf3 343 {
ebe50bae
AM
344 struct elf32_hppa_link_hash_entry *eh;
345
30667bf3 346 /* Initialize the local fields. */
ebe50bae
AM
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
ebe50bae 350 eh->plabel = 0;
252b5132
RH
351 }
352
ebe50bae 353 return entry;
252b5132
RH
354}
355
252b5132
RH
356/* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
359
360static struct bfd_link_hash_table *
c39a58e6 361elf32_hppa_link_hash_table_create (bfd *abfd)
252b5132
RH
362{
363 struct elf32_hppa_link_hash_table *ret;
dc810e39 364 bfd_size_type amt = sizeof (*ret);
252b5132 365
c39a58e6 366 ret = bfd_malloc (amt);
252b5132
RH
367 if (ret == NULL)
368 return NULL;
edd21aca 369
ebe50bae 370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
252b5132 371 {
e2d34d7d 372 free (ret);
252b5132
RH
373 return NULL;
374 }
edd21aca
AM
375
376 /* Init the stub hash table too. */
30667bf3 377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
edd21aca
AM
378 return NULL;
379
30667bf3 380 ret->stub_bfd = NULL;
30667bf3
AM
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
25f72752 383 ret->stub_group = NULL;
30667bf3
AM
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
c46b7515
AM
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
47d89dba
AM
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
067fa4a6 395 ret->has_22bit_branch = 0;
47d89dba 396 ret->need_plt_stub = 0;
ec338859 397 ret->sym_sec.abfd = NULL;
252b5132 398
ebe50bae 399 return &ret->elf.root;
252b5132
RH
400}
401
e2d34d7d
DJ
402/* Free the derived linker hash table. */
403
404static void
c39a58e6 405elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
e2d34d7d
DJ
406{
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
409
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
412}
413
30667bf3
AM
414/* Build a name for an entry in the stub hash table. */
415
edd21aca 416static char *
c39a58e6
AM
417hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
edd21aca
AM
421{
422 char *stub_name;
dc810e39 423 bfd_size_type len;
edd21aca 424
30667bf3
AM
425 if (hash)
426 {
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
430 {
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
435 }
436 }
437 else
edd21aca 438 {
30667bf3
AM
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
442 {
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
448 }
edd21aca
AM
449 }
450 return stub_name;
451}
252b5132 452
30667bf3
AM
453/* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
455
456static struct elf32_hppa_stub_hash_entry *
c39a58e6
AM
457hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
252b5132 462{
30667bf3 463 struct elf32_hppa_stub_hash_entry *stub_entry;
25f72752
AM
464 const asection *id_sec;
465
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
83c81bfe 471 id_sec = htab->stub_group[input_section->id].link_sec;
edd21aca 472
30667bf3
AM
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
25f72752 475 && hash->stub_cache->id_sec == id_sec)
edd21aca 476 {
30667bf3
AM
477 stub_entry = hash->stub_cache;
478 }
479 else
480 {
30667bf3 481 char *stub_name;
edd21aca 482
25f72752 483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
30667bf3
AM
484 if (stub_name == NULL)
485 return NULL;
edd21aca 486
83c81bfe 487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
b34976b6 488 stub_name, FALSE, FALSE);
f09ebc7d
AM
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
30667bf3
AM
491
492 free (stub_name);
edd21aca 493 }
30667bf3
AM
494
495 return stub_entry;
496}
497
30667bf3
AM
498/* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
500
501static struct elf32_hppa_stub_hash_entry *
c39a58e6
AM
502hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
30667bf3 505{
25f72752 506 asection *link_sec;
30667bf3 507 asection *stub_sec;
30667bf3 508 struct elf32_hppa_stub_hash_entry *stub_entry;
edd21aca 509
83c81bfe
AM
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
30667bf3 512 if (stub_sec == NULL)
edd21aca 513 {
83c81bfe 514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
30667bf3
AM
515 if (stub_sec == NULL)
516 {
d4c88bbb 517 size_t namelen;
dc810e39 518 bfd_size_type len;
30667bf3
AM
519 char *s_name;
520
d4c88bbb
AM
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
83c81bfe 523 s_name = bfd_alloc (htab->stub_bfd, len);
30667bf3
AM
524 if (s_name == NULL)
525 return NULL;
526
d4c88bbb
AM
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
83c81bfe 529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
30667bf3
AM
530 if (stub_sec == NULL)
531 return NULL;
83c81bfe 532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
30667bf3 533 }
83c81bfe 534 htab->stub_group[section->id].stub_sec = stub_sec;
edd21aca 535 }
252b5132 536
30667bf3 537 /* Enter this entry into the linker stub hash table. */
83c81bfe 538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
b34976b6 539 TRUE, FALSE);
30667bf3
AM
540 if (stub_entry == NULL)
541 {
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
8f615d07 543 bfd_archive_filename (section->owner),
30667bf3
AM
544 stub_name);
545 return NULL;
edd21aca
AM
546 }
547
30667bf3 548 stub_entry->stub_sec = stub_sec;
30667bf3 549 stub_entry->stub_offset = 0;
25f72752 550 stub_entry->id_sec = link_sec;
30667bf3 551 return stub_entry;
edd21aca
AM
552}
553
30667bf3
AM
554/* Determine the type of stub needed, if any, for a call. */
555
556static enum elf32_hppa_stub_type
c39a58e6
AM
557hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
a252afa4
DA
560 bfd_vma destination,
561 struct bfd_link_info *info)
edd21aca 562{
edd21aca 563 bfd_vma location;
30667bf3
AM
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
567
568 if (hash != NULL
067fa4a6 569 && hash->elf.plt.offset != (bfd_vma) -1
a252afa4
DA
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
30667bf3 575 {
067fa4a6
AM
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
30667bf3
AM
578 return hppa_stub_import;
579 }
edd21aca 580
30667bf3
AM
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
edd21aca 585
30667bf3
AM
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
edd21aca 588
30667bf3
AM
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
edd21aca 594 {
30667bf3
AM
595 max_branch_offset = (1 << (17-1)) << 2;
596 }
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
598 {
599 max_branch_offset = (1 << (12-1)) << 2;
600 }
25f72752 601 else /* R_PARISC_PCREL22F. */
30667bf3
AM
602 {
603 max_branch_offset = (1 << (22-1)) << 2;
edd21aca
AM
604 }
605
30667bf3 606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
98ceb8ce
AM
607 return hppa_stub_long_branch;
608
30667bf3
AM
609 return hppa_stub_none;
610}
edd21aca 611
30667bf3
AM
612/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
edd21aca 614
30667bf3
AM
615#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
edd21aca 617
30667bf3 618#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
3ee1d854 619#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
30667bf3 620#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
252b5132 621
3ee1d854
AM
622#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
30667bf3 624#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
3ee1d854 625#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
252b5132 626
3ee1d854
AM
627#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
edd21aca 629
30667bf3
AM
630#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
edd21aca 634
067fa4a6 635#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
30667bf3
AM
636#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637#define NOP 0x08000240 /* nop */
638#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
edd21aca 641
30667bf3
AM
642#ifndef R19_STUBS
643#define R19_STUBS 1
644#endif
edd21aca 645
30667bf3
AM
646#if R19_STUBS
647#define LDW_R1_DLT LDW_R1_R19
648#else
649#define LDW_R1_DLT LDW_R1_DP
650#endif
edd21aca 651
b34976b6 652static bfd_boolean
c39a58e6 653hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
30667bf3
AM
654{
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
83c81bfe 657 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
74d1c347 662 bfd_vma insn;
8dea1268 663 bfd_vma off;
74d1c347 664 int val;
30667bf3 665 int size;
edd21aca 666
30667bf3
AM
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
c39a58e6 669 info = in_arg;
30667bf3 670
83c81bfe 671 htab = hppa_link_hash_table (info);
30667bf3 672 stub_sec = stub_entry->stub_sec;
edd21aca 673
30667bf3 674 /* Make a note of the offset within the stubs for this entry. */
74d1c347 675 stub_entry->stub_offset = stub_sec->_raw_size;
30667bf3 676 loc = stub_sec->contents + stub_entry->stub_offset;
252b5132 677
30667bf3
AM
678 stub_bfd = stub_sec->owner;
679
680 switch (stub_entry->stub_type)
681 {
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
690
c39a58e6 691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
74d1c347 692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
30667bf3
AM
693 bfd_put_32 (stub_bfd, insn, loc);
694
c39a58e6 695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
74d1c347 696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
697 bfd_put_32 (stub_bfd, insn, loc + 4);
698
30667bf3 699 size = 8;
edd21aca
AM
700 break;
701
30667bf3
AM
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
707
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
712
74d1c347 713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
47d89dba 714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
74d1c347 715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
30667bf3
AM
716 bfd_put_32 (stub_bfd, insn, loc + 4);
717
47d89dba 718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
74d1c347 719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
edd21aca 723
30667bf3
AM
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
8dea1268
AM
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
49e9d0d3 728 abort ();
8dea1268
AM
729
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
83c81bfe
AM
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
30667bf3
AM
735
736 insn = ADDIL_DP;
737#if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740#endif
c39a58e6 741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
74d1c347 742 insn = hppa_rebuild_insn ((int) insn, val, 21);
30667bf3 743 bfd_put_32 (stub_bfd, insn, loc);
edd21aca 744
47d89dba
AM
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
c39a58e6 750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
74d1c347 751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
30667bf3 752 bfd_put_32 (stub_bfd, insn, loc + 4);
252b5132 753
83c81bfe 754 if (htab->multi_subspace)
30667bf3 755 {
47d89dba 756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 758 bfd_put_32 (stub_bfd, insn, loc + 8);
252b5132 759
74d1c347
AM
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
252b5132 764
30667bf3
AM
765 size = 28;
766 }
767 else
768 {
74d1c347 769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
47d89dba 770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 772 bfd_put_32 (stub_bfd, insn, loc + 12);
252b5132 773
30667bf3
AM
774 size = 16;
775 }
252b5132 776
30667bf3 777 break;
252b5132 778
30667bf3
AM
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
252b5132 784
30667bf3
AM
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
edd21aca 789
067fa4a6
AM
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
30667bf3 793 {
edd21aca 794 (*_bfd_error_handler)
30667bf3 795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
8f615d07 796 bfd_archive_filename (stub_entry->target_section->owner),
30667bf3
AM
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
b34976b6 801 return FALSE;
252b5132 802 }
30667bf3 803
74d1c347 804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
067fa4a6
AM
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
30667bf3
AM
809 bfd_put_32 (stub_bfd, insn, loc);
810
74d1c347
AM
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
30667bf3
AM
816
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
74d1c347 819 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
30667bf3
AM
820
821 size = 24;
822 break;
823
824 default:
825 BFD_FAIL ();
b34976b6 826 return FALSE;
252b5132
RH
827 }
828
74d1c347 829 stub_sec->_raw_size += size;
b34976b6 830 return TRUE;
252b5132
RH
831}
832
30667bf3
AM
833#undef LDIL_R1
834#undef BE_SR4_R1
835#undef BL_R1
836#undef ADDIL_R1
837#undef DEPI_R1
30667bf3
AM
838#undef LDW_R1_R21
839#undef LDW_R1_DLT
840#undef LDW_R1_R19
841#undef ADDIL_R19
842#undef LDW_R1_DP
843#undef LDSID_R21_R1
844#undef MTSP_R1
845#undef BE_SR0_R21
846#undef STW_RP
847#undef BV_R0_R21
848#undef BL_RP
849#undef NOP
850#undef LDW_RP
851#undef LDSID_RP_R1
852#undef BE_SR0_RP
252b5132 853
30667bf3
AM
854/* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
856
b34976b6 857static bfd_boolean
c39a58e6 858hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
252b5132 859{
30667bf3 860 struct elf32_hppa_stub_hash_entry *stub_entry;
83c81bfe 861 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
862 int size;
863
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
c39a58e6 866 htab = in_arg;
30667bf3
AM
867
868 if (stub_entry->stub_type == hppa_stub_long_branch)
98ceb8ce 869 size = 8;
30667bf3
AM
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
74d1c347 874 else /* hppa_stub_import or hppa_stub_import_shared. */
252b5132 875 {
83c81bfe 876 if (htab->multi_subspace)
30667bf3
AM
877 size = 28;
878 else
879 size = 16;
880 }
252b5132 881
74d1c347 882 stub_entry->stub_sec->_raw_size += size;
b34976b6 883 return TRUE;
30667bf3 884}
252b5132 885
30667bf3
AM
886/* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
888
b34976b6 889static bfd_boolean
c39a58e6 890elf32_hppa_object_p (bfd *abfd)
30667bf3 891{
24a5e751
L
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
252b5132 894
24a5e751
L
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
897 {
6c21aa76
NC
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 902 return FALSE;
24a5e751
L
903 }
904 else
905 {
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
b34976b6 907 return FALSE;
24a5e751
L
908 }
909
910 flags = i_ehdrp->e_flags;
30667bf3
AM
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
912 {
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
921 }
b34976b6 922 return TRUE;
252b5132
RH
923}
924
30667bf3
AM
925/* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
927
b34976b6 928static bfd_boolean
c39a58e6 929elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 930{
83c81bfe 931 struct elf32_hppa_link_hash_table *htab;
edd21aca 932
30667bf3 933 /* Don't try to create the .plt and .got twice. */
83c81bfe
AM
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
b34976b6 936 return TRUE;
edd21aca 937
30667bf3
AM
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
b34976b6 940 return FALSE;
252b5132 941
83c81bfe
AM
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
30667bf3 944
83c81bfe
AM
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
30667bf3
AM
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
83c81bfe 955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
b34976b6 956 return FALSE;
edd21aca 957
83c81bfe
AM
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
30667bf3 960
b34976b6 961 return TRUE;
30667bf3
AM
962}
963
ebe50bae
AM
964/* Copy the extra info we tack onto an elf_link_hash_entry. */
965
51b64d56 966static void
9c5bfbb7 967elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
c39a58e6
AM
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
ebe50bae
AM
970{
971 struct elf32_hppa_link_hash_entry *edir, *eind;
972
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
975
bbd7ec4a 976 if (eind->dyn_relocs != NULL)
ebe50bae 977 {
bbd7ec4a
AM
978 if (edir->dyn_relocs != NULL)
979 {
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
982
1e370bd2 983 if (ind->root.type == bfd_link_hash_indirect)
bbd7ec4a
AM
984 abort ();
985
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
989 {
990 struct elf32_hppa_dyn_reloc_entry *q;
991
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
994 {
995#if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997#endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1001 }
1002 if (q == NULL)
1003 pp = &p->next;
1004 }
1005 *pp = edir->dyn_relocs;
1006 }
1007
ebe50bae
AM
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1010 }
ebe50bae 1011
4fc8051d
AM
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
3addb0a9
DJ
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
4fc8051d
AM
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
ebe50bae
AM
1025}
1026
30667bf3 1027/* Look through the relocs for a section during the first phase, and
3ac8354b
AM
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
252b5132 1031
b34976b6 1032static bfd_boolean
c39a58e6
AM
1033elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
252b5132 1037{
30667bf3
AM
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
30667bf3
AM
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
83c81bfe 1042 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
1043 asection *sreloc;
1044 asection *stubreloc;
1045
1049f94e 1046 if (info->relocatable)
b34976b6 1047 return TRUE;
30667bf3 1048
83c81bfe 1049 htab = hppa_link_hash_table (info);
30667bf3
AM
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
30667bf3
AM
1052 sreloc = NULL;
1053 stubreloc = NULL;
1054
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1057 {
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
98ceb8ce 1062 PLT_PLABEL = 8
30667bf3 1063 };
edd21aca 1064
30667bf3
AM
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
252b5132 1068
30667bf3 1069 r_symndx = ELF32_R_SYM (rel->r_info);
252b5132 1070
30667bf3
AM
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
252b5132 1076
30667bf3 1077 r_type = ELF32_R_TYPE (rel->r_info);
252b5132 1078
30667bf3
AM
1079 switch (r_type)
1080 {
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
30667bf3
AM
1086 break;
1087
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
74d1c347 1091 /* If the addend is non-zero, we break badly. */
49e9d0d3
AM
1092 if (rel->r_addend != 0)
1093 abort ();
74d1c347
AM
1094
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
4dc86686
AM
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
74d1c347 1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
30667bf3
AM
1112 break;
1113
1114 case R_PARISC_PCREL12F:
83c81bfe 1115 htab->has_12bit_branch = 1;
067fa4a6
AM
1116 goto branch_common;
1117
30667bf3
AM
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
83c81bfe 1120 htab->has_17bit_branch = 1;
067fa4a6
AM
1121 goto branch_common;
1122
30667bf3 1123 case R_PARISC_PCREL22F:
067fa4a6
AM
1124 htab->has_22bit_branch = 1;
1125 branch_common:
47d89dba
AM
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
30667bf3
AM
1128 if (h == NULL)
1129 {
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1136 }
1137 else
1138 {
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
98ceb8ce 1144 need_entry = NEED_PLT;
4dc86686 1145 if (h->elf.type == STT_PARISC_MILLI)
98ceb8ce 1146 need_entry = 0;
30667bf3
AM
1147 }
1148 break;
1149
36751eee 1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
c46b7515 1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
30667bf3
AM
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
36751eee 1156 case R_PARISC_PCREL32:
30667bf3
AM
1157 /* We don't need to propagate the relocation if linking a
1158 shared object since these are section relative. */
1159 continue;
1160
1161 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1162 case R_PARISC_DPREL14R:
1163 case R_PARISC_DPREL21L:
1164 if (info->shared)
1165 {
1166 (*_bfd_error_handler)
1167 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
8f615d07 1168 bfd_archive_filename (abfd),
30667bf3
AM
1169 elf_hppa_howto_table[r_type].name);
1170 bfd_set_error (bfd_error_bad_value);
b34976b6 1171 return FALSE;
30667bf3
AM
1172 }
1173 /* Fall through. */
1174
1175 case R_PARISC_DIR17F: /* Used for external branches. */
1176 case R_PARISC_DIR17R:
47d89dba
AM
1177 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1178 case R_PARISC_DIR14R:
30667bf3 1179 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
067fa4a6 1180#if 0
30667bf3
AM
1181 /* Help debug shared library creation. Any of the above
1182 relocs can be used in shared libs, but they may cause
1183 pages to become unshared. */
1184 if (info->shared)
1185 {
1186 (*_bfd_error_handler)
1187 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
8f615d07 1188 bfd_archive_filename (abfd),
30667bf3
AM
1189 elf_hppa_howto_table[r_type].name);
1190 }
1191 /* Fall through. */
1192#endif
1193
c46b7515 1194 case R_PARISC_DIR32: /* .word relocs. */
30667bf3
AM
1195 /* We may want to output a dynamic relocation later. */
1196 need_entry = NEED_DYNREL;
1197 break;
1198
1199 /* This relocation describes the C++ object vtable hierarchy.
1200 Reconstruct it for later use during GC. */
1201 case R_PARISC_GNU_VTINHERIT:
c152c796 1202 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset))
b34976b6 1203 return FALSE;
30667bf3
AM
1204 continue;
1205
1206 /* This relocation describes which C++ vtable entries are actually
1207 used. Record for later use during GC. */
1208 case R_PARISC_GNU_VTENTRY:
c152c796 1209 if (!bfd_elf_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend))
b34976b6 1210 return FALSE;
30667bf3
AM
1211 continue;
1212
1213 default:
1214 continue;
1215 }
1216
1217 /* Now carry out our orders. */
1218 if (need_entry & NEED_GOT)
1219 {
1220 /* Allocate space for a GOT entry, as well as a dynamic
25f72752 1221 relocation for this entry. */
83c81bfe 1222 if (htab->sgot == NULL)
30667bf3 1223 {
3ac8354b
AM
1224 if (htab->elf.dynobj == NULL)
1225 htab->elf.dynobj = abfd;
1226 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
b34976b6 1227 return FALSE;
30667bf3
AM
1228 }
1229
1230 if (h != NULL)
1231 {
51b64d56 1232 h->elf.got.refcount += 1;
30667bf3
AM
1233 }
1234 else
1235 {
3ac8354b
AM
1236 bfd_signed_vma *local_got_refcounts;
1237
30667bf3 1238 /* This is a global offset table entry for a local symbol. */
3ac8354b 1239 local_got_refcounts = elf_local_got_refcounts (abfd);
30667bf3
AM
1240 if (local_got_refcounts == NULL)
1241 {
dc810e39 1242 bfd_size_type size;
30667bf3 1243
74d1c347
AM
1244 /* Allocate space for local got offsets and local
1245 plt offsets. Done this way to save polluting
1246 elf_obj_tdata with another target specific
1247 pointer. */
dc810e39
AM
1248 size = symtab_hdr->sh_info;
1249 size *= 2 * sizeof (bfd_signed_vma);
c39a58e6 1250 local_got_refcounts = bfd_zalloc (abfd, size);
30667bf3 1251 if (local_got_refcounts == NULL)
b34976b6 1252 return FALSE;
30667bf3 1253 elf_local_got_refcounts (abfd) = local_got_refcounts;
30667bf3 1254 }
ebe50bae 1255 local_got_refcounts[r_symndx] += 1;
30667bf3
AM
1256 }
1257 }
1258
1259 if (need_entry & NEED_PLT)
1260 {
1261 /* If we are creating a shared library, and this is a reloc
1262 against a weak symbol or a global symbol in a dynamic
1263 object, then we will be creating an import stub and a
1264 .plt entry for the symbol. Similarly, on a normal link
1265 to symbols defined in a dynamic object we'll need the
1266 import stub and a .plt entry. We don't know yet whether
1267 the symbol is defined or not, so make an entry anyway and
1268 clean up later in adjust_dynamic_symbol. */
1269 if ((sec->flags & SEC_ALLOC) != 0)
1270 {
74d1c347 1271 if (h != NULL)
30667bf3 1272 {
51b64d56
AM
1273 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1274 h->elf.plt.refcount += 1;
74d1c347 1275
36605136
AM
1276 /* If this .plt entry is for a plabel, mark it so
1277 that adjust_dynamic_symbol will keep the entry
1278 even if it appears to be local. */
74d1c347
AM
1279 if (need_entry & PLT_PLABEL)
1280 h->plabel = 1;
1281 }
1282 else if (need_entry & PLT_PLABEL)
1283 {
3ac8354b 1284 bfd_signed_vma *local_got_refcounts;
68fb2e56 1285 bfd_signed_vma *local_plt_refcounts;
74d1c347 1286
3ac8354b 1287 local_got_refcounts = elf_local_got_refcounts (abfd);
74d1c347
AM
1288 if (local_got_refcounts == NULL)
1289 {
dc810e39 1290 bfd_size_type size;
74d1c347
AM
1291
1292 /* Allocate space for local got offsets and local
1293 plt offsets. */
dc810e39
AM
1294 size = symtab_hdr->sh_info;
1295 size *= 2 * sizeof (bfd_signed_vma);
c39a58e6 1296 local_got_refcounts = bfd_zalloc (abfd, size);
74d1c347 1297 if (local_got_refcounts == NULL)
b34976b6 1298 return FALSE;
74d1c347 1299 elf_local_got_refcounts (abfd) = local_got_refcounts;
74d1c347 1300 }
68fb2e56
AM
1301 local_plt_refcounts = (local_got_refcounts
1302 + symtab_hdr->sh_info);
ebe50bae 1303 local_plt_refcounts[r_symndx] += 1;
30667bf3 1304 }
30667bf3
AM
1305 }
1306 }
1307
98ceb8ce 1308 if (need_entry & NEED_DYNREL)
30667bf3
AM
1309 {
1310 /* Flag this symbol as having a non-got, non-plt reference
1311 so that we generate copy relocs if it turns out to be
1312 dynamic. */
ebe50bae 1313 if (h != NULL && !info->shared)
30667bf3
AM
1314 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1315
1316 /* If we are creating a shared library then we need to copy
1317 the reloc into the shared library. However, if we are
1318 linking with -Bsymbolic, we need only copy absolute
1319 relocs or relocs against symbols that are not defined in
1320 an object we are including in the link. PC- or DP- or
1321 DLT-relative relocs against any local sym or global sym
1322 with DEF_REGULAR set, can be discarded. At this point we
1323 have not seen all the input files, so it is possible that
1324 DEF_REGULAR is not set now but will be set later (it is
1325 never cleared). We account for that possibility below by
98ceb8ce 1326 storing information in the dyn_relocs field of the
30667bf3
AM
1327 hash table entry.
1328
1329 A similar situation to the -Bsymbolic case occurs when
1330 creating shared libraries and symbol visibility changes
1331 render the symbol local.
1332
1333 As it turns out, all the relocs we will be creating here
1334 are absolute, so we cannot remove them on -Bsymbolic
1335 links or visibility changes anyway. A STUB_REL reloc
1336 is absolute too, as in that case it is the reloc in the
1337 stub we will be creating, rather than copying the PCREL
56882138
AM
1338 reloc in the branch.
1339
1340 If on the other hand, we are creating an executable, we
1341 may need to keep relocations for symbols satisfied by a
1342 dynamic library if we manage to avoid copy relocs for the
1343 symbol. */
446f2863
AM
1344 if ((info->shared
1345 && (sec->flags & SEC_ALLOC) != 0
1346 && (IS_ABSOLUTE_RELOC (r_type)
1347 || (h != NULL
1348 && (!info->symbolic
1349 || h->elf.root.type == bfd_link_hash_defweak
1350 || (h->elf.elf_link_hash_flags
1351 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
4fc8051d
AM
1352 || (ELIMINATE_COPY_RELOCS
1353 && !info->shared
446f2863
AM
1354 && (sec->flags & SEC_ALLOC) != 0
1355 && h != NULL
446f2863
AM
1356 && (h->elf.root.type == bfd_link_hash_defweak
1357 || (h->elf.elf_link_hash_flags
1358 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
30667bf3 1359 {
ec338859
AM
1360 struct elf32_hppa_dyn_reloc_entry *p;
1361 struct elf32_hppa_dyn_reloc_entry **head;
1362
30667bf3
AM
1363 /* Create a reloc section in dynobj and make room for
1364 this reloc. */
98ceb8ce 1365 if (sreloc == NULL)
30667bf3
AM
1366 {
1367 char *name;
3ac8354b 1368 bfd *dynobj;
30667bf3 1369
98ceb8ce
AM
1370 name = (bfd_elf_string_from_elf_section
1371 (abfd,
1372 elf_elfheader (abfd)->e_shstrndx,
1373 elf_section_data (sec)->rel_hdr.sh_name));
30667bf3
AM
1374 if (name == NULL)
1375 {
1376 (*_bfd_error_handler)
1377 (_("Could not find relocation section for %s"),
1378 sec->name);
1379 bfd_set_error (bfd_error_bad_value);
b34976b6 1380 return FALSE;
30667bf3
AM
1381 }
1382
3ac8354b
AM
1383 if (htab->elf.dynobj == NULL)
1384 htab->elf.dynobj = abfd;
1385
1386 dynobj = htab->elf.dynobj;
98ceb8ce
AM
1387 sreloc = bfd_get_section_by_name (dynobj, name);
1388 if (sreloc == NULL)
30667bf3
AM
1389 {
1390 flagword flags;
1391
98ceb8ce 1392 sreloc = bfd_make_section (dynobj, name);
30667bf3
AM
1393 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1394 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1395 if ((sec->flags & SEC_ALLOC) != 0)
1396 flags |= SEC_ALLOC | SEC_LOAD;
98ceb8ce
AM
1397 if (sreloc == NULL
1398 || !bfd_set_section_flags (dynobj, sreloc, flags)
1399 || !bfd_set_section_alignment (dynobj, sreloc, 2))
b34976b6 1400 return FALSE;
30667bf3 1401 }
30667bf3 1402
98ceb8ce 1403 elf_section_data (sec)->sreloc = sreloc;
30667bf3
AM
1404 }
1405
98ceb8ce
AM
1406 /* If this is a global symbol, we count the number of
1407 relocations we need for this symbol. */
1408 if (h != NULL)
30667bf3 1409 {
ec338859
AM
1410 head = &h->dyn_relocs;
1411 }
1412 else
1413 {
1414 /* Track dynamic relocs needed for local syms too.
1415 We really need local syms available to do this
1416 easily. Oh well. */
1417
1418 asection *s;
1419 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1420 sec, r_symndx);
1421 if (s == NULL)
b34976b6 1422 return FALSE;
30667bf3 1423
ec338859
AM
1424 head = ((struct elf32_hppa_dyn_reloc_entry **)
1425 &elf_section_data (s)->local_dynrel);
1426 }
1427
1428 p = *head;
1429 if (p == NULL || p->sec != sec)
1430 {
c39a58e6 1431 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
ec338859 1432 if (p == NULL)
b34976b6 1433 return FALSE;
ec338859
AM
1434 p->next = *head;
1435 *head = p;
1436 p->sec = sec;
1437 p->count = 0;
98ceb8ce 1438#if RELATIVE_DYNRELOCS
ec338859 1439 p->relative_count = 0;
98ceb8ce 1440#endif
ec338859 1441 }
98ceb8ce 1442
ec338859 1443 p->count += 1;
98ceb8ce 1444#if RELATIVE_DYNRELOCS
ec338859
AM
1445 if (!IS_ABSOLUTE_RELOC (rtype))
1446 p->relative_count += 1;
98ceb8ce 1447#endif
30667bf3
AM
1448 }
1449 }
1450 }
edd21aca 1451
b34976b6 1452 return TRUE;
edd21aca
AM
1453}
1454
30667bf3
AM
1455/* Return the section that should be marked against garbage collection
1456 for a given relocation. */
1457
1458static asection *
c39a58e6
AM
1459elf32_hppa_gc_mark_hook (asection *sec,
1460 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1461 Elf_Internal_Rela *rel,
1462 struct elf_link_hash_entry *h,
1463 Elf_Internal_Sym *sym)
30667bf3
AM
1464{
1465 if (h != NULL)
1466 {
1467 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1468 {
1469 case R_PARISC_GNU_VTINHERIT:
1470 case R_PARISC_GNU_VTENTRY:
1471 break;
1472
1473 default:
1474 switch (h->root.type)
1475 {
1476 case bfd_link_hash_defined:
1477 case bfd_link_hash_defweak:
1478 return h->root.u.def.section;
1479
1480 case bfd_link_hash_common:
1481 return h->root.u.c.p->section;
1482
1483 default:
1484 break;
1485 }
1486 }
1487 }
1488 else
1e2f5b6e 1489 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
30667bf3
AM
1490
1491 return NULL;
1492}
1493
30667bf3
AM
1494/* Update the got and plt entry reference counts for the section being
1495 removed. */
edd21aca 1496
b34976b6 1497static bfd_boolean
c39a58e6
AM
1498elf32_hppa_gc_sweep_hook (bfd *abfd,
1499 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 asection *sec,
1501 const Elf_Internal_Rela *relocs)
edd21aca 1502{
30667bf3
AM
1503 Elf_Internal_Shdr *symtab_hdr;
1504 struct elf_link_hash_entry **sym_hashes;
1505 bfd_signed_vma *local_got_refcounts;
74d1c347 1506 bfd_signed_vma *local_plt_refcounts;
30667bf3 1507 const Elf_Internal_Rela *rel, *relend;
30667bf3 1508
ec338859 1509 elf_section_data (sec)->local_dynrel = NULL;
98ceb8ce 1510
30667bf3
AM
1511 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1512 sym_hashes = elf_sym_hashes (abfd);
1513 local_got_refcounts = elf_local_got_refcounts (abfd);
74d1c347
AM
1514 local_plt_refcounts = local_got_refcounts;
1515 if (local_plt_refcounts != NULL)
1516 local_plt_refcounts += symtab_hdr->sh_info;
30667bf3 1517
30667bf3
AM
1518 relend = relocs + sec->reloc_count;
1519 for (rel = relocs; rel < relend; rel++)
26e41594
AM
1520 {
1521 unsigned long r_symndx;
1522 unsigned int r_type;
1523 struct elf_link_hash_entry *h = NULL;
1524
1525 r_symndx = ELF32_R_SYM (rel->r_info);
1526 if (r_symndx >= symtab_hdr->sh_info)
1527 {
1528 struct elf32_hppa_link_hash_entry *eh;
1529 struct elf32_hppa_dyn_reloc_entry **pp;
1530 struct elf32_hppa_dyn_reloc_entry *p;
1531
1532 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1533 eh = (struct elf32_hppa_link_hash_entry *) h;
1534
1535 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1536 if (p->sec == sec)
1537 {
1538 /* Everything must go for SEC. */
1539 *pp = p->next;
1540 break;
1541 }
1542 }
1543
1544 r_type = ELF32_R_TYPE (rel->r_info);
1545 switch (r_type)
1546 {
1547 case R_PARISC_DLTIND14F:
1548 case R_PARISC_DLTIND14R:
1549 case R_PARISC_DLTIND21L:
1550 if (h != NULL)
1551 {
1552 if (h->got.refcount > 0)
1553 h->got.refcount -= 1;
1554 }
1555 else if (local_got_refcounts != NULL)
1556 {
1557 if (local_got_refcounts[r_symndx] > 0)
1558 local_got_refcounts[r_symndx] -= 1;
1559 }
1560 break;
98ceb8ce 1561
26e41594
AM
1562 case R_PARISC_PCREL12F:
1563 case R_PARISC_PCREL17C:
1564 case R_PARISC_PCREL17F:
1565 case R_PARISC_PCREL22F:
1566 if (h != NULL)
1567 {
1568 if (h->plt.refcount > 0)
1569 h->plt.refcount -= 1;
1570 }
1571 break;
1572
1573 case R_PARISC_PLABEL14R:
1574 case R_PARISC_PLABEL21L:
1575 case R_PARISC_PLABEL32:
1576 if (h != NULL)
1577 {
1578 if (h->plt.refcount > 0)
1579 h->plt.refcount -= 1;
1580 }
1581 else if (local_plt_refcounts != NULL)
1582 {
1583 if (local_plt_refcounts[r_symndx] > 0)
1584 local_plt_refcounts[r_symndx] -= 1;
1585 }
1586 break;
1587
1588 default:
1589 break;
1590 }
1591 }
252b5132 1592
b34976b6 1593 return TRUE;
252b5132
RH
1594}
1595
74d1c347
AM
1596/* Our own version of hide_symbol, so that we can keep plt entries for
1597 plabels. */
1598
1599static void
c39a58e6
AM
1600elf32_hppa_hide_symbol (struct bfd_link_info *info,
1601 struct elf_link_hash_entry *h,
1602 bfd_boolean force_local)
74d1c347 1603{
e5094212
AM
1604 if (force_local)
1605 {
1606 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1607 if (h->dynindx != -1)
1608 {
1609 h->dynindx = -1;
1610 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1611 h->dynstr_index);
1612 }
1613 }
1614
74d1c347
AM
1615 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1616 {
1617 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1618 h->plt.offset = (bfd_vma) -1;
1619 }
1620}
1621
30667bf3
AM
1622/* Adjust a symbol defined by a dynamic object and referenced by a
1623 regular object. The current definition is in some section of the
1624 dynamic object, but we're not including those sections. We have to
1625 change the definition to something the rest of the link can
1626 understand. */
252b5132 1627
b34976b6 1628static bfd_boolean
c39a58e6
AM
1629elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1630 struct elf_link_hash_entry *h)
252b5132 1631{
83c81bfe 1632 struct elf32_hppa_link_hash_table *htab;
30667bf3 1633 asection *s;
3ac8354b 1634 unsigned int power_of_two;
30667bf3
AM
1635
1636 /* If this is a function, put it in the procedure linkage table. We
067fa4a6 1637 will fill in the contents of the procedure linkage table later. */
30667bf3
AM
1638 if (h->type == STT_FUNC
1639 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1640 {
1641 if (h->plt.refcount <= 0
1642 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1643 && h->root.type != bfd_link_hash_defweak
74d1c347 1644 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
30667bf3
AM
1645 && (!info->shared || info->symbolic)))
1646 {
1647 /* The .plt entry is not needed when:
1648 a) Garbage collection has removed all references to the
1649 symbol, or
1650 b) We know for certain the symbol is defined in this
74d1c347
AM
1651 object, and it's not a weak definition, nor is the symbol
1652 used by a plabel relocation. Either this object is the
1653 application or we are doing a shared symbolic link. */
1654
a252afa4
DA
1655 h->plt.offset = (bfd_vma) -1;
1656 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
30667bf3 1657 }
4dc86686 1658
b34976b6 1659 return TRUE;
30667bf3 1660 }
bbd7ec4a
AM
1661 else
1662 h->plt.offset = (bfd_vma) -1;
edd21aca 1663
30667bf3
AM
1664 /* If this is a weak symbol, and there is a real definition, the
1665 processor independent code will have arranged for us to see the
1666 real definition first, and we can just use the same value. */
1667 if (h->weakdef != NULL)
edd21aca 1668 {
49e9d0d3
AM
1669 if (h->weakdef->root.type != bfd_link_hash_defined
1670 && h->weakdef->root.type != bfd_link_hash_defweak)
1671 abort ();
30667bf3
AM
1672 h->root.u.def.section = h->weakdef->root.u.def.section;
1673 h->root.u.def.value = h->weakdef->root.u.def.value;
4fc8051d
AM
1674 if (ELIMINATE_COPY_RELOCS)
1675 h->elf_link_hash_flags
1676 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1677 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
b34976b6 1678 return TRUE;
30667bf3 1679 }
edd21aca 1680
30667bf3
AM
1681 /* This is a reference to a symbol defined by a dynamic object which
1682 is not a function. */
1683
1684 /* If we are creating a shared library, we must presume that the
1685 only references to the symbol are via the global offset table.
1686 For such cases we need not do anything here; the relocations will
1687 be handled correctly by relocate_section. */
1688 if (info->shared)
b34976b6 1689 return TRUE;
30667bf3
AM
1690
1691 /* If there are no references to this symbol that do not use the
1692 GOT, we don't need to generate a copy reloc. */
1693 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
b34976b6 1694 return TRUE;
30667bf3 1695
4fc8051d 1696 if (ELIMINATE_COPY_RELOCS)
ebe50bae 1697 {
4fc8051d
AM
1698 struct elf32_hppa_link_hash_entry *eh;
1699 struct elf32_hppa_dyn_reloc_entry *p;
ebe50bae 1700
4fc8051d
AM
1701 eh = (struct elf32_hppa_link_hash_entry *) h;
1702 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1703 {
1704 s = p->sec->output_section;
1705 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1706 break;
1707 }
1708
1709 /* If we didn't find any dynamic relocs in read-only sections, then
1710 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1711 if (p == NULL)
1712 {
1713 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1714 return TRUE;
1715 }
ebe50bae
AM
1716 }
1717
30667bf3
AM
1718 /* We must allocate the symbol in our .dynbss section, which will
1719 become part of the .bss section of the executable. There will be
1720 an entry for this symbol in the .dynsym section. The dynamic
1721 object will contain position independent code, so all references
1722 from the dynamic object to this symbol will go through the global
1723 offset table. The dynamic linker will use the .dynsym entry to
1724 determine the address it must put in the global offset table, so
1725 both the dynamic object and the regular object will refer to the
1726 same memory location for the variable. */
1727
3ac8354b 1728 htab = hppa_link_hash_table (info);
30667bf3
AM
1729
1730 /* We must generate a COPY reloc to tell the dynamic linker to
1731 copy the initial value out of the dynamic object and into the
3ac8354b 1732 runtime process image. */
30667bf3
AM
1733 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1734 {
3ac8354b 1735 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
30667bf3 1736 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
edd21aca 1737 }
252b5132 1738
3ac8354b
AM
1739 /* We need to figure out the alignment required for this symbol. I
1740 have no idea how other ELF linkers handle this. */
30667bf3 1741
3ac8354b
AM
1742 power_of_two = bfd_log2 (h->size);
1743 if (power_of_two > 3)
1744 power_of_two = 3;
1745
1746 /* Apply the required alignment. */
1747 s = htab->sdynbss;
1748 s->_raw_size = BFD_ALIGN (s->_raw_size,
1749 (bfd_size_type) (1 << power_of_two));
1750 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1751 {
1752 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
b34976b6 1753 return FALSE;
3ac8354b 1754 }
30667bf3 1755
30667bf3
AM
1756 /* Define the symbol as being at this point in the section. */
1757 h->root.u.def.section = s;
1758 h->root.u.def.value = s->_raw_size;
edd21aca 1759
30667bf3
AM
1760 /* Increment the section size to make room for the symbol. */
1761 s->_raw_size += h->size;
252b5132 1762
b34976b6 1763 return TRUE;
252b5132
RH
1764}
1765
e5ee5df1 1766/* Allocate space in the .plt for entries that won't have relocations.
a252afa4 1767 ie. plabel entries. */
a8d02d66 1768
b34976b6 1769static bfd_boolean
c39a58e6 1770allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
a8d02d66
AM
1771{
1772 struct bfd_link_info *info;
1773 struct elf32_hppa_link_hash_table *htab;
1774 asection *s;
1775
e92d460e 1776 if (h->root.type == bfd_link_hash_indirect)
b34976b6 1777 return TRUE;
a8d02d66 1778
e92d460e
AM
1779 if (h->root.type == bfd_link_hash_warning)
1780 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1781
c39a58e6 1782 info = inf;
a8d02d66 1783 htab = hppa_link_hash_table (info);
a252afa4 1784 if (htab->elf.dynamic_sections_created
e5ee5df1
AM
1785 && h->plt.refcount > 0)
1786 {
1787 /* Make sure this symbol is output as a dynamic symbol.
1788 Undefined weak syms won't yet be marked as dynamic. */
1789 if (h->dynindx == -1
1790 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1791 && h->type != STT_PARISC_MILLI)
a8d02d66 1792 {
c152c796 1793 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 1794 return FALSE;
e5ee5df1
AM
1795 }
1796
c152c796 1797 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
e5ee5df1 1798 {
067fa4a6
AM
1799 /* Allocate these later. From this point on, h->plabel
1800 means that the plt entry is only used by a plabel.
1801 We'll be using a normal plt entry for this symbol, so
1802 clear the plabel indicator. */
1803 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
e5ee5df1
AM
1804 }
1805 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1806 {
1807 /* Make an entry in the .plt section for plabel references
1808 that won't have a .plt entry for other reasons. */
1809 s = htab->splt;
1810 h->plt.offset = s->_raw_size;
1811 s->_raw_size += PLT_ENTRY_SIZE;
a8d02d66
AM
1812 }
1813 else
e5ee5df1
AM
1814 {
1815 /* No .plt entry needed. */
1816 h->plt.offset = (bfd_vma) -1;
1817 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1818 }
1819 }
1820 else
1821 {
1822 h->plt.offset = (bfd_vma) -1;
1823 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
a8d02d66
AM
1824 }
1825
b34976b6 1826 return TRUE;
a8d02d66
AM
1827}
1828
4dc86686
AM
1829/* Allocate space in .plt, .got and associated reloc sections for
1830 global syms. */
1831
b34976b6 1832static bfd_boolean
c39a58e6 1833allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
4dc86686
AM
1834{
1835 struct bfd_link_info *info;
83c81bfe 1836 struct elf32_hppa_link_hash_table *htab;
4dc86686 1837 asection *s;
446f2863 1838 struct elf32_hppa_link_hash_entry *eh;
98ceb8ce 1839 struct elf32_hppa_dyn_reloc_entry *p;
4dc86686 1840
e92d460e 1841 if (h->root.type == bfd_link_hash_indirect)
b34976b6 1842 return TRUE;
73a74a62 1843
e92d460e
AM
1844 if (h->root.type == bfd_link_hash_warning)
1845 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1846
c39a58e6 1847 info = inf;
83c81bfe 1848 htab = hppa_link_hash_table (info);
e5ee5df1
AM
1849 if (htab->elf.dynamic_sections_created
1850 && h->plt.offset != (bfd_vma) -1
067fa4a6 1851 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
4dc86686 1852 {
e5ee5df1
AM
1853 /* Make an entry in the .plt section. */
1854 s = htab->splt;
1855 h->plt.offset = s->_raw_size;
1856 s->_raw_size += PLT_ENTRY_SIZE;
3ac8354b 1857
e5ee5df1
AM
1858 /* We also need to make an entry in the .rela.plt section. */
1859 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1860 htab->need_plt_stub = 1;
4dc86686 1861 }
edd21aca 1862
4dc86686
AM
1863 if (h->got.refcount > 0)
1864 {
446f2863
AM
1865 /* Make sure this symbol is output as a dynamic symbol.
1866 Undefined weak syms won't yet be marked as dynamic. */
1867 if (h->dynindx == -1
1868 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1869 && h->type != STT_PARISC_MILLI)
1870 {
c152c796 1871 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 1872 return FALSE;
446f2863
AM
1873 }
1874
83c81bfe 1875 s = htab->sgot;
4dc86686
AM
1876 h->got.offset = s->_raw_size;
1877 s->_raw_size += GOT_ENTRY_SIZE;
ce757d15
AM
1878 if (htab->elf.dynamic_sections_created
1879 && (info->shared
1880 || (h->dynindx != -1
1881 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1882 {
1883 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1884 }
4dc86686
AM
1885 }
1886 else
1887 h->got.offset = (bfd_vma) -1;
30667bf3 1888
446f2863 1889 eh = (struct elf32_hppa_link_hash_entry *) h;
98ceb8ce 1890 if (eh->dyn_relocs == NULL)
b34976b6 1891 return TRUE;
30667bf3 1892
98ceb8ce
AM
1893 /* If this is a -Bsymbolic shared link, then we need to discard all
1894 space allocated for dynamic pc-relative relocs against symbols
1895 defined in a regular object. For the normal shared case, discard
1896 space for relocs that have become local due to symbol visibility
1897 changes. */
1898 if (info->shared)
446f2863 1899 {
98ceb8ce 1900#if RELATIVE_DYNRELOCS
4fc8051d 1901 if (SYMBOL_CALLS_LOCAL (info, h))
446f2863 1902 {
98ceb8ce 1903 struct elf32_hppa_dyn_reloc_entry **pp;
30667bf3 1904
98ceb8ce
AM
1905 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1906 {
1907 p->count -= p->relative_count;
1908 p->relative_count = 0;
1909 if (p->count == 0)
1910 *pp = p->next;
1911 else
1912 pp = &p->next;
1913 }
1914 }
1915#endif
4fc8051d
AM
1916
1917 /* Also discard relocs on undefined weak syms with non-default
1918 visibility. */
1919 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1920 && h->root.type == bfd_link_hash_undefweak)
1921 eh->dyn_relocs = NULL;
446f2863 1922 }
98ceb8ce 1923 else
30667bf3 1924 {
98ceb8ce
AM
1925 /* For the non-shared case, discard space for relocs against
1926 symbols which turn out to need copy relocs or are not
1927 dynamic. */
1928 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
4fc8051d
AM
1929 && ((ELIMINATE_COPY_RELOCS
1930 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
98ceb8ce 1931 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
ebe50bae 1932 || (htab->elf.dynamic_sections_created
98ceb8ce
AM
1933 && (h->root.type == bfd_link_hash_undefweak
1934 || h->root.type == bfd_link_hash_undefined))))
1935 {
1936 /* Make sure this symbol is output as a dynamic symbol.
1937 Undefined weak syms won't yet be marked as dynamic. */
1938 if (h->dynindx == -1
1939 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1940 && h->type != STT_PARISC_MILLI)
1941 {
c152c796 1942 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 1943 return FALSE;
98ceb8ce
AM
1944 }
1945
1946 /* If that succeeded, we know we'll be keeping all the
1947 relocs. */
1948 if (h->dynindx != -1)
1949 goto keep;
1950 }
446f2863 1951
98ceb8ce 1952 eh->dyn_relocs = NULL;
b34976b6 1953 return TRUE;
98ceb8ce 1954
ec338859 1955 keep: ;
30667bf3 1956 }
30667bf3 1957
98ceb8ce
AM
1958 /* Finally, allocate space. */
1959 for (p = eh->dyn_relocs; p != NULL; p = p->next)
30667bf3 1960 {
98ceb8ce
AM
1961 asection *sreloc = elf_section_data (p->sec)->sreloc;
1962 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
30667bf3 1963 }
30667bf3 1964
b34976b6 1965 return TRUE;
30667bf3 1966}
30667bf3 1967
d5c73c2f
AM
1968/* This function is called via elf_link_hash_traverse to force
1969 millicode symbols local so they do not end up as globals in the
1970 dynamic symbol table. We ought to be able to do this in
1971 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1972 for all dynamic symbols. Arguably, this is a bug in
1973 elf_adjust_dynamic_symbol. */
1974
b34976b6 1975static bfd_boolean
c39a58e6
AM
1976clobber_millicode_symbols (struct elf_link_hash_entry *h,
1977 struct bfd_link_info *info)
d5c73c2f 1978{
e92d460e
AM
1979 if (h->root.type == bfd_link_hash_warning)
1980 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1981
142f8c94
AM
1982 if (h->type == STT_PARISC_MILLI
1983 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
e0522e89 1984 {
b34976b6 1985 elf32_hppa_hide_symbol (info, h, TRUE);
e0522e89 1986 }
b34976b6 1987 return TRUE;
d5c73c2f
AM
1988}
1989
98ceb8ce
AM
1990/* Find any dynamic relocs that apply to read-only sections. */
1991
b34976b6 1992static bfd_boolean
c39a58e6 1993readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
98ceb8ce
AM
1994{
1995 struct elf32_hppa_link_hash_entry *eh;
1996 struct elf32_hppa_dyn_reloc_entry *p;
1997
e92d460e
AM
1998 if (h->root.type == bfd_link_hash_warning)
1999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2000
98ceb8ce
AM
2001 eh = (struct elf32_hppa_link_hash_entry *) h;
2002 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2003 {
2004 asection *s = p->sec->output_section;
2005
2006 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2007 {
c39a58e6 2008 struct bfd_link_info *info = inf;
98ceb8ce
AM
2009
2010 info->flags |= DF_TEXTREL;
2011
2012 /* Not an error, just cut short the traversal. */
b34976b6 2013 return FALSE;
98ceb8ce
AM
2014 }
2015 }
b34976b6 2016 return TRUE;
98ceb8ce
AM
2017}
2018
30667bf3
AM
2019/* Set the sizes of the dynamic sections. */
2020
b34976b6 2021static bfd_boolean
c39a58e6
AM
2022elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2023 struct bfd_link_info *info)
30667bf3 2024{
83c81bfe 2025 struct elf32_hppa_link_hash_table *htab;
30667bf3 2026 bfd *dynobj;
98ceb8ce 2027 bfd *ibfd;
30667bf3 2028 asection *s;
b34976b6 2029 bfd_boolean relocs;
30667bf3 2030
83c81bfe 2031 htab = hppa_link_hash_table (info);
ebe50bae 2032 dynobj = htab->elf.dynobj;
49e9d0d3
AM
2033 if (dynobj == NULL)
2034 abort ();
30667bf3 2035
ebe50bae 2036 if (htab->elf.dynamic_sections_created)
30667bf3
AM
2037 {
2038 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 2039 if (info->executable)
30667bf3
AM
2040 {
2041 s = bfd_get_section_by_name (dynobj, ".interp");
49e9d0d3
AM
2042 if (s == NULL)
2043 abort ();
30667bf3
AM
2044 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2045 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2046 }
74d1c347 2047
d5c73c2f 2048 /* Force millicode symbols local. */
ebe50bae 2049 elf_link_hash_traverse (&htab->elf,
d5c73c2f
AM
2050 clobber_millicode_symbols,
2051 info);
68fb2e56 2052 }
d5c73c2f 2053
98ceb8ce
AM
2054 /* Set up .got and .plt offsets for local syms, and space for local
2055 dynamic relocs. */
2056 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
68fb2e56
AM
2057 {
2058 bfd_signed_vma *local_got;
2059 bfd_signed_vma *end_local_got;
2060 bfd_signed_vma *local_plt;
2061 bfd_signed_vma *end_local_plt;
2062 bfd_size_type locsymcount;
2063 Elf_Internal_Shdr *symtab_hdr;
2064 asection *srel;
74d1c347 2065
98ceb8ce 2066 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
68fb2e56 2067 continue;
4dc86686 2068
98ceb8ce
AM
2069 for (s = ibfd->sections; s != NULL; s = s->next)
2070 {
ec338859 2071 struct elf32_hppa_dyn_reloc_entry *p;
98ceb8ce 2072
ec338859
AM
2073 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2074 elf_section_data (s)->local_dynrel);
2075 p != NULL;
2076 p = p->next)
98ceb8ce 2077 {
ec338859
AM
2078 if (!bfd_is_abs_section (p->sec)
2079 && bfd_is_abs_section (p->sec->output_section))
2080 {
2081 /* Input section has been discarded, either because
2082 it is a copy of a linkonce section or due to
2083 linker script /DISCARD/, so we'll be discarding
2084 the relocs too. */
2085 }
248866a8 2086 else if (p->count != 0)
ec338859
AM
2087 {
2088 srel = elf_section_data (p->sec)->sreloc;
2089 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
248866a8
AM
2090 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2091 info->flags |= DF_TEXTREL;
ec338859 2092 }
98ceb8ce
AM
2093 }
2094 }
2095
2096 local_got = elf_local_got_refcounts (ibfd);
68fb2e56
AM
2097 if (!local_got)
2098 continue;
74d1c347 2099
98ceb8ce 2100 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
68fb2e56
AM
2101 locsymcount = symtab_hdr->sh_info;
2102 end_local_got = local_got + locsymcount;
83c81bfe
AM
2103 s = htab->sgot;
2104 srel = htab->srelgot;
68fb2e56
AM
2105 for (; local_got < end_local_got; ++local_got)
2106 {
2107 if (*local_got > 0)
4dc86686 2108 {
68fb2e56
AM
2109 *local_got = s->_raw_size;
2110 s->_raw_size += GOT_ENTRY_SIZE;
2111 if (info->shared)
2112 srel->_raw_size += sizeof (Elf32_External_Rela);
4dc86686 2113 }
68fb2e56
AM
2114 else
2115 *local_got = (bfd_vma) -1;
2116 }
74d1c347 2117
68fb2e56
AM
2118 local_plt = end_local_got;
2119 end_local_plt = local_plt + locsymcount;
ebe50bae 2120 if (! htab->elf.dynamic_sections_created)
68fb2e56
AM
2121 {
2122 /* Won't be used, but be safe. */
2123 for (; local_plt < end_local_plt; ++local_plt)
2124 *local_plt = (bfd_vma) -1;
2125 }
2126 else
2127 {
83c81bfe
AM
2128 s = htab->splt;
2129 srel = htab->srelplt;
74d1c347
AM
2130 for (; local_plt < end_local_plt; ++local_plt)
2131 {
2132 if (*local_plt > 0)
2133 {
74d1c347
AM
2134 *local_plt = s->_raw_size;
2135 s->_raw_size += PLT_ENTRY_SIZE;
2136 if (info->shared)
4dc86686 2137 srel->_raw_size += sizeof (Elf32_External_Rela);
74d1c347
AM
2138 }
2139 else
2140 *local_plt = (bfd_vma) -1;
2141 }
2142 }
30667bf3 2143 }
30667bf3 2144
e5ee5df1
AM
2145 /* Do all the .plt entries without relocs first. The dynamic linker
2146 uses the last .plt reloc to find the end of the .plt (and hence
2147 the start of the .got) for lazy linking. */
c39a58e6 2148 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
a8d02d66 2149
98ceb8ce
AM
2150 /* Allocate global sym .plt and .got entries, and space for global
2151 sym dynamic relocs. */
c39a58e6 2152 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
30667bf3
AM
2153
2154 /* The check_relocs and adjust_dynamic_symbol entry points have
2155 determined the sizes of the various dynamic sections. Allocate
2156 memory for them. */
b34976b6 2157 relocs = FALSE;
30667bf3
AM
2158 for (s = dynobj->sections; s != NULL; s = s->next)
2159 {
30667bf3
AM
2160 if ((s->flags & SEC_LINKER_CREATED) == 0)
2161 continue;
2162
83c81bfe 2163 if (s == htab->splt)
68fb2e56 2164 {
83c81bfe 2165 if (htab->need_plt_stub)
68fb2e56
AM
2166 {
2167 /* Make space for the plt stub at the end of the .plt
2168 section. We want this stub right at the end, up
2169 against the .got section. */
83c81bfe 2170 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
68fb2e56
AM
2171 int pltalign = bfd_section_alignment (dynobj, s);
2172 bfd_size_type mask;
30667bf3 2173
68fb2e56
AM
2174 if (gotalign > pltalign)
2175 bfd_set_section_alignment (dynobj, s, gotalign);
2176 mask = ((bfd_size_type) 1 << gotalign) - 1;
2177 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2178 }
2179 }
83c81bfe 2180 else if (s == htab->sgot)
68fb2e56
AM
2181 ;
2182 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
30667bf3
AM
2183 {
2184 if (s->_raw_size != 0)
2185 {
4e12ff7f
AM
2186 /* Remember whether there are any reloc sections other
2187 than .rela.plt. */
2188 if (s != htab->srelplt)
b34976b6 2189 relocs = TRUE;
47d89dba 2190
30667bf3
AM
2191 /* We use the reloc_count field as a counter if we need
2192 to copy relocs into the output file. */
2193 s->reloc_count = 0;
2194 }
2195 }
30667bf3
AM
2196 else
2197 {
2198 /* It's not one of our sections, so don't allocate space. */
2199 continue;
2200 }
2201
2202 if (s->_raw_size == 0)
2203 {
2204 /* If we don't need this section, strip it from the
2205 output file. This is mostly to handle .rela.bss and
2206 .rela.plt. We must create both sections in
2207 create_dynamic_sections, because they must be created
2208 before the linker maps input sections to output
2209 sections. The linker does that before
2210 adjust_dynamic_symbol is called, and it is that
2211 function which decides whether anything needs to go
2212 into these sections. */
2213 _bfd_strip_section_from_output (info, s);
2214 continue;
2215 }
2216
2217 /* Allocate memory for the section contents. Zero it, because
2218 we may not fill in all the reloc sections. */
c39a58e6 2219 s->contents = bfd_zalloc (dynobj, s->_raw_size);
30667bf3 2220 if (s->contents == NULL && s->_raw_size != 0)
b34976b6 2221 return FALSE;
30667bf3
AM
2222 }
2223
ebe50bae 2224 if (htab->elf.dynamic_sections_created)
30667bf3
AM
2225 {
2226 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2227 actually has nothing to do with the PLT, it is how we
2228 communicate the LTP value of a load module to the dynamic
2229 linker. */
dc810e39 2230#define add_dynamic_entry(TAG, VAL) \
5a580b3a 2231 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39
AM
2232
2233 if (!add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 2234 return FALSE;
30667bf3
AM
2235
2236 /* Add some entries to the .dynamic section. We fill in the
2237 values later, in elf32_hppa_finish_dynamic_sections, but we
2238 must add the entries now so that we get the correct size for
2239 the .dynamic section. The DT_DEBUG entry is filled in by the
2240 dynamic linker and used by the debugger. */
dc810e39 2241 if (!info->shared)
30667bf3 2242 {
dc810e39 2243 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 2244 return FALSE;
30667bf3
AM
2245 }
2246
83c81bfe 2247 if (htab->srelplt->_raw_size != 0)
30667bf3 2248 {
dc810e39
AM
2249 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2250 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2251 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 2252 return FALSE;
30667bf3
AM
2253 }
2254
2255 if (relocs)
2256 {
dc810e39
AM
2257 if (!add_dynamic_entry (DT_RELA, 0)
2258 || !add_dynamic_entry (DT_RELASZ, 0)
2259 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
b34976b6 2260 return FALSE;
30667bf3 2261
98ceb8ce
AM
2262 /* If any dynamic relocs apply to a read-only section,
2263 then we need a DT_TEXTREL entry. */
248866a8 2264 if ((info->flags & DF_TEXTREL) == 0)
c39a58e6 2265 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
98ceb8ce
AM
2266
2267 if ((info->flags & DF_TEXTREL) != 0)
2268 {
2269 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 2270 return FALSE;
98ceb8ce 2271 }
30667bf3
AM
2272 }
2273 }
dc810e39 2274#undef add_dynamic_entry
30667bf3 2275
b34976b6 2276 return TRUE;
30667bf3
AM
2277}
2278
30667bf3
AM
2279/* External entry points for sizing and building linker stubs. */
2280
b4655ea9
AM
2281/* Set up various things so that we can make a list of input sections
2282 for each output section included in the link. Returns -1 on error,
cedb70c5 2283 0 when no stubs will be needed, and 1 on success. */
30667bf3 2284
b4655ea9 2285int
c39a58e6 2286elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
30667bf3
AM
2287{
2288 bfd *input_bfd;
b4655ea9
AM
2289 unsigned int bfd_count;
2290 int top_id, top_index;
30667bf3 2291 asection *section;
25f72752 2292 asection **input_list, **list;
dc810e39 2293 bfd_size_type amt;
b4655ea9 2294 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
30667bf3 2295
1badb539
AM
2296 /* Count the number of input BFDs and find the top input section id. */
2297 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
30667bf3
AM
2298 input_bfd != NULL;
2299 input_bfd = input_bfd->link_next)
2300 {
2301 bfd_count += 1;
25f72752
AM
2302 for (section = input_bfd->sections;
2303 section != NULL;
2304 section = section->next)
2305 {
2306 if (top_id < section->id)
2307 top_id = section->id;
2308 }
30667bf3 2309 }
b4655ea9 2310 htab->bfd_count = bfd_count;
30667bf3 2311
dc810e39 2312 amt = sizeof (struct map_stub) * (top_id + 1);
c39a58e6 2313 htab->stub_group = bfd_zmalloc (amt);
83c81bfe 2314 if (htab->stub_group == NULL)
b4655ea9 2315 return -1;
1badb539 2316
b4655ea9 2317 /* We can't use output_bfd->section_count here to find the top output
1badb539
AM
2318 section index as some sections may have been removed, and
2319 _bfd_strip_section_from_output doesn't renumber the indices. */
2320 for (section = output_bfd->sections, top_index = 0;
2321 section != NULL;
2322 section = section->next)
2323 {
2324 if (top_index < section->index)
2325 top_index = section->index;
2326 }
2327
b4655ea9 2328 htab->top_index = top_index;
dc810e39 2329 amt = sizeof (asection *) * (top_index + 1);
c39a58e6 2330 input_list = bfd_malloc (amt);
b4655ea9 2331 htab->input_list = input_list;
25f72752 2332 if (input_list == NULL)
b4655ea9 2333 return -1;
25f72752 2334
1badb539
AM
2335 /* For sections we aren't interested in, mark their entries with a
2336 value we can check later. */
2337 list = input_list + top_index;
2338 do
2339 *list = bfd_abs_section_ptr;
2340 while (list-- != input_list);
2341
2342 for (section = output_bfd->sections;
2343 section != NULL;
2344 section = section->next)
2345 {
47d89dba 2346 if ((section->flags & SEC_CODE) != 0)
1badb539
AM
2347 input_list[section->index] = NULL;
2348 }
2349
b4655ea9
AM
2350 return 1;
2351}
2352
2353/* The linker repeatedly calls this function for each input section,
2354 in the order that input sections are linked into output sections.
2355 Build lists of input sections to determine groupings between which
2356 we may insert linker stubs. */
2357
2358void
c39a58e6 2359elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
b4655ea9
AM
2360{
2361 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2362
2363 if (isec->output_section->index <= htab->top_index)
25f72752 2364 {
b4655ea9
AM
2365 asection **list = htab->input_list + isec->output_section->index;
2366 if (*list != bfd_abs_section_ptr)
25f72752 2367 {
b4655ea9 2368 /* Steal the link_sec pointer for our list. */
83c81bfe 2369#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
b4655ea9
AM
2370 /* This happens to make the list in reverse order,
2371 which is what we want. */
2372 PREV_SEC (isec) = *list;
2373 *list = isec;
25f72752
AM
2374 }
2375 }
b4655ea9 2376}
25f72752 2377
b4655ea9
AM
2378/* See whether we can group stub sections together. Grouping stub
2379 sections may result in fewer stubs. More importantly, we need to
2380 put all .init* and .fini* stubs at the beginning of the .init or
2381 .fini output sections respectively, because glibc splits the
2382 _init and _fini functions into multiple parts. Putting a stub in
2383 the middle of a function is not a good idea. */
2384
2385static void
c39a58e6
AM
2386group_sections (struct elf32_hppa_link_hash_table *htab,
2387 bfd_size_type stub_group_size,
2388 bfd_boolean stubs_always_before_branch)
b4655ea9
AM
2389{
2390 asection **list = htab->input_list + htab->top_index;
1badb539 2391 do
25f72752
AM
2392 {
2393 asection *tail = *list;
1badb539
AM
2394 if (tail == bfd_abs_section_ptr)
2395 continue;
25f72752
AM
2396 while (tail != NULL)
2397 {
2398 asection *curr;
2399 asection *prev;
2400 bfd_size_type total;
00b28bb0 2401 bfd_boolean big_sec;
25f72752
AM
2402
2403 curr = tail;
2404 if (tail->_cooked_size)
2405 total = tail->_cooked_size;
2406 else
2407 total = tail->_raw_size;
00b28bb0
AM
2408 big_sec = total >= stub_group_size;
2409
25f72752
AM
2410 while ((prev = PREV_SEC (curr)) != NULL
2411 && ((total += curr->output_offset - prev->output_offset)
47d89dba 2412 < stub_group_size))
25f72752
AM
2413 curr = prev;
2414
2415 /* OK, the size from the start of CURR to the end is less
a248e267 2416 than 240000 bytes and thus can be handled by one stub
25f72752 2417 section. (or the tail section is itself larger than
a248e267 2418 240000 bytes, in which case we may be toast.)
25f72752
AM
2419 We should really be keeping track of the total size of
2420 stubs added here, as stubs contribute to the final output
2421 section size. That's a little tricky, and this way will
a248e267
AM
2422 only break if stubs added total more than 22144 bytes, or
2423 2768 long branch stubs. It seems unlikely for more than
2424 2768 different functions to be called, especially from
2425 code only 240000 bytes long. This limit used to be
2426 250000, but c++ code tends to generate lots of little
2427 functions, and sometimes violated the assumption. */
25f72752
AM
2428 do
2429 {
2430 prev = PREV_SEC (tail);
2431 /* Set up this stub group. */
83c81bfe 2432 htab->stub_group[tail->id].link_sec = curr;
25f72752
AM
2433 }
2434 while (tail != curr && (tail = prev) != NULL);
2435
a248e267 2436 /* But wait, there's more! Input sections up to 240000
00b28bb0
AM
2437 bytes before the stub section can be handled by it too.
2438 Don't do this if we have a really large section after the
2439 stubs, as adding more stubs increases the chance that
2440 branches may not reach into the stub section. */
2441 if (!stubs_always_before_branch && !big_sec)
25f72752 2442 {
47d89dba
AM
2443 total = 0;
2444 while (prev != NULL
2445 && ((total += tail->output_offset - prev->output_offset)
2446 < stub_group_size))
2447 {
2448 tail = prev;
2449 prev = PREV_SEC (tail);
83c81bfe 2450 htab->stub_group[tail->id].link_sec = curr;
47d89dba 2451 }
25f72752
AM
2452 }
2453 tail = prev;
2454 }
2455 }
b4655ea9
AM
2456 while (list-- != htab->input_list);
2457 free (htab->input_list);
1badb539 2458#undef PREV_SEC
b4655ea9
AM
2459}
2460
2461/* Read in all local syms for all input bfds, and create hash entries
2462 for export stubs if we are building a multi-subspace shared lib.
2463 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2464
2465static int
c39a58e6 2466get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
b4655ea9
AM
2467{
2468 unsigned int bfd_indx;
2469 Elf_Internal_Sym *local_syms, **all_local_syms;
2470 int stub_changed = 0;
2471 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
30667bf3
AM
2472
2473 /* We want to read in symbol extension records only once. To do this
2474 we need to read in the local symbols in parallel and save them for
2475 later use; so hold pointers to the local symbols in an array. */
b4655ea9 2476 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
c39a58e6 2477 all_local_syms = bfd_zmalloc (amt);
b4655ea9 2478 htab->all_local_syms = all_local_syms;
30667bf3 2479 if (all_local_syms == NULL)
b4655ea9 2480 return -1;
30667bf3
AM
2481
2482 /* Walk over all the input BFDs, swapping in local symbols.
2483 If we are creating a shared library, create hash entries for the
2484 export stubs. */
b4655ea9 2485 for (bfd_indx = 0;
30667bf3 2486 input_bfd != NULL;
25f72752 2487 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2488 {
2489 Elf_Internal_Shdr *symtab_hdr;
edd21aca 2490
252b5132
RH
2491 /* We'll need the symbol table in a second. */
2492 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2493 if (symtab_hdr->sh_info == 0)
2494 continue;
2495
6cdc0ccc
AM
2496 /* We need an array of the local symbols attached to the input bfd. */
2497 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
edd21aca 2498 if (local_syms == NULL)
edd21aca 2499 {
6cdc0ccc
AM
2500 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2501 symtab_hdr->sh_info, 0,
2502 NULL, NULL, NULL);
2503 /* Cache them for elf_link_input_bfd. */
2504 symtab_hdr->contents = (unsigned char *) local_syms;
edd21aca 2505 }
6cdc0ccc
AM
2506 if (local_syms == NULL)
2507 return -1;
edd21aca 2508
6cdc0ccc 2509 all_local_syms[bfd_indx] = local_syms;
edd21aca 2510
83c81bfe 2511 if (info->shared && htab->multi_subspace)
30667bf3 2512 {
25f72752
AM
2513 struct elf_link_hash_entry **sym_hashes;
2514 struct elf_link_hash_entry **end_hashes;
30667bf3
AM
2515 unsigned int symcount;
2516
2517 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2518 - symtab_hdr->sh_info);
25f72752
AM
2519 sym_hashes = elf_sym_hashes (input_bfd);
2520 end_hashes = sym_hashes + symcount;
30667bf3
AM
2521
2522 /* Look through the global syms for functions; We need to
2523 build export stubs for all globally visible functions. */
25f72752 2524 for (; sym_hashes < end_hashes; sym_hashes++)
30667bf3
AM
2525 {
2526 struct elf32_hppa_link_hash_entry *hash;
2527
25f72752 2528 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
30667bf3
AM
2529
2530 while (hash->elf.root.type == bfd_link_hash_indirect
2531 || hash->elf.root.type == bfd_link_hash_warning)
2532 hash = ((struct elf32_hppa_link_hash_entry *)
2533 hash->elf.root.u.i.link);
2534
2535 /* At this point in the link, undefined syms have been
2536 resolved, so we need to check that the symbol was
2537 defined in this BFD. */
2538 if ((hash->elf.root.type == bfd_link_hash_defined
2539 || hash->elf.root.type == bfd_link_hash_defweak)
2540 && hash->elf.type == STT_FUNC
2541 && hash->elf.root.u.def.section->output_section != NULL
25f72752
AM
2542 && (hash->elf.root.u.def.section->output_section->owner
2543 == output_bfd)
30667bf3
AM
2544 && hash->elf.root.u.def.section->owner == input_bfd
2545 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2546 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2547 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2548 {
2549 asection *sec;
2550 const char *stub_name;
2551 struct elf32_hppa_stub_hash_entry *stub_entry;
2552
2553 sec = hash->elf.root.u.def.section;
2554 stub_name = hash->elf.root.root.string;
83c81bfe 2555 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
30667bf3 2556 stub_name,
b34976b6 2557 FALSE, FALSE);
30667bf3
AM
2558 if (stub_entry == NULL)
2559 {
83c81bfe 2560 stub_entry = hppa_add_stub (stub_name, sec, htab);
30667bf3 2561 if (!stub_entry)
b4655ea9 2562 return -1;
30667bf3
AM
2563
2564 stub_entry->target_value = hash->elf.root.u.def.value;
2565 stub_entry->target_section = hash->elf.root.u.def.section;
2566 stub_entry->stub_type = hppa_stub_export;
2567 stub_entry->h = hash;
2568 stub_changed = 1;
2569 }
2570 else
2571 {
2572 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
8f615d07
AM
2573 bfd_archive_filename (input_bfd),
2574 stub_name);
30667bf3
AM
2575 }
2576 }
2577 }
30667bf3
AM
2578 }
2579 }
edd21aca 2580
b4655ea9
AM
2581 return stub_changed;
2582}
2583
2584/* Determine and set the size of the stub section for a final link.
2585
2586 The basic idea here is to examine all the relocations looking for
2587 PC-relative calls to a target that is unreachable with a "bl"
2588 instruction. */
2589
b34976b6 2590bfd_boolean
c39a58e6
AM
2591elf32_hppa_size_stubs
2592 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2593 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2594 asection * (*add_stub_section) (const char *, asection *),
2595 void (*layout_sections_again) (void))
b4655ea9
AM
2596{
2597 bfd_size_type stub_group_size;
b34976b6
AM
2598 bfd_boolean stubs_always_before_branch;
2599 bfd_boolean stub_changed;
b4655ea9
AM
2600 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2601
2602 /* Stash our params away. */
2603 htab->stub_bfd = stub_bfd;
2604 htab->multi_subspace = multi_subspace;
2605 htab->add_stub_section = add_stub_section;
2606 htab->layout_sections_again = layout_sections_again;
2607 stubs_always_before_branch = group_size < 0;
2608 if (group_size < 0)
2609 stub_group_size = -group_size;
2610 else
2611 stub_group_size = group_size;
2612 if (stub_group_size == 1)
2613 {
2614 /* Default values. */
acc990f2
AM
2615 if (stubs_always_before_branch)
2616 {
2617 stub_group_size = 7680000;
2618 if (htab->has_17bit_branch || htab->multi_subspace)
2619 stub_group_size = 240000;
2620 if (htab->has_12bit_branch)
2621 stub_group_size = 7500;
2622 }
2623 else
2624 {
2625 stub_group_size = 6971392;
2626 if (htab->has_17bit_branch || htab->multi_subspace)
2627 stub_group_size = 217856;
2628 if (htab->has_12bit_branch)
2629 stub_group_size = 6808;
2630 }
b4655ea9
AM
2631 }
2632
2633 group_sections (htab, stub_group_size, stubs_always_before_branch);
2634
2635 switch (get_local_syms (output_bfd, info->input_bfds, info))
2636 {
2637 default:
2638 if (htab->all_local_syms)
2639 goto error_ret_free_local;
b34976b6 2640 return FALSE;
b4655ea9
AM
2641
2642 case 0:
b34976b6 2643 stub_changed = FALSE;
b4655ea9
AM
2644 break;
2645
2646 case 1:
b34976b6 2647 stub_changed = TRUE;
b4655ea9
AM
2648 break;
2649 }
2650
edd21aca
AM
2651 while (1)
2652 {
b4655ea9
AM
2653 bfd *input_bfd;
2654 unsigned int bfd_indx;
30667bf3
AM
2655 asection *stub_sec;
2656
25f72752 2657 for (input_bfd = info->input_bfds, bfd_indx = 0;
30667bf3 2658 input_bfd != NULL;
25f72752 2659 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2660 {
2661 Elf_Internal_Shdr *symtab_hdr;
b4655ea9
AM
2662 asection *section;
2663 Elf_Internal_Sym *local_syms;
30667bf3
AM
2664
2665 /* We'll need the symbol table in a second. */
2666 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2667 if (symtab_hdr->sh_info == 0)
2668 continue;
2669
b4655ea9 2670 local_syms = htab->all_local_syms[bfd_indx];
30667bf3
AM
2671
2672 /* Walk over each section attached to the input bfd. */
2673 for (section = input_bfd->sections;
2674 section != NULL;
25f72752 2675 section = section->next)
30667bf3 2676 {
30667bf3
AM
2677 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2678
2679 /* If there aren't any relocs, then there's nothing more
2680 to do. */
2681 if ((section->flags & SEC_RELOC) == 0
2682 || section->reloc_count == 0)
2683 continue;
2684
25f72752
AM
2685 /* If this section is a link-once section that will be
2686 discarded, then don't create any stubs. */
2687 if (section->output_section == NULL
2688 || section->output_section->owner != output_bfd)
2689 continue;
2690
1e2f5b6e
AM
2691 /* Get the relocs. */
2692 internal_relocs
c39a58e6 2693 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
45d6a902 2694 info->keep_memory);
30667bf3 2695 if (internal_relocs == NULL)
1e2f5b6e 2696 goto error_ret_free_local;
30667bf3
AM
2697
2698 /* Now examine each relocation. */
2699 irela = internal_relocs;
2700 irelaend = irela + section->reloc_count;
2701 for (; irela < irelaend; irela++)
2702 {
2703 unsigned int r_type, r_indx;
2704 enum elf32_hppa_stub_type stub_type;
2705 struct elf32_hppa_stub_hash_entry *stub_entry;
2706 asection *sym_sec;
2707 bfd_vma sym_value;
2708 bfd_vma destination;
2709 struct elf32_hppa_link_hash_entry *hash;
2710 char *stub_name;
25f72752 2711 const asection *id_sec;
30667bf3
AM
2712
2713 r_type = ELF32_R_TYPE (irela->r_info);
2714 r_indx = ELF32_R_SYM (irela->r_info);
2715
2716 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2717 {
2718 bfd_set_error (bfd_error_bad_value);
1e2f5b6e
AM
2719 error_ret_free_internal:
2720 if (elf_section_data (section)->relocs == NULL)
2721 free (internal_relocs);
2722 goto error_ret_free_local;
30667bf3
AM
2723 }
2724
2725 /* Only look for stubs on call instructions. */
2726 if (r_type != (unsigned int) R_PARISC_PCREL12F
2727 && r_type != (unsigned int) R_PARISC_PCREL17F
2728 && r_type != (unsigned int) R_PARISC_PCREL22F)
2729 continue;
2730
2731 /* Now determine the call target, its name, value,
2732 section. */
2733 sym_sec = NULL;
2734 sym_value = 0;
2735 destination = 0;
2736 hash = NULL;
2737 if (r_indx < symtab_hdr->sh_info)
2738 {
2739 /* It's a local symbol. */
2740 Elf_Internal_Sym *sym;
2741 Elf_Internal_Shdr *hdr;
2742
2743 sym = local_syms + r_indx;
2744 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2745 sym_sec = hdr->bfd_section;
2746 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2747 sym_value = sym->st_value;
2748 destination = (sym_value + irela->r_addend
2749 + sym_sec->output_offset
2750 + sym_sec->output_section->vma);
2751 }
2752 else
2753 {
2754 /* It's an external symbol. */
2755 int e_indx;
2756
2757 e_indx = r_indx - symtab_hdr->sh_info;
2758 hash = ((struct elf32_hppa_link_hash_entry *)
2759 elf_sym_hashes (input_bfd)[e_indx]);
2760
2761 while (hash->elf.root.type == bfd_link_hash_indirect
2762 || hash->elf.root.type == bfd_link_hash_warning)
2763 hash = ((struct elf32_hppa_link_hash_entry *)
2764 hash->elf.root.u.i.link);
2765
2766 if (hash->elf.root.type == bfd_link_hash_defined
2767 || hash->elf.root.type == bfd_link_hash_defweak)
2768 {
2769 sym_sec = hash->elf.root.u.def.section;
2770 sym_value = hash->elf.root.u.def.value;
2771 if (sym_sec->output_section != NULL)
2772 destination = (sym_value + irela->r_addend
2773 + sym_sec->output_offset
2774 + sym_sec->output_section->vma);
2775 }
2776 else if (hash->elf.root.type == bfd_link_hash_undefweak)
c432ba1a
AM
2777 {
2778 if (! info->shared)
2779 continue;
2780 }
30667bf3 2781 else if (hash->elf.root.type == bfd_link_hash_undefined)
c432ba1a 2782 {
59c2e50f 2783 if (! (info->unresolved_syms_in_objects == RM_IGNORE
c432ba1a
AM
2784 && (ELF_ST_VISIBILITY (hash->elf.other)
2785 == STV_DEFAULT)
2786 && hash->elf.type != STT_PARISC_MILLI))
2787 continue;
2788 }
30667bf3
AM
2789 else
2790 {
2791 bfd_set_error (bfd_error_bad_value);
2792 goto error_ret_free_internal;
2793 }
2794 }
2795
2796 /* Determine what (if any) linker stub is needed. */
2797 stub_type = hppa_type_of_stub (section, irela, hash,
a252afa4 2798 destination, info);
30667bf3
AM
2799 if (stub_type == hppa_stub_none)
2800 continue;
2801
25f72752 2802 /* Support for grouping stub sections. */
83c81bfe 2803 id_sec = htab->stub_group[section->id].link_sec;
25f72752 2804
30667bf3 2805 /* Get the name of this stub. */
25f72752 2806 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
30667bf3
AM
2807 if (!stub_name)
2808 goto error_ret_free_internal;
2809
83c81bfe 2810 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
30667bf3 2811 stub_name,
b34976b6 2812 FALSE, FALSE);
30667bf3
AM
2813 if (stub_entry != NULL)
2814 {
2815 /* The proper stub has already been created. */
2816 free (stub_name);
2817 continue;
2818 }
2819
83c81bfe 2820 stub_entry = hppa_add_stub (stub_name, section, htab);
30667bf3
AM
2821 if (stub_entry == NULL)
2822 {
2823 free (stub_name);
1e2f5b6e 2824 goto error_ret_free_internal;
30667bf3
AM
2825 }
2826
2827 stub_entry->target_value = sym_value;
2828 stub_entry->target_section = sym_sec;
2829 stub_entry->stub_type = stub_type;
2830 if (info->shared)
2831 {
2832 if (stub_type == hppa_stub_import)
2833 stub_entry->stub_type = hppa_stub_import_shared;
98ceb8ce 2834 else if (stub_type == hppa_stub_long_branch)
30667bf3
AM
2835 stub_entry->stub_type = hppa_stub_long_branch_shared;
2836 }
2837 stub_entry->h = hash;
b34976b6 2838 stub_changed = TRUE;
30667bf3
AM
2839 }
2840
2841 /* We're done with the internal relocs, free them. */
1e2f5b6e
AM
2842 if (elf_section_data (section)->relocs == NULL)
2843 free (internal_relocs);
30667bf3
AM
2844 }
2845 }
2846
2847 if (!stub_changed)
2848 break;
2849
2850 /* OK, we've added some stubs. Find out the new size of the
2851 stub sections. */
83c81bfe 2852 for (stub_sec = htab->stub_bfd->sections;
30667bf3
AM
2853 stub_sec != NULL;
2854 stub_sec = stub_sec->next)
2855 {
74d1c347
AM
2856 stub_sec->_raw_size = 0;
2857 stub_sec->_cooked_size = 0;
2858 }
74d1c347 2859
83c81bfe 2860 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
74d1c347 2861
30667bf3 2862 /* Ask the linker to do its stuff. */
83c81bfe 2863 (*htab->layout_sections_again) ();
b34976b6 2864 stub_changed = FALSE;
30667bf3
AM
2865 }
2866
6cdc0ccc 2867 free (htab->all_local_syms);
b34976b6 2868 return TRUE;
30667bf3
AM
2869
2870 error_ret_free_local:
b4655ea9 2871 free (htab->all_local_syms);
b34976b6 2872 return FALSE;
30667bf3
AM
2873}
2874
30667bf3
AM
2875/* For a final link, this function is called after we have sized the
2876 stubs to provide a value for __gp. */
2877
b34976b6 2878bfd_boolean
c39a58e6 2879elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
30667bf3 2880{
b4655ea9
AM
2881 struct bfd_link_hash_entry *h;
2882 asection *sec = NULL;
2883 bfd_vma gp_val = 0;
83c81bfe 2884 struct elf32_hppa_link_hash_table *htab;
30667bf3 2885
83c81bfe 2886 htab = hppa_link_hash_table (info);
b34976b6 2887 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
30667bf3 2888
df8634e3 2889 if (h != NULL
b4655ea9
AM
2890 && (h->type == bfd_link_hash_defined
2891 || h->type == bfd_link_hash_defweak))
30667bf3 2892 {
b4655ea9
AM
2893 gp_val = h->u.def.value;
2894 sec = h->u.def.section;
30667bf3
AM
2895 }
2896 else
2897 {
0eddce27
AM
2898 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2899 asection *sgot = bfd_get_section_by_name (abfd, ".got");
b4655ea9 2900
74d1c347
AM
2901 /* Choose to point our LTP at, in this order, one of .plt, .got,
2902 or .data, if these sections exist. In the case of choosing
2903 .plt try to make the LTP ideal for addressing anywhere in the
2904 .plt or .got with a 14 bit signed offset. Typically, the end
2905 of the .plt is the start of the .got, so choose .plt + 0x2000
2906 if either the .plt or .got is larger than 0x2000. If both
2907 the .plt and .got are smaller than 0x2000, choose the end of
2908 the .plt section. */
b4655ea9 2909 sec = splt;
74d1c347 2910 if (sec != NULL)
30667bf3 2911 {
74d1c347 2912 gp_val = sec->_raw_size;
b4655ea9 2913 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
74d1c347
AM
2914 {
2915 gp_val = 0x2000;
2916 }
2917 }
2918 else
2919 {
b4655ea9 2920 sec = sgot;
74d1c347
AM
2921 if (sec != NULL)
2922 {
2923 /* We know we don't have a .plt. If .got is large,
2924 offset our LTP. */
2925 if (sec->_raw_size > 0x2000)
2926 gp_val = 0x2000;
2927 }
2928 else
2929 {
2930 /* No .plt or .got. Who cares what the LTP is? */
2931 sec = bfd_get_section_by_name (abfd, ".data");
2932 }
30667bf3 2933 }
df8634e3
AM
2934
2935 if (h != NULL)
2936 {
b4655ea9
AM
2937 h->type = bfd_link_hash_defined;
2938 h->u.def.value = gp_val;
df8634e3 2939 if (sec != NULL)
b4655ea9 2940 h->u.def.section = sec;
df8634e3 2941 else
b4655ea9 2942 h->u.def.section = bfd_abs_section_ptr;
df8634e3 2943 }
30667bf3
AM
2944 }
2945
b32b5d6e 2946 if (sec != NULL && sec->output_section != NULL)
74d1c347
AM
2947 gp_val += sec->output_section->vma + sec->output_offset;
2948
2949 elf_gp (abfd) = gp_val;
b34976b6 2950 return TRUE;
30667bf3
AM
2951}
2952
30667bf3
AM
2953/* Build all the stubs associated with the current output file. The
2954 stubs are kept in a hash table attached to the main linker hash
2955 table. We also set up the .plt entries for statically linked PIC
2956 functions here. This function is called via hppaelf_finish in the
2957 linker. */
2958
b34976b6 2959bfd_boolean
c39a58e6 2960elf32_hppa_build_stubs (struct bfd_link_info *info)
30667bf3
AM
2961{
2962 asection *stub_sec;
2963 struct bfd_hash_table *table;
83c81bfe 2964 struct elf32_hppa_link_hash_table *htab;
30667bf3 2965
83c81bfe 2966 htab = hppa_link_hash_table (info);
30667bf3 2967
83c81bfe 2968 for (stub_sec = htab->stub_bfd->sections;
30667bf3
AM
2969 stub_sec != NULL;
2970 stub_sec = stub_sec->next)
2971 {
dc810e39 2972 bfd_size_type size;
30667bf3
AM
2973
2974 /* Allocate memory to hold the linker stubs. */
74d1c347 2975 size = stub_sec->_raw_size;
c39a58e6 2976 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
30667bf3 2977 if (stub_sec->contents == NULL && size != 0)
b34976b6 2978 return FALSE;
74d1c347 2979 stub_sec->_raw_size = 0;
30667bf3
AM
2980 }
2981
2982 /* Build the stubs as directed by the stub hash table. */
83c81bfe 2983 table = &htab->stub_hash_table;
30667bf3
AM
2984 bfd_hash_traverse (table, hppa_build_one_stub, info);
2985
b34976b6 2986 return TRUE;
30667bf3
AM
2987}
2988
c46b7515
AM
2989/* Perform a final link. */
2990
b34976b6 2991static bfd_boolean
c39a58e6 2992elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
c46b7515 2993{
4dc86686 2994 /* Invoke the regular ELF linker to do all the work. */
c152c796 2995 if (!bfd_elf_final_link (abfd, info))
b34976b6 2996 return FALSE;
c46b7515
AM
2997
2998 /* If we're producing a final executable, sort the contents of the
985142a4 2999 unwind section. */
46fe4e66 3000 return elf_hppa_sort_unwind (abfd);
c46b7515
AM
3001}
3002
3003/* Record the lowest address for the data and text segments. */
3004
3005static void
c39a58e6
AM
3006hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3007 asection *section,
3008 void *data)
c46b7515 3009{
83c81bfe 3010 struct elf32_hppa_link_hash_table *htab;
c46b7515 3011
83c81bfe 3012 htab = (struct elf32_hppa_link_hash_table *) data;
c46b7515
AM
3013
3014 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3015 {
3016 bfd_vma value = section->vma - section->filepos;
3017
3018 if ((section->flags & SEC_READONLY) != 0)
3019 {
83c81bfe
AM
3020 if (value < htab->text_segment_base)
3021 htab->text_segment_base = value;
c46b7515
AM
3022 }
3023 else
3024 {
83c81bfe
AM
3025 if (value < htab->data_segment_base)
3026 htab->data_segment_base = value;
c46b7515
AM
3027 }
3028 }
3029}
3030
30667bf3
AM
3031/* Perform a relocation as part of a final link. */
3032
3033static bfd_reloc_status_type
c39a58e6
AM
3034final_link_relocate (asection *input_section,
3035 bfd_byte *contents,
3036 const Elf_Internal_Rela *rel,
3037 bfd_vma value,
3038 struct elf32_hppa_link_hash_table *htab,
3039 asection *sym_sec,
a252afa4
DA
3040 struct elf32_hppa_link_hash_entry *h,
3041 struct bfd_link_info *info)
30667bf3
AM
3042{
3043 int insn;
3044 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
a252afa4 3045 unsigned int orig_r_type = r_type;
30667bf3
AM
3046 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3047 int r_format = howto->bitsize;
3048 enum hppa_reloc_field_selector_type_alt r_field;
3049 bfd *input_bfd = input_section->owner;
3050 bfd_vma offset = rel->r_offset;
3051 bfd_vma max_branch_offset = 0;
3052 bfd_byte *hit_data = contents + offset;
3053 bfd_signed_vma addend = rel->r_addend;
3054 bfd_vma location;
3055 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3056 int val;
3057
3058 if (r_type == R_PARISC_NONE)
3059 return bfd_reloc_ok;
3060
3061 insn = bfd_get_32 (input_bfd, hit_data);
3062
3063 /* Find out where we are and where we're going. */
3064 location = (offset +
3065 input_section->output_offset +
3066 input_section->output_section->vma);
3067
a252afa4
DA
3068 /* If we are not building a shared library, convert DLTIND relocs to
3069 DPREL relocs. */
3070 if (!info->shared)
3071 {
3072 switch (r_type)
4fc8051d
AM
3073 {
3074 case R_PARISC_DLTIND21L:
3075 r_type = R_PARISC_DPREL21L;
a252afa4
DA
3076 break;
3077
4fc8051d
AM
3078 case R_PARISC_DLTIND14R:
3079 r_type = R_PARISC_DPREL14R;
a252afa4
DA
3080 break;
3081
4fc8051d
AM
3082 case R_PARISC_DLTIND14F:
3083 r_type = R_PARISC_DPREL14F;
a252afa4
DA
3084 break;
3085 }
3086 }
3087
30667bf3
AM
3088 switch (r_type)
3089 {
3090 case R_PARISC_PCREL12F:
3091 case R_PARISC_PCREL17F:
3092 case R_PARISC_PCREL22F:
067fa4a6
AM
3093 /* If this call should go via the plt, find the import stub in
3094 the stub hash. */
30667bf3
AM
3095 if (sym_sec == NULL
3096 || sym_sec->output_section == NULL
12cca0d2 3097 || (h != NULL
067fa4a6 3098 && h->elf.plt.offset != (bfd_vma) -1
a252afa4
DA
3099 && h->elf.dynindx != -1
3100 && !h->plabel
3101 && (info->shared
3102 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3103 || h->elf.root.type == bfd_link_hash_defweak)))
30667bf3
AM
3104 {
3105 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
83c81bfe 3106 h, rel, htab);
30667bf3
AM
3107 if (stub_entry != NULL)
3108 {
3109 value = (stub_entry->stub_offset
3110 + stub_entry->stub_sec->output_offset
3111 + stub_entry->stub_sec->output_section->vma);
3112 addend = 0;
3113 }
3114 else if (sym_sec == NULL && h != NULL
3115 && h->elf.root.type == bfd_link_hash_undefweak)
3116 {
db20fd76
AM
3117 /* It's OK if undefined weak. Calls to undefined weak
3118 symbols behave as if the "called" function
3119 immediately returns. We can thus call to a weak
3120 function without first checking whether the function
3121 is defined. */
30667bf3 3122 value = location;
db20fd76 3123 addend = 8;
30667bf3
AM
3124 }
3125 else
f09ebc7d 3126 return bfd_reloc_undefined;
30667bf3
AM
3127 }
3128 /* Fall thru. */
3129
3130 case R_PARISC_PCREL21L:
3131 case R_PARISC_PCREL17C:
3132 case R_PARISC_PCREL17R:
3133 case R_PARISC_PCREL14R:
3134 case R_PARISC_PCREL14F:
36751eee 3135 case R_PARISC_PCREL32:
30667bf3
AM
3136 /* Make it a pc relative offset. */
3137 value -= location;
3138 addend -= 8;
3139 break;
3140
3141 case R_PARISC_DPREL21L:
3142 case R_PARISC_DPREL14R:
3143 case R_PARISC_DPREL14F:
a252afa4
DA
3144 /* Convert instructions that use the linkage table pointer (r19) to
3145 instructions that use the global data pointer (dp). This is the
3146 most efficient way of using PIC code in an incomplete executable,
3147 but the user must follow the standard runtime conventions for
3148 accessing data for this to work. */
3149 if (orig_r_type == R_PARISC_DLTIND21L)
3150 {
3151 /* Convert addil instructions if the original reloc was a
3152 DLTIND21L. GCC sometimes uses a register other than r19 for
3153 the operation, so we must convert any addil instruction
3154 that uses this relocation. */
3155 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3156 insn = ADDIL_DP;
3157 else
3158 /* We must have a ldil instruction. It's too hard to find
3159 and convert the associated add instruction, so issue an
3160 error. */
3161 (*_bfd_error_handler)
4fc8051d 3162 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
a252afa4
DA
3163 bfd_archive_filename (input_bfd),
3164 input_section->name,
3165 (long) rel->r_offset,
3166 howto->name,
3167 insn);
3168 }
3169 else if (orig_r_type == R_PARISC_DLTIND14F)
3170 {
3171 /* This must be a format 1 load/store. Change the base
3172 register to dp. */
3173 insn = (insn & 0xfc1ffff) | (27 << 21);
3174 }
3175
30667bf3 3176 /* For all the DP relative relocations, we need to examine the symbol's
95d0f04a
DA
3177 section. If it has no section or if it's a code section, then
3178 "data pointer relative" makes no sense. In that case we don't
3179 adjust the "value", and for 21 bit addil instructions, we change the
3180 source addend register from %dp to %r0. This situation commonly
3181 arises for undefined weak symbols and when a variable's "constness"
30667bf3
AM
3182 is declared differently from the way the variable is defined. For
3183 instance: "extern int foo" with foo defined as "const int foo". */
95d0f04a 3184 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
30667bf3
AM
3185 {
3186 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3187 == (((int) OP_ADDIL << 26) | (27 << 21)))
3188 {
3189 insn &= ~ (0x1f << 21);
067fa4a6 3190#if 0 /* debug them. */
30667bf3
AM
3191 (*_bfd_error_handler)
3192 (_("%s(%s+0x%lx): fixing %s"),
8f615d07 3193 bfd_archive_filename (input_bfd),
30667bf3
AM
3194 input_section->name,
3195 (long) rel->r_offset,
3196 howto->name);
3197#endif
3198 }
3199 /* Now try to make things easy for the dynamic linker. */
3200
3201 break;
3202 }
74d1c347 3203 /* Fall thru. */
30667bf3
AM
3204
3205 case R_PARISC_DLTIND21L:
3206 case R_PARISC_DLTIND14R:
3207 case R_PARISC_DLTIND14F:
3208 value -= elf_gp (input_section->output_section->owner);
3209 break;
3210
c46b7515
AM
3211 case R_PARISC_SEGREL32:
3212 if ((sym_sec->flags & SEC_CODE) != 0)
83c81bfe 3213 value -= htab->text_segment_base;
c46b7515 3214 else
83c81bfe 3215 value -= htab->data_segment_base;
c46b7515
AM
3216 break;
3217
30667bf3
AM
3218 default:
3219 break;
3220 }
3221
3222 switch (r_type)
3223 {
3224 case R_PARISC_DIR32:
47d89dba 3225 case R_PARISC_DIR14F:
30667bf3
AM
3226 case R_PARISC_DIR17F:
3227 case R_PARISC_PCREL17C:
3228 case R_PARISC_PCREL14F:
36751eee 3229 case R_PARISC_PCREL32:
30667bf3
AM
3230 case R_PARISC_DPREL14F:
3231 case R_PARISC_PLABEL32:
3232 case R_PARISC_DLTIND14F:
3233 case R_PARISC_SEGBASE:
3234 case R_PARISC_SEGREL32:
3235 r_field = e_fsel;
3236 break;
3237
1bf42538 3238 case R_PARISC_DLTIND21L:
30667bf3 3239 case R_PARISC_PCREL21L:
30667bf3 3240 case R_PARISC_PLABEL21L:
1bf42538
JL
3241 r_field = e_lsel;
3242 break;
3243
3244 case R_PARISC_DIR21L:
3245 case R_PARISC_DPREL21L:
30667bf3
AM
3246 r_field = e_lrsel;
3247 break;
3248
30667bf3 3249 case R_PARISC_PCREL17R:
30667bf3 3250 case R_PARISC_PCREL14R:
30667bf3
AM
3251 case R_PARISC_PLABEL14R:
3252 case R_PARISC_DLTIND14R:
1bf42538
JL
3253 r_field = e_rsel;
3254 break;
3255
3256 case R_PARISC_DIR17R:
3257 case R_PARISC_DIR14R:
3258 case R_PARISC_DPREL14R:
30667bf3
AM
3259 r_field = e_rrsel;
3260 break;
3261
3262 case R_PARISC_PCREL12F:
3263 case R_PARISC_PCREL17F:
3264 case R_PARISC_PCREL22F:
3265 r_field = e_fsel;
3266
3267 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3268 {
3269 max_branch_offset = (1 << (17-1)) << 2;
3270 }
3271 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3272 {
3273 max_branch_offset = (1 << (12-1)) << 2;
3274 }
3275 else
3276 {
3277 max_branch_offset = (1 << (22-1)) << 2;
3278 }
3279
3280 /* sym_sec is NULL on undefined weak syms or when shared on
3281 undefined syms. We've already checked for a stub for the
3282 shared undefined case. */
3283 if (sym_sec == NULL)
3284 break;
3285
3286 /* If the branch is out of reach, then redirect the
3287 call to the local stub for this function. */
3288 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3289 {
3290 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
83c81bfe 3291 h, rel, htab);
30667bf3 3292 if (stub_entry == NULL)
f09ebc7d 3293 return bfd_reloc_undefined;
30667bf3
AM
3294
3295 /* Munge up the value and addend so that we call the stub
3296 rather than the procedure directly. */
3297 value = (stub_entry->stub_offset
3298 + stub_entry->stub_sec->output_offset
3299 + stub_entry->stub_sec->output_section->vma
3300 - location);
3301 addend = -8;
3302 }
3303 break;
3304
3305 /* Something we don't know how to handle. */
3306 default:
3307 return bfd_reloc_notsupported;
3308 }
3309
3310 /* Make sure we can reach the stub. */
3311 if (max_branch_offset != 0
3312 && value + addend + max_branch_offset >= 2*max_branch_offset)
3313 {
3314 (*_bfd_error_handler)
3315 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
8f615d07 3316 bfd_archive_filename (input_bfd),
30667bf3
AM
3317 input_section->name,
3318 (long) rel->r_offset,
3319 stub_entry->root.string);
ce757d15 3320 bfd_set_error (bfd_error_bad_value);
30667bf3
AM
3321 return bfd_reloc_notsupported;
3322 }
3323
3324 val = hppa_field_adjust (value, addend, r_field);
3325
3326 switch (r_type)
3327 {
3328 case R_PARISC_PCREL12F:
3329 case R_PARISC_PCREL17C:
3330 case R_PARISC_PCREL17F:
3331 case R_PARISC_PCREL17R:
3332 case R_PARISC_PCREL22F:
3333 case R_PARISC_DIR17F:
3334 case R_PARISC_DIR17R:
3335 /* This is a branch. Divide the offset by four.
3336 Note that we need to decide whether it's a branch or
3337 otherwise by inspecting the reloc. Inspecting insn won't
3338 work as insn might be from a .word directive. */
3339 val >>= 2;
3340 break;
3341
3342 default:
3343 break;
3344 }
3345
3346 insn = hppa_rebuild_insn (insn, val, r_format);
3347
3348 /* Update the instruction word. */
74d1c347 3349 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
30667bf3
AM
3350 return bfd_reloc_ok;
3351}
3352
30667bf3
AM
3353/* Relocate an HPPA ELF section. */
3354
b34976b6 3355static bfd_boolean
c39a58e6
AM
3356elf32_hppa_relocate_section (bfd *output_bfd,
3357 struct bfd_link_info *info,
3358 bfd *input_bfd,
3359 asection *input_section,
3360 bfd_byte *contents,
3361 Elf_Internal_Rela *relocs,
3362 Elf_Internal_Sym *local_syms,
3363 asection **local_sections)
30667bf3 3364{
30667bf3 3365 bfd_vma *local_got_offsets;
83c81bfe 3366 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
3367 Elf_Internal_Shdr *symtab_hdr;
3368 Elf_Internal_Rela *rel;
3369 Elf_Internal_Rela *relend;
30667bf3 3370
1049f94e 3371 if (info->relocatable)
b34976b6 3372 return TRUE;
f0fe0e16 3373
30667bf3
AM
3374 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3375
83c81bfe 3376 htab = hppa_link_hash_table (info);
74d1c347 3377 local_got_offsets = elf_local_got_offsets (input_bfd);
30667bf3
AM
3378
3379 rel = relocs;
3380 relend = relocs + input_section->reloc_count;
3381 for (; rel < relend; rel++)
3382 {
3383 unsigned int r_type;
3384 reloc_howto_type *howto;
3385 unsigned int r_symndx;
3386 struct elf32_hppa_link_hash_entry *h;
3387 Elf_Internal_Sym *sym;
3388 asection *sym_sec;
3389 bfd_vma relocation;
3390 bfd_reloc_status_type r;
3391 const char *sym_name;
b34976b6
AM
3392 bfd_boolean plabel;
3393 bfd_boolean warned_undef;
30667bf3
AM
3394
3395 r_type = ELF32_R_TYPE (rel->r_info);
3396 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3397 {
3398 bfd_set_error (bfd_error_bad_value);
b34976b6 3399 return FALSE;
30667bf3
AM
3400 }
3401 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3402 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3403 continue;
3404
30667bf3 3405 /* This is a final link. */
f0fe0e16 3406 r_symndx = ELF32_R_SYM (rel->r_info);
30667bf3
AM
3407 h = NULL;
3408 sym = NULL;
3409 sym_sec = NULL;
b34976b6 3410 warned_undef = FALSE;
30667bf3
AM
3411 if (r_symndx < symtab_hdr->sh_info)
3412 {
3413 /* This is a local symbol, h defaults to NULL. */
3414 sym = local_syms + r_symndx;
3415 sym_sec = local_sections[r_symndx];
8517fae7 3416 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
30667bf3
AM
3417 }
3418 else
3419 {
560e09e9
NC
3420 struct elf_link_hash_entry *hh;
3421 bfd_boolean unresolved_reloc;
b2a8e766 3422 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
560e09e9 3423
b2a8e766
AM
3424 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3425 r_symndx, symtab_hdr, sym_hashes,
3426 hh, sym_sec, relocation,
3427 unresolved_reloc, warned_undef);
560e09e9
NC
3428
3429 if (relocation == 0
3430 && hh->root.type != bfd_link_hash_defined
3431 && hh->root.type != bfd_link_hash_defweak
3432 && hh->root.type != bfd_link_hash_undefweak)
4fc8051d 3433 {
59c2e50f 3434 if (info->unresolved_syms_in_objects == RM_IGNORE
560e09e9
NC
3435 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3436 && hh->type == STT_PARISC_MILLI)
3437 {
3438 if (! info->callbacks->undefined_symbol
3439 (info, hh->root.root.string, input_bfd,
59c2e50f 3440 input_section, rel->r_offset, FALSE))
560e09e9
NC
3441 return FALSE;
3442 warned_undef = TRUE;
3443 }
30667bf3 3444 }
560e09e9 3445 h = (struct elf32_hppa_link_hash_entry *) hh;
30667bf3
AM
3446 }
3447
3448 /* Do any required modifications to the relocation value, and
25f72752
AM
3449 determine what types of dynamic info we need to output, if
3450 any. */
74d1c347 3451 plabel = 0;
30667bf3
AM
3452 switch (r_type)
3453 {
3454 case R_PARISC_DLTIND14F:
3455 case R_PARISC_DLTIND14R:
3456 case R_PARISC_DLTIND21L:
ce757d15
AM
3457 {
3458 bfd_vma off;
b34976b6 3459 bfd_boolean do_got = 0;
ce757d15
AM
3460
3461 /* Relocation is to the entry for this symbol in the
3462 global offset table. */
3463 if (h != NULL)
3464 {
b34976b6 3465 bfd_boolean dyn;
ce757d15
AM
3466
3467 off = h->elf.got.offset;
3468 dyn = htab->elf.dynamic_sections_created;
c152c796
AM
3469 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3470 &h->elf))
ce757d15
AM
3471 {
3472 /* If we aren't going to call finish_dynamic_symbol,
3473 then we need to handle initialisation of the .got
3474 entry and create needed relocs here. Since the
3475 offset must always be a multiple of 4, we use the
3476 least significant bit to record whether we have
3477 initialised it already. */
3478 if ((off & 1) != 0)
3479 off &= ~1;
3480 else
3481 {
3482 h->elf.got.offset |= 1;
3483 do_got = 1;
3484 }
3485 }
3486 }
3487 else
3488 {
3489 /* Local symbol case. */
3490 if (local_got_offsets == NULL)
3491 abort ();
3492
3493 off = local_got_offsets[r_symndx];
3494
3495 /* The offset must always be a multiple of 4. We use
3496 the least significant bit to record whether we have
3497 already generated the necessary reloc. */
3498 if ((off & 1) != 0)
3499 off &= ~1;
3500 else
3501 {
3502 local_got_offsets[r_symndx] |= 1;
3503 do_got = 1;
3504 }
3505 }
68fb2e56 3506
ce757d15
AM
3507 if (do_got)
3508 {
3509 if (info->shared)
3510 {
3511 /* Output a dynamic relocation for this GOT entry.
3512 In this case it is relative to the base of the
3513 object because the symbol index is zero. */
3514 Elf_Internal_Rela outrel;
947216bf
AM
3515 bfd_byte *loc;
3516 asection *s = htab->srelgot;
ce757d15
AM
3517
3518 outrel.r_offset = (off
3519 + htab->sgot->output_offset
3520 + htab->sgot->output_section->vma);
3521 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3522 outrel.r_addend = relocation;
947216bf
AM
3523 loc = s->contents;
3524 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
ce757d15
AM
3525 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3526 }
3527 else
30667bf3 3528 bfd_put_32 (output_bfd, relocation,
83c81bfe 3529 htab->sgot->contents + off);
ce757d15 3530 }
30667bf3 3531
ce757d15
AM
3532 if (off >= (bfd_vma) -2)
3533 abort ();
30667bf3 3534
ce757d15
AM
3535 /* Add the base of the GOT to the relocation value. */
3536 relocation = (off
3537 + htab->sgot->output_offset
3538 + htab->sgot->output_section->vma);
3539 }
30667bf3 3540 break;
252b5132 3541
c46b7515
AM
3542 case R_PARISC_SEGREL32:
3543 /* If this is the first SEGREL relocation, then initialize
3544 the segment base values. */
83c81bfe
AM
3545 if (htab->text_segment_base == (bfd_vma) -1)
3546 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
c46b7515
AM
3547 break;
3548
30667bf3
AM
3549 case R_PARISC_PLABEL14R:
3550 case R_PARISC_PLABEL21L:
3551 case R_PARISC_PLABEL32:
ebe50bae 3552 if (htab->elf.dynamic_sections_created)
252b5132 3553 {
ce757d15 3554 bfd_vma off;
b34976b6 3555 bfd_boolean do_plt = 0;
ce757d15 3556
74d1c347
AM
3557 /* If we have a global symbol with a PLT slot, then
3558 redirect this relocation to it. */
3559 if (h != NULL)
3560 {
3561 off = h->elf.plt.offset;
c152c796
AM
3562 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3563 &h->elf))
8dea1268
AM
3564 {
3565 /* In a non-shared link, adjust_dynamic_symbols
3566 isn't called for symbols forced local. We
dc810e39 3567 need to write out the plt entry here. */
8dea1268
AM
3568 if ((off & 1) != 0)
3569 off &= ~1;
3570 else
3571 {
8dea1268 3572 h->elf.plt.offset |= 1;
ce757d15 3573 do_plt = 1;
8dea1268
AM
3574 }
3575 }
74d1c347
AM
3576 }
3577 else
3578 {
68fb2e56
AM
3579 bfd_vma *local_plt_offsets;
3580
3581 if (local_got_offsets == NULL)
3582 abort ();
74d1c347 3583
68fb2e56
AM
3584 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3585 off = local_plt_offsets[r_symndx];
74d1c347
AM
3586
3587 /* As for the local .got entry case, we use the last
3588 bit to record whether we've already initialised
3589 this local .plt entry. */
3590 if ((off & 1) != 0)
3591 off &= ~1;
ce757d15
AM
3592 else
3593 {
3594 local_plt_offsets[r_symndx] |= 1;
3595 do_plt = 1;
3596 }
3597 }
3598
3599 if (do_plt)
3600 {
3601 if (info->shared)
3602 {
3603 /* Output a dynamic IPLT relocation for this
3604 PLT entry. */
3605 Elf_Internal_Rela outrel;
947216bf
AM
3606 bfd_byte *loc;
3607 asection *s = htab->srelplt;
ce757d15
AM
3608
3609 outrel.r_offset = (off
3610 + htab->splt->output_offset
3611 + htab->splt->output_section->vma);
3612 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3613 outrel.r_addend = relocation;
947216bf
AM
3614 loc = s->contents;
3615 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
ce757d15
AM
3616 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3617 }
74d1c347
AM
3618 else
3619 {
3620 bfd_put_32 (output_bfd,
3621 relocation,
83c81bfe 3622 htab->splt->contents + off);
74d1c347 3623 bfd_put_32 (output_bfd,
83c81bfe
AM
3624 elf_gp (htab->splt->output_section->owner),
3625 htab->splt->contents + off + 4);
74d1c347
AM
3626 }
3627 }
3628
68fb2e56 3629 if (off >= (bfd_vma) -2)
49e9d0d3 3630 abort ();
74d1c347
AM
3631
3632 /* PLABELs contain function pointers. Relocation is to
3633 the entry for the function in the .plt. The magic +2
3634 offset signals to $$dyncall that the function pointer
3635 is in the .plt and thus has a gp pointer too.
3636 Exception: Undefined PLABELs should have a value of
3637 zero. */
3638 if (h == NULL
3639 || (h->elf.root.type != bfd_link_hash_undefweak
3640 && h->elf.root.type != bfd_link_hash_undefined))
3641 {
3642 relocation = (off
83c81bfe
AM
3643 + htab->splt->output_offset
3644 + htab->splt->output_section->vma
74d1c347
AM
3645 + 2);
3646 }
3647 plabel = 1;
30667bf3
AM
3648 }
3649 /* Fall through and possibly emit a dynamic relocation. */
3650
3651 case R_PARISC_DIR17F:
3652 case R_PARISC_DIR17R:
47d89dba 3653 case R_PARISC_DIR14F:
30667bf3
AM
3654 case R_PARISC_DIR14R:
3655 case R_PARISC_DIR21L:
3656 case R_PARISC_DPREL14F:
3657 case R_PARISC_DPREL14R:
3658 case R_PARISC_DPREL21L:
3659 case R_PARISC_DIR32:
ec338859
AM
3660 /* r_symndx will be zero only for relocs against symbols
3661 from removed linkonce sections, or sections discarded by
3662 a linker script. */
3663 if (r_symndx == 0
3664 || (input_section->flags & SEC_ALLOC) == 0)
3665 break;
3666
30667bf3 3667 /* The reloc types handled here and this conditional
56882138 3668 expression must match the code in ..check_relocs and
ec338859 3669 allocate_dynrelocs. ie. We need exactly the same condition
56882138
AM
3670 as in ..check_relocs, with some extra conditions (dynindx
3671 test in this case) to cater for relocs removed by
ec338859 3672 allocate_dynrelocs. If you squint, the non-shared test
56882138
AM
3673 here does indeed match the one in ..check_relocs, the
3674 difference being that here we test DEF_DYNAMIC as well as
3675 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3676 which is why we can't use just that test here.
3677 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3678 there all files have not been loaded. */
446f2863 3679 if ((info->shared
4fc8051d
AM
3680 && (h == NULL
3681 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3682 || h->elf.root.type != bfd_link_hash_undefweak)
446f2863 3683 && (IS_ABSOLUTE_RELOC (r_type)
4fc8051d 3684 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
446f2863 3685 || (!info->shared
446f2863
AM
3686 && h != NULL
3687 && h->elf.dynindx != -1
3688 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
4fc8051d
AM
3689 && ((ELIMINATE_COPY_RELOCS
3690 && (h->elf.elf_link_hash_flags
3691 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
56882138
AM
3692 && (h->elf.elf_link_hash_flags
3693 & ELF_LINK_HASH_DEF_REGULAR) == 0)
446f2863
AM
3694 || h->elf.root.type == bfd_link_hash_undefweak
3695 || h->elf.root.type == bfd_link_hash_undefined)))
30667bf3
AM
3696 {
3697 Elf_Internal_Rela outrel;
b34976b6 3698 bfd_boolean skip;
98ceb8ce 3699 asection *sreloc;
947216bf 3700 bfd_byte *loc;
252b5132 3701
30667bf3
AM
3702 /* When generating a shared object, these relocations
3703 are copied into the output file to be resolved at run
3704 time. */
252b5132 3705
30667bf3 3706 outrel.r_addend = rel->r_addend;
c629eae0
JJ
3707 outrel.r_offset =
3708 _bfd_elf_section_offset (output_bfd, info, input_section,
3709 rel->r_offset);
0bb2d96a
JJ
3710 skip = (outrel.r_offset == (bfd_vma) -1
3711 || outrel.r_offset == (bfd_vma) -2);
30667bf3
AM
3712 outrel.r_offset += (input_section->output_offset
3713 + input_section->output_section->vma);
3714
3715 if (skip)
252b5132 3716 {
30667bf3 3717 memset (&outrel, 0, sizeof (outrel));
252b5132 3718 }
74d1c347
AM
3719 else if (h != NULL
3720 && h->elf.dynindx != -1
3721 && (plabel
446f2863
AM
3722 || !IS_ABSOLUTE_RELOC (r_type)
3723 || !info->shared
74d1c347 3724 || !info->symbolic
30667bf3
AM
3725 || (h->elf.elf_link_hash_flags
3726 & ELF_LINK_HASH_DEF_REGULAR) == 0))
252b5132 3727 {
30667bf3
AM
3728 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3729 }
3730 else /* It's a local symbol, or one marked to become local. */
3731 {
3732 int indx = 0;
edd21aca 3733
30667bf3
AM
3734 /* Add the absolute offset of the symbol. */
3735 outrel.r_addend += relocation;
edd21aca 3736
74d1c347
AM
3737 /* Global plabels need to be processed by the
3738 dynamic linker so that functions have at most one
3739 fptr. For this reason, we need to differentiate
3740 between global and local plabels, which we do by
3741 providing the function symbol for a global plabel
3742 reloc, and no symbol for local plabels. */
3743 if (! plabel
3744 && sym_sec != NULL
30667bf3
AM
3745 && sym_sec->output_section != NULL
3746 && ! bfd_is_abs_section (sym_sec))
252b5132 3747 {
4b71bec0
DA
3748 /* Skip this relocation if the output section has
3749 been discarded. */
3750 if (bfd_is_abs_section (sym_sec->output_section))
3751 break;
3752
30667bf3
AM
3753 indx = elf_section_data (sym_sec->output_section)->dynindx;
3754 /* We are turning this relocation into one
3755 against a section symbol, so subtract out the
3756 output section's address but not the offset
3757 of the input section in the output section. */
3758 outrel.r_addend -= sym_sec->output_section->vma;
252b5132 3759 }
252b5132 3760
30667bf3
AM
3761 outrel.r_info = ELF32_R_INFO (indx, r_type);
3762 }
68fb2e56
AM
3763#if 0
3764 /* EH info can cause unaligned DIR32 relocs.
3765 Tweak the reloc type for the dynamic linker. */
3766 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3767 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3768 R_PARISC_DIR32U);
3769#endif
98ceb8ce
AM
3770 sreloc = elf_section_data (input_section)->sreloc;
3771 if (sreloc == NULL)
3772 abort ();
3773
947216bf
AM
3774 loc = sreloc->contents;
3775 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
98ceb8ce 3776 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
30667bf3
AM
3777 }
3778 break;
edd21aca 3779
30667bf3
AM
3780 default:
3781 break;
3782 }
252b5132 3783
30667bf3 3784 r = final_link_relocate (input_section, contents, rel, relocation,
a252afa4 3785 htab, sym_sec, h, info);
252b5132 3786
30667bf3
AM
3787 if (r == bfd_reloc_ok)
3788 continue;
252b5132 3789
30667bf3
AM
3790 if (h != NULL)
3791 sym_name = h->elf.root.root.string;
3792 else
3793 {
3794 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3795 symtab_hdr->sh_link,
3796 sym->st_name);
3797 if (sym_name == NULL)
b34976b6 3798 return FALSE;
30667bf3
AM
3799 if (*sym_name == '\0')
3800 sym_name = bfd_section_name (input_bfd, sym_sec);
3801 }
edd21aca 3802
30667bf3 3803 howto = elf_hppa_howto_table + r_type;
252b5132 3804
30667bf3
AM
3805 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3806 {
f09ebc7d
AM
3807 if (r == bfd_reloc_notsupported || !warned_undef)
3808 {
3809 (*_bfd_error_handler)
3810 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3811 bfd_archive_filename (input_bfd),
3812 input_section->name,
3813 (long) rel->r_offset,
3814 howto->name,
3815 sym_name);
3816 bfd_set_error (bfd_error_bad_value);
b34976b6 3817 return FALSE;
f09ebc7d 3818 }
30667bf3
AM
3819 }
3820 else
3821 {
3822 if (!((*info->callbacks->reloc_overflow)
c39a58e6
AM
3823 (info, sym_name, howto->name, 0, input_bfd, input_section,
3824 rel->r_offset)))
b34976b6 3825 return FALSE;
30667bf3
AM
3826 }
3827 }
edd21aca 3828
b34976b6 3829 return TRUE;
30667bf3 3830}
252b5132 3831
30667bf3
AM
3832/* Finish up dynamic symbol handling. We set the contents of various
3833 dynamic sections here. */
252b5132 3834
b34976b6 3835static bfd_boolean
c39a58e6
AM
3836elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3837 struct bfd_link_info *info,
3838 struct elf_link_hash_entry *h,
3839 Elf_Internal_Sym *sym)
30667bf3 3840{
83c81bfe 3841 struct elf32_hppa_link_hash_table *htab;
a252afa4
DA
3842 Elf_Internal_Rela rel;
3843 bfd_byte *loc;
edd21aca 3844
83c81bfe 3845 htab = hppa_link_hash_table (info);
30667bf3 3846
30667bf3
AM
3847 if (h->plt.offset != (bfd_vma) -1)
3848 {
3849 bfd_vma value;
30667bf3 3850
8dea1268
AM
3851 if (h->plt.offset & 1)
3852 abort ();
3853
30667bf3
AM
3854 /* This symbol has an entry in the procedure linkage table. Set
3855 it up.
3856
3857 The format of a plt entry is
74d1c347
AM
3858 <funcaddr>
3859 <__gp>
47d89dba 3860 */
30667bf3
AM
3861 value = 0;
3862 if (h->root.type == bfd_link_hash_defined
3863 || h->root.type == bfd_link_hash_defweak)
3864 {
3865 value = h->root.u.def.value;
3866 if (h->root.u.def.section->output_section != NULL)
3867 value += (h->root.u.def.section->output_offset
3868 + h->root.u.def.section->output_section->vma);
252b5132 3869 }
edd21aca 3870
a252afa4
DA
3871 /* Create a dynamic IPLT relocation for this entry. */
3872 rel.r_offset = (h->plt.offset
3873 + htab->splt->output_offset
3874 + htab->splt->output_section->vma);
3875 if (h->dynindx != -1)
30667bf3 3876 {
a252afa4
DA
3877 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3878 rel.r_addend = 0;
30667bf3 3879 }
ce757d15 3880 else
47d89dba 3881 {
a252afa4
DA
3882 /* This symbol has been marked to become local, and is
3883 used by a plabel so must be kept in the .plt. */
3884 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3885 rel.r_addend = value;
47d89dba
AM
3886 }
3887
a252afa4
DA
3888 loc = htab->srelplt->contents;
3889 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3890 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3891
30667bf3
AM
3892 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3893 {
3894 /* Mark the symbol as undefined, rather than as defined in
3895 the .plt section. Leave the value alone. */
3896 sym->st_shndx = SHN_UNDEF;
3897 }
3898 }
edd21aca 3899
30667bf3
AM
3900 if (h->got.offset != (bfd_vma) -1)
3901 {
30667bf3
AM
3902 /* This symbol has an entry in the global offset table. Set it
3903 up. */
3904
3905 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
83c81bfe
AM
3906 + htab->sgot->output_offset
3907 + htab->sgot->output_section->vma);
30667bf3 3908
4dc86686
AM
3909 /* If this is a -Bsymbolic link and the symbol is defined
3910 locally or was forced to be local because of a version file,
3911 we just want to emit a RELATIVE reloc. The entry in the
3912 global offset table will already have been initialized in the
3913 relocate_section function. */
3914 if (info->shared
3915 && (info->symbolic || h->dynindx == -1)
3916 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
30667bf3 3917 {
74d1c347 3918 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
30667bf3
AM
3919 rel.r_addend = (h->root.u.def.value
3920 + h->root.u.def.section->output_offset
3921 + h->root.u.def.section->output_section->vma);
3922 }
3923 else
3924 {
49e9d0d3
AM
3925 if ((h->got.offset & 1) != 0)
3926 abort ();
c39a58e6 3927 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
30667bf3
AM
3928 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3929 rel.r_addend = 0;
3930 }
edd21aca 3931
947216bf
AM
3932 loc = htab->srelgot->contents;
3933 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3ac8354b 3934 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
30667bf3 3935 }
edd21aca 3936
30667bf3
AM
3937 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3938 {
3939 asection *s;
30667bf3
AM
3940
3941 /* This symbol needs a copy reloc. Set it up. */
3942
49e9d0d3
AM
3943 if (! (h->dynindx != -1
3944 && (h->root.type == bfd_link_hash_defined
3945 || h->root.type == bfd_link_hash_defweak)))
3946 abort ();
30667bf3 3947
83c81bfe 3948 s = htab->srelbss;
30667bf3
AM
3949
3950 rel.r_offset = (h->root.u.def.value
3951 + h->root.u.def.section->output_offset
3952 + h->root.u.def.section->output_section->vma);
3953 rel.r_addend = 0;
3954 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
947216bf 3955 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3ac8354b 3956 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
30667bf3
AM
3957 }
3958
3959 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3960 if (h->root.root.string[0] == '_'
3961 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3962 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3963 {
3964 sym->st_shndx = SHN_ABS;
3965 }
3966
b34976b6 3967 return TRUE;
30667bf3
AM
3968}
3969
98ceb8ce
AM
3970/* Used to decide how to sort relocs in an optimal manner for the
3971 dynamic linker, before writing them out. */
3972
3973static enum elf_reloc_type_class
c39a58e6 3974elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
98ceb8ce
AM
3975{
3976 if (ELF32_R_SYM (rela->r_info) == 0)
3977 return reloc_class_relative;
3978
3979 switch ((int) ELF32_R_TYPE (rela->r_info))
3980 {
3981 case R_PARISC_IPLT:
3982 return reloc_class_plt;
3983 case R_PARISC_COPY:
3984 return reloc_class_copy;
3985 default:
3986 return reloc_class_normal;
3987 }
3988}
3989
30667bf3
AM
3990/* Finish up the dynamic sections. */
3991
b34976b6 3992static bfd_boolean
c39a58e6
AM
3993elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
3994 struct bfd_link_info *info)
30667bf3
AM
3995{
3996 bfd *dynobj;
83c81bfe 3997 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
3998 asection *sdyn;
3999
83c81bfe 4000 htab = hppa_link_hash_table (info);
ebe50bae 4001 dynobj = htab->elf.dynobj;
30667bf3
AM
4002
4003 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4004
ebe50bae 4005 if (htab->elf.dynamic_sections_created)
30667bf3
AM
4006 {
4007 Elf32_External_Dyn *dyncon, *dynconend;
4008
49e9d0d3
AM
4009 if (sdyn == NULL)
4010 abort ();
30667bf3
AM
4011
4012 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4013 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4014 for (; dyncon < dynconend; dyncon++)
edd21aca 4015 {
30667bf3
AM
4016 Elf_Internal_Dyn dyn;
4017 asection *s;
4018
4019 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4020
4021 switch (dyn.d_tag)
4022 {
4023 default:
3ac8354b 4024 continue;
30667bf3
AM
4025
4026 case DT_PLTGOT:
4027 /* Use PLTGOT to set the GOT register. */
4028 dyn.d_un.d_ptr = elf_gp (output_bfd);
30667bf3
AM
4029 break;
4030
4031 case DT_JMPREL:
83c81bfe 4032 s = htab->srelplt;
30667bf3 4033 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
30667bf3
AM
4034 break;
4035
4036 case DT_PLTRELSZ:
83c81bfe 4037 s = htab->srelplt;
6348e046 4038 dyn.d_un.d_val = s->_raw_size;
30667bf3 4039 break;
4e12ff7f
AM
4040
4041 case DT_RELASZ:
4042 /* Don't count procedure linkage table relocs in the
4043 overall reloc count. */
6348e046
AM
4044 s = htab->srelplt;
4045 if (s == NULL)
4046 continue;
4047 dyn.d_un.d_val -= s->_raw_size;
4048 break;
4049
4050 case DT_RELA:
4051 /* We may not be using the standard ELF linker script.
4052 If .rela.plt is the first .rela section, we adjust
4053 DT_RELA to not include it. */
4054 s = htab->srelplt;
4055 if (s == NULL)
4056 continue;
4057 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4058 continue;
4059 dyn.d_un.d_ptr += s->_raw_size;
4e12ff7f 4060 break;
30667bf3 4061 }
3ac8354b
AM
4062
4063 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
edd21aca 4064 }
252b5132 4065 }
edd21aca 4066
83c81bfe 4067 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
30667bf3 4068 {
74d1c347
AM
4069 /* Fill in the first entry in the global offset table.
4070 We use it to point to our dynamic section, if we have one. */
30667bf3 4071 bfd_put_32 (output_bfd,
c39a58e6 4072 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
83c81bfe 4073 htab->sgot->contents);
30667bf3 4074
74d1c347 4075 /* The second entry is reserved for use by the dynamic linker. */
83c81bfe 4076 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
74d1c347 4077
30667bf3 4078 /* Set .got entry size. */
83c81bfe 4079 elf_section_data (htab->sgot->output_section)
74d1c347 4080 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
30667bf3
AM
4081 }
4082
83c81bfe 4083 if (htab->splt != NULL && htab->splt->_raw_size != 0)
47d89dba
AM
4084 {
4085 /* Set plt entry size. */
83c81bfe 4086 elf_section_data (htab->splt->output_section)
47d89dba
AM
4087 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4088
83c81bfe 4089 if (htab->need_plt_stub)
47d89dba
AM
4090 {
4091 /* Set up the .plt stub. */
83c81bfe
AM
4092 memcpy (htab->splt->contents
4093 + htab->splt->_raw_size - sizeof (plt_stub),
47d89dba
AM
4094 plt_stub, sizeof (plt_stub));
4095
83c81bfe
AM
4096 if ((htab->splt->output_offset
4097 + htab->splt->output_section->vma
4098 + htab->splt->_raw_size)
4099 != (htab->sgot->output_offset
4100 + htab->sgot->output_section->vma))
47d89dba
AM
4101 {
4102 (*_bfd_error_handler)
4103 (_(".got section not immediately after .plt section"));
b34976b6 4104 return FALSE;
47d89dba
AM
4105 }
4106 }
4107 }
30667bf3 4108
b34976b6 4109 return TRUE;
30667bf3 4110}
252b5132 4111
d952f17a
AM
4112/* Tweak the OSABI field of the elf header. */
4113
4114static void
c39a58e6
AM
4115elf32_hppa_post_process_headers (bfd *abfd,
4116 struct bfd_link_info *info ATTRIBUTE_UNUSED)
d952f17a
AM
4117{
4118 Elf_Internal_Ehdr * i_ehdrp;
4119
4120 i_ehdrp = elf_elfheader (abfd);
4121
4122 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4123 {
4124 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4125 }
4126 else
4127 {
4128 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4129 }
4130}
4131
30667bf3
AM
4132/* Called when writing out an object file to decide the type of a
4133 symbol. */
4134static int
c39a58e6 4135elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
30667bf3
AM
4136{
4137 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4138 return STT_PARISC_MILLI;
4139 else
4140 return type;
252b5132
RH
4141}
4142
4143/* Misc BFD support code. */
30667bf3
AM
4144#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4145#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4146#define elf_info_to_howto elf_hppa_info_to_howto
4147#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
252b5132 4148
252b5132 4149/* Stuff for the BFD linker. */
c46b7515 4150#define bfd_elf32_bfd_final_link elf32_hppa_final_link
30667bf3 4151#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
e2d34d7d 4152#define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
30667bf3 4153#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
ebe50bae 4154#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
30667bf3
AM
4155#define elf_backend_check_relocs elf32_hppa_check_relocs
4156#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4157#define elf_backend_fake_sections elf_hppa_fake_sections
4158#define elf_backend_relocate_section elf32_hppa_relocate_section
74d1c347 4159#define elf_backend_hide_symbol elf32_hppa_hide_symbol
30667bf3
AM
4160#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4161#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4162#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4163#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4164#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4165#define elf_backend_object_p elf32_hppa_object_p
4166#define elf_backend_final_write_processing elf_hppa_final_write_processing
d952f17a 4167#define elf_backend_post_process_headers elf32_hppa_post_process_headers
30667bf3 4168#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
98ceb8ce 4169#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
30667bf3
AM
4170
4171#define elf_backend_can_gc_sections 1
51b64d56 4172#define elf_backend_can_refcount 1
30667bf3
AM
4173#define elf_backend_plt_alignment 2
4174#define elf_backend_want_got_plt 0
4175#define elf_backend_plt_readonly 0
4176#define elf_backend_want_plt_sym 0
74d1c347 4177#define elf_backend_got_header_size 8
f0fe0e16 4178#define elf_backend_rela_normal 1
252b5132
RH
4179
4180#define TARGET_BIG_SYM bfd_elf32_hppa_vec
4181#define TARGET_BIG_NAME "elf32-hppa"
4182#define ELF_ARCH bfd_arch_hppa
4183#define ELF_MACHINE_CODE EM_PARISC
4184#define ELF_MAXPAGESIZE 0x1000
4185
4186#include "elf32-target.h"
d952f17a
AM
4187
4188#undef TARGET_BIG_SYM
4189#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4190#undef TARGET_BIG_NAME
4191#define TARGET_BIG_NAME "elf32-hppa-linux"
4192
4193#define INCLUDED_TARGET_FILE 1
4194#include "elf32-target.h"