]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfxx-mips.c
* m32c.cpu (f-dsp-40-u20, f-dsp-48-u20, Dsp-40-u20, Dsp-40-u20,
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
66eb6687 3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69
RS
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b9d58d71 496static bfd_boolean mips16_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
712
713#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 716\f
0a44bf69
RS
717/* The format of the first PLT entry in a VxWorks executable. */
718static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725};
726
727/* The format of subsequent PLT entries. */
728static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737};
738
739/* The format of the first PLT entry in a VxWorks shared object. */
740static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747};
748
749/* The format of subsequent PLT entries. */
750static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753};
754\f
b49e97c9
TS
755/* Look up an entry in a MIPS ELF linker hash table. */
756
757#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762/* Traverse a MIPS ELF linker hash table. */
763
764#define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
9719ad41 767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
768 (info)))
769
770/* Get the MIPS ELF linker hash table from a link_info structure. */
771
772#define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
0f20cc35
DJ
775/* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778#define TP_OFFSET 0x7000
779#define DTP_OFFSET 0x8000
780
781static bfd_vma
782dtprel_base (struct bfd_link_info *info)
783{
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788}
789
790static bfd_vma
791tprel_base (struct bfd_link_info *info)
792{
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797}
798
b49e97c9
TS
799/* Create an entry in a MIPS ELF linker hash table. */
800
801static struct bfd_hash_entry *
9719ad41
RS
802mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
804{
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
9719ad41
RS
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
b49e97c9
TS
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
9719ad41 819 if (ret != NULL)
b49e97c9
TS
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
b34976b6 827 ret->readonly_reloc = FALSE;
b34976b6 828 ret->no_fn_stub = FALSE;
b49e97c9 829 ret->fn_stub = NULL;
b34976b6 830 ret->need_fn_stub = FALSE;
b49e97c9
TS
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
b34976b6 833 ret->forced_local = FALSE;
0a44bf69
RS
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
0f20cc35 836 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
837 }
838
839 return (struct bfd_hash_entry *) ret;
840}
f0abc2a1
AM
841
842bfd_boolean
9719ad41 843_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 844{
f592407e
AM
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 849
f592407e
AM
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
f0abc2a1
AM
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857}
b49e97c9
TS
858\f
859/* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
b34976b6 862bfd_boolean
9719ad41
RS
863_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
b49e97c9
TS
865{
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
9719ad41 868 char *ext_hdr;
b49e97c9
TS
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
9719ad41 873 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
9719ad41 877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 878 swap->external_hdr_size))
b49e97c9
TS
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886#define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 892 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
893 if (debug->ptr == NULL) \
894 goto error_return; \
9719ad41 895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
912#undef READ
913
914 debug->fdr = NULL;
b49e97c9 915
b34976b6 916 return TRUE;
b49e97c9
TS
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
b34976b6 943 return FALSE;
b49e97c9
TS
944}
945\f
946/* Swap RPDR (runtime procedure table entry) for output. */
947
948static void
9719ad41 949ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
950{
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
962}
963
964/* Create a runtime procedure table from the .mdebug section. */
965
b34976b6 966static bfd_boolean
9719ad41
RS
967mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
b49e97c9
TS
970{
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
9719ad41 975 void *rtproc;
b49e97c9
TS
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
9719ad41 1002 epdr = bfd_malloc (size * count);
b49e97c9
TS
1003 if (epdr == NULL)
1004 goto error_return;
1005
9719ad41 1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
9719ad41 1010 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
9719ad41 1015 sv = bfd_malloc (size * count);
b49e97c9
TS
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
9719ad41 1021 esym = bfd_malloc (size * count);
b49e97c9
TS
1022 if (esym == NULL)
1023 goto error_return;
1024
9719ad41 1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1026 goto error_return;
1027
1028 count = hdr->issMax;
9719ad41 1029 ss = bfd_malloc (count);
b49e97c9
TS
1030 if (ss == NULL)
1031 goto error_return;
f075ee0c 1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
9719ad41
RS
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
9719ad41 1056 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
9719ad41 1065 erp = rtproc;
b49e97c9
TS
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
eea6121a 1080 s->size = size;
9719ad41 1081 s->contents = rtproc;
b49e97c9
TS
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
8423293d 1085 s->map_head.link_order = NULL;
b49e97c9
TS
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
b34976b6 1098 return TRUE;
b49e97c9
TS
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
b34976b6 1111 return FALSE;
b49e97c9
TS
1112}
1113
1114/* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
b34976b6 1117static bfd_boolean
9719ad41
RS
1118mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1120{
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
eea6121a 1130 h->fn_stub->size = 0;
b49e97c9
TS
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
eea6121a 1142 h->call_stub->size = 0;
b49e97c9
TS
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
eea6121a 1154 h->call_fp_stub->size = 0;
b49e97c9
TS
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
b34976b6 1160 return TRUE;
b49e97c9
TS
1161}
1162\f
d6f16593
MR
1163/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248void
1249_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251{
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273}
1274
1275void
1276_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278{
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307}
1308
b49e97c9 1309bfd_reloc_status_type
9719ad41
RS
1310_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1313{
1314 bfd_vma relocation;
a7ebbfdf 1315 bfd_signed_vma val;
30ac9238 1316 bfd_reloc_status_type status;
b49e97c9
TS
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
07515404 1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1327 return bfd_reloc_outofrange;
1328
b49e97c9 1329 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1330 val = reloc_entry->addend;
1331
30ac9238 1332 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1333
b49e97c9 1334 /* Adjust val for the final section location and GP value. If we
1049f94e 1335 are producing relocatable output, we don't want to do this for
b49e97c9 1336 an external symbol. */
1049f94e 1337 if (! relocatable
b49e97c9
TS
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
a7ebbfdf
TS
1341 if (reloc_entry->howto->partial_inplace)
1342 {
30ac9238
RS
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
a7ebbfdf
TS
1348 }
1349 else
1350 reloc_entry->addend = val;
b49e97c9 1351
1049f94e 1352 if (relocatable)
b49e97c9 1353 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1354
1355 return bfd_reloc_ok;
1356}
1357
1358/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363struct mips_hi16
1364{
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369};
1370
1371/* FIXME: This should not be a static variable. */
1372
1373static struct mips_hi16 *mips_hi16_list;
1374
1375/* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384bfd_reloc_status_type
1385_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389{
1390 struct mips_hi16 *n;
1391
07515404 1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409}
1410
1411/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415bfd_reloc_status_type
1416_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419{
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430}
1431
1432/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436bfd_reloc_status_type
1437_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440{
1441 bfd_vma vallo;
d6f16593 1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1443
07515404 1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1445 return bfd_reloc_outofrange;
1446
d6f16593
MR
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
30ac9238
RS
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
30ac9238
RS
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485}
1486
1487/* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491bfd_reloc_status_type
1492_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496{
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
07515404 1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
d6f16593
MR
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
30ac9238
RS
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
d6f16593
MR
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
30ac9238 1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
30ac9238
RS
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1557
1558 return bfd_reloc_ok;
1559}
1560\f
1561/* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564static void
9719ad41
RS
1565bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
b49e97c9
TS
1567{
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570}
1571
1572static void
9719ad41
RS
1573bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
b49e97c9
TS
1575{
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578}
1579
1580static void
9719ad41
RS
1581bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
b49e97c9
TS
1583{
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590}
1591
1592static void
9719ad41
RS
1593bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
b49e97c9
TS
1595{
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605}
b49e97c9
TS
1606\f
1607/* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611void
9719ad41
RS
1612bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
b49e97c9
TS
1614{
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621}
1622
1623void
9719ad41
RS
1624bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
b49e97c9
TS
1626{
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633}
1634
1635/* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641void
9719ad41
RS
1642bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1644{
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652}
1653
1654void
9719ad41
RS
1655bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
b49e97c9
TS
1657{
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665}
1666
1667/* Swap in an options header. */
1668
1669void
9719ad41
RS
1670bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
b49e97c9
TS
1672{
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677}
1678
1679/* Swap out an options header. */
1680
1681void
9719ad41
RS
1682bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
b49e97c9
TS
1684{
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689}
1690\f
1691/* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694static int
9719ad41 1695sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1696{
947216bf
AM
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
6870500c 1699 int diff;
b49e97c9 1700
947216bf
AM
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1703
6870500c
RS
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
b49e97c9
TS
1713}
1714
f4416af6
AO
1715/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717static int
7e3102a7
AM
1718sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1720{
7e3102a7 1721#ifdef BFD64
f4416af6
AO
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
6870500c
RS
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
7e3102a7
AM
1740#else
1741 abort ();
1742#endif
f4416af6
AO
1743}
1744
1745
b49e97c9
TS
1746/* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
b34976b6 1760static bfd_boolean
9719ad41 1761mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1762{
9719ad41 1763 struct extsym_info *einfo = data;
b34976b6 1764 bfd_boolean strip;
b49e97c9
TS
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
b34976b6 1771 strip = FALSE;
f5385ebf 1772 else if ((h->root.def_dynamic
77cfaee6
AM
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
b34976b6 1777 strip = TRUE;
b49e97c9
TS
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
b34976b6
AM
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
b49e97c9 1784 else
b34976b6 1785 strip = FALSE;
b49e97c9
TS
1786
1787 if (strip)
b34976b6 1788 return TRUE;
b49e97c9
TS
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
4a14403c 1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
f5385ebf 1894 else if (h->root.needs_plt)
b49e97c9
TS
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1897 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
b49e97c9
TS
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
b34976b6
AM
1929 einfo->failed = TRUE;
1930 return FALSE;
b49e97c9
TS
1931 }
1932
b34976b6 1933 return TRUE;
b49e97c9
TS
1934}
1935
1936/* A comparison routine used to sort .gptab entries. */
1937
1938static int
9719ad41 1939gptab_compare (const void *p1, const void *p2)
b49e97c9 1940{
9719ad41
RS
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945}
1946\f
b15e6682 1947/* Functions to manage the got entry hash table. */
f4416af6
AO
1948
1949/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952static INLINE hashval_t
9719ad41 1953mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1954{
1955#ifdef BFD64
1956 return addr + (addr >> 32);
1957#else
1958 return addr;
1959#endif
1960}
1961
1962/* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
b15e6682 1966static hashval_t
9719ad41 1967mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1968{
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
38985a1c 1971 return entry->symndx
0f20cc35 1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
b15e6682
AO
1977}
1978
1979static int
9719ad41 1980mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1981{
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
0f20cc35
DJ
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
b15e6682 1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993}
1994
1995/* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000static hashval_t
9719ad41 2001mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2002{
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
0f20cc35
DJ
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2013 : entry->d.h->root.root.root.hash);
2014}
2015
2016static int
9719ad41 2017mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2018{
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
0f20cc35
DJ
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
f4416af6
AO
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
b15e6682
AO
2035}
2036\f
0a44bf69
RS
2037/* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
f4416af6
AO
2040
2041static asection *
0a44bf69 2042mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2043{
0a44bf69 2044 const char *dname;
f4416af6 2045 asection *sreloc;
0a44bf69 2046 bfd *dynobj;
f4416af6 2047
0a44bf69
RS
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
3496cb2a
L
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
f4416af6 2060 if (sreloc == NULL
f4416af6 2061 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2063 return NULL;
2064 }
2065 return sreloc;
2066}
2067
b49e97c9
TS
2068/* Returns the GOT section for ABFD. */
2069
2070static asection *
9719ad41 2071mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2072{
f4416af6
AO
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
b49e97c9
TS
2078}
2079
2080/* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084static struct mips_got_info *
9719ad41 2085mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2086{
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
f4416af6 2090 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2091 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
f4416af6
AO
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
b49e97c9
TS
2099 return g;
2100}
2101
0f20cc35
DJ
2102/* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106static int
2107mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109{
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142}
2143
2144/* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147static int
2148mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149{
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157}
2158
2159/* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162static int
2163mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164{
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175}
2176
2177/* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180static int
2181mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182{
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190}
2191
2192/* Output a simple dynamic relocation into SRELOC. */
2193
2194static void
2195mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200{
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221}
2222
2223/* Initialize a set of TLS GOT entries for one symbol. */
2224
2225static void
2226mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231{
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
0a44bf69 2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345}
2346
2347/* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352static bfd_vma
2353mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356{
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384}
2385
0a44bf69
RS
2386/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390static bfd_vma
2391mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393{
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414}
2415
2416/* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
b49e97c9
TS
2421
2422static bfd_vma
9719ad41 2423mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2424 asection *input_section, bfd_vma value,
2425 unsigned long r_symndx,
0f20cc35 2426 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2427{
2428 asection *sgot;
2429 struct mips_got_info *g;
b15e6682 2430 struct mips_got_entry *entry;
b49e97c9
TS
2431
2432 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2433
0a44bf69
RS
2434 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2435 input_section, value,
0f20cc35
DJ
2436 r_symndx, h, r_type);
2437 if (!entry)
b15e6682 2438 return MINUS_ONE;
0f20cc35
DJ
2439
2440 if (TLS_RELOC_P (r_type))
ead49a57
RS
2441 {
2442 if (entry->symndx == -1 && g->next == NULL)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2446 r_type, info, h, value);
2447 else
2448 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2449 r_type, info, h, value);
2450 }
0f20cc35
DJ
2451 else
2452 return entry->gotidx;
b49e97c9
TS
2453}
2454
2455/* Returns the GOT index for the global symbol indicated by H. */
2456
2457static bfd_vma
0f20cc35
DJ
2458mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2459 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2460{
2461 bfd_vma index;
2462 asection *sgot;
f4416af6 2463 struct mips_got_info *g, *gg;
d0c7ff07 2464 long global_got_dynindx = 0;
b49e97c9 2465
f4416af6
AO
2466 gg = g = mips_elf_got_info (abfd, &sgot);
2467 if (g->bfd2got && ibfd)
2468 {
2469 struct mips_got_entry e, *p;
143d77c5 2470
f4416af6
AO
2471 BFD_ASSERT (h->dynindx >= 0);
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2474 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2475 {
2476 e.abfd = ibfd;
2477 e.symndx = -1;
2478 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2479 e.tls_type = 0;
f4416af6 2480
9719ad41 2481 p = htab_find (g->got_entries, &e);
f4416af6
AO
2482
2483 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2494
2495 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2496 info, e.d.h, value);
2497 }
2498 else
2499 return p->gotidx;
f4416af6
AO
2500 }
2501 }
2502
2503 if (gg->global_gotsym != NULL)
2504 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2505
0f20cc35
DJ
2506 if (TLS_RELOC_P (r_type))
2507 {
2508 struct mips_elf_link_hash_entry *hm
2509 = (struct mips_elf_link_hash_entry *) h;
2510 bfd_vma value = MINUS_ONE;
2511
2512 if ((h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak)
2514 && h->root.u.def.section->output_section)
2515 value = (h->root.u.def.value
2516 + h->root.u.def.section->output_offset
2517 + h->root.u.def.section->output_section->vma);
2518
2519 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2520 r_type, info, hm, value);
2521 }
2522 else
2523 {
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2527 offset. */
2528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2529 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2530 * MIPS_ELF_GOT_SIZE (abfd));
2531 }
eea6121a 2532 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2533
2534 return index;
2535}
2536
0a44bf69
RS
2537/* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
b49e97c9
TS
2543
2544static bfd_vma
9719ad41 2545mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69 2546 asection *input_section, bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2547{
2548 asection *sgot;
2549 struct mips_got_info *g;
0a44bf69 2550 bfd_vma page, index;
b15e6682 2551 struct mips_got_entry *entry;
b49e97c9
TS
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
0a44bf69
RS
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 input_section, page, 0,
0f20cc35 2558 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2559
b15e6682
AO
2560 if (!entry)
2561 return MINUS_ONE;
143d77c5 2562
b15e6682 2563 index = entry->gotidx;
b49e97c9
TS
2564
2565 if (offsetp)
f4416af6 2566 *offsetp = value - entry->d.address;
b49e97c9
TS
2567
2568 return index;
2569}
2570
0a44bf69
RS
2571/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
b49e97c9
TS
2575
2576static bfd_vma
9719ad41 2577mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2578 asection *input_section, bfd_vma value,
2579 bfd_boolean external)
b49e97c9
TS
2580{
2581 asection *sgot;
2582 struct mips_got_info *g;
b15e6682 2583 struct mips_got_entry *entry;
b49e97c9 2584
0a44bf69
RS
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2589 if (! external)
0a44bf69 2590 value = mips_elf_high (value) << 16;
b49e97c9
TS
2591
2592 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593
0a44bf69
RS
2594 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2595 input_section, value, 0,
2596 NULL, R_MIPS_GOT16);
b15e6682
AO
2597 if (entry)
2598 return entry->gotidx;
2599 else
2600 return MINUS_ONE;
b49e97c9
TS
2601}
2602
2603/* Returns the offset for the entry at the INDEXth position
2604 in the GOT. */
2605
2606static bfd_vma
9719ad41
RS
2607mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2608 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2609{
2610 asection *sgot;
2611 bfd_vma gp;
f4416af6 2612 struct mips_got_info *g;
b49e97c9 2613
f4416af6
AO
2614 g = mips_elf_got_info (dynobj, &sgot);
2615 gp = _bfd_get_gp_value (output_bfd)
2616 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2617
f4416af6 2618 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2619}
2620
0a44bf69
RS
2621/* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 instead. */
b49e97c9 2625
b15e6682 2626static struct mips_got_entry *
0a44bf69
RS
2627mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2628 bfd *ibfd, struct mips_got_info *gg,
2629 asection *sgot, asection *input_section,
2630 bfd_vma value, unsigned long r_symndx,
0f20cc35
DJ
2631 struct mips_elf_link_hash_entry *h,
2632 int r_type)
b49e97c9 2633{
b15e6682 2634 struct mips_got_entry entry, **loc;
f4416af6 2635 struct mips_got_info *g;
0a44bf69
RS
2636 struct mips_elf_link_hash_table *htab;
2637
2638 htab = mips_elf_hash_table (info);
b15e6682 2639
f4416af6
AO
2640 entry.abfd = NULL;
2641 entry.symndx = -1;
2642 entry.d.address = value;
0f20cc35 2643 entry.tls_type = 0;
f4416af6
AO
2644
2645 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 if (g == NULL)
2647 {
2648 g = mips_elf_got_for_ibfd (gg, abfd);
2649 BFD_ASSERT (g != NULL);
2650 }
b15e6682 2651
0f20cc35
DJ
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
a008ac03 2656 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2657 if (TLS_RELOC_P (r_type))
2658 {
2659 struct mips_got_entry *p;
2660
2661 entry.abfd = ibfd;
2662 if (r_type == R_MIPS_TLS_LDM)
2663 {
2664 entry.tls_type = GOT_TLS_LDM;
2665 entry.symndx = 0;
2666 entry.d.addend = 0;
2667 }
2668 else if (h == NULL)
2669 {
2670 entry.symndx = r_symndx;
2671 entry.d.addend = 0;
2672 }
2673 else
2674 entry.d.h = h;
2675
2676 p = (struct mips_got_entry *)
2677 htab_find (g->got_entries, &entry);
2678
2679 BFD_ASSERT (p);
2680 return p;
2681 }
2682
b15e6682
AO
2683 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2684 INSERT);
2685 if (*loc)
2686 return *loc;
143d77c5 2687
b15e6682 2688 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2689 entry.tls_type = 0;
b15e6682
AO
2690
2691 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2692
2693 if (! *loc)
2694 return NULL;
143d77c5 2695
b15e6682
AO
2696 memcpy (*loc, &entry, sizeof entry);
2697
b49e97c9
TS
2698 if (g->assigned_gotno >= g->local_gotno)
2699 {
f4416af6 2700 (*loc)->gotidx = -1;
b49e97c9
TS
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value);
b15e6682 2705 return NULL;
b49e97c9
TS
2706 }
2707
2708 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2709 (sgot->contents + entry.gotidx));
2710
0a44bf69
RS
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab->is_vxworks)
2717 {
2718 Elf_Internal_Rela outrel;
2719 asection *s, *output_section;
2720 bfd_byte *loc;
2721 bfd_vma got_address;
2722 int dynindx;
2723
2724 s = mips_elf_rel_dyn_section (info, FALSE);
2725 output_section = input_section->output_section;
2726 dynindx = elf_section_data (output_section)->dynindx;
2727 got_address = (sgot->output_section->vma
2728 + sgot->output_offset
2729 + entry.gotidx);
2730
2731 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2732 outrel.r_offset = got_address;
2733 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2734 outrel.r_addend = value - output_section->vma;
2735 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2736 }
2737
b15e6682 2738 return *loc;
b49e97c9
TS
2739}
2740
2741/* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2747
b34976b6 2748static bfd_boolean
9719ad41 2749mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2750{
2751 struct mips_elf_hash_sort_data hsd;
2752 struct mips_got_info *g;
2753 bfd *dynobj;
2754
2755 dynobj = elf_hash_table (info)->dynobj;
2756
f4416af6
AO
2757 g = mips_elf_got_info (dynobj, NULL);
2758
b49e97c9 2759 hsd.low = NULL;
143d77c5 2760 hsd.max_unref_got_dynindx =
f4416af6
AO
2761 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2770 hsd.max_non_got_dynindx = max_local;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2772 elf_hash_table (info)),
2773 mips_elf_sort_hash_table_f,
2774 &hsd);
2775
2776 /* There should have been enough room in the symbol table to
44c410de 2777 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2778 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2779 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2780 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2781
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
b49e97c9
TS
2784 g->global_gotsym = hsd.low;
2785
b34976b6 2786 return TRUE;
b49e97c9
TS
2787}
2788
2789/* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2791 index. */
2792
b34976b6 2793static bfd_boolean
9719ad41 2794mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2795{
9719ad41 2796 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2797
2798 if (h->root.root.type == bfd_link_hash_warning)
2799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2800
2801 /* Symbols without dynamic symbol table entries aren't interesting
2802 at all. */
2803 if (h->root.dynindx == -1)
b34976b6 2804 return TRUE;
b49e97c9 2805
f4416af6
AO
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2809 -1. */
2810 if (h->root.got.offset == 2)
2811 {
0f20cc35
DJ
2812 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2813
f4416af6
AO
2814 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2815 hsd->low = (struct elf_link_hash_entry *) h;
2816 h->root.dynindx = hsd->max_unref_got_dynindx++;
2817 }
2818 else if (h->root.got.offset != 1)
b49e97c9
TS
2819 h->root.dynindx = hsd->max_non_got_dynindx++;
2820 else
2821 {
0f20cc35
DJ
2822 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2823
b49e97c9
TS
2824 h->root.dynindx = --hsd->min_got_dynindx;
2825 hsd->low = (struct elf_link_hash_entry *) h;
2826 }
2827
b34976b6 2828 return TRUE;
b49e97c9
TS
2829}
2830
2831/* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2833 posterity. */
2834
b34976b6 2835static bfd_boolean
9719ad41
RS
2836mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2837 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2838 struct mips_got_info *g,
2839 unsigned char tls_flag)
b49e97c9 2840{
f4416af6
AO
2841 struct mips_got_entry entry, **loc;
2842
b49e97c9
TS
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2844 table. */
7c5fcef7
L
2845 if (h->dynindx == -1)
2846 {
2847 switch (ELF_ST_VISIBILITY (h->other))
2848 {
2849 case STV_INTERNAL:
2850 case STV_HIDDEN:
b34976b6 2851 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2852 break;
2853 }
c152c796 2854 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2855 return FALSE;
7c5fcef7 2856 }
b49e97c9 2857
86324f90
EC
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g != NULL);
2860
f4416af6
AO
2861 entry.abfd = abfd;
2862 entry.symndx = -1;
2863 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2864 entry.tls_type = 0;
f4416af6
AO
2865
2866 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2867 INSERT);
2868
b49e97c9
TS
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
f4416af6 2871 if (*loc)
0f20cc35
DJ
2872 {
2873 (*loc)->tls_type |= tls_flag;
2874 return TRUE;
2875 }
f4416af6
AO
2876
2877 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2878
2879 if (! *loc)
2880 return FALSE;
143d77c5 2881
f4416af6 2882 entry.gotidx = -1;
0f20cc35
DJ
2883 entry.tls_type = tls_flag;
2884
f4416af6
AO
2885 memcpy (*loc, &entry, sizeof entry);
2886
b49e97c9 2887 if (h->got.offset != MINUS_ONE)
b34976b6 2888 return TRUE;
b49e97c9
TS
2889
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2893 if (tls_flag == 0)
2894 h->got.offset = 1;
b49e97c9 2895
b34976b6 2896 return TRUE;
b49e97c9 2897}
f4416af6
AO
2898
2899/* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2901
2902static bfd_boolean
9719ad41 2903mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2904 struct mips_got_info *g,
2905 unsigned char tls_flag)
f4416af6
AO
2906{
2907 struct mips_got_entry entry, **loc;
2908
2909 entry.abfd = abfd;
2910 entry.symndx = symndx;
2911 entry.d.addend = addend;
0f20cc35 2912 entry.tls_type = tls_flag;
f4416af6
AO
2913 loc = (struct mips_got_entry **)
2914 htab_find_slot (g->got_entries, &entry, INSERT);
2915
2916 if (*loc)
0f20cc35
DJ
2917 {
2918 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2919 {
2920 g->tls_gotno += 2;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2924 {
2925 g->tls_gotno += 1;
2926 (*loc)->tls_type |= tls_flag;
2927 }
2928 return TRUE;
2929 }
f4416af6 2930
0f20cc35
DJ
2931 if (tls_flag != 0)
2932 {
2933 entry.gotidx = -1;
2934 entry.tls_type = tls_flag;
2935 if (tls_flag == GOT_TLS_IE)
2936 g->tls_gotno += 1;
2937 else if (tls_flag == GOT_TLS_GD)
2938 g->tls_gotno += 2;
2939 else if (g->tls_ldm_offset == MINUS_ONE)
2940 {
2941 g->tls_ldm_offset = MINUS_TWO;
2942 g->tls_gotno += 2;
2943 }
2944 }
2945 else
2946 {
2947 entry.gotidx = g->local_gotno++;
2948 entry.tls_type = 0;
2949 }
f4416af6
AO
2950
2951 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952
2953 if (! *loc)
2954 return FALSE;
143d77c5 2955
f4416af6
AO
2956 memcpy (*loc, &entry, sizeof entry);
2957
2958 return TRUE;
2959}
2960\f
2961/* Compute the hash value of the bfd in a bfd2got hash entry. */
2962
2963static hashval_t
9719ad41 2964mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2965{
2966 const struct mips_elf_bfd2got_hash *entry
2967 = (struct mips_elf_bfd2got_hash *)entry_;
2968
2969 return entry->bfd->id;
2970}
2971
2972/* Check whether two hash entries have the same bfd. */
2973
2974static int
9719ad41 2975mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2976{
2977 const struct mips_elf_bfd2got_hash *e1
2978 = (const struct mips_elf_bfd2got_hash *)entry1;
2979 const struct mips_elf_bfd2got_hash *e2
2980 = (const struct mips_elf_bfd2got_hash *)entry2;
2981
2982 return e1->bfd == e2->bfd;
2983}
2984
bad36eac 2985/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2986 be the master GOT data. */
2987
2988static struct mips_got_info *
9719ad41 2989mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2990{
2991 struct mips_elf_bfd2got_hash e, *p;
2992
2993 if (! g->bfd2got)
2994 return g;
2995
2996 e.bfd = ibfd;
9719ad41 2997 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2998 return p ? p->g : NULL;
2999}
3000
3001/* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3003 bfd requires. */
3004
3005static int
9719ad41 3006mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
3007{
3008 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3009 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3010 htab_t bfd2got = arg->bfd2got;
3011 struct mips_got_info *g;
3012 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3013 void **bfdgotp;
143d77c5 3014
f4416af6
AO
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3016 none exists. */
3017 bfdgot_entry.bfd = entry->abfd;
3018 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3019 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3020
3021 if (bfdgot != NULL)
3022 g = bfdgot->g;
3023 else
3024 {
3025 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3026 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3027
3028 if (bfdgot == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 *bfdgotp = bfdgot;
3035
3036 bfdgot->bfd = entry->abfd;
3037 bfdgot->g = g = (struct mips_got_info *)
3038 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3039 if (g == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->global_gotsym = NULL;
3046 g->global_gotno = 0;
3047 g->local_gotno = 0;
3048 g->assigned_gotno = -1;
0f20cc35
DJ
3049 g->tls_gotno = 0;
3050 g->tls_assigned_gotno = 0;
3051 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3052 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3053 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3054 if (g->got_entries == NULL)
3055 {
3056 arg->obfd = 0;
3057 return 0;
3058 }
3059
3060 g->bfd2got = NULL;
3061 g->next = NULL;
3062 }
3063
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3066 if (*entryp != NULL)
3067 return 1;
143d77c5 3068
f4416af6
AO
3069 *entryp = entry;
3070
0f20cc35
DJ
3071 if (entry->tls_type)
3072 {
3073 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3074 g->tls_gotno += 2;
3075 if (entry->tls_type & GOT_TLS_IE)
3076 g->tls_gotno += 1;
3077 }
3078 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3079 ++g->local_gotno;
3080 else
3081 ++g->global_gotno;
3082
3083 return 1;
3084}
3085
3086/* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3092
3093static int
9719ad41 3094mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3095{
3096 struct mips_elf_bfd2got_hash *bfd2got
3097 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3098 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3099 unsigned int lcount = bfd2got->g->local_gotno;
3100 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3101 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3102 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3103 bfd_boolean too_many_for_tls = FALSE;
3104
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3109 if (tcount > 0)
3110 {
3111 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3112 if (primary_total > maxcnt)
0f20cc35
DJ
3113 too_many_for_tls = TRUE;
3114 }
143d77c5 3115
f4416af6
AO
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
0f20cc35
DJ
3118 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3119 && ! too_many_for_tls)
f4416af6
AO
3120 {
3121 arg->primary = bfd2got->g;
3122 arg->primary_count = lcount + gcount;
3123 }
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
0f20cc35
DJ
3127 else if (arg->primary && ! too_many_for_tls
3128 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3129 {
3130 struct mips_got_info *g = bfd2got->g;
3131 int old_lcount = arg->primary->local_gotno;
3132 int old_gcount = arg->primary->global_gotno;
0f20cc35 3133 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3134
3135 bfd2got->g = arg->primary;
3136
3137 htab_traverse (g->got_entries,
3138 mips_elf_make_got_per_bfd,
3139 arg);
3140 if (arg->obfd == NULL)
3141 return 0;
3142
3143 htab_delete (g->got_entries);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3146 table anyway. */
3147
caec41ff 3148 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3149 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3150 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3151
3152 arg->primary_count = arg->primary->local_gotno
0f20cc35 3153 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3154 }
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg->current
0f20cc35 3157 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3158 {
3159 struct mips_got_info *g = bfd2got->g;
3160 int old_lcount = arg->current->local_gotno;
3161 int old_gcount = arg->current->global_gotno;
0f20cc35 3162 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3163
3164 bfd2got->g = arg->current;
3165
3166 htab_traverse (g->got_entries,
3167 mips_elf_make_got_per_bfd,
3168 arg);
3169 if (arg->obfd == NULL)
3170 return 0;
3171
3172 htab_delete (g->got_entries);
3173
caec41ff 3174 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3175 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3176 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3177
3178 arg->current_count = arg->current->local_gotno
0f20cc35 3179 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3180 }
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3184 else
3185 {
3186 bfd2got->g->next = arg->current;
3187 arg->current = bfd2got->g;
143d77c5 3188
0f20cc35
DJ
3189 arg->current_count = lcount + gcount + 2 * tcount;
3190 }
3191
3192 return 1;
3193}
3194
ead49a57
RS
3195/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
0f20cc35
DJ
3197
3198static int
3199mips_elf_initialize_tls_index (void **entryp, void *p)
3200{
3201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3202 struct mips_got_info *g = p;
ead49a57 3203 bfd_vma next_index;
0f20cc35
DJ
3204
3205 /* We're only interested in TLS symbols. */
3206 if (entry->tls_type == 0)
3207 return 1;
3208
ead49a57
RS
3209 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3210
3211 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3212 {
ead49a57
RS
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3216 return 1;
3217 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3218 entry->d.h->tls_got_offset = next_index;
3219 }
3220 else
3221 {
3222 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3223 {
ead49a57
RS
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3228 {
ead49a57 3229 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3230 return 1;
3231 }
ead49a57 3232 g->tls_ldm_offset = next_index;
0f20cc35 3233 }
ead49a57 3234 entry->gotidx = next_index;
f4416af6
AO
3235 }
3236
ead49a57 3237 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3238 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3239 g->tls_assigned_gotno += 2;
3240 if (entry->tls_type & GOT_TLS_IE)
3241 g->tls_assigned_gotno += 1;
3242
f4416af6
AO
3243 return 1;
3244}
3245
3246/* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3249
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3257 marked as not eligible for lazy resolution through a function
f4416af6
AO
3258 stub. */
3259static int
9719ad41 3260mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3261{
3262 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3263 struct mips_elf_set_global_got_offset_arg *arg
3264 = (struct mips_elf_set_global_got_offset_arg *)p;
3265 struct mips_got_info *g = arg->g;
3266
0f20cc35
DJ
3267 if (g && entry->tls_type != GOT_NORMAL)
3268 arg->needed_relocs +=
3269 mips_tls_got_relocs (arg->info, entry->tls_type,
3270 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271
f4416af6 3272 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3273 && entry->d.h->root.dynindx != -1
3274 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
f4416af6
AO
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292}
3293
0626d451
RS
3294/* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296static int
9719ad41 3297mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3298{
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307}
3308
f4416af6
AO
3309/* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315static int
9719ad41 3316mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3317{
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
143d77c5 3331
f4416af6
AO
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
143d77c5 3351
f4416af6
AO
3352 return 1;
3353}
3354
3355/* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357static void
9719ad41 3358mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3359{
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371}
3372
3373/* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375static bfd_vma
9719ad41 3376mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3377{
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
143d77c5 3388
0f20cc35
DJ
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3391}
3392
3393/* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396static bfd_boolean
9719ad41
RS
3397mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
f4416af6
AO
3400{
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3407 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
f4416af6
AO
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
0a44bf69 3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3427 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3428 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
0f20cc35 3441 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
0f20cc35 3452 g->next->tls_gotno = 0;
f4416af6 3453 g->next->assigned_gotno = 0;
0f20cc35
DJ
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
9719ad41 3458 NULL);
f4416af6
AO
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
143d77c5 3479
f4416af6
AO
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
143d77c5 3505
f4416af6
AO
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
0f20cc35 3555 gg->tls_gotno = 0;
f4416af6
AO
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
0a44bf69 3563 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
0f20cc35
DJ
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
ead49a57
RS
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
0f20cc35
DJ
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3579
ead49a57 3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3581 g = gn;
0626d451
RS
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3587 }
3588 while (g);
3589
eea6121a 3590 got->size = (gg->next->local_gotno
0f20cc35
DJ
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3593
f4416af6
AO
3594 return TRUE;
3595}
143d77c5 3596
b49e97c9
TS
3597\f
3598/* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601static const Elf_Internal_Rela *
9719ad41
RS
3602mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
b49e97c9 3605{
c000e262
TS
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
b49e97c9
TS
3608 while (relocation < relend)
3609 {
c000e262
TS
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
3618 bfd_set_error (bfd_error_bad_value);
3619 return NULL;
3620}
3621
3622/* Return whether a relocation is against a local symbol. */
3623
b34976b6 3624static bfd_boolean
9719ad41
RS
3625mips_elf_local_relocation_p (bfd *input_bfd,
3626 const Elf_Internal_Rela *relocation,
3627 asection **local_sections,
3628 bfd_boolean check_forced)
b49e97c9
TS
3629{
3630 unsigned long r_symndx;
3631 Elf_Internal_Shdr *symtab_hdr;
3632 struct mips_elf_link_hash_entry *h;
3633 size_t extsymoff;
3634
3635 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3636 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3637 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3638
3639 if (r_symndx < extsymoff)
b34976b6 3640 return TRUE;
b49e97c9 3641 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3642 return TRUE;
b49e97c9
TS
3643
3644 if (check_forced)
3645 {
3646 /* Look up the hash table to check whether the symbol
3647 was forced local. */
3648 h = (struct mips_elf_link_hash_entry *)
3649 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3650 /* Find the real hash-table entry for this symbol. */
3651 while (h->root.root.type == bfd_link_hash_indirect
3652 || h->root.root.type == bfd_link_hash_warning)
3653 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3654 if (h->root.forced_local)
b34976b6 3655 return TRUE;
b49e97c9
TS
3656 }
3657
b34976b6 3658 return FALSE;
b49e97c9
TS
3659}
3660\f
3661/* Sign-extend VALUE, which has the indicated number of BITS. */
3662
a7ebbfdf 3663bfd_vma
9719ad41 3664_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3665{
3666 if (value & ((bfd_vma) 1 << (bits - 1)))
3667 /* VALUE is negative. */
3668 value |= ((bfd_vma) - 1) << bits;
3669
3670 return value;
3671}
3672
3673/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3674 range expressible by a signed number with the indicated number of
b49e97c9
TS
3675 BITS. */
3676
b34976b6 3677static bfd_boolean
9719ad41 3678mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3679{
3680 bfd_signed_vma svalue = (bfd_signed_vma) value;
3681
3682 if (svalue > (1 << (bits - 1)) - 1)
3683 /* The value is too big. */
b34976b6 3684 return TRUE;
b49e97c9
TS
3685 else if (svalue < -(1 << (bits - 1)))
3686 /* The value is too small. */
b34976b6 3687 return TRUE;
b49e97c9
TS
3688
3689 /* All is well. */
b34976b6 3690 return FALSE;
b49e97c9
TS
3691}
3692
3693/* Calculate the %high function. */
3694
3695static bfd_vma
9719ad41 3696mips_elf_high (bfd_vma value)
b49e97c9
TS
3697{
3698 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3699}
3700
3701/* Calculate the %higher function. */
3702
3703static bfd_vma
9719ad41 3704mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3705{
3706#ifdef BFD64
3707 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3708#else
3709 abort ();
c5ae1840 3710 return MINUS_ONE;
b49e97c9
TS
3711#endif
3712}
3713
3714/* Calculate the %highest function. */
3715
3716static bfd_vma
9719ad41 3717mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3718{
3719#ifdef BFD64
b15e6682 3720 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3721#else
3722 abort ();
c5ae1840 3723 return MINUS_ONE;
b49e97c9
TS
3724#endif
3725}
3726\f
3727/* Create the .compact_rel section. */
3728
b34976b6 3729static bfd_boolean
9719ad41
RS
3730mips_elf_create_compact_rel_section
3731 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3732{
3733 flagword flags;
3734 register asection *s;
3735
3736 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3737 {
3738 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3739 | SEC_READONLY);
3740
3496cb2a 3741 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3742 if (s == NULL
b49e97c9
TS
3743 || ! bfd_set_section_alignment (abfd, s,
3744 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3745 return FALSE;
b49e97c9 3746
eea6121a 3747 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3748 }
3749
b34976b6 3750 return TRUE;
b49e97c9
TS
3751}
3752
3753/* Create the .got section to hold the global offset table. */
3754
b34976b6 3755static bfd_boolean
9719ad41
RS
3756mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3757 bfd_boolean maybe_exclude)
b49e97c9
TS
3758{
3759 flagword flags;
3760 register asection *s;
3761 struct elf_link_hash_entry *h;
14a793b2 3762 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3763 struct mips_got_info *g;
3764 bfd_size_type amt;
0a44bf69
RS
3765 struct mips_elf_link_hash_table *htab;
3766
3767 htab = mips_elf_hash_table (info);
b49e97c9
TS
3768
3769 /* This function may be called more than once. */
f4416af6
AO
3770 s = mips_elf_got_section (abfd, TRUE);
3771 if (s)
3772 {
3773 if (! maybe_exclude)
3774 s->flags &= ~SEC_EXCLUDE;
3775 return TRUE;
3776 }
b49e97c9
TS
3777
3778 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3779 | SEC_LINKER_CREATED);
3780
f4416af6
AO
3781 if (maybe_exclude)
3782 flags |= SEC_EXCLUDE;
3783
72b4917c
TS
3784 /* We have to use an alignment of 2**4 here because this is hardcoded
3785 in the function stub generation and in the linker script. */
3496cb2a 3786 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3787 if (s == NULL
72b4917c 3788 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3789 return FALSE;
b49e97c9
TS
3790
3791 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3792 linker script because we don't want to define the symbol if we
3793 are not creating a global offset table. */
14a793b2 3794 bh = NULL;
b49e97c9
TS
3795 if (! (_bfd_generic_link_add_one_symbol
3796 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3797 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3798 return FALSE;
14a793b2
AM
3799
3800 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3801 h->non_elf = 0;
3802 h->def_regular = 1;
b49e97c9 3803 h->type = STT_OBJECT;
d329bcd1 3804 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3805
3806 if (info->shared
c152c796 3807 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3808 return FALSE;
b49e97c9 3809
b49e97c9 3810 amt = sizeof (struct mips_got_info);
9719ad41 3811 g = bfd_alloc (abfd, amt);
b49e97c9 3812 if (g == NULL)
b34976b6 3813 return FALSE;
b49e97c9 3814 g->global_gotsym = NULL;
e3d54347 3815 g->global_gotno = 0;
0f20cc35 3816 g->tls_gotno = 0;
0a44bf69
RS
3817 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3818 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3819 g->bfd2got = NULL;
3820 g->next = NULL;
0f20cc35 3821 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3822 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3823 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3824 if (g->got_entries == NULL)
3825 return FALSE;
f0abc2a1
AM
3826 mips_elf_section_data (s)->u.got_info = g;
3827 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3828 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3829
0a44bf69
RS
3830 /* VxWorks also needs a .got.plt section. */
3831 if (htab->is_vxworks)
3832 {
3833 s = bfd_make_section_with_flags (abfd, ".got.plt",
3834 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3835 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3836 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3837 return FALSE;
3838
3839 htab->sgotplt = s;
3840 }
b34976b6 3841 return TRUE;
b49e97c9 3842}
b49e97c9 3843\f
0a44bf69
RS
3844/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3845 __GOTT_INDEX__ symbols. These symbols are only special for
3846 shared objects; they are not used in executables. */
3847
3848static bfd_boolean
3849is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3850{
3851 return (mips_elf_hash_table (info)->is_vxworks
3852 && info->shared
3853 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3854 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3855}
3856\f
b49e97c9
TS
3857/* Calculate the value produced by the RELOCATION (which comes from
3858 the INPUT_BFD). The ADDEND is the addend to use for this
3859 RELOCATION; RELOCATION->R_ADDEND is ignored.
3860
3861 The result of the relocation calculation is stored in VALUEP.
3862 REQUIRE_JALXP indicates whether or not the opcode used with this
3863 relocation must be JALX.
3864
3865 This function returns bfd_reloc_continue if the caller need take no
3866 further action regarding this relocation, bfd_reloc_notsupported if
3867 something goes dramatically wrong, bfd_reloc_overflow if an
3868 overflow occurs, and bfd_reloc_ok to indicate success. */
3869
3870static bfd_reloc_status_type
9719ad41
RS
3871mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3872 asection *input_section,
3873 struct bfd_link_info *info,
3874 const Elf_Internal_Rela *relocation,
3875 bfd_vma addend, reloc_howto_type *howto,
3876 Elf_Internal_Sym *local_syms,
3877 asection **local_sections, bfd_vma *valuep,
3878 const char **namep, bfd_boolean *require_jalxp,
3879 bfd_boolean save_addend)
b49e97c9
TS
3880{
3881 /* The eventual value we will return. */
3882 bfd_vma value;
3883 /* The address of the symbol against which the relocation is
3884 occurring. */
3885 bfd_vma symbol = 0;
3886 /* The final GP value to be used for the relocatable, executable, or
3887 shared object file being produced. */
3888 bfd_vma gp = MINUS_ONE;
3889 /* The place (section offset or address) of the storage unit being
3890 relocated. */
3891 bfd_vma p;
3892 /* The value of GP used to create the relocatable object. */
3893 bfd_vma gp0 = MINUS_ONE;
3894 /* The offset into the global offset table at which the address of
3895 the relocation entry symbol, adjusted by the addend, resides
3896 during execution. */
3897 bfd_vma g = MINUS_ONE;
3898 /* The section in which the symbol referenced by the relocation is
3899 located. */
3900 asection *sec = NULL;
3901 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3902 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3903 symbol. */
b34976b6
AM
3904 bfd_boolean local_p, was_local_p;
3905 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3906 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3907 /* TRUE if the symbol referred to by this relocation is
3908 "__gnu_local_gp". */
3909 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3910 Elf_Internal_Shdr *symtab_hdr;
3911 size_t extsymoff;
3912 unsigned long r_symndx;
3913 int r_type;
b34976b6 3914 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3915 relocation value. */
b34976b6
AM
3916 bfd_boolean overflowed_p;
3917 /* TRUE if this relocation refers to a MIPS16 function. */
3918 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3919 struct mips_elf_link_hash_table *htab;
3920 bfd *dynobj;
3921
3922 dynobj = elf_hash_table (info)->dynobj;
3923 htab = mips_elf_hash_table (info);
b49e97c9
TS
3924
3925 /* Parse the relocation. */
3926 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3927 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3928 p = (input_section->output_section->vma
3929 + input_section->output_offset
3930 + relocation->r_offset);
3931
3932 /* Assume that there will be no overflow. */
b34976b6 3933 overflowed_p = FALSE;
b49e97c9
TS
3934
3935 /* Figure out whether or not the symbol is local, and get the offset
3936 used in the array of hash table entries. */
3937 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3938 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3939 local_sections, FALSE);
bce03d3d 3940 was_local_p = local_p;
b49e97c9
TS
3941 if (! elf_bad_symtab (input_bfd))
3942 extsymoff = symtab_hdr->sh_info;
3943 else
3944 {
3945 /* The symbol table does not follow the rule that local symbols
3946 must come before globals. */
3947 extsymoff = 0;
3948 }
3949
3950 /* Figure out the value of the symbol. */
3951 if (local_p)
3952 {
3953 Elf_Internal_Sym *sym;
3954
3955 sym = local_syms + r_symndx;
3956 sec = local_sections[r_symndx];
3957
3958 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3959 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3960 || (sec->flags & SEC_MERGE))
b49e97c9 3961 symbol += sym->st_value;
d4df96e6
L
3962 if ((sec->flags & SEC_MERGE)
3963 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3964 {
3965 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3966 addend -= symbol;
3967 addend += sec->output_section->vma + sec->output_offset;
3968 }
b49e97c9
TS
3969
3970 /* MIPS16 text labels should be treated as odd. */
3971 if (sym->st_other == STO_MIPS16)
3972 ++symbol;
3973
3974 /* Record the name of this symbol, for our caller. */
3975 *namep = bfd_elf_string_from_elf_section (input_bfd,
3976 symtab_hdr->sh_link,
3977 sym->st_name);
3978 if (*namep == '\0')
3979 *namep = bfd_section_name (input_bfd, sec);
3980
3981 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3982 }
3983 else
3984 {
560e09e9
NC
3985 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3986
b49e97c9
TS
3987 /* For global symbols we look up the symbol in the hash-table. */
3988 h = ((struct mips_elf_link_hash_entry *)
3989 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3990 /* Find the real hash-table entry for this symbol. */
3991 while (h->root.root.type == bfd_link_hash_indirect
3992 || h->root.root.type == bfd_link_hash_warning)
3993 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3994
3995 /* Record the name of this symbol, for our caller. */
3996 *namep = h->root.root.root.string;
3997
3998 /* See if this is the special _gp_disp symbol. Note that such a
3999 symbol must always be a global symbol. */
560e09e9 4000 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4001 && ! NEWABI_P (input_bfd))
4002 {
4003 /* Relocations against _gp_disp are permitted only with
4004 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
4005 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4006 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
4007 return bfd_reloc_notsupported;
4008
b34976b6 4009 gp_disp_p = TRUE;
b49e97c9 4010 }
bbe506e8
TS
4011 /* See if this is the special _gp symbol. Note that such a
4012 symbol must always be a global symbol. */
4013 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4014 gnu_local_gp_p = TRUE;
4015
4016
b49e97c9
TS
4017 /* If this symbol is defined, calculate its address. Note that
4018 _gp_disp is a magic symbol, always implicitly defined by the
4019 linker, so it's inappropriate to check to see whether or not
4020 its defined. */
4021 else if ((h->root.root.type == bfd_link_hash_defined
4022 || h->root.root.type == bfd_link_hash_defweak)
4023 && h->root.root.u.def.section)
4024 {
4025 sec = h->root.root.u.def.section;
4026 if (sec->output_section)
4027 symbol = (h->root.root.u.def.value
4028 + sec->output_section->vma
4029 + sec->output_offset);
4030 else
4031 symbol = h->root.root.u.def.value;
4032 }
4033 else if (h->root.root.type == bfd_link_hash_undefweak)
4034 /* We allow relocations against undefined weak symbols, giving
4035 it the value zero, so that you can undefined weak functions
4036 and check to see if they exist by looking at their
4037 addresses. */
4038 symbol = 0;
59c2e50f 4039 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4040 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4041 symbol = 0;
a4d0f181
TS
4042 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4043 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4044 {
4045 /* If this is a dynamic link, we should have created a
4046 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4047 in in _bfd_mips_elf_create_dynamic_sections.
4048 Otherwise, we should define the symbol with a value of 0.
4049 FIXME: It should probably get into the symbol table
4050 somehow as well. */
4051 BFD_ASSERT (! info->shared);
4052 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4053 symbol = 0;
4054 }
5e2b0d47
NC
4055 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4056 {
4057 /* This is an optional symbol - an Irix specific extension to the
4058 ELF spec. Ignore it for now.
4059 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4060 than simply ignoring them, but we do not handle this for now.
4061 For information see the "64-bit ELF Object File Specification"
4062 which is available from here:
4063 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4064 symbol = 0;
4065 }
b49e97c9
TS
4066 else
4067 {
4068 if (! ((*info->callbacks->undefined_symbol)
4069 (info, h->root.root.root.string, input_bfd,
4070 input_section, relocation->r_offset,
59c2e50f
L
4071 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4072 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4073 return bfd_reloc_undefined;
4074 symbol = 0;
4075 }
4076
4077 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4078 }
4079
4080 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4081 need to redirect the call to the stub, unless we're already *in*
4082 a stub. */
1049f94e 4083 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4084 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4085 || (local_p
4086 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4087 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4088 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4089 {
4090 /* This is a 32- or 64-bit call to a 16-bit function. We should
4091 have already noticed that we were going to need the
4092 stub. */
4093 if (local_p)
4094 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4095 else
4096 {
4097 BFD_ASSERT (h->need_fn_stub);
4098 sec = h->fn_stub;
4099 }
4100
4101 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4102 /* The target is 16-bit, but the stub isn't. */
4103 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4104 }
4105 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4106 need to redirect the call to the stub. */
1049f94e 4107 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9 4108 && h != NULL
b9d58d71
TS
4109 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4110 || (local_p
4111 && elf_tdata (input_bfd)->local_call_stubs != NULL
4112 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4113 && !target_is_16_bit_code_p)
4114 {
b9d58d71
TS
4115 if (local_p)
4116 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4117 else
b49e97c9 4118 {
b9d58d71
TS
4119 /* If both call_stub and call_fp_stub are defined, we can figure
4120 out which one to use by checking which one appears in the input
4121 file. */
4122 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4123 {
b9d58d71
TS
4124 asection *o;
4125
4126 sec = NULL;
4127 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4128 {
b9d58d71
TS
4129 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4130 {
4131 sec = h->call_fp_stub;
4132 break;
4133 }
b49e97c9 4134 }
b9d58d71
TS
4135 if (sec == NULL)
4136 sec = h->call_stub;
b49e97c9 4137 }
b9d58d71 4138 else if (h->call_stub != NULL)
b49e97c9 4139 sec = h->call_stub;
b9d58d71
TS
4140 else
4141 sec = h->call_fp_stub;
4142 }
b49e97c9 4143
eea6121a 4144 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4145 symbol = sec->output_section->vma + sec->output_offset;
4146 }
4147
4148 /* Calls from 16-bit code to 32-bit code and vice versa require the
4149 special jalx instruction. */
1049f94e 4150 *require_jalxp = (!info->relocatable
b49e97c9
TS
4151 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4152 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4153
4154 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4155 local_sections, TRUE);
b49e97c9
TS
4156
4157 /* If we haven't already determined the GOT offset, or the GP value,
4158 and we're going to need it, get it now. */
4159 switch (r_type)
4160 {
0fdc1bf1 4161 case R_MIPS_GOT_PAGE:
93a2b7ae 4162 case R_MIPS_GOT_OFST:
d25aed71
RS
4163 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4164 bind locally. */
4165 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4166 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4167 break;
4168 /* Fall through. */
4169
b49e97c9
TS
4170 case R_MIPS_CALL16:
4171 case R_MIPS_GOT16:
4172 case R_MIPS_GOT_DISP:
4173 case R_MIPS_GOT_HI16:
4174 case R_MIPS_CALL_HI16:
4175 case R_MIPS_GOT_LO16:
4176 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4177 case R_MIPS_TLS_GD:
4178 case R_MIPS_TLS_GOTTPREL:
4179 case R_MIPS_TLS_LDM:
b49e97c9 4180 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4181 if (r_type == R_MIPS_TLS_LDM)
4182 {
0a44bf69
RS
4183 g = mips_elf_local_got_index (abfd, input_bfd, info,
4184 sec, 0, 0, NULL, r_type);
0f20cc35
DJ
4185 if (g == MINUS_ONE)
4186 return bfd_reloc_outofrange;
4187 }
4188 else if (!local_p)
b49e97c9 4189 {
0a44bf69
RS
4190 /* On VxWorks, CALL relocations should refer to the .got.plt
4191 entry, which is initialized to point at the PLT stub. */
4192 if (htab->is_vxworks
4193 && (r_type == R_MIPS_CALL_HI16
4194 || r_type == R_MIPS_CALL_LO16
4195 || r_type == R_MIPS_CALL16))
4196 {
4197 BFD_ASSERT (addend == 0);
4198 BFD_ASSERT (h->root.needs_plt);
4199 g = mips_elf_gotplt_index (info, &h->root);
4200 }
4201 else
b49e97c9 4202 {
0a44bf69
RS
4203 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4204 GOT_PAGE relocation that decays to GOT_DISP because the
4205 symbol turns out to be global. The addend is then added
4206 as GOT_OFST. */
4207 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4208 g = mips_elf_global_got_index (dynobj, input_bfd,
4209 &h->root, r_type, info);
4210 if (h->tls_type == GOT_NORMAL
4211 && (! elf_hash_table(info)->dynamic_sections_created
4212 || (info->shared
4213 && (info->symbolic || h->root.forced_local)
4214 && h->root.def_regular)))
4215 {
4216 /* This is a static link or a -Bsymbolic link. The
4217 symbol is defined locally, or was forced to be local.
4218 We must initialize this entry in the GOT. */
4219 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4220 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4221 }
b49e97c9
TS
4222 }
4223 }
0a44bf69
RS
4224 else if (!htab->is_vxworks
4225 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4226 /* The calculation below does not involve "g". */
b49e97c9
TS
4227 break;
4228 else
4229 {
0a44bf69
RS
4230 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4231 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4232 if (g == MINUS_ONE)
4233 return bfd_reloc_outofrange;
4234 }
4235
4236 /* Convert GOT indices to actual offsets. */
0a44bf69 4237 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4238 break;
4239
4240 case R_MIPS_HI16:
4241 case R_MIPS_LO16:
b49e97c9
TS
4242 case R_MIPS_GPREL16:
4243 case R_MIPS_GPREL32:
4244 case R_MIPS_LITERAL:
d6f16593
MR
4245 case R_MIPS16_HI16:
4246 case R_MIPS16_LO16:
4247 case R_MIPS16_GPREL:
b49e97c9
TS
4248 gp0 = _bfd_get_gp_value (input_bfd);
4249 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4250 if (dynobj)
4251 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4252 input_bfd);
b49e97c9
TS
4253 break;
4254
4255 default:
4256 break;
4257 }
4258
bbe506e8
TS
4259 if (gnu_local_gp_p)
4260 symbol = gp;
86324f90 4261
0a44bf69
RS
4262 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4263 symbols are resolved by the loader. Add them to .rela.dyn. */
4264 if (h != NULL && is_gott_symbol (info, &h->root))
4265 {
4266 Elf_Internal_Rela outrel;
4267 bfd_byte *loc;
4268 asection *s;
4269
4270 s = mips_elf_rel_dyn_section (info, FALSE);
4271 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4272
4273 outrel.r_offset = (input_section->output_section->vma
4274 + input_section->output_offset
4275 + relocation->r_offset);
4276 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4277 outrel.r_addend = addend;
4278 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4279 *valuep = 0;
4280 return bfd_reloc_ok;
4281 }
4282
b49e97c9
TS
4283 /* Figure out what kind of relocation is being performed. */
4284 switch (r_type)
4285 {
4286 case R_MIPS_NONE:
4287 return bfd_reloc_continue;
4288
4289 case R_MIPS_16:
a7ebbfdf 4290 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4291 overflowed_p = mips_elf_overflow_p (value, 16);
4292 break;
4293
4294 case R_MIPS_32:
4295 case R_MIPS_REL32:
4296 case R_MIPS_64:
4297 if ((info->shared
0a44bf69
RS
4298 || (!htab->is_vxworks
4299 && htab->root.dynamic_sections_created
b49e97c9 4300 && h != NULL
f5385ebf
AM
4301 && h->root.def_dynamic
4302 && !h->root.def_regular))
b49e97c9
TS
4303 && r_symndx != 0
4304 && (input_section->flags & SEC_ALLOC) != 0)
4305 {
4306 /* If we're creating a shared library, or this relocation is
4307 against a symbol in a shared library, then we can't know
4308 where the symbol will end up. So, we create a relocation
4309 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4310 linker.
4311
4312 In VxWorks executables, references to external symbols
4313 are handled using copy relocs or PLT stubs, so there's
4314 no need to add a dynamic relocation here. */
b49e97c9
TS
4315 value = addend;
4316 if (!mips_elf_create_dynamic_relocation (abfd,
4317 info,
4318 relocation,
4319 h,
4320 sec,
4321 symbol,
4322 &value,
4323 input_section))
4324 return bfd_reloc_undefined;
4325 }
4326 else
4327 {
4328 if (r_type != R_MIPS_REL32)
4329 value = symbol + addend;
4330 else
4331 value = addend;
4332 }
4333 value &= howto->dst_mask;
092dcd75
CD
4334 break;
4335
4336 case R_MIPS_PC32:
4337 value = symbol + addend - p;
4338 value &= howto->dst_mask;
b49e97c9
TS
4339 break;
4340
b49e97c9
TS
4341 case R_MIPS16_26:
4342 /* The calculation for R_MIPS16_26 is just the same as for an
4343 R_MIPS_26. It's only the storage of the relocated field into
4344 the output file that's different. That's handled in
4345 mips_elf_perform_relocation. So, we just fall through to the
4346 R_MIPS_26 case here. */
4347 case R_MIPS_26:
4348 if (local_p)
30ac9238 4349 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4350 else
728b2f21
ILT
4351 {
4352 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4353 if (h->root.root.type != bfd_link_hash_undefweak)
4354 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4355 }
b49e97c9
TS
4356 value &= howto->dst_mask;
4357 break;
4358
0f20cc35
DJ
4359 case R_MIPS_TLS_DTPREL_HI16:
4360 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4361 & howto->dst_mask);
4362 break;
4363
4364 case R_MIPS_TLS_DTPREL_LO16:
4365 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4366 break;
4367
4368 case R_MIPS_TLS_TPREL_HI16:
4369 value = (mips_elf_high (addend + symbol - tprel_base (info))
4370 & howto->dst_mask);
4371 break;
4372
4373 case R_MIPS_TLS_TPREL_LO16:
4374 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4375 break;
4376
b49e97c9 4377 case R_MIPS_HI16:
d6f16593 4378 case R_MIPS16_HI16:
b49e97c9
TS
4379 if (!gp_disp_p)
4380 {
4381 value = mips_elf_high (addend + symbol);
4382 value &= howto->dst_mask;
4383 }
4384 else
4385 {
d6f16593
MR
4386 /* For MIPS16 ABI code we generate this sequence
4387 0: li $v0,%hi(_gp_disp)
4388 4: addiupc $v1,%lo(_gp_disp)
4389 8: sll $v0,16
4390 12: addu $v0,$v1
4391 14: move $gp,$v0
4392 So the offsets of hi and lo relocs are the same, but the
4393 $pc is four higher than $t9 would be, so reduce
4394 both reloc addends by 4. */
4395 if (r_type == R_MIPS16_HI16)
4396 value = mips_elf_high (addend + gp - p - 4);
4397 else
4398 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4399 overflowed_p = mips_elf_overflow_p (value, 16);
4400 }
4401 break;
4402
4403 case R_MIPS_LO16:
d6f16593 4404 case R_MIPS16_LO16:
b49e97c9
TS
4405 if (!gp_disp_p)
4406 value = (symbol + addend) & howto->dst_mask;
4407 else
4408 {
d6f16593
MR
4409 /* See the comment for R_MIPS16_HI16 above for the reason
4410 for this conditional. */
4411 if (r_type == R_MIPS16_LO16)
4412 value = addend + gp - p;
4413 else
4414 value = addend + gp - p + 4;
b49e97c9 4415 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4416 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4417 _gp_disp are normally generated from the .cpload
4418 pseudo-op. It generates code that normally looks like
4419 this:
4420
4421 lui $gp,%hi(_gp_disp)
4422 addiu $gp,$gp,%lo(_gp_disp)
4423 addu $gp,$gp,$t9
4424
4425 Here $t9 holds the address of the function being called,
4426 as required by the MIPS ELF ABI. The R_MIPS_LO16
4427 relocation can easily overflow in this situation, but the
4428 R_MIPS_HI16 relocation will handle the overflow.
4429 Therefore, we consider this a bug in the MIPS ABI, and do
4430 not check for overflow here. */
4431 }
4432 break;
4433
4434 case R_MIPS_LITERAL:
4435 /* Because we don't merge literal sections, we can handle this
4436 just like R_MIPS_GPREL16. In the long run, we should merge
4437 shared literals, and then we will need to additional work
4438 here. */
4439
4440 /* Fall through. */
4441
4442 case R_MIPS16_GPREL:
4443 /* The R_MIPS16_GPREL performs the same calculation as
4444 R_MIPS_GPREL16, but stores the relocated bits in a different
4445 order. We don't need to do anything special here; the
4446 differences are handled in mips_elf_perform_relocation. */
4447 case R_MIPS_GPREL16:
bce03d3d
AO
4448 /* Only sign-extend the addend if it was extracted from the
4449 instruction. If the addend was separate, leave it alone,
4450 otherwise we may lose significant bits. */
4451 if (howto->partial_inplace)
a7ebbfdf 4452 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4453 value = symbol + addend - gp;
4454 /* If the symbol was local, any earlier relocatable links will
4455 have adjusted its addend with the gp offset, so compensate
4456 for that now. Don't do it for symbols forced local in this
4457 link, though, since they won't have had the gp offset applied
4458 to them before. */
4459 if (was_local_p)
4460 value += gp0;
b49e97c9
TS
4461 overflowed_p = mips_elf_overflow_p (value, 16);
4462 break;
4463
4464 case R_MIPS_GOT16:
4465 case R_MIPS_CALL16:
0a44bf69
RS
4466 /* VxWorks does not have separate local and global semantics for
4467 R_MIPS_GOT16; every relocation evaluates to "G". */
4468 if (!htab->is_vxworks && local_p)
b49e97c9 4469 {
b34976b6 4470 bfd_boolean forced;
b49e97c9 4471
b49e97c9 4472 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4473 local_sections, FALSE);
0a44bf69 4474 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
f4416af6 4475 symbol + addend, forced);
b49e97c9
TS
4476 if (value == MINUS_ONE)
4477 return bfd_reloc_outofrange;
4478 value
0a44bf69 4479 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4480 overflowed_p = mips_elf_overflow_p (value, 16);
4481 break;
4482 }
4483
4484 /* Fall through. */
4485
0f20cc35
DJ
4486 case R_MIPS_TLS_GD:
4487 case R_MIPS_TLS_GOTTPREL:
4488 case R_MIPS_TLS_LDM:
b49e97c9 4489 case R_MIPS_GOT_DISP:
0fdc1bf1 4490 got_disp:
b49e97c9
TS
4491 value = g;
4492 overflowed_p = mips_elf_overflow_p (value, 16);
4493 break;
4494
4495 case R_MIPS_GPREL32:
bce03d3d
AO
4496 value = (addend + symbol + gp0 - gp);
4497 if (!save_addend)
4498 value &= howto->dst_mask;
b49e97c9
TS
4499 break;
4500
4501 case R_MIPS_PC16:
bad36eac
DJ
4502 case R_MIPS_GNU_REL16_S2:
4503 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4504 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4505 value >>= howto->rightshift;
4506 value &= howto->dst_mask;
b49e97c9
TS
4507 break;
4508
4509 case R_MIPS_GOT_HI16:
4510 case R_MIPS_CALL_HI16:
4511 /* We're allowed to handle these two relocations identically.
4512 The dynamic linker is allowed to handle the CALL relocations
4513 differently by creating a lazy evaluation stub. */
4514 value = g;
4515 value = mips_elf_high (value);
4516 value &= howto->dst_mask;
4517 break;
4518
4519 case R_MIPS_GOT_LO16:
4520 case R_MIPS_CALL_LO16:
4521 value = g & howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4525 /* GOT_PAGE relocations that reference non-local symbols decay
4526 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4527 0. */
93a2b7ae 4528 if (! local_p)
0fdc1bf1 4529 goto got_disp;
0a44bf69
RS
4530 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4531 symbol + addend, NULL);
b49e97c9
TS
4532 if (value == MINUS_ONE)
4533 return bfd_reloc_outofrange;
0a44bf69 4534 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4535 overflowed_p = mips_elf_overflow_p (value, 16);
4536 break;
4537
4538 case R_MIPS_GOT_OFST:
93a2b7ae 4539 if (local_p)
0a44bf69
RS
4540 mips_elf_got_page (abfd, input_bfd, info, sec,
4541 symbol + addend, &value);
0fdc1bf1
AO
4542 else
4543 value = addend;
b49e97c9
TS
4544 overflowed_p = mips_elf_overflow_p (value, 16);
4545 break;
4546
4547 case R_MIPS_SUB:
4548 value = symbol - addend;
4549 value &= howto->dst_mask;
4550 break;
4551
4552 case R_MIPS_HIGHER:
4553 value = mips_elf_higher (addend + symbol);
4554 value &= howto->dst_mask;
4555 break;
4556
4557 case R_MIPS_HIGHEST:
4558 value = mips_elf_highest (addend + symbol);
4559 value &= howto->dst_mask;
4560 break;
4561
4562 case R_MIPS_SCN_DISP:
4563 value = symbol + addend - sec->output_offset;
4564 value &= howto->dst_mask;
4565 break;
4566
b49e97c9 4567 case R_MIPS_JALR:
1367d393
ILT
4568 /* This relocation is only a hint. In some cases, we optimize
4569 it into a bal instruction. But we don't try to optimize
4570 branches to the PLT; that will wind up wasting time. */
4571 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4572 return bfd_reloc_continue;
4573 value = symbol + addend;
4574 break;
b49e97c9 4575
1367d393 4576 case R_MIPS_PJUMP:
b49e97c9
TS
4577 case R_MIPS_GNU_VTINHERIT:
4578 case R_MIPS_GNU_VTENTRY:
4579 /* We don't do anything with these at present. */
4580 return bfd_reloc_continue;
4581
4582 default:
4583 /* An unrecognized relocation type. */
4584 return bfd_reloc_notsupported;
4585 }
4586
4587 /* Store the VALUE for our caller. */
4588 *valuep = value;
4589 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4590}
4591
4592/* Obtain the field relocated by RELOCATION. */
4593
4594static bfd_vma
9719ad41
RS
4595mips_elf_obtain_contents (reloc_howto_type *howto,
4596 const Elf_Internal_Rela *relocation,
4597 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4598{
4599 bfd_vma x;
4600 bfd_byte *location = contents + relocation->r_offset;
4601
4602 /* Obtain the bytes. */
4603 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4604
b49e97c9
TS
4605 return x;
4606}
4607
4608/* It has been determined that the result of the RELOCATION is the
4609 VALUE. Use HOWTO to place VALUE into the output file at the
4610 appropriate position. The SECTION is the section to which the
b34976b6 4611 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4612 for the relocation must be either JAL or JALX, and it is
4613 unconditionally converted to JALX.
4614
b34976b6 4615 Returns FALSE if anything goes wrong. */
b49e97c9 4616
b34976b6 4617static bfd_boolean
9719ad41
RS
4618mips_elf_perform_relocation (struct bfd_link_info *info,
4619 reloc_howto_type *howto,
4620 const Elf_Internal_Rela *relocation,
4621 bfd_vma value, bfd *input_bfd,
4622 asection *input_section, bfd_byte *contents,
4623 bfd_boolean require_jalx)
b49e97c9
TS
4624{
4625 bfd_vma x;
4626 bfd_byte *location;
4627 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4628
4629 /* Figure out where the relocation is occurring. */
4630 location = contents + relocation->r_offset;
4631
d6f16593
MR
4632 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4633
b49e97c9
TS
4634 /* Obtain the current value. */
4635 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4636
4637 /* Clear the field we are setting. */
4638 x &= ~howto->dst_mask;
4639
b49e97c9
TS
4640 /* Set the field. */
4641 x |= (value & howto->dst_mask);
4642
4643 /* If required, turn JAL into JALX. */
4644 if (require_jalx)
4645 {
b34976b6 4646 bfd_boolean ok;
b49e97c9
TS
4647 bfd_vma opcode = x >> 26;
4648 bfd_vma jalx_opcode;
4649
4650 /* Check to see if the opcode is already JAL or JALX. */
4651 if (r_type == R_MIPS16_26)
4652 {
4653 ok = ((opcode == 0x6) || (opcode == 0x7));
4654 jalx_opcode = 0x7;
4655 }
4656 else
4657 {
4658 ok = ((opcode == 0x3) || (opcode == 0x1d));
4659 jalx_opcode = 0x1d;
4660 }
4661
4662 /* If the opcode is not JAL or JALX, there's a problem. */
4663 if (!ok)
4664 {
4665 (*_bfd_error_handler)
d003868e
AM
4666 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4667 input_bfd,
4668 input_section,
b49e97c9
TS
4669 (unsigned long) relocation->r_offset);
4670 bfd_set_error (bfd_error_bad_value);
b34976b6 4671 return FALSE;
b49e97c9
TS
4672 }
4673
4674 /* Make this the JALX opcode. */
4675 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4676 }
4677
1367d393
ILT
4678 /* On the RM9000, bal is faster than jal, because bal uses branch
4679 prediction hardware. If we are linking for the RM9000, and we
4680 see jal, and bal fits, use it instead. Note that this
4681 transformation should be safe for all architectures. */
4682 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4683 && !info->relocatable
4684 && !require_jalx
4685 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4686 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4687 {
4688 bfd_vma addr;
4689 bfd_vma dest;
4690 bfd_signed_vma off;
4691
4692 addr = (input_section->output_section->vma
4693 + input_section->output_offset
4694 + relocation->r_offset
4695 + 4);
4696 if (r_type == R_MIPS_26)
4697 dest = (value << 2) | ((addr >> 28) << 28);
4698 else
4699 dest = value;
4700 off = dest - addr;
4701 if (off <= 0x1ffff && off >= -0x20000)
4702 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4703 }
4704
b49e97c9
TS
4705 /* Put the value into the output. */
4706 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4707
4708 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4709 location);
4710
b34976b6 4711 return TRUE;
b49e97c9
TS
4712}
4713
b34976b6 4714/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4715
b34976b6 4716static bfd_boolean
b9d58d71 4717mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4718{
4719 const char *name = bfd_get_section_name (abfd, section);
4720
b9d58d71 4721 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4722}
4723\f
0a44bf69 4724/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4725
4726static void
0a44bf69
RS
4727mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4728 unsigned int n)
b49e97c9
TS
4729{
4730 asection *s;
0a44bf69 4731 struct mips_elf_link_hash_table *htab;
b49e97c9 4732
0a44bf69
RS
4733 htab = mips_elf_hash_table (info);
4734 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4735 BFD_ASSERT (s != NULL);
4736
0a44bf69
RS
4737 if (htab->is_vxworks)
4738 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4739 else
b49e97c9 4740 {
0a44bf69
RS
4741 if (s->size == 0)
4742 {
4743 /* Make room for a null element. */
4744 s->size += MIPS_ELF_REL_SIZE (abfd);
4745 ++s->reloc_count;
4746 }
4747 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4748 }
b49e97c9
TS
4749}
4750
4751/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4752 is the original relocation, which is now being transformed into a
4753 dynamic relocation. The ADDENDP is adjusted if necessary; the
4754 caller should store the result in place of the original addend. */
4755
b34976b6 4756static bfd_boolean
9719ad41
RS
4757mips_elf_create_dynamic_relocation (bfd *output_bfd,
4758 struct bfd_link_info *info,
4759 const Elf_Internal_Rela *rel,
4760 struct mips_elf_link_hash_entry *h,
4761 asection *sec, bfd_vma symbol,
4762 bfd_vma *addendp, asection *input_section)
b49e97c9 4763{
947216bf 4764 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4765 asection *sreloc;
4766 bfd *dynobj;
4767 int r_type;
5d41f0b6
RS
4768 long indx;
4769 bfd_boolean defined_p;
0a44bf69 4770 struct mips_elf_link_hash_table *htab;
b49e97c9 4771
0a44bf69 4772 htab = mips_elf_hash_table (info);
b49e97c9
TS
4773 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4774 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4775 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4776 BFD_ASSERT (sreloc != NULL);
4777 BFD_ASSERT (sreloc->contents != NULL);
4778 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4779 < sreloc->size);
b49e97c9 4780
b49e97c9
TS
4781 outrel[0].r_offset =
4782 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4783 outrel[1].r_offset =
4784 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4785 outrel[2].r_offset =
4786 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4787
c5ae1840 4788 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4789 /* The relocation field has been deleted. */
5d41f0b6
RS
4790 return TRUE;
4791
4792 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4793 {
4794 /* The relocation field has been converted into a relative value of
4795 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4796 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4797 *addendp += symbol;
5d41f0b6 4798 return TRUE;
0d591ff7 4799 }
b49e97c9 4800
5d41f0b6
RS
4801 /* We must now calculate the dynamic symbol table index to use
4802 in the relocation. */
4803 if (h != NULL
6ece8836
TS
4804 && (!h->root.def_regular
4805 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4806 {
4807 indx = h->root.dynindx;
4808 if (SGI_COMPAT (output_bfd))
4809 defined_p = h->root.def_regular;
4810 else
4811 /* ??? glibc's ld.so just adds the final GOT entry to the
4812 relocation field. It therefore treats relocs against
4813 defined symbols in the same way as relocs against
4814 undefined symbols. */
4815 defined_p = FALSE;
4816 }
b49e97c9
TS
4817 else
4818 {
5d41f0b6
RS
4819 if (sec != NULL && bfd_is_abs_section (sec))
4820 indx = 0;
4821 else if (sec == NULL || sec->owner == NULL)
fdd07405 4822 {
5d41f0b6
RS
4823 bfd_set_error (bfd_error_bad_value);
4824 return FALSE;
b49e97c9
TS
4825 }
4826 else
4827 {
5d41f0b6 4828 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4829 if (indx == 0)
4830 {
4831 asection *osec = htab->root.text_index_section;
4832 indx = elf_section_data (osec)->dynindx;
4833 }
5d41f0b6
RS
4834 if (indx == 0)
4835 abort ();
b49e97c9
TS
4836 }
4837
5d41f0b6
RS
4838 /* Instead of generating a relocation using the section
4839 symbol, we may as well make it a fully relative
4840 relocation. We want to avoid generating relocations to
4841 local symbols because we used to generate them
4842 incorrectly, without adding the original symbol value,
4843 which is mandated by the ABI for section symbols. In
4844 order to give dynamic loaders and applications time to
4845 phase out the incorrect use, we refrain from emitting
4846 section-relative relocations. It's not like they're
4847 useful, after all. This should be a bit more efficient
4848 as well. */
4849 /* ??? Although this behavior is compatible with glibc's ld.so,
4850 the ABI says that relocations against STN_UNDEF should have
4851 a symbol value of 0. Irix rld honors this, so relocations
4852 against STN_UNDEF have no effect. */
4853 if (!SGI_COMPAT (output_bfd))
4854 indx = 0;
4855 defined_p = TRUE;
b49e97c9
TS
4856 }
4857
5d41f0b6
RS
4858 /* If the relocation was previously an absolute relocation and
4859 this symbol will not be referred to by the relocation, we must
4860 adjust it by the value we give it in the dynamic symbol table.
4861 Otherwise leave the job up to the dynamic linker. */
4862 if (defined_p && r_type != R_MIPS_REL32)
4863 *addendp += symbol;
4864
0a44bf69
RS
4865 if (htab->is_vxworks)
4866 /* VxWorks uses non-relative relocations for this. */
4867 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4868 else
4869 /* The relocation is always an REL32 relocation because we don't
4870 know where the shared library will wind up at load-time. */
4871 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4872 R_MIPS_REL32);
4873
5d41f0b6
RS
4874 /* For strict adherence to the ABI specification, we should
4875 generate a R_MIPS_64 relocation record by itself before the
4876 _REL32/_64 record as well, such that the addend is read in as
4877 a 64-bit value (REL32 is a 32-bit relocation, after all).
4878 However, since none of the existing ELF64 MIPS dynamic
4879 loaders seems to care, we don't waste space with these
4880 artificial relocations. If this turns out to not be true,
4881 mips_elf_allocate_dynamic_relocation() should be tweaked so
4882 as to make room for a pair of dynamic relocations per
4883 invocation if ABI_64_P, and here we should generate an
4884 additional relocation record with R_MIPS_64 by itself for a
4885 NULL symbol before this relocation record. */
4886 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4887 ABI_64_P (output_bfd)
4888 ? R_MIPS_64
4889 : R_MIPS_NONE);
4890 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4891
4892 /* Adjust the output offset of the relocation to reference the
4893 correct location in the output file. */
4894 outrel[0].r_offset += (input_section->output_section->vma
4895 + input_section->output_offset);
4896 outrel[1].r_offset += (input_section->output_section->vma
4897 + input_section->output_offset);
4898 outrel[2].r_offset += (input_section->output_section->vma
4899 + input_section->output_offset);
4900
b49e97c9
TS
4901 /* Put the relocation back out. We have to use the special
4902 relocation outputter in the 64-bit case since the 64-bit
4903 relocation format is non-standard. */
4904 if (ABI_64_P (output_bfd))
4905 {
4906 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4907 (output_bfd, &outrel[0],
4908 (sreloc->contents
4909 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4910 }
0a44bf69
RS
4911 else if (htab->is_vxworks)
4912 {
4913 /* VxWorks uses RELA rather than REL dynamic relocations. */
4914 outrel[0].r_addend = *addendp;
4915 bfd_elf32_swap_reloca_out
4916 (output_bfd, &outrel[0],
4917 (sreloc->contents
4918 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4919 }
b49e97c9 4920 else
947216bf
AM
4921 bfd_elf32_swap_reloc_out
4922 (output_bfd, &outrel[0],
4923 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4924
b49e97c9
TS
4925 /* We've now added another relocation. */
4926 ++sreloc->reloc_count;
4927
4928 /* Make sure the output section is writable. The dynamic linker
4929 will be writing to it. */
4930 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4931 |= SHF_WRITE;
4932
4933 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4934 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4935 {
4936 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4937 bfd_byte *cr;
4938
4939 if (scpt)
4940 {
4941 Elf32_crinfo cptrel;
4942
4943 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4944 cptrel.vaddr = (rel->r_offset
4945 + input_section->output_section->vma
4946 + input_section->output_offset);
4947 if (r_type == R_MIPS_REL32)
4948 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4949 else
4950 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4951 mips_elf_set_cr_dist2to (cptrel, 0);
4952 cptrel.konst = *addendp;
4953
4954 cr = (scpt->contents
4955 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4956 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4957 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4958 ((Elf32_External_crinfo *) cr
4959 + scpt->reloc_count));
4960 ++scpt->reloc_count;
4961 }
4962 }
4963
943284cc
DJ
4964 /* If we've written this relocation for a readonly section,
4965 we need to set DF_TEXTREL again, so that we do not delete the
4966 DT_TEXTREL tag. */
4967 if (MIPS_ELF_READONLY_SECTION (input_section))
4968 info->flags |= DF_TEXTREL;
4969
b34976b6 4970 return TRUE;
b49e97c9
TS
4971}
4972\f
b49e97c9
TS
4973/* Return the MACH for a MIPS e_flags value. */
4974
4975unsigned long
9719ad41 4976_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4977{
4978 switch (flags & EF_MIPS_MACH)
4979 {
4980 case E_MIPS_MACH_3900:
4981 return bfd_mach_mips3900;
4982
4983 case E_MIPS_MACH_4010:
4984 return bfd_mach_mips4010;
4985
4986 case E_MIPS_MACH_4100:
4987 return bfd_mach_mips4100;
4988
4989 case E_MIPS_MACH_4111:
4990 return bfd_mach_mips4111;
4991
00707a0e
RS
4992 case E_MIPS_MACH_4120:
4993 return bfd_mach_mips4120;
4994
b49e97c9
TS
4995 case E_MIPS_MACH_4650:
4996 return bfd_mach_mips4650;
4997
00707a0e
RS
4998 case E_MIPS_MACH_5400:
4999 return bfd_mach_mips5400;
5000
5001 case E_MIPS_MACH_5500:
5002 return bfd_mach_mips5500;
5003
0d2e43ed
ILT
5004 case E_MIPS_MACH_9000:
5005 return bfd_mach_mips9000;
5006
b49e97c9
TS
5007 case E_MIPS_MACH_SB1:
5008 return bfd_mach_mips_sb1;
5009
5010 default:
5011 switch (flags & EF_MIPS_ARCH)
5012 {
5013 default:
5014 case E_MIPS_ARCH_1:
5015 return bfd_mach_mips3000;
b49e97c9
TS
5016
5017 case E_MIPS_ARCH_2:
5018 return bfd_mach_mips6000;
b49e97c9
TS
5019
5020 case E_MIPS_ARCH_3:
5021 return bfd_mach_mips4000;
b49e97c9
TS
5022
5023 case E_MIPS_ARCH_4:
5024 return bfd_mach_mips8000;
b49e97c9
TS
5025
5026 case E_MIPS_ARCH_5:
5027 return bfd_mach_mips5;
b49e97c9
TS
5028
5029 case E_MIPS_ARCH_32:
5030 return bfd_mach_mipsisa32;
b49e97c9
TS
5031
5032 case E_MIPS_ARCH_64:
5033 return bfd_mach_mipsisa64;
af7ee8bf
CD
5034
5035 case E_MIPS_ARCH_32R2:
5036 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5037
5038 case E_MIPS_ARCH_64R2:
5039 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5040 }
5041 }
5042
5043 return 0;
5044}
5045
5046/* Return printable name for ABI. */
5047
5048static INLINE char *
9719ad41 5049elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5050{
5051 flagword flags;
5052
5053 flags = elf_elfheader (abfd)->e_flags;
5054 switch (flags & EF_MIPS_ABI)
5055 {
5056 case 0:
5057 if (ABI_N32_P (abfd))
5058 return "N32";
5059 else if (ABI_64_P (abfd))
5060 return "64";
5061 else
5062 return "none";
5063 case E_MIPS_ABI_O32:
5064 return "O32";
5065 case E_MIPS_ABI_O64:
5066 return "O64";
5067 case E_MIPS_ABI_EABI32:
5068 return "EABI32";
5069 case E_MIPS_ABI_EABI64:
5070 return "EABI64";
5071 default:
5072 return "unknown abi";
5073 }
5074}
5075\f
5076/* MIPS ELF uses two common sections. One is the usual one, and the
5077 other is for small objects. All the small objects are kept
5078 together, and then referenced via the gp pointer, which yields
5079 faster assembler code. This is what we use for the small common
5080 section. This approach is copied from ecoff.c. */
5081static asection mips_elf_scom_section;
5082static asymbol mips_elf_scom_symbol;
5083static asymbol *mips_elf_scom_symbol_ptr;
5084
5085/* MIPS ELF also uses an acommon section, which represents an
5086 allocated common symbol which may be overridden by a
5087 definition in a shared library. */
5088static asection mips_elf_acom_section;
5089static asymbol mips_elf_acom_symbol;
5090static asymbol *mips_elf_acom_symbol_ptr;
5091
5092/* Handle the special MIPS section numbers that a symbol may use.
5093 This is used for both the 32-bit and the 64-bit ABI. */
5094
5095void
9719ad41 5096_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5097{
5098 elf_symbol_type *elfsym;
5099
5100 elfsym = (elf_symbol_type *) asym;
5101 switch (elfsym->internal_elf_sym.st_shndx)
5102 {
5103 case SHN_MIPS_ACOMMON:
5104 /* This section is used in a dynamically linked executable file.
5105 It is an allocated common section. The dynamic linker can
5106 either resolve these symbols to something in a shared
5107 library, or it can just leave them here. For our purposes,
5108 we can consider these symbols to be in a new section. */
5109 if (mips_elf_acom_section.name == NULL)
5110 {
5111 /* Initialize the acommon section. */
5112 mips_elf_acom_section.name = ".acommon";
5113 mips_elf_acom_section.flags = SEC_ALLOC;
5114 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5115 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5116 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5117 mips_elf_acom_symbol.name = ".acommon";
5118 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5119 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5120 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5121 }
5122 asym->section = &mips_elf_acom_section;
5123 break;
5124
5125 case SHN_COMMON:
5126 /* Common symbols less than the GP size are automatically
5127 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5128 if (asym->value > elf_gp_size (abfd)
b59eed79 5129 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5130 || IRIX_COMPAT (abfd) == ict_irix6)
5131 break;
5132 /* Fall through. */
5133 case SHN_MIPS_SCOMMON:
5134 if (mips_elf_scom_section.name == NULL)
5135 {
5136 /* Initialize the small common section. */
5137 mips_elf_scom_section.name = ".scommon";
5138 mips_elf_scom_section.flags = SEC_IS_COMMON;
5139 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5140 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5141 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5142 mips_elf_scom_symbol.name = ".scommon";
5143 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5144 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5145 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5146 }
5147 asym->section = &mips_elf_scom_section;
5148 asym->value = elfsym->internal_elf_sym.st_size;
5149 break;
5150
5151 case SHN_MIPS_SUNDEFINED:
5152 asym->section = bfd_und_section_ptr;
5153 break;
5154
b49e97c9 5155 case SHN_MIPS_TEXT:
00b4930b
TS
5156 {
5157 asection *section = bfd_get_section_by_name (abfd, ".text");
5158
5159 BFD_ASSERT (SGI_COMPAT (abfd));
5160 if (section != NULL)
5161 {
5162 asym->section = section;
5163 /* MIPS_TEXT is a bit special, the address is not an offset
5164 to the base of the .text section. So substract the section
5165 base address to make it an offset. */
5166 asym->value -= section->vma;
5167 }
5168 }
b49e97c9
TS
5169 break;
5170
5171 case SHN_MIPS_DATA:
00b4930b
TS
5172 {
5173 asection *section = bfd_get_section_by_name (abfd, ".data");
5174
5175 BFD_ASSERT (SGI_COMPAT (abfd));
5176 if (section != NULL)
5177 {
5178 asym->section = section;
5179 /* MIPS_DATA is a bit special, the address is not an offset
5180 to the base of the .data section. So substract the section
5181 base address to make it an offset. */
5182 asym->value -= section->vma;
5183 }
5184 }
b49e97c9 5185 break;
b49e97c9
TS
5186 }
5187}
5188\f
8c946ed5
RS
5189/* Implement elf_backend_eh_frame_address_size. This differs from
5190 the default in the way it handles EABI64.
5191
5192 EABI64 was originally specified as an LP64 ABI, and that is what
5193 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5194 historically accepted the combination of -mabi=eabi and -mlong32,
5195 and this ILP32 variation has become semi-official over time.
5196 Both forms use elf32 and have pointer-sized FDE addresses.
5197
5198 If an EABI object was generated by GCC 4.0 or above, it will have
5199 an empty .gcc_compiled_longXX section, where XX is the size of longs
5200 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5201 have no special marking to distinguish them from LP64 objects.
5202
5203 We don't want users of the official LP64 ABI to be punished for the
5204 existence of the ILP32 variant, but at the same time, we don't want
5205 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5206 We therefore take the following approach:
5207
5208 - If ABFD contains a .gcc_compiled_longXX section, use it to
5209 determine the pointer size.
5210
5211 - Otherwise check the type of the first relocation. Assume that
5212 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5213
5214 - Otherwise punt.
5215
5216 The second check is enough to detect LP64 objects generated by pre-4.0
5217 compilers because, in the kind of output generated by those compilers,
5218 the first relocation will be associated with either a CIE personality
5219 routine or an FDE start address. Furthermore, the compilers never
5220 used a special (non-pointer) encoding for this ABI.
5221
5222 Checking the relocation type should also be safe because there is no
5223 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5224 did so. */
5225
5226unsigned int
5227_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5228{
5229 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5230 return 8;
5231 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5232 {
5233 bfd_boolean long32_p, long64_p;
5234
5235 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5236 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5237 if (long32_p && long64_p)
5238 return 0;
5239 if (long32_p)
5240 return 4;
5241 if (long64_p)
5242 return 8;
5243
5244 if (sec->reloc_count > 0
5245 && elf_section_data (sec)->relocs != NULL
5246 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5247 == R_MIPS_64))
5248 return 8;
5249
5250 return 0;
5251 }
5252 return 4;
5253}
5254\f
174fd7f9
RS
5255/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5256 relocations against two unnamed section symbols to resolve to the
5257 same address. For example, if we have code like:
5258
5259 lw $4,%got_disp(.data)($gp)
5260 lw $25,%got_disp(.text)($gp)
5261 jalr $25
5262
5263 then the linker will resolve both relocations to .data and the program
5264 will jump there rather than to .text.
5265
5266 We can work around this problem by giving names to local section symbols.
5267 This is also what the MIPSpro tools do. */
5268
5269bfd_boolean
5270_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5271{
5272 return SGI_COMPAT (abfd);
5273}
5274\f
b49e97c9
TS
5275/* Work over a section just before writing it out. This routine is
5276 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5277 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5278 a better way. */
5279
b34976b6 5280bfd_boolean
9719ad41 5281_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5282{
5283 if (hdr->sh_type == SHT_MIPS_REGINFO
5284 && hdr->sh_size > 0)
5285 {
5286 bfd_byte buf[4];
5287
5288 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5289 BFD_ASSERT (hdr->contents == NULL);
5290
5291 if (bfd_seek (abfd,
5292 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5293 SEEK_SET) != 0)
b34976b6 5294 return FALSE;
b49e97c9 5295 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5296 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5297 return FALSE;
b49e97c9
TS
5298 }
5299
5300 if (hdr->sh_type == SHT_MIPS_OPTIONS
5301 && hdr->bfd_section != NULL
f0abc2a1
AM
5302 && mips_elf_section_data (hdr->bfd_section) != NULL
5303 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5304 {
5305 bfd_byte *contents, *l, *lend;
5306
f0abc2a1
AM
5307 /* We stored the section contents in the tdata field in the
5308 set_section_contents routine. We save the section contents
5309 so that we don't have to read them again.
b49e97c9
TS
5310 At this point we know that elf_gp is set, so we can look
5311 through the section contents to see if there is an
5312 ODK_REGINFO structure. */
5313
f0abc2a1 5314 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5315 l = contents;
5316 lend = contents + hdr->sh_size;
5317 while (l + sizeof (Elf_External_Options) <= lend)
5318 {
5319 Elf_Internal_Options intopt;
5320
5321 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5322 &intopt);
1bc8074d
MR
5323 if (intopt.size < sizeof (Elf_External_Options))
5324 {
5325 (*_bfd_error_handler)
5326 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5327 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5328 break;
5329 }
b49e97c9
TS
5330 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5331 {
5332 bfd_byte buf[8];
5333
5334 if (bfd_seek (abfd,
5335 (hdr->sh_offset
5336 + (l - contents)
5337 + sizeof (Elf_External_Options)
5338 + (sizeof (Elf64_External_RegInfo) - 8)),
5339 SEEK_SET) != 0)
b34976b6 5340 return FALSE;
b49e97c9 5341 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5342 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5343 return FALSE;
b49e97c9
TS
5344 }
5345 else if (intopt.kind == ODK_REGINFO)
5346 {
5347 bfd_byte buf[4];
5348
5349 if (bfd_seek (abfd,
5350 (hdr->sh_offset
5351 + (l - contents)
5352 + sizeof (Elf_External_Options)
5353 + (sizeof (Elf32_External_RegInfo) - 4)),
5354 SEEK_SET) != 0)
b34976b6 5355 return FALSE;
b49e97c9 5356 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5357 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5358 return FALSE;
b49e97c9
TS
5359 }
5360 l += intopt.size;
5361 }
5362 }
5363
5364 if (hdr->bfd_section != NULL)
5365 {
5366 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5367
5368 if (strcmp (name, ".sdata") == 0
5369 || strcmp (name, ".lit8") == 0
5370 || strcmp (name, ".lit4") == 0)
5371 {
5372 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5373 hdr->sh_type = SHT_PROGBITS;
5374 }
5375 else if (strcmp (name, ".sbss") == 0)
5376 {
5377 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5378 hdr->sh_type = SHT_NOBITS;
5379 }
5380 else if (strcmp (name, ".srdata") == 0)
5381 {
5382 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5383 hdr->sh_type = SHT_PROGBITS;
5384 }
5385 else if (strcmp (name, ".compact_rel") == 0)
5386 {
5387 hdr->sh_flags = 0;
5388 hdr->sh_type = SHT_PROGBITS;
5389 }
5390 else if (strcmp (name, ".rtproc") == 0)
5391 {
5392 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5393 {
5394 unsigned int adjust;
5395
5396 adjust = hdr->sh_size % hdr->sh_addralign;
5397 if (adjust != 0)
5398 hdr->sh_size += hdr->sh_addralign - adjust;
5399 }
5400 }
5401 }
5402
b34976b6 5403 return TRUE;
b49e97c9
TS
5404}
5405
5406/* Handle a MIPS specific section when reading an object file. This
5407 is called when elfcode.h finds a section with an unknown type.
5408 This routine supports both the 32-bit and 64-bit ELF ABI.
5409
5410 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5411 how to. */
5412
b34976b6 5413bfd_boolean
6dc132d9
L
5414_bfd_mips_elf_section_from_shdr (bfd *abfd,
5415 Elf_Internal_Shdr *hdr,
5416 const char *name,
5417 int shindex)
b49e97c9
TS
5418{
5419 flagword flags = 0;
5420
5421 /* There ought to be a place to keep ELF backend specific flags, but
5422 at the moment there isn't one. We just keep track of the
5423 sections by their name, instead. Fortunately, the ABI gives
5424 suggested names for all the MIPS specific sections, so we will
5425 probably get away with this. */
5426 switch (hdr->sh_type)
5427 {
5428 case SHT_MIPS_LIBLIST:
5429 if (strcmp (name, ".liblist") != 0)
b34976b6 5430 return FALSE;
b49e97c9
TS
5431 break;
5432 case SHT_MIPS_MSYM:
5433 if (strcmp (name, ".msym") != 0)
b34976b6 5434 return FALSE;
b49e97c9
TS
5435 break;
5436 case SHT_MIPS_CONFLICT:
5437 if (strcmp (name, ".conflict") != 0)
b34976b6 5438 return FALSE;
b49e97c9
TS
5439 break;
5440 case SHT_MIPS_GPTAB:
0112cd26 5441 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5442 return FALSE;
b49e97c9
TS
5443 break;
5444 case SHT_MIPS_UCODE:
5445 if (strcmp (name, ".ucode") != 0)
b34976b6 5446 return FALSE;
b49e97c9
TS
5447 break;
5448 case SHT_MIPS_DEBUG:
5449 if (strcmp (name, ".mdebug") != 0)
b34976b6 5450 return FALSE;
b49e97c9
TS
5451 flags = SEC_DEBUGGING;
5452 break;
5453 case SHT_MIPS_REGINFO:
5454 if (strcmp (name, ".reginfo") != 0
5455 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5456 return FALSE;
b49e97c9
TS
5457 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5458 break;
5459 case SHT_MIPS_IFACE:
5460 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5461 return FALSE;
b49e97c9
TS
5462 break;
5463 case SHT_MIPS_CONTENT:
0112cd26 5464 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5465 return FALSE;
b49e97c9
TS
5466 break;
5467 case SHT_MIPS_OPTIONS:
cc2e31b9 5468 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5469 return FALSE;
b49e97c9
TS
5470 break;
5471 case SHT_MIPS_DWARF:
0112cd26 5472 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5473 return FALSE;
b49e97c9
TS
5474 break;
5475 case SHT_MIPS_SYMBOL_LIB:
5476 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5477 return FALSE;
b49e97c9
TS
5478 break;
5479 case SHT_MIPS_EVENTS:
0112cd26
NC
5480 if (! CONST_STRNEQ (name, ".MIPS.events")
5481 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5482 return FALSE;
b49e97c9
TS
5483 break;
5484 default:
cc2e31b9 5485 break;
b49e97c9
TS
5486 }
5487
6dc132d9 5488 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5489 return FALSE;
b49e97c9
TS
5490
5491 if (flags)
5492 {
5493 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5494 (bfd_get_section_flags (abfd,
5495 hdr->bfd_section)
5496 | flags)))
b34976b6 5497 return FALSE;
b49e97c9
TS
5498 }
5499
5500 /* FIXME: We should record sh_info for a .gptab section. */
5501
5502 /* For a .reginfo section, set the gp value in the tdata information
5503 from the contents of this section. We need the gp value while
5504 processing relocs, so we just get it now. The .reginfo section
5505 is not used in the 64-bit MIPS ELF ABI. */
5506 if (hdr->sh_type == SHT_MIPS_REGINFO)
5507 {
5508 Elf32_External_RegInfo ext;
5509 Elf32_RegInfo s;
5510
9719ad41
RS
5511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5512 &ext, 0, sizeof ext))
b34976b6 5513 return FALSE;
b49e97c9
TS
5514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5515 elf_gp (abfd) = s.ri_gp_value;
5516 }
5517
5518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5519 set the gp value based on what we find. We may see both
5520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5521 they should agree. */
5522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5523 {
5524 bfd_byte *contents, *l, *lend;
5525
9719ad41 5526 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5527 if (contents == NULL)
b34976b6 5528 return FALSE;
b49e97c9 5529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5530 0, hdr->sh_size))
b49e97c9
TS
5531 {
5532 free (contents);
b34976b6 5533 return FALSE;
b49e97c9
TS
5534 }
5535 l = contents;
5536 lend = contents + hdr->sh_size;
5537 while (l + sizeof (Elf_External_Options) <= lend)
5538 {
5539 Elf_Internal_Options intopt;
5540
5541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5542 &intopt);
1bc8074d
MR
5543 if (intopt.size < sizeof (Elf_External_Options))
5544 {
5545 (*_bfd_error_handler)
5546 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5547 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5548 break;
5549 }
b49e97c9
TS
5550 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5551 {
5552 Elf64_Internal_RegInfo intreg;
5553
5554 bfd_mips_elf64_swap_reginfo_in
5555 (abfd,
5556 ((Elf64_External_RegInfo *)
5557 (l + sizeof (Elf_External_Options))),
5558 &intreg);
5559 elf_gp (abfd) = intreg.ri_gp_value;
5560 }
5561 else if (intopt.kind == ODK_REGINFO)
5562 {
5563 Elf32_RegInfo intreg;
5564
5565 bfd_mips_elf32_swap_reginfo_in
5566 (abfd,
5567 ((Elf32_External_RegInfo *)
5568 (l + sizeof (Elf_External_Options))),
5569 &intreg);
5570 elf_gp (abfd) = intreg.ri_gp_value;
5571 }
5572 l += intopt.size;
5573 }
5574 free (contents);
5575 }
5576
b34976b6 5577 return TRUE;
b49e97c9
TS
5578}
5579
5580/* Set the correct type for a MIPS ELF section. We do this by the
5581 section name, which is a hack, but ought to work. This routine is
5582 used by both the 32-bit and the 64-bit ABI. */
5583
b34976b6 5584bfd_boolean
9719ad41 5585_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5586{
5587 register const char *name;
1bc8074d 5588 unsigned int sh_type;
b49e97c9
TS
5589
5590 name = bfd_get_section_name (abfd, sec);
1bc8074d 5591 sh_type = hdr->sh_type;
b49e97c9
TS
5592
5593 if (strcmp (name, ".liblist") == 0)
5594 {
5595 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5596 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5597 /* The sh_link field is set in final_write_processing. */
5598 }
5599 else if (strcmp (name, ".conflict") == 0)
5600 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5601 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5602 {
5603 hdr->sh_type = SHT_MIPS_GPTAB;
5604 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5605 /* The sh_info field is set in final_write_processing. */
5606 }
5607 else if (strcmp (name, ".ucode") == 0)
5608 hdr->sh_type = SHT_MIPS_UCODE;
5609 else if (strcmp (name, ".mdebug") == 0)
5610 {
5611 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5612 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5613 entsize of 0. FIXME: Does this matter? */
5614 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5615 hdr->sh_entsize = 0;
5616 else
5617 hdr->sh_entsize = 1;
5618 }
5619 else if (strcmp (name, ".reginfo") == 0)
5620 {
5621 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5622 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5623 entsize of 0x18. FIXME: Does this matter? */
5624 if (SGI_COMPAT (abfd))
5625 {
5626 if ((abfd->flags & DYNAMIC) != 0)
5627 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5628 else
5629 hdr->sh_entsize = 1;
5630 }
5631 else
5632 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5633 }
5634 else if (SGI_COMPAT (abfd)
5635 && (strcmp (name, ".hash") == 0
5636 || strcmp (name, ".dynamic") == 0
5637 || strcmp (name, ".dynstr") == 0))
5638 {
5639 if (SGI_COMPAT (abfd))
5640 hdr->sh_entsize = 0;
5641#if 0
8dc1a139 5642 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5643 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5644#endif
5645 }
5646 else if (strcmp (name, ".got") == 0
5647 || strcmp (name, ".srdata") == 0
5648 || strcmp (name, ".sdata") == 0
5649 || strcmp (name, ".sbss") == 0
5650 || strcmp (name, ".lit4") == 0
5651 || strcmp (name, ".lit8") == 0)
5652 hdr->sh_flags |= SHF_MIPS_GPREL;
5653 else if (strcmp (name, ".MIPS.interfaces") == 0)
5654 {
5655 hdr->sh_type = SHT_MIPS_IFACE;
5656 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5657 }
0112cd26 5658 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5659 {
5660 hdr->sh_type = SHT_MIPS_CONTENT;
5661 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5662 /* The sh_info field is set in final_write_processing. */
5663 }
cc2e31b9 5664 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5665 {
5666 hdr->sh_type = SHT_MIPS_OPTIONS;
5667 hdr->sh_entsize = 1;
5668 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5669 }
0112cd26 5670 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5671 hdr->sh_type = SHT_MIPS_DWARF;
5672 else if (strcmp (name, ".MIPS.symlib") == 0)
5673 {
5674 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5675 /* The sh_link and sh_info fields are set in
5676 final_write_processing. */
5677 }
0112cd26
NC
5678 else if (CONST_STRNEQ (name, ".MIPS.events")
5679 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5680 {
5681 hdr->sh_type = SHT_MIPS_EVENTS;
5682 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5683 /* The sh_link field is set in final_write_processing. */
5684 }
5685 else if (strcmp (name, ".msym") == 0)
5686 {
5687 hdr->sh_type = SHT_MIPS_MSYM;
5688 hdr->sh_flags |= SHF_ALLOC;
5689 hdr->sh_entsize = 8;
5690 }
5691
1bc8074d
MR
5692 /* In the unlikely event a special section is empty it has to lose its
5693 special meaning. This may happen e.g. when using `strip' with the
5694 "--only-keep-debug" option. */
5695 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5696 hdr->sh_type = sh_type;
5697
7a79a000
TS
5698 /* The generic elf_fake_sections will set up REL_HDR using the default
5699 kind of relocations. We used to set up a second header for the
5700 non-default kind of relocations here, but only NewABI would use
5701 these, and the IRIX ld doesn't like resulting empty RELA sections.
5702 Thus we create those header only on demand now. */
b49e97c9 5703
b34976b6 5704 return TRUE;
b49e97c9
TS
5705}
5706
5707/* Given a BFD section, try to locate the corresponding ELF section
5708 index. This is used by both the 32-bit and the 64-bit ABI.
5709 Actually, it's not clear to me that the 64-bit ABI supports these,
5710 but for non-PIC objects we will certainly want support for at least
5711 the .scommon section. */
5712
b34976b6 5713bfd_boolean
9719ad41
RS
5714_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5715 asection *sec, int *retval)
b49e97c9
TS
5716{
5717 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5718 {
5719 *retval = SHN_MIPS_SCOMMON;
b34976b6 5720 return TRUE;
b49e97c9
TS
5721 }
5722 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5723 {
5724 *retval = SHN_MIPS_ACOMMON;
b34976b6 5725 return TRUE;
b49e97c9 5726 }
b34976b6 5727 return FALSE;
b49e97c9
TS
5728}
5729\f
5730/* Hook called by the linker routine which adds symbols from an object
5731 file. We must handle the special MIPS section numbers here. */
5732
b34976b6 5733bfd_boolean
9719ad41 5734_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5735 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5736 flagword *flagsp ATTRIBUTE_UNUSED,
5737 asection **secp, bfd_vma *valp)
b49e97c9
TS
5738{
5739 if (SGI_COMPAT (abfd)
5740 && (abfd->flags & DYNAMIC) != 0
5741 && strcmp (*namep, "_rld_new_interface") == 0)
5742 {
8dc1a139 5743 /* Skip IRIX5 rld entry name. */
b49e97c9 5744 *namep = NULL;
b34976b6 5745 return TRUE;
b49e97c9
TS
5746 }
5747
eedecc07
DD
5748 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5749 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5750 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5751 a magic symbol resolved by the linker, we ignore this bogus definition
5752 of _gp_disp. New ABI objects do not suffer from this problem so this
5753 is not done for them. */
5754 if (!NEWABI_P(abfd)
5755 && (sym->st_shndx == SHN_ABS)
5756 && (strcmp (*namep, "_gp_disp") == 0))
5757 {
5758 *namep = NULL;
5759 return TRUE;
5760 }
5761
b49e97c9
TS
5762 switch (sym->st_shndx)
5763 {
5764 case SHN_COMMON:
5765 /* Common symbols less than the GP size are automatically
5766 treated as SHN_MIPS_SCOMMON symbols. */
5767 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5768 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5769 || IRIX_COMPAT (abfd) == ict_irix6)
5770 break;
5771 /* Fall through. */
5772 case SHN_MIPS_SCOMMON:
5773 *secp = bfd_make_section_old_way (abfd, ".scommon");
5774 (*secp)->flags |= SEC_IS_COMMON;
5775 *valp = sym->st_size;
5776 break;
5777
5778 case SHN_MIPS_TEXT:
5779 /* This section is used in a shared object. */
5780 if (elf_tdata (abfd)->elf_text_section == NULL)
5781 {
5782 asymbol *elf_text_symbol;
5783 asection *elf_text_section;
5784 bfd_size_type amt = sizeof (asection);
5785
5786 elf_text_section = bfd_zalloc (abfd, amt);
5787 if (elf_text_section == NULL)
b34976b6 5788 return FALSE;
b49e97c9
TS
5789
5790 amt = sizeof (asymbol);
5791 elf_text_symbol = bfd_zalloc (abfd, amt);
5792 if (elf_text_symbol == NULL)
b34976b6 5793 return FALSE;
b49e97c9
TS
5794
5795 /* Initialize the section. */
5796
5797 elf_tdata (abfd)->elf_text_section = elf_text_section;
5798 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5799
5800 elf_text_section->symbol = elf_text_symbol;
5801 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5802
5803 elf_text_section->name = ".text";
5804 elf_text_section->flags = SEC_NO_FLAGS;
5805 elf_text_section->output_section = NULL;
5806 elf_text_section->owner = abfd;
5807 elf_text_symbol->name = ".text";
5808 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5809 elf_text_symbol->section = elf_text_section;
5810 }
5811 /* This code used to do *secp = bfd_und_section_ptr if
5812 info->shared. I don't know why, and that doesn't make sense,
5813 so I took it out. */
5814 *secp = elf_tdata (abfd)->elf_text_section;
5815 break;
5816
5817 case SHN_MIPS_ACOMMON:
5818 /* Fall through. XXX Can we treat this as allocated data? */
5819 case SHN_MIPS_DATA:
5820 /* This section is used in a shared object. */
5821 if (elf_tdata (abfd)->elf_data_section == NULL)
5822 {
5823 asymbol *elf_data_symbol;
5824 asection *elf_data_section;
5825 bfd_size_type amt = sizeof (asection);
5826
5827 elf_data_section = bfd_zalloc (abfd, amt);
5828 if (elf_data_section == NULL)
b34976b6 5829 return FALSE;
b49e97c9
TS
5830
5831 amt = sizeof (asymbol);
5832 elf_data_symbol = bfd_zalloc (abfd, amt);
5833 if (elf_data_symbol == NULL)
b34976b6 5834 return FALSE;
b49e97c9
TS
5835
5836 /* Initialize the section. */
5837
5838 elf_tdata (abfd)->elf_data_section = elf_data_section;
5839 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5840
5841 elf_data_section->symbol = elf_data_symbol;
5842 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5843
5844 elf_data_section->name = ".data";
5845 elf_data_section->flags = SEC_NO_FLAGS;
5846 elf_data_section->output_section = NULL;
5847 elf_data_section->owner = abfd;
5848 elf_data_symbol->name = ".data";
5849 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5850 elf_data_symbol->section = elf_data_section;
5851 }
5852 /* This code used to do *secp = bfd_und_section_ptr if
5853 info->shared. I don't know why, and that doesn't make sense,
5854 so I took it out. */
5855 *secp = elf_tdata (abfd)->elf_data_section;
5856 break;
5857
5858 case SHN_MIPS_SUNDEFINED:
5859 *secp = bfd_und_section_ptr;
5860 break;
5861 }
5862
5863 if (SGI_COMPAT (abfd)
5864 && ! info->shared
5865 && info->hash->creator == abfd->xvec
5866 && strcmp (*namep, "__rld_obj_head") == 0)
5867 {
5868 struct elf_link_hash_entry *h;
14a793b2 5869 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5870
5871 /* Mark __rld_obj_head as dynamic. */
14a793b2 5872 bh = NULL;
b49e97c9 5873 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5874 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5875 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5876 return FALSE;
14a793b2
AM
5877
5878 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5879 h->non_elf = 0;
5880 h->def_regular = 1;
b49e97c9
TS
5881 h->type = STT_OBJECT;
5882
c152c796 5883 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5884 return FALSE;
b49e97c9 5885
b34976b6 5886 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5887 }
5888
5889 /* If this is a mips16 text symbol, add 1 to the value to make it
5890 odd. This will cause something like .word SYM to come up with
5891 the right value when it is loaded into the PC. */
5892 if (sym->st_other == STO_MIPS16)
5893 ++*valp;
5894
b34976b6 5895 return TRUE;
b49e97c9
TS
5896}
5897
5898/* This hook function is called before the linker writes out a global
5899 symbol. We mark symbols as small common if appropriate. This is
5900 also where we undo the increment of the value for a mips16 symbol. */
5901
b34976b6 5902bfd_boolean
9719ad41
RS
5903_bfd_mips_elf_link_output_symbol_hook
5904 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5905 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5906 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5907{
5908 /* If we see a common symbol, which implies a relocatable link, then
5909 if a symbol was small common in an input file, mark it as small
5910 common in the output file. */
5911 if (sym->st_shndx == SHN_COMMON
5912 && strcmp (input_sec->name, ".scommon") == 0)
5913 sym->st_shndx = SHN_MIPS_SCOMMON;
5914
79cda7cf
FF
5915 if (sym->st_other == STO_MIPS16)
5916 sym->st_value &= ~1;
b49e97c9 5917
b34976b6 5918 return TRUE;
b49e97c9
TS
5919}
5920\f
5921/* Functions for the dynamic linker. */
5922
5923/* Create dynamic sections when linking against a dynamic object. */
5924
b34976b6 5925bfd_boolean
9719ad41 5926_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5927{
5928 struct elf_link_hash_entry *h;
14a793b2 5929 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5930 flagword flags;
5931 register asection *s;
5932 const char * const *namep;
0a44bf69 5933 struct mips_elf_link_hash_table *htab;
b49e97c9 5934
0a44bf69 5935 htab = mips_elf_hash_table (info);
b49e97c9
TS
5936 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5937 | SEC_LINKER_CREATED | SEC_READONLY);
5938
0a44bf69
RS
5939 /* The psABI requires a read-only .dynamic section, but the VxWorks
5940 EABI doesn't. */
5941 if (!htab->is_vxworks)
b49e97c9 5942 {
0a44bf69
RS
5943 s = bfd_get_section_by_name (abfd, ".dynamic");
5944 if (s != NULL)
5945 {
5946 if (! bfd_set_section_flags (abfd, s, flags))
5947 return FALSE;
5948 }
b49e97c9
TS
5949 }
5950
5951 /* We need to create .got section. */
f4416af6
AO
5952 if (! mips_elf_create_got_section (abfd, info, FALSE))
5953 return FALSE;
5954
0a44bf69 5955 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5956 return FALSE;
b49e97c9 5957
b49e97c9
TS
5958 /* Create .stub section. */
5959 if (bfd_get_section_by_name (abfd,
5960 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5961 {
3496cb2a
L
5962 s = bfd_make_section_with_flags (abfd,
5963 MIPS_ELF_STUB_SECTION_NAME (abfd),
5964 flags | SEC_CODE);
b49e97c9 5965 if (s == NULL
b49e97c9
TS
5966 || ! bfd_set_section_alignment (abfd, s,
5967 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5968 return FALSE;
b49e97c9
TS
5969 }
5970
5971 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5972 && !info->shared
5973 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5974 {
3496cb2a
L
5975 s = bfd_make_section_with_flags (abfd, ".rld_map",
5976 flags &~ (flagword) SEC_READONLY);
b49e97c9 5977 if (s == NULL
b49e97c9
TS
5978 || ! bfd_set_section_alignment (abfd, s,
5979 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5980 return FALSE;
b49e97c9
TS
5981 }
5982
5983 /* On IRIX5, we adjust add some additional symbols and change the
5984 alignments of several sections. There is no ABI documentation
5985 indicating that this is necessary on IRIX6, nor any evidence that
5986 the linker takes such action. */
5987 if (IRIX_COMPAT (abfd) == ict_irix5)
5988 {
5989 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5990 {
14a793b2 5991 bh = NULL;
b49e97c9 5992 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5993 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5994 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5995 return FALSE;
14a793b2
AM
5996
5997 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5998 h->non_elf = 0;
5999 h->def_regular = 1;
b49e97c9
TS
6000 h->type = STT_SECTION;
6001
c152c796 6002 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6003 return FALSE;
b49e97c9
TS
6004 }
6005
6006 /* We need to create a .compact_rel section. */
6007 if (SGI_COMPAT (abfd))
6008 {
6009 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6010 return FALSE;
b49e97c9
TS
6011 }
6012
44c410de 6013 /* Change alignments of some sections. */
b49e97c9
TS
6014 s = bfd_get_section_by_name (abfd, ".hash");
6015 if (s != NULL)
d80dcc6a 6016 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6017 s = bfd_get_section_by_name (abfd, ".dynsym");
6018 if (s != NULL)
d80dcc6a 6019 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6020 s = bfd_get_section_by_name (abfd, ".dynstr");
6021 if (s != NULL)
d80dcc6a 6022 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6023 s = bfd_get_section_by_name (abfd, ".reginfo");
6024 if (s != NULL)
d80dcc6a 6025 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6026 s = bfd_get_section_by_name (abfd, ".dynamic");
6027 if (s != NULL)
d80dcc6a 6028 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6029 }
6030
6031 if (!info->shared)
6032 {
14a793b2
AM
6033 const char *name;
6034
6035 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6036 bh = NULL;
6037 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6038 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6039 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6040 return FALSE;
14a793b2
AM
6041
6042 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6043 h->non_elf = 0;
6044 h->def_regular = 1;
b49e97c9
TS
6045 h->type = STT_SECTION;
6046
c152c796 6047 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6048 return FALSE;
b49e97c9
TS
6049
6050 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6051 {
6052 /* __rld_map is a four byte word located in the .data section
6053 and is filled in by the rtld to contain a pointer to
6054 the _r_debug structure. Its symbol value will be set in
6055 _bfd_mips_elf_finish_dynamic_symbol. */
6056 s = bfd_get_section_by_name (abfd, ".rld_map");
6057 BFD_ASSERT (s != NULL);
6058
14a793b2
AM
6059 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6060 bh = NULL;
6061 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6062 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6063 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6064 return FALSE;
14a793b2
AM
6065
6066 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6067 h->non_elf = 0;
6068 h->def_regular = 1;
b49e97c9
TS
6069 h->type = STT_OBJECT;
6070
c152c796 6071 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6072 return FALSE;
b49e97c9
TS
6073 }
6074 }
6075
0a44bf69
RS
6076 if (htab->is_vxworks)
6077 {
6078 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6079 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6080 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6081 return FALSE;
6082
6083 /* Cache the sections created above. */
6084 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6085 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6086 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6087 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6088 if (!htab->sdynbss
6089 || (!htab->srelbss && !info->shared)
6090 || !htab->srelplt
6091 || !htab->splt)
6092 abort ();
6093
6094 /* Do the usual VxWorks handling. */
6095 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6096 return FALSE;
6097
6098 /* Work out the PLT sizes. */
6099 if (info->shared)
6100 {
6101 htab->plt_header_size
6102 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6103 htab->plt_entry_size
6104 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6105 }
6106 else
6107 {
6108 htab->plt_header_size
6109 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6110 htab->plt_entry_size
6111 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6112 }
6113 }
6114
b34976b6 6115 return TRUE;
b49e97c9
TS
6116}
6117\f
6118/* Look through the relocs for a section during the first phase, and
6119 allocate space in the global offset table. */
6120
b34976b6 6121bfd_boolean
9719ad41
RS
6122_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6123 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6124{
6125 const char *name;
6126 bfd *dynobj;
6127 Elf_Internal_Shdr *symtab_hdr;
6128 struct elf_link_hash_entry **sym_hashes;
6129 struct mips_got_info *g;
6130 size_t extsymoff;
6131 const Elf_Internal_Rela *rel;
6132 const Elf_Internal_Rela *rel_end;
6133 asection *sgot;
6134 asection *sreloc;
9c5bfbb7 6135 const struct elf_backend_data *bed;
0a44bf69 6136 struct mips_elf_link_hash_table *htab;
b49e97c9 6137
1049f94e 6138 if (info->relocatable)
b34976b6 6139 return TRUE;
b49e97c9 6140
0a44bf69 6141 htab = mips_elf_hash_table (info);
b49e97c9
TS
6142 dynobj = elf_hash_table (info)->dynobj;
6143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6144 sym_hashes = elf_sym_hashes (abfd);
6145 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6146
6147 /* Check for the mips16 stub sections. */
6148
6149 name = bfd_get_section_name (abfd, sec);
b9d58d71 6150 if (FN_STUB_P (name))
b49e97c9
TS
6151 {
6152 unsigned long r_symndx;
6153
6154 /* Look at the relocation information to figure out which symbol
6155 this is for. */
6156
6157 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6158
6159 if (r_symndx < extsymoff
6160 || sym_hashes[r_symndx - extsymoff] == NULL)
6161 {
6162 asection *o;
6163
6164 /* This stub is for a local symbol. This stub will only be
6165 needed if there is some relocation in this BFD, other
6166 than a 16 bit function call, which refers to this symbol. */
6167 for (o = abfd->sections; o != NULL; o = o->next)
6168 {
6169 Elf_Internal_Rela *sec_relocs;
6170 const Elf_Internal_Rela *r, *rend;
6171
6172 /* We can ignore stub sections when looking for relocs. */
6173 if ((o->flags & SEC_RELOC) == 0
6174 || o->reloc_count == 0
b9d58d71 6175 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6176 continue;
6177
45d6a902 6178 sec_relocs
9719ad41 6179 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6180 info->keep_memory);
b49e97c9 6181 if (sec_relocs == NULL)
b34976b6 6182 return FALSE;
b49e97c9
TS
6183
6184 rend = sec_relocs + o->reloc_count;
6185 for (r = sec_relocs; r < rend; r++)
6186 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6187 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6188 break;
6189
6cdc0ccc 6190 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6191 free (sec_relocs);
6192
6193 if (r < rend)
6194 break;
6195 }
6196
6197 if (o == NULL)
6198 {
6199 /* There is no non-call reloc for this stub, so we do
6200 not need it. Since this function is called before
6201 the linker maps input sections to output sections, we
6202 can easily discard it by setting the SEC_EXCLUDE
6203 flag. */
6204 sec->flags |= SEC_EXCLUDE;
b34976b6 6205 return TRUE;
b49e97c9
TS
6206 }
6207
6208 /* Record this stub in an array of local symbol stubs for
6209 this BFD. */
6210 if (elf_tdata (abfd)->local_stubs == NULL)
6211 {
6212 unsigned long symcount;
6213 asection **n;
6214 bfd_size_type amt;
6215
6216 if (elf_bad_symtab (abfd))
6217 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6218 else
6219 symcount = symtab_hdr->sh_info;
6220 amt = symcount * sizeof (asection *);
9719ad41 6221 n = bfd_zalloc (abfd, amt);
b49e97c9 6222 if (n == NULL)
b34976b6 6223 return FALSE;
b49e97c9
TS
6224 elf_tdata (abfd)->local_stubs = n;
6225 }
6226
b9d58d71 6227 sec->flags |= SEC_KEEP;
b49e97c9
TS
6228 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6229
6230 /* We don't need to set mips16_stubs_seen in this case.
6231 That flag is used to see whether we need to look through
6232 the global symbol table for stubs. We don't need to set
6233 it here, because we just have a local stub. */
6234 }
6235 else
6236 {
6237 struct mips_elf_link_hash_entry *h;
6238
6239 h = ((struct mips_elf_link_hash_entry *)
6240 sym_hashes[r_symndx - extsymoff]);
6241
973a3492
L
6242 while (h->root.root.type == bfd_link_hash_indirect
6243 || h->root.root.type == bfd_link_hash_warning)
6244 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6245
b49e97c9
TS
6246 /* H is the symbol this stub is for. */
6247
b9d58d71
TS
6248 /* If we already have an appropriate stub for this function, we
6249 don't need another one, so we can discard this one. Since
6250 this function is called before the linker maps input sections
6251 to output sections, we can easily discard it by setting the
6252 SEC_EXCLUDE flag. */
6253 if (h->fn_stub != NULL)
6254 {
6255 sec->flags |= SEC_EXCLUDE;
6256 return TRUE;
6257 }
6258
6259 sec->flags |= SEC_KEEP;
b49e97c9 6260 h->fn_stub = sec;
b34976b6 6261 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6262 }
6263 }
b9d58d71 6264 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6265 {
6266 unsigned long r_symndx;
6267 struct mips_elf_link_hash_entry *h;
6268 asection **loc;
6269
6270 /* Look at the relocation information to figure out which symbol
6271 this is for. */
6272
6273 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6274
6275 if (r_symndx < extsymoff
6276 || sym_hashes[r_symndx - extsymoff] == NULL)
6277 {
b9d58d71 6278 asection *o;
b49e97c9 6279
b9d58d71
TS
6280 /* This stub is for a local symbol. This stub will only be
6281 needed if there is some relocation (R_MIPS16_26) in this BFD
6282 that refers to this symbol. */
6283 for (o = abfd->sections; o != NULL; o = o->next)
6284 {
6285 Elf_Internal_Rela *sec_relocs;
6286 const Elf_Internal_Rela *r, *rend;
6287
6288 /* We can ignore stub sections when looking for relocs. */
6289 if ((o->flags & SEC_RELOC) == 0
6290 || o->reloc_count == 0
6291 || mips16_stub_section_p (abfd, o))
6292 continue;
6293
6294 sec_relocs
6295 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6296 info->keep_memory);
6297 if (sec_relocs == NULL)
6298 return FALSE;
6299
6300 rend = sec_relocs + o->reloc_count;
6301 for (r = sec_relocs; r < rend; r++)
6302 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6303 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6304 break;
6305
6306 if (elf_section_data (o)->relocs != sec_relocs)
6307 free (sec_relocs);
6308
6309 if (r < rend)
6310 break;
6311 }
6312
6313 if (o == NULL)
6314 {
6315 /* There is no non-call reloc for this stub, so we do
6316 not need it. Since this function is called before
6317 the linker maps input sections to output sections, we
6318 can easily discard it by setting the SEC_EXCLUDE
6319 flag. */
6320 sec->flags |= SEC_EXCLUDE;
6321 return TRUE;
6322 }
6323
6324 /* Record this stub in an array of local symbol call_stubs for
6325 this BFD. */
6326 if (elf_tdata (abfd)->local_call_stubs == NULL)
6327 {
6328 unsigned long symcount;
6329 asection **n;
6330 bfd_size_type amt;
6331
6332 if (elf_bad_symtab (abfd))
6333 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6334 else
6335 symcount = symtab_hdr->sh_info;
6336 amt = symcount * sizeof (asection *);
6337 n = bfd_zalloc (abfd, amt);
6338 if (n == NULL)
6339 return FALSE;
6340 elf_tdata (abfd)->local_call_stubs = n;
6341 }
b49e97c9 6342
b9d58d71
TS
6343 sec->flags |= SEC_KEEP;
6344 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6345
b9d58d71
TS
6346 /* We don't need to set mips16_stubs_seen in this case.
6347 That flag is used to see whether we need to look through
6348 the global symbol table for stubs. We don't need to set
6349 it here, because we just have a local stub. */
6350 }
b49e97c9 6351 else
b49e97c9 6352 {
b9d58d71
TS
6353 h = ((struct mips_elf_link_hash_entry *)
6354 sym_hashes[r_symndx - extsymoff]);
6355
6356 /* H is the symbol this stub is for. */
6357
6358 if (CALL_FP_STUB_P (name))
6359 loc = &h->call_fp_stub;
6360 else
6361 loc = &h->call_stub;
6362
6363 /* If we already have an appropriate stub for this function, we
6364 don't need another one, so we can discard this one. Since
6365 this function is called before the linker maps input sections
6366 to output sections, we can easily discard it by setting the
6367 SEC_EXCLUDE flag. */
6368 if (*loc != NULL)
6369 {
6370 sec->flags |= SEC_EXCLUDE;
6371 return TRUE;
6372 }
b49e97c9 6373
b9d58d71
TS
6374 sec->flags |= SEC_KEEP;
6375 *loc = sec;
6376 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6377 }
b49e97c9
TS
6378 }
6379
6380 if (dynobj == NULL)
6381 {
6382 sgot = NULL;
6383 g = NULL;
6384 }
6385 else
6386 {
f4416af6 6387 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6388 if (sgot == NULL)
6389 g = NULL;
6390 else
6391 {
f0abc2a1
AM
6392 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6393 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6394 BFD_ASSERT (g != NULL);
6395 }
6396 }
6397
6398 sreloc = NULL;
6399 bed = get_elf_backend_data (abfd);
6400 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6401 for (rel = relocs; rel < rel_end; ++rel)
6402 {
6403 unsigned long r_symndx;
6404 unsigned int r_type;
6405 struct elf_link_hash_entry *h;
6406
6407 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6408 r_type = ELF_R_TYPE (abfd, rel->r_info);
6409
6410 if (r_symndx < extsymoff)
6411 h = NULL;
6412 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6413 {
6414 (*_bfd_error_handler)
d003868e
AM
6415 (_("%B: Malformed reloc detected for section %s"),
6416 abfd, name);
b49e97c9 6417 bfd_set_error (bfd_error_bad_value);
b34976b6 6418 return FALSE;
b49e97c9
TS
6419 }
6420 else
6421 {
6422 h = sym_hashes[r_symndx - extsymoff];
6423
6424 /* This may be an indirect symbol created because of a version. */
6425 if (h != NULL)
6426 {
6427 while (h->root.type == bfd_link_hash_indirect)
6428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6429 }
6430 }
6431
6432 /* Some relocs require a global offset table. */
6433 if (dynobj == NULL || sgot == NULL)
6434 {
6435 switch (r_type)
6436 {
6437 case R_MIPS_GOT16:
6438 case R_MIPS_CALL16:
6439 case R_MIPS_CALL_HI16:
6440 case R_MIPS_CALL_LO16:
6441 case R_MIPS_GOT_HI16:
6442 case R_MIPS_GOT_LO16:
6443 case R_MIPS_GOT_PAGE:
6444 case R_MIPS_GOT_OFST:
6445 case R_MIPS_GOT_DISP:
86324f90 6446 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6447 case R_MIPS_TLS_GD:
6448 case R_MIPS_TLS_LDM:
b49e97c9
TS
6449 if (dynobj == NULL)
6450 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6451 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6452 return FALSE;
b49e97c9 6453 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6454 if (htab->is_vxworks && !info->shared)
6455 {
6456 (*_bfd_error_handler)
6457 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6458 abfd, (unsigned long) rel->r_offset);
6459 bfd_set_error (bfd_error_bad_value);
6460 return FALSE;
6461 }
b49e97c9
TS
6462 break;
6463
6464 case R_MIPS_32:
6465 case R_MIPS_REL32:
6466 case R_MIPS_64:
0a44bf69
RS
6467 /* In VxWorks executables, references to external symbols
6468 are handled using copy relocs or PLT stubs, so there's
6469 no need to add a dynamic relocation here. */
b49e97c9 6470 if (dynobj == NULL
0a44bf69 6471 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6472 && (sec->flags & SEC_ALLOC) != 0)
6473 elf_hash_table (info)->dynobj = dynobj = abfd;
6474 break;
6475
6476 default:
6477 break;
6478 }
6479 }
6480
0a44bf69
RS
6481 if (h)
6482 {
6483 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6484
6485 /* Relocations against the special VxWorks __GOTT_BASE__ and
6486 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6487 room for them in .rela.dyn. */
6488 if (is_gott_symbol (info, h))
6489 {
6490 if (sreloc == NULL)
6491 {
6492 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6493 if (sreloc == NULL)
6494 return FALSE;
6495 }
6496 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6497 }
6498 }
6499 else if (r_type == R_MIPS_CALL_LO16
6500 || r_type == R_MIPS_GOT_LO16
6501 || r_type == R_MIPS_GOT_DISP
6502 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6503 {
6504 /* We may need a local GOT entry for this relocation. We
6505 don't count R_MIPS_GOT_PAGE because we can estimate the
6506 maximum number of pages needed by looking at the size of
6507 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6508 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6509 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6510 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6511 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6512 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6513 rel->r_addend, g, 0))
f4416af6 6514 return FALSE;
b49e97c9
TS
6515 }
6516
6517 switch (r_type)
6518 {
6519 case R_MIPS_CALL16:
6520 if (h == NULL)
6521 {
6522 (*_bfd_error_handler)
d003868e
AM
6523 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6524 abfd, (unsigned long) rel->r_offset);
b49e97c9 6525 bfd_set_error (bfd_error_bad_value);
b34976b6 6526 return FALSE;
b49e97c9
TS
6527 }
6528 /* Fall through. */
6529
6530 case R_MIPS_CALL_HI16:
6531 case R_MIPS_CALL_LO16:
6532 if (h != NULL)
6533 {
0a44bf69
RS
6534 /* VxWorks call relocations point the function's .got.plt
6535 entry, which will be allocated by adjust_dynamic_symbol.
6536 Otherwise, this symbol requires a global GOT entry. */
6537 if (!htab->is_vxworks
6538 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6539 return FALSE;
b49e97c9
TS
6540
6541 /* We need a stub, not a plt entry for the undefined
6542 function. But we record it as if it needs plt. See
c152c796 6543 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6544 h->needs_plt = 1;
b49e97c9
TS
6545 h->type = STT_FUNC;
6546 }
6547 break;
6548
0fdc1bf1
AO
6549 case R_MIPS_GOT_PAGE:
6550 /* If this is a global, overridable symbol, GOT_PAGE will
6551 decay to GOT_DISP, so we'll need a GOT entry for it. */
6552 if (h == NULL)
6553 break;
6554 else
6555 {
6556 struct mips_elf_link_hash_entry *hmips =
6557 (struct mips_elf_link_hash_entry *) h;
143d77c5 6558
0fdc1bf1
AO
6559 while (hmips->root.root.type == bfd_link_hash_indirect
6560 || hmips->root.root.type == bfd_link_hash_warning)
6561 hmips = (struct mips_elf_link_hash_entry *)
6562 hmips->root.root.u.i.link;
143d77c5 6563
f5385ebf 6564 if (hmips->root.def_regular
0fdc1bf1 6565 && ! (info->shared && ! info->symbolic
f5385ebf 6566 && ! hmips->root.forced_local))
0fdc1bf1
AO
6567 break;
6568 }
6569 /* Fall through. */
6570
b49e97c9
TS
6571 case R_MIPS_GOT16:
6572 case R_MIPS_GOT_HI16:
6573 case R_MIPS_GOT_LO16:
6574 case R_MIPS_GOT_DISP:
0f20cc35 6575 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6576 return FALSE;
b49e97c9
TS
6577 break;
6578
0f20cc35
DJ
6579 case R_MIPS_TLS_GOTTPREL:
6580 if (info->shared)
6581 info->flags |= DF_STATIC_TLS;
6582 /* Fall through */
6583
6584 case R_MIPS_TLS_LDM:
6585 if (r_type == R_MIPS_TLS_LDM)
6586 {
6587 r_symndx = 0;
6588 h = NULL;
6589 }
6590 /* Fall through */
6591
6592 case R_MIPS_TLS_GD:
6593 /* This symbol requires a global offset table entry, or two
6594 for TLS GD relocations. */
6595 {
6596 unsigned char flag = (r_type == R_MIPS_TLS_GD
6597 ? GOT_TLS_GD
6598 : r_type == R_MIPS_TLS_LDM
6599 ? GOT_TLS_LDM
6600 : GOT_TLS_IE);
6601 if (h != NULL)
6602 {
6603 struct mips_elf_link_hash_entry *hmips =
6604 (struct mips_elf_link_hash_entry *) h;
6605 hmips->tls_type |= flag;
6606
6607 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6608 return FALSE;
6609 }
6610 else
6611 {
6612 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6613
6614 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6615 rel->r_addend, g, flag))
6616 return FALSE;
6617 }
6618 }
6619 break;
6620
b49e97c9
TS
6621 case R_MIPS_32:
6622 case R_MIPS_REL32:
6623 case R_MIPS_64:
0a44bf69
RS
6624 /* In VxWorks executables, references to external symbols
6625 are handled using copy relocs or PLT stubs, so there's
6626 no need to add a .rela.dyn entry for this relocation. */
6627 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6628 && (sec->flags & SEC_ALLOC) != 0)
6629 {
6630 if (sreloc == NULL)
6631 {
0a44bf69 6632 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6633 if (sreloc == NULL)
f4416af6 6634 return FALSE;
b49e97c9 6635 }
b49e97c9 6636 if (info->shared)
82f0cfbd
EC
6637 {
6638 /* When creating a shared object, we must copy these
6639 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6640 relocs. Make room for this reloc in .rel(a).dyn. */
6641 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6642 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6643 /* We tell the dynamic linker that there are
6644 relocations against the text segment. */
6645 info->flags |= DF_TEXTREL;
6646 }
b49e97c9
TS
6647 else
6648 {
6649 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6650
b49e97c9
TS
6651 /* We only need to copy this reloc if the symbol is
6652 defined in a dynamic object. */
6653 hmips = (struct mips_elf_link_hash_entry *) h;
6654 ++hmips->possibly_dynamic_relocs;
943284cc 6655 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6656 /* We need it to tell the dynamic linker if there
6657 are relocations against the text segment. */
6658 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6659 }
6660
6661 /* Even though we don't directly need a GOT entry for
6662 this symbol, a symbol must have a dynamic symbol
6663 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6664 dynamic relocations against it. This does not apply
6665 to VxWorks, which does not have the usual coupling
6666 between global GOT entries and .dynsym entries. */
6667 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6668 {
6669 if (dynobj == NULL)
6670 elf_hash_table (info)->dynobj = dynobj = abfd;
6671 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6672 return FALSE;
6673 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6674 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6675 return FALSE;
6676 }
b49e97c9
TS
6677 }
6678
6679 if (SGI_COMPAT (abfd))
6680 mips_elf_hash_table (info)->compact_rel_size +=
6681 sizeof (Elf32_External_crinfo);
6682 break;
6683
0a44bf69
RS
6684 case R_MIPS_PC16:
6685 if (h)
6686 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6687 break;
6688
b49e97c9 6689 case R_MIPS_26:
0a44bf69
RS
6690 if (h)
6691 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6692 /* Fall through. */
6693
b49e97c9
TS
6694 case R_MIPS_GPREL16:
6695 case R_MIPS_LITERAL:
6696 case R_MIPS_GPREL32:
6697 if (SGI_COMPAT (abfd))
6698 mips_elf_hash_table (info)->compact_rel_size +=
6699 sizeof (Elf32_External_crinfo);
6700 break;
6701
6702 /* This relocation describes the C++ object vtable hierarchy.
6703 Reconstruct it for later use during GC. */
6704 case R_MIPS_GNU_VTINHERIT:
c152c796 6705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6706 return FALSE;
b49e97c9
TS
6707 break;
6708
6709 /* This relocation describes which C++ vtable entries are actually
6710 used. Record for later use during GC. */
6711 case R_MIPS_GNU_VTENTRY:
c152c796 6712 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6713 return FALSE;
b49e97c9
TS
6714 break;
6715
6716 default:
6717 break;
6718 }
6719
6720 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6721 related to taking the function's address. This doesn't apply to
6722 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6723 a normal .got entry. */
6724 if (!htab->is_vxworks && h != NULL)
6725 switch (r_type)
6726 {
6727 default:
6728 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6729 break;
6730 case R_MIPS_CALL16:
6731 case R_MIPS_CALL_HI16:
6732 case R_MIPS_CALL_LO16:
6733 case R_MIPS_JALR:
6734 break;
6735 }
b49e97c9
TS
6736
6737 /* If this reloc is not a 16 bit call, and it has a global
6738 symbol, then we will need the fn_stub if there is one.
6739 References from a stub section do not count. */
6740 if (h != NULL
6741 && r_type != R_MIPS16_26
b9d58d71 6742 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6743 {
6744 struct mips_elf_link_hash_entry *mh;
6745
6746 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6747 mh->need_fn_stub = TRUE;
b49e97c9
TS
6748 }
6749 }
6750
b34976b6 6751 return TRUE;
b49e97c9
TS
6752}
6753\f
d0647110 6754bfd_boolean
9719ad41
RS
6755_bfd_mips_relax_section (bfd *abfd, asection *sec,
6756 struct bfd_link_info *link_info,
6757 bfd_boolean *again)
d0647110
AO
6758{
6759 Elf_Internal_Rela *internal_relocs;
6760 Elf_Internal_Rela *irel, *irelend;
6761 Elf_Internal_Shdr *symtab_hdr;
6762 bfd_byte *contents = NULL;
d0647110
AO
6763 size_t extsymoff;
6764 bfd_boolean changed_contents = FALSE;
6765 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6766 Elf_Internal_Sym *isymbuf = NULL;
6767
6768 /* We are not currently changing any sizes, so only one pass. */
6769 *again = FALSE;
6770
1049f94e 6771 if (link_info->relocatable)
d0647110
AO
6772 return TRUE;
6773
9719ad41 6774 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6775 link_info->keep_memory);
d0647110
AO
6776 if (internal_relocs == NULL)
6777 return TRUE;
6778
6779 irelend = internal_relocs + sec->reloc_count
6780 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6781 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6782 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6783
6784 for (irel = internal_relocs; irel < irelend; irel++)
6785 {
6786 bfd_vma symval;
6787 bfd_signed_vma sym_offset;
6788 unsigned int r_type;
6789 unsigned long r_symndx;
6790 asection *sym_sec;
6791 unsigned long instruction;
6792
6793 /* Turn jalr into bgezal, and jr into beq, if they're marked
6794 with a JALR relocation, that indicate where they jump to.
6795 This saves some pipeline bubbles. */
6796 r_type = ELF_R_TYPE (abfd, irel->r_info);
6797 if (r_type != R_MIPS_JALR)
6798 continue;
6799
6800 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6801 /* Compute the address of the jump target. */
6802 if (r_symndx >= extsymoff)
6803 {
6804 struct mips_elf_link_hash_entry *h
6805 = ((struct mips_elf_link_hash_entry *)
6806 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6807
6808 while (h->root.root.type == bfd_link_hash_indirect
6809 || h->root.root.type == bfd_link_hash_warning)
6810 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6811
d0647110
AO
6812 /* If a symbol is undefined, or if it may be overridden,
6813 skip it. */
6814 if (! ((h->root.root.type == bfd_link_hash_defined
6815 || h->root.root.type == bfd_link_hash_defweak)
6816 && h->root.root.u.def.section)
6817 || (link_info->shared && ! link_info->symbolic
f5385ebf 6818 && !h->root.forced_local))
d0647110
AO
6819 continue;
6820
6821 sym_sec = h->root.root.u.def.section;
6822 if (sym_sec->output_section)
6823 symval = (h->root.root.u.def.value
6824 + sym_sec->output_section->vma
6825 + sym_sec->output_offset);
6826 else
6827 symval = h->root.root.u.def.value;
6828 }
6829 else
6830 {
6831 Elf_Internal_Sym *isym;
6832
6833 /* Read this BFD's symbols if we haven't done so already. */
6834 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6835 {
6836 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6837 if (isymbuf == NULL)
6838 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6839 symtab_hdr->sh_info, 0,
6840 NULL, NULL, NULL);
6841 if (isymbuf == NULL)
6842 goto relax_return;
6843 }
6844
6845 isym = isymbuf + r_symndx;
6846 if (isym->st_shndx == SHN_UNDEF)
6847 continue;
6848 else if (isym->st_shndx == SHN_ABS)
6849 sym_sec = bfd_abs_section_ptr;
6850 else if (isym->st_shndx == SHN_COMMON)
6851 sym_sec = bfd_com_section_ptr;
6852 else
6853 sym_sec
6854 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6855 symval = isym->st_value
6856 + sym_sec->output_section->vma
6857 + sym_sec->output_offset;
6858 }
6859
6860 /* Compute branch offset, from delay slot of the jump to the
6861 branch target. */
6862 sym_offset = (symval + irel->r_addend)
6863 - (sec_start + irel->r_offset + 4);
6864
6865 /* Branch offset must be properly aligned. */
6866 if ((sym_offset & 3) != 0)
6867 continue;
6868
6869 sym_offset >>= 2;
6870
6871 /* Check that it's in range. */
6872 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6873 continue;
143d77c5 6874
d0647110
AO
6875 /* Get the section contents if we haven't done so already. */
6876 if (contents == NULL)
6877 {
6878 /* Get cached copy if it exists. */
6879 if (elf_section_data (sec)->this_hdr.contents != NULL)
6880 contents = elf_section_data (sec)->this_hdr.contents;
6881 else
6882 {
eea6121a 6883 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6884 goto relax_return;
6885 }
6886 }
6887
6888 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6889
6890 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6891 if ((instruction & 0xfc1fffff) == 0x0000f809)
6892 instruction = 0x04110000;
6893 /* If it was jr <reg>, turn it into b <target>. */
6894 else if ((instruction & 0xfc1fffff) == 0x00000008)
6895 instruction = 0x10000000;
6896 else
6897 continue;
6898
6899 instruction |= (sym_offset & 0xffff);
6900 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6901 changed_contents = TRUE;
6902 }
6903
6904 if (contents != NULL
6905 && elf_section_data (sec)->this_hdr.contents != contents)
6906 {
6907 if (!changed_contents && !link_info->keep_memory)
6908 free (contents);
6909 else
6910 {
6911 /* Cache the section contents for elf_link_input_bfd. */
6912 elf_section_data (sec)->this_hdr.contents = contents;
6913 }
6914 }
6915 return TRUE;
6916
143d77c5 6917 relax_return:
eea6121a
AM
6918 if (contents != NULL
6919 && elf_section_data (sec)->this_hdr.contents != contents)
6920 free (contents);
d0647110
AO
6921 return FALSE;
6922}
6923\f
b49e97c9
TS
6924/* Adjust a symbol defined by a dynamic object and referenced by a
6925 regular object. The current definition is in some section of the
6926 dynamic object, but we're not including those sections. We have to
6927 change the definition to something the rest of the link can
6928 understand. */
6929
b34976b6 6930bfd_boolean
9719ad41
RS
6931_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6932 struct elf_link_hash_entry *h)
b49e97c9
TS
6933{
6934 bfd *dynobj;
6935 struct mips_elf_link_hash_entry *hmips;
6936 asection *s;
5108fc1b 6937 struct mips_elf_link_hash_table *htab;
b49e97c9 6938
5108fc1b 6939 htab = mips_elf_hash_table (info);
b49e97c9
TS
6940 dynobj = elf_hash_table (info)->dynobj;
6941
6942 /* Make sure we know what is going on here. */
6943 BFD_ASSERT (dynobj != NULL
f5385ebf 6944 && (h->needs_plt
f6e332e6 6945 || h->u.weakdef != NULL
f5385ebf
AM
6946 || (h->def_dynamic
6947 && h->ref_regular
6948 && !h->def_regular)));
b49e97c9
TS
6949
6950 /* If this symbol is defined in a dynamic object, we need to copy
6951 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6952 file. */
6953 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6954 if (! info->relocatable
b49e97c9
TS
6955 && hmips->possibly_dynamic_relocs != 0
6956 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6957 || !h->def_regular))
b49e97c9 6958 {
0a44bf69
RS
6959 mips_elf_allocate_dynamic_relocations
6960 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6961 if (hmips->readonly_reloc)
b49e97c9
TS
6962 /* We tell the dynamic linker that there are relocations
6963 against the text segment. */
6964 info->flags |= DF_TEXTREL;
6965 }
6966
6967 /* For a function, create a stub, if allowed. */
6968 if (! hmips->no_fn_stub
f5385ebf 6969 && h->needs_plt)
b49e97c9
TS
6970 {
6971 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6972 return TRUE;
b49e97c9
TS
6973
6974 /* If this symbol is not defined in a regular file, then set
6975 the symbol to the stub location. This is required to make
6976 function pointers compare as equal between the normal
6977 executable and the shared library. */
f5385ebf 6978 if (!h->def_regular)
b49e97c9
TS
6979 {
6980 /* We need .stub section. */
6981 s = bfd_get_section_by_name (dynobj,
6982 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6983 BFD_ASSERT (s != NULL);
6984
6985 h->root.u.def.section = s;
eea6121a 6986 h->root.u.def.value = s->size;
b49e97c9
TS
6987
6988 /* XXX Write this stub address somewhere. */
eea6121a 6989 h->plt.offset = s->size;
b49e97c9
TS
6990
6991 /* Make room for this stub code. */
5108fc1b 6992 s->size += htab->function_stub_size;
b49e97c9
TS
6993
6994 /* The last half word of the stub will be filled with the index
6995 of this symbol in .dynsym section. */
b34976b6 6996 return TRUE;
b49e97c9
TS
6997 }
6998 }
6999 else if ((h->type == STT_FUNC)
f5385ebf 7000 && !h->needs_plt)
b49e97c9
TS
7001 {
7002 /* This will set the entry for this symbol in the GOT to 0, and
7003 the dynamic linker will take care of this. */
7004 h->root.u.def.value = 0;
b34976b6 7005 return TRUE;
b49e97c9
TS
7006 }
7007
7008 /* If this is a weak symbol, and there is a real definition, the
7009 processor independent code will have arranged for us to see the
7010 real definition first, and we can just use the same value. */
f6e332e6 7011 if (h->u.weakdef != NULL)
b49e97c9 7012 {
f6e332e6
AM
7013 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7014 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7015 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7016 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7017 return TRUE;
b49e97c9
TS
7018 }
7019
7020 /* This is a reference to a symbol defined by a dynamic object which
7021 is not a function. */
7022
b34976b6 7023 return TRUE;
b49e97c9 7024}
0a44bf69
RS
7025
7026/* Likewise, for VxWorks. */
7027
7028bfd_boolean
7029_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7030 struct elf_link_hash_entry *h)
7031{
7032 bfd *dynobj;
7033 struct mips_elf_link_hash_entry *hmips;
7034 struct mips_elf_link_hash_table *htab;
7035 unsigned int power_of_two;
7036
7037 htab = mips_elf_hash_table (info);
7038 dynobj = elf_hash_table (info)->dynobj;
7039 hmips = (struct mips_elf_link_hash_entry *) h;
7040
7041 /* Make sure we know what is going on here. */
7042 BFD_ASSERT (dynobj != NULL
7043 && (h->needs_plt
7044 || h->needs_copy
7045 || h->u.weakdef != NULL
7046 || (h->def_dynamic
7047 && h->ref_regular
7048 && !h->def_regular)));
7049
7050 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7051 either (a) we want to branch to the symbol or (b) we're linking an
7052 executable that needs a canonical function address. In the latter
7053 case, the canonical address will be the address of the executable's
7054 load stub. */
7055 if ((hmips->is_branch_target
7056 || (!info->shared
7057 && h->type == STT_FUNC
7058 && hmips->is_relocation_target))
7059 && h->def_dynamic
7060 && h->ref_regular
7061 && !h->def_regular
7062 && !h->forced_local)
7063 h->needs_plt = 1;
7064
7065 /* Locally-binding symbols do not need a PLT stub; we can refer to
7066 the functions directly. */
7067 else if (h->needs_plt
7068 && (SYMBOL_CALLS_LOCAL (info, h)
7069 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7070 && h->root.type == bfd_link_hash_undefweak)))
7071 {
7072 h->needs_plt = 0;
7073 return TRUE;
7074 }
7075
7076 if (h->needs_plt)
7077 {
7078 /* If this is the first symbol to need a PLT entry, allocate room
7079 for the header, and for the header's .rela.plt.unloaded entries. */
7080 if (htab->splt->size == 0)
7081 {
7082 htab->splt->size += htab->plt_header_size;
7083 if (!info->shared)
7084 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7085 }
7086
7087 /* Assign the next .plt entry to this symbol. */
7088 h->plt.offset = htab->splt->size;
7089 htab->splt->size += htab->plt_entry_size;
7090
7091 /* If the output file has no definition of the symbol, set the
7092 symbol's value to the address of the stub. For executables,
7093 point at the PLT load stub rather than the lazy resolution stub;
7094 this stub will become the canonical function address. */
7095 if (!h->def_regular)
7096 {
7097 h->root.u.def.section = htab->splt;
7098 h->root.u.def.value = h->plt.offset;
7099 if (!info->shared)
7100 h->root.u.def.value += 8;
7101 }
7102
7103 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7104 htab->sgotplt->size += 4;
7105 htab->srelplt->size += sizeof (Elf32_External_Rela);
7106
7107 /* Make room for the .rela.plt.unloaded relocations. */
7108 if (!info->shared)
7109 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7110
7111 return TRUE;
7112 }
7113
7114 /* If a function symbol is defined by a dynamic object, and we do not
7115 need a PLT stub for it, the symbol's value should be zero. */
7116 if (h->type == STT_FUNC
7117 && h->def_dynamic
7118 && h->ref_regular
7119 && !h->def_regular)
7120 {
7121 h->root.u.def.value = 0;
7122 return TRUE;
7123 }
7124
7125 /* If this is a weak symbol, and there is a real definition, the
7126 processor independent code will have arranged for us to see the
7127 real definition first, and we can just use the same value. */
7128 if (h->u.weakdef != NULL)
7129 {
7130 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7131 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7132 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7133 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7134 return TRUE;
7135 }
7136
7137 /* This is a reference to a symbol defined by a dynamic object which
7138 is not a function. */
7139 if (info->shared)
7140 return TRUE;
7141
7142 /* We must allocate the symbol in our .dynbss section, which will
7143 become part of the .bss section of the executable. There will be
7144 an entry for this symbol in the .dynsym section. The dynamic
7145 object will contain position independent code, so all references
7146 from the dynamic object to this symbol will go through the global
7147 offset table. The dynamic linker will use the .dynsym entry to
7148 determine the address it must put in the global offset table, so
7149 both the dynamic object and the regular object will refer to the
7150 same memory location for the variable. */
7151
7152 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7153 {
7154 htab->srelbss->size += sizeof (Elf32_External_Rela);
7155 h->needs_copy = 1;
7156 }
7157
7158 /* We need to figure out the alignment required for this symbol. */
7159 power_of_two = bfd_log2 (h->size);
7160 if (power_of_two > 4)
7161 power_of_two = 4;
7162
7163 /* Apply the required alignment. */
7164 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7165 (bfd_size_type) 1 << power_of_two);
7166 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7167 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7168 return FALSE;
7169
7170 /* Define the symbol as being at this point in the section. */
7171 h->root.u.def.section = htab->sdynbss;
7172 h->root.u.def.value = htab->sdynbss->size;
7173
7174 /* Increment the section size to make room for the symbol. */
7175 htab->sdynbss->size += h->size;
7176
7177 return TRUE;
7178}
b49e97c9 7179\f
5108fc1b
RS
7180/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7181 The number might be exact or a worst-case estimate, depending on how
7182 much information is available to elf_backend_omit_section_dynsym at
7183 the current linking stage. */
7184
7185static bfd_size_type
7186count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7187{
7188 bfd_size_type count;
7189
7190 count = 0;
7191 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7192 {
7193 asection *p;
7194 const struct elf_backend_data *bed;
7195
7196 bed = get_elf_backend_data (output_bfd);
7197 for (p = output_bfd->sections; p ; p = p->next)
7198 if ((p->flags & SEC_EXCLUDE) == 0
7199 && (p->flags & SEC_ALLOC) != 0
7200 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7201 ++count;
7202 }
7203 return count;
7204}
7205
b49e97c9
TS
7206/* This function is called after all the input files have been read,
7207 and the input sections have been assigned to output sections. We
7208 check for any mips16 stub sections that we can discard. */
7209
b34976b6 7210bfd_boolean
9719ad41
RS
7211_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7212 struct bfd_link_info *info)
b49e97c9
TS
7213{
7214 asection *ri;
7215
f4416af6
AO
7216 bfd *dynobj;
7217 asection *s;
7218 struct mips_got_info *g;
7219 int i;
7220 bfd_size_type loadable_size = 0;
7221 bfd_size_type local_gotno;
5108fc1b 7222 bfd_size_type dynsymcount;
f4416af6 7223 bfd *sub;
0f20cc35 7224 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7225 struct mips_elf_link_hash_table *htab;
7226
7227 htab = mips_elf_hash_table (info);
f4416af6 7228
b49e97c9
TS
7229 /* The .reginfo section has a fixed size. */
7230 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7231 if (ri != NULL)
9719ad41 7232 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7233
1049f94e 7234 if (! (info->relocatable
f4416af6
AO
7235 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7236 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7237 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7238
7239 dynobj = elf_hash_table (info)->dynobj;
7240 if (dynobj == NULL)
7241 /* Relocatable links don't have it. */
7242 return TRUE;
143d77c5 7243
f4416af6
AO
7244 g = mips_elf_got_info (dynobj, &s);
7245 if (s == NULL)
b34976b6 7246 return TRUE;
b49e97c9 7247
f4416af6
AO
7248 /* Calculate the total loadable size of the output. That
7249 will give us the maximum number of GOT_PAGE entries
7250 required. */
7251 for (sub = info->input_bfds; sub; sub = sub->link_next)
7252 {
7253 asection *subsection;
7254
7255 for (subsection = sub->sections;
7256 subsection;
7257 subsection = subsection->next)
7258 {
7259 if ((subsection->flags & SEC_ALLOC) == 0)
7260 continue;
eea6121a 7261 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7262 &~ (bfd_size_type) 0xf);
7263 }
7264 }
7265
7266 /* There has to be a global GOT entry for every symbol with
7267 a dynamic symbol table index of DT_MIPS_GOTSYM or
7268 higher. Therefore, it make sense to put those symbols
7269 that need GOT entries at the end of the symbol table. We
7270 do that here. */
7271 if (! mips_elf_sort_hash_table (info, 1))
7272 return FALSE;
7273
7274 if (g->global_gotsym != NULL)
7275 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7276 else
7277 /* If there are no global symbols, or none requiring
7278 relocations, then GLOBAL_GOTSYM will be NULL. */
7279 i = 0;
7280
5108fc1b
RS
7281 /* Get a worst-case estimate of the number of dynamic symbols needed.
7282 At this point, dynsymcount does not account for section symbols
7283 and count_section_dynsyms may overestimate the number that will
7284 be needed. */
7285 dynsymcount = (elf_hash_table (info)->dynsymcount
7286 + count_section_dynsyms (output_bfd, info));
7287
7288 /* Determine the size of one stub entry. */
7289 htab->function_stub_size = (dynsymcount > 0x10000
7290 ? MIPS_FUNCTION_STUB_BIG_SIZE
7291 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7292
f4416af6
AO
7293 /* In the worst case, we'll get one stub per dynamic symbol, plus
7294 one to account for the dummy entry at the end required by IRIX
7295 rld. */
5108fc1b 7296 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7297
0a44bf69
RS
7298 if (htab->is_vxworks)
7299 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7300 relocations against local symbols evaluate to "G", and the EABI does
7301 not include R_MIPS_GOT_PAGE. */
7302 local_gotno = 0;
7303 else
7304 /* Assume there are two loadable segments consisting of contiguous
7305 sections. Is 5 enough? */
7306 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7307
7308 g->local_gotno += local_gotno;
eea6121a 7309 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7310
7311 g->global_gotno = i;
eea6121a 7312 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7313
0f20cc35
DJ
7314 /* We need to calculate tls_gotno for global symbols at this point
7315 instead of building it up earlier, to avoid doublecounting
7316 entries for one global symbol from multiple input files. */
7317 count_tls_arg.info = info;
7318 count_tls_arg.needed = 0;
7319 elf_link_hash_traverse (elf_hash_table (info),
7320 mips_elf_count_global_tls_entries,
7321 &count_tls_arg);
7322 g->tls_gotno += count_tls_arg.needed;
7323 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7324
7325 mips_elf_resolve_final_got_entries (g);
7326
0a44bf69
RS
7327 /* VxWorks does not support multiple GOTs. It initializes $gp to
7328 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7329 dynamic loader. */
7330 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7331 {
7332 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7333 return FALSE;
7334 }
7335 else
7336 {
7337 /* Set up TLS entries for the first GOT. */
7338 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7339 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7340 }
b49e97c9 7341
b34976b6 7342 return TRUE;
b49e97c9
TS
7343}
7344
7345/* Set the sizes of the dynamic sections. */
7346
b34976b6 7347bfd_boolean
9719ad41
RS
7348_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7349 struct bfd_link_info *info)
b49e97c9
TS
7350{
7351 bfd *dynobj;
0a44bf69 7352 asection *s, *sreldyn;
b34976b6 7353 bfd_boolean reltext;
0a44bf69 7354 struct mips_elf_link_hash_table *htab;
b49e97c9 7355
0a44bf69 7356 htab = mips_elf_hash_table (info);
b49e97c9
TS
7357 dynobj = elf_hash_table (info)->dynobj;
7358 BFD_ASSERT (dynobj != NULL);
7359
7360 if (elf_hash_table (info)->dynamic_sections_created)
7361 {
7362 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7363 if (info->executable)
b49e97c9
TS
7364 {
7365 s = bfd_get_section_by_name (dynobj, ".interp");
7366 BFD_ASSERT (s != NULL);
eea6121a 7367 s->size
b49e97c9
TS
7368 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7369 s->contents
7370 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7371 }
7372 }
7373
7374 /* The check_relocs and adjust_dynamic_symbol entry points have
7375 determined the sizes of the various dynamic sections. Allocate
7376 memory for them. */
b34976b6 7377 reltext = FALSE;
0a44bf69 7378 sreldyn = NULL;
b49e97c9
TS
7379 for (s = dynobj->sections; s != NULL; s = s->next)
7380 {
7381 const char *name;
b49e97c9
TS
7382
7383 /* It's OK to base decisions on the section name, because none
7384 of the dynobj section names depend upon the input files. */
7385 name = bfd_get_section_name (dynobj, s);
7386
7387 if ((s->flags & SEC_LINKER_CREATED) == 0)
7388 continue;
7389
0112cd26 7390 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7391 {
c456f082 7392 if (s->size != 0)
b49e97c9
TS
7393 {
7394 const char *outname;
7395 asection *target;
7396
7397 /* If this relocation section applies to a read only
7398 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7399 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7400 assert a DT_TEXTREL entry rather than testing whether
7401 there exists a relocation to a read only section or
7402 not. */
7403 outname = bfd_get_section_name (output_bfd,
7404 s->output_section);
7405 target = bfd_get_section_by_name (output_bfd, outname + 4);
7406 if ((target != NULL
7407 && (target->flags & SEC_READONLY) != 0
7408 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7409 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7410 reltext = TRUE;
b49e97c9
TS
7411
7412 /* We use the reloc_count field as a counter if we need
7413 to copy relocs into the output file. */
0a44bf69 7414 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7415 s->reloc_count = 0;
f4416af6
AO
7416
7417 /* If combreloc is enabled, elf_link_sort_relocs() will
7418 sort relocations, but in a different way than we do,
7419 and before we're done creating relocations. Also, it
7420 will move them around between input sections'
7421 relocation's contents, so our sorting would be
7422 broken, so don't let it run. */
7423 info->combreloc = 0;
b49e97c9
TS
7424 }
7425 }
0a44bf69
RS
7426 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7427 {
7428 /* Executables do not need a GOT. */
7429 if (info->shared)
7430 {
7431 /* Allocate relocations for all but the reserved entries. */
7432 struct mips_got_info *g;
7433 unsigned int count;
7434
7435 g = mips_elf_got_info (dynobj, NULL);
7436 count = (g->global_gotno
7437 + g->local_gotno
7438 - MIPS_RESERVED_GOTNO (info));
7439 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7440 }
7441 }
0112cd26 7442 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7443 {
f4416af6
AO
7444 /* _bfd_mips_elf_always_size_sections() has already done
7445 most of the work, but some symbols may have been mapped
7446 to versions that we must now resolve in the got_entries
7447 hash tables. */
7448 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7449 struct mips_got_info *g = gg;
7450 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7451 unsigned int needed_relocs = 0;
143d77c5 7452
f4416af6 7453 if (gg->next)
b49e97c9 7454 {
f4416af6
AO
7455 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7456 set_got_offset_arg.info = info;
b49e97c9 7457
0f20cc35
DJ
7458 /* NOTE 2005-02-03: How can this call, or the next, ever
7459 find any indirect entries to resolve? They were all
7460 resolved in mips_elf_multi_got. */
f4416af6
AO
7461 mips_elf_resolve_final_got_entries (gg);
7462 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7463 {
f4416af6
AO
7464 unsigned int save_assign;
7465
7466 mips_elf_resolve_final_got_entries (g);
7467
7468 /* Assign offsets to global GOT entries. */
7469 save_assign = g->assigned_gotno;
7470 g->assigned_gotno = g->local_gotno;
7471 set_got_offset_arg.g = g;
7472 set_got_offset_arg.needed_relocs = 0;
7473 htab_traverse (g->got_entries,
7474 mips_elf_set_global_got_offset,
7475 &set_got_offset_arg);
7476 needed_relocs += set_got_offset_arg.needed_relocs;
7477 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7478 <= g->global_gotno);
7479
7480 g->assigned_gotno = save_assign;
7481 if (info->shared)
7482 {
7483 needed_relocs += g->local_gotno - g->assigned_gotno;
7484 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7485 + g->next->global_gotno
0f20cc35 7486 + g->next->tls_gotno
0a44bf69 7487 + MIPS_RESERVED_GOTNO (info));
f4416af6 7488 }
b49e97c9 7489 }
0f20cc35
DJ
7490 }
7491 else
7492 {
7493 struct mips_elf_count_tls_arg arg;
7494 arg.info = info;
7495 arg.needed = 0;
b49e97c9 7496
0f20cc35
DJ
7497 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7498 &arg);
7499 elf_link_hash_traverse (elf_hash_table (info),
7500 mips_elf_count_global_tls_relocs,
7501 &arg);
7502
7503 needed_relocs += arg.needed;
f4416af6 7504 }
0f20cc35
DJ
7505
7506 if (needed_relocs)
0a44bf69
RS
7507 mips_elf_allocate_dynamic_relocations (dynobj, info,
7508 needed_relocs);
b49e97c9
TS
7509 }
7510 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7511 {
8dc1a139 7512 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7513 of .text section. So put a dummy. XXX */
7514 s->size += htab->function_stub_size;
b49e97c9
TS
7515 }
7516 else if (! info->shared
7517 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7518 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7519 {
5108fc1b 7520 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7521 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7522 s->size += 4;
b49e97c9
TS
7523 }
7524 else if (SGI_COMPAT (output_bfd)
0112cd26 7525 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7526 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7527 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7528 && s != htab->sgotplt
7529 && s != htab->splt)
b49e97c9
TS
7530 {
7531 /* It's not one of our sections, so don't allocate space. */
7532 continue;
7533 }
7534
c456f082 7535 if (s->size == 0)
b49e97c9 7536 {
8423293d 7537 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7538 continue;
7539 }
7540
c456f082
AM
7541 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7542 continue;
7543
0a44bf69
RS
7544 /* Allocate memory for this section last, since we may increase its
7545 size above. */
7546 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7547 {
7548 sreldyn = s;
7549 continue;
7550 }
7551
b49e97c9 7552 /* Allocate memory for the section contents. */
eea6121a 7553 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7554 if (s->contents == NULL)
b49e97c9
TS
7555 {
7556 bfd_set_error (bfd_error_no_memory);
b34976b6 7557 return FALSE;
b49e97c9
TS
7558 }
7559 }
7560
0a44bf69
RS
7561 /* Allocate memory for the .rel(a).dyn section. */
7562 if (sreldyn != NULL)
7563 {
7564 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7565 if (sreldyn->contents == NULL)
7566 {
7567 bfd_set_error (bfd_error_no_memory);
7568 return FALSE;
7569 }
7570 }
7571
b49e97c9
TS
7572 if (elf_hash_table (info)->dynamic_sections_created)
7573 {
7574 /* Add some entries to the .dynamic section. We fill in the
7575 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7576 must add the entries now so that we get the correct size for
7577 the .dynamic section. The DT_DEBUG entry is filled in by the
7578 dynamic linker and used by the debugger. */
6a483765 7579 if (info->executable)
b49e97c9
TS
7580 {
7581 /* SGI object has the equivalence of DT_DEBUG in the
7582 DT_MIPS_RLD_MAP entry. */
7583 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 7584 return FALSE;
b49e97c9
TS
7585 if (!SGI_COMPAT (output_bfd))
7586 {
7587 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7588 return FALSE;
b49e97c9
TS
7589 }
7590 }
b49e97c9 7591
0a44bf69 7592 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7593 info->flags |= DF_TEXTREL;
7594
7595 if ((info->flags & DF_TEXTREL) != 0)
7596 {
7597 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7598 return FALSE;
943284cc
DJ
7599
7600 /* Clear the DF_TEXTREL flag. It will be set again if we
7601 write out an actual text relocation; we may not, because
7602 at this point we do not know whether e.g. any .eh_frame
7603 absolute relocations have been converted to PC-relative. */
7604 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7605 }
7606
7607 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7608 return FALSE;
b49e97c9 7609
0a44bf69 7610 if (htab->is_vxworks)
b49e97c9 7611 {
0a44bf69
RS
7612 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7613 use any of the DT_MIPS_* tags. */
7614 if (mips_elf_rel_dyn_section (info, FALSE))
7615 {
7616 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7617 return FALSE;
b49e97c9 7618
0a44bf69
RS
7619 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7620 return FALSE;
b49e97c9 7621
0a44bf69
RS
7622 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7623 return FALSE;
7624 }
7625 if (htab->splt->size > 0)
7626 {
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7628 return FALSE;
7629
7630 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7631 return FALSE;
7632
7633 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7634 return FALSE;
7635 }
b49e97c9 7636 }
0a44bf69
RS
7637 else
7638 {
7639 if (mips_elf_rel_dyn_section (info, FALSE))
7640 {
7641 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7642 return FALSE;
b49e97c9 7643
0a44bf69
RS
7644 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7645 return FALSE;
b49e97c9 7646
0a44bf69
RS
7647 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7648 return FALSE;
7649 }
b49e97c9 7650
0a44bf69
RS
7651 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7652 return FALSE;
b49e97c9 7653
0a44bf69
RS
7654 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7655 return FALSE;
b49e97c9 7656
0a44bf69
RS
7657 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7658 return FALSE;
b49e97c9 7659
0a44bf69
RS
7660 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7661 return FALSE;
b49e97c9 7662
0a44bf69
RS
7663 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7664 return FALSE;
b49e97c9 7665
0a44bf69
RS
7666 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7667 return FALSE;
b49e97c9 7668
0a44bf69
RS
7669 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7670 return FALSE;
7671
7672 if (IRIX_COMPAT (dynobj) == ict_irix5
7673 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7674 return FALSE;
7675
7676 if (IRIX_COMPAT (dynobj) == ict_irix6
7677 && (bfd_get_section_by_name
7678 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7679 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7680 return FALSE;
7681 }
b49e97c9
TS
7682 }
7683
b34976b6 7684 return TRUE;
b49e97c9
TS
7685}
7686\f
81d43bff
RS
7687/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7688 Adjust its R_ADDEND field so that it is correct for the output file.
7689 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7690 and sections respectively; both use symbol indexes. */
7691
7692static void
7693mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7694 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7695 asection **local_sections, Elf_Internal_Rela *rel)
7696{
7697 unsigned int r_type, r_symndx;
7698 Elf_Internal_Sym *sym;
7699 asection *sec;
7700
7701 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7702 {
7703 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7704 if (r_type == R_MIPS16_GPREL
7705 || r_type == R_MIPS_GPREL16
7706 || r_type == R_MIPS_GPREL32
7707 || r_type == R_MIPS_LITERAL)
7708 {
7709 rel->r_addend += _bfd_get_gp_value (input_bfd);
7710 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7711 }
7712
7713 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7714 sym = local_syms + r_symndx;
7715
7716 /* Adjust REL's addend to account for section merging. */
7717 if (!info->relocatable)
7718 {
7719 sec = local_sections[r_symndx];
7720 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7721 }
7722
7723 /* This would normally be done by the rela_normal code in elflink.c. */
7724 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7725 rel->r_addend += local_sections[r_symndx]->output_offset;
7726 }
7727}
7728
b49e97c9
TS
7729/* Relocate a MIPS ELF section. */
7730
b34976b6 7731bfd_boolean
9719ad41
RS
7732_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7733 bfd *input_bfd, asection *input_section,
7734 bfd_byte *contents, Elf_Internal_Rela *relocs,
7735 Elf_Internal_Sym *local_syms,
7736 asection **local_sections)
b49e97c9
TS
7737{
7738 Elf_Internal_Rela *rel;
7739 const Elf_Internal_Rela *relend;
7740 bfd_vma addend = 0;
b34976b6 7741 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7742 const struct elf_backend_data *bed;
b49e97c9
TS
7743
7744 bed = get_elf_backend_data (output_bfd);
7745 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7746 for (rel = relocs; rel < relend; ++rel)
7747 {
7748 const char *name;
c9adbffe 7749 bfd_vma value = 0;
b49e97c9 7750 reloc_howto_type *howto;
b34976b6
AM
7751 bfd_boolean require_jalx;
7752 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7753 REL relocation. */
b34976b6 7754 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7755 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7756 const char *msg;
ab96bf03
AM
7757 unsigned long r_symndx;
7758 asection *sec;
b49e97c9
TS
7759
7760 /* Find the relocation howto for this relocation. */
ab96bf03
AM
7761 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7762 NEWABI_P (input_bfd)
7763 && (MIPS_RELOC_RELA_P
7764 (input_bfd, input_section,
7765 rel - relocs)));
7766
7767 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7768 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7769 sec = local_sections[r_symndx];
7770 else
7771 {
7772 Elf_Internal_Shdr *symtab_hdr;
7773 unsigned long extsymoff;
7774 struct elf_link_hash_entry *h;
7775
7776 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7777 extsymoff = 0;
7778 if (!elf_bad_symtab (input_bfd))
7779 extsymoff = symtab_hdr->sh_info;
7780 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7781 while (h->root.type == bfd_link_hash_indirect
7782 || h->root.type == bfd_link_hash_warning)
7783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7784
7785 sec = NULL;
7786 if (h->root.type == bfd_link_hash_defined
7787 || h->root.type == bfd_link_hash_defweak)
7788 sec = h->root.u.def.section;
7789 }
7790
7791 if (sec != NULL && elf_discarded_section (sec))
7792 {
7793 /* For relocs against symbols from removed linkonce sections,
7794 or sections discarded by a linker script, we just want the
7795 section contents zeroed. Avoid any special processing. */
7796 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7797 rel->r_info = 0;
7798 rel->r_addend = 0;
7799 continue;
7800 }
7801
4a14403c 7802 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7803 {
7804 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7805 64-bit code, but make sure all their addresses are in the
7806 lowermost or uppermost 32-bit section of the 64-bit address
7807 space. Thus, when they use an R_MIPS_64 they mean what is
7808 usually meant by R_MIPS_32, with the exception that the
7809 stored value is sign-extended to 64 bits. */
b34976b6 7810 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7811
7812 /* On big-endian systems, we need to lie about the position
7813 of the reloc. */
7814 if (bfd_big_endian (input_bfd))
7815 rel->r_offset += 4;
7816 }
b49e97c9
TS
7817
7818 if (!use_saved_addend_p)
7819 {
7820 Elf_Internal_Shdr *rel_hdr;
7821
7822 /* If these relocations were originally of the REL variety,
7823 we must pull the addend out of the field that will be
7824 relocated. Otherwise, we simply use the contents of the
7825 RELA relocation. To determine which flavor or relocation
7826 this is, we depend on the fact that the INPUT_SECTION's
7827 REL_HDR is read before its REL_HDR2. */
7828 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7829 if ((size_t) (rel - relocs)
7830 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7831 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7832 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7833 {
d6f16593
MR
7834 bfd_byte *location = contents + rel->r_offset;
7835
b49e97c9 7836 /* Note that this is a REL relocation. */
b34976b6 7837 rela_relocation_p = FALSE;
b49e97c9
TS
7838
7839 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7840 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7841 location);
b49e97c9
TS
7842 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7843 contents);
d6f16593
MR
7844 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7845 location);
7846
b49e97c9
TS
7847 addend &= howto->src_mask;
7848
7849 /* For some kinds of relocations, the ADDEND is a
7850 combination of the addend stored in two different
7851 relocations. */
d6f16593 7852 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7853 || (r_type == R_MIPS_GOT16
7854 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7855 local_sections, FALSE)))
b49e97c9
TS
7856 {
7857 bfd_vma l;
7858 const Elf_Internal_Rela *lo16_relocation;
7859 reloc_howto_type *lo16_howto;
d6f16593
MR
7860 bfd_byte *lo16_location;
7861 int lo16_type;
7862
7863 if (r_type == R_MIPS16_HI16)
7864 lo16_type = R_MIPS16_LO16;
7865 else
7866 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7867
7868 /* The combined value is the sum of the HI16 addend,
7869 left-shifted by sixteen bits, and the LO16
7870 addend, sign extended. (Usually, the code does
7871 a `lui' of the HI16 value, and then an `addiu' of
7872 the LO16 value.)
7873
4030e8f6
CD
7874 Scan ahead to find a matching LO16 relocation.
7875
7876 According to the MIPS ELF ABI, the R_MIPS_LO16
7877 relocation must be immediately following.
7878 However, for the IRIX6 ABI, the next relocation
7879 may be a composed relocation consisting of
7880 several relocations for the same address. In
7881 that case, the R_MIPS_LO16 relocation may occur
7882 as one of these. We permit a similar extension
7883 in general, as that is useful for GCC. */
7884 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7885 lo16_type,
b49e97c9
TS
7886 rel, relend);
7887 if (lo16_relocation == NULL)
b34976b6 7888 return FALSE;
b49e97c9 7889
d6f16593
MR
7890 lo16_location = contents + lo16_relocation->r_offset;
7891
b49e97c9 7892 /* Obtain the addend kept there. */
4030e8f6 7893 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7894 lo16_type, FALSE);
7895 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7896 lo16_location);
b49e97c9
TS
7897 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7898 input_bfd, contents);
d6f16593
MR
7899 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7900 lo16_location);
b49e97c9 7901 l &= lo16_howto->src_mask;
5a659663 7902 l <<= lo16_howto->rightshift;
a7ebbfdf 7903 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7904
7905 addend <<= 16;
7906
7907 /* Compute the combined addend. */
7908 addend += l;
b49e97c9 7909 }
30ac9238
RS
7910 else
7911 addend <<= howto->rightshift;
b49e97c9
TS
7912 }
7913 else
7914 addend = rel->r_addend;
81d43bff
RS
7915 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7916 local_syms, local_sections, rel);
b49e97c9
TS
7917 }
7918
1049f94e 7919 if (info->relocatable)
b49e97c9 7920 {
4a14403c 7921 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7922 && bfd_big_endian (input_bfd))
7923 rel->r_offset -= 4;
7924
81d43bff 7925 if (!rela_relocation_p && rel->r_addend)
5a659663 7926 {
81d43bff 7927 addend += rel->r_addend;
30ac9238 7928 if (r_type == R_MIPS_HI16
4030e8f6 7929 || r_type == R_MIPS_GOT16)
5a659663
TS
7930 addend = mips_elf_high (addend);
7931 else if (r_type == R_MIPS_HIGHER)
7932 addend = mips_elf_higher (addend);
7933 else if (r_type == R_MIPS_HIGHEST)
7934 addend = mips_elf_highest (addend);
30ac9238
RS
7935 else
7936 addend >>= howto->rightshift;
b49e97c9 7937
30ac9238
RS
7938 /* We use the source mask, rather than the destination
7939 mask because the place to which we are writing will be
7940 source of the addend in the final link. */
b49e97c9
TS
7941 addend &= howto->src_mask;
7942
5a659663 7943 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7944 /* See the comment above about using R_MIPS_64 in the 32-bit
7945 ABI. Here, we need to update the addend. It would be
7946 possible to get away with just using the R_MIPS_32 reloc
7947 but for endianness. */
7948 {
7949 bfd_vma sign_bits;
7950 bfd_vma low_bits;
7951 bfd_vma high_bits;
7952
7953 if (addend & ((bfd_vma) 1 << 31))
7954#ifdef BFD64
7955 sign_bits = ((bfd_vma) 1 << 32) - 1;
7956#else
7957 sign_bits = -1;
7958#endif
7959 else
7960 sign_bits = 0;
7961
7962 /* If we don't know that we have a 64-bit type,
7963 do two separate stores. */
7964 if (bfd_big_endian (input_bfd))
7965 {
7966 /* Store the sign-bits (which are most significant)
7967 first. */
7968 low_bits = sign_bits;
7969 high_bits = addend;
7970 }
7971 else
7972 {
7973 low_bits = addend;
7974 high_bits = sign_bits;
7975 }
7976 bfd_put_32 (input_bfd, low_bits,
7977 contents + rel->r_offset);
7978 bfd_put_32 (input_bfd, high_bits,
7979 contents + rel->r_offset + 4);
7980 continue;
7981 }
7982
7983 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7984 input_bfd, input_section,
b34976b6
AM
7985 contents, FALSE))
7986 return FALSE;
b49e97c9
TS
7987 }
7988
7989 /* Go on to the next relocation. */
7990 continue;
7991 }
7992
7993 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7994 relocations for the same offset. In that case we are
7995 supposed to treat the output of each relocation as the addend
7996 for the next. */
7997 if (rel + 1 < relend
7998 && rel->r_offset == rel[1].r_offset
7999 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 8000 use_saved_addend_p = TRUE;
b49e97c9 8001 else
b34976b6 8002 use_saved_addend_p = FALSE;
b49e97c9
TS
8003
8004 /* Figure out what value we are supposed to relocate. */
8005 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8006 input_section, info, rel,
8007 addend, howto, local_syms,
8008 local_sections, &value,
bce03d3d
AO
8009 &name, &require_jalx,
8010 use_saved_addend_p))
b49e97c9
TS
8011 {
8012 case bfd_reloc_continue:
8013 /* There's nothing to do. */
8014 continue;
8015
8016 case bfd_reloc_undefined:
8017 /* mips_elf_calculate_relocation already called the
8018 undefined_symbol callback. There's no real point in
8019 trying to perform the relocation at this point, so we
8020 just skip ahead to the next relocation. */
8021 continue;
8022
8023 case bfd_reloc_notsupported:
8024 msg = _("internal error: unsupported relocation error");
8025 info->callbacks->warning
8026 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8027 return FALSE;
b49e97c9
TS
8028
8029 case bfd_reloc_overflow:
8030 if (use_saved_addend_p)
8031 /* Ignore overflow until we reach the last relocation for
8032 a given location. */
8033 ;
8034 else
8035 {
8036 BFD_ASSERT (name != NULL);
8037 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8038 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8039 input_bfd, input_section, rel->r_offset)))
b34976b6 8040 return FALSE;
b49e97c9
TS
8041 }
8042 break;
8043
8044 case bfd_reloc_ok:
8045 break;
8046
8047 default:
8048 abort ();
8049 break;
8050 }
8051
8052 /* If we've got another relocation for the address, keep going
8053 until we reach the last one. */
8054 if (use_saved_addend_p)
8055 {
8056 addend = value;
8057 continue;
8058 }
8059
4a14403c 8060 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8061 /* See the comment above about using R_MIPS_64 in the 32-bit
8062 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8063 that calculated the right value. Now, however, we
8064 sign-extend the 32-bit result to 64-bits, and store it as a
8065 64-bit value. We are especially generous here in that we
8066 go to extreme lengths to support this usage on systems with
8067 only a 32-bit VMA. */
8068 {
8069 bfd_vma sign_bits;
8070 bfd_vma low_bits;
8071 bfd_vma high_bits;
8072
8073 if (value & ((bfd_vma) 1 << 31))
8074#ifdef BFD64
8075 sign_bits = ((bfd_vma) 1 << 32) - 1;
8076#else
8077 sign_bits = -1;
8078#endif
8079 else
8080 sign_bits = 0;
8081
8082 /* If we don't know that we have a 64-bit type,
8083 do two separate stores. */
8084 if (bfd_big_endian (input_bfd))
8085 {
8086 /* Undo what we did above. */
8087 rel->r_offset -= 4;
8088 /* Store the sign-bits (which are most significant)
8089 first. */
8090 low_bits = sign_bits;
8091 high_bits = value;
8092 }
8093 else
8094 {
8095 low_bits = value;
8096 high_bits = sign_bits;
8097 }
8098 bfd_put_32 (input_bfd, low_bits,
8099 contents + rel->r_offset);
8100 bfd_put_32 (input_bfd, high_bits,
8101 contents + rel->r_offset + 4);
8102 continue;
8103 }
8104
8105 /* Actually perform the relocation. */
8106 if (! mips_elf_perform_relocation (info, howto, rel, value,
8107 input_bfd, input_section,
8108 contents, require_jalx))
b34976b6 8109 return FALSE;
b49e97c9
TS
8110 }
8111
b34976b6 8112 return TRUE;
b49e97c9
TS
8113}
8114\f
8115/* If NAME is one of the special IRIX6 symbols defined by the linker,
8116 adjust it appropriately now. */
8117
8118static void
9719ad41
RS
8119mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8120 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8121{
8122 /* The linker script takes care of providing names and values for
8123 these, but we must place them into the right sections. */
8124 static const char* const text_section_symbols[] = {
8125 "_ftext",
8126 "_etext",
8127 "__dso_displacement",
8128 "__elf_header",
8129 "__program_header_table",
8130 NULL
8131 };
8132
8133 static const char* const data_section_symbols[] = {
8134 "_fdata",
8135 "_edata",
8136 "_end",
8137 "_fbss",
8138 NULL
8139 };
8140
8141 const char* const *p;
8142 int i;
8143
8144 for (i = 0; i < 2; ++i)
8145 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8146 *p;
8147 ++p)
8148 if (strcmp (*p, name) == 0)
8149 {
8150 /* All of these symbols are given type STT_SECTION by the
8151 IRIX6 linker. */
8152 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8153 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8154
8155 /* The IRIX linker puts these symbols in special sections. */
8156 if (i == 0)
8157 sym->st_shndx = SHN_MIPS_TEXT;
8158 else
8159 sym->st_shndx = SHN_MIPS_DATA;
8160
8161 break;
8162 }
8163}
8164
8165/* Finish up dynamic symbol handling. We set the contents of various
8166 dynamic sections here. */
8167
b34976b6 8168bfd_boolean
9719ad41
RS
8169_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8170 struct bfd_link_info *info,
8171 struct elf_link_hash_entry *h,
8172 Elf_Internal_Sym *sym)
b49e97c9
TS
8173{
8174 bfd *dynobj;
b49e97c9 8175 asection *sgot;
f4416af6 8176 struct mips_got_info *g, *gg;
b49e97c9 8177 const char *name;
3d6746ca 8178 int idx;
5108fc1b 8179 struct mips_elf_link_hash_table *htab;
b49e97c9 8180
5108fc1b 8181 htab = mips_elf_hash_table (info);
b49e97c9 8182 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8183
c5ae1840 8184 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8185 {
8186 asection *s;
5108fc1b 8187 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8188
8189 /* This symbol has a stub. Set it up. */
8190
8191 BFD_ASSERT (h->dynindx != -1);
8192
8193 s = bfd_get_section_by_name (dynobj,
8194 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8195 BFD_ASSERT (s != NULL);
8196
5108fc1b
RS
8197 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8198 || (h->dynindx <= 0xffff));
3d6746ca
DD
8199
8200 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8201 sign extension at runtime in the stub, resulting in a negative
8202 index value. */
8203 if (h->dynindx & ~0x7fffffff)
b34976b6 8204 return FALSE;
b49e97c9
TS
8205
8206 /* Fill the stub. */
3d6746ca
DD
8207 idx = 0;
8208 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8209 idx += 4;
8210 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8211 idx += 4;
5108fc1b 8212 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8213 {
5108fc1b 8214 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8215 stub + idx);
8216 idx += 4;
8217 }
8218 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8219 idx += 4;
b49e97c9 8220
3d6746ca
DD
8221 /* If a large stub is not required and sign extension is not a
8222 problem, then use legacy code in the stub. */
5108fc1b
RS
8223 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8224 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8225 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8226 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8227 else
5108fc1b
RS
8228 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8229 stub + idx);
8230
eea6121a 8231 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8232 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8233
8234 /* Mark the symbol as undefined. plt.offset != -1 occurs
8235 only for the referenced symbol. */
8236 sym->st_shndx = SHN_UNDEF;
8237
8238 /* The run-time linker uses the st_value field of the symbol
8239 to reset the global offset table entry for this external
8240 to its stub address when unlinking a shared object. */
c5ae1840
TS
8241 sym->st_value = (s->output_section->vma + s->output_offset
8242 + h->plt.offset);
b49e97c9
TS
8243 }
8244
8245 BFD_ASSERT (h->dynindx != -1
f5385ebf 8246 || h->forced_local);
b49e97c9 8247
f4416af6 8248 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8249 BFD_ASSERT (sgot != NULL);
f4416af6 8250 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8251 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8252 BFD_ASSERT (g != NULL);
8253
8254 /* Run through the global symbol table, creating GOT entries for all
8255 the symbols that need them. */
8256 if (g->global_gotsym != NULL
8257 && h->dynindx >= g->global_gotsym->dynindx)
8258 {
8259 bfd_vma offset;
8260 bfd_vma value;
8261
6eaa6adc 8262 value = sym->st_value;
0f20cc35 8263 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8264 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8265 }
8266
0f20cc35 8267 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8268 {
8269 struct mips_got_entry e, *p;
0626d451 8270 bfd_vma entry;
f4416af6 8271 bfd_vma offset;
f4416af6
AO
8272
8273 gg = g;
8274
8275 e.abfd = output_bfd;
8276 e.symndx = -1;
8277 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8278 e.tls_type = 0;
143d77c5 8279
f4416af6
AO
8280 for (g = g->next; g->next != gg; g = g->next)
8281 {
8282 if (g->got_entries
8283 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8284 &e)))
8285 {
8286 offset = p->gotidx;
0626d451
RS
8287 if (info->shared
8288 || (elf_hash_table (info)->dynamic_sections_created
8289 && p->d.h != NULL
f5385ebf
AM
8290 && p->d.h->root.def_dynamic
8291 && !p->d.h->root.def_regular))
0626d451
RS
8292 {
8293 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8294 the various compatibility problems, it's easier to mock
8295 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8296 mips_elf_create_dynamic_relocation to calculate the
8297 appropriate addend. */
8298 Elf_Internal_Rela rel[3];
8299
8300 memset (rel, 0, sizeof (rel));
8301 if (ABI_64_P (output_bfd))
8302 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8303 else
8304 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8305 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8306
8307 entry = 0;
8308 if (! (mips_elf_create_dynamic_relocation
8309 (output_bfd, info, rel,
8310 e.d.h, NULL, sym->st_value, &entry, sgot)))
8311 return FALSE;
8312 }
8313 else
8314 entry = sym->st_value;
8315 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8316 }
8317 }
8318 }
8319
b49e97c9
TS
8320 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8321 name = h->root.root.string;
8322 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8323 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8324 sym->st_shndx = SHN_ABS;
8325 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8326 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8327 {
8328 sym->st_shndx = SHN_ABS;
8329 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8330 sym->st_value = 1;
8331 }
4a14403c 8332 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8333 {
8334 sym->st_shndx = SHN_ABS;
8335 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8336 sym->st_value = elf_gp (output_bfd);
8337 }
8338 else if (SGI_COMPAT (output_bfd))
8339 {
8340 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8341 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8342 {
8343 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8344 sym->st_other = STO_PROTECTED;
8345 sym->st_value = 0;
8346 sym->st_shndx = SHN_MIPS_DATA;
8347 }
8348 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8349 {
8350 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8351 sym->st_other = STO_PROTECTED;
8352 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8353 sym->st_shndx = SHN_ABS;
8354 }
8355 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8356 {
8357 if (h->type == STT_FUNC)
8358 sym->st_shndx = SHN_MIPS_TEXT;
8359 else if (h->type == STT_OBJECT)
8360 sym->st_shndx = SHN_MIPS_DATA;
8361 }
8362 }
8363
8364 /* Handle the IRIX6-specific symbols. */
8365 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8366 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8367
8368 if (! info->shared)
8369 {
8370 if (! mips_elf_hash_table (info)->use_rld_obj_head
8371 && (strcmp (name, "__rld_map") == 0
8372 || strcmp (name, "__RLD_MAP") == 0))
8373 {
8374 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8375 BFD_ASSERT (s != NULL);
8376 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8377 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8378 if (mips_elf_hash_table (info)->rld_value == 0)
8379 mips_elf_hash_table (info)->rld_value = sym->st_value;
8380 }
8381 else if (mips_elf_hash_table (info)->use_rld_obj_head
8382 && strcmp (name, "__rld_obj_head") == 0)
8383 {
8384 /* IRIX6 does not use a .rld_map section. */
8385 if (IRIX_COMPAT (output_bfd) == ict_irix5
8386 || IRIX_COMPAT (output_bfd) == ict_none)
8387 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8388 != NULL);
8389 mips_elf_hash_table (info)->rld_value = sym->st_value;
8390 }
8391 }
8392
8393 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8394 if (sym->st_other == STO_MIPS16)
8395 sym->st_value &= ~1;
b49e97c9 8396
b34976b6 8397 return TRUE;
b49e97c9
TS
8398}
8399
0a44bf69
RS
8400/* Likewise, for VxWorks. */
8401
8402bfd_boolean
8403_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8404 struct bfd_link_info *info,
8405 struct elf_link_hash_entry *h,
8406 Elf_Internal_Sym *sym)
8407{
8408 bfd *dynobj;
8409 asection *sgot;
8410 struct mips_got_info *g;
8411 struct mips_elf_link_hash_table *htab;
8412
8413 htab = mips_elf_hash_table (info);
8414 dynobj = elf_hash_table (info)->dynobj;
8415
8416 if (h->plt.offset != (bfd_vma) -1)
8417 {
6d79d2ed 8418 bfd_byte *loc;
0a44bf69
RS
8419 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8420 Elf_Internal_Rela rel;
8421 static const bfd_vma *plt_entry;
8422
8423 BFD_ASSERT (h->dynindx != -1);
8424 BFD_ASSERT (htab->splt != NULL);
8425 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8426
8427 /* Calculate the address of the .plt entry. */
8428 plt_address = (htab->splt->output_section->vma
8429 + htab->splt->output_offset
8430 + h->plt.offset);
8431
8432 /* Calculate the index of the entry. */
8433 plt_index = ((h->plt.offset - htab->plt_header_size)
8434 / htab->plt_entry_size);
8435
8436 /* Calculate the address of the .got.plt entry. */
8437 got_address = (htab->sgotplt->output_section->vma
8438 + htab->sgotplt->output_offset
8439 + plt_index * 4);
8440
8441 /* Calculate the offset of the .got.plt entry from
8442 _GLOBAL_OFFSET_TABLE_. */
8443 got_offset = mips_elf_gotplt_index (info, h);
8444
8445 /* Calculate the offset for the branch at the start of the PLT
8446 entry. The branch jumps to the beginning of .plt. */
8447 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8448
8449 /* Fill in the initial value of the .got.plt entry. */
8450 bfd_put_32 (output_bfd, plt_address,
8451 htab->sgotplt->contents + plt_index * 4);
8452
8453 /* Find out where the .plt entry should go. */
8454 loc = htab->splt->contents + h->plt.offset;
8455
8456 if (info->shared)
8457 {
8458 plt_entry = mips_vxworks_shared_plt_entry;
8459 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8460 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8461 }
8462 else
8463 {
8464 bfd_vma got_address_high, got_address_low;
8465
8466 plt_entry = mips_vxworks_exec_plt_entry;
8467 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8468 got_address_low = got_address & 0xffff;
8469
8470 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8471 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8472 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8473 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8474 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8475 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8476 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8477 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8478
8479 loc = (htab->srelplt2->contents
8480 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8481
8482 /* Emit a relocation for the .got.plt entry. */
8483 rel.r_offset = got_address;
8484 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8485 rel.r_addend = h->plt.offset;
8486 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8487
8488 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8489 loc += sizeof (Elf32_External_Rela);
8490 rel.r_offset = plt_address + 8;
8491 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8492 rel.r_addend = got_offset;
8493 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8494
8495 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8496 loc += sizeof (Elf32_External_Rela);
8497 rel.r_offset += 4;
8498 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8499 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8500 }
8501
8502 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8503 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8504 rel.r_offset = got_address;
8505 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8506 rel.r_addend = 0;
8507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8508
8509 if (!h->def_regular)
8510 sym->st_shndx = SHN_UNDEF;
8511 }
8512
8513 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8514
8515 sgot = mips_elf_got_section (dynobj, FALSE);
8516 BFD_ASSERT (sgot != NULL);
8517 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8518 g = mips_elf_section_data (sgot)->u.got_info;
8519 BFD_ASSERT (g != NULL);
8520
8521 /* See if this symbol has an entry in the GOT. */
8522 if (g->global_gotsym != NULL
8523 && h->dynindx >= g->global_gotsym->dynindx)
8524 {
8525 bfd_vma offset;
8526 Elf_Internal_Rela outrel;
8527 bfd_byte *loc;
8528 asection *s;
8529
8530 /* Install the symbol value in the GOT. */
8531 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8532 R_MIPS_GOT16, info);
8533 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8534
8535 /* Add a dynamic relocation for it. */
8536 s = mips_elf_rel_dyn_section (info, FALSE);
8537 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8538 outrel.r_offset = (sgot->output_section->vma
8539 + sgot->output_offset
8540 + offset);
8541 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8542 outrel.r_addend = 0;
8543 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8544 }
8545
8546 /* Emit a copy reloc, if needed. */
8547 if (h->needs_copy)
8548 {
8549 Elf_Internal_Rela rel;
8550
8551 BFD_ASSERT (h->dynindx != -1);
8552
8553 rel.r_offset = (h->root.u.def.section->output_section->vma
8554 + h->root.u.def.section->output_offset
8555 + h->root.u.def.value);
8556 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8557 rel.r_addend = 0;
8558 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8559 htab->srelbss->contents
8560 + (htab->srelbss->reloc_count
8561 * sizeof (Elf32_External_Rela)));
8562 ++htab->srelbss->reloc_count;
8563 }
8564
8565 /* If this is a mips16 symbol, force the value to be even. */
8566 if (sym->st_other == STO_MIPS16)
8567 sym->st_value &= ~1;
8568
8569 return TRUE;
8570}
8571
8572/* Install the PLT header for a VxWorks executable and finalize the
8573 contents of .rela.plt.unloaded. */
8574
8575static void
8576mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8577{
8578 Elf_Internal_Rela rela;
8579 bfd_byte *loc;
8580 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8581 static const bfd_vma *plt_entry;
8582 struct mips_elf_link_hash_table *htab;
8583
8584 htab = mips_elf_hash_table (info);
8585 plt_entry = mips_vxworks_exec_plt0_entry;
8586
8587 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8588 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8589 + htab->root.hgot->root.u.def.section->output_offset
8590 + htab->root.hgot->root.u.def.value);
8591
8592 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8593 got_value_low = got_value & 0xffff;
8594
8595 /* Calculate the address of the PLT header. */
8596 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8597
8598 /* Install the PLT header. */
8599 loc = htab->splt->contents;
8600 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8601 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8602 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8603 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8604 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8605 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8606
8607 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8608 loc = htab->srelplt2->contents;
8609 rela.r_offset = plt_address;
8610 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8611 rela.r_addend = 0;
8612 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8613 loc += sizeof (Elf32_External_Rela);
8614
8615 /* Output the relocation for the following addiu of
8616 %lo(_GLOBAL_OFFSET_TABLE_). */
8617 rela.r_offset += 4;
8618 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8619 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8620 loc += sizeof (Elf32_External_Rela);
8621
8622 /* Fix up the remaining relocations. They may have the wrong
8623 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8624 in which symbols were output. */
8625 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8626 {
8627 Elf_Internal_Rela rel;
8628
8629 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8630 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8631 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8632 loc += sizeof (Elf32_External_Rela);
8633
8634 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8635 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8636 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8637 loc += sizeof (Elf32_External_Rela);
8638
8639 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8640 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8641 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8642 loc += sizeof (Elf32_External_Rela);
8643 }
8644}
8645
8646/* Install the PLT header for a VxWorks shared library. */
8647
8648static void
8649mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8650{
8651 unsigned int i;
8652 struct mips_elf_link_hash_table *htab;
8653
8654 htab = mips_elf_hash_table (info);
8655
8656 /* We just need to copy the entry byte-by-byte. */
8657 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8658 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8659 htab->splt->contents + i * 4);
8660}
8661
b49e97c9
TS
8662/* Finish up the dynamic sections. */
8663
b34976b6 8664bfd_boolean
9719ad41
RS
8665_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8666 struct bfd_link_info *info)
b49e97c9
TS
8667{
8668 bfd *dynobj;
8669 asection *sdyn;
8670 asection *sgot;
f4416af6 8671 struct mips_got_info *gg, *g;
0a44bf69 8672 struct mips_elf_link_hash_table *htab;
b49e97c9 8673
0a44bf69 8674 htab = mips_elf_hash_table (info);
b49e97c9
TS
8675 dynobj = elf_hash_table (info)->dynobj;
8676
8677 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8678
f4416af6 8679 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8680 if (sgot == NULL)
f4416af6 8681 gg = g = NULL;
b49e97c9
TS
8682 else
8683 {
f4416af6
AO
8684 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8685 gg = mips_elf_section_data (sgot)->u.got_info;
8686 BFD_ASSERT (gg != NULL);
8687 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8688 BFD_ASSERT (g != NULL);
8689 }
8690
8691 if (elf_hash_table (info)->dynamic_sections_created)
8692 {
8693 bfd_byte *b;
943284cc 8694 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8695
8696 BFD_ASSERT (sdyn != NULL);
8697 BFD_ASSERT (g != NULL);
8698
8699 for (b = sdyn->contents;
eea6121a 8700 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8701 b += MIPS_ELF_DYN_SIZE (dynobj))
8702 {
8703 Elf_Internal_Dyn dyn;
8704 const char *name;
8705 size_t elemsize;
8706 asection *s;
b34976b6 8707 bfd_boolean swap_out_p;
b49e97c9
TS
8708
8709 /* Read in the current dynamic entry. */
8710 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8711
8712 /* Assume that we're going to modify it and write it out. */
b34976b6 8713 swap_out_p = TRUE;
b49e97c9
TS
8714
8715 switch (dyn.d_tag)
8716 {
8717 case DT_RELENT:
b49e97c9
TS
8718 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8719 break;
8720
0a44bf69
RS
8721 case DT_RELAENT:
8722 BFD_ASSERT (htab->is_vxworks);
8723 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8724 break;
8725
b49e97c9
TS
8726 case DT_STRSZ:
8727 /* Rewrite DT_STRSZ. */
8728 dyn.d_un.d_val =
8729 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8730 break;
8731
8732 case DT_PLTGOT:
8733 name = ".got";
0a44bf69
RS
8734 if (htab->is_vxworks)
8735 {
8736 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8737 of the ".got" section in DYNOBJ. */
8738 s = bfd_get_section_by_name (dynobj, name);
8739 BFD_ASSERT (s != NULL);
8740 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8741 }
8742 else
8743 {
8744 s = bfd_get_section_by_name (output_bfd, name);
8745 BFD_ASSERT (s != NULL);
8746 dyn.d_un.d_ptr = s->vma;
8747 }
b49e97c9
TS
8748 break;
8749
8750 case DT_MIPS_RLD_VERSION:
8751 dyn.d_un.d_val = 1; /* XXX */
8752 break;
8753
8754 case DT_MIPS_FLAGS:
8755 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8756 break;
8757
b49e97c9 8758 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8759 {
8760 time_t t;
8761 time (&t);
8762 dyn.d_un.d_val = t;
8763 }
b49e97c9
TS
8764 break;
8765
8766 case DT_MIPS_ICHECKSUM:
8767 /* XXX FIXME: */
b34976b6 8768 swap_out_p = FALSE;
b49e97c9
TS
8769 break;
8770
8771 case DT_MIPS_IVERSION:
8772 /* XXX FIXME: */
b34976b6 8773 swap_out_p = FALSE;
b49e97c9
TS
8774 break;
8775
8776 case DT_MIPS_BASE_ADDRESS:
8777 s = output_bfd->sections;
8778 BFD_ASSERT (s != NULL);
8779 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8780 break;
8781
8782 case DT_MIPS_LOCAL_GOTNO:
8783 dyn.d_un.d_val = g->local_gotno;
8784 break;
8785
8786 case DT_MIPS_UNREFEXTNO:
8787 /* The index into the dynamic symbol table which is the
8788 entry of the first external symbol that is not
8789 referenced within the same object. */
8790 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8791 break;
8792
8793 case DT_MIPS_GOTSYM:
f4416af6 8794 if (gg->global_gotsym)
b49e97c9 8795 {
f4416af6 8796 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8797 break;
8798 }
8799 /* In case if we don't have global got symbols we default
8800 to setting DT_MIPS_GOTSYM to the same value as
8801 DT_MIPS_SYMTABNO, so we just fall through. */
8802
8803 case DT_MIPS_SYMTABNO:
8804 name = ".dynsym";
8805 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8806 s = bfd_get_section_by_name (output_bfd, name);
8807 BFD_ASSERT (s != NULL);
8808
eea6121a 8809 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8810 break;
8811
8812 case DT_MIPS_HIPAGENO:
0a44bf69 8813 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8814 break;
8815
8816 case DT_MIPS_RLD_MAP:
8817 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8818 break;
8819
8820 case DT_MIPS_OPTIONS:
8821 s = (bfd_get_section_by_name
8822 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8823 dyn.d_un.d_ptr = s->vma;
8824 break;
8825
0a44bf69
RS
8826 case DT_RELASZ:
8827 BFD_ASSERT (htab->is_vxworks);
8828 /* The count does not include the JUMP_SLOT relocations. */
8829 if (htab->srelplt)
8830 dyn.d_un.d_val -= htab->srelplt->size;
8831 break;
8832
8833 case DT_PLTREL:
8834 BFD_ASSERT (htab->is_vxworks);
8835 dyn.d_un.d_val = DT_RELA;
8836 break;
8837
8838 case DT_PLTRELSZ:
8839 BFD_ASSERT (htab->is_vxworks);
8840 dyn.d_un.d_val = htab->srelplt->size;
8841 break;
8842
8843 case DT_JMPREL:
8844 BFD_ASSERT (htab->is_vxworks);
8845 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8846 + htab->srelplt->output_offset);
8847 break;
8848
943284cc
DJ
8849 case DT_TEXTREL:
8850 /* If we didn't need any text relocations after all, delete
8851 the dynamic tag. */
8852 if (!(info->flags & DF_TEXTREL))
8853 {
8854 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8855 swap_out_p = FALSE;
8856 }
8857 break;
8858
8859 case DT_FLAGS:
8860 /* If we didn't need any text relocations after all, clear
8861 DF_TEXTREL from DT_FLAGS. */
8862 if (!(info->flags & DF_TEXTREL))
8863 dyn.d_un.d_val &= ~DF_TEXTREL;
8864 else
8865 swap_out_p = FALSE;
8866 break;
8867
b49e97c9 8868 default:
b34976b6 8869 swap_out_p = FALSE;
b49e97c9
TS
8870 break;
8871 }
8872
943284cc 8873 if (swap_out_p || dyn_skipped)
b49e97c9 8874 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8875 (dynobj, &dyn, b - dyn_skipped);
8876
8877 if (dyn_to_skip)
8878 {
8879 dyn_skipped += dyn_to_skip;
8880 dyn_to_skip = 0;
8881 }
b49e97c9 8882 }
943284cc
DJ
8883
8884 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8885 if (dyn_skipped > 0)
8886 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8887 }
8888
eea6121a 8889 if (sgot != NULL && sgot->size > 0)
b49e97c9 8890 {
0a44bf69
RS
8891 if (htab->is_vxworks)
8892 {
8893 /* The first entry of the global offset table points to the
8894 ".dynamic" section. The second is initialized by the
8895 loader and contains the shared library identifier.
8896 The third is also initialized by the loader and points
8897 to the lazy resolution stub. */
8898 MIPS_ELF_PUT_WORD (output_bfd,
8899 sdyn->output_offset + sdyn->output_section->vma,
8900 sgot->contents);
8901 MIPS_ELF_PUT_WORD (output_bfd, 0,
8902 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8903 MIPS_ELF_PUT_WORD (output_bfd, 0,
8904 sgot->contents
8905 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8906 }
8907 else
8908 {
8909 /* The first entry of the global offset table will be filled at
8910 runtime. The second entry will be used by some runtime loaders.
8911 This isn't the case of IRIX rld. */
8912 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8913 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8914 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8915 }
b49e97c9 8916
54938e2a
TS
8917 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8918 = MIPS_ELF_GOT_SIZE (output_bfd);
8919 }
b49e97c9 8920
f4416af6
AO
8921 /* Generate dynamic relocations for the non-primary gots. */
8922 if (gg != NULL && gg->next)
8923 {
8924 Elf_Internal_Rela rel[3];
8925 bfd_vma addend = 0;
8926
8927 memset (rel, 0, sizeof (rel));
8928 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8929
8930 for (g = gg->next; g->next != gg; g = g->next)
8931 {
0f20cc35
DJ
8932 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8933 + g->next->tls_gotno;
f4416af6 8934
9719ad41 8935 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8936 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8937 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8938 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8939
8940 if (! info->shared)
8941 continue;
8942
8943 while (index < g->assigned_gotno)
8944 {
8945 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8946 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8947 if (!(mips_elf_create_dynamic_relocation
8948 (output_bfd, info, rel, NULL,
8949 bfd_abs_section_ptr,
8950 0, &addend, sgot)))
8951 return FALSE;
8952 BFD_ASSERT (addend == 0);
8953 }
8954 }
8955 }
8956
3133ddbf
DJ
8957 /* The generation of dynamic relocations for the non-primary gots
8958 adds more dynamic relocations. We cannot count them until
8959 here. */
8960
8961 if (elf_hash_table (info)->dynamic_sections_created)
8962 {
8963 bfd_byte *b;
8964 bfd_boolean swap_out_p;
8965
8966 BFD_ASSERT (sdyn != NULL);
8967
8968 for (b = sdyn->contents;
8969 b < sdyn->contents + sdyn->size;
8970 b += MIPS_ELF_DYN_SIZE (dynobj))
8971 {
8972 Elf_Internal_Dyn dyn;
8973 asection *s;
8974
8975 /* Read in the current dynamic entry. */
8976 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8977
8978 /* Assume that we're going to modify it and write it out. */
8979 swap_out_p = TRUE;
8980
8981 switch (dyn.d_tag)
8982 {
8983 case DT_RELSZ:
8984 /* Reduce DT_RELSZ to account for any relocations we
8985 decided not to make. This is for the n64 irix rld,
8986 which doesn't seem to apply any relocations if there
8987 are trailing null entries. */
0a44bf69 8988 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8989 dyn.d_un.d_val = (s->reloc_count
8990 * (ABI_64_P (output_bfd)
8991 ? sizeof (Elf64_Mips_External_Rel)
8992 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
8993 /* Adjust the section size too. Tools like the prelinker
8994 can reasonably expect the values to the same. */
8995 elf_section_data (s->output_section)->this_hdr.sh_size
8996 = dyn.d_un.d_val;
3133ddbf
DJ
8997 break;
8998
8999 default:
9000 swap_out_p = FALSE;
9001 break;
9002 }
9003
9004 if (swap_out_p)
9005 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9006 (dynobj, &dyn, b);
9007 }
9008 }
9009
b49e97c9 9010 {
b49e97c9
TS
9011 asection *s;
9012 Elf32_compact_rel cpt;
9013
b49e97c9
TS
9014 if (SGI_COMPAT (output_bfd))
9015 {
9016 /* Write .compact_rel section out. */
9017 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9018 if (s != NULL)
9019 {
9020 cpt.id1 = 1;
9021 cpt.num = s->reloc_count;
9022 cpt.id2 = 2;
9023 cpt.offset = (s->output_section->filepos
9024 + sizeof (Elf32_External_compact_rel));
9025 cpt.reserved0 = 0;
9026 cpt.reserved1 = 0;
9027 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9028 ((Elf32_External_compact_rel *)
9029 s->contents));
9030
9031 /* Clean up a dummy stub function entry in .text. */
9032 s = bfd_get_section_by_name (dynobj,
9033 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9034 if (s != NULL)
9035 {
9036 file_ptr dummy_offset;
9037
5108fc1b
RS
9038 BFD_ASSERT (s->size >= htab->function_stub_size);
9039 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9040 memset (s->contents + dummy_offset, 0,
5108fc1b 9041 htab->function_stub_size);
b49e97c9
TS
9042 }
9043 }
9044 }
9045
0a44bf69
RS
9046 /* The psABI says that the dynamic relocations must be sorted in
9047 increasing order of r_symndx. The VxWorks EABI doesn't require
9048 this, and because the code below handles REL rather than RELA
9049 relocations, using it for VxWorks would be outright harmful. */
9050 if (!htab->is_vxworks)
b49e97c9 9051 {
0a44bf69
RS
9052 s = mips_elf_rel_dyn_section (info, FALSE);
9053 if (s != NULL
9054 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9055 {
9056 reldyn_sorting_bfd = output_bfd;
b49e97c9 9057
0a44bf69
RS
9058 if (ABI_64_P (output_bfd))
9059 qsort ((Elf64_External_Rel *) s->contents + 1,
9060 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9061 sort_dynamic_relocs_64);
9062 else
9063 qsort ((Elf32_External_Rel *) s->contents + 1,
9064 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9065 sort_dynamic_relocs);
9066 }
b49e97c9 9067 }
b49e97c9
TS
9068 }
9069
0a44bf69
RS
9070 if (htab->is_vxworks && htab->splt->size > 0)
9071 {
9072 if (info->shared)
9073 mips_vxworks_finish_shared_plt (output_bfd, info);
9074 else
9075 mips_vxworks_finish_exec_plt (output_bfd, info);
9076 }
b34976b6 9077 return TRUE;
b49e97c9
TS
9078}
9079
b49e97c9 9080
64543e1a
RS
9081/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9082
9083static void
9719ad41 9084mips_set_isa_flags (bfd *abfd)
b49e97c9 9085{
64543e1a 9086 flagword val;
b49e97c9
TS
9087
9088 switch (bfd_get_mach (abfd))
9089 {
9090 default:
9091 case bfd_mach_mips3000:
9092 val = E_MIPS_ARCH_1;
9093 break;
9094
9095 case bfd_mach_mips3900:
9096 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9097 break;
9098
9099 case bfd_mach_mips6000:
9100 val = E_MIPS_ARCH_2;
9101 break;
9102
9103 case bfd_mach_mips4000:
9104 case bfd_mach_mips4300:
9105 case bfd_mach_mips4400:
9106 case bfd_mach_mips4600:
9107 val = E_MIPS_ARCH_3;
9108 break;
9109
9110 case bfd_mach_mips4010:
9111 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9112 break;
9113
9114 case bfd_mach_mips4100:
9115 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9116 break;
9117
9118 case bfd_mach_mips4111:
9119 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9120 break;
9121
00707a0e
RS
9122 case bfd_mach_mips4120:
9123 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9124 break;
9125
b49e97c9
TS
9126 case bfd_mach_mips4650:
9127 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9128 break;
9129
00707a0e
RS
9130 case bfd_mach_mips5400:
9131 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9132 break;
9133
9134 case bfd_mach_mips5500:
9135 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9136 break;
9137
0d2e43ed
ILT
9138 case bfd_mach_mips9000:
9139 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9140 break;
9141
b49e97c9 9142 case bfd_mach_mips5000:
5a7ea749 9143 case bfd_mach_mips7000:
b49e97c9
TS
9144 case bfd_mach_mips8000:
9145 case bfd_mach_mips10000:
9146 case bfd_mach_mips12000:
9147 val = E_MIPS_ARCH_4;
9148 break;
9149
9150 case bfd_mach_mips5:
9151 val = E_MIPS_ARCH_5;
9152 break;
9153
9154 case bfd_mach_mips_sb1:
9155 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9156 break;
9157
9158 case bfd_mach_mipsisa32:
9159 val = E_MIPS_ARCH_32;
9160 break;
9161
9162 case bfd_mach_mipsisa64:
9163 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9164 break;
9165
9166 case bfd_mach_mipsisa32r2:
9167 val = E_MIPS_ARCH_32R2;
9168 break;
5f74bc13
CD
9169
9170 case bfd_mach_mipsisa64r2:
9171 val = E_MIPS_ARCH_64R2;
9172 break;
b49e97c9 9173 }
b49e97c9
TS
9174 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9175 elf_elfheader (abfd)->e_flags |= val;
9176
64543e1a
RS
9177}
9178
9179
9180/* The final processing done just before writing out a MIPS ELF object
9181 file. This gets the MIPS architecture right based on the machine
9182 number. This is used by both the 32-bit and the 64-bit ABI. */
9183
9184void
9719ad41
RS
9185_bfd_mips_elf_final_write_processing (bfd *abfd,
9186 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9187{
9188 unsigned int i;
9189 Elf_Internal_Shdr **hdrpp;
9190 const char *name;
9191 asection *sec;
9192
9193 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9194 is nonzero. This is for compatibility with old objects, which used
9195 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9196 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9197 mips_set_isa_flags (abfd);
9198
b49e97c9
TS
9199 /* Set the sh_info field for .gptab sections and other appropriate
9200 info for each special section. */
9201 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9202 i < elf_numsections (abfd);
9203 i++, hdrpp++)
9204 {
9205 switch ((*hdrpp)->sh_type)
9206 {
9207 case SHT_MIPS_MSYM:
9208 case SHT_MIPS_LIBLIST:
9209 sec = bfd_get_section_by_name (abfd, ".dynstr");
9210 if (sec != NULL)
9211 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9212 break;
9213
9214 case SHT_MIPS_GPTAB:
9215 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9216 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9217 BFD_ASSERT (name != NULL
0112cd26 9218 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9219 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9220 BFD_ASSERT (sec != NULL);
9221 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9222 break;
9223
9224 case SHT_MIPS_CONTENT:
9225 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9226 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9227 BFD_ASSERT (name != NULL
0112cd26 9228 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9229 sec = bfd_get_section_by_name (abfd,
9230 name + sizeof ".MIPS.content" - 1);
9231 BFD_ASSERT (sec != NULL);
9232 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9233 break;
9234
9235 case SHT_MIPS_SYMBOL_LIB:
9236 sec = bfd_get_section_by_name (abfd, ".dynsym");
9237 if (sec != NULL)
9238 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9239 sec = bfd_get_section_by_name (abfd, ".liblist");
9240 if (sec != NULL)
9241 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9242 break;
9243
9244 case SHT_MIPS_EVENTS:
9245 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9246 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9247 BFD_ASSERT (name != NULL);
0112cd26 9248 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9249 sec = bfd_get_section_by_name (abfd,
9250 name + sizeof ".MIPS.events" - 1);
9251 else
9252 {
0112cd26 9253 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9254 sec = bfd_get_section_by_name (abfd,
9255 (name
9256 + sizeof ".MIPS.post_rel" - 1));
9257 }
9258 BFD_ASSERT (sec != NULL);
9259 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9260 break;
9261
9262 }
9263 }
9264}
9265\f
8dc1a139 9266/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9267 segments. */
9268
9269int
a6b96beb
AM
9270_bfd_mips_elf_additional_program_headers (bfd *abfd,
9271 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9272{
9273 asection *s;
9274 int ret = 0;
9275
9276 /* See if we need a PT_MIPS_REGINFO segment. */
9277 s = bfd_get_section_by_name (abfd, ".reginfo");
9278 if (s && (s->flags & SEC_LOAD))
9279 ++ret;
9280
9281 /* See if we need a PT_MIPS_OPTIONS segment. */
9282 if (IRIX_COMPAT (abfd) == ict_irix6
9283 && bfd_get_section_by_name (abfd,
9284 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9285 ++ret;
9286
9287 /* See if we need a PT_MIPS_RTPROC segment. */
9288 if (IRIX_COMPAT (abfd) == ict_irix5
9289 && bfd_get_section_by_name (abfd, ".dynamic")
9290 && bfd_get_section_by_name (abfd, ".mdebug"))
9291 ++ret;
9292
98c904a8
RS
9293 /* Allocate a PT_NULL header in dynamic objects. See
9294 _bfd_mips_elf_modify_segment_map for details. */
9295 if (!SGI_COMPAT (abfd)
9296 && bfd_get_section_by_name (abfd, ".dynamic"))
9297 ++ret;
9298
b49e97c9
TS
9299 return ret;
9300}
9301
8dc1a139 9302/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9303
b34976b6 9304bfd_boolean
9719ad41
RS
9305_bfd_mips_elf_modify_segment_map (bfd *abfd,
9306 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9307{
9308 asection *s;
9309 struct elf_segment_map *m, **pm;
9310 bfd_size_type amt;
9311
9312 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9313 segment. */
9314 s = bfd_get_section_by_name (abfd, ".reginfo");
9315 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9316 {
9317 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9318 if (m->p_type == PT_MIPS_REGINFO)
9319 break;
9320 if (m == NULL)
9321 {
9322 amt = sizeof *m;
9719ad41 9323 m = bfd_zalloc (abfd, amt);
b49e97c9 9324 if (m == NULL)
b34976b6 9325 return FALSE;
b49e97c9
TS
9326
9327 m->p_type = PT_MIPS_REGINFO;
9328 m->count = 1;
9329 m->sections[0] = s;
9330
9331 /* We want to put it after the PHDR and INTERP segments. */
9332 pm = &elf_tdata (abfd)->segment_map;
9333 while (*pm != NULL
9334 && ((*pm)->p_type == PT_PHDR
9335 || (*pm)->p_type == PT_INTERP))
9336 pm = &(*pm)->next;
9337
9338 m->next = *pm;
9339 *pm = m;
9340 }
9341 }
9342
9343 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9344 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9345 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9346 table. */
c1fd6598
AO
9347 if (NEWABI_P (abfd)
9348 /* On non-IRIX6 new abi, we'll have already created a segment
9349 for this section, so don't create another. I'm not sure this
9350 is not also the case for IRIX 6, but I can't test it right
9351 now. */
9352 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9353 {
9354 for (s = abfd->sections; s; s = s->next)
9355 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9356 break;
9357
9358 if (s)
9359 {
9360 struct elf_segment_map *options_segment;
9361
98a8deaf
RS
9362 pm = &elf_tdata (abfd)->segment_map;
9363 while (*pm != NULL
9364 && ((*pm)->p_type == PT_PHDR
9365 || (*pm)->p_type == PT_INTERP))
9366 pm = &(*pm)->next;
b49e97c9 9367
8ded5a0f
AM
9368 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9369 {
9370 amt = sizeof (struct elf_segment_map);
9371 options_segment = bfd_zalloc (abfd, amt);
9372 options_segment->next = *pm;
9373 options_segment->p_type = PT_MIPS_OPTIONS;
9374 options_segment->p_flags = PF_R;
9375 options_segment->p_flags_valid = TRUE;
9376 options_segment->count = 1;
9377 options_segment->sections[0] = s;
9378 *pm = options_segment;
9379 }
b49e97c9
TS
9380 }
9381 }
9382 else
9383 {
9384 if (IRIX_COMPAT (abfd) == ict_irix5)
9385 {
9386 /* If there are .dynamic and .mdebug sections, we make a room
9387 for the RTPROC header. FIXME: Rewrite without section names. */
9388 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9389 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9390 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9391 {
9392 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9393 if (m->p_type == PT_MIPS_RTPROC)
9394 break;
9395 if (m == NULL)
9396 {
9397 amt = sizeof *m;
9719ad41 9398 m = bfd_zalloc (abfd, amt);
b49e97c9 9399 if (m == NULL)
b34976b6 9400 return FALSE;
b49e97c9
TS
9401
9402 m->p_type = PT_MIPS_RTPROC;
9403
9404 s = bfd_get_section_by_name (abfd, ".rtproc");
9405 if (s == NULL)
9406 {
9407 m->count = 0;
9408 m->p_flags = 0;
9409 m->p_flags_valid = 1;
9410 }
9411 else
9412 {
9413 m->count = 1;
9414 m->sections[0] = s;
9415 }
9416
9417 /* We want to put it after the DYNAMIC segment. */
9418 pm = &elf_tdata (abfd)->segment_map;
9419 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9420 pm = &(*pm)->next;
9421 if (*pm != NULL)
9422 pm = &(*pm)->next;
9423
9424 m->next = *pm;
9425 *pm = m;
9426 }
9427 }
9428 }
8dc1a139 9429 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9430 .dynstr, .dynsym, and .hash sections, and everything in
9431 between. */
9432 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9433 pm = &(*pm)->next)
9434 if ((*pm)->p_type == PT_DYNAMIC)
9435 break;
9436 m = *pm;
9437 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9438 {
9439 /* For a normal mips executable the permissions for the PT_DYNAMIC
9440 segment are read, write and execute. We do that here since
9441 the code in elf.c sets only the read permission. This matters
9442 sometimes for the dynamic linker. */
9443 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9444 {
9445 m->p_flags = PF_R | PF_W | PF_X;
9446 m->p_flags_valid = 1;
9447 }
9448 }
f6f62d6f
RS
9449 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9450 glibc's dynamic linker has traditionally derived the number of
9451 tags from the p_filesz field, and sometimes allocates stack
9452 arrays of that size. An overly-big PT_DYNAMIC segment can
9453 be actively harmful in such cases. Making PT_DYNAMIC contain
9454 other sections can also make life hard for the prelinker,
9455 which might move one of the other sections to a different
9456 PT_LOAD segment. */
9457 if (SGI_COMPAT (abfd)
9458 && m != NULL
9459 && m->count == 1
9460 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9461 {
9462 static const char *sec_names[] =
9463 {
9464 ".dynamic", ".dynstr", ".dynsym", ".hash"
9465 };
9466 bfd_vma low, high;
9467 unsigned int i, c;
9468 struct elf_segment_map *n;
9469
792b4a53 9470 low = ~(bfd_vma) 0;
b49e97c9
TS
9471 high = 0;
9472 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9473 {
9474 s = bfd_get_section_by_name (abfd, sec_names[i]);
9475 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9476 {
9477 bfd_size_type sz;
9478
9479 if (low > s->vma)
9480 low = s->vma;
eea6121a 9481 sz = s->size;
b49e97c9
TS
9482 if (high < s->vma + sz)
9483 high = s->vma + sz;
9484 }
9485 }
9486
9487 c = 0;
9488 for (s = abfd->sections; s != NULL; s = s->next)
9489 if ((s->flags & SEC_LOAD) != 0
9490 && s->vma >= low
eea6121a 9491 && s->vma + s->size <= high)
b49e97c9
TS
9492 ++c;
9493
9494 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9495 n = bfd_zalloc (abfd, amt);
b49e97c9 9496 if (n == NULL)
b34976b6 9497 return FALSE;
b49e97c9
TS
9498 *n = *m;
9499 n->count = c;
9500
9501 i = 0;
9502 for (s = abfd->sections; s != NULL; s = s->next)
9503 {
9504 if ((s->flags & SEC_LOAD) != 0
9505 && s->vma >= low
eea6121a 9506 && s->vma + s->size <= high)
b49e97c9
TS
9507 {
9508 n->sections[i] = s;
9509 ++i;
9510 }
9511 }
9512
9513 *pm = n;
9514 }
9515 }
9516
98c904a8
RS
9517 /* Allocate a spare program header in dynamic objects so that tools
9518 like the prelinker can add an extra PT_LOAD entry.
9519
9520 If the prelinker needs to make room for a new PT_LOAD entry, its
9521 standard procedure is to move the first (read-only) sections into
9522 the new (writable) segment. However, the MIPS ABI requires
9523 .dynamic to be in a read-only segment, and the section will often
9524 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9525
9526 Although the prelinker could in principle move .dynamic to a
9527 writable segment, it seems better to allocate a spare program
9528 header instead, and avoid the need to move any sections.
9529 There is a long tradition of allocating spare dynamic tags,
9530 so allocating a spare program header seems like a natural
9531 extension. */
9532 if (!SGI_COMPAT (abfd)
9533 && bfd_get_section_by_name (abfd, ".dynamic"))
9534 {
9535 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9536 if ((*pm)->p_type == PT_NULL)
9537 break;
9538 if (*pm == NULL)
9539 {
9540 m = bfd_zalloc (abfd, sizeof (*m));
9541 if (m == NULL)
9542 return FALSE;
9543
9544 m->p_type = PT_NULL;
9545 *pm = m;
9546 }
9547 }
9548
b34976b6 9549 return TRUE;
b49e97c9
TS
9550}
9551\f
9552/* Return the section that should be marked against GC for a given
9553 relocation. */
9554
9555asection *
9719ad41 9556_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9557 struct bfd_link_info *info,
9719ad41
RS
9558 Elf_Internal_Rela *rel,
9559 struct elf_link_hash_entry *h,
9560 Elf_Internal_Sym *sym)
b49e97c9
TS
9561{
9562 /* ??? Do mips16 stub sections need to be handled special? */
9563
9564 if (h != NULL)
07adf181
AM
9565 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9566 {
9567 case R_MIPS_GNU_VTINHERIT:
9568 case R_MIPS_GNU_VTENTRY:
9569 return NULL;
9570 }
b49e97c9 9571
07adf181 9572 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9573}
9574
9575/* Update the got entry reference counts for the section being removed. */
9576
b34976b6 9577bfd_boolean
9719ad41
RS
9578_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9579 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9580 asection *sec ATTRIBUTE_UNUSED,
9581 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9582{
9583#if 0
9584 Elf_Internal_Shdr *symtab_hdr;
9585 struct elf_link_hash_entry **sym_hashes;
9586 bfd_signed_vma *local_got_refcounts;
9587 const Elf_Internal_Rela *rel, *relend;
9588 unsigned long r_symndx;
9589 struct elf_link_hash_entry *h;
9590
9591 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9592 sym_hashes = elf_sym_hashes (abfd);
9593 local_got_refcounts = elf_local_got_refcounts (abfd);
9594
9595 relend = relocs + sec->reloc_count;
9596 for (rel = relocs; rel < relend; rel++)
9597 switch (ELF_R_TYPE (abfd, rel->r_info))
9598 {
9599 case R_MIPS_GOT16:
9600 case R_MIPS_CALL16:
9601 case R_MIPS_CALL_HI16:
9602 case R_MIPS_CALL_LO16:
9603 case R_MIPS_GOT_HI16:
9604 case R_MIPS_GOT_LO16:
4a14403c
TS
9605 case R_MIPS_GOT_DISP:
9606 case R_MIPS_GOT_PAGE:
9607 case R_MIPS_GOT_OFST:
b49e97c9
TS
9608 /* ??? It would seem that the existing MIPS code does no sort
9609 of reference counting or whatnot on its GOT and PLT entries,
9610 so it is not possible to garbage collect them at this time. */
9611 break;
9612
9613 default:
9614 break;
9615 }
9616#endif
9617
b34976b6 9618 return TRUE;
b49e97c9
TS
9619}
9620\f
9621/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9622 hiding the old indirect symbol. Process additional relocation
9623 information. Also called for weakdefs, in which case we just let
9624 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9625
9626void
fcfa13d2 9627_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9628 struct elf_link_hash_entry *dir,
9629 struct elf_link_hash_entry *ind)
b49e97c9
TS
9630{
9631 struct mips_elf_link_hash_entry *dirmips, *indmips;
9632
fcfa13d2 9633 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9634
9635 if (ind->root.type != bfd_link_hash_indirect)
9636 return;
9637
9638 dirmips = (struct mips_elf_link_hash_entry *) dir;
9639 indmips = (struct mips_elf_link_hash_entry *) ind;
9640 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9641 if (indmips->readonly_reloc)
b34976b6 9642 dirmips->readonly_reloc = TRUE;
b49e97c9 9643 if (indmips->no_fn_stub)
b34976b6 9644 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9645
9646 if (dirmips->tls_type == 0)
9647 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9648}
9649
9650void
9719ad41
RS
9651_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9652 struct elf_link_hash_entry *entry,
9653 bfd_boolean force_local)
b49e97c9
TS
9654{
9655 bfd *dynobj;
9656 asection *got;
9657 struct mips_got_info *g;
9658 struct mips_elf_link_hash_entry *h;
7c5fcef7 9659
b49e97c9 9660 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9661 if (h->forced_local)
9662 return;
4b555070 9663 h->forced_local = force_local;
7c5fcef7 9664
b49e97c9 9665 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9666 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9667 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9668 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9669 {
c45a316a
AM
9670 if (g->next)
9671 {
9672 struct mips_got_entry e;
9673 struct mips_got_info *gg = g;
9674
9675 /* Since we're turning what used to be a global symbol into a
9676 local one, bump up the number of local entries of each GOT
9677 that had an entry for it. This will automatically decrease
9678 the number of global entries, since global_gotno is actually
9679 the upper limit of global entries. */
9680 e.abfd = dynobj;
9681 e.symndx = -1;
9682 e.d.h = h;
0f20cc35 9683 e.tls_type = 0;
c45a316a
AM
9684
9685 for (g = g->next; g != gg; g = g->next)
9686 if (htab_find (g->got_entries, &e))
9687 {
9688 BFD_ASSERT (g->global_gotno > 0);
9689 g->local_gotno++;
9690 g->global_gotno--;
9691 }
b49e97c9 9692
c45a316a
AM
9693 /* If this was a global symbol forced into the primary GOT, we
9694 no longer need an entry for it. We can't release the entry
9695 at this point, but we must at least stop counting it as one
9696 of the symbols that required a forced got entry. */
9697 if (h->root.got.offset == 2)
9698 {
9699 BFD_ASSERT (gg->assigned_gotno > 0);
9700 gg->assigned_gotno--;
9701 }
9702 }
9703 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9704 /* If we haven't got through GOT allocation yet, just bump up the
9705 number of local entries, as this symbol won't be counted as
9706 global. */
9707 g->local_gotno++;
9708 else if (h->root.got.offset == 1)
f4416af6 9709 {
c45a316a
AM
9710 /* If we're past non-multi-GOT allocation and this symbol had
9711 been marked for a global got entry, give it a local entry
9712 instead. */
9713 BFD_ASSERT (g->global_gotno > 0);
9714 g->local_gotno++;
9715 g->global_gotno--;
f4416af6
AO
9716 }
9717 }
f4416af6
AO
9718
9719 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9720}
9721\f
d01414a5
TS
9722#define PDR_SIZE 32
9723
b34976b6 9724bfd_boolean
9719ad41
RS
9725_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9726 struct bfd_link_info *info)
d01414a5
TS
9727{
9728 asection *o;
b34976b6 9729 bfd_boolean ret = FALSE;
d01414a5
TS
9730 unsigned char *tdata;
9731 size_t i, skip;
9732
9733 o = bfd_get_section_by_name (abfd, ".pdr");
9734 if (! o)
b34976b6 9735 return FALSE;
eea6121a 9736 if (o->size == 0)
b34976b6 9737 return FALSE;
eea6121a 9738 if (o->size % PDR_SIZE != 0)
b34976b6 9739 return FALSE;
d01414a5
TS
9740 if (o->output_section != NULL
9741 && bfd_is_abs_section (o->output_section))
b34976b6 9742 return FALSE;
d01414a5 9743
eea6121a 9744 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9745 if (! tdata)
b34976b6 9746 return FALSE;
d01414a5 9747
9719ad41 9748 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9749 info->keep_memory);
d01414a5
TS
9750 if (!cookie->rels)
9751 {
9752 free (tdata);
b34976b6 9753 return FALSE;
d01414a5
TS
9754 }
9755
9756 cookie->rel = cookie->rels;
9757 cookie->relend = cookie->rels + o->reloc_count;
9758
eea6121a 9759 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9760 {
c152c796 9761 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9762 {
9763 tdata[i] = 1;
9764 skip ++;
9765 }
9766 }
9767
9768 if (skip != 0)
9769 {
f0abc2a1 9770 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9771 o->size -= skip * PDR_SIZE;
b34976b6 9772 ret = TRUE;
d01414a5
TS
9773 }
9774 else
9775 free (tdata);
9776
9777 if (! info->keep_memory)
9778 free (cookie->rels);
9779
9780 return ret;
9781}
9782
b34976b6 9783bfd_boolean
9719ad41 9784_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9785{
9786 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9787 return TRUE;
9788 return FALSE;
53bfd6b4 9789}
d01414a5 9790
b34976b6 9791bfd_boolean
c7b8f16e
JB
9792_bfd_mips_elf_write_section (bfd *output_bfd,
9793 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9794 asection *sec, bfd_byte *contents)
d01414a5
TS
9795{
9796 bfd_byte *to, *from, *end;
9797 int i;
9798
9799 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9800 return FALSE;
d01414a5 9801
f0abc2a1 9802 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9803 return FALSE;
d01414a5
TS
9804
9805 to = contents;
eea6121a 9806 end = contents + sec->size;
d01414a5
TS
9807 for (from = contents, i = 0;
9808 from < end;
9809 from += PDR_SIZE, i++)
9810 {
f0abc2a1 9811 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9812 continue;
9813 if (to != from)
9814 memcpy (to, from, PDR_SIZE);
9815 to += PDR_SIZE;
9816 }
9817 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9818 sec->output_offset, sec->size);
b34976b6 9819 return TRUE;
d01414a5 9820}
53bfd6b4 9821\f
b49e97c9
TS
9822/* MIPS ELF uses a special find_nearest_line routine in order the
9823 handle the ECOFF debugging information. */
9824
9825struct mips_elf_find_line
9826{
9827 struct ecoff_debug_info d;
9828 struct ecoff_find_line i;
9829};
9830
b34976b6 9831bfd_boolean
9719ad41
RS
9832_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9833 asymbol **symbols, bfd_vma offset,
9834 const char **filename_ptr,
9835 const char **functionname_ptr,
9836 unsigned int *line_ptr)
b49e97c9
TS
9837{
9838 asection *msec;
9839
9840 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9841 filename_ptr, functionname_ptr,
9842 line_ptr))
b34976b6 9843 return TRUE;
b49e97c9
TS
9844
9845 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9846 filename_ptr, functionname_ptr,
9719ad41 9847 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9848 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9849 return TRUE;
b49e97c9
TS
9850
9851 msec = bfd_get_section_by_name (abfd, ".mdebug");
9852 if (msec != NULL)
9853 {
9854 flagword origflags;
9855 struct mips_elf_find_line *fi;
9856 const struct ecoff_debug_swap * const swap =
9857 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9858
9859 /* If we are called during a link, mips_elf_final_link may have
9860 cleared the SEC_HAS_CONTENTS field. We force it back on here
9861 if appropriate (which it normally will be). */
9862 origflags = msec->flags;
9863 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9864 msec->flags |= SEC_HAS_CONTENTS;
9865
9866 fi = elf_tdata (abfd)->find_line_info;
9867 if (fi == NULL)
9868 {
9869 bfd_size_type external_fdr_size;
9870 char *fraw_src;
9871 char *fraw_end;
9872 struct fdr *fdr_ptr;
9873 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9874
9719ad41 9875 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9876 if (fi == NULL)
9877 {
9878 msec->flags = origflags;
b34976b6 9879 return FALSE;
b49e97c9
TS
9880 }
9881
9882 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9883 {
9884 msec->flags = origflags;
b34976b6 9885 return FALSE;
b49e97c9
TS
9886 }
9887
9888 /* Swap in the FDR information. */
9889 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9890 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9891 if (fi->d.fdr == NULL)
9892 {
9893 msec->flags = origflags;
b34976b6 9894 return FALSE;
b49e97c9
TS
9895 }
9896 external_fdr_size = swap->external_fdr_size;
9897 fdr_ptr = fi->d.fdr;
9898 fraw_src = (char *) fi->d.external_fdr;
9899 fraw_end = (fraw_src
9900 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9901 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9902 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9903
9904 elf_tdata (abfd)->find_line_info = fi;
9905
9906 /* Note that we don't bother to ever free this information.
9907 find_nearest_line is either called all the time, as in
9908 objdump -l, so the information should be saved, or it is
9909 rarely called, as in ld error messages, so the memory
9910 wasted is unimportant. Still, it would probably be a
9911 good idea for free_cached_info to throw it away. */
9912 }
9913
9914 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9915 &fi->i, filename_ptr, functionname_ptr,
9916 line_ptr))
9917 {
9918 msec->flags = origflags;
b34976b6 9919 return TRUE;
b49e97c9
TS
9920 }
9921
9922 msec->flags = origflags;
9923 }
9924
9925 /* Fall back on the generic ELF find_nearest_line routine. */
9926
9927 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9928 filename_ptr, functionname_ptr,
9929 line_ptr);
9930}
4ab527b0
FF
9931
9932bfd_boolean
9933_bfd_mips_elf_find_inliner_info (bfd *abfd,
9934 const char **filename_ptr,
9935 const char **functionname_ptr,
9936 unsigned int *line_ptr)
9937{
9938 bfd_boolean found;
9939 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9940 functionname_ptr, line_ptr,
9941 & elf_tdata (abfd)->dwarf2_find_line_info);
9942 return found;
9943}
9944
b49e97c9
TS
9945\f
9946/* When are writing out the .options or .MIPS.options section,
9947 remember the bytes we are writing out, so that we can install the
9948 GP value in the section_processing routine. */
9949
b34976b6 9950bfd_boolean
9719ad41
RS
9951_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9952 const void *location,
9953 file_ptr offset, bfd_size_type count)
b49e97c9 9954{
cc2e31b9 9955 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9956 {
9957 bfd_byte *c;
9958
9959 if (elf_section_data (section) == NULL)
9960 {
9961 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9962 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9963 if (elf_section_data (section) == NULL)
b34976b6 9964 return FALSE;
b49e97c9 9965 }
f0abc2a1 9966 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9967 if (c == NULL)
9968 {
eea6121a 9969 c = bfd_zalloc (abfd, section->size);
b49e97c9 9970 if (c == NULL)
b34976b6 9971 return FALSE;
f0abc2a1 9972 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9973 }
9974
9719ad41 9975 memcpy (c + offset, location, count);
b49e97c9
TS
9976 }
9977
9978 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9979 count);
9980}
9981
9982/* This is almost identical to bfd_generic_get_... except that some
9983 MIPS relocations need to be handled specially. Sigh. */
9984
9985bfd_byte *
9719ad41
RS
9986_bfd_elf_mips_get_relocated_section_contents
9987 (bfd *abfd,
9988 struct bfd_link_info *link_info,
9989 struct bfd_link_order *link_order,
9990 bfd_byte *data,
9991 bfd_boolean relocatable,
9992 asymbol **symbols)
b49e97c9
TS
9993{
9994 /* Get enough memory to hold the stuff */
9995 bfd *input_bfd = link_order->u.indirect.section->owner;
9996 asection *input_section = link_order->u.indirect.section;
eea6121a 9997 bfd_size_type sz;
b49e97c9
TS
9998
9999 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10000 arelent **reloc_vector = NULL;
10001 long reloc_count;
10002
10003 if (reloc_size < 0)
10004 goto error_return;
10005
9719ad41 10006 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10007 if (reloc_vector == NULL && reloc_size != 0)
10008 goto error_return;
10009
10010 /* read in the section */
eea6121a
AM
10011 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10012 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10013 goto error_return;
10014
b49e97c9
TS
10015 reloc_count = bfd_canonicalize_reloc (input_bfd,
10016 input_section,
10017 reloc_vector,
10018 symbols);
10019 if (reloc_count < 0)
10020 goto error_return;
10021
10022 if (reloc_count > 0)
10023 {
10024 arelent **parent;
10025 /* for mips */
10026 int gp_found;
10027 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10028
10029 {
10030 struct bfd_hash_entry *h;
10031 struct bfd_link_hash_entry *lh;
10032 /* Skip all this stuff if we aren't mixing formats. */
10033 if (abfd && input_bfd
10034 && abfd->xvec == input_bfd->xvec)
10035 lh = 0;
10036 else
10037 {
b34976b6 10038 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10039 lh = (struct bfd_link_hash_entry *) h;
10040 }
10041 lookup:
10042 if (lh)
10043 {
10044 switch (lh->type)
10045 {
10046 case bfd_link_hash_undefined:
10047 case bfd_link_hash_undefweak:
10048 case bfd_link_hash_common:
10049 gp_found = 0;
10050 break;
10051 case bfd_link_hash_defined:
10052 case bfd_link_hash_defweak:
10053 gp_found = 1;
10054 gp = lh->u.def.value;
10055 break;
10056 case bfd_link_hash_indirect:
10057 case bfd_link_hash_warning:
10058 lh = lh->u.i.link;
10059 /* @@FIXME ignoring warning for now */
10060 goto lookup;
10061 case bfd_link_hash_new:
10062 default:
10063 abort ();
10064 }
10065 }
10066 else
10067 gp_found = 0;
10068 }
10069 /* end mips */
9719ad41 10070 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10071 {
9719ad41 10072 char *error_message = NULL;
b49e97c9
TS
10073 bfd_reloc_status_type r;
10074
10075 /* Specific to MIPS: Deal with relocation types that require
10076 knowing the gp of the output bfd. */
10077 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10078
8236346f
EC
10079 /* If we've managed to find the gp and have a special
10080 function for the relocation then go ahead, else default
10081 to the generic handling. */
10082 if (gp_found
10083 && (*parent)->howto->special_function
10084 == _bfd_mips_elf32_gprel16_reloc)
10085 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10086 input_section, relocatable,
10087 data, gp);
10088 else
86324f90 10089 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10090 input_section,
10091 relocatable ? abfd : NULL,
10092 &error_message);
b49e97c9 10093
1049f94e 10094 if (relocatable)
b49e97c9
TS
10095 {
10096 asection *os = input_section->output_section;
10097
10098 /* A partial link, so keep the relocs */
10099 os->orelocation[os->reloc_count] = *parent;
10100 os->reloc_count++;
10101 }
10102
10103 if (r != bfd_reloc_ok)
10104 {
10105 switch (r)
10106 {
10107 case bfd_reloc_undefined:
10108 if (!((*link_info->callbacks->undefined_symbol)
10109 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10110 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10111 goto error_return;
10112 break;
10113 case bfd_reloc_dangerous:
9719ad41 10114 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10115 if (!((*link_info->callbacks->reloc_dangerous)
10116 (link_info, error_message, input_bfd, input_section,
10117 (*parent)->address)))
10118 goto error_return;
10119 break;
10120 case bfd_reloc_overflow:
10121 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10122 (link_info, NULL,
10123 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10124 (*parent)->howto->name, (*parent)->addend,
10125 input_bfd, input_section, (*parent)->address)))
10126 goto error_return;
10127 break;
10128 case bfd_reloc_outofrange:
10129 default:
10130 abort ();
10131 break;
10132 }
10133
10134 }
10135 }
10136 }
10137 if (reloc_vector != NULL)
10138 free (reloc_vector);
10139 return data;
10140
10141error_return:
10142 if (reloc_vector != NULL)
10143 free (reloc_vector);
10144 return NULL;
10145}
10146\f
10147/* Create a MIPS ELF linker hash table. */
10148
10149struct bfd_link_hash_table *
9719ad41 10150_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10151{
10152 struct mips_elf_link_hash_table *ret;
10153 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10154
9719ad41
RS
10155 ret = bfd_malloc (amt);
10156 if (ret == NULL)
b49e97c9
TS
10157 return NULL;
10158
66eb6687
AM
10159 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10160 mips_elf_link_hash_newfunc,
10161 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10162 {
e2d34d7d 10163 free (ret);
b49e97c9
TS
10164 return NULL;
10165 }
10166
10167#if 0
10168 /* We no longer use this. */
10169 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10170 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10171#endif
10172 ret->procedure_count = 0;
10173 ret->compact_rel_size = 0;
b34976b6 10174 ret->use_rld_obj_head = FALSE;
b49e97c9 10175 ret->rld_value = 0;
b34976b6 10176 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10177 ret->is_vxworks = FALSE;
10178 ret->srelbss = NULL;
10179 ret->sdynbss = NULL;
10180 ret->srelplt = NULL;
10181 ret->srelplt2 = NULL;
10182 ret->sgotplt = NULL;
10183 ret->splt = NULL;
10184 ret->plt_header_size = 0;
10185 ret->plt_entry_size = 0;
5108fc1b 10186 ret->function_stub_size = 0;
b49e97c9
TS
10187
10188 return &ret->root.root;
10189}
0a44bf69
RS
10190
10191/* Likewise, but indicate that the target is VxWorks. */
10192
10193struct bfd_link_hash_table *
10194_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10195{
10196 struct bfd_link_hash_table *ret;
10197
10198 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10199 if (ret)
10200 {
10201 struct mips_elf_link_hash_table *htab;
10202
10203 htab = (struct mips_elf_link_hash_table *) ret;
10204 htab->is_vxworks = 1;
10205 }
10206 return ret;
10207}
b49e97c9
TS
10208\f
10209/* We need to use a special link routine to handle the .reginfo and
10210 the .mdebug sections. We need to merge all instances of these
10211 sections together, not write them all out sequentially. */
10212
b34976b6 10213bfd_boolean
9719ad41 10214_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10215{
b49e97c9
TS
10216 asection *o;
10217 struct bfd_link_order *p;
10218 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10219 asection *rtproc_sec;
10220 Elf32_RegInfo reginfo;
10221 struct ecoff_debug_info debug;
7a2a6943
NC
10222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10223 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10224 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10225 void *mdebug_handle = NULL;
b49e97c9
TS
10226 asection *s;
10227 EXTR esym;
10228 unsigned int i;
10229 bfd_size_type amt;
0a44bf69 10230 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10231
10232 static const char * const secname[] =
10233 {
10234 ".text", ".init", ".fini", ".data",
10235 ".rodata", ".sdata", ".sbss", ".bss"
10236 };
10237 static const int sc[] =
10238 {
10239 scText, scInit, scFini, scData,
10240 scRData, scSData, scSBss, scBss
10241 };
10242
b49e97c9
TS
10243 /* We'd carefully arranged the dynamic symbol indices, and then the
10244 generic size_dynamic_sections renumbered them out from under us.
10245 Rather than trying somehow to prevent the renumbering, just do
10246 the sort again. */
0a44bf69 10247 htab = mips_elf_hash_table (info);
b49e97c9
TS
10248 if (elf_hash_table (info)->dynamic_sections_created)
10249 {
10250 bfd *dynobj;
10251 asection *got;
10252 struct mips_got_info *g;
7a2a6943 10253 bfd_size_type dynsecsymcount;
b49e97c9
TS
10254
10255 /* When we resort, we must tell mips_elf_sort_hash_table what
10256 the lowest index it may use is. That's the number of section
10257 symbols we're going to add. The generic ELF linker only
10258 adds these symbols when building a shared object. Note that
10259 we count the sections after (possibly) removing the .options
10260 section above. */
7a2a6943 10261
5108fc1b 10262 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10263 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10264 return FALSE;
b49e97c9
TS
10265
10266 /* Make sure we didn't grow the global .got region. */
10267 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10268 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10269 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10270
10271 if (g->global_gotsym != NULL)
10272 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10273 - g->global_gotsym->dynindx)
10274 <= g->global_gotno);
10275 }
10276
b49e97c9
TS
10277 /* Get a value for the GP register. */
10278 if (elf_gp (abfd) == 0)
10279 {
10280 struct bfd_link_hash_entry *h;
10281
b34976b6 10282 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10283 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10284 elf_gp (abfd) = (h->u.def.value
10285 + h->u.def.section->output_section->vma
10286 + h->u.def.section->output_offset);
0a44bf69
RS
10287 else if (htab->is_vxworks
10288 && (h = bfd_link_hash_lookup (info->hash,
10289 "_GLOBAL_OFFSET_TABLE_",
10290 FALSE, FALSE, TRUE))
10291 && h->type == bfd_link_hash_defined)
10292 elf_gp (abfd) = (h->u.def.section->output_section->vma
10293 + h->u.def.section->output_offset
10294 + h->u.def.value);
1049f94e 10295 else if (info->relocatable)
b49e97c9
TS
10296 {
10297 bfd_vma lo = MINUS_ONE;
10298
10299 /* Find the GP-relative section with the lowest offset. */
9719ad41 10300 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10301 if (o->vma < lo
10302 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10303 lo = o->vma;
10304
10305 /* And calculate GP relative to that. */
0a44bf69 10306 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10307 }
10308 else
10309 {
10310 /* If the relocate_section function needs to do a reloc
10311 involving the GP value, it should make a reloc_dangerous
10312 callback to warn that GP is not defined. */
10313 }
10314 }
10315
10316 /* Go through the sections and collect the .reginfo and .mdebug
10317 information. */
10318 reginfo_sec = NULL;
10319 mdebug_sec = NULL;
10320 gptab_data_sec = NULL;
10321 gptab_bss_sec = NULL;
9719ad41 10322 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10323 {
10324 if (strcmp (o->name, ".reginfo") == 0)
10325 {
10326 memset (&reginfo, 0, sizeof reginfo);
10327
10328 /* We have found the .reginfo section in the output file.
10329 Look through all the link_orders comprising it and merge
10330 the information together. */
8423293d 10331 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10332 {
10333 asection *input_section;
10334 bfd *input_bfd;
10335 Elf32_External_RegInfo ext;
10336 Elf32_RegInfo sub;
10337
10338 if (p->type != bfd_indirect_link_order)
10339 {
10340 if (p->type == bfd_data_link_order)
10341 continue;
10342 abort ();
10343 }
10344
10345 input_section = p->u.indirect.section;
10346 input_bfd = input_section->owner;
10347
b49e97c9 10348 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10349 &ext, 0, sizeof ext))
b34976b6 10350 return FALSE;
b49e97c9
TS
10351
10352 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10353
10354 reginfo.ri_gprmask |= sub.ri_gprmask;
10355 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10356 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10357 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10358 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10359
10360 /* ri_gp_value is set by the function
10361 mips_elf32_section_processing when the section is
10362 finally written out. */
10363
10364 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10365 elf_link_input_bfd ignores this section. */
10366 input_section->flags &= ~SEC_HAS_CONTENTS;
10367 }
10368
10369 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10370 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10371
10372 /* Skip this section later on (I don't think this currently
10373 matters, but someday it might). */
8423293d 10374 o->map_head.link_order = NULL;
b49e97c9
TS
10375
10376 reginfo_sec = o;
10377 }
10378
10379 if (strcmp (o->name, ".mdebug") == 0)
10380 {
10381 struct extsym_info einfo;
10382 bfd_vma last;
10383
10384 /* We have found the .mdebug section in the output file.
10385 Look through all the link_orders comprising it and merge
10386 the information together. */
10387 symhdr->magic = swap->sym_magic;
10388 /* FIXME: What should the version stamp be? */
10389 symhdr->vstamp = 0;
10390 symhdr->ilineMax = 0;
10391 symhdr->cbLine = 0;
10392 symhdr->idnMax = 0;
10393 symhdr->ipdMax = 0;
10394 symhdr->isymMax = 0;
10395 symhdr->ioptMax = 0;
10396 symhdr->iauxMax = 0;
10397 symhdr->issMax = 0;
10398 symhdr->issExtMax = 0;
10399 symhdr->ifdMax = 0;
10400 symhdr->crfd = 0;
10401 symhdr->iextMax = 0;
10402
10403 /* We accumulate the debugging information itself in the
10404 debug_info structure. */
10405 debug.line = NULL;
10406 debug.external_dnr = NULL;
10407 debug.external_pdr = NULL;
10408 debug.external_sym = NULL;
10409 debug.external_opt = NULL;
10410 debug.external_aux = NULL;
10411 debug.ss = NULL;
10412 debug.ssext = debug.ssext_end = NULL;
10413 debug.external_fdr = NULL;
10414 debug.external_rfd = NULL;
10415 debug.external_ext = debug.external_ext_end = NULL;
10416
10417 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10418 if (mdebug_handle == NULL)
b34976b6 10419 return FALSE;
b49e97c9
TS
10420
10421 esym.jmptbl = 0;
10422 esym.cobol_main = 0;
10423 esym.weakext = 0;
10424 esym.reserved = 0;
10425 esym.ifd = ifdNil;
10426 esym.asym.iss = issNil;
10427 esym.asym.st = stLocal;
10428 esym.asym.reserved = 0;
10429 esym.asym.index = indexNil;
10430 last = 0;
10431 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10432 {
10433 esym.asym.sc = sc[i];
10434 s = bfd_get_section_by_name (abfd, secname[i]);
10435 if (s != NULL)
10436 {
10437 esym.asym.value = s->vma;
eea6121a 10438 last = s->vma + s->size;
b49e97c9
TS
10439 }
10440 else
10441 esym.asym.value = last;
10442 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10443 secname[i], &esym))
b34976b6 10444 return FALSE;
b49e97c9
TS
10445 }
10446
8423293d 10447 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10448 {
10449 asection *input_section;
10450 bfd *input_bfd;
10451 const struct ecoff_debug_swap *input_swap;
10452 struct ecoff_debug_info input_debug;
10453 char *eraw_src;
10454 char *eraw_end;
10455
10456 if (p->type != bfd_indirect_link_order)
10457 {
10458 if (p->type == bfd_data_link_order)
10459 continue;
10460 abort ();
10461 }
10462
10463 input_section = p->u.indirect.section;
10464 input_bfd = input_section->owner;
10465
10466 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10467 || (get_elf_backend_data (input_bfd)
10468 ->elf_backend_ecoff_debug_swap) == NULL)
10469 {
10470 /* I don't know what a non MIPS ELF bfd would be
10471 doing with a .mdebug section, but I don't really
10472 want to deal with it. */
10473 continue;
10474 }
10475
10476 input_swap = (get_elf_backend_data (input_bfd)
10477 ->elf_backend_ecoff_debug_swap);
10478
eea6121a 10479 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10480
10481 /* The ECOFF linking code expects that we have already
10482 read in the debugging information and set up an
10483 ecoff_debug_info structure, so we do that now. */
10484 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10485 &input_debug))
b34976b6 10486 return FALSE;
b49e97c9
TS
10487
10488 if (! (bfd_ecoff_debug_accumulate
10489 (mdebug_handle, abfd, &debug, swap, input_bfd,
10490 &input_debug, input_swap, info)))
b34976b6 10491 return FALSE;
b49e97c9
TS
10492
10493 /* Loop through the external symbols. For each one with
10494 interesting information, try to find the symbol in
10495 the linker global hash table and save the information
10496 for the output external symbols. */
10497 eraw_src = input_debug.external_ext;
10498 eraw_end = (eraw_src
10499 + (input_debug.symbolic_header.iextMax
10500 * input_swap->external_ext_size));
10501 for (;
10502 eraw_src < eraw_end;
10503 eraw_src += input_swap->external_ext_size)
10504 {
10505 EXTR ext;
10506 const char *name;
10507 struct mips_elf_link_hash_entry *h;
10508
9719ad41 10509 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10510 if (ext.asym.sc == scNil
10511 || ext.asym.sc == scUndefined
10512 || ext.asym.sc == scSUndefined)
10513 continue;
10514
10515 name = input_debug.ssext + ext.asym.iss;
10516 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10517 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10518 if (h == NULL || h->esym.ifd != -2)
10519 continue;
10520
10521 if (ext.ifd != -1)
10522 {
10523 BFD_ASSERT (ext.ifd
10524 < input_debug.symbolic_header.ifdMax);
10525 ext.ifd = input_debug.ifdmap[ext.ifd];
10526 }
10527
10528 h->esym = ext;
10529 }
10530
10531 /* Free up the information we just read. */
10532 free (input_debug.line);
10533 free (input_debug.external_dnr);
10534 free (input_debug.external_pdr);
10535 free (input_debug.external_sym);
10536 free (input_debug.external_opt);
10537 free (input_debug.external_aux);
10538 free (input_debug.ss);
10539 free (input_debug.ssext);
10540 free (input_debug.external_fdr);
10541 free (input_debug.external_rfd);
10542 free (input_debug.external_ext);
10543
10544 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10545 elf_link_input_bfd ignores this section. */
10546 input_section->flags &= ~SEC_HAS_CONTENTS;
10547 }
10548
10549 if (SGI_COMPAT (abfd) && info->shared)
10550 {
10551 /* Create .rtproc section. */
10552 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10553 if (rtproc_sec == NULL)
10554 {
10555 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10556 | SEC_LINKER_CREATED | SEC_READONLY);
10557
3496cb2a
L
10558 rtproc_sec = bfd_make_section_with_flags (abfd,
10559 ".rtproc",
10560 flags);
b49e97c9 10561 if (rtproc_sec == NULL
b49e97c9 10562 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10563 return FALSE;
b49e97c9
TS
10564 }
10565
10566 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10567 info, rtproc_sec,
10568 &debug))
b34976b6 10569 return FALSE;
b49e97c9
TS
10570 }
10571
10572 /* Build the external symbol information. */
10573 einfo.abfd = abfd;
10574 einfo.info = info;
10575 einfo.debug = &debug;
10576 einfo.swap = swap;
b34976b6 10577 einfo.failed = FALSE;
b49e97c9 10578 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10579 mips_elf_output_extsym, &einfo);
b49e97c9 10580 if (einfo.failed)
b34976b6 10581 return FALSE;
b49e97c9
TS
10582
10583 /* Set the size of the .mdebug section. */
eea6121a 10584 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10585
10586 /* Skip this section later on (I don't think this currently
10587 matters, but someday it might). */
8423293d 10588 o->map_head.link_order = NULL;
b49e97c9
TS
10589
10590 mdebug_sec = o;
10591 }
10592
0112cd26 10593 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10594 {
10595 const char *subname;
10596 unsigned int c;
10597 Elf32_gptab *tab;
10598 Elf32_External_gptab *ext_tab;
10599 unsigned int j;
10600
10601 /* The .gptab.sdata and .gptab.sbss sections hold
10602 information describing how the small data area would
10603 change depending upon the -G switch. These sections
10604 not used in executables files. */
1049f94e 10605 if (! info->relocatable)
b49e97c9 10606 {
8423293d 10607 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10608 {
10609 asection *input_section;
10610
10611 if (p->type != bfd_indirect_link_order)
10612 {
10613 if (p->type == bfd_data_link_order)
10614 continue;
10615 abort ();
10616 }
10617
10618 input_section = p->u.indirect.section;
10619
10620 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10621 elf_link_input_bfd ignores this section. */
10622 input_section->flags &= ~SEC_HAS_CONTENTS;
10623 }
10624
10625 /* Skip this section later on (I don't think this
10626 currently matters, but someday it might). */
8423293d 10627 o->map_head.link_order = NULL;
b49e97c9
TS
10628
10629 /* Really remove the section. */
5daa8fe7 10630 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10631 --abfd->section_count;
10632
10633 continue;
10634 }
10635
10636 /* There is one gptab for initialized data, and one for
10637 uninitialized data. */
10638 if (strcmp (o->name, ".gptab.sdata") == 0)
10639 gptab_data_sec = o;
10640 else if (strcmp (o->name, ".gptab.sbss") == 0)
10641 gptab_bss_sec = o;
10642 else
10643 {
10644 (*_bfd_error_handler)
10645 (_("%s: illegal section name `%s'"),
10646 bfd_get_filename (abfd), o->name);
10647 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10648 return FALSE;
b49e97c9
TS
10649 }
10650
10651 /* The linker script always combines .gptab.data and
10652 .gptab.sdata into .gptab.sdata, and likewise for
10653 .gptab.bss and .gptab.sbss. It is possible that there is
10654 no .sdata or .sbss section in the output file, in which
10655 case we must change the name of the output section. */
10656 subname = o->name + sizeof ".gptab" - 1;
10657 if (bfd_get_section_by_name (abfd, subname) == NULL)
10658 {
10659 if (o == gptab_data_sec)
10660 o->name = ".gptab.data";
10661 else
10662 o->name = ".gptab.bss";
10663 subname = o->name + sizeof ".gptab" - 1;
10664 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10665 }
10666
10667 /* Set up the first entry. */
10668 c = 1;
10669 amt = c * sizeof (Elf32_gptab);
9719ad41 10670 tab = bfd_malloc (amt);
b49e97c9 10671 if (tab == NULL)
b34976b6 10672 return FALSE;
b49e97c9
TS
10673 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10674 tab[0].gt_header.gt_unused = 0;
10675
10676 /* Combine the input sections. */
8423293d 10677 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10678 {
10679 asection *input_section;
10680 bfd *input_bfd;
10681 bfd_size_type size;
10682 unsigned long last;
10683 bfd_size_type gpentry;
10684
10685 if (p->type != bfd_indirect_link_order)
10686 {
10687 if (p->type == bfd_data_link_order)
10688 continue;
10689 abort ();
10690 }
10691
10692 input_section = p->u.indirect.section;
10693 input_bfd = input_section->owner;
10694
10695 /* Combine the gptab entries for this input section one
10696 by one. We know that the input gptab entries are
10697 sorted by ascending -G value. */
eea6121a 10698 size = input_section->size;
b49e97c9
TS
10699 last = 0;
10700 for (gpentry = sizeof (Elf32_External_gptab);
10701 gpentry < size;
10702 gpentry += sizeof (Elf32_External_gptab))
10703 {
10704 Elf32_External_gptab ext_gptab;
10705 Elf32_gptab int_gptab;
10706 unsigned long val;
10707 unsigned long add;
b34976b6 10708 bfd_boolean exact;
b49e97c9
TS
10709 unsigned int look;
10710
10711 if (! (bfd_get_section_contents
9719ad41
RS
10712 (input_bfd, input_section, &ext_gptab, gpentry,
10713 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10714 {
10715 free (tab);
b34976b6 10716 return FALSE;
b49e97c9
TS
10717 }
10718
10719 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10720 &int_gptab);
10721 val = int_gptab.gt_entry.gt_g_value;
10722 add = int_gptab.gt_entry.gt_bytes - last;
10723
b34976b6 10724 exact = FALSE;
b49e97c9
TS
10725 for (look = 1; look < c; look++)
10726 {
10727 if (tab[look].gt_entry.gt_g_value >= val)
10728 tab[look].gt_entry.gt_bytes += add;
10729
10730 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10731 exact = TRUE;
b49e97c9
TS
10732 }
10733
10734 if (! exact)
10735 {
10736 Elf32_gptab *new_tab;
10737 unsigned int max;
10738
10739 /* We need a new table entry. */
10740 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10741 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10742 if (new_tab == NULL)
10743 {
10744 free (tab);
b34976b6 10745 return FALSE;
b49e97c9
TS
10746 }
10747 tab = new_tab;
10748 tab[c].gt_entry.gt_g_value = val;
10749 tab[c].gt_entry.gt_bytes = add;
10750
10751 /* Merge in the size for the next smallest -G
10752 value, since that will be implied by this new
10753 value. */
10754 max = 0;
10755 for (look = 1; look < c; look++)
10756 {
10757 if (tab[look].gt_entry.gt_g_value < val
10758 && (max == 0
10759 || (tab[look].gt_entry.gt_g_value
10760 > tab[max].gt_entry.gt_g_value)))
10761 max = look;
10762 }
10763 if (max != 0)
10764 tab[c].gt_entry.gt_bytes +=
10765 tab[max].gt_entry.gt_bytes;
10766
10767 ++c;
10768 }
10769
10770 last = int_gptab.gt_entry.gt_bytes;
10771 }
10772
10773 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10774 elf_link_input_bfd ignores this section. */
10775 input_section->flags &= ~SEC_HAS_CONTENTS;
10776 }
10777
10778 /* The table must be sorted by -G value. */
10779 if (c > 2)
10780 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10781
10782 /* Swap out the table. */
10783 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10784 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10785 if (ext_tab == NULL)
10786 {
10787 free (tab);
b34976b6 10788 return FALSE;
b49e97c9
TS
10789 }
10790
10791 for (j = 0; j < c; j++)
10792 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10793 free (tab);
10794
eea6121a 10795 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10796 o->contents = (bfd_byte *) ext_tab;
10797
10798 /* Skip this section later on (I don't think this currently
10799 matters, but someday it might). */
8423293d 10800 o->map_head.link_order = NULL;
b49e97c9
TS
10801 }
10802 }
10803
10804 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10805 if (!bfd_elf_final_link (abfd, info))
b34976b6 10806 return FALSE;
b49e97c9
TS
10807
10808 /* Now write out the computed sections. */
10809
9719ad41 10810 if (reginfo_sec != NULL)
b49e97c9
TS
10811 {
10812 Elf32_External_RegInfo ext;
10813
10814 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10815 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10816 return FALSE;
b49e97c9
TS
10817 }
10818
9719ad41 10819 if (mdebug_sec != NULL)
b49e97c9
TS
10820 {
10821 BFD_ASSERT (abfd->output_has_begun);
10822 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10823 swap, info,
10824 mdebug_sec->filepos))
b34976b6 10825 return FALSE;
b49e97c9
TS
10826
10827 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10828 }
10829
9719ad41 10830 if (gptab_data_sec != NULL)
b49e97c9
TS
10831 {
10832 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10833 gptab_data_sec->contents,
eea6121a 10834 0, gptab_data_sec->size))
b34976b6 10835 return FALSE;
b49e97c9
TS
10836 }
10837
9719ad41 10838 if (gptab_bss_sec != NULL)
b49e97c9
TS
10839 {
10840 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10841 gptab_bss_sec->contents,
eea6121a 10842 0, gptab_bss_sec->size))
b34976b6 10843 return FALSE;
b49e97c9
TS
10844 }
10845
10846 if (SGI_COMPAT (abfd))
10847 {
10848 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10849 if (rtproc_sec != NULL)
10850 {
10851 if (! bfd_set_section_contents (abfd, rtproc_sec,
10852 rtproc_sec->contents,
eea6121a 10853 0, rtproc_sec->size))
b34976b6 10854 return FALSE;
b49e97c9
TS
10855 }
10856 }
10857
b34976b6 10858 return TRUE;
b49e97c9
TS
10859}
10860\f
64543e1a
RS
10861/* Structure for saying that BFD machine EXTENSION extends BASE. */
10862
10863struct mips_mach_extension {
10864 unsigned long extension, base;
10865};
10866
10867
10868/* An array describing how BFD machines relate to one another. The entries
10869 are ordered topologically with MIPS I extensions listed last. */
10870
10871static const struct mips_mach_extension mips_mach_extensions[] = {
10872 /* MIPS64 extensions. */
5f74bc13 10873 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10874 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10875
10876 /* MIPS V extensions. */
10877 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10878
10879 /* R10000 extensions. */
10880 { bfd_mach_mips12000, bfd_mach_mips10000 },
10881
10882 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10883 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10884 better to allow vr5400 and vr5500 code to be merged anyway, since
10885 many libraries will just use the core ISA. Perhaps we could add
10886 some sort of ASE flag if this ever proves a problem. */
10887 { bfd_mach_mips5500, bfd_mach_mips5400 },
10888 { bfd_mach_mips5400, bfd_mach_mips5000 },
10889
10890 /* MIPS IV extensions. */
10891 { bfd_mach_mips5, bfd_mach_mips8000 },
10892 { bfd_mach_mips10000, bfd_mach_mips8000 },
10893 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10894 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10895 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10896
10897 /* VR4100 extensions. */
10898 { bfd_mach_mips4120, bfd_mach_mips4100 },
10899 { bfd_mach_mips4111, bfd_mach_mips4100 },
10900
10901 /* MIPS III extensions. */
10902 { bfd_mach_mips8000, bfd_mach_mips4000 },
10903 { bfd_mach_mips4650, bfd_mach_mips4000 },
10904 { bfd_mach_mips4600, bfd_mach_mips4000 },
10905 { bfd_mach_mips4400, bfd_mach_mips4000 },
10906 { bfd_mach_mips4300, bfd_mach_mips4000 },
10907 { bfd_mach_mips4100, bfd_mach_mips4000 },
10908 { bfd_mach_mips4010, bfd_mach_mips4000 },
10909
10910 /* MIPS32 extensions. */
10911 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10912
10913 /* MIPS II extensions. */
10914 { bfd_mach_mips4000, bfd_mach_mips6000 },
10915 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10916
10917 /* MIPS I extensions. */
10918 { bfd_mach_mips6000, bfd_mach_mips3000 },
10919 { bfd_mach_mips3900, bfd_mach_mips3000 }
10920};
10921
10922
10923/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10924
10925static bfd_boolean
9719ad41 10926mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10927{
10928 size_t i;
10929
c5211a54
RS
10930 if (extension == base)
10931 return TRUE;
10932
10933 if (base == bfd_mach_mipsisa32
10934 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10935 return TRUE;
10936
10937 if (base == bfd_mach_mipsisa32r2
10938 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10939 return TRUE;
10940
10941 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10942 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10943 {
10944 extension = mips_mach_extensions[i].base;
10945 if (extension == base)
10946 return TRUE;
10947 }
64543e1a 10948
c5211a54 10949 return FALSE;
64543e1a
RS
10950}
10951
10952
10953/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10954
b34976b6 10955static bfd_boolean
9719ad41 10956mips_32bit_flags_p (flagword flags)
00707a0e 10957{
64543e1a
RS
10958 return ((flags & EF_MIPS_32BITMODE) != 0
10959 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10960 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10961 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10962 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10963 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10964 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10965}
10966
64543e1a 10967
b49e97c9
TS
10968/* Merge backend specific data from an object file to the output
10969 object file when linking. */
10970
b34976b6 10971bfd_boolean
9719ad41 10972_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10973{
10974 flagword old_flags;
10975 flagword new_flags;
b34976b6
AM
10976 bfd_boolean ok;
10977 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10978 asection *sec;
10979
10980 /* Check if we have the same endianess */
82e51918 10981 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10982 {
10983 (*_bfd_error_handler)
d003868e
AM
10984 (_("%B: endianness incompatible with that of the selected emulation"),
10985 ibfd);
aa701218
AO
10986 return FALSE;
10987 }
b49e97c9
TS
10988
10989 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10990 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10991 return TRUE;
b49e97c9 10992
aa701218
AO
10993 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10994 {
10995 (*_bfd_error_handler)
d003868e
AM
10996 (_("%B: ABI is incompatible with that of the selected emulation"),
10997 ibfd);
aa701218
AO
10998 return FALSE;
10999 }
11000
b49e97c9
TS
11001 new_flags = elf_elfheader (ibfd)->e_flags;
11002 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11003 old_flags = elf_elfheader (obfd)->e_flags;
11004
11005 if (! elf_flags_init (obfd))
11006 {
b34976b6 11007 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11008 elf_elfheader (obfd)->e_flags = new_flags;
11009 elf_elfheader (obfd)->e_ident[EI_CLASS]
11010 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11011
11012 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11013 && (bfd_get_arch_info (obfd)->the_default
11014 || mips_mach_extends_p (bfd_get_mach (obfd),
11015 bfd_get_mach (ibfd))))
b49e97c9
TS
11016 {
11017 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11018 bfd_get_mach (ibfd)))
b34976b6 11019 return FALSE;
b49e97c9
TS
11020 }
11021
b34976b6 11022 return TRUE;
b49e97c9
TS
11023 }
11024
11025 /* Check flag compatibility. */
11026
11027 new_flags &= ~EF_MIPS_NOREORDER;
11028 old_flags &= ~EF_MIPS_NOREORDER;
11029
f4416af6
AO
11030 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11031 doesn't seem to matter. */
11032 new_flags &= ~EF_MIPS_XGOT;
11033 old_flags &= ~EF_MIPS_XGOT;
11034
98a8deaf
RS
11035 /* MIPSpro generates ucode info in n64 objects. Again, we should
11036 just be able to ignore this. */
11037 new_flags &= ~EF_MIPS_UCODE;
11038 old_flags &= ~EF_MIPS_UCODE;
11039
0a44bf69
RS
11040 /* Don't care about the PIC flags from dynamic objects; they are
11041 PIC by design. */
11042 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11043 && (ibfd->flags & DYNAMIC) != 0)
11044 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11045
b49e97c9 11046 if (new_flags == old_flags)
b34976b6 11047 return TRUE;
b49e97c9
TS
11048
11049 /* Check to see if the input BFD actually contains any sections.
11050 If not, its flags may not have been initialised either, but it cannot
11051 actually cause any incompatibility. */
11052 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11053 {
11054 /* Ignore synthetic sections and empty .text, .data and .bss sections
11055 which are automatically generated by gas. */
11056 if (strcmp (sec->name, ".reginfo")
11057 && strcmp (sec->name, ".mdebug")
eea6121a 11058 && (sec->size != 0
d13d89fa
NS
11059 || (strcmp (sec->name, ".text")
11060 && strcmp (sec->name, ".data")
11061 && strcmp (sec->name, ".bss"))))
b49e97c9 11062 {
b34976b6 11063 null_input_bfd = FALSE;
b49e97c9
TS
11064 break;
11065 }
11066 }
11067 if (null_input_bfd)
b34976b6 11068 return TRUE;
b49e97c9 11069
b34976b6 11070 ok = TRUE;
b49e97c9 11071
143d77c5
EC
11072 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11073 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11074 {
b49e97c9 11075 (*_bfd_error_handler)
d003868e
AM
11076 (_("%B: warning: linking PIC files with non-PIC files"),
11077 ibfd);
143d77c5 11078 ok = TRUE;
b49e97c9
TS
11079 }
11080
143d77c5
EC
11081 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11082 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11083 if (! (new_flags & EF_MIPS_PIC))
11084 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11085
11086 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11087 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11088
64543e1a
RS
11089 /* Compare the ISAs. */
11090 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11091 {
64543e1a 11092 (*_bfd_error_handler)
d003868e
AM
11093 (_("%B: linking 32-bit code with 64-bit code"),
11094 ibfd);
64543e1a
RS
11095 ok = FALSE;
11096 }
11097 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11098 {
11099 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11100 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11101 {
64543e1a
RS
11102 /* Copy the architecture info from IBFD to OBFD. Also copy
11103 the 32-bit flag (if set) so that we continue to recognise
11104 OBFD as a 32-bit binary. */
11105 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11106 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11107 elf_elfheader (obfd)->e_flags
11108 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11109
11110 /* Copy across the ABI flags if OBFD doesn't use them
11111 and if that was what caused us to treat IBFD as 32-bit. */
11112 if ((old_flags & EF_MIPS_ABI) == 0
11113 && mips_32bit_flags_p (new_flags)
11114 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11115 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11116 }
11117 else
11118 {
64543e1a 11119 /* The ISAs aren't compatible. */
b49e97c9 11120 (*_bfd_error_handler)
d003868e
AM
11121 (_("%B: linking %s module with previous %s modules"),
11122 ibfd,
64543e1a
RS
11123 bfd_printable_name (ibfd),
11124 bfd_printable_name (obfd));
b34976b6 11125 ok = FALSE;
b49e97c9 11126 }
b49e97c9
TS
11127 }
11128
64543e1a
RS
11129 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11130 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11131
11132 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11133 does set EI_CLASS differently from any 32-bit ABI. */
11134 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11135 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11136 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11137 {
11138 /* Only error if both are set (to different values). */
11139 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11140 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11141 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11142 {
11143 (*_bfd_error_handler)
d003868e
AM
11144 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11145 ibfd,
b49e97c9
TS
11146 elf_mips_abi_name (ibfd),
11147 elf_mips_abi_name (obfd));
b34976b6 11148 ok = FALSE;
b49e97c9
TS
11149 }
11150 new_flags &= ~EF_MIPS_ABI;
11151 old_flags &= ~EF_MIPS_ABI;
11152 }
11153
fb39dac1
RS
11154 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11155 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11156 {
11157 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11158
11159 new_flags &= ~ EF_MIPS_ARCH_ASE;
11160 old_flags &= ~ EF_MIPS_ARCH_ASE;
11161 }
11162
b49e97c9
TS
11163 /* Warn about any other mismatches */
11164 if (new_flags != old_flags)
11165 {
11166 (*_bfd_error_handler)
d003868e
AM
11167 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11168 ibfd, (unsigned long) new_flags,
b49e97c9 11169 (unsigned long) old_flags);
b34976b6 11170 ok = FALSE;
b49e97c9
TS
11171 }
11172
11173 if (! ok)
11174 {
11175 bfd_set_error (bfd_error_bad_value);
b34976b6 11176 return FALSE;
b49e97c9
TS
11177 }
11178
b34976b6 11179 return TRUE;
b49e97c9
TS
11180}
11181
11182/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11183
b34976b6 11184bfd_boolean
9719ad41 11185_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11186{
11187 BFD_ASSERT (!elf_flags_init (abfd)
11188 || elf_elfheader (abfd)->e_flags == flags);
11189
11190 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11191 elf_flags_init (abfd) = TRUE;
11192 return TRUE;
b49e97c9
TS
11193}
11194
b34976b6 11195bfd_boolean
9719ad41 11196_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11197{
9719ad41 11198 FILE *file = ptr;
b49e97c9
TS
11199
11200 BFD_ASSERT (abfd != NULL && ptr != NULL);
11201
11202 /* Print normal ELF private data. */
11203 _bfd_elf_print_private_bfd_data (abfd, ptr);
11204
11205 /* xgettext:c-format */
11206 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11207
11208 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11209 fprintf (file, _(" [abi=O32]"));
11210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11211 fprintf (file, _(" [abi=O64]"));
11212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11213 fprintf (file, _(" [abi=EABI32]"));
11214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11215 fprintf (file, _(" [abi=EABI64]"));
11216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11217 fprintf (file, _(" [abi unknown]"));
11218 else if (ABI_N32_P (abfd))
11219 fprintf (file, _(" [abi=N32]"));
11220 else if (ABI_64_P (abfd))
11221 fprintf (file, _(" [abi=64]"));
11222 else
11223 fprintf (file, _(" [no abi set]"));
11224
11225 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11226 fprintf (file, " [mips1]");
b49e97c9 11227 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11228 fprintf (file, " [mips2]");
b49e97c9 11229 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11230 fprintf (file, " [mips3]");
b49e97c9 11231 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11232 fprintf (file, " [mips4]");
b49e97c9 11233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11234 fprintf (file, " [mips5]");
b49e97c9 11235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11236 fprintf (file, " [mips32]");
b49e97c9 11237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11238 fprintf (file, " [mips64]");
af7ee8bf 11239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11240 fprintf (file, " [mips32r2]");
5f74bc13 11241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11242 fprintf (file, " [mips64r2]");
b49e97c9
TS
11243 else
11244 fprintf (file, _(" [unknown ISA]"));
11245
40d32fc6 11246 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11247 fprintf (file, " [mdmx]");
40d32fc6
CD
11248
11249 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11250 fprintf (file, " [mips16]");
40d32fc6 11251
b49e97c9 11252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11253 fprintf (file, " [32bitmode]");
b49e97c9
TS
11254 else
11255 fprintf (file, _(" [not 32bitmode]"));
11256
c0e3f241 11257 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11258 fprintf (file, " [noreorder]");
c0e3f241
CD
11259
11260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11261 fprintf (file, " [PIC]");
c0e3f241
CD
11262
11263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11264 fprintf (file, " [CPIC]");
c0e3f241
CD
11265
11266 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11267 fprintf (file, " [XGOT]");
c0e3f241
CD
11268
11269 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11270 fprintf (file, " [UCODE]");
c0e3f241 11271
b49e97c9
TS
11272 fputc ('\n', file);
11273
b34976b6 11274 return TRUE;
b49e97c9 11275}
2f89ff8d 11276
b35d266b 11277const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11278{
0112cd26
NC
11279 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11280 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11281 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11282 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11283 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11284 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11285 { NULL, 0, 0, 0, 0 }
2f89ff8d 11286};
5e2b0d47 11287
8992f0d7
TS
11288/* Merge non visibility st_other attributes. Ensure that the
11289 STO_OPTIONAL flag is copied into h->other, even if this is not a
11290 definiton of the symbol. */
5e2b0d47
NC
11291void
11292_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11293 const Elf_Internal_Sym *isym,
11294 bfd_boolean definition,
11295 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11296{
8992f0d7
TS
11297 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11298 {
11299 unsigned char other;
11300
11301 other = (definition ? isym->st_other : h->other);
11302 other &= ~ELF_ST_VISIBILITY (-1);
11303 h->other = other | ELF_ST_VISIBILITY (h->other);
11304 }
11305
11306 if (!definition
5e2b0d47
NC
11307 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11308 h->other |= STO_OPTIONAL;
11309}
12ac1cf5
NC
11310
11311/* Decide whether an undefined symbol is special and can be ignored.
11312 This is the case for OPTIONAL symbols on IRIX. */
11313bfd_boolean
11314_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11315{
11316 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11317}
e0764319
NC
11318
11319bfd_boolean
11320_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11321{
11322 return (sym->st_shndx == SHN_COMMON
11323 || sym->st_shndx == SHN_MIPS_ACOMMON
11324 || sym->st_shndx == SHN_MIPS_SCOMMON);
11325}