]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
* config/tc-score.c (s3_my_get_expression): Delete unused local
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4a58c4bd 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
8d67f500
NC
242
243/* Return if no cpu was selected on command-line. */
244static bfd_boolean
245no_cpu_selected (void)
246{
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249}
250
7cc69913 251#ifdef OBJ_ELF
deeaaff8
DJ
252# ifdef EABI_DEFAULT
253static int meabi_flags = EABI_DEFAULT;
254# else
d507cf36 255static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 256# endif
e1da3f5b 257
ee3c0378
AS
258static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
e1da3f5b 260bfd_boolean
5f4273c7 261arm_is_eabi (void)
e1da3f5b
PB
262{
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264}
7cc69913 265#endif
b99bd4ef 266
b99bd4ef 267#ifdef OBJ_ELF
c19d1205 268/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
269symbolS * GOT_symbol;
270#endif
271
b99bd4ef
NC
272/* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276static int thumb_mode = 0;
8dc2430f
NC
277/* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280#define MODE_RECORDED (1 << 4)
b99bd4ef 281
e07e6e58
NC
282/* Specifies the intrinsic IT insn behavior mode. */
283enum implicit_it_mode
284{
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289};
290static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
c19d1205
ZW
292/* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315static bfd_boolean unified_syntax = FALSE;
b99bd4ef 316
5287ad62
JB
317enum neon_el_type
318{
dcbf9037 319 NT_invtype,
5287ad62
JB
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
dcbf9037 325 NT_unsigned
5287ad62
JB
326};
327
328struct neon_type_el
329{
330 enum neon_el_type type;
331 unsigned size;
332};
333
334#define NEON_MAX_TYPE_ELS 4
335
336struct neon_type
337{
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340};
341
e07e6e58
NC
342enum it_instruction_type
343{
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352};
353
b99bd4ef
NC
354struct arm_it
355{
c19d1205 356 const char * error;
b99bd4ef 357 unsigned long instruction;
c19d1205
ZW
358 int size;
359 int size_req;
360 int cond;
037e8744
JB
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
5287ad62 365 struct neon_type vectype;
88714cb8
DG
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
0110f2b8
PB
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
b99bd4ef
NC
372 struct
373 {
374 bfd_reloc_code_real_type type;
c19d1205
ZW
375 expressionS exp;
376 int pc_rel;
b99bd4ef 377 } reloc;
b99bd4ef 378
e07e6e58
NC
379 enum it_instruction_type it_insn_type;
380
c19d1205
ZW
381 struct
382 {
383 unsigned reg;
ca3f61f7 384 signed int imm;
dcbf9037 385 struct neon_type_el vectype;
ca3f61f7
NC
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 405 } operands[6];
b99bd4ef
NC
406};
407
c19d1205 408static struct arm_it inst;
b99bd4ef
NC
409
410#define NUM_FLOAT_VALS 8
411
05d2d07e 412const char * fp_const[] =
b99bd4ef
NC
413{
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415};
416
c19d1205 417/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
418#define MAX_LITTLENUMS 6
419
420LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422#define FAIL (-1)
423#define SUCCESS (0)
424
425#define SUFF_S 1
426#define SUFF_D 2
427#define SUFF_E 3
428#define SUFF_P 4
429
c19d1205
ZW
430#define CP_T_X 0x00008000
431#define CP_T_Y 0x00400000
b99bd4ef 432
c19d1205
ZW
433#define CONDS_BIT 0x00100000
434#define LOAD_BIT 0x00100000
b99bd4ef
NC
435
436#define DOUBLE_LOAD_FLAG 0x00000001
437
438struct asm_cond
439{
d3ce72d0 440 const char * template_name;
c921be7d 441 unsigned long value;
b99bd4ef
NC
442};
443
c19d1205 444#define COND_ALWAYS 0xE
b99bd4ef 445
b99bd4ef
NC
446struct asm_psr
447{
d3ce72d0 448 const char * template_name;
c921be7d 449 unsigned long field;
b99bd4ef
NC
450};
451
62b3e311
PB
452struct asm_barrier_opt
453{
d3ce72d0 454 const char * template_name;
c921be7d 455 unsigned long value;
62b3e311
PB
456};
457
2d2255b5 458/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
459#define SPSR_BIT (1 << 22)
460
c19d1205
ZW
461/* The individual PSR flag bits. */
462#define PSR_c (1 << 16)
463#define PSR_x (1 << 17)
464#define PSR_s (1 << 18)
465#define PSR_f (1 << 19)
b99bd4ef 466
c19d1205 467struct reloc_entry
bfae80f2 468{
c921be7d
NC
469 char * name;
470 bfd_reloc_code_real_type reloc;
bfae80f2
RE
471};
472
5287ad62 473enum vfp_reg_pos
bfae80f2 474{
5287ad62
JB
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
477};
478
479enum vfp_ldstm_type
480{
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482};
483
dcbf9037
JB
484/* Bits for DEFINED field in neon_typed_alias. */
485#define NTA_HASTYPE 1
486#define NTA_HASINDEX 2
487
488struct neon_typed_alias
489{
c921be7d
NC
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
dcbf9037
JB
493};
494
c19d1205
ZW
495/* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497enum arm_reg_type
bfae80f2 498{
c19d1205
ZW
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
5287ad62 505 REG_TYPE_NQ,
037e8744 506 REG_TYPE_VFSD,
5287ad62 507 REG_TYPE_NDQ,
037e8744 508 REG_TYPE_NSDQ,
c19d1205
ZW
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
90ec0d68 520 REG_TYPE_RNB
bfae80f2
RE
521};
522
dcbf9037
JB
523/* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
527struct reg_entry
528{
c921be7d 529 const char * name;
90ec0d68 530 unsigned int number;
c921be7d
NC
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
6c43fab6
RE
534};
535
c19d1205 536/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 537const char * const reg_expected_msgs[] =
c19d1205
ZW
538{
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
5287ad62
JB
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
037e8744 546 N_("VFP single or double precision register expected"),
5287ad62 547 N_("Neon double or quad precision register expected"),
037e8744 548 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
6c43fab6
RE
560};
561
c19d1205
ZW
562/* Some well known registers that we refer to directly elsewhere. */
563#define REG_SP 13
564#define REG_LR 14
565#define REG_PC 15
404ff6b5 566
b99bd4ef
NC
567/* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
c19d1205 569#define INSN_SIZE 4
b99bd4ef
NC
570
571struct asm_opcode
572{
573 /* Basic string to match. */
d3ce72d0 574 const char * template_name;
c19d1205
ZW
575
576 /* Parameters to instruction. */
5be8be5d 577 unsigned int operands[8];
c19d1205
ZW
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
b99bd4ef
NC
581
582 /* Basic instruction code. */
c19d1205 583 unsigned int avalue : 28;
b99bd4ef 584
c19d1205
ZW
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
b99bd4ef 587
90e4755a 588 /* Which architecture variant provides this instruction. */
c921be7d
NC
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
c19d1205
ZW
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
b99bd4ef 594
c19d1205
ZW
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
b99bd4ef
NC
597};
598
a737bd4d
NC
599/* Defines for various bits that we will want to toggle. */
600#define INST_IMMEDIATE 0x02000000
601#define OFFSET_REG 0x02000000
c19d1205 602#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
603#define SHIFT_BY_REG 0x00000010
604#define PRE_INDEX 0x01000000
605#define INDEX_UP 0x00800000
606#define WRITE_BACK 0x00200000
607#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 608#define CPSI_MMOD 0x00020000
90e4755a 609
a737bd4d
NC
610#define LITERAL_MASK 0xf000f000
611#define OPCODE_MASK 0xfe1fffff
612#define V4_STR_BIT 0x00000020
90e4755a 613
efd81785
PB
614#define T2_SUBS_PC_LR 0xf3de8f00
615
a737bd4d 616#define DATA_OP_SHIFT 21
90e4755a 617
ef8d22e6
PB
618#define T2_OPCODE_MASK 0xfe1fffff
619#define T2_DATA_OP_SHIFT 21
620
a737bd4d
NC
621/* Codes to distinguish the arithmetic instructions. */
622#define OPCODE_AND 0
623#define OPCODE_EOR 1
624#define OPCODE_SUB 2
625#define OPCODE_RSB 3
626#define OPCODE_ADD 4
627#define OPCODE_ADC 5
628#define OPCODE_SBC 6
629#define OPCODE_RSC 7
630#define OPCODE_TST 8
631#define OPCODE_TEQ 9
632#define OPCODE_CMP 10
633#define OPCODE_CMN 11
634#define OPCODE_ORR 12
635#define OPCODE_MOV 13
636#define OPCODE_BIC 14
637#define OPCODE_MVN 15
90e4755a 638
ef8d22e6
PB
639#define T2_OPCODE_AND 0
640#define T2_OPCODE_BIC 1
641#define T2_OPCODE_ORR 2
642#define T2_OPCODE_ORN 3
643#define T2_OPCODE_EOR 4
644#define T2_OPCODE_ADD 8
645#define T2_OPCODE_ADC 10
646#define T2_OPCODE_SBC 11
647#define T2_OPCODE_SUB 13
648#define T2_OPCODE_RSB 14
649
a737bd4d
NC
650#define T_OPCODE_MUL 0x4340
651#define T_OPCODE_TST 0x4200
652#define T_OPCODE_CMN 0x42c0
653#define T_OPCODE_NEG 0x4240
654#define T_OPCODE_MVN 0x43c0
90e4755a 655
a737bd4d
NC
656#define T_OPCODE_ADD_R3 0x1800
657#define T_OPCODE_SUB_R3 0x1a00
658#define T_OPCODE_ADD_HI 0x4400
659#define T_OPCODE_ADD_ST 0xb000
660#define T_OPCODE_SUB_ST 0xb080
661#define T_OPCODE_ADD_SP 0xa800
662#define T_OPCODE_ADD_PC 0xa000
663#define T_OPCODE_ADD_I8 0x3000
664#define T_OPCODE_SUB_I8 0x3800
665#define T_OPCODE_ADD_I3 0x1c00
666#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 667
a737bd4d
NC
668#define T_OPCODE_ASR_R 0x4100
669#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
670#define T_OPCODE_LSR_R 0x40c0
671#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
672#define T_OPCODE_ASR_I 0x1000
673#define T_OPCODE_LSL_I 0x0000
674#define T_OPCODE_LSR_I 0x0800
b99bd4ef 675
a737bd4d
NC
676#define T_OPCODE_MOV_I8 0x2000
677#define T_OPCODE_CMP_I8 0x2800
678#define T_OPCODE_CMP_LR 0x4280
679#define T_OPCODE_MOV_HR 0x4600
680#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 681
a737bd4d
NC
682#define T_OPCODE_LDR_PC 0x4800
683#define T_OPCODE_LDR_SP 0x9800
684#define T_OPCODE_STR_SP 0x9000
685#define T_OPCODE_LDR_IW 0x6800
686#define T_OPCODE_STR_IW 0x6000
687#define T_OPCODE_LDR_IH 0x8800
688#define T_OPCODE_STR_IH 0x8000
689#define T_OPCODE_LDR_IB 0x7800
690#define T_OPCODE_STR_IB 0x7000
691#define T_OPCODE_LDR_RW 0x5800
692#define T_OPCODE_STR_RW 0x5000
693#define T_OPCODE_LDR_RH 0x5a00
694#define T_OPCODE_STR_RH 0x5200
695#define T_OPCODE_LDR_RB 0x5c00
696#define T_OPCODE_STR_RB 0x5400
c9b604bd 697
a737bd4d
NC
698#define T_OPCODE_PUSH 0xb400
699#define T_OPCODE_POP 0xbc00
b99bd4ef 700
2fc8bdac 701#define T_OPCODE_BRANCH 0xe000
b99bd4ef 702
a737bd4d 703#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 704#define THUMB_PP_PC_LR 0x0100
c19d1205 705#define THUMB_LOAD_BIT 0x0800
53365c0d 706#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
707
708#define BAD_ARGS _("bad arguments to instruction")
fdfde340 709#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
710#define BAD_PC _("r15 not allowed here")
711#define BAD_COND _("instruction cannot be conditional")
712#define BAD_OVERLAP _("registers may not be the same")
713#define BAD_HIREG _("lo register required")
714#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 715#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
716#define BAD_BRANCH _("branch must be last instruction in IT block")
717#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 718#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
719#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720#define BAD_IT_COND _("incorrect condition in IT block")
721#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 722#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
723#define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725#define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
c19d1205 727
c921be7d
NC
728static struct hash_control * arm_ops_hsh;
729static struct hash_control * arm_cond_hsh;
730static struct hash_control * arm_shift_hsh;
731static struct hash_control * arm_psr_hsh;
732static struct hash_control * arm_v7m_psr_hsh;
733static struct hash_control * arm_reg_hsh;
734static struct hash_control * arm_reloc_hsh;
735static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 736
b99bd4ef
NC
737/* Stuff needed to resolve the label ambiguity
738 As:
739 ...
740 label: <insn>
741 may differ from:
742 ...
743 label:
5f4273c7 744 <insn> */
b99bd4ef
NC
745
746symbolS * last_label_seen;
b34976b6 747static int label_is_thumb_function_name = FALSE;
e07e6e58 748
3d0c9500
NC
749/* Literal pool structure. Held on a per-section
750 and per-sub-section basis. */
a737bd4d 751
c19d1205 752#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 753typedef struct literal_pool
b99bd4ef 754{
c921be7d
NC
755 expressionS literals [MAX_LITERAL_POOL_SIZE];
756 unsigned int next_free_entry;
757 unsigned int id;
758 symbolS * symbol;
759 segT section;
760 subsegT sub_section;
761 struct literal_pool * next;
3d0c9500 762} literal_pool;
b99bd4ef 763
3d0c9500
NC
764/* Pointer to a linked list of literal pools. */
765literal_pool * list_of_pools = NULL;
e27ec89e 766
e07e6e58
NC
767#ifdef OBJ_ELF
768# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
769#else
770static struct current_it now_it;
771#endif
772
773static inline int
774now_it_compatible (int cond)
775{
776 return (cond & ~1) == (now_it.cc & ~1);
777}
778
779static inline int
780conditional_insn (void)
781{
782 return inst.cond != COND_ALWAYS;
783}
784
785static int in_it_block (void);
786
787static int handle_it_state (void);
788
789static void force_automatic_it_block_close (void);
790
c921be7d
NC
791static void it_fsm_post_encode (void);
792
e07e6e58
NC
793#define set_it_insn_type(type) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return; \
799 } \
800 while (0)
801
c921be7d
NC
802#define set_it_insn_type_nonvoid(type, failret) \
803 do \
804 { \
805 inst.it_insn_type = type; \
806 if (handle_it_state () == FAIL) \
807 return failret; \
808 } \
809 while(0)
810
e07e6e58
NC
811#define set_it_insn_type_last() \
812 do \
813 { \
814 if (inst.cond == COND_ALWAYS) \
815 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
816 else \
817 set_it_insn_type (INSIDE_IT_LAST_INSN); \
818 } \
819 while (0)
820
c19d1205 821/* Pure syntax. */
b99bd4ef 822
c19d1205
ZW
823/* This array holds the chars that always start a comment. If the
824 pre-processor is disabled, these aren't very useful. */
825const char comment_chars[] = "@";
3d0c9500 826
c19d1205
ZW
827/* This array holds the chars that only start a comment at the beginning of
828 a line. If the line seems to have the form '# 123 filename'
829 .line and .file directives will appear in the pre-processed output. */
830/* Note that input_file.c hand checks for '#' at the beginning of the
831 first line of the input file. This is because the compiler outputs
832 #NO_APP at the beginning of its output. */
833/* Also note that comments like this one will always work. */
834const char line_comment_chars[] = "#";
3d0c9500 835
c19d1205 836const char line_separator_chars[] = ";";
b99bd4ef 837
c19d1205
ZW
838/* Chars that can be used to separate mant
839 from exp in floating point numbers. */
840const char EXP_CHARS[] = "eE";
3d0c9500 841
c19d1205
ZW
842/* Chars that mean this number is a floating point constant. */
843/* As in 0f12.456 */
844/* or 0d1.2345e12 */
b99bd4ef 845
c19d1205 846const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 847
c19d1205
ZW
848/* Prefix characters that indicate the start of an immediate
849 value. */
850#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 851
c19d1205
ZW
852/* Separator character handling. */
853
854#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
855
856static inline int
857skip_past_char (char ** str, char c)
858{
859 if (**str == c)
860 {
861 (*str)++;
862 return SUCCESS;
3d0c9500 863 }
c19d1205
ZW
864 else
865 return FAIL;
866}
c921be7d 867
c19d1205 868#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 869
c19d1205
ZW
870/* Arithmetic expressions (possibly involving symbols). */
871
872/* Return TRUE if anything in the expression is a bignum. */
873
874static int
875walk_no_bignums (symbolS * sp)
876{
877 if (symbol_get_value_expression (sp)->X_op == O_big)
878 return 1;
879
880 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 881 {
c19d1205
ZW
882 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
883 || (symbol_get_value_expression (sp)->X_op_symbol
884 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
885 }
886
c19d1205 887 return 0;
3d0c9500
NC
888}
889
c19d1205
ZW
890static int in_my_get_expression = 0;
891
892/* Third argument to my_get_expression. */
893#define GE_NO_PREFIX 0
894#define GE_IMM_PREFIX 1
895#define GE_OPT_PREFIX 2
5287ad62
JB
896/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
897 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
898#define GE_OPT_PREFIX_BIG 3
a737bd4d 899
b99bd4ef 900static int
c19d1205 901my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 902{
c19d1205
ZW
903 char * save_in;
904 segT seg;
b99bd4ef 905
c19d1205
ZW
906 /* In unified syntax, all prefixes are optional. */
907 if (unified_syntax)
5287ad62
JB
908 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
909 : GE_OPT_PREFIX;
b99bd4ef 910
c19d1205 911 switch (prefix_mode)
b99bd4ef 912 {
c19d1205
ZW
913 case GE_NO_PREFIX: break;
914 case GE_IMM_PREFIX:
915 if (!is_immediate_prefix (**str))
916 {
917 inst.error = _("immediate expression requires a # prefix");
918 return FAIL;
919 }
920 (*str)++;
921 break;
922 case GE_OPT_PREFIX:
5287ad62 923 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
924 if (is_immediate_prefix (**str))
925 (*str)++;
926 break;
927 default: abort ();
928 }
b99bd4ef 929
c19d1205 930 memset (ep, 0, sizeof (expressionS));
b99bd4ef 931
c19d1205
ZW
932 save_in = input_line_pointer;
933 input_line_pointer = *str;
934 in_my_get_expression = 1;
935 seg = expression (ep);
936 in_my_get_expression = 0;
937
f86adc07 938 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 939 {
f86adc07 940 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 if (inst.error == NULL)
f86adc07
NS
944 inst.error = (ep->X_op == O_absent
945 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
946 return 1;
947 }
b99bd4ef 948
c19d1205
ZW
949#ifdef OBJ_AOUT
950 if (seg != absolute_section
951 && seg != text_section
952 && seg != data_section
953 && seg != bss_section
954 && seg != undefined_section)
955 {
956 inst.error = _("bad segment");
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 1;
b99bd4ef 960 }
87975d2a
AM
961#else
962 (void) seg;
c19d1205 963#endif
b99bd4ef 964
c19d1205
ZW
965 /* Get rid of any bignums now, so that we don't generate an error for which
966 we can't establish a line number later on. Big numbers are never valid
967 in instructions, which is where this routine is always called. */
5287ad62
JB
968 if (prefix_mode != GE_OPT_PREFIX_BIG
969 && (ep->X_op == O_big
970 || (ep->X_add_symbol
971 && (walk_no_bignums (ep->X_add_symbol)
972 || (ep->X_op_symbol
973 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
974 {
975 inst.error = _("invalid constant");
976 *str = input_line_pointer;
977 input_line_pointer = save_in;
978 return 1;
979 }
b99bd4ef 980
c19d1205
ZW
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 0;
b99bd4ef
NC
984}
985
c19d1205
ZW
986/* Turn a string in input_line_pointer into a floating point constant
987 of type TYPE, and store the appropriate bytes in *LITP. The number
988 of LITTLENUMS emitted is stored in *SIZEP. An error message is
989 returned, or NULL on OK.
b99bd4ef 990
c19d1205
ZW
991 Note that fp constants aren't represent in the normal way on the ARM.
992 In big endian mode, things are as expected. However, in little endian
993 mode fp constants are big-endian word-wise, and little-endian byte-wise
994 within the words. For example, (double) 1.1 in big endian mode is
995 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
996 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 997
c19d1205 998 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 999
c19d1205
ZW
1000char *
1001md_atof (int type, char * litP, int * sizeP)
1002{
1003 int prec;
1004 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1005 char *t;
1006 int i;
b99bd4ef 1007
c19d1205
ZW
1008 switch (type)
1009 {
1010 case 'f':
1011 case 'F':
1012 case 's':
1013 case 'S':
1014 prec = 2;
1015 break;
b99bd4ef 1016
c19d1205
ZW
1017 case 'd':
1018 case 'D':
1019 case 'r':
1020 case 'R':
1021 prec = 4;
1022 break;
b99bd4ef 1023
c19d1205
ZW
1024 case 'x':
1025 case 'X':
499ac353 1026 prec = 5;
c19d1205 1027 break;
b99bd4ef 1028
c19d1205
ZW
1029 case 'p':
1030 case 'P':
499ac353 1031 prec = 5;
c19d1205 1032 break;
a737bd4d 1033
c19d1205
ZW
1034 default:
1035 *sizeP = 0;
499ac353 1036 return _("Unrecognized or unsupported floating point constant");
c19d1205 1037 }
b99bd4ef 1038
c19d1205
ZW
1039 t = atof_ieee (input_line_pointer, type, words);
1040 if (t)
1041 input_line_pointer = t;
499ac353 1042 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1043
c19d1205
ZW
1044 if (target_big_endian)
1045 {
1046 for (i = 0; i < prec; i++)
1047 {
499ac353
NC
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1050 }
1051 }
1052 else
1053 {
e74cfd16 1054 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1055 for (i = prec - 1; i >= 0; i--)
1056 {
499ac353
NC
1057 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1058 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1059 }
1060 else
1061 /* For a 4 byte float the order of elements in `words' is 1 0.
1062 For an 8 byte float the order is 1 0 3 2. */
1063 for (i = 0; i < prec; i += 2)
1064 {
499ac353
NC
1065 md_number_to_chars (litP, (valueT) words[i + 1],
1066 sizeof (LITTLENUM_TYPE));
1067 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1068 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1069 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1070 }
1071 }
b99bd4ef 1072
499ac353 1073 return NULL;
c19d1205 1074}
b99bd4ef 1075
c19d1205
ZW
1076/* We handle all bad expressions here, so that we can report the faulty
1077 instruction in the error message. */
1078void
91d6fa6a 1079md_operand (expressionS * exp)
c19d1205
ZW
1080{
1081 if (in_my_get_expression)
91d6fa6a 1082 exp->X_op = O_illegal;
b99bd4ef
NC
1083}
1084
c19d1205 1085/* Immediate values. */
b99bd4ef 1086
c19d1205
ZW
1087/* Generic immediate-value read function for use in directives.
1088 Accepts anything that 'expression' can fold to a constant.
1089 *val receives the number. */
1090#ifdef OBJ_ELF
1091static int
1092immediate_for_directive (int *val)
b99bd4ef 1093{
c19d1205
ZW
1094 expressionS exp;
1095 exp.X_op = O_illegal;
b99bd4ef 1096
c19d1205
ZW
1097 if (is_immediate_prefix (*input_line_pointer))
1098 {
1099 input_line_pointer++;
1100 expression (&exp);
1101 }
b99bd4ef 1102
c19d1205
ZW
1103 if (exp.X_op != O_constant)
1104 {
1105 as_bad (_("expected #constant"));
1106 ignore_rest_of_line ();
1107 return FAIL;
1108 }
1109 *val = exp.X_add_number;
1110 return SUCCESS;
b99bd4ef 1111}
c19d1205 1112#endif
b99bd4ef 1113
c19d1205 1114/* Register parsing. */
b99bd4ef 1115
c19d1205
ZW
1116/* Generic register parser. CCP points to what should be the
1117 beginning of a register name. If it is indeed a valid register
1118 name, advance CCP over it and return the reg_entry structure;
1119 otherwise return NULL. Does not issue diagnostics. */
1120
1121static struct reg_entry *
1122arm_reg_parse_multi (char **ccp)
b99bd4ef 1123{
c19d1205
ZW
1124 char *start = *ccp;
1125 char *p;
1126 struct reg_entry *reg;
b99bd4ef 1127
c19d1205
ZW
1128#ifdef REGISTER_PREFIX
1129 if (*start != REGISTER_PREFIX)
01cfc07f 1130 return NULL;
c19d1205
ZW
1131 start++;
1132#endif
1133#ifdef OPTIONAL_REGISTER_PREFIX
1134 if (*start == OPTIONAL_REGISTER_PREFIX)
1135 start++;
1136#endif
b99bd4ef 1137
c19d1205
ZW
1138 p = start;
1139 if (!ISALPHA (*p) || !is_name_beginner (*p))
1140 return NULL;
b99bd4ef 1141
c19d1205
ZW
1142 do
1143 p++;
1144 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1145
1146 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1147
1148 if (!reg)
1149 return NULL;
1150
1151 *ccp = p;
1152 return reg;
b99bd4ef
NC
1153}
1154
1155static int
dcbf9037
JB
1156arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1157 enum arm_reg_type type)
b99bd4ef 1158{
c19d1205
ZW
1159 /* Alternative syntaxes are accepted for a few register classes. */
1160 switch (type)
1161 {
1162 case REG_TYPE_MVF:
1163 case REG_TYPE_MVD:
1164 case REG_TYPE_MVFX:
1165 case REG_TYPE_MVDX:
1166 /* Generic coprocessor register names are allowed for these. */
79134647 1167 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1168 return reg->number;
1169 break;
69b97547 1170
c19d1205
ZW
1171 case REG_TYPE_CP:
1172 /* For backward compatibility, a bare number is valid here. */
1173 {
1174 unsigned long processor = strtoul (start, ccp, 10);
1175 if (*ccp != start && processor <= 15)
1176 return processor;
1177 }
6057a28f 1178
c19d1205
ZW
1179 case REG_TYPE_MMXWC:
1180 /* WC includes WCG. ??? I'm not sure this is true for all
1181 instructions that take WC registers. */
79134647 1182 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1183 return reg->number;
6057a28f 1184 break;
c19d1205 1185
6057a28f 1186 default:
c19d1205 1187 break;
6057a28f
NC
1188 }
1189
dcbf9037
JB
1190 return FAIL;
1191}
1192
1193/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1194 return value is the register number or FAIL. */
1195
1196static int
1197arm_reg_parse (char **ccp, enum arm_reg_type type)
1198{
1199 char *start = *ccp;
1200 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1201 int ret;
1202
1203 /* Do not allow a scalar (reg+index) to parse as a register. */
1204 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1205 return FAIL;
1206
1207 if (reg && reg->type == type)
1208 return reg->number;
1209
1210 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1211 return ret;
1212
c19d1205
ZW
1213 *ccp = start;
1214 return FAIL;
1215}
69b97547 1216
dcbf9037
JB
1217/* Parse a Neon type specifier. *STR should point at the leading '.'
1218 character. Does no verification at this stage that the type fits the opcode
1219 properly. E.g.,
1220
1221 .i32.i32.s16
1222 .s32.f32
1223 .u16
1224
1225 Can all be legally parsed by this function.
1226
1227 Fills in neon_type struct pointer with parsed information, and updates STR
1228 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1229 type, FAIL if not. */
1230
1231static int
1232parse_neon_type (struct neon_type *type, char **str)
1233{
1234 char *ptr = *str;
1235
1236 if (type)
1237 type->elems = 0;
1238
1239 while (type->elems < NEON_MAX_TYPE_ELS)
1240 {
1241 enum neon_el_type thistype = NT_untyped;
1242 unsigned thissize = -1u;
1243
1244 if (*ptr != '.')
1245 break;
1246
1247 ptr++;
1248
1249 /* Just a size without an explicit type. */
1250 if (ISDIGIT (*ptr))
1251 goto parsesize;
1252
1253 switch (TOLOWER (*ptr))
1254 {
1255 case 'i': thistype = NT_integer; break;
1256 case 'f': thistype = NT_float; break;
1257 case 'p': thistype = NT_poly; break;
1258 case 's': thistype = NT_signed; break;
1259 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1260 case 'd':
1261 thistype = NT_float;
1262 thissize = 64;
1263 ptr++;
1264 goto done;
dcbf9037
JB
1265 default:
1266 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1267 return FAIL;
1268 }
1269
1270 ptr++;
1271
1272 /* .f is an abbreviation for .f32. */
1273 if (thistype == NT_float && !ISDIGIT (*ptr))
1274 thissize = 32;
1275 else
1276 {
1277 parsesize:
1278 thissize = strtoul (ptr, &ptr, 10);
1279
1280 if (thissize != 8 && thissize != 16 && thissize != 32
1281 && thissize != 64)
1282 {
1283 as_bad (_("bad size %d in type specifier"), thissize);
1284 return FAIL;
1285 }
1286 }
1287
037e8744 1288 done:
dcbf9037
JB
1289 if (type)
1290 {
1291 type->el[type->elems].type = thistype;
1292 type->el[type->elems].size = thissize;
1293 type->elems++;
1294 }
1295 }
1296
1297 /* Empty/missing type is not a successful parse. */
1298 if (type->elems == 0)
1299 return FAIL;
1300
1301 *str = ptr;
1302
1303 return SUCCESS;
1304}
1305
1306/* Errors may be set multiple times during parsing or bit encoding
1307 (particularly in the Neon bits), but usually the earliest error which is set
1308 will be the most meaningful. Avoid overwriting it with later (cascading)
1309 errors by calling this function. */
1310
1311static void
1312first_error (const char *err)
1313{
1314 if (!inst.error)
1315 inst.error = err;
1316}
1317
1318/* Parse a single type, e.g. ".s32", leading period included. */
1319static int
1320parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1321{
1322 char *str = *ccp;
1323 struct neon_type optype;
1324
1325 if (*str == '.')
1326 {
1327 if (parse_neon_type (&optype, &str) == SUCCESS)
1328 {
1329 if (optype.elems == 1)
1330 *vectype = optype.el[0];
1331 else
1332 {
1333 first_error (_("only one type should be specified for operand"));
1334 return FAIL;
1335 }
1336 }
1337 else
1338 {
1339 first_error (_("vector type expected"));
1340 return FAIL;
1341 }
1342 }
1343 else
1344 return FAIL;
5f4273c7 1345
dcbf9037 1346 *ccp = str;
5f4273c7 1347
dcbf9037
JB
1348 return SUCCESS;
1349}
1350
1351/* Special meanings for indices (which have a range of 0-7), which will fit into
1352 a 4-bit integer. */
1353
1354#define NEON_ALL_LANES 15
1355#define NEON_INTERLEAVE_LANES 14
1356
1357/* Parse either a register or a scalar, with an optional type. Return the
1358 register number, and optionally fill in the actual type of the register
1359 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1360 type/index information in *TYPEINFO. */
1361
1362static int
1363parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1364 enum arm_reg_type *rtype,
1365 struct neon_typed_alias *typeinfo)
1366{
1367 char *str = *ccp;
1368 struct reg_entry *reg = arm_reg_parse_multi (&str);
1369 struct neon_typed_alias atype;
1370 struct neon_type_el parsetype;
1371
1372 atype.defined = 0;
1373 atype.index = -1;
1374 atype.eltype.type = NT_invtype;
1375 atype.eltype.size = -1;
1376
1377 /* Try alternate syntax for some types of register. Note these are mutually
1378 exclusive with the Neon syntax extensions. */
1379 if (reg == NULL)
1380 {
1381 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1382 if (altreg != FAIL)
1383 *ccp = str;
1384 if (typeinfo)
1385 *typeinfo = atype;
1386 return altreg;
1387 }
1388
037e8744
JB
1389 /* Undo polymorphism when a set of register types may be accepted. */
1390 if ((type == REG_TYPE_NDQ
1391 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1392 || (type == REG_TYPE_VFSD
1393 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1394 || (type == REG_TYPE_NSDQ
1395 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1396 || reg->type == REG_TYPE_NQ))
1397 || (type == REG_TYPE_MMXWC
1398 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1399 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1400
1401 if (type != reg->type)
1402 return FAIL;
1403
1404 if (reg->neon)
1405 atype = *reg->neon;
5f4273c7 1406
dcbf9037
JB
1407 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1408 {
1409 if ((atype.defined & NTA_HASTYPE) != 0)
1410 {
1411 first_error (_("can't redefine type for operand"));
1412 return FAIL;
1413 }
1414 atype.defined |= NTA_HASTYPE;
1415 atype.eltype = parsetype;
1416 }
5f4273c7 1417
dcbf9037
JB
1418 if (skip_past_char (&str, '[') == SUCCESS)
1419 {
1420 if (type != REG_TYPE_VFD)
1421 {
1422 first_error (_("only D registers may be indexed"));
1423 return FAIL;
1424 }
5f4273c7 1425
dcbf9037
JB
1426 if ((atype.defined & NTA_HASINDEX) != 0)
1427 {
1428 first_error (_("can't change index for operand"));
1429 return FAIL;
1430 }
1431
1432 atype.defined |= NTA_HASINDEX;
1433
1434 if (skip_past_char (&str, ']') == SUCCESS)
1435 atype.index = NEON_ALL_LANES;
1436 else
1437 {
1438 expressionS exp;
1439
1440 my_get_expression (&exp, &str, GE_NO_PREFIX);
1441
1442 if (exp.X_op != O_constant)
1443 {
1444 first_error (_("constant expression required"));
1445 return FAIL;
1446 }
1447
1448 if (skip_past_char (&str, ']') == FAIL)
1449 return FAIL;
1450
1451 atype.index = exp.X_add_number;
1452 }
1453 }
5f4273c7 1454
dcbf9037
JB
1455 if (typeinfo)
1456 *typeinfo = atype;
5f4273c7 1457
dcbf9037
JB
1458 if (rtype)
1459 *rtype = type;
5f4273c7 1460
dcbf9037 1461 *ccp = str;
5f4273c7 1462
dcbf9037
JB
1463 return reg->number;
1464}
1465
1466/* Like arm_reg_parse, but allow allow the following extra features:
1467 - If RTYPE is non-zero, return the (possibly restricted) type of the
1468 register (e.g. Neon double or quad reg when either has been requested).
1469 - If this is a Neon vector type with additional type information, fill
1470 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1471 This function will fault on encountering a scalar. */
dcbf9037
JB
1472
1473static int
1474arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1475 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1476{
1477 struct neon_typed_alias atype;
1478 char *str = *ccp;
1479 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1480
1481 if (reg == FAIL)
1482 return FAIL;
1483
0855e32b
NS
1484 /* Do not allow regname(... to parse as a register. */
1485 if (*str == '(')
1486 return FAIL;
1487
dcbf9037
JB
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if ((atype.defined & NTA_HASINDEX) != 0)
1490 {
1491 first_error (_("register operand expected, but got scalar"));
1492 return FAIL;
1493 }
1494
1495 if (vectype)
1496 *vectype = atype.eltype;
1497
1498 *ccp = str;
1499
1500 return reg;
1501}
1502
1503#define NEON_SCALAR_REG(X) ((X) >> 4)
1504#define NEON_SCALAR_INDEX(X) ((X) & 15)
1505
5287ad62
JB
1506/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1507 have enough information to be able to do a good job bounds-checking. So, we
1508 just do easy checks here, and do further checks later. */
1509
1510static int
dcbf9037 1511parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1512{
dcbf9037 1513 int reg;
5287ad62 1514 char *str = *ccp;
dcbf9037 1515 struct neon_typed_alias atype;
5f4273c7 1516
dcbf9037 1517 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1518
dcbf9037 1519 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1520 return FAIL;
5f4273c7 1521
dcbf9037 1522 if (atype.index == NEON_ALL_LANES)
5287ad62 1523 {
dcbf9037 1524 first_error (_("scalar must have an index"));
5287ad62
JB
1525 return FAIL;
1526 }
dcbf9037 1527 else if (atype.index >= 64 / elsize)
5287ad62 1528 {
dcbf9037 1529 first_error (_("scalar index out of range"));
5287ad62
JB
1530 return FAIL;
1531 }
5f4273c7 1532
dcbf9037
JB
1533 if (type)
1534 *type = atype.eltype;
5f4273c7 1535
5287ad62 1536 *ccp = str;
5f4273c7 1537
dcbf9037 1538 return reg * 16 + atype.index;
5287ad62
JB
1539}
1540
c19d1205 1541/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1542
c19d1205
ZW
1543static long
1544parse_reg_list (char ** strp)
1545{
1546 char * str = * strp;
1547 long range = 0;
1548 int another_range;
a737bd4d 1549
c19d1205
ZW
1550 /* We come back here if we get ranges concatenated by '+' or '|'. */
1551 do
6057a28f 1552 {
c19d1205 1553 another_range = 0;
a737bd4d 1554
c19d1205
ZW
1555 if (*str == '{')
1556 {
1557 int in_range = 0;
1558 int cur_reg = -1;
a737bd4d 1559
c19d1205
ZW
1560 str++;
1561 do
1562 {
1563 int reg;
6057a28f 1564
dcbf9037 1565 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1566 {
dcbf9037 1567 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1568 return FAIL;
1569 }
a737bd4d 1570
c19d1205
ZW
1571 if (in_range)
1572 {
1573 int i;
a737bd4d 1574
c19d1205
ZW
1575 if (reg <= cur_reg)
1576 {
dcbf9037 1577 first_error (_("bad range in register list"));
c19d1205
ZW
1578 return FAIL;
1579 }
40a18ebd 1580
c19d1205
ZW
1581 for (i = cur_reg + 1; i < reg; i++)
1582 {
1583 if (range & (1 << i))
1584 as_tsktsk
1585 (_("Warning: duplicated register (r%d) in register list"),
1586 i);
1587 else
1588 range |= 1 << i;
1589 }
1590 in_range = 0;
1591 }
a737bd4d 1592
c19d1205
ZW
1593 if (range & (1 << reg))
1594 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1595 reg);
1596 else if (reg <= cur_reg)
1597 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1598
c19d1205
ZW
1599 range |= 1 << reg;
1600 cur_reg = reg;
1601 }
1602 while (skip_past_comma (&str) != FAIL
1603 || (in_range = 1, *str++ == '-'));
1604 str--;
a737bd4d 1605
c19d1205
ZW
1606 if (*str++ != '}')
1607 {
dcbf9037 1608 first_error (_("missing `}'"));
c19d1205
ZW
1609 return FAIL;
1610 }
1611 }
1612 else
1613 {
91d6fa6a 1614 expressionS exp;
40a18ebd 1615
91d6fa6a 1616 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1617 return FAIL;
40a18ebd 1618
91d6fa6a 1619 if (exp.X_op == O_constant)
c19d1205 1620 {
91d6fa6a
NC
1621 if (exp.X_add_number
1622 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1623 {
1624 inst.error = _("invalid register mask");
1625 return FAIL;
1626 }
a737bd4d 1627
91d6fa6a 1628 if ((range & exp.X_add_number) != 0)
c19d1205 1629 {
91d6fa6a 1630 int regno = range & exp.X_add_number;
a737bd4d 1631
c19d1205
ZW
1632 regno &= -regno;
1633 regno = (1 << regno) - 1;
1634 as_tsktsk
1635 (_("Warning: duplicated register (r%d) in register list"),
1636 regno);
1637 }
a737bd4d 1638
91d6fa6a 1639 range |= exp.X_add_number;
c19d1205
ZW
1640 }
1641 else
1642 {
1643 if (inst.reloc.type != 0)
1644 {
1645 inst.error = _("expression too complex");
1646 return FAIL;
1647 }
a737bd4d 1648
91d6fa6a 1649 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1650 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1651 inst.reloc.pc_rel = 0;
1652 }
1653 }
a737bd4d 1654
c19d1205
ZW
1655 if (*str == '|' || *str == '+')
1656 {
1657 str++;
1658 another_range = 1;
1659 }
a737bd4d 1660 }
c19d1205 1661 while (another_range);
a737bd4d 1662
c19d1205
ZW
1663 *strp = str;
1664 return range;
a737bd4d
NC
1665}
1666
5287ad62
JB
1667/* Types of registers in a list. */
1668
1669enum reg_list_els
1670{
1671 REGLIST_VFP_S,
1672 REGLIST_VFP_D,
1673 REGLIST_NEON_D
1674};
1675
c19d1205
ZW
1676/* Parse a VFP register list. If the string is invalid return FAIL.
1677 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1678 register. Parses registers of type ETYPE.
1679 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1680 - Q registers can be used to specify pairs of D registers
1681 - { } can be omitted from around a singleton register list
1682 FIXME: This is not implemented, as it would require backtracking in
1683 some cases, e.g.:
1684 vtbl.8 d3,d4,d5
1685 This could be done (the meaning isn't really ambiguous), but doesn't
1686 fit in well with the current parsing framework.
dcbf9037
JB
1687 - 32 D registers may be used (also true for VFPv3).
1688 FIXME: Types are ignored in these register lists, which is probably a
1689 bug. */
6057a28f 1690
c19d1205 1691static int
037e8744 1692parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1693{
037e8744 1694 char *str = *ccp;
c19d1205
ZW
1695 int base_reg;
1696 int new_base;
21d799b5 1697 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1698 int max_regs = 0;
c19d1205
ZW
1699 int count = 0;
1700 int warned = 0;
1701 unsigned long mask = 0;
a737bd4d 1702 int i;
6057a28f 1703
037e8744 1704 if (*str != '{')
5287ad62
JB
1705 {
1706 inst.error = _("expecting {");
1707 return FAIL;
1708 }
6057a28f 1709
037e8744 1710 str++;
6057a28f 1711
5287ad62 1712 switch (etype)
c19d1205 1713 {
5287ad62 1714 case REGLIST_VFP_S:
c19d1205
ZW
1715 regtype = REG_TYPE_VFS;
1716 max_regs = 32;
5287ad62 1717 break;
5f4273c7 1718
5287ad62
JB
1719 case REGLIST_VFP_D:
1720 regtype = REG_TYPE_VFD;
b7fc2769 1721 break;
5f4273c7 1722
b7fc2769
JB
1723 case REGLIST_NEON_D:
1724 regtype = REG_TYPE_NDQ;
1725 break;
1726 }
1727
1728 if (etype != REGLIST_VFP_S)
1729 {
b1cc4aeb
PB
1730 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1731 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1732 {
1733 max_regs = 32;
1734 if (thumb_mode)
1735 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1736 fpu_vfp_ext_d32);
5287ad62
JB
1737 else
1738 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1739 fpu_vfp_ext_d32);
5287ad62
JB
1740 }
1741 else
1742 max_regs = 16;
c19d1205 1743 }
6057a28f 1744
c19d1205 1745 base_reg = max_regs;
a737bd4d 1746
c19d1205
ZW
1747 do
1748 {
5287ad62 1749 int setmask = 1, addregs = 1;
dcbf9037 1750
037e8744 1751 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1752
c19d1205 1753 if (new_base == FAIL)
a737bd4d 1754 {
dcbf9037 1755 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1756 return FAIL;
1757 }
5f4273c7 1758
b7fc2769
JB
1759 if (new_base >= max_regs)
1760 {
1761 first_error (_("register out of range in list"));
1762 return FAIL;
1763 }
5f4273c7 1764
5287ad62
JB
1765 /* Note: a value of 2 * n is returned for the register Q<n>. */
1766 if (regtype == REG_TYPE_NQ)
1767 {
1768 setmask = 3;
1769 addregs = 2;
1770 }
1771
c19d1205
ZW
1772 if (new_base < base_reg)
1773 base_reg = new_base;
a737bd4d 1774
5287ad62 1775 if (mask & (setmask << new_base))
c19d1205 1776 {
dcbf9037 1777 first_error (_("invalid register list"));
c19d1205 1778 return FAIL;
a737bd4d 1779 }
a737bd4d 1780
c19d1205
ZW
1781 if ((mask >> new_base) != 0 && ! warned)
1782 {
1783 as_tsktsk (_("register list not in ascending order"));
1784 warned = 1;
1785 }
0bbf2aa4 1786
5287ad62
JB
1787 mask |= setmask << new_base;
1788 count += addregs;
0bbf2aa4 1789
037e8744 1790 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1791 {
1792 int high_range;
0bbf2aa4 1793
037e8744 1794 str++;
0bbf2aa4 1795
037e8744 1796 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1797 == FAIL)
c19d1205
ZW
1798 {
1799 inst.error = gettext (reg_expected_msgs[regtype]);
1800 return FAIL;
1801 }
0bbf2aa4 1802
b7fc2769
JB
1803 if (high_range >= max_regs)
1804 {
1805 first_error (_("register out of range in list"));
1806 return FAIL;
1807 }
1808
5287ad62
JB
1809 if (regtype == REG_TYPE_NQ)
1810 high_range = high_range + 1;
1811
c19d1205
ZW
1812 if (high_range <= new_base)
1813 {
1814 inst.error = _("register range not in ascending order");
1815 return FAIL;
1816 }
0bbf2aa4 1817
5287ad62 1818 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1819 {
5287ad62 1820 if (mask & (setmask << new_base))
0bbf2aa4 1821 {
c19d1205
ZW
1822 inst.error = _("invalid register list");
1823 return FAIL;
0bbf2aa4 1824 }
c19d1205 1825
5287ad62
JB
1826 mask |= setmask << new_base;
1827 count += addregs;
0bbf2aa4 1828 }
0bbf2aa4 1829 }
0bbf2aa4 1830 }
037e8744 1831 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1832
037e8744 1833 str++;
0bbf2aa4 1834
c19d1205
ZW
1835 /* Sanity check -- should have raised a parse error above. */
1836 if (count == 0 || count > max_regs)
1837 abort ();
1838
1839 *pbase = base_reg;
1840
1841 /* Final test -- the registers must be consecutive. */
1842 mask >>= base_reg;
1843 for (i = 0; i < count; i++)
1844 {
1845 if ((mask & (1u << i)) == 0)
1846 {
1847 inst.error = _("non-contiguous register range");
1848 return FAIL;
1849 }
1850 }
1851
037e8744
JB
1852 *ccp = str;
1853
c19d1205 1854 return count;
b99bd4ef
NC
1855}
1856
dcbf9037
JB
1857/* True if two alias types are the same. */
1858
c921be7d 1859static bfd_boolean
dcbf9037
JB
1860neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1861{
1862 if (!a && !b)
c921be7d 1863 return TRUE;
5f4273c7 1864
dcbf9037 1865 if (!a || !b)
c921be7d 1866 return FALSE;
dcbf9037
JB
1867
1868 if (a->defined != b->defined)
c921be7d 1869 return FALSE;
5f4273c7 1870
dcbf9037
JB
1871 if ((a->defined & NTA_HASTYPE) != 0
1872 && (a->eltype.type != b->eltype.type
1873 || a->eltype.size != b->eltype.size))
c921be7d 1874 return FALSE;
dcbf9037
JB
1875
1876 if ((a->defined & NTA_HASINDEX) != 0
1877 && (a->index != b->index))
c921be7d 1878 return FALSE;
5f4273c7 1879
c921be7d 1880 return TRUE;
dcbf9037
JB
1881}
1882
5287ad62
JB
1883/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1884 The base register is put in *PBASE.
dcbf9037 1885 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1886 the return value.
1887 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1888 Bits [6:5] encode the list length (minus one).
1889 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1890
5287ad62 1891#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1892#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1893#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1894
1895static int
dcbf9037
JB
1896parse_neon_el_struct_list (char **str, unsigned *pbase,
1897 struct neon_type_el *eltype)
5287ad62
JB
1898{
1899 char *ptr = *str;
1900 int base_reg = -1;
1901 int reg_incr = -1;
1902 int count = 0;
1903 int lane = -1;
1904 int leading_brace = 0;
1905 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1906 const char *const incr_error = _("register stride must be 1 or 2");
1907 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1908 struct neon_typed_alias firsttype;
5f4273c7 1909
5287ad62
JB
1910 if (skip_past_char (&ptr, '{') == SUCCESS)
1911 leading_brace = 1;
5f4273c7 1912
5287ad62
JB
1913 do
1914 {
dcbf9037
JB
1915 struct neon_typed_alias atype;
1916 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1917
5287ad62
JB
1918 if (getreg == FAIL)
1919 {
dcbf9037 1920 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1921 return FAIL;
1922 }
5f4273c7 1923
5287ad62
JB
1924 if (base_reg == -1)
1925 {
1926 base_reg = getreg;
1927 if (rtype == REG_TYPE_NQ)
1928 {
1929 reg_incr = 1;
5287ad62 1930 }
dcbf9037 1931 firsttype = atype;
5287ad62
JB
1932 }
1933 else if (reg_incr == -1)
1934 {
1935 reg_incr = getreg - base_reg;
1936 if (reg_incr < 1 || reg_incr > 2)
1937 {
dcbf9037 1938 first_error (_(incr_error));
5287ad62
JB
1939 return FAIL;
1940 }
1941 }
1942 else if (getreg != base_reg + reg_incr * count)
1943 {
dcbf9037
JB
1944 first_error (_(incr_error));
1945 return FAIL;
1946 }
1947
c921be7d 1948 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1949 {
1950 first_error (_(type_error));
5287ad62
JB
1951 return FAIL;
1952 }
5f4273c7 1953
5287ad62
JB
1954 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1955 modes. */
1956 if (ptr[0] == '-')
1957 {
dcbf9037 1958 struct neon_typed_alias htype;
5287ad62
JB
1959 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1960 if (lane == -1)
1961 lane = NEON_INTERLEAVE_LANES;
1962 else if (lane != NEON_INTERLEAVE_LANES)
1963 {
dcbf9037 1964 first_error (_(type_error));
5287ad62
JB
1965 return FAIL;
1966 }
1967 if (reg_incr == -1)
1968 reg_incr = 1;
1969 else if (reg_incr != 1)
1970 {
dcbf9037 1971 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1972 return FAIL;
1973 }
1974 ptr++;
dcbf9037 1975 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1976 if (hireg == FAIL)
1977 {
dcbf9037
JB
1978 first_error (_(reg_expected_msgs[rtype]));
1979 return FAIL;
1980 }
c921be7d 1981 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1982 {
1983 first_error (_(type_error));
5287ad62
JB
1984 return FAIL;
1985 }
1986 count += hireg + dregs - getreg;
1987 continue;
1988 }
5f4273c7 1989
5287ad62
JB
1990 /* If we're using Q registers, we can't use [] or [n] syntax. */
1991 if (rtype == REG_TYPE_NQ)
1992 {
1993 count += 2;
1994 continue;
1995 }
5f4273c7 1996
dcbf9037 1997 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1998 {
dcbf9037
JB
1999 if (lane == -1)
2000 lane = atype.index;
2001 else if (lane != atype.index)
5287ad62 2002 {
dcbf9037
JB
2003 first_error (_(type_error));
2004 return FAIL;
5287ad62
JB
2005 }
2006 }
2007 else if (lane == -1)
2008 lane = NEON_INTERLEAVE_LANES;
2009 else if (lane != NEON_INTERLEAVE_LANES)
2010 {
dcbf9037 2011 first_error (_(type_error));
5287ad62
JB
2012 return FAIL;
2013 }
2014 count++;
2015 }
2016 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2017
5287ad62
JB
2018 /* No lane set by [x]. We must be interleaving structures. */
2019 if (lane == -1)
2020 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2021
5287ad62
JB
2022 /* Sanity check. */
2023 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2024 || (count > 1 && reg_incr == -1))
2025 {
dcbf9037 2026 first_error (_("error parsing element/structure list"));
5287ad62
JB
2027 return FAIL;
2028 }
2029
2030 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2031 {
dcbf9037 2032 first_error (_("expected }"));
5287ad62
JB
2033 return FAIL;
2034 }
5f4273c7 2035
5287ad62
JB
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038
dcbf9037
JB
2039 if (eltype)
2040 *eltype = firsttype.eltype;
2041
5287ad62
JB
2042 *pbase = base_reg;
2043 *str = ptr;
5f4273c7 2044
5287ad62
JB
2045 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2046}
2047
c19d1205
ZW
2048/* Parse an explicit relocation suffix on an expression. This is
2049 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2050 arm_reloc_hsh contains no entries, so this function can only
2051 succeed if there is no () after the word. Returns -1 on error,
2052 BFD_RELOC_UNUSED if there wasn't any suffix. */
2053static int
2054parse_reloc (char **str)
b99bd4ef 2055{
c19d1205
ZW
2056 struct reloc_entry *r;
2057 char *p, *q;
b99bd4ef 2058
c19d1205
ZW
2059 if (**str != '(')
2060 return BFD_RELOC_UNUSED;
b99bd4ef 2061
c19d1205
ZW
2062 p = *str + 1;
2063 q = p;
2064
2065 while (*q && *q != ')' && *q != ',')
2066 q++;
2067 if (*q != ')')
2068 return -1;
2069
21d799b5
NC
2070 if ((r = (struct reloc_entry *)
2071 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2072 return -1;
2073
2074 *str = q + 1;
2075 return r->reloc;
b99bd4ef
NC
2076}
2077
c19d1205
ZW
2078/* Directives: register aliases. */
2079
dcbf9037 2080static struct reg_entry *
90ec0d68 2081insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2082{
d3ce72d0 2083 struct reg_entry *new_reg;
c19d1205 2084 const char *name;
b99bd4ef 2085
d3ce72d0 2086 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2087 {
d3ce72d0 2088 if (new_reg->builtin)
c19d1205 2089 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2090
c19d1205
ZW
2091 /* Only warn about a redefinition if it's not defined as the
2092 same register. */
d3ce72d0 2093 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2094 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2095
d929913e 2096 return NULL;
c19d1205 2097 }
b99bd4ef 2098
c19d1205 2099 name = xstrdup (str);
d3ce72d0 2100 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2101
d3ce72d0
NC
2102 new_reg->name = name;
2103 new_reg->number = number;
2104 new_reg->type = type;
2105 new_reg->builtin = FALSE;
2106 new_reg->neon = NULL;
b99bd4ef 2107
d3ce72d0 2108 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2109 abort ();
5f4273c7 2110
d3ce72d0 2111 return new_reg;
dcbf9037
JB
2112}
2113
2114static void
2115insert_neon_reg_alias (char *str, int number, int type,
2116 struct neon_typed_alias *atype)
2117{
2118 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2119
dcbf9037
JB
2120 if (!reg)
2121 {
2122 first_error (_("attempt to redefine typed alias"));
2123 return;
2124 }
5f4273c7 2125
dcbf9037
JB
2126 if (atype)
2127 {
21d799b5
NC
2128 reg->neon = (struct neon_typed_alias *)
2129 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2130 *reg->neon = *atype;
2131 }
c19d1205 2132}
b99bd4ef 2133
c19d1205 2134/* Look for the .req directive. This is of the form:
b99bd4ef 2135
c19d1205 2136 new_register_name .req existing_register_name
b99bd4ef 2137
c19d1205 2138 If we find one, or if it looks sufficiently like one that we want to
d929913e 2139 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2140
d929913e 2141static bfd_boolean
c19d1205
ZW
2142create_register_alias (char * newname, char *p)
2143{
2144 struct reg_entry *old;
2145 char *oldname, *nbuf;
2146 size_t nlen;
b99bd4ef 2147
c19d1205
ZW
2148 /* The input scrubber ensures that whitespace after the mnemonic is
2149 collapsed to single spaces. */
2150 oldname = p;
2151 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2152 return FALSE;
b99bd4ef 2153
c19d1205
ZW
2154 oldname += 6;
2155 if (*oldname == '\0')
d929913e 2156 return FALSE;
b99bd4ef 2157
21d799b5 2158 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2159 if (!old)
b99bd4ef 2160 {
c19d1205 2161 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2162 return TRUE;
b99bd4ef
NC
2163 }
2164
c19d1205
ZW
2165 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2166 the desired alias name, and p points to its end. If not, then
2167 the desired alias name is in the global original_case_string. */
2168#ifdef TC_CASE_SENSITIVE
2169 nlen = p - newname;
2170#else
2171 newname = original_case_string;
2172 nlen = strlen (newname);
2173#endif
b99bd4ef 2174
21d799b5 2175 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2176 memcpy (nbuf, newname, nlen);
2177 nbuf[nlen] = '\0';
b99bd4ef 2178
c19d1205
ZW
2179 /* Create aliases under the new name as stated; an all-lowercase
2180 version of the new name; and an all-uppercase version of the new
2181 name. */
d929913e
NC
2182 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2183 {
2184 for (p = nbuf; *p; p++)
2185 *p = TOUPPER (*p);
c19d1205 2186
d929913e
NC
2187 if (strncmp (nbuf, newname, nlen))
2188 {
2189 /* If this attempt to create an additional alias fails, do not bother
2190 trying to create the all-lower case alias. We will fail and issue
2191 a second, duplicate error message. This situation arises when the
2192 programmer does something like:
2193 foo .req r0
2194 Foo .req r1
2195 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2196 the artificial FOO alias because it has already been created by the
d929913e
NC
2197 first .req. */
2198 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2199 return TRUE;
2200 }
c19d1205 2201
d929913e
NC
2202 for (p = nbuf; *p; p++)
2203 *p = TOLOWER (*p);
c19d1205 2204
d929913e
NC
2205 if (strncmp (nbuf, newname, nlen))
2206 insert_reg_alias (nbuf, old->number, old->type);
2207 }
c19d1205 2208
d929913e 2209 return TRUE;
b99bd4ef
NC
2210}
2211
dcbf9037
JB
2212/* Create a Neon typed/indexed register alias using directives, e.g.:
2213 X .dn d5.s32[1]
2214 Y .qn 6.s16
2215 Z .dn d7
2216 T .dn Z[0]
2217 These typed registers can be used instead of the types specified after the
2218 Neon mnemonic, so long as all operands given have types. Types can also be
2219 specified directly, e.g.:
5f4273c7 2220 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2221
c921be7d 2222static bfd_boolean
dcbf9037
JB
2223create_neon_reg_alias (char *newname, char *p)
2224{
2225 enum arm_reg_type basetype;
2226 struct reg_entry *basereg;
2227 struct reg_entry mybasereg;
2228 struct neon_type ntype;
2229 struct neon_typed_alias typeinfo;
12d6b0b7 2230 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2231 int namelen;
5f4273c7 2232
dcbf9037
JB
2233 typeinfo.defined = 0;
2234 typeinfo.eltype.type = NT_invtype;
2235 typeinfo.eltype.size = -1;
2236 typeinfo.index = -1;
5f4273c7 2237
dcbf9037 2238 nameend = p;
5f4273c7 2239
dcbf9037
JB
2240 if (strncmp (p, " .dn ", 5) == 0)
2241 basetype = REG_TYPE_VFD;
2242 else if (strncmp (p, " .qn ", 5) == 0)
2243 basetype = REG_TYPE_NQ;
2244 else
c921be7d 2245 return FALSE;
5f4273c7 2246
dcbf9037 2247 p += 5;
5f4273c7 2248
dcbf9037 2249 if (*p == '\0')
c921be7d 2250 return FALSE;
5f4273c7 2251
dcbf9037
JB
2252 basereg = arm_reg_parse_multi (&p);
2253
2254 if (basereg && basereg->type != basetype)
2255 {
2256 as_bad (_("bad type for register"));
c921be7d 2257 return FALSE;
dcbf9037
JB
2258 }
2259
2260 if (basereg == NULL)
2261 {
2262 expressionS exp;
2263 /* Try parsing as an integer. */
2264 my_get_expression (&exp, &p, GE_NO_PREFIX);
2265 if (exp.X_op != O_constant)
2266 {
2267 as_bad (_("expression must be constant"));
c921be7d 2268 return FALSE;
dcbf9037
JB
2269 }
2270 basereg = &mybasereg;
2271 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2272 : exp.X_add_number;
2273 basereg->neon = 0;
2274 }
2275
2276 if (basereg->neon)
2277 typeinfo = *basereg->neon;
2278
2279 if (parse_neon_type (&ntype, &p) == SUCCESS)
2280 {
2281 /* We got a type. */
2282 if (typeinfo.defined & NTA_HASTYPE)
2283 {
2284 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037
JB
2288 typeinfo.defined |= NTA_HASTYPE;
2289 if (ntype.elems != 1)
2290 {
2291 as_bad (_("you must specify a single type only"));
c921be7d 2292 return FALSE;
dcbf9037
JB
2293 }
2294 typeinfo.eltype = ntype.el[0];
2295 }
5f4273c7 2296
dcbf9037
JB
2297 if (skip_past_char (&p, '[') == SUCCESS)
2298 {
2299 expressionS exp;
2300 /* We got a scalar index. */
5f4273c7 2301
dcbf9037
JB
2302 if (typeinfo.defined & NTA_HASINDEX)
2303 {
2304 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2305 return FALSE;
dcbf9037 2306 }
5f4273c7 2307
dcbf9037 2308 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2309
dcbf9037
JB
2310 if (exp.X_op != O_constant)
2311 {
2312 as_bad (_("scalar index must be constant"));
c921be7d 2313 return FALSE;
dcbf9037 2314 }
5f4273c7 2315
dcbf9037
JB
2316 typeinfo.defined |= NTA_HASINDEX;
2317 typeinfo.index = exp.X_add_number;
5f4273c7 2318
dcbf9037
JB
2319 if (skip_past_char (&p, ']') == FAIL)
2320 {
2321 as_bad (_("expecting ]"));
c921be7d 2322 return FALSE;
dcbf9037
JB
2323 }
2324 }
2325
15735687
NS
2326 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2327 the desired alias name, and p points to its end. If not, then
2328 the desired alias name is in the global original_case_string. */
2329#ifdef TC_CASE_SENSITIVE
dcbf9037 2330 namelen = nameend - newname;
15735687
NS
2331#else
2332 newname = original_case_string;
2333 namelen = strlen (newname);
2334#endif
2335
21d799b5 2336 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2337 strncpy (namebuf, newname, namelen);
2338 namebuf[namelen] = '\0';
5f4273c7 2339
dcbf9037
JB
2340 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2341 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2342
dcbf9037
JB
2343 /* Insert name in all uppercase. */
2344 for (p = namebuf; *p; p++)
2345 *p = TOUPPER (*p);
5f4273c7 2346
dcbf9037
JB
2347 if (strncmp (namebuf, newname, namelen))
2348 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2349 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2350
dcbf9037
JB
2351 /* Insert name in all lowercase. */
2352 for (p = namebuf; *p; p++)
2353 *p = TOLOWER (*p);
5f4273c7 2354
dcbf9037
JB
2355 if (strncmp (namebuf, newname, namelen))
2356 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2357 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2358
c921be7d 2359 return TRUE;
dcbf9037
JB
2360}
2361
c19d1205
ZW
2362/* Should never be called, as .req goes between the alias and the
2363 register name, not at the beginning of the line. */
c921be7d 2364
b99bd4ef 2365static void
c19d1205 2366s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2367{
c19d1205
ZW
2368 as_bad (_("invalid syntax for .req directive"));
2369}
b99bd4ef 2370
dcbf9037
JB
2371static void
2372s_dn (int a ATTRIBUTE_UNUSED)
2373{
2374 as_bad (_("invalid syntax for .dn directive"));
2375}
2376
2377static void
2378s_qn (int a ATTRIBUTE_UNUSED)
2379{
2380 as_bad (_("invalid syntax for .qn directive"));
2381}
2382
c19d1205
ZW
2383/* The .unreq directive deletes an alias which was previously defined
2384 by .req. For example:
b99bd4ef 2385
c19d1205
ZW
2386 my_alias .req r11
2387 .unreq my_alias */
b99bd4ef
NC
2388
2389static void
c19d1205 2390s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2391{
c19d1205
ZW
2392 char * name;
2393 char saved_char;
b99bd4ef 2394
c19d1205
ZW
2395 name = input_line_pointer;
2396
2397 while (*input_line_pointer != 0
2398 && *input_line_pointer != ' '
2399 && *input_line_pointer != '\n')
2400 ++input_line_pointer;
2401
2402 saved_char = *input_line_pointer;
2403 *input_line_pointer = 0;
2404
2405 if (!*name)
2406 as_bad (_("invalid syntax for .unreq directive"));
2407 else
2408 {
21d799b5
NC
2409 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2410 name);
c19d1205
ZW
2411
2412 if (!reg)
2413 as_bad (_("unknown register alias '%s'"), name);
2414 else if (reg->builtin)
a1727c1a 2415 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2416 name);
2417 else
2418 {
d929913e
NC
2419 char * p;
2420 char * nbuf;
2421
db0bc284 2422 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2423 free ((char *) reg->name);
dcbf9037
JB
2424 if (reg->neon)
2425 free (reg->neon);
c19d1205 2426 free (reg);
d929913e
NC
2427
2428 /* Also locate the all upper case and all lower case versions.
2429 Do not complain if we cannot find one or the other as it
2430 was probably deleted above. */
5f4273c7 2431
d929913e
NC
2432 nbuf = strdup (name);
2433 for (p = nbuf; *p; p++)
2434 *p = TOUPPER (*p);
21d799b5 2435 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2436 if (reg)
2437 {
db0bc284 2438 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2439 free ((char *) reg->name);
2440 if (reg->neon)
2441 free (reg->neon);
2442 free (reg);
2443 }
2444
2445 for (p = nbuf; *p; p++)
2446 *p = TOLOWER (*p);
21d799b5 2447 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2448 if (reg)
2449 {
db0bc284 2450 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2451 free ((char *) reg->name);
2452 if (reg->neon)
2453 free (reg->neon);
2454 free (reg);
2455 }
2456
2457 free (nbuf);
c19d1205
ZW
2458 }
2459 }
b99bd4ef 2460
c19d1205 2461 *input_line_pointer = saved_char;
b99bd4ef
NC
2462 demand_empty_rest_of_line ();
2463}
2464
c19d1205
ZW
2465/* Directives: Instruction set selection. */
2466
2467#ifdef OBJ_ELF
2468/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2469 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2470 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2471 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2472
cd000bff
DJ
2473/* Create a new mapping symbol for the transition to STATE. */
2474
2475static void
2476make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2477{
a737bd4d 2478 symbolS * symbolP;
c19d1205
ZW
2479 const char * symname;
2480 int type;
b99bd4ef 2481
c19d1205 2482 switch (state)
b99bd4ef 2483 {
c19d1205
ZW
2484 case MAP_DATA:
2485 symname = "$d";
2486 type = BSF_NO_FLAGS;
2487 break;
2488 case MAP_ARM:
2489 symname = "$a";
2490 type = BSF_NO_FLAGS;
2491 break;
2492 case MAP_THUMB:
2493 symname = "$t";
2494 type = BSF_NO_FLAGS;
2495 break;
c19d1205
ZW
2496 default:
2497 abort ();
2498 }
2499
cd000bff 2500 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2501 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2502
2503 switch (state)
2504 {
2505 case MAP_ARM:
2506 THUMB_SET_FUNC (symbolP, 0);
2507 ARM_SET_THUMB (symbolP, 0);
2508 ARM_SET_INTERWORK (symbolP, support_interwork);
2509 break;
2510
2511 case MAP_THUMB:
2512 THUMB_SET_FUNC (symbolP, 1);
2513 ARM_SET_THUMB (symbolP, 1);
2514 ARM_SET_INTERWORK (symbolP, support_interwork);
2515 break;
2516
2517 case MAP_DATA:
2518 default:
cd000bff
DJ
2519 break;
2520 }
2521
2522 /* Save the mapping symbols for future reference. Also check that
2523 we do not place two mapping symbols at the same offset within a
2524 frag. We'll handle overlap between frags in
2de7820f
JZ
2525 check_mapping_symbols.
2526
2527 If .fill or other data filling directive generates zero sized data,
2528 the mapping symbol for the following code will have the same value
2529 as the one generated for the data filling directive. In this case,
2530 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2531 if (value == 0)
2532 {
2de7820f
JZ
2533 if (frag->tc_frag_data.first_map != NULL)
2534 {
2535 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2536 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2537 }
cd000bff
DJ
2538 frag->tc_frag_data.first_map = symbolP;
2539 }
2540 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2541 {
2542 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2543 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2544 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2545 }
cd000bff
DJ
2546 frag->tc_frag_data.last_map = symbolP;
2547}
2548
2549/* We must sometimes convert a region marked as code to data during
2550 code alignment, if an odd number of bytes have to be padded. The
2551 code mapping symbol is pushed to an aligned address. */
2552
2553static void
2554insert_data_mapping_symbol (enum mstate state,
2555 valueT value, fragS *frag, offsetT bytes)
2556{
2557 /* If there was already a mapping symbol, remove it. */
2558 if (frag->tc_frag_data.last_map != NULL
2559 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2560 {
2561 symbolS *symp = frag->tc_frag_data.last_map;
2562
2563 if (value == 0)
2564 {
2565 know (frag->tc_frag_data.first_map == symp);
2566 frag->tc_frag_data.first_map = NULL;
2567 }
2568 frag->tc_frag_data.last_map = NULL;
2569 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2570 }
cd000bff
DJ
2571
2572 make_mapping_symbol (MAP_DATA, value, frag);
2573 make_mapping_symbol (state, value + bytes, frag);
2574}
2575
2576static void mapping_state_2 (enum mstate state, int max_chars);
2577
2578/* Set the mapping state to STATE. Only call this when about to
2579 emit some STATE bytes to the file. */
2580
2581void
2582mapping_state (enum mstate state)
2583{
940b5ce0
DJ
2584 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2585
cd000bff
DJ
2586#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2587
2588 if (mapstate == state)
2589 /* The mapping symbol has already been emitted.
2590 There is nothing else to do. */
2591 return;
2592 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2593 /* This case will be evaluated later in the next else. */
2594 return;
2595 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2596 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2597 {
2598 /* Only add the symbol if the offset is > 0:
2599 if we're at the first frag, check it's size > 0;
2600 if we're not at the first frag, then for sure
2601 the offset is > 0. */
2602 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2603 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2604
2605 if (add_symbol)
2606 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2607 }
2608
2609 mapping_state_2 (state, 0);
2610#undef TRANSITION
2611}
2612
2613/* Same as mapping_state, but MAX_CHARS bytes have already been
2614 allocated. Put the mapping symbol that far back. */
2615
2616static void
2617mapping_state_2 (enum mstate state, int max_chars)
2618{
940b5ce0
DJ
2619 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2620
2621 if (!SEG_NORMAL (now_seg))
2622 return;
2623
cd000bff
DJ
2624 if (mapstate == state)
2625 /* The mapping symbol has already been emitted.
2626 There is nothing else to do. */
2627 return;
2628
cd000bff
DJ
2629 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2630 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2631}
2632#else
d3106081
NS
2633#define mapping_state(x) ((void)0)
2634#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2635#endif
2636
2637/* Find the real, Thumb encoded start of a Thumb function. */
2638
4343666d 2639#ifdef OBJ_COFF
c19d1205
ZW
2640static symbolS *
2641find_real_start (symbolS * symbolP)
2642{
2643 char * real_start;
2644 const char * name = S_GET_NAME (symbolP);
2645 symbolS * new_target;
2646
2647 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2648#define STUB_NAME ".real_start_of"
2649
2650 if (name == NULL)
2651 abort ();
2652
37f6032b
ZW
2653 /* The compiler may generate BL instructions to local labels because
2654 it needs to perform a branch to a far away location. These labels
2655 do not have a corresponding ".real_start_of" label. We check
2656 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2657 the ".real_start_of" convention for nonlocal branches. */
2658 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2659 return symbolP;
2660
37f6032b 2661 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2662 new_target = symbol_find (real_start);
2663
2664 if (new_target == NULL)
2665 {
bd3ba5d1 2666 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2667 new_target = symbolP;
2668 }
2669
c19d1205
ZW
2670 return new_target;
2671}
4343666d 2672#endif
c19d1205
ZW
2673
2674static void
2675opcode_select (int width)
2676{
2677 switch (width)
2678 {
2679 case 16:
2680 if (! thumb_mode)
2681 {
e74cfd16 2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2683 as_bad (_("selected processor does not support THUMB opcodes"));
2684
2685 thumb_mode = 1;
2686 /* No need to force the alignment, since we will have been
2687 coming from ARM mode, which is word-aligned. */
2688 record_alignment (now_seg, 1);
2689 }
c19d1205
ZW
2690 break;
2691
2692 case 32:
2693 if (thumb_mode)
2694 {
e74cfd16 2695 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2696 as_bad (_("selected processor does not support ARM opcodes"));
2697
2698 thumb_mode = 0;
2699
2700 if (!need_pass_2)
2701 frag_align (2, 0, 0);
2702
2703 record_alignment (now_seg, 1);
2704 }
c19d1205
ZW
2705 break;
2706
2707 default:
2708 as_bad (_("invalid instruction size selected (%d)"), width);
2709 }
2710}
2711
2712static void
2713s_arm (int ignore ATTRIBUTE_UNUSED)
2714{
2715 opcode_select (32);
2716 demand_empty_rest_of_line ();
2717}
2718
2719static void
2720s_thumb (int ignore ATTRIBUTE_UNUSED)
2721{
2722 opcode_select (16);
2723 demand_empty_rest_of_line ();
2724}
2725
2726static void
2727s_code (int unused ATTRIBUTE_UNUSED)
2728{
2729 int temp;
2730
2731 temp = get_absolute_expression ();
2732 switch (temp)
2733 {
2734 case 16:
2735 case 32:
2736 opcode_select (temp);
2737 break;
2738
2739 default:
2740 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2741 }
2742}
2743
2744static void
2745s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2746{
2747 /* If we are not already in thumb mode go into it, EVEN if
2748 the target processor does not support thumb instructions.
2749 This is used by gcc/config/arm/lib1funcs.asm for example
2750 to compile interworking support functions even if the
2751 target processor should not support interworking. */
2752 if (! thumb_mode)
2753 {
2754 thumb_mode = 2;
2755 record_alignment (now_seg, 1);
2756 }
2757
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2763{
2764 s_thumb (0);
2765
2766 /* The following label is the name/address of the start of a Thumb function.
2767 We need to know this for the interworking support. */
2768 label_is_thumb_function_name = TRUE;
2769}
2770
2771/* Perform a .set directive, but also mark the alias as
2772 being a thumb function. */
2773
2774static void
2775s_thumb_set (int equiv)
2776{
2777 /* XXX the following is a duplicate of the code for s_set() in read.c
2778 We cannot just call that code as we need to get at the symbol that
2779 is created. */
2780 char * name;
2781 char delim;
2782 char * end_name;
2783 symbolS * symbolP;
2784
2785 /* Especial apologies for the random logic:
2786 This just grew, and could be parsed much more simply!
2787 Dean - in haste. */
2788 name = input_line_pointer;
2789 delim = get_symbol_end ();
2790 end_name = input_line_pointer;
2791 *end_name = delim;
2792
2793 if (*input_line_pointer != ',')
2794 {
2795 *end_name = 0;
2796 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2797 *end_name = delim;
2798 ignore_rest_of_line ();
2799 return;
2800 }
2801
2802 input_line_pointer++;
2803 *end_name = 0;
2804
2805 if (name[0] == '.' && name[1] == '\0')
2806 {
2807 /* XXX - this should not happen to .thumb_set. */
2808 abort ();
2809 }
2810
2811 if ((symbolP = symbol_find (name)) == NULL
2812 && (symbolP = md_undefined_symbol (name)) == NULL)
2813 {
2814#ifndef NO_LISTING
2815 /* When doing symbol listings, play games with dummy fragments living
2816 outside the normal fragment chain to record the file and line info
c19d1205 2817 for this symbol. */
b99bd4ef
NC
2818 if (listing & LISTING_SYMBOLS)
2819 {
2820 extern struct list_info_struct * listing_tail;
21d799b5 2821 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2822
2823 memset (dummy_frag, 0, sizeof (fragS));
2824 dummy_frag->fr_type = rs_fill;
2825 dummy_frag->line = listing_tail;
2826 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2827 dummy_frag->fr_symbol = symbolP;
2828 }
2829 else
2830#endif
2831 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2832
2833#ifdef OBJ_COFF
2834 /* "set" symbols are local unless otherwise specified. */
2835 SF_SET_LOCAL (symbolP);
2836#endif /* OBJ_COFF */
2837 } /* Make a new symbol. */
2838
2839 symbol_table_insert (symbolP);
2840
2841 * end_name = delim;
2842
2843 if (equiv
2844 && S_IS_DEFINED (symbolP)
2845 && S_GET_SEGMENT (symbolP) != reg_section)
2846 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2847
2848 pseudo_set (symbolP);
2849
2850 demand_empty_rest_of_line ();
2851
c19d1205 2852 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2853
2854 THUMB_SET_FUNC (symbolP, 1);
2855 ARM_SET_THUMB (symbolP, 1);
2856#if defined OBJ_ELF || defined OBJ_COFF
2857 ARM_SET_INTERWORK (symbolP, support_interwork);
2858#endif
2859}
2860
c19d1205 2861/* Directives: Mode selection. */
b99bd4ef 2862
c19d1205
ZW
2863/* .syntax [unified|divided] - choose the new unified syntax
2864 (same for Arm and Thumb encoding, modulo slight differences in what
2865 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2866static void
c19d1205 2867s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2868{
c19d1205
ZW
2869 char *name, delim;
2870
2871 name = input_line_pointer;
2872 delim = get_symbol_end ();
2873
2874 if (!strcasecmp (name, "unified"))
2875 unified_syntax = TRUE;
2876 else if (!strcasecmp (name, "divided"))
2877 unified_syntax = FALSE;
2878 else
2879 {
2880 as_bad (_("unrecognized syntax mode \"%s\""), name);
2881 return;
2882 }
2883 *input_line_pointer = delim;
b99bd4ef
NC
2884 demand_empty_rest_of_line ();
2885}
2886
c19d1205
ZW
2887/* Directives: sectioning and alignment. */
2888
2889/* Same as s_align_ptwo but align 0 => align 2. */
2890
b99bd4ef 2891static void
c19d1205 2892s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2893{
a737bd4d 2894 int temp;
dce323d1 2895 bfd_boolean fill_p;
c19d1205
ZW
2896 long temp_fill;
2897 long max_alignment = 15;
b99bd4ef
NC
2898
2899 temp = get_absolute_expression ();
c19d1205
ZW
2900 if (temp > max_alignment)
2901 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2902 else if (temp < 0)
b99bd4ef 2903 {
c19d1205
ZW
2904 as_bad (_("alignment negative. 0 assumed."));
2905 temp = 0;
2906 }
b99bd4ef 2907
c19d1205
ZW
2908 if (*input_line_pointer == ',')
2909 {
2910 input_line_pointer++;
2911 temp_fill = get_absolute_expression ();
dce323d1 2912 fill_p = TRUE;
b99bd4ef 2913 }
c19d1205 2914 else
dce323d1
PB
2915 {
2916 fill_p = FALSE;
2917 temp_fill = 0;
2918 }
b99bd4ef 2919
c19d1205
ZW
2920 if (!temp)
2921 temp = 2;
b99bd4ef 2922
c19d1205
ZW
2923 /* Only make a frag if we HAVE to. */
2924 if (temp && !need_pass_2)
dce323d1
PB
2925 {
2926 if (!fill_p && subseg_text_p (now_seg))
2927 frag_align_code (temp, 0);
2928 else
2929 frag_align (temp, (int) temp_fill, 0);
2930 }
c19d1205
ZW
2931 demand_empty_rest_of_line ();
2932
2933 record_alignment (now_seg, temp);
b99bd4ef
NC
2934}
2935
c19d1205
ZW
2936static void
2937s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2938{
c19d1205
ZW
2939 /* We don't support putting frags in the BSS segment, we fake it by
2940 marking in_bss, then looking at s_skip for clues. */
2941 subseg_set (bss_section, 0);
2942 demand_empty_rest_of_line ();
cd000bff
DJ
2943
2944#ifdef md_elf_section_change_hook
2945 md_elf_section_change_hook ();
2946#endif
c19d1205 2947}
b99bd4ef 2948
c19d1205
ZW
2949static void
2950s_even (int ignore ATTRIBUTE_UNUSED)
2951{
2952 /* Never make frag if expect extra pass. */
2953 if (!need_pass_2)
2954 frag_align (1, 0, 0);
b99bd4ef 2955
c19d1205 2956 record_alignment (now_seg, 1);
b99bd4ef 2957
c19d1205 2958 demand_empty_rest_of_line ();
b99bd4ef
NC
2959}
2960
c19d1205 2961/* Directives: Literal pools. */
a737bd4d 2962
c19d1205
ZW
2963static literal_pool *
2964find_literal_pool (void)
a737bd4d 2965{
c19d1205 2966 literal_pool * pool;
a737bd4d 2967
c19d1205 2968 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2969 {
c19d1205
ZW
2970 if (pool->section == now_seg
2971 && pool->sub_section == now_subseg)
2972 break;
a737bd4d
NC
2973 }
2974
c19d1205 2975 return pool;
a737bd4d
NC
2976}
2977
c19d1205
ZW
2978static literal_pool *
2979find_or_make_literal_pool (void)
a737bd4d 2980{
c19d1205
ZW
2981 /* Next literal pool ID number. */
2982 static unsigned int latest_pool_num = 1;
2983 literal_pool * pool;
a737bd4d 2984
c19d1205 2985 pool = find_literal_pool ();
a737bd4d 2986
c19d1205 2987 if (pool == NULL)
a737bd4d 2988 {
c19d1205 2989 /* Create a new pool. */
21d799b5 2990 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2991 if (! pool)
2992 return NULL;
a737bd4d 2993
c19d1205
ZW
2994 pool->next_free_entry = 0;
2995 pool->section = now_seg;
2996 pool->sub_section = now_subseg;
2997 pool->next = list_of_pools;
2998 pool->symbol = NULL;
2999
3000 /* Add it to the list. */
3001 list_of_pools = pool;
a737bd4d 3002 }
a737bd4d 3003
c19d1205
ZW
3004 /* New pools, and emptied pools, will have a NULL symbol. */
3005 if (pool->symbol == NULL)
a737bd4d 3006 {
c19d1205
ZW
3007 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3008 (valueT) 0, &zero_address_frag);
3009 pool->id = latest_pool_num ++;
a737bd4d
NC
3010 }
3011
c19d1205
ZW
3012 /* Done. */
3013 return pool;
a737bd4d
NC
3014}
3015
c19d1205 3016/* Add the literal in the global 'inst'
5f4273c7 3017 structure to the relevant literal pool. */
b99bd4ef
NC
3018
3019static int
c19d1205 3020add_to_lit_pool (void)
b99bd4ef 3021{
c19d1205
ZW
3022 literal_pool * pool;
3023 unsigned int entry;
b99bd4ef 3024
c19d1205
ZW
3025 pool = find_or_make_literal_pool ();
3026
3027 /* Check if this literal value is already in the pool. */
3028 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3029 {
c19d1205
ZW
3030 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3031 && (inst.reloc.exp.X_op == O_constant)
3032 && (pool->literals[entry].X_add_number
3033 == inst.reloc.exp.X_add_number)
3034 && (pool->literals[entry].X_unsigned
3035 == inst.reloc.exp.X_unsigned))
3036 break;
3037
3038 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3039 && (inst.reloc.exp.X_op == O_symbol)
3040 && (pool->literals[entry].X_add_number
3041 == inst.reloc.exp.X_add_number)
3042 && (pool->literals[entry].X_add_symbol
3043 == inst.reloc.exp.X_add_symbol)
3044 && (pool->literals[entry].X_op_symbol
3045 == inst.reloc.exp.X_op_symbol))
3046 break;
b99bd4ef
NC
3047 }
3048
c19d1205
ZW
3049 /* Do we need to create a new entry? */
3050 if (entry == pool->next_free_entry)
3051 {
3052 if (entry >= MAX_LITERAL_POOL_SIZE)
3053 {
3054 inst.error = _("literal pool overflow");
3055 return FAIL;
3056 }
3057
3058 pool->literals[entry] = inst.reloc.exp;
3059 pool->next_free_entry += 1;
3060 }
b99bd4ef 3061
c19d1205
ZW
3062 inst.reloc.exp.X_op = O_symbol;
3063 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3064 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3065
c19d1205 3066 return SUCCESS;
b99bd4ef
NC
3067}
3068
c19d1205
ZW
3069/* Can't use symbol_new here, so have to create a symbol and then at
3070 a later date assign it a value. Thats what these functions do. */
e16bb312 3071
c19d1205
ZW
3072static void
3073symbol_locate (symbolS * symbolP,
3074 const char * name, /* It is copied, the caller can modify. */
3075 segT segment, /* Segment identifier (SEG_<something>). */
3076 valueT valu, /* Symbol value. */
3077 fragS * frag) /* Associated fragment. */
3078{
3079 unsigned int name_length;
3080 char * preserved_copy_of_name;
e16bb312 3081
c19d1205
ZW
3082 name_length = strlen (name) + 1; /* +1 for \0. */
3083 obstack_grow (&notes, name, name_length);
21d799b5 3084 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3085
c19d1205
ZW
3086#ifdef tc_canonicalize_symbol_name
3087 preserved_copy_of_name =
3088 tc_canonicalize_symbol_name (preserved_copy_of_name);
3089#endif
b99bd4ef 3090
c19d1205 3091 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3092
c19d1205
ZW
3093 S_SET_SEGMENT (symbolP, segment);
3094 S_SET_VALUE (symbolP, valu);
3095 symbol_clear_list_pointers (symbolP);
b99bd4ef 3096
c19d1205 3097 symbol_set_frag (symbolP, frag);
b99bd4ef 3098
c19d1205
ZW
3099 /* Link to end of symbol chain. */
3100 {
3101 extern int symbol_table_frozen;
b99bd4ef 3102
c19d1205
ZW
3103 if (symbol_table_frozen)
3104 abort ();
3105 }
b99bd4ef 3106
c19d1205 3107 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3108
c19d1205 3109 obj_symbol_new_hook (symbolP);
b99bd4ef 3110
c19d1205
ZW
3111#ifdef tc_symbol_new_hook
3112 tc_symbol_new_hook (symbolP);
3113#endif
3114
3115#ifdef DEBUG_SYMS
3116 verify_symbol_chain (symbol_rootP, symbol_lastP);
3117#endif /* DEBUG_SYMS */
b99bd4ef
NC
3118}
3119
b99bd4ef 3120
c19d1205
ZW
3121static void
3122s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3123{
c19d1205
ZW
3124 unsigned int entry;
3125 literal_pool * pool;
3126 char sym_name[20];
b99bd4ef 3127
c19d1205
ZW
3128 pool = find_literal_pool ();
3129 if (pool == NULL
3130 || pool->symbol == NULL
3131 || pool->next_free_entry == 0)
3132 return;
b99bd4ef 3133
c19d1205 3134 mapping_state (MAP_DATA);
b99bd4ef 3135
c19d1205
ZW
3136 /* Align pool as you have word accesses.
3137 Only make a frag if we have to. */
3138 if (!need_pass_2)
3139 frag_align (2, 0, 0);
b99bd4ef 3140
c19d1205 3141 record_alignment (now_seg, 2);
b99bd4ef 3142
c19d1205 3143 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3144
c19d1205
ZW
3145 symbol_locate (pool->symbol, sym_name, now_seg,
3146 (valueT) frag_now_fix (), frag_now);
3147 symbol_table_insert (pool->symbol);
b99bd4ef 3148
c19d1205 3149 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3150
c19d1205
ZW
3151#if defined OBJ_COFF || defined OBJ_ELF
3152 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3153#endif
6c43fab6 3154
c19d1205
ZW
3155 for (entry = 0; entry < pool->next_free_entry; entry ++)
3156 /* First output the expression in the instruction to the pool. */
3157 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3158
c19d1205
ZW
3159 /* Mark the pool as empty. */
3160 pool->next_free_entry = 0;
3161 pool->symbol = NULL;
b99bd4ef
NC
3162}
3163
c19d1205
ZW
3164#ifdef OBJ_ELF
3165/* Forward declarations for functions below, in the MD interface
3166 section. */
3167static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3168static valueT create_unwind_entry (int);
3169static void start_unwind_section (const segT, int);
3170static void add_unwind_opcode (valueT, int);
3171static void flush_pending_unwind (void);
b99bd4ef 3172
c19d1205 3173/* Directives: Data. */
b99bd4ef 3174
c19d1205
ZW
3175static void
3176s_arm_elf_cons (int nbytes)
3177{
3178 expressionS exp;
b99bd4ef 3179
c19d1205
ZW
3180#ifdef md_flush_pending_output
3181 md_flush_pending_output ();
3182#endif
b99bd4ef 3183
c19d1205 3184 if (is_it_end_of_statement ())
b99bd4ef 3185 {
c19d1205
ZW
3186 demand_empty_rest_of_line ();
3187 return;
b99bd4ef
NC
3188 }
3189
c19d1205
ZW
3190#ifdef md_cons_align
3191 md_cons_align (nbytes);
3192#endif
b99bd4ef 3193
c19d1205
ZW
3194 mapping_state (MAP_DATA);
3195 do
b99bd4ef 3196 {
c19d1205
ZW
3197 int reloc;
3198 char *base = input_line_pointer;
b99bd4ef 3199
c19d1205 3200 expression (& exp);
b99bd4ef 3201
c19d1205
ZW
3202 if (exp.X_op != O_symbol)
3203 emit_expr (&exp, (unsigned int) nbytes);
3204 else
3205 {
3206 char *before_reloc = input_line_pointer;
3207 reloc = parse_reloc (&input_line_pointer);
3208 if (reloc == -1)
3209 {
3210 as_bad (_("unrecognized relocation suffix"));
3211 ignore_rest_of_line ();
3212 return;
3213 }
3214 else if (reloc == BFD_RELOC_UNUSED)
3215 emit_expr (&exp, (unsigned int) nbytes);
3216 else
3217 {
21d799b5
NC
3218 reloc_howto_type *howto = (reloc_howto_type *)
3219 bfd_reloc_type_lookup (stdoutput,
3220 (bfd_reloc_code_real_type) reloc);
c19d1205 3221 int size = bfd_get_reloc_size (howto);
b99bd4ef 3222
2fc8bdac
ZW
3223 if (reloc == BFD_RELOC_ARM_PLT32)
3224 {
3225 as_bad (_("(plt) is only valid on branch targets"));
3226 reloc = BFD_RELOC_UNUSED;
3227 size = 0;
3228 }
3229
c19d1205 3230 if (size > nbytes)
2fc8bdac 3231 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3232 howto->name, nbytes);
3233 else
3234 {
3235 /* We've parsed an expression stopping at O_symbol.
3236 But there may be more expression left now that we
3237 have parsed the relocation marker. Parse it again.
3238 XXX Surely there is a cleaner way to do this. */
3239 char *p = input_line_pointer;
3240 int offset;
21d799b5 3241 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3242 memcpy (save_buf, base, input_line_pointer - base);
3243 memmove (base + (input_line_pointer - before_reloc),
3244 base, before_reloc - base);
3245
3246 input_line_pointer = base + (input_line_pointer-before_reloc);
3247 expression (&exp);
3248 memcpy (base, save_buf, p - base);
3249
3250 offset = nbytes - size;
3251 p = frag_more ((int) nbytes);
3252 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3253 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3254 }
3255 }
3256 }
b99bd4ef 3257 }
c19d1205 3258 while (*input_line_pointer++ == ',');
b99bd4ef 3259
c19d1205
ZW
3260 /* Put terminator back into stream. */
3261 input_line_pointer --;
3262 demand_empty_rest_of_line ();
b99bd4ef
NC
3263}
3264
c921be7d
NC
3265/* Emit an expression containing a 32-bit thumb instruction.
3266 Implementation based on put_thumb32_insn. */
3267
3268static void
3269emit_thumb32_expr (expressionS * exp)
3270{
3271 expressionS exp_high = *exp;
3272
3273 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3274 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3275 exp->X_add_number &= 0xffff;
3276 emit_expr (exp, (unsigned int) THUMB_SIZE);
3277}
3278
3279/* Guess the instruction size based on the opcode. */
3280
3281static int
3282thumb_insn_size (int opcode)
3283{
3284 if ((unsigned int) opcode < 0xe800u)
3285 return 2;
3286 else if ((unsigned int) opcode >= 0xe8000000u)
3287 return 4;
3288 else
3289 return 0;
3290}
3291
3292static bfd_boolean
3293emit_insn (expressionS *exp, int nbytes)
3294{
3295 int size = 0;
3296
3297 if (exp->X_op == O_constant)
3298 {
3299 size = nbytes;
3300
3301 if (size == 0)
3302 size = thumb_insn_size (exp->X_add_number);
3303
3304 if (size != 0)
3305 {
3306 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3307 {
3308 as_bad (_(".inst.n operand too big. "\
3309 "Use .inst.w instead"));
3310 size = 0;
3311 }
3312 else
3313 {
3314 if (now_it.state == AUTOMATIC_IT_BLOCK)
3315 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3316 else
3317 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3318
3319 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3320 emit_thumb32_expr (exp);
3321 else
3322 emit_expr (exp, (unsigned int) size);
3323
3324 it_fsm_post_encode ();
3325 }
3326 }
3327 else
3328 as_bad (_("cannot determine Thumb instruction size. " \
3329 "Use .inst.n/.inst.w instead"));
3330 }
3331 else
3332 as_bad (_("constant expression required"));
3333
3334 return (size != 0);
3335}
3336
3337/* Like s_arm_elf_cons but do not use md_cons_align and
3338 set the mapping state to MAP_ARM/MAP_THUMB. */
3339
3340static void
3341s_arm_elf_inst (int nbytes)
3342{
3343 if (is_it_end_of_statement ())
3344 {
3345 demand_empty_rest_of_line ();
3346 return;
3347 }
3348
3349 /* Calling mapping_state () here will not change ARM/THUMB,
3350 but will ensure not to be in DATA state. */
3351
3352 if (thumb_mode)
3353 mapping_state (MAP_THUMB);
3354 else
3355 {
3356 if (nbytes != 0)
3357 {
3358 as_bad (_("width suffixes are invalid in ARM mode"));
3359 ignore_rest_of_line ();
3360 return;
3361 }
3362
3363 nbytes = 4;
3364
3365 mapping_state (MAP_ARM);
3366 }
3367
3368 do
3369 {
3370 expressionS exp;
3371
3372 expression (& exp);
3373
3374 if (! emit_insn (& exp, nbytes))
3375 {
3376 ignore_rest_of_line ();
3377 return;
3378 }
3379 }
3380 while (*input_line_pointer++ == ',');
3381
3382 /* Put terminator back into stream. */
3383 input_line_pointer --;
3384 demand_empty_rest_of_line ();
3385}
b99bd4ef 3386
c19d1205 3387/* Parse a .rel31 directive. */
b99bd4ef 3388
c19d1205
ZW
3389static void
3390s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3391{
3392 expressionS exp;
3393 char *p;
3394 valueT highbit;
b99bd4ef 3395
c19d1205
ZW
3396 highbit = 0;
3397 if (*input_line_pointer == '1')
3398 highbit = 0x80000000;
3399 else if (*input_line_pointer != '0')
3400 as_bad (_("expected 0 or 1"));
b99bd4ef 3401
c19d1205
ZW
3402 input_line_pointer++;
3403 if (*input_line_pointer != ',')
3404 as_bad (_("missing comma"));
3405 input_line_pointer++;
b99bd4ef 3406
c19d1205
ZW
3407#ifdef md_flush_pending_output
3408 md_flush_pending_output ();
3409#endif
b99bd4ef 3410
c19d1205
ZW
3411#ifdef md_cons_align
3412 md_cons_align (4);
3413#endif
b99bd4ef 3414
c19d1205 3415 mapping_state (MAP_DATA);
b99bd4ef 3416
c19d1205 3417 expression (&exp);
b99bd4ef 3418
c19d1205
ZW
3419 p = frag_more (4);
3420 md_number_to_chars (p, highbit, 4);
3421 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3422 BFD_RELOC_ARM_PREL31);
b99bd4ef 3423
c19d1205 3424 demand_empty_rest_of_line ();
b99bd4ef
NC
3425}
3426
c19d1205 3427/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3428
c19d1205 3429/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3430
c19d1205
ZW
3431static void
3432s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3433{
3434 demand_empty_rest_of_line ();
921e5f0a
PB
3435 if (unwind.proc_start)
3436 {
c921be7d 3437 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3438 return;
3439 }
3440
c19d1205
ZW
3441 /* Mark the start of the function. */
3442 unwind.proc_start = expr_build_dot ();
b99bd4ef 3443
c19d1205
ZW
3444 /* Reset the rest of the unwind info. */
3445 unwind.opcode_count = 0;
3446 unwind.table_entry = NULL;
3447 unwind.personality_routine = NULL;
3448 unwind.personality_index = -1;
3449 unwind.frame_size = 0;
3450 unwind.fp_offset = 0;
fdfde340 3451 unwind.fp_reg = REG_SP;
c19d1205
ZW
3452 unwind.fp_used = 0;
3453 unwind.sp_restored = 0;
3454}
b99bd4ef 3455
b99bd4ef 3456
c19d1205
ZW
3457/* Parse a handlerdata directive. Creates the exception handling table entry
3458 for the function. */
b99bd4ef 3459
c19d1205
ZW
3460static void
3461s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3462{
3463 demand_empty_rest_of_line ();
921e5f0a 3464 if (!unwind.proc_start)
c921be7d 3465 as_bad (MISSING_FNSTART);
921e5f0a 3466
c19d1205 3467 if (unwind.table_entry)
6decc662 3468 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3469
c19d1205
ZW
3470 create_unwind_entry (1);
3471}
a737bd4d 3472
c19d1205 3473/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3474
c19d1205
ZW
3475static void
3476s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3477{
3478 long where;
3479 char *ptr;
3480 valueT val;
940b5ce0 3481 unsigned int marked_pr_dependency;
f02232aa 3482
c19d1205 3483 demand_empty_rest_of_line ();
f02232aa 3484
921e5f0a
PB
3485 if (!unwind.proc_start)
3486 {
c921be7d 3487 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3488 return;
3489 }
3490
c19d1205
ZW
3491 /* Add eh table entry. */
3492 if (unwind.table_entry == NULL)
3493 val = create_unwind_entry (0);
3494 else
3495 val = 0;
f02232aa 3496
c19d1205
ZW
3497 /* Add index table entry. This is two words. */
3498 start_unwind_section (unwind.saved_seg, 1);
3499 frag_align (2, 0, 0);
3500 record_alignment (now_seg, 2);
b99bd4ef 3501
c19d1205
ZW
3502 ptr = frag_more (8);
3503 where = frag_now_fix () - 8;
f02232aa 3504
c19d1205
ZW
3505 /* Self relative offset of the function start. */
3506 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3507 BFD_RELOC_ARM_PREL31);
f02232aa 3508
c19d1205
ZW
3509 /* Indicate dependency on EHABI-defined personality routines to the
3510 linker, if it hasn't been done already. */
940b5ce0
DJ
3511 marked_pr_dependency
3512 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3513 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3514 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3515 {
5f4273c7
NC
3516 static const char *const name[] =
3517 {
3518 "__aeabi_unwind_cpp_pr0",
3519 "__aeabi_unwind_cpp_pr1",
3520 "__aeabi_unwind_cpp_pr2"
3521 };
c19d1205
ZW
3522 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3523 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3524 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3525 |= 1 << unwind.personality_index;
c19d1205 3526 }
f02232aa 3527
c19d1205
ZW
3528 if (val)
3529 /* Inline exception table entry. */
3530 md_number_to_chars (ptr + 4, val, 4);
3531 else
3532 /* Self relative offset of the table entry. */
3533 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3534 BFD_RELOC_ARM_PREL31);
f02232aa 3535
c19d1205
ZW
3536 /* Restore the original section. */
3537 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3538
3539 unwind.proc_start = NULL;
c19d1205 3540}
f02232aa 3541
f02232aa 3542
c19d1205 3543/* Parse an unwind_cantunwind directive. */
b99bd4ef 3544
c19d1205
ZW
3545static void
3546s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3547{
3548 demand_empty_rest_of_line ();
921e5f0a 3549 if (!unwind.proc_start)
c921be7d 3550 as_bad (MISSING_FNSTART);
921e5f0a 3551
c19d1205
ZW
3552 if (unwind.personality_routine || unwind.personality_index != -1)
3553 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3554
c19d1205
ZW
3555 unwind.personality_index = -2;
3556}
b99bd4ef 3557
b99bd4ef 3558
c19d1205 3559/* Parse a personalityindex directive. */
b99bd4ef 3560
c19d1205
ZW
3561static void
3562s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3563{
3564 expressionS exp;
b99bd4ef 3565
921e5f0a 3566 if (!unwind.proc_start)
c921be7d 3567 as_bad (MISSING_FNSTART);
921e5f0a 3568
c19d1205
ZW
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3571
c19d1205 3572 expression (&exp);
b99bd4ef 3573
c19d1205
ZW
3574 if (exp.X_op != O_constant
3575 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3576 {
c19d1205
ZW
3577 as_bad (_("bad personality routine number"));
3578 ignore_rest_of_line ();
3579 return;
b99bd4ef
NC
3580 }
3581
c19d1205 3582 unwind.personality_index = exp.X_add_number;
b99bd4ef 3583
c19d1205
ZW
3584 demand_empty_rest_of_line ();
3585}
e16bb312 3586
e16bb312 3587
c19d1205 3588/* Parse a personality directive. */
e16bb312 3589
c19d1205
ZW
3590static void
3591s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3592{
3593 char *name, *p, c;
a737bd4d 3594
921e5f0a 3595 if (!unwind.proc_start)
c921be7d 3596 as_bad (MISSING_FNSTART);
921e5f0a 3597
c19d1205
ZW
3598 if (unwind.personality_routine || unwind.personality_index != -1)
3599 as_bad (_("duplicate .personality directive"));
a737bd4d 3600
c19d1205
ZW
3601 name = input_line_pointer;
3602 c = get_symbol_end ();
3603 p = input_line_pointer;
3604 unwind.personality_routine = symbol_find_or_make (name);
3605 *p = c;
3606 demand_empty_rest_of_line ();
3607}
e16bb312 3608
e16bb312 3609
c19d1205 3610/* Parse a directive saving core registers. */
e16bb312 3611
c19d1205
ZW
3612static void
3613s_arm_unwind_save_core (void)
e16bb312 3614{
c19d1205
ZW
3615 valueT op;
3616 long range;
3617 int n;
e16bb312 3618
c19d1205
ZW
3619 range = parse_reg_list (&input_line_pointer);
3620 if (range == FAIL)
e16bb312 3621 {
c19d1205
ZW
3622 as_bad (_("expected register list"));
3623 ignore_rest_of_line ();
3624 return;
3625 }
e16bb312 3626
c19d1205 3627 demand_empty_rest_of_line ();
e16bb312 3628
c19d1205
ZW
3629 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3630 into .unwind_save {..., sp...}. We aren't bothered about the value of
3631 ip because it is clobbered by calls. */
3632 if (unwind.sp_restored && unwind.fp_reg == 12
3633 && (range & 0x3000) == 0x1000)
3634 {
3635 unwind.opcode_count--;
3636 unwind.sp_restored = 0;
3637 range = (range | 0x2000) & ~0x1000;
3638 unwind.pending_offset = 0;
3639 }
e16bb312 3640
01ae4198
DJ
3641 /* Pop r4-r15. */
3642 if (range & 0xfff0)
c19d1205 3643 {
01ae4198
DJ
3644 /* See if we can use the short opcodes. These pop a block of up to 8
3645 registers starting with r4, plus maybe r14. */
3646 for (n = 0; n < 8; n++)
3647 {
3648 /* Break at the first non-saved register. */
3649 if ((range & (1 << (n + 4))) == 0)
3650 break;
3651 }
3652 /* See if there are any other bits set. */
3653 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3654 {
3655 /* Use the long form. */
3656 op = 0x8000 | ((range >> 4) & 0xfff);
3657 add_unwind_opcode (op, 2);
3658 }
0dd132b6 3659 else
01ae4198
DJ
3660 {
3661 /* Use the short form. */
3662 if (range & 0x4000)
3663 op = 0xa8; /* Pop r14. */
3664 else
3665 op = 0xa0; /* Do not pop r14. */
3666 op |= (n - 1);
3667 add_unwind_opcode (op, 1);
3668 }
c19d1205 3669 }
0dd132b6 3670
c19d1205
ZW
3671 /* Pop r0-r3. */
3672 if (range & 0xf)
3673 {
3674 op = 0xb100 | (range & 0xf);
3675 add_unwind_opcode (op, 2);
0dd132b6
NC
3676 }
3677
c19d1205
ZW
3678 /* Record the number of bytes pushed. */
3679 for (n = 0; n < 16; n++)
3680 {
3681 if (range & (1 << n))
3682 unwind.frame_size += 4;
3683 }
0dd132b6
NC
3684}
3685
c19d1205
ZW
3686
3687/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3688
3689static void
c19d1205 3690s_arm_unwind_save_fpa (int reg)
b99bd4ef 3691{
c19d1205
ZW
3692 expressionS exp;
3693 int num_regs;
3694 valueT op;
b99bd4ef 3695
c19d1205
ZW
3696 /* Get Number of registers to transfer. */
3697 if (skip_past_comma (&input_line_pointer) != FAIL)
3698 expression (&exp);
3699 else
3700 exp.X_op = O_illegal;
b99bd4ef 3701
c19d1205 3702 if (exp.X_op != O_constant)
b99bd4ef 3703 {
c19d1205
ZW
3704 as_bad (_("expected , <constant>"));
3705 ignore_rest_of_line ();
b99bd4ef
NC
3706 return;
3707 }
3708
c19d1205
ZW
3709 num_regs = exp.X_add_number;
3710
3711 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3712 {
c19d1205
ZW
3713 as_bad (_("number of registers must be in the range [1:4]"));
3714 ignore_rest_of_line ();
b99bd4ef
NC
3715 return;
3716 }
3717
c19d1205 3718 demand_empty_rest_of_line ();
b99bd4ef 3719
c19d1205
ZW
3720 if (reg == 4)
3721 {
3722 /* Short form. */
3723 op = 0xb4 | (num_regs - 1);
3724 add_unwind_opcode (op, 1);
3725 }
b99bd4ef
NC
3726 else
3727 {
c19d1205
ZW
3728 /* Long form. */
3729 op = 0xc800 | (reg << 4) | (num_regs - 1);
3730 add_unwind_opcode (op, 2);
b99bd4ef 3731 }
c19d1205 3732 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3733}
3734
c19d1205 3735
fa073d69
MS
3736/* Parse a directive saving VFP registers for ARMv6 and above. */
3737
3738static void
3739s_arm_unwind_save_vfp_armv6 (void)
3740{
3741 int count;
3742 unsigned int start;
3743 valueT op;
3744 int num_vfpv3_regs = 0;
3745 int num_regs_below_16;
3746
3747 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3748 if (count == FAIL)
3749 {
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3752 return;
3753 }
3754
3755 demand_empty_rest_of_line ();
3756
3757 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3758 than FSTMX/FLDMX-style ones). */
3759
3760 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3761 if (start >= 16)
3762 num_vfpv3_regs = count;
3763 else if (start + count > 16)
3764 num_vfpv3_regs = start + count - 16;
3765
3766 if (num_vfpv3_regs > 0)
3767 {
3768 int start_offset = start > 16 ? start - 16 : 0;
3769 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 /* Generate opcode for registers numbered in the range 0 .. 15. */
3774 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3775 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3776 if (num_regs_below_16 > 0)
3777 {
3778 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3779 add_unwind_opcode (op, 2);
3780 }
3781
3782 unwind.frame_size += count * 8;
3783}
3784
3785
3786/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3787
3788static void
c19d1205 3789s_arm_unwind_save_vfp (void)
b99bd4ef 3790{
c19d1205 3791 int count;
ca3f61f7 3792 unsigned int reg;
c19d1205 3793 valueT op;
b99bd4ef 3794
5287ad62 3795 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3796 if (count == FAIL)
b99bd4ef 3797 {
c19d1205
ZW
3798 as_bad (_("expected register list"));
3799 ignore_rest_of_line ();
b99bd4ef
NC
3800 return;
3801 }
3802
c19d1205 3803 demand_empty_rest_of_line ();
b99bd4ef 3804
c19d1205 3805 if (reg == 8)
b99bd4ef 3806 {
c19d1205
ZW
3807 /* Short form. */
3808 op = 0xb8 | (count - 1);
3809 add_unwind_opcode (op, 1);
b99bd4ef 3810 }
c19d1205 3811 else
b99bd4ef 3812 {
c19d1205
ZW
3813 /* Long form. */
3814 op = 0xb300 | (reg << 4) | (count - 1);
3815 add_unwind_opcode (op, 2);
b99bd4ef 3816 }
c19d1205
ZW
3817 unwind.frame_size += count * 8 + 4;
3818}
b99bd4ef 3819
b99bd4ef 3820
c19d1205
ZW
3821/* Parse a directive saving iWMMXt data registers. */
3822
3823static void
3824s_arm_unwind_save_mmxwr (void)
3825{
3826 int reg;
3827 int hi_reg;
3828 int i;
3829 unsigned mask = 0;
3830 valueT op;
b99bd4ef 3831
c19d1205
ZW
3832 if (*input_line_pointer == '{')
3833 input_line_pointer++;
b99bd4ef 3834
c19d1205 3835 do
b99bd4ef 3836 {
dcbf9037 3837 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3838
c19d1205 3839 if (reg == FAIL)
b99bd4ef 3840 {
9b7132d3 3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3842 goto error;
b99bd4ef
NC
3843 }
3844
c19d1205
ZW
3845 if (mask >> reg)
3846 as_tsktsk (_("register list not in ascending order"));
3847 mask |= 1 << reg;
b99bd4ef 3848
c19d1205
ZW
3849 if (*input_line_pointer == '-')
3850 {
3851 input_line_pointer++;
dcbf9037 3852 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3853 if (hi_reg == FAIL)
3854 {
9b7132d3 3855 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3856 goto error;
3857 }
3858 else if (reg >= hi_reg)
3859 {
3860 as_bad (_("bad register range"));
3861 goto error;
3862 }
3863 for (; reg < hi_reg; reg++)
3864 mask |= 1 << reg;
3865 }
3866 }
3867 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3868
c19d1205
ZW
3869 if (*input_line_pointer == '}')
3870 input_line_pointer++;
b99bd4ef 3871
c19d1205 3872 demand_empty_rest_of_line ();
b99bd4ef 3873
708587a4 3874 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3875 the list. */
3876 flush_pending_unwind ();
b99bd4ef 3877
c19d1205 3878 for (i = 0; i < 16; i++)
b99bd4ef 3879 {
c19d1205
ZW
3880 if (mask & (1 << i))
3881 unwind.frame_size += 8;
b99bd4ef
NC
3882 }
3883
c19d1205
ZW
3884 /* Attempt to combine with a previous opcode. We do this because gcc
3885 likes to output separate unwind directives for a single block of
3886 registers. */
3887 if (unwind.opcode_count > 0)
b99bd4ef 3888 {
c19d1205
ZW
3889 i = unwind.opcodes[unwind.opcode_count - 1];
3890 if ((i & 0xf8) == 0xc0)
3891 {
3892 i &= 7;
3893 /* Only merge if the blocks are contiguous. */
3894 if (i < 6)
3895 {
3896 if ((mask & 0xfe00) == (1 << 9))
3897 {
3898 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3899 unwind.opcode_count--;
3900 }
3901 }
3902 else if (i == 6 && unwind.opcode_count >= 2)
3903 {
3904 i = unwind.opcodes[unwind.opcode_count - 2];
3905 reg = i >> 4;
3906 i &= 0xf;
b99bd4ef 3907
c19d1205
ZW
3908 op = 0xffff << (reg - 1);
3909 if (reg > 0
87a1fd79 3910 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3911 {
3912 op = (1 << (reg + i + 1)) - 1;
3913 op &= ~((1 << reg) - 1);
3914 mask |= op;
3915 unwind.opcode_count -= 2;
3916 }
3917 }
3918 }
b99bd4ef
NC
3919 }
3920
c19d1205
ZW
3921 hi_reg = 15;
3922 /* We want to generate opcodes in the order the registers have been
3923 saved, ie. descending order. */
3924 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3925 {
c19d1205
ZW
3926 /* Save registers in blocks. */
3927 if (reg < 0
3928 || !(mask & (1 << reg)))
3929 {
3930 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3931 preceding block. */
c19d1205
ZW
3932 if (reg != hi_reg)
3933 {
3934 if (reg == 9)
3935 {
3936 /* Short form. */
3937 op = 0xc0 | (hi_reg - 10);
3938 add_unwind_opcode (op, 1);
3939 }
3940 else
3941 {
3942 /* Long form. */
3943 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3944 add_unwind_opcode (op, 2);
3945 }
3946 }
3947 hi_reg = reg - 1;
3948 }
b99bd4ef
NC
3949 }
3950
c19d1205
ZW
3951 return;
3952error:
3953 ignore_rest_of_line ();
b99bd4ef
NC
3954}
3955
3956static void
c19d1205 3957s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3958{
c19d1205
ZW
3959 int reg;
3960 int hi_reg;
3961 unsigned mask = 0;
3962 valueT op;
b99bd4ef 3963
c19d1205
ZW
3964 if (*input_line_pointer == '{')
3965 input_line_pointer++;
b99bd4ef 3966
c19d1205 3967 do
b99bd4ef 3968 {
dcbf9037 3969 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3970
c19d1205
ZW
3971 if (reg == FAIL)
3972 {
9b7132d3 3973 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3974 goto error;
3975 }
b99bd4ef 3976
c19d1205
ZW
3977 reg -= 8;
3978 if (mask >> reg)
3979 as_tsktsk (_("register list not in ascending order"));
3980 mask |= 1 << reg;
b99bd4ef 3981
c19d1205
ZW
3982 if (*input_line_pointer == '-')
3983 {
3984 input_line_pointer++;
dcbf9037 3985 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3986 if (hi_reg == FAIL)
3987 {
9b7132d3 3988 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3989 goto error;
3990 }
3991 else if (reg >= hi_reg)
3992 {
3993 as_bad (_("bad register range"));
3994 goto error;
3995 }
3996 for (; reg < hi_reg; reg++)
3997 mask |= 1 << reg;
3998 }
b99bd4ef 3999 }
c19d1205 4000 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4001
c19d1205
ZW
4002 if (*input_line_pointer == '}')
4003 input_line_pointer++;
b99bd4ef 4004
c19d1205
ZW
4005 demand_empty_rest_of_line ();
4006
708587a4 4007 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4008 the list. */
4009 flush_pending_unwind ();
b99bd4ef 4010
c19d1205 4011 for (reg = 0; reg < 16; reg++)
b99bd4ef 4012 {
c19d1205
ZW
4013 if (mask & (1 << reg))
4014 unwind.frame_size += 4;
b99bd4ef 4015 }
c19d1205
ZW
4016 op = 0xc700 | mask;
4017 add_unwind_opcode (op, 2);
4018 return;
4019error:
4020 ignore_rest_of_line ();
b99bd4ef
NC
4021}
4022
c19d1205 4023
fa073d69
MS
4024/* Parse an unwind_save directive.
4025 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4026
b99bd4ef 4027static void
fa073d69 4028s_arm_unwind_save (int arch_v6)
b99bd4ef 4029{
c19d1205
ZW
4030 char *peek;
4031 struct reg_entry *reg;
4032 bfd_boolean had_brace = FALSE;
b99bd4ef 4033
921e5f0a 4034 if (!unwind.proc_start)
c921be7d 4035 as_bad (MISSING_FNSTART);
921e5f0a 4036
c19d1205
ZW
4037 /* Figure out what sort of save we have. */
4038 peek = input_line_pointer;
b99bd4ef 4039
c19d1205 4040 if (*peek == '{')
b99bd4ef 4041 {
c19d1205
ZW
4042 had_brace = TRUE;
4043 peek++;
b99bd4ef
NC
4044 }
4045
c19d1205 4046 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4047
c19d1205 4048 if (!reg)
b99bd4ef 4049 {
c19d1205
ZW
4050 as_bad (_("register expected"));
4051 ignore_rest_of_line ();
b99bd4ef
NC
4052 return;
4053 }
4054
c19d1205 4055 switch (reg->type)
b99bd4ef 4056 {
c19d1205
ZW
4057 case REG_TYPE_FN:
4058 if (had_brace)
4059 {
4060 as_bad (_("FPA .unwind_save does not take a register list"));
4061 ignore_rest_of_line ();
4062 return;
4063 }
93ac2687 4064 input_line_pointer = peek;
c19d1205 4065 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4066 return;
c19d1205
ZW
4067
4068 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4069 case REG_TYPE_VFD:
4070 if (arch_v6)
4071 s_arm_unwind_save_vfp_armv6 ();
4072 else
4073 s_arm_unwind_save_vfp ();
4074 return;
c19d1205
ZW
4075 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4076 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4077
4078 default:
4079 as_bad (_(".unwind_save does not support this kind of register"));
4080 ignore_rest_of_line ();
b99bd4ef 4081 }
c19d1205 4082}
b99bd4ef 4083
b99bd4ef 4084
c19d1205
ZW
4085/* Parse an unwind_movsp directive. */
4086
4087static void
4088s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4089{
4090 int reg;
4091 valueT op;
4fa3602b 4092 int offset;
c19d1205 4093
921e5f0a 4094 if (!unwind.proc_start)
c921be7d 4095 as_bad (MISSING_FNSTART);
921e5f0a 4096
dcbf9037 4097 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4098 if (reg == FAIL)
b99bd4ef 4099 {
9b7132d3 4100 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4101 ignore_rest_of_line ();
b99bd4ef
NC
4102 return;
4103 }
4fa3602b
PB
4104
4105 /* Optional constant. */
4106 if (skip_past_comma (&input_line_pointer) != FAIL)
4107 {
4108 if (immediate_for_directive (&offset) == FAIL)
4109 return;
4110 }
4111 else
4112 offset = 0;
4113
c19d1205 4114 demand_empty_rest_of_line ();
b99bd4ef 4115
c19d1205 4116 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4117 {
c19d1205 4118 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4119 return;
4120 }
4121
c19d1205
ZW
4122 if (unwind.fp_reg != REG_SP)
4123 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4124
c19d1205
ZW
4125 /* Generate opcode to restore the value. */
4126 op = 0x90 | reg;
4127 add_unwind_opcode (op, 1);
4128
4129 /* Record the information for later. */
4130 unwind.fp_reg = reg;
4fa3602b 4131 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4132 unwind.sp_restored = 1;
b05fe5cf
ZW
4133}
4134
c19d1205
ZW
4135/* Parse an unwind_pad directive. */
4136
b05fe5cf 4137static void
c19d1205 4138s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4139{
c19d1205 4140 int offset;
b05fe5cf 4141
921e5f0a 4142 if (!unwind.proc_start)
c921be7d 4143 as_bad (MISSING_FNSTART);
921e5f0a 4144
c19d1205
ZW
4145 if (immediate_for_directive (&offset) == FAIL)
4146 return;
b99bd4ef 4147
c19d1205
ZW
4148 if (offset & 3)
4149 {
4150 as_bad (_("stack increment must be multiple of 4"));
4151 ignore_rest_of_line ();
4152 return;
4153 }
b99bd4ef 4154
c19d1205
ZW
4155 /* Don't generate any opcodes, just record the details for later. */
4156 unwind.frame_size += offset;
4157 unwind.pending_offset += offset;
4158
4159 demand_empty_rest_of_line ();
4160}
4161
4162/* Parse an unwind_setfp directive. */
4163
4164static void
4165s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4166{
c19d1205
ZW
4167 int sp_reg;
4168 int fp_reg;
4169 int offset;
4170
921e5f0a 4171 if (!unwind.proc_start)
c921be7d 4172 as_bad (MISSING_FNSTART);
921e5f0a 4173
dcbf9037 4174 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4175 if (skip_past_comma (&input_line_pointer) == FAIL)
4176 sp_reg = FAIL;
4177 else
dcbf9037 4178 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4179
c19d1205
ZW
4180 if (fp_reg == FAIL || sp_reg == FAIL)
4181 {
4182 as_bad (_("expected <reg>, <reg>"));
4183 ignore_rest_of_line ();
4184 return;
4185 }
b99bd4ef 4186
c19d1205
ZW
4187 /* Optional constant. */
4188 if (skip_past_comma (&input_line_pointer) != FAIL)
4189 {
4190 if (immediate_for_directive (&offset) == FAIL)
4191 return;
4192 }
4193 else
4194 offset = 0;
a737bd4d 4195
c19d1205 4196 demand_empty_rest_of_line ();
a737bd4d 4197
fdfde340 4198 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4199 {
c19d1205
ZW
4200 as_bad (_("register must be either sp or set by a previous"
4201 "unwind_movsp directive"));
4202 return;
a737bd4d
NC
4203 }
4204
c19d1205
ZW
4205 /* Don't generate any opcodes, just record the information for later. */
4206 unwind.fp_reg = fp_reg;
4207 unwind.fp_used = 1;
fdfde340 4208 if (sp_reg == REG_SP)
c19d1205
ZW
4209 unwind.fp_offset = unwind.frame_size - offset;
4210 else
4211 unwind.fp_offset -= offset;
a737bd4d
NC
4212}
4213
c19d1205
ZW
4214/* Parse an unwind_raw directive. */
4215
4216static void
4217s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4218{
c19d1205 4219 expressionS exp;
708587a4 4220 /* This is an arbitrary limit. */
c19d1205
ZW
4221 unsigned char op[16];
4222 int count;
a737bd4d 4223
921e5f0a 4224 if (!unwind.proc_start)
c921be7d 4225 as_bad (MISSING_FNSTART);
921e5f0a 4226
c19d1205
ZW
4227 expression (&exp);
4228 if (exp.X_op == O_constant
4229 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4230 {
c19d1205
ZW
4231 unwind.frame_size += exp.X_add_number;
4232 expression (&exp);
4233 }
4234 else
4235 exp.X_op = O_illegal;
a737bd4d 4236
c19d1205
ZW
4237 if (exp.X_op != O_constant)
4238 {
4239 as_bad (_("expected <offset>, <opcode>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
a737bd4d 4243
c19d1205 4244 count = 0;
a737bd4d 4245
c19d1205
ZW
4246 /* Parse the opcode. */
4247 for (;;)
4248 {
4249 if (count >= 16)
4250 {
4251 as_bad (_("unwind opcode too long"));
4252 ignore_rest_of_line ();
a737bd4d 4253 }
c19d1205 4254 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4255 {
c19d1205
ZW
4256 as_bad (_("invalid unwind opcode"));
4257 ignore_rest_of_line ();
4258 return;
a737bd4d 4259 }
c19d1205 4260 op[count++] = exp.X_add_number;
a737bd4d 4261
c19d1205
ZW
4262 /* Parse the next byte. */
4263 if (skip_past_comma (&input_line_pointer) == FAIL)
4264 break;
a737bd4d 4265
c19d1205
ZW
4266 expression (&exp);
4267 }
b99bd4ef 4268
c19d1205
ZW
4269 /* Add the opcode bytes in reverse order. */
4270 while (count--)
4271 add_unwind_opcode (op[count], 1);
b99bd4ef 4272
c19d1205 4273 demand_empty_rest_of_line ();
b99bd4ef 4274}
ee065d83
PB
4275
4276
4277/* Parse a .eabi_attribute directive. */
4278
4279static void
4280s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4281{
ee3c0378
AS
4282 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4283
4284 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4285 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4286}
4287
0855e32b
NS
4288/* Emit a tls fix for the symbol. */
4289
4290static void
4291s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4292{
4293 char *p;
4294 expressionS exp;
4295#ifdef md_flush_pending_output
4296 md_flush_pending_output ();
4297#endif
4298
4299#ifdef md_cons_align
4300 md_cons_align (4);
4301#endif
4302
4303 /* Since we're just labelling the code, there's no need to define a
4304 mapping symbol. */
4305 expression (&exp);
4306 p = obstack_next_free (&frchain_now->frch_obstack);
4307 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4308 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4309 : BFD_RELOC_ARM_TLS_DESCSEQ);
4310}
cdf9ccec 4311#endif /* OBJ_ELF */
0855e32b 4312
ee065d83 4313static void s_arm_arch (int);
7a1d4c38 4314static void s_arm_object_arch (int);
ee065d83
PB
4315static void s_arm_cpu (int);
4316static void s_arm_fpu (int);
69133863 4317static void s_arm_arch_extension (int);
b99bd4ef 4318
f0927246
NC
4319#ifdef TE_PE
4320
4321static void
5f4273c7 4322pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4323{
4324 expressionS exp;
4325
4326 do
4327 {
4328 expression (&exp);
4329 if (exp.X_op == O_symbol)
4330 exp.X_op = O_secrel;
4331
4332 emit_expr (&exp, 4);
4333 }
4334 while (*input_line_pointer++ == ',');
4335
4336 input_line_pointer--;
4337 demand_empty_rest_of_line ();
4338}
4339#endif /* TE_PE */
4340
c19d1205
ZW
4341/* This table describes all the machine specific pseudo-ops the assembler
4342 has to support. The fields are:
4343 pseudo-op name without dot
4344 function to call to execute this pseudo-op
4345 Integer arg to pass to the function. */
b99bd4ef 4346
c19d1205 4347const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4348{
c19d1205
ZW
4349 /* Never called because '.req' does not start a line. */
4350 { "req", s_req, 0 },
dcbf9037
JB
4351 /* Following two are likewise never called. */
4352 { "dn", s_dn, 0 },
4353 { "qn", s_qn, 0 },
c19d1205
ZW
4354 { "unreq", s_unreq, 0 },
4355 { "bss", s_bss, 0 },
4356 { "align", s_align, 0 },
4357 { "arm", s_arm, 0 },
4358 { "thumb", s_thumb, 0 },
4359 { "code", s_code, 0 },
4360 { "force_thumb", s_force_thumb, 0 },
4361 { "thumb_func", s_thumb_func, 0 },
4362 { "thumb_set", s_thumb_set, 0 },
4363 { "even", s_even, 0 },
4364 { "ltorg", s_ltorg, 0 },
4365 { "pool", s_ltorg, 0 },
4366 { "syntax", s_syntax, 0 },
8463be01
PB
4367 { "cpu", s_arm_cpu, 0 },
4368 { "arch", s_arm_arch, 0 },
7a1d4c38 4369 { "object_arch", s_arm_object_arch, 0 },
8463be01 4370 { "fpu", s_arm_fpu, 0 },
69133863 4371 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4372#ifdef OBJ_ELF
c921be7d
NC
4373 { "word", s_arm_elf_cons, 4 },
4374 { "long", s_arm_elf_cons, 4 },
4375 { "inst.n", s_arm_elf_inst, 2 },
4376 { "inst.w", s_arm_elf_inst, 4 },
4377 { "inst", s_arm_elf_inst, 0 },
4378 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4379 { "fnstart", s_arm_unwind_fnstart, 0 },
4380 { "fnend", s_arm_unwind_fnend, 0 },
4381 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4382 { "personality", s_arm_unwind_personality, 0 },
4383 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4384 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4385 { "save", s_arm_unwind_save, 0 },
fa073d69 4386 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4387 { "movsp", s_arm_unwind_movsp, 0 },
4388 { "pad", s_arm_unwind_pad, 0 },
4389 { "setfp", s_arm_unwind_setfp, 0 },
4390 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4391 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4392 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4393#else
4394 { "word", cons, 4},
f0927246
NC
4395
4396 /* These are used for dwarf. */
4397 {"2byte", cons, 2},
4398 {"4byte", cons, 4},
4399 {"8byte", cons, 8},
4400 /* These are used for dwarf2. */
4401 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4402 { "loc", dwarf2_directive_loc, 0 },
4403 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4404#endif
4405 { "extend", float_cons, 'x' },
4406 { "ldouble", float_cons, 'x' },
4407 { "packed", float_cons, 'p' },
f0927246
NC
4408#ifdef TE_PE
4409 {"secrel32", pe_directive_secrel, 0},
4410#endif
c19d1205
ZW
4411 { 0, 0, 0 }
4412};
4413\f
4414/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4415
c19d1205
ZW
4416/* Generic immediate-value read function for use in insn parsing.
4417 STR points to the beginning of the immediate (the leading #);
4418 VAL receives the value; if the value is outside [MIN, MAX]
4419 issue an error. PREFIX_OPT is true if the immediate prefix is
4420 optional. */
b99bd4ef 4421
c19d1205
ZW
4422static int
4423parse_immediate (char **str, int *val, int min, int max,
4424 bfd_boolean prefix_opt)
4425{
4426 expressionS exp;
4427 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4428 if (exp.X_op != O_constant)
b99bd4ef 4429 {
c19d1205
ZW
4430 inst.error = _("constant expression required");
4431 return FAIL;
4432 }
b99bd4ef 4433
c19d1205
ZW
4434 if (exp.X_add_number < min || exp.X_add_number > max)
4435 {
4436 inst.error = _("immediate value out of range");
4437 return FAIL;
4438 }
b99bd4ef 4439
c19d1205
ZW
4440 *val = exp.X_add_number;
4441 return SUCCESS;
4442}
b99bd4ef 4443
5287ad62 4444/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4445 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4446 instructions. Puts the result directly in inst.operands[i]. */
4447
4448static int
4449parse_big_immediate (char **str, int i)
4450{
4451 expressionS exp;
4452 char *ptr = *str;
4453
4454 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4455
4456 if (exp.X_op == O_constant)
036dc3f7
PB
4457 {
4458 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4459 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4460 O_constant. We have to be careful not to break compilation for
4461 32-bit X_add_number, though. */
58ad575f 4462 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4463 {
4464 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4465 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4466 inst.operands[i].regisimm = 1;
4467 }
4468 }
5287ad62 4469 else if (exp.X_op == O_big
95b75c01 4470 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4471 {
4472 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4473
5287ad62
JB
4474 /* Bignums have their least significant bits in
4475 generic_bignum[0]. Make sure we put 32 bits in imm and
4476 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4477 gas_assert (parts != 0);
95b75c01
NC
4478
4479 /* Make sure that the number is not too big.
4480 PR 11972: Bignums can now be sign-extended to the
4481 size of a .octa so check that the out of range bits
4482 are all zero or all one. */
4483 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4484 {
4485 LITTLENUM_TYPE m = -1;
4486
4487 if (generic_bignum[parts * 2] != 0
4488 && generic_bignum[parts * 2] != m)
4489 return FAIL;
4490
4491 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4492 if (generic_bignum[j] != generic_bignum[j-1])
4493 return FAIL;
4494 }
4495
5287ad62
JB
4496 inst.operands[i].imm = 0;
4497 for (j = 0; j < parts; j++, idx++)
4498 inst.operands[i].imm |= generic_bignum[idx]
4499 << (LITTLENUM_NUMBER_OF_BITS * j);
4500 inst.operands[i].reg = 0;
4501 for (j = 0; j < parts; j++, idx++)
4502 inst.operands[i].reg |= generic_bignum[idx]
4503 << (LITTLENUM_NUMBER_OF_BITS * j);
4504 inst.operands[i].regisimm = 1;
4505 }
4506 else
4507 return FAIL;
5f4273c7 4508
5287ad62
JB
4509 *str = ptr;
4510
4511 return SUCCESS;
4512}
4513
c19d1205
ZW
4514/* Returns the pseudo-register number of an FPA immediate constant,
4515 or FAIL if there isn't a valid constant here. */
b99bd4ef 4516
c19d1205
ZW
4517static int
4518parse_fpa_immediate (char ** str)
4519{
4520 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4521 char * save_in;
4522 expressionS exp;
4523 int i;
4524 int j;
b99bd4ef 4525
c19d1205
ZW
4526 /* First try and match exact strings, this is to guarantee
4527 that some formats will work even for cross assembly. */
b99bd4ef 4528
c19d1205
ZW
4529 for (i = 0; fp_const[i]; i++)
4530 {
4531 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4532 {
c19d1205 4533 char *start = *str;
b99bd4ef 4534
c19d1205
ZW
4535 *str += strlen (fp_const[i]);
4536 if (is_end_of_line[(unsigned char) **str])
4537 return i + 8;
4538 *str = start;
4539 }
4540 }
b99bd4ef 4541
c19d1205
ZW
4542 /* Just because we didn't get a match doesn't mean that the constant
4543 isn't valid, just that it is in a format that we don't
4544 automatically recognize. Try parsing it with the standard
4545 expression routines. */
b99bd4ef 4546
c19d1205 4547 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4548
c19d1205
ZW
4549 /* Look for a raw floating point number. */
4550 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4551 && is_end_of_line[(unsigned char) *save_in])
4552 {
4553 for (i = 0; i < NUM_FLOAT_VALS; i++)
4554 {
4555 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4556 {
c19d1205
ZW
4557 if (words[j] != fp_values[i][j])
4558 break;
b99bd4ef
NC
4559 }
4560
c19d1205 4561 if (j == MAX_LITTLENUMS)
b99bd4ef 4562 {
c19d1205
ZW
4563 *str = save_in;
4564 return i + 8;
b99bd4ef
NC
4565 }
4566 }
4567 }
b99bd4ef 4568
c19d1205
ZW
4569 /* Try and parse a more complex expression, this will probably fail
4570 unless the code uses a floating point prefix (eg "0f"). */
4571 save_in = input_line_pointer;
4572 input_line_pointer = *str;
4573 if (expression (&exp) == absolute_section
4574 && exp.X_op == O_big
4575 && exp.X_add_number < 0)
4576 {
4577 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4578 Ditto for 15. */
4579 if (gen_to_words (words, 5, (long) 15) == 0)
4580 {
4581 for (i = 0; i < NUM_FLOAT_VALS; i++)
4582 {
4583 for (j = 0; j < MAX_LITTLENUMS; j++)
4584 {
4585 if (words[j] != fp_values[i][j])
4586 break;
4587 }
b99bd4ef 4588
c19d1205
ZW
4589 if (j == MAX_LITTLENUMS)
4590 {
4591 *str = input_line_pointer;
4592 input_line_pointer = save_in;
4593 return i + 8;
4594 }
4595 }
4596 }
b99bd4ef
NC
4597 }
4598
c19d1205
ZW
4599 *str = input_line_pointer;
4600 input_line_pointer = save_in;
4601 inst.error = _("invalid FPA immediate expression");
4602 return FAIL;
b99bd4ef
NC
4603}
4604
136da414
JB
4605/* Returns 1 if a number has "quarter-precision" float format
4606 0baBbbbbbc defgh000 00000000 00000000. */
4607
4608static int
4609is_quarter_float (unsigned imm)
4610{
4611 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4612 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4613}
4614
4615/* Parse an 8-bit "quarter-precision" floating point number of the form:
4616 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4617 The zero and minus-zero cases need special handling, since they can't be
4618 encoded in the "quarter-precision" float format, but can nonetheless be
4619 loaded as integer constants. */
136da414
JB
4620
4621static unsigned
4622parse_qfloat_immediate (char **ccp, int *immed)
4623{
4624 char *str = *ccp;
c96612cc 4625 char *fpnum;
136da414 4626 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4627 int found_fpchar = 0;
5f4273c7 4628
136da414 4629 skip_past_char (&str, '#');
5f4273c7 4630
c96612cc
JB
4631 /* We must not accidentally parse an integer as a floating-point number. Make
4632 sure that the value we parse is not an integer by checking for special
4633 characters '.' or 'e'.
4634 FIXME: This is a horrible hack, but doing better is tricky because type
4635 information isn't in a very usable state at parse time. */
4636 fpnum = str;
4637 skip_whitespace (fpnum);
4638
4639 if (strncmp (fpnum, "0x", 2) == 0)
4640 return FAIL;
4641 else
4642 {
4643 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4644 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4645 {
4646 found_fpchar = 1;
4647 break;
4648 }
4649
4650 if (!found_fpchar)
4651 return FAIL;
4652 }
5f4273c7 4653
136da414
JB
4654 if ((str = atof_ieee (str, 's', words)) != NULL)
4655 {
4656 unsigned fpword = 0;
4657 int i;
5f4273c7 4658
136da414
JB
4659 /* Our FP word must be 32 bits (single-precision FP). */
4660 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4661 {
4662 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4663 fpword |= words[i];
4664 }
5f4273c7 4665
c96612cc 4666 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4667 *immed = fpword;
4668 else
4669 return FAIL;
4670
4671 *ccp = str;
5f4273c7 4672
136da414
JB
4673 return SUCCESS;
4674 }
5f4273c7 4675
136da414
JB
4676 return FAIL;
4677}
4678
c19d1205
ZW
4679/* Shift operands. */
4680enum shift_kind
b99bd4ef 4681{
c19d1205
ZW
4682 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4683};
b99bd4ef 4684
c19d1205
ZW
4685struct asm_shift_name
4686{
4687 const char *name;
4688 enum shift_kind kind;
4689};
b99bd4ef 4690
c19d1205
ZW
4691/* Third argument to parse_shift. */
4692enum parse_shift_mode
4693{
4694 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4695 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4696 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4697 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4698 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4699};
b99bd4ef 4700
c19d1205
ZW
4701/* Parse a <shift> specifier on an ARM data processing instruction.
4702 This has three forms:
b99bd4ef 4703
c19d1205
ZW
4704 (LSL|LSR|ASL|ASR|ROR) Rs
4705 (LSL|LSR|ASL|ASR|ROR) #imm
4706 RRX
b99bd4ef 4707
c19d1205
ZW
4708 Note that ASL is assimilated to LSL in the instruction encoding, and
4709 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4710
c19d1205
ZW
4711static int
4712parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4713{
c19d1205
ZW
4714 const struct asm_shift_name *shift_name;
4715 enum shift_kind shift;
4716 char *s = *str;
4717 char *p = s;
4718 int reg;
b99bd4ef 4719
c19d1205
ZW
4720 for (p = *str; ISALPHA (*p); p++)
4721 ;
b99bd4ef 4722
c19d1205 4723 if (p == *str)
b99bd4ef 4724 {
c19d1205
ZW
4725 inst.error = _("shift expression expected");
4726 return FAIL;
b99bd4ef
NC
4727 }
4728
21d799b5
NC
4729 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4730 p - *str);
c19d1205
ZW
4731
4732 if (shift_name == NULL)
b99bd4ef 4733 {
c19d1205
ZW
4734 inst.error = _("shift expression expected");
4735 return FAIL;
b99bd4ef
NC
4736 }
4737
c19d1205 4738 shift = shift_name->kind;
b99bd4ef 4739
c19d1205
ZW
4740 switch (mode)
4741 {
4742 case NO_SHIFT_RESTRICT:
4743 case SHIFT_IMMEDIATE: break;
b99bd4ef 4744
c19d1205
ZW
4745 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4746 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4747 {
4748 inst.error = _("'LSL' or 'ASR' required");
4749 return FAIL;
4750 }
4751 break;
b99bd4ef 4752
c19d1205
ZW
4753 case SHIFT_LSL_IMMEDIATE:
4754 if (shift != SHIFT_LSL)
4755 {
4756 inst.error = _("'LSL' required");
4757 return FAIL;
4758 }
4759 break;
b99bd4ef 4760
c19d1205
ZW
4761 case SHIFT_ASR_IMMEDIATE:
4762 if (shift != SHIFT_ASR)
4763 {
4764 inst.error = _("'ASR' required");
4765 return FAIL;
4766 }
4767 break;
b99bd4ef 4768
c19d1205
ZW
4769 default: abort ();
4770 }
b99bd4ef 4771
c19d1205
ZW
4772 if (shift != SHIFT_RRX)
4773 {
4774 /* Whitespace can appear here if the next thing is a bare digit. */
4775 skip_whitespace (p);
b99bd4ef 4776
c19d1205 4777 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4778 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4779 {
4780 inst.operands[i].imm = reg;
4781 inst.operands[i].immisreg = 1;
4782 }
4783 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4784 return FAIL;
4785 }
4786 inst.operands[i].shift_kind = shift;
4787 inst.operands[i].shifted = 1;
4788 *str = p;
4789 return SUCCESS;
b99bd4ef
NC
4790}
4791
c19d1205 4792/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4793
c19d1205
ZW
4794 #<immediate>
4795 #<immediate>, <rotate>
4796 <Rm>
4797 <Rm>, <shift>
b99bd4ef 4798
c19d1205
ZW
4799 where <shift> is defined by parse_shift above, and <rotate> is a
4800 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4801 is deferred to md_apply_fix. */
b99bd4ef 4802
c19d1205
ZW
4803static int
4804parse_shifter_operand (char **str, int i)
4805{
4806 int value;
91d6fa6a 4807 expressionS exp;
b99bd4ef 4808
dcbf9037 4809 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4810 {
4811 inst.operands[i].reg = value;
4812 inst.operands[i].isreg = 1;
b99bd4ef 4813
c19d1205
ZW
4814 /* parse_shift will override this if appropriate */
4815 inst.reloc.exp.X_op = O_constant;
4816 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4817
c19d1205
ZW
4818 if (skip_past_comma (str) == FAIL)
4819 return SUCCESS;
b99bd4ef 4820
c19d1205
ZW
4821 /* Shift operation on register. */
4822 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4823 }
4824
c19d1205
ZW
4825 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4826 return FAIL;
b99bd4ef 4827
c19d1205 4828 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4829 {
c19d1205 4830 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4831 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4832 return FAIL;
b99bd4ef 4833
91d6fa6a 4834 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4835 {
4836 inst.error = _("constant expression expected");
4837 return FAIL;
4838 }
b99bd4ef 4839
91d6fa6a 4840 value = exp.X_add_number;
c19d1205
ZW
4841 if (value < 0 || value > 30 || value % 2 != 0)
4842 {
4843 inst.error = _("invalid rotation");
4844 return FAIL;
4845 }
4846 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4847 {
4848 inst.error = _("invalid constant");
4849 return FAIL;
4850 }
09d92015 4851
55cf6793 4852 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4853 inst.reloc.exp.X_add_number
4854 = (((inst.reloc.exp.X_add_number << (32 - value))
4855 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4856 }
4857
c19d1205
ZW
4858 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4859 inst.reloc.pc_rel = 0;
4860 return SUCCESS;
09d92015
MM
4861}
4862
4962c51a
MS
4863/* Group relocation information. Each entry in the table contains the
4864 textual name of the relocation as may appear in assembler source
4865 and must end with a colon.
4866 Along with this textual name are the relocation codes to be used if
4867 the corresponding instruction is an ALU instruction (ADD or SUB only),
4868 an LDR, an LDRS, or an LDC. */
4869
4870struct group_reloc_table_entry
4871{
4872 const char *name;
4873 int alu_code;
4874 int ldr_code;
4875 int ldrs_code;
4876 int ldc_code;
4877};
4878
4879typedef enum
4880{
4881 /* Varieties of non-ALU group relocation. */
4882
4883 GROUP_LDR,
4884 GROUP_LDRS,
4885 GROUP_LDC
4886} group_reloc_type;
4887
4888static struct group_reloc_table_entry group_reloc_table[] =
4889 { /* Program counter relative: */
4890 { "pc_g0_nc",
4891 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4892 0, /* LDR */
4893 0, /* LDRS */
4894 0 }, /* LDC */
4895 { "pc_g0",
4896 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4897 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4898 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4899 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4900 { "pc_g1_nc",
4901 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4902 0, /* LDR */
4903 0, /* LDRS */
4904 0 }, /* LDC */
4905 { "pc_g1",
4906 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4907 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4908 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4909 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4910 { "pc_g2",
4911 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4912 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4913 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4914 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4915 /* Section base relative */
4916 { "sb_g0_nc",
4917 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4918 0, /* LDR */
4919 0, /* LDRS */
4920 0 }, /* LDC */
4921 { "sb_g0",
4922 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4923 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4924 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4925 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4926 { "sb_g1_nc",
4927 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4928 0, /* LDR */
4929 0, /* LDRS */
4930 0 }, /* LDC */
4931 { "sb_g1",
4932 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4933 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4934 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4935 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4936 { "sb_g2",
4937 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4938 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4939 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4940 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4941
4942/* Given the address of a pointer pointing to the textual name of a group
4943 relocation as may appear in assembler source, attempt to find its details
4944 in group_reloc_table. The pointer will be updated to the character after
4945 the trailing colon. On failure, FAIL will be returned; SUCCESS
4946 otherwise. On success, *entry will be updated to point at the relevant
4947 group_reloc_table entry. */
4948
4949static int
4950find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4951{
4952 unsigned int i;
4953 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4954 {
4955 int length = strlen (group_reloc_table[i].name);
4956
5f4273c7
NC
4957 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4958 && (*str)[length] == ':')
4962c51a
MS
4959 {
4960 *out = &group_reloc_table[i];
4961 *str += (length + 1);
4962 return SUCCESS;
4963 }
4964 }
4965
4966 return FAIL;
4967}
4968
4969/* Parse a <shifter_operand> for an ARM data processing instruction
4970 (as for parse_shifter_operand) where group relocations are allowed:
4971
4972 #<immediate>
4973 #<immediate>, <rotate>
4974 #:<group_reloc>:<expression>
4975 <Rm>
4976 <Rm>, <shift>
4977
4978 where <group_reloc> is one of the strings defined in group_reloc_table.
4979 The hashes are optional.
4980
4981 Everything else is as for parse_shifter_operand. */
4982
4983static parse_operand_result
4984parse_shifter_operand_group_reloc (char **str, int i)
4985{
4986 /* Determine if we have the sequence of characters #: or just :
4987 coming next. If we do, then we check for a group relocation.
4988 If we don't, punt the whole lot to parse_shifter_operand. */
4989
4990 if (((*str)[0] == '#' && (*str)[1] == ':')
4991 || (*str)[0] == ':')
4992 {
4993 struct group_reloc_table_entry *entry;
4994
4995 if ((*str)[0] == '#')
4996 (*str) += 2;
4997 else
4998 (*str)++;
4999
5000 /* Try to parse a group relocation. Anything else is an error. */
5001 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5002 {
5003 inst.error = _("unknown group relocation");
5004 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5005 }
5006
5007 /* We now have the group relocation table entry corresponding to
5008 the name in the assembler source. Next, we parse the expression. */
5009 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5010 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5011
5012 /* Record the relocation type (always the ALU variant here). */
21d799b5 5013 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5014 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5015
5016 return PARSE_OPERAND_SUCCESS;
5017 }
5018 else
5019 return parse_shifter_operand (str, i) == SUCCESS
5020 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5021
5022 /* Never reached. */
5023}
5024
8e560766
MGD
5025/* Parse a Neon alignment expression. Information is written to
5026 inst.operands[i]. We assume the initial ':' has been skipped.
5027
5028 align .imm = align << 8, .immisalign=1, .preind=0 */
5029static parse_operand_result
5030parse_neon_alignment (char **str, int i)
5031{
5032 char *p = *str;
5033 expressionS exp;
5034
5035 my_get_expression (&exp, &p, GE_NO_PREFIX);
5036
5037 if (exp.X_op != O_constant)
5038 {
5039 inst.error = _("alignment must be constant");
5040 return PARSE_OPERAND_FAIL;
5041 }
5042
5043 inst.operands[i].imm = exp.X_add_number << 8;
5044 inst.operands[i].immisalign = 1;
5045 /* Alignments are not pre-indexes. */
5046 inst.operands[i].preind = 0;
5047
5048 *str = p;
5049 return PARSE_OPERAND_SUCCESS;
5050}
5051
c19d1205
ZW
5052/* Parse all forms of an ARM address expression. Information is written
5053 to inst.operands[i] and/or inst.reloc.
09d92015 5054
c19d1205 5055 Preindexed addressing (.preind=1):
09d92015 5056
c19d1205
ZW
5057 [Rn, #offset] .reg=Rn .reloc.exp=offset
5058 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5061
c19d1205 5062 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5063
c19d1205 5064 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5065
c19d1205
ZW
5066 [Rn], #offset .reg=Rn .reloc.exp=offset
5067 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5068 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5069 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5070
c19d1205 5071 Unindexed addressing (.preind=0, .postind=0):
09d92015 5072
c19d1205 5073 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5074
c19d1205 5075 Other:
09d92015 5076
c19d1205
ZW
5077 [Rn]{!} shorthand for [Rn,#0]{!}
5078 =immediate .isreg=0 .reloc.exp=immediate
5079 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5080
c19d1205
ZW
5081 It is the caller's responsibility to check for addressing modes not
5082 supported by the instruction, and to set inst.reloc.type. */
5083
4962c51a
MS
5084static parse_operand_result
5085parse_address_main (char **str, int i, int group_relocations,
5086 group_reloc_type group_type)
09d92015 5087{
c19d1205
ZW
5088 char *p = *str;
5089 int reg;
09d92015 5090
c19d1205 5091 if (skip_past_char (&p, '[') == FAIL)
09d92015 5092 {
c19d1205
ZW
5093 if (skip_past_char (&p, '=') == FAIL)
5094 {
974da60d 5095 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5096 inst.reloc.pc_rel = 1;
5097 inst.operands[i].reg = REG_PC;
5098 inst.operands[i].isreg = 1;
5099 inst.operands[i].preind = 1;
5100 }
974da60d 5101 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5102
c19d1205 5103 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5104 return PARSE_OPERAND_FAIL;
09d92015 5105
c19d1205 5106 *str = p;
4962c51a 5107 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5108 }
5109
dcbf9037 5110 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5111 {
c19d1205 5112 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5113 return PARSE_OPERAND_FAIL;
09d92015 5114 }
c19d1205
ZW
5115 inst.operands[i].reg = reg;
5116 inst.operands[i].isreg = 1;
09d92015 5117
c19d1205 5118 if (skip_past_comma (&p) == SUCCESS)
09d92015 5119 {
c19d1205 5120 inst.operands[i].preind = 1;
09d92015 5121
c19d1205
ZW
5122 if (*p == '+') p++;
5123 else if (*p == '-') p++, inst.operands[i].negative = 1;
5124
dcbf9037 5125 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5126 {
c19d1205
ZW
5127 inst.operands[i].imm = reg;
5128 inst.operands[i].immisreg = 1;
5129
5130 if (skip_past_comma (&p) == SUCCESS)
5131 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5132 return PARSE_OPERAND_FAIL;
c19d1205 5133 }
5287ad62 5134 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5135 {
5136 /* FIXME: '@' should be used here, but it's filtered out by generic
5137 code before we get to see it here. This may be subject to
5138 change. */
5139 parse_operand_result result = parse_neon_alignment (&p, i);
5140
5141 if (result != PARSE_OPERAND_SUCCESS)
5142 return result;
5143 }
c19d1205
ZW
5144 else
5145 {
5146 if (inst.operands[i].negative)
5147 {
5148 inst.operands[i].negative = 0;
5149 p--;
5150 }
4962c51a 5151
5f4273c7
NC
5152 if (group_relocations
5153 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5154 {
5155 struct group_reloc_table_entry *entry;
5156
5157 /* Skip over the #: or : sequence. */
5158 if (*p == '#')
5159 p += 2;
5160 else
5161 p++;
5162
5163 /* Try to parse a group relocation. Anything else is an
5164 error. */
5165 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5166 {
5167 inst.error = _("unknown group relocation");
5168 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5169 }
5170
5171 /* We now have the group relocation table entry corresponding to
5172 the name in the assembler source. Next, we parse the
5173 expression. */
5174 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5175 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5176
5177 /* Record the relocation type. */
5178 switch (group_type)
5179 {
5180 case GROUP_LDR:
21d799b5 5181 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5182 break;
5183
5184 case GROUP_LDRS:
21d799b5 5185 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5186 break;
5187
5188 case GROUP_LDC:
21d799b5 5189 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5190 break;
5191
5192 default:
9c2799c2 5193 gas_assert (0);
4962c51a
MS
5194 }
5195
5196 if (inst.reloc.type == 0)
5197 {
5198 inst.error = _("this group relocation is not allowed on this instruction");
5199 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5200 }
5201 }
5202 else
26d97720
NS
5203 {
5204 char *q = p;
5205 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5206 return PARSE_OPERAND_FAIL;
5207 /* If the offset is 0, find out if it's a +0 or -0. */
5208 if (inst.reloc.exp.X_op == O_constant
5209 && inst.reloc.exp.X_add_number == 0)
5210 {
5211 skip_whitespace (q);
5212 if (*q == '#')
5213 {
5214 q++;
5215 skip_whitespace (q);
5216 }
5217 if (*q == '-')
5218 inst.operands[i].negative = 1;
5219 }
5220 }
09d92015
MM
5221 }
5222 }
8e560766
MGD
5223 else if (skip_past_char (&p, ':') == SUCCESS)
5224 {
5225 /* FIXME: '@' should be used here, but it's filtered out by generic code
5226 before we get to see it here. This may be subject to change. */
5227 parse_operand_result result = parse_neon_alignment (&p, i);
5228
5229 if (result != PARSE_OPERAND_SUCCESS)
5230 return result;
5231 }
09d92015 5232
c19d1205 5233 if (skip_past_char (&p, ']') == FAIL)
09d92015 5234 {
c19d1205 5235 inst.error = _("']' expected");
4962c51a 5236 return PARSE_OPERAND_FAIL;
09d92015
MM
5237 }
5238
c19d1205
ZW
5239 if (skip_past_char (&p, '!') == SUCCESS)
5240 inst.operands[i].writeback = 1;
09d92015 5241
c19d1205 5242 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5243 {
c19d1205
ZW
5244 if (skip_past_char (&p, '{') == SUCCESS)
5245 {
5246 /* [Rn], {expr} - unindexed, with option */
5247 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5248 0, 255, TRUE) == FAIL)
4962c51a 5249 return PARSE_OPERAND_FAIL;
09d92015 5250
c19d1205
ZW
5251 if (skip_past_char (&p, '}') == FAIL)
5252 {
5253 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5254 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5255 }
5256 if (inst.operands[i].preind)
5257 {
5258 inst.error = _("cannot combine index with option");
4962c51a 5259 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5260 }
5261 *str = p;
4962c51a 5262 return PARSE_OPERAND_SUCCESS;
09d92015 5263 }
c19d1205
ZW
5264 else
5265 {
5266 inst.operands[i].postind = 1;
5267 inst.operands[i].writeback = 1;
09d92015 5268
c19d1205
ZW
5269 if (inst.operands[i].preind)
5270 {
5271 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5272 return PARSE_OPERAND_FAIL;
c19d1205 5273 }
09d92015 5274
c19d1205
ZW
5275 if (*p == '+') p++;
5276 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5277
dcbf9037 5278 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5279 {
5287ad62
JB
5280 /* We might be using the immediate for alignment already. If we
5281 are, OR the register number into the low-order bits. */
5282 if (inst.operands[i].immisalign)
5283 inst.operands[i].imm |= reg;
5284 else
5285 inst.operands[i].imm = reg;
c19d1205 5286 inst.operands[i].immisreg = 1;
a737bd4d 5287
c19d1205
ZW
5288 if (skip_past_comma (&p) == SUCCESS)
5289 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5290 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5291 }
5292 else
5293 {
26d97720 5294 char *q = p;
c19d1205
ZW
5295 if (inst.operands[i].negative)
5296 {
5297 inst.operands[i].negative = 0;
5298 p--;
5299 }
5300 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5301 return PARSE_OPERAND_FAIL;
26d97720
NS
5302 /* If the offset is 0, find out if it's a +0 or -0. */
5303 if (inst.reloc.exp.X_op == O_constant
5304 && inst.reloc.exp.X_add_number == 0)
5305 {
5306 skip_whitespace (q);
5307 if (*q == '#')
5308 {
5309 q++;
5310 skip_whitespace (q);
5311 }
5312 if (*q == '-')
5313 inst.operands[i].negative = 1;
5314 }
c19d1205
ZW
5315 }
5316 }
a737bd4d
NC
5317 }
5318
c19d1205
ZW
5319 /* If at this point neither .preind nor .postind is set, we have a
5320 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5321 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5322 {
5323 inst.operands[i].preind = 1;
5324 inst.reloc.exp.X_op = O_constant;
5325 inst.reloc.exp.X_add_number = 0;
5326 }
5327 *str = p;
4962c51a
MS
5328 return PARSE_OPERAND_SUCCESS;
5329}
5330
5331static int
5332parse_address (char **str, int i)
5333{
21d799b5 5334 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5335 ? SUCCESS : FAIL;
5336}
5337
5338static parse_operand_result
5339parse_address_group_reloc (char **str, int i, group_reloc_type type)
5340{
5341 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5342}
5343
b6895b4f
PB
5344/* Parse an operand for a MOVW or MOVT instruction. */
5345static int
5346parse_half (char **str)
5347{
5348 char * p;
5f4273c7 5349
b6895b4f
PB
5350 p = *str;
5351 skip_past_char (&p, '#');
5f4273c7 5352 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5353 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5354 else if (strncasecmp (p, ":upper16:", 9) == 0)
5355 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5356
5357 if (inst.reloc.type != BFD_RELOC_UNUSED)
5358 {
5359 p += 9;
5f4273c7 5360 skip_whitespace (p);
b6895b4f
PB
5361 }
5362
5363 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5364 return FAIL;
5365
5366 if (inst.reloc.type == BFD_RELOC_UNUSED)
5367 {
5368 if (inst.reloc.exp.X_op != O_constant)
5369 {
5370 inst.error = _("constant expression expected");
5371 return FAIL;
5372 }
5373 if (inst.reloc.exp.X_add_number < 0
5374 || inst.reloc.exp.X_add_number > 0xffff)
5375 {
5376 inst.error = _("immediate value out of range");
5377 return FAIL;
5378 }
5379 }
5380 *str = p;
5381 return SUCCESS;
5382}
5383
c19d1205 5384/* Miscellaneous. */
a737bd4d 5385
c19d1205
ZW
5386/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5387 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5388static int
d2cd1205 5389parse_psr (char **str, bfd_boolean lhs)
09d92015 5390{
c19d1205
ZW
5391 char *p;
5392 unsigned long psr_field;
62b3e311
PB
5393 const struct asm_psr *psr;
5394 char *start;
d2cd1205 5395 bfd_boolean is_apsr = FALSE;
ac7f631b 5396 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5397
a4482bb6
NC
5398 /* PR gas/12698: If the user has specified -march=all then m_profile will
5399 be TRUE, but we want to ignore it in this case as we are building for any
5400 CPU type, including non-m variants. */
5401 if (selected_cpu.core == arm_arch_any.core)
5402 m_profile = FALSE;
5403
c19d1205
ZW
5404 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5405 feature for ease of use and backwards compatibility. */
5406 p = *str;
62b3e311 5407 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5408 {
5409 if (m_profile)
5410 goto unsupported_psr;
5411
5412 psr_field = SPSR_BIT;
5413 }
5414 else if (strncasecmp (p, "CPSR", 4) == 0)
5415 {
5416 if (m_profile)
5417 goto unsupported_psr;
5418
5419 psr_field = 0;
5420 }
5421 else if (strncasecmp (p, "APSR", 4) == 0)
5422 {
5423 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5424 and ARMv7-R architecture CPUs. */
5425 is_apsr = TRUE;
5426 psr_field = 0;
5427 }
5428 else if (m_profile)
62b3e311
PB
5429 {
5430 start = p;
5431 do
5432 p++;
5433 while (ISALNUM (*p) || *p == '_');
5434
d2cd1205
JB
5435 if (strncasecmp (start, "iapsr", 5) == 0
5436 || strncasecmp (start, "eapsr", 5) == 0
5437 || strncasecmp (start, "xpsr", 4) == 0
5438 || strncasecmp (start, "psr", 3) == 0)
5439 p = start + strcspn (start, "rR") + 1;
5440
21d799b5
NC
5441 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5442 p - start);
d2cd1205 5443
62b3e311
PB
5444 if (!psr)
5445 return FAIL;
09d92015 5446
d2cd1205
JB
5447 /* If APSR is being written, a bitfield may be specified. Note that
5448 APSR itself is handled above. */
5449 if (psr->field <= 3)
5450 {
5451 psr_field = psr->field;
5452 is_apsr = TRUE;
5453 goto check_suffix;
5454 }
5455
62b3e311 5456 *str = p;
d2cd1205
JB
5457 /* M-profile MSR instructions have the mask field set to "10", except
5458 *PSR variants which modify APSR, which may use a different mask (and
5459 have been handled already). Do that by setting the PSR_f field
5460 here. */
5461 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5462 }
d2cd1205
JB
5463 else
5464 goto unsupported_psr;
09d92015 5465
62b3e311 5466 p += 4;
d2cd1205 5467check_suffix:
c19d1205
ZW
5468 if (*p == '_')
5469 {
5470 /* A suffix follows. */
c19d1205
ZW
5471 p++;
5472 start = p;
a737bd4d 5473
c19d1205
ZW
5474 do
5475 p++;
5476 while (ISALNUM (*p) || *p == '_');
a737bd4d 5477
d2cd1205
JB
5478 if (is_apsr)
5479 {
5480 /* APSR uses a notation for bits, rather than fields. */
5481 unsigned int nzcvq_bits = 0;
5482 unsigned int g_bit = 0;
5483 char *bit;
5484
5485 for (bit = start; bit != p; bit++)
5486 {
5487 switch (TOLOWER (*bit))
5488 {
5489 case 'n':
5490 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5491 break;
5492
5493 case 'z':
5494 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5495 break;
5496
5497 case 'c':
5498 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5499 break;
5500
5501 case 'v':
5502 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5503 break;
5504
5505 case 'q':
5506 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5507 break;
5508
5509 case 'g':
5510 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5511 break;
5512
5513 default:
5514 inst.error = _("unexpected bit specified after APSR");
5515 return FAIL;
5516 }
5517 }
5518
5519 if (nzcvq_bits == 0x1f)
5520 psr_field |= PSR_f;
5521
5522 if (g_bit == 0x1)
5523 {
5524 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5525 {
5526 inst.error = _("selected processor does not "
5527 "support DSP extension");
5528 return FAIL;
5529 }
5530
5531 psr_field |= PSR_s;
5532 }
5533
5534 if ((nzcvq_bits & 0x20) != 0
5535 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5536 || (g_bit & 0x2) != 0)
5537 {
5538 inst.error = _("bad bitmask specified after APSR");
5539 return FAIL;
5540 }
5541 }
5542 else
5543 {
5544 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5545 p - start);
5546 if (!psr)
5547 goto error;
a737bd4d 5548
d2cd1205
JB
5549 psr_field |= psr->field;
5550 }
a737bd4d 5551 }
c19d1205 5552 else
a737bd4d 5553 {
c19d1205
ZW
5554 if (ISALNUM (*p))
5555 goto error; /* Garbage after "[CS]PSR". */
5556
d2cd1205
JB
5557 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5558 is deprecated, but allow it anyway. */
5559 if (is_apsr && lhs)
5560 {
5561 psr_field |= PSR_f;
5562 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5563 "deprecated"));
5564 }
5565 else if (!m_profile)
5566 /* These bits are never right for M-profile devices: don't set them
5567 (only code paths which read/write APSR reach here). */
5568 psr_field |= (PSR_c | PSR_f);
a737bd4d 5569 }
c19d1205
ZW
5570 *str = p;
5571 return psr_field;
a737bd4d 5572
d2cd1205
JB
5573 unsupported_psr:
5574 inst.error = _("selected processor does not support requested special "
5575 "purpose register");
5576 return FAIL;
5577
c19d1205
ZW
5578 error:
5579 inst.error = _("flag for {c}psr instruction expected");
5580 return FAIL;
a737bd4d
NC
5581}
5582
c19d1205
ZW
5583/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5584 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5585
c19d1205
ZW
5586static int
5587parse_cps_flags (char **str)
a737bd4d 5588{
c19d1205
ZW
5589 int val = 0;
5590 int saw_a_flag = 0;
5591 char *s = *str;
a737bd4d 5592
c19d1205
ZW
5593 for (;;)
5594 switch (*s++)
5595 {
5596 case '\0': case ',':
5597 goto done;
a737bd4d 5598
c19d1205
ZW
5599 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5600 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5601 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5602
c19d1205
ZW
5603 default:
5604 inst.error = _("unrecognized CPS flag");
5605 return FAIL;
5606 }
a737bd4d 5607
c19d1205
ZW
5608 done:
5609 if (saw_a_flag == 0)
a737bd4d 5610 {
c19d1205
ZW
5611 inst.error = _("missing CPS flags");
5612 return FAIL;
a737bd4d 5613 }
a737bd4d 5614
c19d1205
ZW
5615 *str = s - 1;
5616 return val;
a737bd4d
NC
5617}
5618
c19d1205
ZW
5619/* Parse an endian specifier ("BE" or "LE", case insensitive);
5620 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5621
5622static int
c19d1205 5623parse_endian_specifier (char **str)
a737bd4d 5624{
c19d1205
ZW
5625 int little_endian;
5626 char *s = *str;
a737bd4d 5627
c19d1205
ZW
5628 if (strncasecmp (s, "BE", 2))
5629 little_endian = 0;
5630 else if (strncasecmp (s, "LE", 2))
5631 little_endian = 1;
5632 else
a737bd4d 5633 {
c19d1205 5634 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5635 return FAIL;
5636 }
5637
c19d1205 5638 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5639 {
c19d1205 5640 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5641 return FAIL;
5642 }
5643
c19d1205
ZW
5644 *str = s + 2;
5645 return little_endian;
5646}
a737bd4d 5647
c19d1205
ZW
5648/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5649 value suitable for poking into the rotate field of an sxt or sxta
5650 instruction, or FAIL on error. */
5651
5652static int
5653parse_ror (char **str)
5654{
5655 int rot;
5656 char *s = *str;
5657
5658 if (strncasecmp (s, "ROR", 3) == 0)
5659 s += 3;
5660 else
a737bd4d 5661 {
c19d1205 5662 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5663 return FAIL;
5664 }
c19d1205
ZW
5665
5666 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5667 return FAIL;
5668
5669 switch (rot)
a737bd4d 5670 {
c19d1205
ZW
5671 case 0: *str = s; return 0x0;
5672 case 8: *str = s; return 0x1;
5673 case 16: *str = s; return 0x2;
5674 case 24: *str = s; return 0x3;
5675
5676 default:
5677 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5678 return FAIL;
5679 }
c19d1205 5680}
a737bd4d 5681
c19d1205
ZW
5682/* Parse a conditional code (from conds[] below). The value returned is in the
5683 range 0 .. 14, or FAIL. */
5684static int
5685parse_cond (char **str)
5686{
c462b453 5687 char *q;
c19d1205 5688 const struct asm_cond *c;
c462b453
PB
5689 int n;
5690 /* Condition codes are always 2 characters, so matching up to
5691 3 characters is sufficient. */
5692 char cond[3];
a737bd4d 5693
c462b453
PB
5694 q = *str;
5695 n = 0;
5696 while (ISALPHA (*q) && n < 3)
5697 {
e07e6e58 5698 cond[n] = TOLOWER (*q);
c462b453
PB
5699 q++;
5700 n++;
5701 }
a737bd4d 5702
21d799b5 5703 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5704 if (!c)
a737bd4d 5705 {
c19d1205 5706 inst.error = _("condition required");
a737bd4d
NC
5707 return FAIL;
5708 }
5709
c19d1205
ZW
5710 *str = q;
5711 return c->value;
5712}
5713
62b3e311
PB
5714/* Parse an option for a barrier instruction. Returns the encoding for the
5715 option, or FAIL. */
5716static int
5717parse_barrier (char **str)
5718{
5719 char *p, *q;
5720 const struct asm_barrier_opt *o;
5721
5722 p = q = *str;
5723 while (ISALPHA (*q))
5724 q++;
5725
21d799b5
NC
5726 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5727 q - p);
62b3e311
PB
5728 if (!o)
5729 return FAIL;
5730
5731 *str = q;
5732 return o->value;
5733}
5734
92e90b6e
PB
5735/* Parse the operands of a table branch instruction. Similar to a memory
5736 operand. */
5737static int
5738parse_tb (char **str)
5739{
5740 char * p = *str;
5741 int reg;
5742
5743 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5744 {
5745 inst.error = _("'[' expected");
5746 return FAIL;
5747 }
92e90b6e 5748
dcbf9037 5749 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5750 {
5751 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5752 return FAIL;
5753 }
5754 inst.operands[0].reg = reg;
5755
5756 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5757 {
5758 inst.error = _("',' expected");
5759 return FAIL;
5760 }
5f4273c7 5761
dcbf9037 5762 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5763 {
5764 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5765 return FAIL;
5766 }
5767 inst.operands[0].imm = reg;
5768
5769 if (skip_past_comma (&p) == SUCCESS)
5770 {
5771 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5772 return FAIL;
5773 if (inst.reloc.exp.X_add_number != 1)
5774 {
5775 inst.error = _("invalid shift");
5776 return FAIL;
5777 }
5778 inst.operands[0].shifted = 1;
5779 }
5780
5781 if (skip_past_char (&p, ']') == FAIL)
5782 {
5783 inst.error = _("']' expected");
5784 return FAIL;
5785 }
5786 *str = p;
5787 return SUCCESS;
5788}
5789
5287ad62
JB
5790/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5791 information on the types the operands can take and how they are encoded.
037e8744
JB
5792 Up to four operands may be read; this function handles setting the
5793 ".present" field for each read operand itself.
5287ad62
JB
5794 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5795 else returns FAIL. */
5796
5797static int
5798parse_neon_mov (char **str, int *which_operand)
5799{
5800 int i = *which_operand, val;
5801 enum arm_reg_type rtype;
5802 char *ptr = *str;
dcbf9037 5803 struct neon_type_el optype;
5f4273c7 5804
dcbf9037 5805 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5806 {
5807 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5808 inst.operands[i].reg = val;
5809 inst.operands[i].isscalar = 1;
dcbf9037 5810 inst.operands[i].vectype = optype;
5287ad62
JB
5811 inst.operands[i++].present = 1;
5812
5813 if (skip_past_comma (&ptr) == FAIL)
5814 goto wanted_comma;
5f4273c7 5815
dcbf9037 5816 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5817 goto wanted_arm;
5f4273c7 5818
5287ad62
JB
5819 inst.operands[i].reg = val;
5820 inst.operands[i].isreg = 1;
5821 inst.operands[i].present = 1;
5822 }
037e8744 5823 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5824 != FAIL)
5287ad62
JB
5825 {
5826 /* Cases 0, 1, 2, 3, 5 (D only). */
5827 if (skip_past_comma (&ptr) == FAIL)
5828 goto wanted_comma;
5f4273c7 5829
5287ad62
JB
5830 inst.operands[i].reg = val;
5831 inst.operands[i].isreg = 1;
5832 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5833 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5834 inst.operands[i].isvec = 1;
dcbf9037 5835 inst.operands[i].vectype = optype;
5287ad62
JB
5836 inst.operands[i++].present = 1;
5837
dcbf9037 5838 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5839 {
037e8744
JB
5840 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5841 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5842 inst.operands[i].reg = val;
5843 inst.operands[i].isreg = 1;
037e8744 5844 inst.operands[i].present = 1;
5287ad62
JB
5845
5846 if (rtype == REG_TYPE_NQ)
5847 {
dcbf9037 5848 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5849 return FAIL;
5850 }
037e8744
JB
5851 else if (rtype != REG_TYPE_VFS)
5852 {
5853 i++;
5854 if (skip_past_comma (&ptr) == FAIL)
5855 goto wanted_comma;
5856 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5857 goto wanted_arm;
5858 inst.operands[i].reg = val;
5859 inst.operands[i].isreg = 1;
5860 inst.operands[i].present = 1;
5861 }
5287ad62 5862 }
037e8744
JB
5863 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5864 &optype)) != FAIL)
5287ad62
JB
5865 {
5866 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5867 Case 1: VMOV<c><q> <Dd>, <Dm>
5868 Case 8: VMOV.F32 <Sd>, <Sm>
5869 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5870
5871 inst.operands[i].reg = val;
5872 inst.operands[i].isreg = 1;
5873 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5874 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5875 inst.operands[i].isvec = 1;
dcbf9037 5876 inst.operands[i].vectype = optype;
5287ad62 5877 inst.operands[i].present = 1;
5f4273c7 5878
037e8744
JB
5879 if (skip_past_comma (&ptr) == SUCCESS)
5880 {
5881 /* Case 15. */
5882 i++;
5883
5884 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5885 goto wanted_arm;
5886
5887 inst.operands[i].reg = val;
5888 inst.operands[i].isreg = 1;
5889 inst.operands[i++].present = 1;
5f4273c7 5890
037e8744
JB
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5f4273c7 5893
037e8744
JB
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5f4273c7 5896
037e8744
JB
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i++].present = 1;
5900 }
5287ad62 5901 }
4641781c
PB
5902 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5903 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5904 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5905 Case 10: VMOV.F32 <Sd>, #<imm>
5906 Case 11: VMOV.F64 <Dd>, #<imm> */
5907 inst.operands[i].immisfloat = 1;
5908 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5909 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5910 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5911 ;
5287ad62
JB
5912 else
5913 {
dcbf9037 5914 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5915 return FAIL;
5916 }
5917 }
dcbf9037 5918 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5919 {
5920 /* Cases 6, 7. */
5921 inst.operands[i].reg = val;
5922 inst.operands[i].isreg = 1;
5923 inst.operands[i++].present = 1;
5f4273c7 5924
5287ad62
JB
5925 if (skip_past_comma (&ptr) == FAIL)
5926 goto wanted_comma;
5f4273c7 5927
dcbf9037 5928 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5929 {
5930 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5931 inst.operands[i].reg = val;
5932 inst.operands[i].isscalar = 1;
5933 inst.operands[i].present = 1;
dcbf9037 5934 inst.operands[i].vectype = optype;
5287ad62 5935 }
dcbf9037 5936 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5937 {
5938 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5939 inst.operands[i].reg = val;
5940 inst.operands[i].isreg = 1;
5941 inst.operands[i++].present = 1;
5f4273c7 5942
5287ad62
JB
5943 if (skip_past_comma (&ptr) == FAIL)
5944 goto wanted_comma;
5f4273c7 5945
037e8744 5946 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5947 == FAIL)
5287ad62 5948 {
037e8744 5949 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5950 return FAIL;
5951 }
5952
5953 inst.operands[i].reg = val;
5954 inst.operands[i].isreg = 1;
037e8744
JB
5955 inst.operands[i].isvec = 1;
5956 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5957 inst.operands[i].vectype = optype;
5287ad62 5958 inst.operands[i].present = 1;
5f4273c7 5959
037e8744
JB
5960 if (rtype == REG_TYPE_VFS)
5961 {
5962 /* Case 14. */
5963 i++;
5964 if (skip_past_comma (&ptr) == FAIL)
5965 goto wanted_comma;
5966 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5967 &optype)) == FAIL)
5968 {
5969 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5970 return FAIL;
5971 }
5972 inst.operands[i].reg = val;
5973 inst.operands[i].isreg = 1;
5974 inst.operands[i].isvec = 1;
5975 inst.operands[i].issingle = 1;
5976 inst.operands[i].vectype = optype;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5981 != FAIL)
5982 {
5983 /* Case 13. */
5984 inst.operands[i].reg = val;
5985 inst.operands[i].isreg = 1;
5986 inst.operands[i].isvec = 1;
5987 inst.operands[i].issingle = 1;
5988 inst.operands[i].vectype = optype;
5989 inst.operands[i++].present = 1;
5287ad62
JB
5990 }
5991 }
5992 else
5993 {
dcbf9037 5994 first_error (_("parse error"));
5287ad62
JB
5995 return FAIL;
5996 }
5997
5998 /* Successfully parsed the operands. Update args. */
5999 *which_operand = i;
6000 *str = ptr;
6001 return SUCCESS;
6002
5f4273c7 6003 wanted_comma:
dcbf9037 6004 first_error (_("expected comma"));
5287ad62 6005 return FAIL;
5f4273c7
NC
6006
6007 wanted_arm:
dcbf9037 6008 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6009 return FAIL;
5287ad62
JB
6010}
6011
5be8be5d
DG
6012/* Use this macro when the operand constraints are different
6013 for ARM and THUMB (e.g. ldrd). */
6014#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6015 ((arm_operand) | ((thumb_operand) << 16))
6016
c19d1205
ZW
6017/* Matcher codes for parse_operands. */
6018enum operand_parse_code
6019{
6020 OP_stop, /* end of line */
6021
6022 OP_RR, /* ARM register */
6023 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6024 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6025 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
6026 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6027 optional trailing ! */
c19d1205
ZW
6028 OP_RRw, /* ARM register, not r15, optional trailing ! */
6029 OP_RCP, /* Coprocessor number */
6030 OP_RCN, /* Coprocessor register */
6031 OP_RF, /* FPA register */
6032 OP_RVS, /* VFP single precision register */
5287ad62
JB
6033 OP_RVD, /* VFP double precision register (0..15) */
6034 OP_RND, /* Neon double precision register (0..31) */
6035 OP_RNQ, /* Neon quad precision register */
037e8744 6036 OP_RVSD, /* VFP single or double precision register */
5287ad62 6037 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6038 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6039 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6040 OP_RVC, /* VFP control register */
6041 OP_RMF, /* Maverick F register */
6042 OP_RMD, /* Maverick D register */
6043 OP_RMFX, /* Maverick FX register */
6044 OP_RMDX, /* Maverick DX register */
6045 OP_RMAX, /* Maverick AX register */
6046 OP_RMDS, /* Maverick DSPSC register */
6047 OP_RIWR, /* iWMMXt wR register */
6048 OP_RIWC, /* iWMMXt wC register */
6049 OP_RIWG, /* iWMMXt wCG register */
6050 OP_RXA, /* XScale accumulator register */
6051
6052 OP_REGLST, /* ARM register list */
6053 OP_VRSLST, /* VFP single-precision register list */
6054 OP_VRDLST, /* VFP double-precision register list */
037e8744 6055 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6056 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6057 OP_NSTRLST, /* Neon element/structure list */
6058
5287ad62 6059 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6060 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6061 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6062 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6063 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6064 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6065 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6066 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6067 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6068 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6069
6070 OP_I0, /* immediate zero */
c19d1205
ZW
6071 OP_I7, /* immediate value 0 .. 7 */
6072 OP_I15, /* 0 .. 15 */
6073 OP_I16, /* 1 .. 16 */
5287ad62 6074 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6075 OP_I31, /* 0 .. 31 */
6076 OP_I31w, /* 0 .. 31, optional trailing ! */
6077 OP_I32, /* 1 .. 32 */
5287ad62
JB
6078 OP_I32z, /* 0 .. 32 */
6079 OP_I63, /* 0 .. 63 */
c19d1205 6080 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6081 OP_I64, /* 1 .. 64 */
6082 OP_I64z, /* 0 .. 64 */
c19d1205 6083 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6084
6085 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6086 OP_I7b, /* 0 .. 7 */
6087 OP_I15b, /* 0 .. 15 */
6088 OP_I31b, /* 0 .. 31 */
6089
6090 OP_SH, /* shifter operand */
4962c51a 6091 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6092 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6093 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6094 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6095 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6096 OP_EXP, /* arbitrary expression */
6097 OP_EXPi, /* same, with optional immediate prefix */
6098 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6099 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6100
6101 OP_CPSF, /* CPS flags */
6102 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6103 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6104 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6105 OP_COND, /* conditional code */
92e90b6e 6106 OP_TB, /* Table branch. */
c19d1205 6107
037e8744
JB
6108 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6109
c19d1205
ZW
6110 OP_RRnpc_I0, /* ARM register or literal 0 */
6111 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6112 OP_RR_EXi, /* ARM register or expression with imm prefix */
6113 OP_RF_IF, /* FPA register or immediate */
6114 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6115 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6116
6117 /* Optional operands. */
6118 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6119 OP_oI31b, /* 0 .. 31 */
5287ad62 6120 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
6121 OP_oIffffb, /* 0 .. 65535 */
6122 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6123
6124 OP_oRR, /* ARM register */
6125 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6126 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6127 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6128 OP_oRND, /* Optional Neon double precision register */
6129 OP_oRNQ, /* Optional Neon quad precision register */
6130 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6131 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6132 OP_oSHll, /* LSL immediate */
6133 OP_oSHar, /* ASR immediate */
6134 OP_oSHllar, /* LSL or ASR immediate */
6135 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6136 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6137
5be8be5d
DG
6138 /* Some pre-defined mixed (ARM/THUMB) operands. */
6139 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6140 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6141 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6142
c19d1205
ZW
6143 OP_FIRST_OPTIONAL = OP_oI7b
6144};
a737bd4d 6145
c19d1205
ZW
6146/* Generic instruction operand parser. This does no encoding and no
6147 semantic validation; it merely squirrels values away in the inst
6148 structure. Returns SUCCESS or FAIL depending on whether the
6149 specified grammar matched. */
6150static int
5be8be5d 6151parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6152{
5be8be5d 6153 unsigned const int *upat = pattern;
c19d1205
ZW
6154 char *backtrack_pos = 0;
6155 const char *backtrack_error = 0;
6156 int i, val, backtrack_index = 0;
5287ad62 6157 enum arm_reg_type rtype;
4962c51a 6158 parse_operand_result result;
5be8be5d 6159 unsigned int op_parse_code;
c19d1205 6160
e07e6e58
NC
6161#define po_char_or_fail(chr) \
6162 do \
6163 { \
6164 if (skip_past_char (&str, chr) == FAIL) \
6165 goto bad_args; \
6166 } \
6167 while (0)
c19d1205 6168
e07e6e58
NC
6169#define po_reg_or_fail(regtype) \
6170 do \
dcbf9037 6171 { \
e07e6e58
NC
6172 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6173 & inst.operands[i].vectype); \
6174 if (val == FAIL) \
6175 { \
6176 first_error (_(reg_expected_msgs[regtype])); \
6177 goto failure; \
6178 } \
6179 inst.operands[i].reg = val; \
6180 inst.operands[i].isreg = 1; \
6181 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6182 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6183 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6184 || rtype == REG_TYPE_VFD \
6185 || rtype == REG_TYPE_NQ); \
dcbf9037 6186 } \
e07e6e58
NC
6187 while (0)
6188
6189#define po_reg_or_goto(regtype, label) \
6190 do \
6191 { \
6192 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6193 & inst.operands[i].vectype); \
6194 if (val == FAIL) \
6195 goto label; \
dcbf9037 6196 \
e07e6e58
NC
6197 inst.operands[i].reg = val; \
6198 inst.operands[i].isreg = 1; \
6199 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6200 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6201 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6202 || rtype == REG_TYPE_VFD \
6203 || rtype == REG_TYPE_NQ); \
6204 } \
6205 while (0)
6206
6207#define po_imm_or_fail(min, max, popt) \
6208 do \
6209 { \
6210 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6211 goto failure; \
6212 inst.operands[i].imm = val; \
6213 } \
6214 while (0)
6215
6216#define po_scalar_or_goto(elsz, label) \
6217 do \
6218 { \
6219 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6220 if (val == FAIL) \
6221 goto label; \
6222 inst.operands[i].reg = val; \
6223 inst.operands[i].isscalar = 1; \
6224 } \
6225 while (0)
6226
6227#define po_misc_or_fail(expr) \
6228 do \
6229 { \
6230 if (expr) \
6231 goto failure; \
6232 } \
6233 while (0)
6234
6235#define po_misc_or_fail_no_backtrack(expr) \
6236 do \
6237 { \
6238 result = expr; \
6239 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6240 backtrack_pos = 0; \
6241 if (result != PARSE_OPERAND_SUCCESS) \
6242 goto failure; \
6243 } \
6244 while (0)
4962c51a 6245
52e7f43d
RE
6246#define po_barrier_or_imm(str) \
6247 do \
6248 { \
6249 val = parse_barrier (&str); \
6250 if (val == FAIL) \
6251 { \
6252 if (ISALPHA (*str)) \
6253 goto failure; \
6254 else \
6255 goto immediate; \
6256 } \
6257 else \
6258 { \
6259 if ((inst.instruction & 0xf0) == 0x60 \
6260 && val != 0xf) \
6261 { \
6262 /* ISB can only take SY as an option. */ \
6263 inst.error = _("invalid barrier type"); \
6264 goto failure; \
6265 } \
6266 } \
6267 } \
6268 while (0)
6269
c19d1205
ZW
6270 skip_whitespace (str);
6271
6272 for (i = 0; upat[i] != OP_stop; i++)
6273 {
5be8be5d
DG
6274 op_parse_code = upat[i];
6275 if (op_parse_code >= 1<<16)
6276 op_parse_code = thumb ? (op_parse_code >> 16)
6277 : (op_parse_code & ((1<<16)-1));
6278
6279 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6280 {
6281 /* Remember where we are in case we need to backtrack. */
9c2799c2 6282 gas_assert (!backtrack_pos);
c19d1205
ZW
6283 backtrack_pos = str;
6284 backtrack_error = inst.error;
6285 backtrack_index = i;
6286 }
6287
b6702015 6288 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6289 po_char_or_fail (',');
6290
5be8be5d 6291 switch (op_parse_code)
c19d1205
ZW
6292 {
6293 /* Registers */
6294 case OP_oRRnpc:
5be8be5d 6295 case OP_oRRnpcsp:
c19d1205 6296 case OP_RRnpc:
5be8be5d 6297 case OP_RRnpcsp:
c19d1205
ZW
6298 case OP_oRR:
6299 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6300 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6301 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6302 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6303 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6304 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6305 case OP_oRND:
6306 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6307 case OP_RVC:
6308 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6309 break;
6310 /* Also accept generic coprocessor regs for unknown registers. */
6311 coproc_reg:
6312 po_reg_or_fail (REG_TYPE_CN);
6313 break;
c19d1205
ZW
6314 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6315 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6316 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6317 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6318 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6319 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6320 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6321 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6322 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6323 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6324 case OP_oRNQ:
6325 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6326 case OP_oRNDQ:
6327 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6328 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6329 case OP_oRNSDQ:
6330 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6331
6332 /* Neon scalar. Using an element size of 8 means that some invalid
6333 scalars are accepted here, so deal with those in later code. */
6334 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6335
5287ad62
JB
6336 case OP_RNDQ_I0:
6337 {
6338 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6339 break;
6340 try_imm0:
6341 po_imm_or_fail (0, 0, TRUE);
6342 }
6343 break;
6344
037e8744
JB
6345 case OP_RVSD_I0:
6346 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6347 break;
6348
5287ad62
JB
6349 case OP_RR_RNSC:
6350 {
6351 po_scalar_or_goto (8, try_rr);
6352 break;
6353 try_rr:
6354 po_reg_or_fail (REG_TYPE_RN);
6355 }
6356 break;
6357
037e8744
JB
6358 case OP_RNSDQ_RNSC:
6359 {
6360 po_scalar_or_goto (8, try_nsdq);
6361 break;
6362 try_nsdq:
6363 po_reg_or_fail (REG_TYPE_NSDQ);
6364 }
6365 break;
6366
5287ad62
JB
6367 case OP_RNDQ_RNSC:
6368 {
6369 po_scalar_or_goto (8, try_ndq);
6370 break;
6371 try_ndq:
6372 po_reg_or_fail (REG_TYPE_NDQ);
6373 }
6374 break;
6375
6376 case OP_RND_RNSC:
6377 {
6378 po_scalar_or_goto (8, try_vfd);
6379 break;
6380 try_vfd:
6381 po_reg_or_fail (REG_TYPE_VFD);
6382 }
6383 break;
6384
6385 case OP_VMOV:
6386 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6387 not careful then bad things might happen. */
6388 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6389 break;
6390
4316f0d2 6391 case OP_RNDQ_Ibig:
5287ad62 6392 {
4316f0d2 6393 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6394 break;
4316f0d2 6395 try_immbig:
5287ad62
JB
6396 /* There's a possibility of getting a 64-bit immediate here, so
6397 we need special handling. */
6398 if (parse_big_immediate (&str, i) == FAIL)
6399 {
6400 inst.error = _("immediate value is out of range");
6401 goto failure;
6402 }
6403 }
6404 break;
6405
6406 case OP_RNDQ_I63b:
6407 {
6408 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6409 break;
6410 try_shimm:
6411 po_imm_or_fail (0, 63, TRUE);
6412 }
6413 break;
c19d1205
ZW
6414
6415 case OP_RRnpcb:
6416 po_char_or_fail ('[');
6417 po_reg_or_fail (REG_TYPE_RN);
6418 po_char_or_fail (']');
6419 break;
a737bd4d 6420
55881a11 6421 case OP_RRnpctw:
c19d1205 6422 case OP_RRw:
b6702015 6423 case OP_oRRw:
c19d1205
ZW
6424 po_reg_or_fail (REG_TYPE_RN);
6425 if (skip_past_char (&str, '!') == SUCCESS)
6426 inst.operands[i].writeback = 1;
6427 break;
6428
6429 /* Immediates */
6430 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6431 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6432 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6433 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6434 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6435 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6436 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6437 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6438 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6439 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6440 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6441 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6442
6443 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6444 case OP_oI7b:
6445 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6446 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6447 case OP_oI31b:
6448 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6449 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6450 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6451
6452 /* Immediate variants */
6453 case OP_oI255c:
6454 po_char_or_fail ('{');
6455 po_imm_or_fail (0, 255, TRUE);
6456 po_char_or_fail ('}');
6457 break;
6458
6459 case OP_I31w:
6460 /* The expression parser chokes on a trailing !, so we have
6461 to find it first and zap it. */
6462 {
6463 char *s = str;
6464 while (*s && *s != ',')
6465 s++;
6466 if (s[-1] == '!')
6467 {
6468 s[-1] = '\0';
6469 inst.operands[i].writeback = 1;
6470 }
6471 po_imm_or_fail (0, 31, TRUE);
6472 if (str == s - 1)
6473 str = s;
6474 }
6475 break;
6476
6477 /* Expressions */
6478 case OP_EXPi: EXPi:
6479 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6480 GE_OPT_PREFIX));
6481 break;
6482
6483 case OP_EXP:
6484 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6485 GE_NO_PREFIX));
6486 break;
6487
6488 case OP_EXPr: EXPr:
6489 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6490 GE_NO_PREFIX));
6491 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6492 {
c19d1205
ZW
6493 val = parse_reloc (&str);
6494 if (val == -1)
6495 {
6496 inst.error = _("unrecognized relocation suffix");
6497 goto failure;
6498 }
6499 else if (val != BFD_RELOC_UNUSED)
6500 {
6501 inst.operands[i].imm = val;
6502 inst.operands[i].hasreloc = 1;
6503 }
a737bd4d 6504 }
c19d1205 6505 break;
a737bd4d 6506
b6895b4f
PB
6507 /* Operand for MOVW or MOVT. */
6508 case OP_HALF:
6509 po_misc_or_fail (parse_half (&str));
6510 break;
6511
e07e6e58 6512 /* Register or expression. */
c19d1205
ZW
6513 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6514 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6515
e07e6e58 6516 /* Register or immediate. */
c19d1205
ZW
6517 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6518 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6519
c19d1205
ZW
6520 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6521 IF:
6522 if (!is_immediate_prefix (*str))
6523 goto bad_args;
6524 str++;
6525 val = parse_fpa_immediate (&str);
6526 if (val == FAIL)
6527 goto failure;
6528 /* FPA immediates are encoded as registers 8-15.
6529 parse_fpa_immediate has already applied the offset. */
6530 inst.operands[i].reg = val;
6531 inst.operands[i].isreg = 1;
6532 break;
09d92015 6533
2d447fca
JM
6534 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6535 I32z: po_imm_or_fail (0, 32, FALSE); break;
6536
e07e6e58 6537 /* Two kinds of register. */
c19d1205
ZW
6538 case OP_RIWR_RIWC:
6539 {
6540 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6541 if (!rege
6542 || (rege->type != REG_TYPE_MMXWR
6543 && rege->type != REG_TYPE_MMXWC
6544 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6545 {
6546 inst.error = _("iWMMXt data or control register expected");
6547 goto failure;
6548 }
6549 inst.operands[i].reg = rege->number;
6550 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6551 }
6552 break;
09d92015 6553
41adaa5c
JM
6554 case OP_RIWC_RIWG:
6555 {
6556 struct reg_entry *rege = arm_reg_parse_multi (&str);
6557 if (!rege
6558 || (rege->type != REG_TYPE_MMXWC
6559 && rege->type != REG_TYPE_MMXWCG))
6560 {
6561 inst.error = _("iWMMXt control register expected");
6562 goto failure;
6563 }
6564 inst.operands[i].reg = rege->number;
6565 inst.operands[i].isreg = 1;
6566 }
6567 break;
6568
c19d1205
ZW
6569 /* Misc */
6570 case OP_CPSF: val = parse_cps_flags (&str); break;
6571 case OP_ENDI: val = parse_endian_specifier (&str); break;
6572 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6573 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6574 case OP_oBARRIER_I15:
6575 po_barrier_or_imm (str); break;
6576 immediate:
6577 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6578 goto failure;
6579 break;
c19d1205 6580
d2cd1205
JB
6581 case OP_wPSR:
6582 case OP_rPSR:
90ec0d68
MGD
6583 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6584 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6585 {
6586 inst.error = _("Banked registers are not available with this "
6587 "architecture.");
6588 goto failure;
6589 }
6590 break;
d2cd1205
JB
6591 try_psr:
6592 val = parse_psr (&str, op_parse_code == OP_wPSR);
6593 break;
037e8744
JB
6594
6595 case OP_APSR_RR:
6596 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6597 break;
6598 try_apsr:
6599 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6600 instruction). */
6601 if (strncasecmp (str, "APSR_", 5) == 0)
6602 {
6603 unsigned found = 0;
6604 str += 5;
6605 while (found < 15)
6606 switch (*str++)
6607 {
6608 case 'c': found = (found & 1) ? 16 : found | 1; break;
6609 case 'n': found = (found & 2) ? 16 : found | 2; break;
6610 case 'z': found = (found & 4) ? 16 : found | 4; break;
6611 case 'v': found = (found & 8) ? 16 : found | 8; break;
6612 default: found = 16;
6613 }
6614 if (found != 15)
6615 goto failure;
6616 inst.operands[i].isvec = 1;
f7c21dc7
NC
6617 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6618 inst.operands[i].reg = REG_PC;
037e8744
JB
6619 }
6620 else
6621 goto failure;
6622 break;
6623
92e90b6e
PB
6624 case OP_TB:
6625 po_misc_or_fail (parse_tb (&str));
6626 break;
6627
e07e6e58 6628 /* Register lists. */
c19d1205
ZW
6629 case OP_REGLST:
6630 val = parse_reg_list (&str);
6631 if (*str == '^')
6632 {
6633 inst.operands[1].writeback = 1;
6634 str++;
6635 }
6636 break;
09d92015 6637
c19d1205 6638 case OP_VRSLST:
5287ad62 6639 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6640 break;
09d92015 6641
c19d1205 6642 case OP_VRDLST:
5287ad62 6643 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6644 break;
a737bd4d 6645
037e8744
JB
6646 case OP_VRSDLST:
6647 /* Allow Q registers too. */
6648 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6649 REGLIST_NEON_D);
6650 if (val == FAIL)
6651 {
6652 inst.error = NULL;
6653 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6654 REGLIST_VFP_S);
6655 inst.operands[i].issingle = 1;
6656 }
6657 break;
6658
5287ad62
JB
6659 case OP_NRDLST:
6660 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6661 REGLIST_NEON_D);
6662 break;
6663
6664 case OP_NSTRLST:
dcbf9037
JB
6665 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6666 &inst.operands[i].vectype);
5287ad62
JB
6667 break;
6668
c19d1205
ZW
6669 /* Addressing modes */
6670 case OP_ADDR:
6671 po_misc_or_fail (parse_address (&str, i));
6672 break;
09d92015 6673
4962c51a
MS
6674 case OP_ADDRGLDR:
6675 po_misc_or_fail_no_backtrack (
6676 parse_address_group_reloc (&str, i, GROUP_LDR));
6677 break;
6678
6679 case OP_ADDRGLDRS:
6680 po_misc_or_fail_no_backtrack (
6681 parse_address_group_reloc (&str, i, GROUP_LDRS));
6682 break;
6683
6684 case OP_ADDRGLDC:
6685 po_misc_or_fail_no_backtrack (
6686 parse_address_group_reloc (&str, i, GROUP_LDC));
6687 break;
6688
c19d1205
ZW
6689 case OP_SH:
6690 po_misc_or_fail (parse_shifter_operand (&str, i));
6691 break;
09d92015 6692
4962c51a
MS
6693 case OP_SHG:
6694 po_misc_or_fail_no_backtrack (
6695 parse_shifter_operand_group_reloc (&str, i));
6696 break;
6697
c19d1205
ZW
6698 case OP_oSHll:
6699 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6700 break;
09d92015 6701
c19d1205
ZW
6702 case OP_oSHar:
6703 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6704 break;
09d92015 6705
c19d1205
ZW
6706 case OP_oSHllar:
6707 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6708 break;
09d92015 6709
c19d1205 6710 default:
5be8be5d 6711 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6712 }
09d92015 6713
c19d1205
ZW
6714 /* Various value-based sanity checks and shared operations. We
6715 do not signal immediate failures for the register constraints;
6716 this allows a syntax error to take precedence. */
5be8be5d 6717 switch (op_parse_code)
c19d1205
ZW
6718 {
6719 case OP_oRRnpc:
6720 case OP_RRnpc:
6721 case OP_RRnpcb:
6722 case OP_RRw:
b6702015 6723 case OP_oRRw:
c19d1205
ZW
6724 case OP_RRnpc_I0:
6725 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6726 inst.error = BAD_PC;
6727 break;
09d92015 6728
5be8be5d
DG
6729 case OP_oRRnpcsp:
6730 case OP_RRnpcsp:
6731 if (inst.operands[i].isreg)
6732 {
6733 if (inst.operands[i].reg == REG_PC)
6734 inst.error = BAD_PC;
6735 else if (inst.operands[i].reg == REG_SP)
6736 inst.error = BAD_SP;
6737 }
6738 break;
6739
55881a11
MGD
6740 case OP_RRnpctw:
6741 if (inst.operands[i].isreg
6742 && inst.operands[i].reg == REG_PC
6743 && (inst.operands[i].writeback || thumb))
6744 inst.error = BAD_PC;
6745 break;
6746
c19d1205
ZW
6747 case OP_CPSF:
6748 case OP_ENDI:
6749 case OP_oROR:
d2cd1205
JB
6750 case OP_wPSR:
6751 case OP_rPSR:
c19d1205 6752 case OP_COND:
52e7f43d 6753 case OP_oBARRIER_I15:
c19d1205
ZW
6754 case OP_REGLST:
6755 case OP_VRSLST:
6756 case OP_VRDLST:
037e8744 6757 case OP_VRSDLST:
5287ad62
JB
6758 case OP_NRDLST:
6759 case OP_NSTRLST:
c19d1205
ZW
6760 if (val == FAIL)
6761 goto failure;
6762 inst.operands[i].imm = val;
6763 break;
a737bd4d 6764
c19d1205
ZW
6765 default:
6766 break;
6767 }
09d92015 6768
c19d1205
ZW
6769 /* If we get here, this operand was successfully parsed. */
6770 inst.operands[i].present = 1;
6771 continue;
09d92015 6772
c19d1205 6773 bad_args:
09d92015 6774 inst.error = BAD_ARGS;
c19d1205
ZW
6775
6776 failure:
6777 if (!backtrack_pos)
d252fdde
PB
6778 {
6779 /* The parse routine should already have set inst.error, but set a
5f4273c7 6780 default here just in case. */
d252fdde
PB
6781 if (!inst.error)
6782 inst.error = _("syntax error");
6783 return FAIL;
6784 }
c19d1205
ZW
6785
6786 /* Do not backtrack over a trailing optional argument that
6787 absorbed some text. We will only fail again, with the
6788 'garbage following instruction' error message, which is
6789 probably less helpful than the current one. */
6790 if (backtrack_index == i && backtrack_pos != str
6791 && upat[i+1] == OP_stop)
d252fdde
PB
6792 {
6793 if (!inst.error)
6794 inst.error = _("syntax error");
6795 return FAIL;
6796 }
c19d1205
ZW
6797
6798 /* Try again, skipping the optional argument at backtrack_pos. */
6799 str = backtrack_pos;
6800 inst.error = backtrack_error;
6801 inst.operands[backtrack_index].present = 0;
6802 i = backtrack_index;
6803 backtrack_pos = 0;
09d92015 6804 }
09d92015 6805
c19d1205
ZW
6806 /* Check that we have parsed all the arguments. */
6807 if (*str != '\0' && !inst.error)
6808 inst.error = _("garbage following instruction");
09d92015 6809
c19d1205 6810 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6811}
6812
c19d1205
ZW
6813#undef po_char_or_fail
6814#undef po_reg_or_fail
6815#undef po_reg_or_goto
6816#undef po_imm_or_fail
5287ad62 6817#undef po_scalar_or_fail
52e7f43d 6818#undef po_barrier_or_imm
e07e6e58 6819
c19d1205 6820/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6821#define constraint(expr, err) \
6822 do \
c19d1205 6823 { \
e07e6e58
NC
6824 if (expr) \
6825 { \
6826 inst.error = err; \
6827 return; \
6828 } \
c19d1205 6829 } \
e07e6e58 6830 while (0)
c19d1205 6831
fdfde340
JM
6832/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6833 instructions are unpredictable if these registers are used. This
6834 is the BadReg predicate in ARM's Thumb-2 documentation. */
6835#define reject_bad_reg(reg) \
6836 do \
6837 if (reg == REG_SP || reg == REG_PC) \
6838 { \
6839 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6840 return; \
6841 } \
6842 while (0)
6843
94206790
MM
6844/* If REG is R13 (the stack pointer), warn that its use is
6845 deprecated. */
6846#define warn_deprecated_sp(reg) \
6847 do \
6848 if (warn_on_deprecated && reg == REG_SP) \
6849 as_warn (_("use of r13 is deprecated")); \
6850 while (0)
6851
c19d1205
ZW
6852/* Functions for operand encoding. ARM, then Thumb. */
6853
6854#define rotate_left(v, n) (v << n | v >> (32 - n))
6855
6856/* If VAL can be encoded in the immediate field of an ARM instruction,
6857 return the encoded form. Otherwise, return FAIL. */
6858
6859static unsigned int
6860encode_arm_immediate (unsigned int val)
09d92015 6861{
c19d1205
ZW
6862 unsigned int a, i;
6863
6864 for (i = 0; i < 32; i += 2)
6865 if ((a = rotate_left (val, i)) <= 0xff)
6866 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6867
6868 return FAIL;
09d92015
MM
6869}
6870
c19d1205
ZW
6871/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6872 return the encoded form. Otherwise, return FAIL. */
6873static unsigned int
6874encode_thumb32_immediate (unsigned int val)
09d92015 6875{
c19d1205 6876 unsigned int a, i;
09d92015 6877
9c3c69f2 6878 if (val <= 0xff)
c19d1205 6879 return val;
a737bd4d 6880
9c3c69f2 6881 for (i = 1; i <= 24; i++)
09d92015 6882 {
9c3c69f2
PB
6883 a = val >> i;
6884 if ((val & ~(0xff << i)) == 0)
6885 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6886 }
a737bd4d 6887
c19d1205
ZW
6888 a = val & 0xff;
6889 if (val == ((a << 16) | a))
6890 return 0x100 | a;
6891 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6892 return 0x300 | a;
09d92015 6893
c19d1205
ZW
6894 a = val & 0xff00;
6895 if (val == ((a << 16) | a))
6896 return 0x200 | (a >> 8);
a737bd4d 6897
c19d1205 6898 return FAIL;
09d92015 6899}
5287ad62 6900/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6901
6902static void
5287ad62
JB
6903encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6904{
6905 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6906 && reg > 15)
6907 {
b1cc4aeb 6908 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6909 {
6910 if (thumb_mode)
6911 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6912 fpu_vfp_ext_d32);
5287ad62
JB
6913 else
6914 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6915 fpu_vfp_ext_d32);
5287ad62
JB
6916 }
6917 else
6918 {
dcbf9037 6919 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6920 return;
6921 }
6922 }
6923
c19d1205 6924 switch (pos)
09d92015 6925 {
c19d1205
ZW
6926 case VFP_REG_Sd:
6927 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6928 break;
6929
6930 case VFP_REG_Sn:
6931 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6932 break;
6933
6934 case VFP_REG_Sm:
6935 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6936 break;
6937
5287ad62
JB
6938 case VFP_REG_Dd:
6939 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6940 break;
5f4273c7 6941
5287ad62
JB
6942 case VFP_REG_Dn:
6943 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6944 break;
5f4273c7 6945
5287ad62
JB
6946 case VFP_REG_Dm:
6947 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6948 break;
6949
c19d1205
ZW
6950 default:
6951 abort ();
09d92015 6952 }
09d92015
MM
6953}
6954
c19d1205 6955/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6956 if any, is handled by md_apply_fix. */
09d92015 6957static void
c19d1205 6958encode_arm_shift (int i)
09d92015 6959{
c19d1205
ZW
6960 if (inst.operands[i].shift_kind == SHIFT_RRX)
6961 inst.instruction |= SHIFT_ROR << 5;
6962 else
09d92015 6963 {
c19d1205
ZW
6964 inst.instruction |= inst.operands[i].shift_kind << 5;
6965 if (inst.operands[i].immisreg)
6966 {
6967 inst.instruction |= SHIFT_BY_REG;
6968 inst.instruction |= inst.operands[i].imm << 8;
6969 }
6970 else
6971 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6972 }
c19d1205 6973}
09d92015 6974
c19d1205
ZW
6975static void
6976encode_arm_shifter_operand (int i)
6977{
6978 if (inst.operands[i].isreg)
09d92015 6979 {
c19d1205
ZW
6980 inst.instruction |= inst.operands[i].reg;
6981 encode_arm_shift (i);
09d92015 6982 }
c19d1205
ZW
6983 else
6984 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6985}
6986
c19d1205 6987/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6988static void
c19d1205 6989encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6990{
9c2799c2 6991 gas_assert (inst.operands[i].isreg);
c19d1205 6992 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6993
c19d1205 6994 if (inst.operands[i].preind)
09d92015 6995 {
c19d1205
ZW
6996 if (is_t)
6997 {
6998 inst.error = _("instruction does not accept preindexed addressing");
6999 return;
7000 }
7001 inst.instruction |= PRE_INDEX;
7002 if (inst.operands[i].writeback)
7003 inst.instruction |= WRITE_BACK;
09d92015 7004
c19d1205
ZW
7005 }
7006 else if (inst.operands[i].postind)
7007 {
9c2799c2 7008 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7009 if (is_t)
7010 inst.instruction |= WRITE_BACK;
7011 }
7012 else /* unindexed - only for coprocessor */
09d92015 7013 {
c19d1205 7014 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7015 return;
7016 }
7017
c19d1205
ZW
7018 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7019 && (((inst.instruction & 0x000f0000) >> 16)
7020 == ((inst.instruction & 0x0000f000) >> 12)))
7021 as_warn ((inst.instruction & LOAD_BIT)
7022 ? _("destination register same as write-back base")
7023 : _("source register same as write-back base"));
09d92015
MM
7024}
7025
c19d1205
ZW
7026/* inst.operands[i] was set up by parse_address. Encode it into an
7027 ARM-format mode 2 load or store instruction. If is_t is true,
7028 reject forms that cannot be used with a T instruction (i.e. not
7029 post-indexed). */
a737bd4d 7030static void
c19d1205 7031encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7032{
5be8be5d
DG
7033 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7034
c19d1205 7035 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7036
c19d1205 7037 if (inst.operands[i].immisreg)
09d92015 7038 {
5be8be5d
DG
7039 constraint ((inst.operands[i].imm == REG_PC
7040 || (is_pc && inst.operands[i].writeback)),
7041 BAD_PC_ADDRESSING);
c19d1205
ZW
7042 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7043 inst.instruction |= inst.operands[i].imm;
7044 if (!inst.operands[i].negative)
7045 inst.instruction |= INDEX_UP;
7046 if (inst.operands[i].shifted)
7047 {
7048 if (inst.operands[i].shift_kind == SHIFT_RRX)
7049 inst.instruction |= SHIFT_ROR << 5;
7050 else
7051 {
7052 inst.instruction |= inst.operands[i].shift_kind << 5;
7053 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7054 }
7055 }
09d92015 7056 }
c19d1205 7057 else /* immediate offset in inst.reloc */
09d92015 7058 {
5be8be5d
DG
7059 if (is_pc && !inst.reloc.pc_rel)
7060 {
7061 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7062
7063 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7064 cannot use PC in addressing.
7065 PC cannot be used in writeback addressing, either. */
7066 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7067 BAD_PC_ADDRESSING);
23a10334 7068
dc5ec521 7069 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7070 if (warn_on_deprecated
7071 && !is_load
7072 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7073 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7074 }
7075
c19d1205 7076 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7077 {
7078 /* Prefer + for zero encoded value. */
7079 if (!inst.operands[i].negative)
7080 inst.instruction |= INDEX_UP;
7081 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7082 }
09d92015 7083 }
09d92015
MM
7084}
7085
c19d1205
ZW
7086/* inst.operands[i] was set up by parse_address. Encode it into an
7087 ARM-format mode 3 load or store instruction. Reject forms that
7088 cannot be used with such instructions. If is_t is true, reject
7089 forms that cannot be used with a T instruction (i.e. not
7090 post-indexed). */
7091static void
7092encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7093{
c19d1205 7094 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7095 {
c19d1205
ZW
7096 inst.error = _("instruction does not accept scaled register index");
7097 return;
09d92015 7098 }
a737bd4d 7099
c19d1205 7100 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7101
c19d1205
ZW
7102 if (inst.operands[i].immisreg)
7103 {
5be8be5d
DG
7104 constraint ((inst.operands[i].imm == REG_PC
7105 || inst.operands[i].reg == REG_PC),
7106 BAD_PC_ADDRESSING);
c19d1205
ZW
7107 inst.instruction |= inst.operands[i].imm;
7108 if (!inst.operands[i].negative)
7109 inst.instruction |= INDEX_UP;
7110 }
7111 else /* immediate offset in inst.reloc */
7112 {
5be8be5d
DG
7113 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7114 && inst.operands[i].writeback),
7115 BAD_PC_WRITEBACK);
c19d1205
ZW
7116 inst.instruction |= HWOFFSET_IMM;
7117 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7118 {
7119 /* Prefer + for zero encoded value. */
7120 if (!inst.operands[i].negative)
7121 inst.instruction |= INDEX_UP;
7122
7123 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7124 }
c19d1205 7125 }
a737bd4d
NC
7126}
7127
c19d1205
ZW
7128/* inst.operands[i] was set up by parse_address. Encode it into an
7129 ARM-format instruction. Reject all forms which cannot be encoded
7130 into a coprocessor load/store instruction. If wb_ok is false,
7131 reject use of writeback; if unind_ok is false, reject use of
7132 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7133 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7134 (in which case it is preserved). */
09d92015 7135
c19d1205
ZW
7136static int
7137encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7138{
c19d1205 7139 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7140
9c2799c2 7141 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7142
c19d1205 7143 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7144 {
9c2799c2 7145 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7146 if (!unind_ok)
7147 {
7148 inst.error = _("instruction does not support unindexed addressing");
7149 return FAIL;
7150 }
7151 inst.instruction |= inst.operands[i].imm;
7152 inst.instruction |= INDEX_UP;
7153 return SUCCESS;
09d92015 7154 }
a737bd4d 7155
c19d1205
ZW
7156 if (inst.operands[i].preind)
7157 inst.instruction |= PRE_INDEX;
a737bd4d 7158
c19d1205 7159 if (inst.operands[i].writeback)
09d92015 7160 {
c19d1205
ZW
7161 if (inst.operands[i].reg == REG_PC)
7162 {
7163 inst.error = _("pc may not be used with write-back");
7164 return FAIL;
7165 }
7166 if (!wb_ok)
7167 {
7168 inst.error = _("instruction does not support writeback");
7169 return FAIL;
7170 }
7171 inst.instruction |= WRITE_BACK;
09d92015 7172 }
a737bd4d 7173
c19d1205 7174 if (reloc_override)
21d799b5 7175 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7176 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7177 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7178 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7179 {
7180 if (thumb_mode)
7181 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7182 else
7183 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7184 }
7185
26d97720
NS
7186 /* Prefer + for zero encoded value. */
7187 if (!inst.operands[i].negative)
7188 inst.instruction |= INDEX_UP;
7189
c19d1205
ZW
7190 return SUCCESS;
7191}
a737bd4d 7192
c19d1205
ZW
7193/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7194 Determine whether it can be performed with a move instruction; if
7195 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7196 return TRUE; if it can't, convert inst.instruction to a literal-pool
7197 load and return FALSE. If this is not a valid thing to do in the
7198 current context, set inst.error and return TRUE.
a737bd4d 7199
c19d1205
ZW
7200 inst.operands[i] describes the destination register. */
7201
c921be7d 7202static bfd_boolean
c19d1205
ZW
7203move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7204{
53365c0d
PB
7205 unsigned long tbit;
7206
7207 if (thumb_p)
7208 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7209 else
7210 tbit = LOAD_BIT;
7211
7212 if ((inst.instruction & tbit) == 0)
09d92015 7213 {
c19d1205 7214 inst.error = _("invalid pseudo operation");
c921be7d 7215 return TRUE;
09d92015 7216 }
c19d1205 7217 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7218 {
7219 inst.error = _("constant expression expected");
c921be7d 7220 return TRUE;
09d92015 7221 }
c19d1205 7222 if (inst.reloc.exp.X_op == O_constant)
09d92015 7223 {
c19d1205
ZW
7224 if (thumb_p)
7225 {
53365c0d 7226 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7227 {
7228 /* This can be done with a mov(1) instruction. */
7229 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7230 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7231 return TRUE;
c19d1205
ZW
7232 }
7233 }
7234 else
7235 {
7236 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7237 if (value != FAIL)
7238 {
7239 /* This can be done with a mov instruction. */
7240 inst.instruction &= LITERAL_MASK;
7241 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7242 inst.instruction |= value & 0xfff;
c921be7d 7243 return TRUE;
c19d1205 7244 }
09d92015 7245
c19d1205
ZW
7246 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7247 if (value != FAIL)
7248 {
7249 /* This can be done with a mvn instruction. */
7250 inst.instruction &= LITERAL_MASK;
7251 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7252 inst.instruction |= value & 0xfff;
c921be7d 7253 return TRUE;
c19d1205
ZW
7254 }
7255 }
09d92015
MM
7256 }
7257
c19d1205
ZW
7258 if (add_to_lit_pool () == FAIL)
7259 {
7260 inst.error = _("literal pool insertion failed");
c921be7d 7261 return TRUE;
c19d1205
ZW
7262 }
7263 inst.operands[1].reg = REG_PC;
7264 inst.operands[1].isreg = 1;
7265 inst.operands[1].preind = 1;
7266 inst.reloc.pc_rel = 1;
7267 inst.reloc.type = (thumb_p
7268 ? BFD_RELOC_ARM_THUMB_OFFSET
7269 : (mode_3
7270 ? BFD_RELOC_ARM_HWLITERAL
7271 : BFD_RELOC_ARM_LITERAL));
c921be7d 7272 return FALSE;
09d92015
MM
7273}
7274
5f4273c7 7275/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7276 First some generics; their names are taken from the conventional
7277 bit positions for register arguments in ARM format instructions. */
09d92015 7278
a737bd4d 7279static void
c19d1205 7280do_noargs (void)
09d92015 7281{
c19d1205 7282}
a737bd4d 7283
c19d1205
ZW
7284static void
7285do_rd (void)
7286{
7287 inst.instruction |= inst.operands[0].reg << 12;
7288}
a737bd4d 7289
c19d1205
ZW
7290static void
7291do_rd_rm (void)
7292{
7293 inst.instruction |= inst.operands[0].reg << 12;
7294 inst.instruction |= inst.operands[1].reg;
7295}
09d92015 7296
c19d1205
ZW
7297static void
7298do_rd_rn (void)
7299{
7300 inst.instruction |= inst.operands[0].reg << 12;
7301 inst.instruction |= inst.operands[1].reg << 16;
7302}
a737bd4d 7303
c19d1205
ZW
7304static void
7305do_rn_rd (void)
7306{
7307 inst.instruction |= inst.operands[0].reg << 16;
7308 inst.instruction |= inst.operands[1].reg << 12;
7309}
09d92015 7310
c19d1205
ZW
7311static void
7312do_rd_rm_rn (void)
7313{
9a64e435 7314 unsigned Rn = inst.operands[2].reg;
708587a4 7315 /* Enforce restrictions on SWP instruction. */
9a64e435 7316 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7317 {
7318 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7319 _("Rn must not overlap other operands"));
7320
7321 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7322 if (warn_on_deprecated
7323 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7324 as_warn (_("swp{b} use is deprecated for this architecture"));
7325
7326 }
c19d1205
ZW
7327 inst.instruction |= inst.operands[0].reg << 12;
7328 inst.instruction |= inst.operands[1].reg;
9a64e435 7329 inst.instruction |= Rn << 16;
c19d1205 7330}
09d92015 7331
c19d1205
ZW
7332static void
7333do_rd_rn_rm (void)
7334{
7335 inst.instruction |= inst.operands[0].reg << 12;
7336 inst.instruction |= inst.operands[1].reg << 16;
7337 inst.instruction |= inst.operands[2].reg;
7338}
a737bd4d 7339
c19d1205
ZW
7340static void
7341do_rm_rd_rn (void)
7342{
5be8be5d
DG
7343 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7344 constraint (((inst.reloc.exp.X_op != O_constant
7345 && inst.reloc.exp.X_op != O_illegal)
7346 || inst.reloc.exp.X_add_number != 0),
7347 BAD_ADDR_MODE);
c19d1205
ZW
7348 inst.instruction |= inst.operands[0].reg;
7349 inst.instruction |= inst.operands[1].reg << 12;
7350 inst.instruction |= inst.operands[2].reg << 16;
7351}
09d92015 7352
c19d1205
ZW
7353static void
7354do_imm0 (void)
7355{
7356 inst.instruction |= inst.operands[0].imm;
7357}
09d92015 7358
c19d1205
ZW
7359static void
7360do_rd_cpaddr (void)
7361{
7362 inst.instruction |= inst.operands[0].reg << 12;
7363 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7364}
a737bd4d 7365
c19d1205
ZW
7366/* ARM instructions, in alphabetical order by function name (except
7367 that wrapper functions appear immediately after the function they
7368 wrap). */
09d92015 7369
c19d1205
ZW
7370/* This is a pseudo-op of the form "adr rd, label" to be converted
7371 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7372
7373static void
c19d1205 7374do_adr (void)
09d92015 7375{
c19d1205 7376 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7377
c19d1205
ZW
7378 /* Frag hacking will turn this into a sub instruction if the offset turns
7379 out to be negative. */
7380 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7381 inst.reloc.pc_rel = 1;
2fc8bdac 7382 inst.reloc.exp.X_add_number -= 8;
c19d1205 7383}
b99bd4ef 7384
c19d1205
ZW
7385/* This is a pseudo-op of the form "adrl rd, label" to be converted
7386 into a relative address of the form:
7387 add rd, pc, #low(label-.-8)"
7388 add rd, rd, #high(label-.-8)" */
b99bd4ef 7389
c19d1205
ZW
7390static void
7391do_adrl (void)
7392{
7393 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7394
c19d1205
ZW
7395 /* Frag hacking will turn this into a sub instruction if the offset turns
7396 out to be negative. */
7397 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7398 inst.reloc.pc_rel = 1;
7399 inst.size = INSN_SIZE * 2;
2fc8bdac 7400 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7401}
7402
b99bd4ef 7403static void
c19d1205 7404do_arit (void)
b99bd4ef 7405{
c19d1205
ZW
7406 if (!inst.operands[1].present)
7407 inst.operands[1].reg = inst.operands[0].reg;
7408 inst.instruction |= inst.operands[0].reg << 12;
7409 inst.instruction |= inst.operands[1].reg << 16;
7410 encode_arm_shifter_operand (2);
7411}
b99bd4ef 7412
62b3e311
PB
7413static void
7414do_barrier (void)
7415{
7416 if (inst.operands[0].present)
7417 {
7418 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7419 && inst.operands[0].imm > 0xf
7420 && inst.operands[0].imm < 0x0,
bd3ba5d1 7421 _("bad barrier type"));
62b3e311
PB
7422 inst.instruction |= inst.operands[0].imm;
7423 }
7424 else
7425 inst.instruction |= 0xf;
7426}
7427
c19d1205
ZW
7428static void
7429do_bfc (void)
7430{
7431 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7432 constraint (msb > 32, _("bit-field extends past end of register"));
7433 /* The instruction encoding stores the LSB and MSB,
7434 not the LSB and width. */
7435 inst.instruction |= inst.operands[0].reg << 12;
7436 inst.instruction |= inst.operands[1].imm << 7;
7437 inst.instruction |= (msb - 1) << 16;
7438}
b99bd4ef 7439
c19d1205
ZW
7440static void
7441do_bfi (void)
7442{
7443 unsigned int msb;
b99bd4ef 7444
c19d1205
ZW
7445 /* #0 in second position is alternative syntax for bfc, which is
7446 the same instruction but with REG_PC in the Rm field. */
7447 if (!inst.operands[1].isreg)
7448 inst.operands[1].reg = REG_PC;
b99bd4ef 7449
c19d1205
ZW
7450 msb = inst.operands[2].imm + inst.operands[3].imm;
7451 constraint (msb > 32, _("bit-field extends past end of register"));
7452 /* The instruction encoding stores the LSB and MSB,
7453 not the LSB and width. */
7454 inst.instruction |= inst.operands[0].reg << 12;
7455 inst.instruction |= inst.operands[1].reg;
7456 inst.instruction |= inst.operands[2].imm << 7;
7457 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7458}
7459
b99bd4ef 7460static void
c19d1205 7461do_bfx (void)
b99bd4ef 7462{
c19d1205
ZW
7463 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7464 _("bit-field extends past end of register"));
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 inst.instruction |= inst.operands[1].reg;
7467 inst.instruction |= inst.operands[2].imm << 7;
7468 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7469}
09d92015 7470
c19d1205
ZW
7471/* ARM V5 breakpoint instruction (argument parse)
7472 BKPT <16 bit unsigned immediate>
7473 Instruction is not conditional.
7474 The bit pattern given in insns[] has the COND_ALWAYS condition,
7475 and it is an error if the caller tried to override that. */
b99bd4ef 7476
c19d1205
ZW
7477static void
7478do_bkpt (void)
7479{
7480 /* Top 12 of 16 bits to bits 19:8. */
7481 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7482
c19d1205
ZW
7483 /* Bottom 4 of 16 bits to bits 3:0. */
7484 inst.instruction |= inst.operands[0].imm & 0xf;
7485}
09d92015 7486
c19d1205
ZW
7487static void
7488encode_branch (int default_reloc)
7489{
7490 if (inst.operands[0].hasreloc)
7491 {
0855e32b
NS
7492 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7493 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7494 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7495 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7496 ? BFD_RELOC_ARM_PLT32
7497 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7498 }
b99bd4ef 7499 else
9ae92b05 7500 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7501 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7502}
7503
b99bd4ef 7504static void
c19d1205 7505do_branch (void)
b99bd4ef 7506{
39b41c9c
PB
7507#ifdef OBJ_ELF
7508 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7509 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7510 else
7511#endif
7512 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7513}
7514
7515static void
7516do_bl (void)
7517{
7518#ifdef OBJ_ELF
7519 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7520 {
7521 if (inst.cond == COND_ALWAYS)
7522 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7523 else
7524 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7525 }
7526 else
7527#endif
7528 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7529}
b99bd4ef 7530
c19d1205
ZW
7531/* ARM V5 branch-link-exchange instruction (argument parse)
7532 BLX <target_addr> ie BLX(1)
7533 BLX{<condition>} <Rm> ie BLX(2)
7534 Unfortunately, there are two different opcodes for this mnemonic.
7535 So, the insns[].value is not used, and the code here zaps values
7536 into inst.instruction.
7537 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7538
c19d1205
ZW
7539static void
7540do_blx (void)
7541{
7542 if (inst.operands[0].isreg)
b99bd4ef 7543 {
c19d1205
ZW
7544 /* Arg is a register; the opcode provided by insns[] is correct.
7545 It is not illegal to do "blx pc", just useless. */
7546 if (inst.operands[0].reg == REG_PC)
7547 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7548
c19d1205
ZW
7549 inst.instruction |= inst.operands[0].reg;
7550 }
7551 else
b99bd4ef 7552 {
c19d1205 7553 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7554 conditionally, and the opcode must be adjusted.
7555 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7556 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7557 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7558 inst.instruction = 0xfa000000;
267bf995 7559 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7560 }
c19d1205
ZW
7561}
7562
7563static void
7564do_bx (void)
7565{
845b51d6
PB
7566 bfd_boolean want_reloc;
7567
c19d1205
ZW
7568 if (inst.operands[0].reg == REG_PC)
7569 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7570
c19d1205 7571 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7572 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7573 it is for ARMv4t or earlier. */
7574 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7575 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7576 want_reloc = TRUE;
7577
5ad34203 7578#ifdef OBJ_ELF
845b51d6 7579 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7580#endif
584206db 7581 want_reloc = FALSE;
845b51d6
PB
7582
7583 if (want_reloc)
7584 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7585}
7586
c19d1205
ZW
7587
7588/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7589
7590static void
c19d1205 7591do_bxj (void)
a737bd4d 7592{
c19d1205
ZW
7593 if (inst.operands[0].reg == REG_PC)
7594 as_tsktsk (_("use of r15 in bxj is not really useful"));
7595
7596 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7597}
7598
c19d1205
ZW
7599/* Co-processor data operation:
7600 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7601 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7602static void
7603do_cdp (void)
7604{
7605 inst.instruction |= inst.operands[0].reg << 8;
7606 inst.instruction |= inst.operands[1].imm << 20;
7607 inst.instruction |= inst.operands[2].reg << 12;
7608 inst.instruction |= inst.operands[3].reg << 16;
7609 inst.instruction |= inst.operands[4].reg;
7610 inst.instruction |= inst.operands[5].imm << 5;
7611}
a737bd4d
NC
7612
7613static void
c19d1205 7614do_cmp (void)
a737bd4d 7615{
c19d1205
ZW
7616 inst.instruction |= inst.operands[0].reg << 16;
7617 encode_arm_shifter_operand (1);
a737bd4d
NC
7618}
7619
c19d1205
ZW
7620/* Transfer between coprocessor and ARM registers.
7621 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7622 MRC2
7623 MCR{cond}
7624 MCR2
7625
7626 No special properties. */
09d92015
MM
7627
7628static void
c19d1205 7629do_co_reg (void)
09d92015 7630{
fdfde340
JM
7631 unsigned Rd;
7632
7633 Rd = inst.operands[2].reg;
7634 if (thumb_mode)
7635 {
7636 if (inst.instruction == 0xee000010
7637 || inst.instruction == 0xfe000010)
7638 /* MCR, MCR2 */
7639 reject_bad_reg (Rd);
7640 else
7641 /* MRC, MRC2 */
7642 constraint (Rd == REG_SP, BAD_SP);
7643 }
7644 else
7645 {
7646 /* MCR */
7647 if (inst.instruction == 0xe000010)
7648 constraint (Rd == REG_PC, BAD_PC);
7649 }
7650
7651
c19d1205
ZW
7652 inst.instruction |= inst.operands[0].reg << 8;
7653 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7654 inst.instruction |= Rd << 12;
c19d1205
ZW
7655 inst.instruction |= inst.operands[3].reg << 16;
7656 inst.instruction |= inst.operands[4].reg;
7657 inst.instruction |= inst.operands[5].imm << 5;
7658}
09d92015 7659
c19d1205
ZW
7660/* Transfer between coprocessor register and pair of ARM registers.
7661 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7662 MCRR2
7663 MRRC{cond}
7664 MRRC2
b99bd4ef 7665
c19d1205 7666 Two XScale instructions are special cases of these:
09d92015 7667
c19d1205
ZW
7668 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7669 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7670
5f4273c7 7671 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7672
c19d1205
ZW
7673static void
7674do_co_reg2c (void)
7675{
fdfde340
JM
7676 unsigned Rd, Rn;
7677
7678 Rd = inst.operands[2].reg;
7679 Rn = inst.operands[3].reg;
7680
7681 if (thumb_mode)
7682 {
7683 reject_bad_reg (Rd);
7684 reject_bad_reg (Rn);
7685 }
7686 else
7687 {
7688 constraint (Rd == REG_PC, BAD_PC);
7689 constraint (Rn == REG_PC, BAD_PC);
7690 }
7691
c19d1205
ZW
7692 inst.instruction |= inst.operands[0].reg << 8;
7693 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7694 inst.instruction |= Rd << 12;
7695 inst.instruction |= Rn << 16;
c19d1205 7696 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7697}
7698
c19d1205
ZW
7699static void
7700do_cpsi (void)
7701{
7702 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7703 if (inst.operands[1].present)
7704 {
7705 inst.instruction |= CPSI_MMOD;
7706 inst.instruction |= inst.operands[1].imm;
7707 }
c19d1205 7708}
b99bd4ef 7709
62b3e311
PB
7710static void
7711do_dbg (void)
7712{
7713 inst.instruction |= inst.operands[0].imm;
7714}
7715
eea54501
MGD
7716static void
7717do_div (void)
7718{
7719 unsigned Rd, Rn, Rm;
7720
7721 Rd = inst.operands[0].reg;
7722 Rn = (inst.operands[1].present
7723 ? inst.operands[1].reg : Rd);
7724 Rm = inst.operands[2].reg;
7725
7726 constraint ((Rd == REG_PC), BAD_PC);
7727 constraint ((Rn == REG_PC), BAD_PC);
7728 constraint ((Rm == REG_PC), BAD_PC);
7729
7730 inst.instruction |= Rd << 16;
7731 inst.instruction |= Rn << 0;
7732 inst.instruction |= Rm << 8;
7733}
7734
b99bd4ef 7735static void
c19d1205 7736do_it (void)
b99bd4ef 7737{
c19d1205 7738 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7739 process it to do the validation as if in
7740 thumb mode, just in case the code gets
7741 assembled for thumb using the unified syntax. */
7742
c19d1205 7743 inst.size = 0;
e07e6e58
NC
7744 if (unified_syntax)
7745 {
7746 set_it_insn_type (IT_INSN);
7747 now_it.mask = (inst.instruction & 0xf) | 0x10;
7748 now_it.cc = inst.operands[0].imm;
7749 }
09d92015 7750}
b99bd4ef 7751
09d92015 7752static void
c19d1205 7753do_ldmstm (void)
ea6ef066 7754{
c19d1205
ZW
7755 int base_reg = inst.operands[0].reg;
7756 int range = inst.operands[1].imm;
ea6ef066 7757
c19d1205
ZW
7758 inst.instruction |= base_reg << 16;
7759 inst.instruction |= range;
ea6ef066 7760
c19d1205
ZW
7761 if (inst.operands[1].writeback)
7762 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7763
c19d1205 7764 if (inst.operands[0].writeback)
ea6ef066 7765 {
c19d1205
ZW
7766 inst.instruction |= WRITE_BACK;
7767 /* Check for unpredictable uses of writeback. */
7768 if (inst.instruction & LOAD_BIT)
09d92015 7769 {
c19d1205
ZW
7770 /* Not allowed in LDM type 2. */
7771 if ((inst.instruction & LDM_TYPE_2_OR_3)
7772 && ((range & (1 << REG_PC)) == 0))
7773 as_warn (_("writeback of base register is UNPREDICTABLE"));
7774 /* Only allowed if base reg not in list for other types. */
7775 else if (range & (1 << base_reg))
7776 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7777 }
7778 else /* STM. */
7779 {
7780 /* Not allowed for type 2. */
7781 if (inst.instruction & LDM_TYPE_2_OR_3)
7782 as_warn (_("writeback of base register is UNPREDICTABLE"));
7783 /* Only allowed if base reg not in list, or first in list. */
7784 else if ((range & (1 << base_reg))
7785 && (range & ((1 << base_reg) - 1)))
7786 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7787 }
ea6ef066 7788 }
a737bd4d
NC
7789}
7790
c19d1205
ZW
7791/* ARMv5TE load-consecutive (argument parse)
7792 Mode is like LDRH.
7793
7794 LDRccD R, mode
7795 STRccD R, mode. */
7796
a737bd4d 7797static void
c19d1205 7798do_ldrd (void)
a737bd4d 7799{
c19d1205 7800 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 7801 _("first transfer register must be even"));
c19d1205
ZW
7802 constraint (inst.operands[1].present
7803 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 7804 _("can only transfer two consecutive registers"));
c19d1205
ZW
7805 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7806 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7807
c19d1205
ZW
7808 if (!inst.operands[1].present)
7809 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7810
c56791bb
RE
7811 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7812 register and the first register written; we have to diagnose
7813 overlap between the base and the second register written here. */
ea6ef066 7814
c56791bb
RE
7815 if (inst.operands[2].reg == inst.operands[1].reg
7816 && (inst.operands[2].writeback || inst.operands[2].postind))
7817 as_warn (_("base register written back, and overlaps "
7818 "second transfer register"));
b05fe5cf 7819
c56791bb
RE
7820 if (!(inst.instruction & V4_STR_BIT))
7821 {
c19d1205 7822 /* For an index-register load, the index register must not overlap the
c56791bb
RE
7823 destination (even if not write-back). */
7824 if (inst.operands[2].immisreg
7825 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7826 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7827 as_warn (_("index register overlaps transfer register"));
b05fe5cf 7828 }
c19d1205
ZW
7829 inst.instruction |= inst.operands[0].reg << 12;
7830 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7831}
7832
7833static void
c19d1205 7834do_ldrex (void)
b05fe5cf 7835{
c19d1205
ZW
7836 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7837 || inst.operands[1].postind || inst.operands[1].writeback
7838 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7839 || inst.operands[1].negative
7840 /* This can arise if the programmer has written
7841 strex rN, rM, foo
7842 or if they have mistakenly used a register name as the last
7843 operand, eg:
7844 strex rN, rM, rX
7845 It is very difficult to distinguish between these two cases
7846 because "rX" might actually be a label. ie the register
7847 name has been occluded by a symbol of the same name. So we
7848 just generate a general 'bad addressing mode' type error
7849 message and leave it up to the programmer to discover the
7850 true cause and fix their mistake. */
7851 || (inst.operands[1].reg == REG_PC),
7852 BAD_ADDR_MODE);
b05fe5cf 7853
c19d1205
ZW
7854 constraint (inst.reloc.exp.X_op != O_constant
7855 || inst.reloc.exp.X_add_number != 0,
7856 _("offset must be zero in ARM encoding"));
b05fe5cf 7857
5be8be5d
DG
7858 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7859
c19d1205
ZW
7860 inst.instruction |= inst.operands[0].reg << 12;
7861 inst.instruction |= inst.operands[1].reg << 16;
7862 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7863}
7864
7865static void
c19d1205 7866do_ldrexd (void)
b05fe5cf 7867{
c19d1205
ZW
7868 constraint (inst.operands[0].reg % 2 != 0,
7869 _("even register required"));
7870 constraint (inst.operands[1].present
7871 && inst.operands[1].reg != inst.operands[0].reg + 1,
7872 _("can only load two consecutive registers"));
7873 /* If op 1 were present and equal to PC, this function wouldn't
7874 have been called in the first place. */
7875 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7876
c19d1205
ZW
7877 inst.instruction |= inst.operands[0].reg << 12;
7878 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7879}
7880
7881static void
c19d1205 7882do_ldst (void)
b05fe5cf 7883{
c19d1205
ZW
7884 inst.instruction |= inst.operands[0].reg << 12;
7885 if (!inst.operands[1].isreg)
7886 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7887 return;
c19d1205 7888 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7889}
7890
7891static void
c19d1205 7892do_ldstt (void)
b05fe5cf 7893{
c19d1205
ZW
7894 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7895 reject [Rn,...]. */
7896 if (inst.operands[1].preind)
b05fe5cf 7897 {
bd3ba5d1
NC
7898 constraint (inst.reloc.exp.X_op != O_constant
7899 || inst.reloc.exp.X_add_number != 0,
c19d1205 7900 _("this instruction requires a post-indexed address"));
b05fe5cf 7901
c19d1205
ZW
7902 inst.operands[1].preind = 0;
7903 inst.operands[1].postind = 1;
7904 inst.operands[1].writeback = 1;
b05fe5cf 7905 }
c19d1205
ZW
7906 inst.instruction |= inst.operands[0].reg << 12;
7907 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7908}
b05fe5cf 7909
c19d1205 7910/* Halfword and signed-byte load/store operations. */
b05fe5cf 7911
c19d1205
ZW
7912static void
7913do_ldstv4 (void)
7914{
ff4a8d2b 7915 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7916 inst.instruction |= inst.operands[0].reg << 12;
7917 if (!inst.operands[1].isreg)
7918 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7919 return;
c19d1205 7920 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7921}
7922
7923static void
c19d1205 7924do_ldsttv4 (void)
b05fe5cf 7925{
c19d1205
ZW
7926 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7927 reject [Rn,...]. */
7928 if (inst.operands[1].preind)
b05fe5cf 7929 {
bd3ba5d1
NC
7930 constraint (inst.reloc.exp.X_op != O_constant
7931 || inst.reloc.exp.X_add_number != 0,
c19d1205 7932 _("this instruction requires a post-indexed address"));
b05fe5cf 7933
c19d1205
ZW
7934 inst.operands[1].preind = 0;
7935 inst.operands[1].postind = 1;
7936 inst.operands[1].writeback = 1;
b05fe5cf 7937 }
c19d1205
ZW
7938 inst.instruction |= inst.operands[0].reg << 12;
7939 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7940}
b05fe5cf 7941
c19d1205
ZW
7942/* Co-processor register load/store.
7943 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7944static void
7945do_lstc (void)
7946{
7947 inst.instruction |= inst.operands[0].reg << 8;
7948 inst.instruction |= inst.operands[1].reg << 12;
7949 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7950}
7951
b05fe5cf 7952static void
c19d1205 7953do_mlas (void)
b05fe5cf 7954{
8fb9d7b9 7955 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7956 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7957 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7958 && !(inst.instruction & 0x00400000))
8fb9d7b9 7959 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7960
c19d1205
ZW
7961 inst.instruction |= inst.operands[0].reg << 16;
7962 inst.instruction |= inst.operands[1].reg;
7963 inst.instruction |= inst.operands[2].reg << 8;
7964 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7965}
b05fe5cf 7966
c19d1205
ZW
7967static void
7968do_mov (void)
7969{
7970 inst.instruction |= inst.operands[0].reg << 12;
7971 encode_arm_shifter_operand (1);
7972}
b05fe5cf 7973
c19d1205
ZW
7974/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7975static void
7976do_mov16 (void)
7977{
b6895b4f
PB
7978 bfd_vma imm;
7979 bfd_boolean top;
7980
7981 top = (inst.instruction & 0x00400000) != 0;
7982 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7983 _(":lower16: not allowed this instruction"));
7984 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7985 _(":upper16: not allowed instruction"));
c19d1205 7986 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7987 if (inst.reloc.type == BFD_RELOC_UNUSED)
7988 {
7989 imm = inst.reloc.exp.X_add_number;
7990 /* The value is in two pieces: 0:11, 16:19. */
7991 inst.instruction |= (imm & 0x00000fff);
7992 inst.instruction |= (imm & 0x0000f000) << 4;
7993 }
b05fe5cf 7994}
b99bd4ef 7995
037e8744
JB
7996static void do_vfp_nsyn_opcode (const char *);
7997
7998static int
7999do_vfp_nsyn_mrs (void)
8000{
8001 if (inst.operands[0].isvec)
8002 {
8003 if (inst.operands[1].reg != 1)
8004 first_error (_("operand 1 must be FPSCR"));
8005 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8006 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8007 do_vfp_nsyn_opcode ("fmstat");
8008 }
8009 else if (inst.operands[1].isvec)
8010 do_vfp_nsyn_opcode ("fmrx");
8011 else
8012 return FAIL;
5f4273c7 8013
037e8744
JB
8014 return SUCCESS;
8015}
8016
8017static int
8018do_vfp_nsyn_msr (void)
8019{
8020 if (inst.operands[0].isvec)
8021 do_vfp_nsyn_opcode ("fmxr");
8022 else
8023 return FAIL;
8024
8025 return SUCCESS;
8026}
8027
f7c21dc7
NC
8028static void
8029do_vmrs (void)
8030{
8031 unsigned Rt = inst.operands[0].reg;
8032
8033 if (thumb_mode && inst.operands[0].reg == REG_SP)
8034 {
8035 inst.error = BAD_SP;
8036 return;
8037 }
8038
8039 /* APSR_ sets isvec. All other refs to PC are illegal. */
8040 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8041 {
8042 inst.error = BAD_PC;
8043 return;
8044 }
8045
8046 if (inst.operands[1].reg != 1)
8047 first_error (_("operand 1 must be FPSCR"));
8048
8049 inst.instruction |= (Rt << 12);
8050}
8051
8052static void
8053do_vmsr (void)
8054{
8055 unsigned Rt = inst.operands[1].reg;
8056
8057 if (thumb_mode)
8058 reject_bad_reg (Rt);
8059 else if (Rt == REG_PC)
8060 {
8061 inst.error = BAD_PC;
8062 return;
8063 }
8064
8065 if (inst.operands[0].reg != 1)
8066 first_error (_("operand 0 must be FPSCR"));
8067
8068 inst.instruction |= (Rt << 12);
8069}
8070
b99bd4ef 8071static void
c19d1205 8072do_mrs (void)
b99bd4ef 8073{
90ec0d68
MGD
8074 unsigned br;
8075
037e8744
JB
8076 if (do_vfp_nsyn_mrs () == SUCCESS)
8077 return;
8078
ff4a8d2b 8079 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8080 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8081
8082 if (inst.operands[1].isreg)
8083 {
8084 br = inst.operands[1].reg;
8085 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8086 as_bad (_("bad register for mrs"));
8087 }
8088 else
8089 {
8090 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8091 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8092 != (PSR_c|PSR_f),
d2cd1205 8093 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8094 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8095 }
8096
8097 inst.instruction |= br;
c19d1205 8098}
b99bd4ef 8099
c19d1205
ZW
8100/* Two possible forms:
8101 "{C|S}PSR_<field>, Rm",
8102 "{C|S}PSR_f, #expression". */
b99bd4ef 8103
c19d1205
ZW
8104static void
8105do_msr (void)
8106{
037e8744
JB
8107 if (do_vfp_nsyn_msr () == SUCCESS)
8108 return;
8109
c19d1205
ZW
8110 inst.instruction |= inst.operands[0].imm;
8111 if (inst.operands[1].isreg)
8112 inst.instruction |= inst.operands[1].reg;
8113 else
b99bd4ef 8114 {
c19d1205
ZW
8115 inst.instruction |= INST_IMMEDIATE;
8116 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8117 inst.reloc.pc_rel = 0;
b99bd4ef 8118 }
b99bd4ef
NC
8119}
8120
c19d1205
ZW
8121static void
8122do_mul (void)
a737bd4d 8123{
ff4a8d2b
NC
8124 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8125
c19d1205
ZW
8126 if (!inst.operands[2].present)
8127 inst.operands[2].reg = inst.operands[0].reg;
8128 inst.instruction |= inst.operands[0].reg << 16;
8129 inst.instruction |= inst.operands[1].reg;
8130 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8131
8fb9d7b9
MS
8132 if (inst.operands[0].reg == inst.operands[1].reg
8133 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8134 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8135}
8136
c19d1205
ZW
8137/* Long Multiply Parser
8138 UMULL RdLo, RdHi, Rm, Rs
8139 SMULL RdLo, RdHi, Rm, Rs
8140 UMLAL RdLo, RdHi, Rm, Rs
8141 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8142
8143static void
c19d1205 8144do_mull (void)
b99bd4ef 8145{
c19d1205
ZW
8146 inst.instruction |= inst.operands[0].reg << 12;
8147 inst.instruction |= inst.operands[1].reg << 16;
8148 inst.instruction |= inst.operands[2].reg;
8149 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8150
682b27ad
PB
8151 /* rdhi and rdlo must be different. */
8152 if (inst.operands[0].reg == inst.operands[1].reg)
8153 as_tsktsk (_("rdhi and rdlo must be different"));
8154
8155 /* rdhi, rdlo and rm must all be different before armv6. */
8156 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8157 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8158 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8159 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8160}
b99bd4ef 8161
c19d1205
ZW
8162static void
8163do_nop (void)
8164{
e7495e45
NS
8165 if (inst.operands[0].present
8166 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8167 {
8168 /* Architectural NOP hints are CPSR sets with no bits selected. */
8169 inst.instruction &= 0xf0000000;
e7495e45
NS
8170 inst.instruction |= 0x0320f000;
8171 if (inst.operands[0].present)
8172 inst.instruction |= inst.operands[0].imm;
c19d1205 8173 }
b99bd4ef
NC
8174}
8175
c19d1205
ZW
8176/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8177 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8178 Condition defaults to COND_ALWAYS.
8179 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8180
8181static void
c19d1205 8182do_pkhbt (void)
b99bd4ef 8183{
c19d1205
ZW
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 inst.instruction |= inst.operands[1].reg << 16;
8186 inst.instruction |= inst.operands[2].reg;
8187 if (inst.operands[3].present)
8188 encode_arm_shift (3);
8189}
b99bd4ef 8190
c19d1205 8191/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8192
c19d1205
ZW
8193static void
8194do_pkhtb (void)
8195{
8196 if (!inst.operands[3].present)
b99bd4ef 8197 {
c19d1205
ZW
8198 /* If the shift specifier is omitted, turn the instruction
8199 into pkhbt rd, rm, rn. */
8200 inst.instruction &= 0xfff00010;
8201 inst.instruction |= inst.operands[0].reg << 12;
8202 inst.instruction |= inst.operands[1].reg;
8203 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8204 }
8205 else
8206 {
c19d1205
ZW
8207 inst.instruction |= inst.operands[0].reg << 12;
8208 inst.instruction |= inst.operands[1].reg << 16;
8209 inst.instruction |= inst.operands[2].reg;
8210 encode_arm_shift (3);
b99bd4ef
NC
8211 }
8212}
8213
c19d1205 8214/* ARMv5TE: Preload-Cache
60e5ef9f 8215 MP Extensions: Preload for write
c19d1205 8216
60e5ef9f 8217 PLD(W) <addr_mode>
c19d1205
ZW
8218
8219 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8220
8221static void
c19d1205 8222do_pld (void)
b99bd4ef 8223{
c19d1205
ZW
8224 constraint (!inst.operands[0].isreg,
8225 _("'[' expected after PLD mnemonic"));
8226 constraint (inst.operands[0].postind,
8227 _("post-indexed expression used in preload instruction"));
8228 constraint (inst.operands[0].writeback,
8229 _("writeback used in preload instruction"));
8230 constraint (!inst.operands[0].preind,
8231 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8232 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8233}
b99bd4ef 8234
62b3e311
PB
8235/* ARMv7: PLI <addr_mode> */
8236static void
8237do_pli (void)
8238{
8239 constraint (!inst.operands[0].isreg,
8240 _("'[' expected after PLI mnemonic"));
8241 constraint (inst.operands[0].postind,
8242 _("post-indexed expression used in preload instruction"));
8243 constraint (inst.operands[0].writeback,
8244 _("writeback used in preload instruction"));
8245 constraint (!inst.operands[0].preind,
8246 _("unindexed addressing used in preload instruction"));
8247 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8248 inst.instruction &= ~PRE_INDEX;
8249}
8250
c19d1205
ZW
8251static void
8252do_push_pop (void)
8253{
8254 inst.operands[1] = inst.operands[0];
8255 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8256 inst.operands[0].isreg = 1;
8257 inst.operands[0].writeback = 1;
8258 inst.operands[0].reg = REG_SP;
8259 do_ldmstm ();
8260}
b99bd4ef 8261
c19d1205
ZW
8262/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8263 word at the specified address and the following word
8264 respectively.
8265 Unconditionally executed.
8266 Error if Rn is R15. */
b99bd4ef 8267
c19d1205
ZW
8268static void
8269do_rfe (void)
8270{
8271 inst.instruction |= inst.operands[0].reg << 16;
8272 if (inst.operands[0].writeback)
8273 inst.instruction |= WRITE_BACK;
8274}
b99bd4ef 8275
c19d1205 8276/* ARM V6 ssat (argument parse). */
b99bd4ef 8277
c19d1205
ZW
8278static void
8279do_ssat (void)
8280{
8281 inst.instruction |= inst.operands[0].reg << 12;
8282 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8283 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8284
c19d1205
ZW
8285 if (inst.operands[3].present)
8286 encode_arm_shift (3);
b99bd4ef
NC
8287}
8288
c19d1205 8289/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8290
8291static void
c19d1205 8292do_usat (void)
b99bd4ef 8293{
c19d1205
ZW
8294 inst.instruction |= inst.operands[0].reg << 12;
8295 inst.instruction |= inst.operands[1].imm << 16;
8296 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8297
c19d1205
ZW
8298 if (inst.operands[3].present)
8299 encode_arm_shift (3);
b99bd4ef
NC
8300}
8301
c19d1205 8302/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8303
8304static void
c19d1205 8305do_ssat16 (void)
09d92015 8306{
c19d1205
ZW
8307 inst.instruction |= inst.operands[0].reg << 12;
8308 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8309 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8310}
8311
c19d1205
ZW
8312static void
8313do_usat16 (void)
a737bd4d 8314{
c19d1205
ZW
8315 inst.instruction |= inst.operands[0].reg << 12;
8316 inst.instruction |= inst.operands[1].imm << 16;
8317 inst.instruction |= inst.operands[2].reg;
8318}
a737bd4d 8319
c19d1205
ZW
8320/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8321 preserving the other bits.
a737bd4d 8322
c19d1205
ZW
8323 setend <endian_specifier>, where <endian_specifier> is either
8324 BE or LE. */
a737bd4d 8325
c19d1205
ZW
8326static void
8327do_setend (void)
8328{
8329 if (inst.operands[0].imm)
8330 inst.instruction |= 0x200;
a737bd4d
NC
8331}
8332
8333static void
c19d1205 8334do_shift (void)
a737bd4d 8335{
c19d1205
ZW
8336 unsigned int Rm = (inst.operands[1].present
8337 ? inst.operands[1].reg
8338 : inst.operands[0].reg);
a737bd4d 8339
c19d1205
ZW
8340 inst.instruction |= inst.operands[0].reg << 12;
8341 inst.instruction |= Rm;
8342 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8343 {
c19d1205
ZW
8344 inst.instruction |= inst.operands[2].reg << 8;
8345 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
8346 }
8347 else
c19d1205 8348 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8349}
8350
09d92015 8351static void
3eb17e6b 8352do_smc (void)
09d92015 8353{
3eb17e6b 8354 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8355 inst.reloc.pc_rel = 0;
09d92015
MM
8356}
8357
90ec0d68
MGD
8358static void
8359do_hvc (void)
8360{
8361 inst.reloc.type = BFD_RELOC_ARM_HVC;
8362 inst.reloc.pc_rel = 0;
8363}
8364
09d92015 8365static void
c19d1205 8366do_swi (void)
09d92015 8367{
c19d1205
ZW
8368 inst.reloc.type = BFD_RELOC_ARM_SWI;
8369 inst.reloc.pc_rel = 0;
09d92015
MM
8370}
8371
c19d1205
ZW
8372/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8373 SMLAxy{cond} Rd,Rm,Rs,Rn
8374 SMLAWy{cond} Rd,Rm,Rs,Rn
8375 Error if any register is R15. */
e16bb312 8376
c19d1205
ZW
8377static void
8378do_smla (void)
e16bb312 8379{
c19d1205
ZW
8380 inst.instruction |= inst.operands[0].reg << 16;
8381 inst.instruction |= inst.operands[1].reg;
8382 inst.instruction |= inst.operands[2].reg << 8;
8383 inst.instruction |= inst.operands[3].reg << 12;
8384}
a737bd4d 8385
c19d1205
ZW
8386/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8387 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8388 Error if any register is R15.
8389 Warning if Rdlo == Rdhi. */
a737bd4d 8390
c19d1205
ZW
8391static void
8392do_smlal (void)
8393{
8394 inst.instruction |= inst.operands[0].reg << 12;
8395 inst.instruction |= inst.operands[1].reg << 16;
8396 inst.instruction |= inst.operands[2].reg;
8397 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8398
c19d1205
ZW
8399 if (inst.operands[0].reg == inst.operands[1].reg)
8400 as_tsktsk (_("rdhi and rdlo must be different"));
8401}
a737bd4d 8402
c19d1205
ZW
8403/* ARM V5E (El Segundo) signed-multiply (argument parse)
8404 SMULxy{cond} Rd,Rm,Rs
8405 Error if any register is R15. */
a737bd4d 8406
c19d1205
ZW
8407static void
8408do_smul (void)
8409{
8410 inst.instruction |= inst.operands[0].reg << 16;
8411 inst.instruction |= inst.operands[1].reg;
8412 inst.instruction |= inst.operands[2].reg << 8;
8413}
a737bd4d 8414
b6702015
PB
8415/* ARM V6 srs (argument parse). The variable fields in the encoding are
8416 the same for both ARM and Thumb-2. */
a737bd4d 8417
c19d1205
ZW
8418static void
8419do_srs (void)
8420{
b6702015
PB
8421 int reg;
8422
8423 if (inst.operands[0].present)
8424 {
8425 reg = inst.operands[0].reg;
fdfde340 8426 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8427 }
8428 else
fdfde340 8429 reg = REG_SP;
b6702015
PB
8430
8431 inst.instruction |= reg << 16;
8432 inst.instruction |= inst.operands[1].imm;
8433 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8434 inst.instruction |= WRITE_BACK;
8435}
a737bd4d 8436
c19d1205 8437/* ARM V6 strex (argument parse). */
a737bd4d 8438
c19d1205
ZW
8439static void
8440do_strex (void)
8441{
8442 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8443 || inst.operands[2].postind || inst.operands[2].writeback
8444 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8445 || inst.operands[2].negative
8446 /* See comment in do_ldrex(). */
8447 || (inst.operands[2].reg == REG_PC),
8448 BAD_ADDR_MODE);
a737bd4d 8449
c19d1205
ZW
8450 constraint (inst.operands[0].reg == inst.operands[1].reg
8451 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8452
c19d1205
ZW
8453 constraint (inst.reloc.exp.X_op != O_constant
8454 || inst.reloc.exp.X_add_number != 0,
8455 _("offset must be zero in ARM encoding"));
a737bd4d 8456
c19d1205
ZW
8457 inst.instruction |= inst.operands[0].reg << 12;
8458 inst.instruction |= inst.operands[1].reg;
8459 inst.instruction |= inst.operands[2].reg << 16;
8460 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8461}
8462
8463static void
c19d1205 8464do_strexd (void)
e16bb312 8465{
c19d1205
ZW
8466 constraint (inst.operands[1].reg % 2 != 0,
8467 _("even register required"));
8468 constraint (inst.operands[2].present
8469 && inst.operands[2].reg != inst.operands[1].reg + 1,
8470 _("can only store two consecutive registers"));
8471 /* If op 2 were present and equal to PC, this function wouldn't
8472 have been called in the first place. */
8473 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8474
c19d1205
ZW
8475 constraint (inst.operands[0].reg == inst.operands[1].reg
8476 || inst.operands[0].reg == inst.operands[1].reg + 1
8477 || inst.operands[0].reg == inst.operands[3].reg,
8478 BAD_OVERLAP);
e16bb312 8479
c19d1205
ZW
8480 inst.instruction |= inst.operands[0].reg << 12;
8481 inst.instruction |= inst.operands[1].reg;
8482 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8483}
8484
c19d1205
ZW
8485/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8486 extends it to 32-bits, and adds the result to a value in another
8487 register. You can specify a rotation by 0, 8, 16, or 24 bits
8488 before extracting the 16-bit value.
8489 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8490 Condition defaults to COND_ALWAYS.
8491 Error if any register uses R15. */
8492
e16bb312 8493static void
c19d1205 8494do_sxtah (void)
e16bb312 8495{
c19d1205
ZW
8496 inst.instruction |= inst.operands[0].reg << 12;
8497 inst.instruction |= inst.operands[1].reg << 16;
8498 inst.instruction |= inst.operands[2].reg;
8499 inst.instruction |= inst.operands[3].imm << 10;
8500}
e16bb312 8501
c19d1205 8502/* ARM V6 SXTH.
e16bb312 8503
c19d1205
ZW
8504 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8505 Condition defaults to COND_ALWAYS.
8506 Error if any register uses R15. */
e16bb312
NC
8507
8508static void
c19d1205 8509do_sxth (void)
e16bb312 8510{
c19d1205
ZW
8511 inst.instruction |= inst.operands[0].reg << 12;
8512 inst.instruction |= inst.operands[1].reg;
8513 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8514}
c19d1205
ZW
8515\f
8516/* VFP instructions. In a logical order: SP variant first, monad
8517 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8518
8519static void
c19d1205 8520do_vfp_sp_monadic (void)
e16bb312 8521{
5287ad62
JB
8522 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8523 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8524}
8525
8526static void
c19d1205 8527do_vfp_sp_dyadic (void)
e16bb312 8528{
5287ad62
JB
8529 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8530 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8531 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8532}
8533
8534static void
c19d1205 8535do_vfp_sp_compare_z (void)
e16bb312 8536{
5287ad62 8537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8538}
8539
8540static void
c19d1205 8541do_vfp_dp_sp_cvt (void)
e16bb312 8542{
5287ad62
JB
8543 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8544 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8545}
8546
8547static void
c19d1205 8548do_vfp_sp_dp_cvt (void)
e16bb312 8549{
5287ad62
JB
8550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8551 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8552}
8553
8554static void
c19d1205 8555do_vfp_reg_from_sp (void)
e16bb312 8556{
c19d1205 8557 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8558 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8559}
8560
8561static void
c19d1205 8562do_vfp_reg2_from_sp2 (void)
e16bb312 8563{
c19d1205
ZW
8564 constraint (inst.operands[2].imm != 2,
8565 _("only two consecutive VFP SP registers allowed here"));
8566 inst.instruction |= inst.operands[0].reg << 12;
8567 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8568 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8569}
8570
8571static void
c19d1205 8572do_vfp_sp_from_reg (void)
e16bb312 8573{
5287ad62 8574 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8575 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8576}
8577
8578static void
c19d1205 8579do_vfp_sp2_from_reg2 (void)
e16bb312 8580{
c19d1205
ZW
8581 constraint (inst.operands[0].imm != 2,
8582 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8583 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8584 inst.instruction |= inst.operands[1].reg << 12;
8585 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8586}
8587
8588static void
c19d1205 8589do_vfp_sp_ldst (void)
e16bb312 8590{
5287ad62 8591 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8592 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8593}
8594
8595static void
c19d1205 8596do_vfp_dp_ldst (void)
e16bb312 8597{
5287ad62 8598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8599 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8600}
8601
c19d1205 8602
e16bb312 8603static void
c19d1205 8604vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8605{
c19d1205
ZW
8606 if (inst.operands[0].writeback)
8607 inst.instruction |= WRITE_BACK;
8608 else
8609 constraint (ldstm_type != VFP_LDSTMIA,
8610 _("this addressing mode requires base-register writeback"));
8611 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8612 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8613 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8614}
8615
8616static void
c19d1205 8617vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8618{
c19d1205 8619 int count;
e16bb312 8620
c19d1205
ZW
8621 if (inst.operands[0].writeback)
8622 inst.instruction |= WRITE_BACK;
8623 else
8624 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8625 _("this addressing mode requires base-register writeback"));
e16bb312 8626
c19d1205 8627 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8628 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8629
c19d1205
ZW
8630 count = inst.operands[1].imm << 1;
8631 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8632 count += 1;
e16bb312 8633
c19d1205 8634 inst.instruction |= count;
e16bb312
NC
8635}
8636
8637static void
c19d1205 8638do_vfp_sp_ldstmia (void)
e16bb312 8639{
c19d1205 8640 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8641}
8642
8643static void
c19d1205 8644do_vfp_sp_ldstmdb (void)
e16bb312 8645{
c19d1205 8646 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8647}
8648
8649static void
c19d1205 8650do_vfp_dp_ldstmia (void)
e16bb312 8651{
c19d1205 8652 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8653}
8654
8655static void
c19d1205 8656do_vfp_dp_ldstmdb (void)
e16bb312 8657{
c19d1205 8658 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8659}
8660
8661static void
c19d1205 8662do_vfp_xp_ldstmia (void)
e16bb312 8663{
c19d1205
ZW
8664 vfp_dp_ldstm (VFP_LDSTMIAX);
8665}
e16bb312 8666
c19d1205
ZW
8667static void
8668do_vfp_xp_ldstmdb (void)
8669{
8670 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8671}
5287ad62
JB
8672
8673static void
8674do_vfp_dp_rd_rm (void)
8675{
8676 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8677 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8678}
8679
8680static void
8681do_vfp_dp_rn_rd (void)
8682{
8683 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8684 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8685}
8686
8687static void
8688do_vfp_dp_rd_rn (void)
8689{
8690 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8691 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8692}
8693
8694static void
8695do_vfp_dp_rd_rn_rm (void)
8696{
8697 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8698 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8699 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8700}
8701
8702static void
8703do_vfp_dp_rd (void)
8704{
8705 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8706}
8707
8708static void
8709do_vfp_dp_rm_rd_rn (void)
8710{
8711 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8712 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8713 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8714}
8715
8716/* VFPv3 instructions. */
8717static void
8718do_vfp_sp_const (void)
8719{
8720 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8721 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8722 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8723}
8724
8725static void
8726do_vfp_dp_const (void)
8727{
8728 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8729 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8730 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8731}
8732
8733static void
8734vfp_conv (int srcsize)
8735{
8736 unsigned immbits = srcsize - inst.operands[1].imm;
8737 inst.instruction |= (immbits & 1) << 5;
8738 inst.instruction |= (immbits >> 1);
8739}
8740
8741static void
8742do_vfp_sp_conv_16 (void)
8743{
8744 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8745 vfp_conv (16);
8746}
8747
8748static void
8749do_vfp_dp_conv_16 (void)
8750{
8751 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8752 vfp_conv (16);
8753}
8754
8755static void
8756do_vfp_sp_conv_32 (void)
8757{
8758 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8759 vfp_conv (32);
8760}
8761
8762static void
8763do_vfp_dp_conv_32 (void)
8764{
8765 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8766 vfp_conv (32);
8767}
c19d1205
ZW
8768\f
8769/* FPA instructions. Also in a logical order. */
e16bb312 8770
c19d1205
ZW
8771static void
8772do_fpa_cmp (void)
8773{
8774 inst.instruction |= inst.operands[0].reg << 16;
8775 inst.instruction |= inst.operands[1].reg;
8776}
b99bd4ef
NC
8777
8778static void
c19d1205 8779do_fpa_ldmstm (void)
b99bd4ef 8780{
c19d1205
ZW
8781 inst.instruction |= inst.operands[0].reg << 12;
8782 switch (inst.operands[1].imm)
8783 {
8784 case 1: inst.instruction |= CP_T_X; break;
8785 case 2: inst.instruction |= CP_T_Y; break;
8786 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8787 case 4: break;
8788 default: abort ();
8789 }
b99bd4ef 8790
c19d1205
ZW
8791 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8792 {
8793 /* The instruction specified "ea" or "fd", so we can only accept
8794 [Rn]{!}. The instruction does not really support stacking or
8795 unstacking, so we have to emulate these by setting appropriate
8796 bits and offsets. */
8797 constraint (inst.reloc.exp.X_op != O_constant
8798 || inst.reloc.exp.X_add_number != 0,
8799 _("this instruction does not support indexing"));
b99bd4ef 8800
c19d1205
ZW
8801 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8802 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8803
c19d1205
ZW
8804 if (!(inst.instruction & INDEX_UP))
8805 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8806
c19d1205
ZW
8807 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8808 {
8809 inst.operands[2].preind = 0;
8810 inst.operands[2].postind = 1;
8811 }
8812 }
b99bd4ef 8813
c19d1205 8814 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8815}
c19d1205
ZW
8816\f
8817/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8818
c19d1205
ZW
8819static void
8820do_iwmmxt_tandorc (void)
8821{
8822 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8823}
b99bd4ef 8824
c19d1205
ZW
8825static void
8826do_iwmmxt_textrc (void)
8827{
8828 inst.instruction |= inst.operands[0].reg << 12;
8829 inst.instruction |= inst.operands[1].imm;
8830}
b99bd4ef
NC
8831
8832static void
c19d1205 8833do_iwmmxt_textrm (void)
b99bd4ef 8834{
c19d1205
ZW
8835 inst.instruction |= inst.operands[0].reg << 12;
8836 inst.instruction |= inst.operands[1].reg << 16;
8837 inst.instruction |= inst.operands[2].imm;
8838}
b99bd4ef 8839
c19d1205
ZW
8840static void
8841do_iwmmxt_tinsr (void)
8842{
8843 inst.instruction |= inst.operands[0].reg << 16;
8844 inst.instruction |= inst.operands[1].reg << 12;
8845 inst.instruction |= inst.operands[2].imm;
8846}
b99bd4ef 8847
c19d1205
ZW
8848static void
8849do_iwmmxt_tmia (void)
8850{
8851 inst.instruction |= inst.operands[0].reg << 5;
8852 inst.instruction |= inst.operands[1].reg;
8853 inst.instruction |= inst.operands[2].reg << 12;
8854}
b99bd4ef 8855
c19d1205
ZW
8856static void
8857do_iwmmxt_waligni (void)
8858{
8859 inst.instruction |= inst.operands[0].reg << 12;
8860 inst.instruction |= inst.operands[1].reg << 16;
8861 inst.instruction |= inst.operands[2].reg;
8862 inst.instruction |= inst.operands[3].imm << 20;
8863}
b99bd4ef 8864
2d447fca
JM
8865static void
8866do_iwmmxt_wmerge (void)
8867{
8868 inst.instruction |= inst.operands[0].reg << 12;
8869 inst.instruction |= inst.operands[1].reg << 16;
8870 inst.instruction |= inst.operands[2].reg;
8871 inst.instruction |= inst.operands[3].imm << 21;
8872}
8873
c19d1205
ZW
8874static void
8875do_iwmmxt_wmov (void)
8876{
8877 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8878 inst.instruction |= inst.operands[0].reg << 12;
8879 inst.instruction |= inst.operands[1].reg << 16;
8880 inst.instruction |= inst.operands[1].reg;
8881}
b99bd4ef 8882
c19d1205
ZW
8883static void
8884do_iwmmxt_wldstbh (void)
8885{
8f06b2d8 8886 int reloc;
c19d1205 8887 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8888 if (thumb_mode)
8889 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8890 else
8891 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8892 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8893}
8894
c19d1205
ZW
8895static void
8896do_iwmmxt_wldstw (void)
8897{
8898 /* RIWR_RIWC clears .isreg for a control register. */
8899 if (!inst.operands[0].isreg)
8900 {
8901 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8902 inst.instruction |= 0xf0000000;
8903 }
b99bd4ef 8904
c19d1205
ZW
8905 inst.instruction |= inst.operands[0].reg << 12;
8906 encode_arm_cp_address (1, TRUE, TRUE, 0);
8907}
b99bd4ef
NC
8908
8909static void
c19d1205 8910do_iwmmxt_wldstd (void)
b99bd4ef 8911{
c19d1205 8912 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8913 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8914 && inst.operands[1].immisreg)
8915 {
8916 inst.instruction &= ~0x1a000ff;
8917 inst.instruction |= (0xf << 28);
8918 if (inst.operands[1].preind)
8919 inst.instruction |= PRE_INDEX;
8920 if (!inst.operands[1].negative)
8921 inst.instruction |= INDEX_UP;
8922 if (inst.operands[1].writeback)
8923 inst.instruction |= WRITE_BACK;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8926 inst.instruction |= inst.operands[1].imm;
8927 }
8928 else
8929 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8930}
b99bd4ef 8931
c19d1205
ZW
8932static void
8933do_iwmmxt_wshufh (void)
8934{
8935 inst.instruction |= inst.operands[0].reg << 12;
8936 inst.instruction |= inst.operands[1].reg << 16;
8937 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8938 inst.instruction |= (inst.operands[2].imm & 0x0f);
8939}
b99bd4ef 8940
c19d1205
ZW
8941static void
8942do_iwmmxt_wzero (void)
8943{
8944 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8945 inst.instruction |= inst.operands[0].reg;
8946 inst.instruction |= inst.operands[0].reg << 12;
8947 inst.instruction |= inst.operands[0].reg << 16;
8948}
2d447fca
JM
8949
8950static void
8951do_iwmmxt_wrwrwr_or_imm5 (void)
8952{
8953 if (inst.operands[2].isreg)
8954 do_rd_rn_rm ();
8955 else {
8956 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8957 _("immediate operand requires iWMMXt2"));
8958 do_rd_rn ();
8959 if (inst.operands[2].imm == 0)
8960 {
8961 switch ((inst.instruction >> 20) & 0xf)
8962 {
8963 case 4:
8964 case 5:
8965 case 6:
5f4273c7 8966 case 7:
2d447fca
JM
8967 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8968 inst.operands[2].imm = 16;
8969 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8970 break;
8971 case 8:
8972 case 9:
8973 case 10:
8974 case 11:
8975 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8976 inst.operands[2].imm = 32;
8977 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8978 break;
8979 case 12:
8980 case 13:
8981 case 14:
8982 case 15:
8983 {
8984 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8985 unsigned long wrn;
8986 wrn = (inst.instruction >> 16) & 0xf;
8987 inst.instruction &= 0xff0fff0f;
8988 inst.instruction |= wrn;
8989 /* Bail out here; the instruction is now assembled. */
8990 return;
8991 }
8992 }
8993 }
8994 /* Map 32 -> 0, etc. */
8995 inst.operands[2].imm &= 0x1f;
8996 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8997 }
8998}
c19d1205
ZW
8999\f
9000/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9001 operations first, then control, shift, and load/store. */
b99bd4ef 9002
c19d1205 9003/* Insns like "foo X,Y,Z". */
b99bd4ef 9004
c19d1205
ZW
9005static void
9006do_mav_triple (void)
9007{
9008 inst.instruction |= inst.operands[0].reg << 16;
9009 inst.instruction |= inst.operands[1].reg;
9010 inst.instruction |= inst.operands[2].reg << 12;
9011}
b99bd4ef 9012
c19d1205
ZW
9013/* Insns like "foo W,X,Y,Z".
9014 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9015
c19d1205
ZW
9016static void
9017do_mav_quad (void)
9018{
9019 inst.instruction |= inst.operands[0].reg << 5;
9020 inst.instruction |= inst.operands[1].reg << 12;
9021 inst.instruction |= inst.operands[2].reg << 16;
9022 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9023}
9024
c19d1205
ZW
9025/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9026static void
9027do_mav_dspsc (void)
a737bd4d 9028{
c19d1205
ZW
9029 inst.instruction |= inst.operands[1].reg << 12;
9030}
a737bd4d 9031
c19d1205
ZW
9032/* Maverick shift immediate instructions.
9033 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9034 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9035
c19d1205
ZW
9036static void
9037do_mav_shift (void)
9038{
9039 int imm = inst.operands[2].imm;
a737bd4d 9040
c19d1205
ZW
9041 inst.instruction |= inst.operands[0].reg << 12;
9042 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9043
c19d1205
ZW
9044 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9045 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9046 Bit 4 should be 0. */
9047 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9048
c19d1205
ZW
9049 inst.instruction |= imm;
9050}
9051\f
9052/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9053
c19d1205
ZW
9054/* Xscale multiply-accumulate (argument parse)
9055 MIAcc acc0,Rm,Rs
9056 MIAPHcc acc0,Rm,Rs
9057 MIAxycc acc0,Rm,Rs. */
a737bd4d 9058
c19d1205
ZW
9059static void
9060do_xsc_mia (void)
9061{
9062 inst.instruction |= inst.operands[1].reg;
9063 inst.instruction |= inst.operands[2].reg << 12;
9064}
a737bd4d 9065
c19d1205 9066/* Xscale move-accumulator-register (argument parse)
a737bd4d 9067
c19d1205 9068 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9069
c19d1205
ZW
9070static void
9071do_xsc_mar (void)
9072{
9073 inst.instruction |= inst.operands[1].reg << 12;
9074 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9075}
9076
c19d1205 9077/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9078
c19d1205 9079 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9080
9081static void
c19d1205 9082do_xsc_mra (void)
b99bd4ef 9083{
c19d1205
ZW
9084 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9085 inst.instruction |= inst.operands[0].reg << 12;
9086 inst.instruction |= inst.operands[1].reg << 16;
9087}
9088\f
9089/* Encoding functions relevant only to Thumb. */
b99bd4ef 9090
c19d1205
ZW
9091/* inst.operands[i] is a shifted-register operand; encode
9092 it into inst.instruction in the format used by Thumb32. */
9093
9094static void
9095encode_thumb32_shifted_operand (int i)
9096{
9097 unsigned int value = inst.reloc.exp.X_add_number;
9098 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9099
9c3c69f2
PB
9100 constraint (inst.operands[i].immisreg,
9101 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9102 inst.instruction |= inst.operands[i].reg;
9103 if (shift == SHIFT_RRX)
9104 inst.instruction |= SHIFT_ROR << 4;
9105 else
b99bd4ef 9106 {
c19d1205
ZW
9107 constraint (inst.reloc.exp.X_op != O_constant,
9108 _("expression too complex"));
9109
9110 constraint (value > 32
9111 || (value == 32 && (shift == SHIFT_LSL
9112 || shift == SHIFT_ROR)),
9113 _("shift expression is too large"));
9114
9115 if (value == 0)
9116 shift = SHIFT_LSL;
9117 else if (value == 32)
9118 value = 0;
9119
9120 inst.instruction |= shift << 4;
9121 inst.instruction |= (value & 0x1c) << 10;
9122 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9123 }
c19d1205 9124}
b99bd4ef 9125
b99bd4ef 9126
c19d1205
ZW
9127/* inst.operands[i] was set up by parse_address. Encode it into a
9128 Thumb32 format load or store instruction. Reject forms that cannot
9129 be used with such instructions. If is_t is true, reject forms that
9130 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9131 that cannot be used with a D instruction. If it is a store insn,
9132 reject PC in Rn. */
b99bd4ef 9133
c19d1205
ZW
9134static void
9135encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9136{
5be8be5d 9137 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9138
9139 constraint (!inst.operands[i].isreg,
53365c0d 9140 _("Instruction does not support =N addresses"));
b99bd4ef 9141
c19d1205
ZW
9142 inst.instruction |= inst.operands[i].reg << 16;
9143 if (inst.operands[i].immisreg)
b99bd4ef 9144 {
5be8be5d 9145 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9146 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9147 constraint (inst.operands[i].negative,
9148 _("Thumb does not support negative register indexing"));
9149 constraint (inst.operands[i].postind,
9150 _("Thumb does not support register post-indexing"));
9151 constraint (inst.operands[i].writeback,
9152 _("Thumb does not support register indexing with writeback"));
9153 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9154 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9155
f40d1643 9156 inst.instruction |= inst.operands[i].imm;
c19d1205 9157 if (inst.operands[i].shifted)
b99bd4ef 9158 {
c19d1205
ZW
9159 constraint (inst.reloc.exp.X_op != O_constant,
9160 _("expression too complex"));
9c3c69f2
PB
9161 constraint (inst.reloc.exp.X_add_number < 0
9162 || inst.reloc.exp.X_add_number > 3,
c19d1205 9163 _("shift out of range"));
9c3c69f2 9164 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9165 }
9166 inst.reloc.type = BFD_RELOC_UNUSED;
9167 }
9168 else if (inst.operands[i].preind)
9169 {
5be8be5d 9170 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9171 constraint (is_t && inst.operands[i].writeback,
c19d1205 9172 _("cannot use writeback with this instruction"));
5be8be5d
DG
9173 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9174 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9175
9176 if (is_d)
9177 {
9178 inst.instruction |= 0x01000000;
9179 if (inst.operands[i].writeback)
9180 inst.instruction |= 0x00200000;
b99bd4ef 9181 }
c19d1205 9182 else
b99bd4ef 9183 {
c19d1205
ZW
9184 inst.instruction |= 0x00000c00;
9185 if (inst.operands[i].writeback)
9186 inst.instruction |= 0x00000100;
b99bd4ef 9187 }
c19d1205 9188 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9189 }
c19d1205 9190 else if (inst.operands[i].postind)
b99bd4ef 9191 {
9c2799c2 9192 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9193 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9194 constraint (is_t, _("cannot use post-indexing with this instruction"));
9195
9196 if (is_d)
9197 inst.instruction |= 0x00200000;
9198 else
9199 inst.instruction |= 0x00000900;
9200 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9201 }
9202 else /* unindexed - only for coprocessor */
9203 inst.error = _("instruction does not accept unindexed addressing");
9204}
9205
9206/* Table of Thumb instructions which exist in both 16- and 32-bit
9207 encodings (the latter only in post-V6T2 cores). The index is the
9208 value used in the insns table below. When there is more than one
9209 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9210 holds variant (1).
9211 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9212#define T16_32_TAB \
21d799b5
NC
9213 X(_adc, 4140, eb400000), \
9214 X(_adcs, 4140, eb500000), \
9215 X(_add, 1c00, eb000000), \
9216 X(_adds, 1c00, eb100000), \
9217 X(_addi, 0000, f1000000), \
9218 X(_addis, 0000, f1100000), \
9219 X(_add_pc,000f, f20f0000), \
9220 X(_add_sp,000d, f10d0000), \
9221 X(_adr, 000f, f20f0000), \
9222 X(_and, 4000, ea000000), \
9223 X(_ands, 4000, ea100000), \
9224 X(_asr, 1000, fa40f000), \
9225 X(_asrs, 1000, fa50f000), \
9226 X(_b, e000, f000b000), \
9227 X(_bcond, d000, f0008000), \
9228 X(_bic, 4380, ea200000), \
9229 X(_bics, 4380, ea300000), \
9230 X(_cmn, 42c0, eb100f00), \
9231 X(_cmp, 2800, ebb00f00), \
9232 X(_cpsie, b660, f3af8400), \
9233 X(_cpsid, b670, f3af8600), \
9234 X(_cpy, 4600, ea4f0000), \
9235 X(_dec_sp,80dd, f1ad0d00), \
9236 X(_eor, 4040, ea800000), \
9237 X(_eors, 4040, ea900000), \
9238 X(_inc_sp,00dd, f10d0d00), \
9239 X(_ldmia, c800, e8900000), \
9240 X(_ldr, 6800, f8500000), \
9241 X(_ldrb, 7800, f8100000), \
9242 X(_ldrh, 8800, f8300000), \
9243 X(_ldrsb, 5600, f9100000), \
9244 X(_ldrsh, 5e00, f9300000), \
9245 X(_ldr_pc,4800, f85f0000), \
9246 X(_ldr_pc2,4800, f85f0000), \
9247 X(_ldr_sp,9800, f85d0000), \
9248 X(_lsl, 0000, fa00f000), \
9249 X(_lsls, 0000, fa10f000), \
9250 X(_lsr, 0800, fa20f000), \
9251 X(_lsrs, 0800, fa30f000), \
9252 X(_mov, 2000, ea4f0000), \
9253 X(_movs, 2000, ea5f0000), \
9254 X(_mul, 4340, fb00f000), \
9255 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9256 X(_mvn, 43c0, ea6f0000), \
9257 X(_mvns, 43c0, ea7f0000), \
9258 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9259 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9260 X(_orr, 4300, ea400000), \
9261 X(_orrs, 4300, ea500000), \
9262 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9263 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9264 X(_rev, ba00, fa90f080), \
9265 X(_rev16, ba40, fa90f090), \
9266 X(_revsh, bac0, fa90f0b0), \
9267 X(_ror, 41c0, fa60f000), \
9268 X(_rors, 41c0, fa70f000), \
9269 X(_sbc, 4180, eb600000), \
9270 X(_sbcs, 4180, eb700000), \
9271 X(_stmia, c000, e8800000), \
9272 X(_str, 6000, f8400000), \
9273 X(_strb, 7000, f8000000), \
9274 X(_strh, 8000, f8200000), \
9275 X(_str_sp,9000, f84d0000), \
9276 X(_sub, 1e00, eba00000), \
9277 X(_subs, 1e00, ebb00000), \
9278 X(_subi, 8000, f1a00000), \
9279 X(_subis, 8000, f1b00000), \
9280 X(_sxtb, b240, fa4ff080), \
9281 X(_sxth, b200, fa0ff080), \
9282 X(_tst, 4200, ea100f00), \
9283 X(_uxtb, b2c0, fa5ff080), \
9284 X(_uxth, b280, fa1ff080), \
9285 X(_nop, bf00, f3af8000), \
9286 X(_yield, bf10, f3af8001), \
9287 X(_wfe, bf20, f3af8002), \
9288 X(_wfi, bf30, f3af8003), \
9289 X(_sev, bf40, f3af8004),
c19d1205
ZW
9290
9291/* To catch errors in encoding functions, the codes are all offset by
9292 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9293 as 16-bit instructions. */
21d799b5 9294#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9295enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9296#undef X
9297
9298#define X(a,b,c) 0x##b
9299static const unsigned short thumb_op16[] = { T16_32_TAB };
9300#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9301#undef X
9302
9303#define X(a,b,c) 0x##c
9304static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9305#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9306#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9307#undef X
9308#undef T16_32_TAB
9309
9310/* Thumb instruction encoders, in alphabetical order. */
9311
92e90b6e 9312/* ADDW or SUBW. */
c921be7d 9313
92e90b6e
PB
9314static void
9315do_t_add_sub_w (void)
9316{
9317 int Rd, Rn;
9318
9319 Rd = inst.operands[0].reg;
9320 Rn = inst.operands[1].reg;
9321
539d4391
NC
9322 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9323 is the SP-{plus,minus}-immediate form of the instruction. */
9324 if (Rn == REG_SP)
9325 constraint (Rd == REG_PC, BAD_PC);
9326 else
9327 reject_bad_reg (Rd);
fdfde340 9328
92e90b6e
PB
9329 inst.instruction |= (Rn << 16) | (Rd << 8);
9330 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9331}
9332
c19d1205
ZW
9333/* Parse an add or subtract instruction. We get here with inst.instruction
9334 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9335
9336static void
9337do_t_add_sub (void)
9338{
9339 int Rd, Rs, Rn;
9340
9341 Rd = inst.operands[0].reg;
9342 Rs = (inst.operands[1].present
9343 ? inst.operands[1].reg /* Rd, Rs, foo */
9344 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9345
e07e6e58
NC
9346 if (Rd == REG_PC)
9347 set_it_insn_type_last ();
9348
c19d1205
ZW
9349 if (unified_syntax)
9350 {
0110f2b8
PB
9351 bfd_boolean flags;
9352 bfd_boolean narrow;
9353 int opcode;
9354
9355 flags = (inst.instruction == T_MNEM_adds
9356 || inst.instruction == T_MNEM_subs);
9357 if (flags)
e07e6e58 9358 narrow = !in_it_block ();
0110f2b8 9359 else
e07e6e58 9360 narrow = in_it_block ();
c19d1205 9361 if (!inst.operands[2].isreg)
b99bd4ef 9362 {
16805f35
PB
9363 int add;
9364
fdfde340
JM
9365 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9366
16805f35
PB
9367 add = (inst.instruction == T_MNEM_add
9368 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9369 opcode = 0;
9370 if (inst.size_req != 4)
9371 {
0110f2b8
PB
9372 /* Attempt to use a narrow opcode, with relaxation if
9373 appropriate. */
9374 if (Rd == REG_SP && Rs == REG_SP && !flags)
9375 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9376 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9377 opcode = T_MNEM_add_sp;
9378 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9379 opcode = T_MNEM_add_pc;
9380 else if (Rd <= 7 && Rs <= 7 && narrow)
9381 {
9382 if (flags)
9383 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9384 else
9385 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9386 }
9387 if (opcode)
9388 {
9389 inst.instruction = THUMB_OP16(opcode);
9390 inst.instruction |= (Rd << 4) | Rs;
9391 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9392 if (inst.size_req != 2)
9393 inst.relax = opcode;
9394 }
9395 else
9396 constraint (inst.size_req == 2, BAD_HIREG);
9397 }
9398 if (inst.size_req == 4
9399 || (inst.size_req != 2 && !opcode))
9400 {
efd81785
PB
9401 if (Rd == REG_PC)
9402 {
fdfde340 9403 constraint (add, BAD_PC);
efd81785
PB
9404 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9405 _("only SUBS PC, LR, #const allowed"));
9406 constraint (inst.reloc.exp.X_op != O_constant,
9407 _("expression too complex"));
9408 constraint (inst.reloc.exp.X_add_number < 0
9409 || inst.reloc.exp.X_add_number > 0xff,
9410 _("immediate value out of range"));
9411 inst.instruction = T2_SUBS_PC_LR
9412 | inst.reloc.exp.X_add_number;
9413 inst.reloc.type = BFD_RELOC_UNUSED;
9414 return;
9415 }
9416 else if (Rs == REG_PC)
16805f35
PB
9417 {
9418 /* Always use addw/subw. */
9419 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9420 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9421 }
9422 else
9423 {
9424 inst.instruction = THUMB_OP32 (inst.instruction);
9425 inst.instruction = (inst.instruction & 0xe1ffffff)
9426 | 0x10000000;
9427 if (flags)
9428 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9429 else
9430 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9431 }
dc4503c6
PB
9432 inst.instruction |= Rd << 8;
9433 inst.instruction |= Rs << 16;
0110f2b8 9434 }
b99bd4ef 9435 }
c19d1205
ZW
9436 else
9437 {
9438 Rn = inst.operands[2].reg;
9439 /* See if we can do this with a 16-bit instruction. */
9440 if (!inst.operands[2].shifted && inst.size_req != 4)
9441 {
e27ec89e
PB
9442 if (Rd > 7 || Rs > 7 || Rn > 7)
9443 narrow = FALSE;
9444
9445 if (narrow)
c19d1205 9446 {
e27ec89e
PB
9447 inst.instruction = ((inst.instruction == T_MNEM_adds
9448 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9449 ? T_OPCODE_ADD_R3
9450 : T_OPCODE_SUB_R3);
9451 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9452 return;
9453 }
b99bd4ef 9454
7e806470 9455 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9456 {
7e806470
PB
9457 /* Thumb-1 cores (except v6-M) require at least one high
9458 register in a narrow non flag setting add. */
9459 if (Rd > 7 || Rn > 7
9460 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9461 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9462 {
7e806470
PB
9463 if (Rd == Rn)
9464 {
9465 Rn = Rs;
9466 Rs = Rd;
9467 }
c19d1205
ZW
9468 inst.instruction = T_OPCODE_ADD_HI;
9469 inst.instruction |= (Rd & 8) << 4;
9470 inst.instruction |= (Rd & 7);
9471 inst.instruction |= Rn << 3;
9472 return;
9473 }
c19d1205
ZW
9474 }
9475 }
c921be7d 9476
fdfde340
JM
9477 constraint (Rd == REG_PC, BAD_PC);
9478 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9479 constraint (Rs == REG_PC, BAD_PC);
9480 reject_bad_reg (Rn);
9481
c19d1205
ZW
9482 /* If we get here, it can't be done in 16 bits. */
9483 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9484 _("shift must be constant"));
9485 inst.instruction = THUMB_OP32 (inst.instruction);
9486 inst.instruction |= Rd << 8;
9487 inst.instruction |= Rs << 16;
9488 encode_thumb32_shifted_operand (2);
9489 }
9490 }
9491 else
9492 {
9493 constraint (inst.instruction == T_MNEM_adds
9494 || inst.instruction == T_MNEM_subs,
9495 BAD_THUMB32);
b99bd4ef 9496
c19d1205 9497 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9498 {
c19d1205
ZW
9499 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9500 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9501 BAD_HIREG);
9502
9503 inst.instruction = (inst.instruction == T_MNEM_add
9504 ? 0x0000 : 0x8000);
9505 inst.instruction |= (Rd << 4) | Rs;
9506 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9507 return;
9508 }
9509
c19d1205
ZW
9510 Rn = inst.operands[2].reg;
9511 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9512
c19d1205
ZW
9513 /* We now have Rd, Rs, and Rn set to registers. */
9514 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9515 {
c19d1205
ZW
9516 /* Can't do this for SUB. */
9517 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9518 inst.instruction = T_OPCODE_ADD_HI;
9519 inst.instruction |= (Rd & 8) << 4;
9520 inst.instruction |= (Rd & 7);
9521 if (Rs == Rd)
9522 inst.instruction |= Rn << 3;
9523 else if (Rn == Rd)
9524 inst.instruction |= Rs << 3;
9525 else
9526 constraint (1, _("dest must overlap one source register"));
9527 }
9528 else
9529 {
9530 inst.instruction = (inst.instruction == T_MNEM_add
9531 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9532 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9533 }
b99bd4ef 9534 }
b99bd4ef
NC
9535}
9536
c19d1205
ZW
9537static void
9538do_t_adr (void)
9539{
fdfde340
JM
9540 unsigned Rd;
9541
9542 Rd = inst.operands[0].reg;
9543 reject_bad_reg (Rd);
9544
9545 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9546 {
9547 /* Defer to section relaxation. */
9548 inst.relax = inst.instruction;
9549 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9550 inst.instruction |= Rd << 4;
0110f2b8
PB
9551 }
9552 else if (unified_syntax && inst.size_req != 2)
e9f89963 9553 {
0110f2b8 9554 /* Generate a 32-bit opcode. */
e9f89963 9555 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9556 inst.instruction |= Rd << 8;
e9f89963
PB
9557 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9558 inst.reloc.pc_rel = 1;
9559 }
9560 else
9561 {
0110f2b8 9562 /* Generate a 16-bit opcode. */
e9f89963
PB
9563 inst.instruction = THUMB_OP16 (inst.instruction);
9564 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9565 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9566 inst.reloc.pc_rel = 1;
b99bd4ef 9567
fdfde340 9568 inst.instruction |= Rd << 4;
e9f89963 9569 }
c19d1205 9570}
b99bd4ef 9571
c19d1205
ZW
9572/* Arithmetic instructions for which there is just one 16-bit
9573 instruction encoding, and it allows only two low registers.
9574 For maximal compatibility with ARM syntax, we allow three register
9575 operands even when Thumb-32 instructions are not available, as long
9576 as the first two are identical. For instance, both "sbc r0,r1" and
9577 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9578static void
c19d1205 9579do_t_arit3 (void)
b99bd4ef 9580{
c19d1205 9581 int Rd, Rs, Rn;
b99bd4ef 9582
c19d1205
ZW
9583 Rd = inst.operands[0].reg;
9584 Rs = (inst.operands[1].present
9585 ? inst.operands[1].reg /* Rd, Rs, foo */
9586 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9587 Rn = inst.operands[2].reg;
b99bd4ef 9588
fdfde340
JM
9589 reject_bad_reg (Rd);
9590 reject_bad_reg (Rs);
9591 if (inst.operands[2].isreg)
9592 reject_bad_reg (Rn);
9593
c19d1205 9594 if (unified_syntax)
b99bd4ef 9595 {
c19d1205
ZW
9596 if (!inst.operands[2].isreg)
9597 {
9598 /* For an immediate, we always generate a 32-bit opcode;
9599 section relaxation will shrink it later if possible. */
9600 inst.instruction = THUMB_OP32 (inst.instruction);
9601 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9602 inst.instruction |= Rd << 8;
9603 inst.instruction |= Rs << 16;
9604 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9605 }
9606 else
9607 {
e27ec89e
PB
9608 bfd_boolean narrow;
9609
c19d1205 9610 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9611 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9612 narrow = !in_it_block ();
e27ec89e 9613 else
e07e6e58 9614 narrow = in_it_block ();
e27ec89e
PB
9615
9616 if (Rd > 7 || Rn > 7 || Rs > 7)
9617 narrow = FALSE;
9618 if (inst.operands[2].shifted)
9619 narrow = FALSE;
9620 if (inst.size_req == 4)
9621 narrow = FALSE;
9622
9623 if (narrow
c19d1205
ZW
9624 && Rd == Rs)
9625 {
9626 inst.instruction = THUMB_OP16 (inst.instruction);
9627 inst.instruction |= Rd;
9628 inst.instruction |= Rn << 3;
9629 return;
9630 }
b99bd4ef 9631
c19d1205
ZW
9632 /* If we get here, it can't be done in 16 bits. */
9633 constraint (inst.operands[2].shifted
9634 && inst.operands[2].immisreg,
9635 _("shift must be constant"));
9636 inst.instruction = THUMB_OP32 (inst.instruction);
9637 inst.instruction |= Rd << 8;
9638 inst.instruction |= Rs << 16;
9639 encode_thumb32_shifted_operand (2);
9640 }
a737bd4d 9641 }
c19d1205 9642 else
b99bd4ef 9643 {
c19d1205
ZW
9644 /* On its face this is a lie - the instruction does set the
9645 flags. However, the only supported mnemonic in this mode
9646 says it doesn't. */
9647 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9648
c19d1205
ZW
9649 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9650 _("unshifted register required"));
9651 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9652 constraint (Rd != Rs,
9653 _("dest and source1 must be the same register"));
a737bd4d 9654
c19d1205
ZW
9655 inst.instruction = THUMB_OP16 (inst.instruction);
9656 inst.instruction |= Rd;
9657 inst.instruction |= Rn << 3;
b99bd4ef 9658 }
a737bd4d 9659}
b99bd4ef 9660
c19d1205
ZW
9661/* Similarly, but for instructions where the arithmetic operation is
9662 commutative, so we can allow either of them to be different from
9663 the destination operand in a 16-bit instruction. For instance, all
9664 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9665 accepted. */
9666static void
9667do_t_arit3c (void)
a737bd4d 9668{
c19d1205 9669 int Rd, Rs, Rn;
b99bd4ef 9670
c19d1205
ZW
9671 Rd = inst.operands[0].reg;
9672 Rs = (inst.operands[1].present
9673 ? inst.operands[1].reg /* Rd, Rs, foo */
9674 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9675 Rn = inst.operands[2].reg;
c921be7d 9676
fdfde340
JM
9677 reject_bad_reg (Rd);
9678 reject_bad_reg (Rs);
9679 if (inst.operands[2].isreg)
9680 reject_bad_reg (Rn);
a737bd4d 9681
c19d1205 9682 if (unified_syntax)
a737bd4d 9683 {
c19d1205 9684 if (!inst.operands[2].isreg)
b99bd4ef 9685 {
c19d1205
ZW
9686 /* For an immediate, we always generate a 32-bit opcode;
9687 section relaxation will shrink it later if possible. */
9688 inst.instruction = THUMB_OP32 (inst.instruction);
9689 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9690 inst.instruction |= Rd << 8;
9691 inst.instruction |= Rs << 16;
9692 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9693 }
c19d1205 9694 else
a737bd4d 9695 {
e27ec89e
PB
9696 bfd_boolean narrow;
9697
c19d1205 9698 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9699 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9700 narrow = !in_it_block ();
e27ec89e 9701 else
e07e6e58 9702 narrow = in_it_block ();
e27ec89e
PB
9703
9704 if (Rd > 7 || Rn > 7 || Rs > 7)
9705 narrow = FALSE;
9706 if (inst.operands[2].shifted)
9707 narrow = FALSE;
9708 if (inst.size_req == 4)
9709 narrow = FALSE;
9710
9711 if (narrow)
a737bd4d 9712 {
c19d1205 9713 if (Rd == Rs)
a737bd4d 9714 {
c19d1205
ZW
9715 inst.instruction = THUMB_OP16 (inst.instruction);
9716 inst.instruction |= Rd;
9717 inst.instruction |= Rn << 3;
9718 return;
a737bd4d 9719 }
c19d1205 9720 if (Rd == Rn)
a737bd4d 9721 {
c19d1205
ZW
9722 inst.instruction = THUMB_OP16 (inst.instruction);
9723 inst.instruction |= Rd;
9724 inst.instruction |= Rs << 3;
9725 return;
a737bd4d
NC
9726 }
9727 }
c19d1205
ZW
9728
9729 /* If we get here, it can't be done in 16 bits. */
9730 constraint (inst.operands[2].shifted
9731 && inst.operands[2].immisreg,
9732 _("shift must be constant"));
9733 inst.instruction = THUMB_OP32 (inst.instruction);
9734 inst.instruction |= Rd << 8;
9735 inst.instruction |= Rs << 16;
9736 encode_thumb32_shifted_operand (2);
a737bd4d 9737 }
b99bd4ef 9738 }
c19d1205
ZW
9739 else
9740 {
9741 /* On its face this is a lie - the instruction does set the
9742 flags. However, the only supported mnemonic in this mode
9743 says it doesn't. */
9744 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9745
c19d1205
ZW
9746 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9747 _("unshifted register required"));
9748 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9749
9750 inst.instruction = THUMB_OP16 (inst.instruction);
9751 inst.instruction |= Rd;
9752
9753 if (Rd == Rs)
9754 inst.instruction |= Rn << 3;
9755 else if (Rd == Rn)
9756 inst.instruction |= Rs << 3;
9757 else
9758 constraint (1, _("dest must overlap one source register"));
9759 }
a737bd4d
NC
9760}
9761
62b3e311
PB
9762static void
9763do_t_barrier (void)
9764{
9765 if (inst.operands[0].present)
9766 {
9767 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9768 && inst.operands[0].imm > 0xf
9769 && inst.operands[0].imm < 0x0,
bd3ba5d1 9770 _("bad barrier type"));
62b3e311
PB
9771 inst.instruction |= inst.operands[0].imm;
9772 }
9773 else
9774 inst.instruction |= 0xf;
9775}
9776
c19d1205
ZW
9777static void
9778do_t_bfc (void)
a737bd4d 9779{
fdfde340 9780 unsigned Rd;
c19d1205
ZW
9781 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9782 constraint (msb > 32, _("bit-field extends past end of register"));
9783 /* The instruction encoding stores the LSB and MSB,
9784 not the LSB and width. */
fdfde340
JM
9785 Rd = inst.operands[0].reg;
9786 reject_bad_reg (Rd);
9787 inst.instruction |= Rd << 8;
c19d1205
ZW
9788 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9789 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9790 inst.instruction |= msb - 1;
b99bd4ef
NC
9791}
9792
c19d1205
ZW
9793static void
9794do_t_bfi (void)
b99bd4ef 9795{
fdfde340 9796 int Rd, Rn;
c19d1205 9797 unsigned int msb;
b99bd4ef 9798
fdfde340
JM
9799 Rd = inst.operands[0].reg;
9800 reject_bad_reg (Rd);
9801
c19d1205
ZW
9802 /* #0 in second position is alternative syntax for bfc, which is
9803 the same instruction but with REG_PC in the Rm field. */
9804 if (!inst.operands[1].isreg)
fdfde340
JM
9805 Rn = REG_PC;
9806 else
9807 {
9808 Rn = inst.operands[1].reg;
9809 reject_bad_reg (Rn);
9810 }
b99bd4ef 9811
c19d1205
ZW
9812 msb = inst.operands[2].imm + inst.operands[3].imm;
9813 constraint (msb > 32, _("bit-field extends past end of register"));
9814 /* The instruction encoding stores the LSB and MSB,
9815 not the LSB and width. */
fdfde340
JM
9816 inst.instruction |= Rd << 8;
9817 inst.instruction |= Rn << 16;
c19d1205
ZW
9818 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9819 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9820 inst.instruction |= msb - 1;
b99bd4ef
NC
9821}
9822
c19d1205
ZW
9823static void
9824do_t_bfx (void)
b99bd4ef 9825{
fdfde340
JM
9826 unsigned Rd, Rn;
9827
9828 Rd = inst.operands[0].reg;
9829 Rn = inst.operands[1].reg;
9830
9831 reject_bad_reg (Rd);
9832 reject_bad_reg (Rn);
9833
c19d1205
ZW
9834 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9835 _("bit-field extends past end of register"));
fdfde340
JM
9836 inst.instruction |= Rd << 8;
9837 inst.instruction |= Rn << 16;
c19d1205
ZW
9838 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9839 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9840 inst.instruction |= inst.operands[3].imm - 1;
9841}
b99bd4ef 9842
c19d1205
ZW
9843/* ARM V5 Thumb BLX (argument parse)
9844 BLX <target_addr> which is BLX(1)
9845 BLX <Rm> which is BLX(2)
9846 Unfortunately, there are two different opcodes for this mnemonic.
9847 So, the insns[].value is not used, and the code here zaps values
9848 into inst.instruction.
b99bd4ef 9849
c19d1205
ZW
9850 ??? How to take advantage of the additional two bits of displacement
9851 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9852
c19d1205
ZW
9853static void
9854do_t_blx (void)
9855{
e07e6e58
NC
9856 set_it_insn_type_last ();
9857
c19d1205 9858 if (inst.operands[0].isreg)
fdfde340
JM
9859 {
9860 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9861 /* We have a register, so this is BLX(2). */
9862 inst.instruction |= inst.operands[0].reg << 3;
9863 }
b99bd4ef
NC
9864 else
9865 {
c19d1205 9866 /* No register. This must be BLX(1). */
2fc8bdac 9867 inst.instruction = 0xf000e800;
0855e32b 9868 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
9869 }
9870}
9871
c19d1205
ZW
9872static void
9873do_t_branch (void)
b99bd4ef 9874{
0110f2b8 9875 int opcode;
dfa9f0d5 9876 int cond;
9ae92b05 9877 int reloc;
dfa9f0d5 9878
e07e6e58
NC
9879 cond = inst.cond;
9880 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9881
9882 if (in_it_block ())
dfa9f0d5
PB
9883 {
9884 /* Conditional branches inside IT blocks are encoded as unconditional
9885 branches. */
9886 cond = COND_ALWAYS;
dfa9f0d5
PB
9887 }
9888 else
9889 cond = inst.cond;
9890
9891 if (cond != COND_ALWAYS)
0110f2b8
PB
9892 opcode = T_MNEM_bcond;
9893 else
9894 opcode = inst.instruction;
9895
12d6b0b7
RS
9896 if (unified_syntax
9897 && (inst.size_req == 4
10960bfb
PB
9898 || (inst.size_req != 2
9899 && (inst.operands[0].hasreloc
9900 || inst.reloc.exp.X_op == O_constant))))
c19d1205 9901 {
0110f2b8 9902 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9903 if (cond == COND_ALWAYS)
9ae92b05 9904 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9905 else
9906 {
9c2799c2 9907 gas_assert (cond != 0xF);
dfa9f0d5 9908 inst.instruction |= cond << 22;
9ae92b05 9909 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
9910 }
9911 }
b99bd4ef
NC
9912 else
9913 {
0110f2b8 9914 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9915 if (cond == COND_ALWAYS)
9ae92b05 9916 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 9917 else
b99bd4ef 9918 {
dfa9f0d5 9919 inst.instruction |= cond << 8;
9ae92b05 9920 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9921 }
0110f2b8
PB
9922 /* Allow section relaxation. */
9923 if (unified_syntax && inst.size_req != 2)
9924 inst.relax = opcode;
b99bd4ef 9925 }
9ae92b05 9926 inst.reloc.type = reloc;
c19d1205 9927 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9928}
9929
9930static void
c19d1205 9931do_t_bkpt (void)
b99bd4ef 9932{
dfa9f0d5
PB
9933 constraint (inst.cond != COND_ALWAYS,
9934 _("instruction is always unconditional"));
c19d1205 9935 if (inst.operands[0].present)
b99bd4ef 9936 {
c19d1205
ZW
9937 constraint (inst.operands[0].imm > 255,
9938 _("immediate value out of range"));
9939 inst.instruction |= inst.operands[0].imm;
e07e6e58 9940 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9941 }
b99bd4ef
NC
9942}
9943
9944static void
c19d1205 9945do_t_branch23 (void)
b99bd4ef 9946{
e07e6e58 9947 set_it_insn_type_last ();
0855e32b
NS
9948 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9949
9950 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9951 this file. We used to simply ignore the PLT reloc type here --
9952 the branch encoding is now needed to deal with TLSCALL relocs.
9953 So if we see a PLT reloc now, put it back to how it used to be to
9954 keep the preexisting behaviour. */
9955 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9956 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 9957
4343666d 9958#if defined(OBJ_COFF)
c19d1205
ZW
9959 /* If the destination of the branch is a defined symbol which does not have
9960 the THUMB_FUNC attribute, then we must be calling a function which has
9961 the (interfacearm) attribute. We look for the Thumb entry point to that
9962 function and change the branch to refer to that function instead. */
9963 if ( inst.reloc.exp.X_op == O_symbol
9964 && inst.reloc.exp.X_add_symbol != NULL
9965 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9966 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9967 inst.reloc.exp.X_add_symbol =
9968 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9969#endif
90e4755a
RE
9970}
9971
9972static void
c19d1205 9973do_t_bx (void)
90e4755a 9974{
e07e6e58 9975 set_it_insn_type_last ();
c19d1205
ZW
9976 inst.instruction |= inst.operands[0].reg << 3;
9977 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9978 should cause the alignment to be checked once it is known. This is
9979 because BX PC only works if the instruction is word aligned. */
9980}
90e4755a 9981
c19d1205
ZW
9982static void
9983do_t_bxj (void)
9984{
fdfde340 9985 int Rm;
90e4755a 9986
e07e6e58 9987 set_it_insn_type_last ();
fdfde340
JM
9988 Rm = inst.operands[0].reg;
9989 reject_bad_reg (Rm);
9990 inst.instruction |= Rm << 16;
90e4755a
RE
9991}
9992
9993static void
c19d1205 9994do_t_clz (void)
90e4755a 9995{
fdfde340
JM
9996 unsigned Rd;
9997 unsigned Rm;
9998
9999 Rd = inst.operands[0].reg;
10000 Rm = inst.operands[1].reg;
10001
10002 reject_bad_reg (Rd);
10003 reject_bad_reg (Rm);
10004
10005 inst.instruction |= Rd << 8;
10006 inst.instruction |= Rm << 16;
10007 inst.instruction |= Rm;
c19d1205 10008}
90e4755a 10009
dfa9f0d5
PB
10010static void
10011do_t_cps (void)
10012{
e07e6e58 10013 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10014 inst.instruction |= inst.operands[0].imm;
10015}
10016
c19d1205
ZW
10017static void
10018do_t_cpsi (void)
10019{
e07e6e58 10020 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10021 if (unified_syntax
62b3e311
PB
10022 && (inst.operands[1].present || inst.size_req == 4)
10023 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10024 {
c19d1205
ZW
10025 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10026 inst.instruction = 0xf3af8000;
10027 inst.instruction |= imod << 9;
10028 inst.instruction |= inst.operands[0].imm << 5;
10029 if (inst.operands[1].present)
10030 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10031 }
c19d1205 10032 else
90e4755a 10033 {
62b3e311
PB
10034 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10035 && (inst.operands[0].imm & 4),
10036 _("selected processor does not support 'A' form "
10037 "of this instruction"));
10038 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10039 _("Thumb does not support the 2-argument "
10040 "form of this instruction"));
10041 inst.instruction |= inst.operands[0].imm;
90e4755a 10042 }
90e4755a
RE
10043}
10044
c19d1205
ZW
10045/* THUMB CPY instruction (argument parse). */
10046
90e4755a 10047static void
c19d1205 10048do_t_cpy (void)
90e4755a 10049{
c19d1205 10050 if (inst.size_req == 4)
90e4755a 10051 {
c19d1205
ZW
10052 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10053 inst.instruction |= inst.operands[0].reg << 8;
10054 inst.instruction |= inst.operands[1].reg;
90e4755a 10055 }
c19d1205 10056 else
90e4755a 10057 {
c19d1205
ZW
10058 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10059 inst.instruction |= (inst.operands[0].reg & 0x7);
10060 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10061 }
90e4755a
RE
10062}
10063
90e4755a 10064static void
25fe350b 10065do_t_cbz (void)
90e4755a 10066{
e07e6e58 10067 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10068 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10069 inst.instruction |= inst.operands[0].reg;
10070 inst.reloc.pc_rel = 1;
10071 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10072}
90e4755a 10073
62b3e311
PB
10074static void
10075do_t_dbg (void)
10076{
10077 inst.instruction |= inst.operands[0].imm;
10078}
10079
10080static void
10081do_t_div (void)
10082{
fdfde340
JM
10083 unsigned Rd, Rn, Rm;
10084
10085 Rd = inst.operands[0].reg;
10086 Rn = (inst.operands[1].present
10087 ? inst.operands[1].reg : Rd);
10088 Rm = inst.operands[2].reg;
10089
10090 reject_bad_reg (Rd);
10091 reject_bad_reg (Rn);
10092 reject_bad_reg (Rm);
10093
10094 inst.instruction |= Rd << 8;
10095 inst.instruction |= Rn << 16;
10096 inst.instruction |= Rm;
62b3e311
PB
10097}
10098
c19d1205
ZW
10099static void
10100do_t_hint (void)
10101{
10102 if (unified_syntax && inst.size_req == 4)
10103 inst.instruction = THUMB_OP32 (inst.instruction);
10104 else
10105 inst.instruction = THUMB_OP16 (inst.instruction);
10106}
90e4755a 10107
c19d1205
ZW
10108static void
10109do_t_it (void)
10110{
10111 unsigned int cond = inst.operands[0].imm;
e27ec89e 10112
e07e6e58
NC
10113 set_it_insn_type (IT_INSN);
10114 now_it.mask = (inst.instruction & 0xf) | 0x10;
10115 now_it.cc = cond;
e27ec89e
PB
10116
10117 /* If the condition is a negative condition, invert the mask. */
c19d1205 10118 if ((cond & 0x1) == 0x0)
90e4755a 10119 {
c19d1205 10120 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10121
c19d1205
ZW
10122 if ((mask & 0x7) == 0)
10123 /* no conversion needed */;
10124 else if ((mask & 0x3) == 0)
e27ec89e
PB
10125 mask ^= 0x8;
10126 else if ((mask & 0x1) == 0)
10127 mask ^= 0xC;
c19d1205 10128 else
e27ec89e 10129 mask ^= 0xE;
90e4755a 10130
e27ec89e
PB
10131 inst.instruction &= 0xfff0;
10132 inst.instruction |= mask;
c19d1205 10133 }
90e4755a 10134
c19d1205
ZW
10135 inst.instruction |= cond << 4;
10136}
90e4755a 10137
3c707909
PB
10138/* Helper function used for both push/pop and ldm/stm. */
10139static void
10140encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10141{
10142 bfd_boolean load;
10143
10144 load = (inst.instruction & (1 << 20)) != 0;
10145
10146 if (mask & (1 << 13))
10147 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10148
10149 if ((mask & (1 << base)) != 0
10150 && writeback)
10151 inst.error = _("having the base register in the register list when "
10152 "using write back is UNPREDICTABLE");
10153
3c707909
PB
10154 if (load)
10155 {
e07e6e58
NC
10156 if (mask & (1 << 15))
10157 {
10158 if (mask & (1 << 14))
10159 inst.error = _("LR and PC should not both be in register list");
10160 else
10161 set_it_insn_type_last ();
10162 }
3c707909
PB
10163 }
10164 else
10165 {
10166 if (mask & (1 << 15))
10167 inst.error = _("PC not allowed in register list");
3c707909
PB
10168 }
10169
10170 if ((mask & (mask - 1)) == 0)
10171 {
10172 /* Single register transfers implemented as str/ldr. */
10173 if (writeback)
10174 {
10175 if (inst.instruction & (1 << 23))
10176 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10177 else
10178 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10179 }
10180 else
10181 {
10182 if (inst.instruction & (1 << 23))
10183 inst.instruction = 0x00800000; /* ia -> [base] */
10184 else
10185 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10186 }
10187
10188 inst.instruction |= 0xf8400000;
10189 if (load)
10190 inst.instruction |= 0x00100000;
10191
5f4273c7 10192 mask = ffs (mask) - 1;
3c707909
PB
10193 mask <<= 12;
10194 }
10195 else if (writeback)
10196 inst.instruction |= WRITE_BACK;
10197
10198 inst.instruction |= mask;
10199 inst.instruction |= base << 16;
10200}
10201
c19d1205
ZW
10202static void
10203do_t_ldmstm (void)
10204{
10205 /* This really doesn't seem worth it. */
10206 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10207 _("expression too complex"));
10208 constraint (inst.operands[1].writeback,
10209 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10210
c19d1205
ZW
10211 if (unified_syntax)
10212 {
3c707909
PB
10213 bfd_boolean narrow;
10214 unsigned mask;
10215
10216 narrow = FALSE;
c19d1205
ZW
10217 /* See if we can use a 16-bit instruction. */
10218 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10219 && inst.size_req != 4
3c707909 10220 && !(inst.operands[1].imm & ~0xff))
90e4755a 10221 {
3c707909 10222 mask = 1 << inst.operands[0].reg;
90e4755a 10223
eab4f823 10224 if (inst.operands[0].reg <= 7)
90e4755a 10225 {
3c707909 10226 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10227 ? inst.operands[0].writeback
10228 : (inst.operands[0].writeback
10229 == !(inst.operands[1].imm & mask)))
10230 {
10231 if (inst.instruction == T_MNEM_stmia
10232 && (inst.operands[1].imm & mask)
10233 && (inst.operands[1].imm & (mask - 1)))
10234 as_warn (_("value stored for r%d is UNKNOWN"),
10235 inst.operands[0].reg);
3c707909 10236
eab4f823
MGD
10237 inst.instruction = THUMB_OP16 (inst.instruction);
10238 inst.instruction |= inst.operands[0].reg << 8;
10239 inst.instruction |= inst.operands[1].imm;
10240 narrow = TRUE;
10241 }
10242 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10243 {
10244 /* This means 1 register in reg list one of 3 situations:
10245 1. Instruction is stmia, but without writeback.
10246 2. lmdia without writeback, but with Rn not in
10247 reglist.
10248 3. ldmia with writeback, but with Rn in reglist.
10249 Case 3 is UNPREDICTABLE behaviour, so we handle
10250 case 1 and 2 which can be converted into a 16-bit
10251 str or ldr. The SP cases are handled below. */
10252 unsigned long opcode;
10253 /* First, record an error for Case 3. */
10254 if (inst.operands[1].imm & mask
10255 && inst.operands[0].writeback)
10256 inst.error =
10257 _("having the base register in the register list when "
10258 "using write back is UNPREDICTABLE");
10259
10260 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10261 : T_MNEM_ldr);
10262 inst.instruction = THUMB_OP16 (opcode);
10263 inst.instruction |= inst.operands[0].reg << 3;
10264 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10265 narrow = TRUE;
10266 }
90e4755a 10267 }
eab4f823 10268 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10269 {
eab4f823
MGD
10270 if (inst.operands[0].writeback)
10271 {
10272 inst.instruction =
10273 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10274 ? T_MNEM_push : T_MNEM_pop);
10275 inst.instruction |= inst.operands[1].imm;
10276 narrow = TRUE;
10277 }
10278 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10279 {
10280 inst.instruction =
10281 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10282 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10283 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10284 narrow = TRUE;
10285 }
90e4755a 10286 }
3c707909
PB
10287 }
10288
10289 if (!narrow)
10290 {
c19d1205
ZW
10291 if (inst.instruction < 0xffff)
10292 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10293
5f4273c7
NC
10294 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10295 inst.operands[0].writeback);
90e4755a
RE
10296 }
10297 }
c19d1205 10298 else
90e4755a 10299 {
c19d1205
ZW
10300 constraint (inst.operands[0].reg > 7
10301 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10302 constraint (inst.instruction != T_MNEM_ldmia
10303 && inst.instruction != T_MNEM_stmia,
10304 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10305 if (inst.instruction == T_MNEM_stmia)
f03698e6 10306 {
c19d1205
ZW
10307 if (!inst.operands[0].writeback)
10308 as_warn (_("this instruction will write back the base register"));
10309 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10310 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10311 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10312 inst.operands[0].reg);
f03698e6 10313 }
c19d1205 10314 else
90e4755a 10315 {
c19d1205
ZW
10316 if (!inst.operands[0].writeback
10317 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10318 as_warn (_("this instruction will write back the base register"));
10319 else if (inst.operands[0].writeback
10320 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10321 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10322 }
10323
c19d1205
ZW
10324 inst.instruction = THUMB_OP16 (inst.instruction);
10325 inst.instruction |= inst.operands[0].reg << 8;
10326 inst.instruction |= inst.operands[1].imm;
10327 }
10328}
e28cd48c 10329
c19d1205
ZW
10330static void
10331do_t_ldrex (void)
10332{
10333 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10334 || inst.operands[1].postind || inst.operands[1].writeback
10335 || inst.operands[1].immisreg || inst.operands[1].shifted
10336 || inst.operands[1].negative,
01cfc07f 10337 BAD_ADDR_MODE);
e28cd48c 10338
5be8be5d
DG
10339 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10340
c19d1205
ZW
10341 inst.instruction |= inst.operands[0].reg << 12;
10342 inst.instruction |= inst.operands[1].reg << 16;
10343 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10344}
e28cd48c 10345
c19d1205
ZW
10346static void
10347do_t_ldrexd (void)
10348{
10349 if (!inst.operands[1].present)
1cac9012 10350 {
c19d1205
ZW
10351 constraint (inst.operands[0].reg == REG_LR,
10352 _("r14 not allowed as first register "
10353 "when second register is omitted"));
10354 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10355 }
c19d1205
ZW
10356 constraint (inst.operands[0].reg == inst.operands[1].reg,
10357 BAD_OVERLAP);
b99bd4ef 10358
c19d1205
ZW
10359 inst.instruction |= inst.operands[0].reg << 12;
10360 inst.instruction |= inst.operands[1].reg << 8;
10361 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10362}
10363
10364static void
c19d1205 10365do_t_ldst (void)
b99bd4ef 10366{
0110f2b8
PB
10367 unsigned long opcode;
10368 int Rn;
10369
e07e6e58
NC
10370 if (inst.operands[0].isreg
10371 && !inst.operands[0].preind
10372 && inst.operands[0].reg == REG_PC)
10373 set_it_insn_type_last ();
10374
0110f2b8 10375 opcode = inst.instruction;
c19d1205 10376 if (unified_syntax)
b99bd4ef 10377 {
53365c0d
PB
10378 if (!inst.operands[1].isreg)
10379 {
10380 if (opcode <= 0xffff)
10381 inst.instruction = THUMB_OP32 (opcode);
10382 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10383 return;
10384 }
0110f2b8
PB
10385 if (inst.operands[1].isreg
10386 && !inst.operands[1].writeback
c19d1205
ZW
10387 && !inst.operands[1].shifted && !inst.operands[1].postind
10388 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10389 && opcode <= 0xffff
10390 && inst.size_req != 4)
c19d1205 10391 {
0110f2b8
PB
10392 /* Insn may have a 16-bit form. */
10393 Rn = inst.operands[1].reg;
10394 if (inst.operands[1].immisreg)
10395 {
10396 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10397 /* [Rn, Rik] */
0110f2b8
PB
10398 if (Rn <= 7 && inst.operands[1].imm <= 7)
10399 goto op16;
5be8be5d
DG
10400 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10401 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10402 }
10403 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10404 && opcode != T_MNEM_ldrsb)
10405 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10406 || (Rn == REG_SP && opcode == T_MNEM_str))
10407 {
10408 /* [Rn, #const] */
10409 if (Rn > 7)
10410 {
10411 if (Rn == REG_PC)
10412 {
10413 if (inst.reloc.pc_rel)
10414 opcode = T_MNEM_ldr_pc2;
10415 else
10416 opcode = T_MNEM_ldr_pc;
10417 }
10418 else
10419 {
10420 if (opcode == T_MNEM_ldr)
10421 opcode = T_MNEM_ldr_sp;
10422 else
10423 opcode = T_MNEM_str_sp;
10424 }
10425 inst.instruction = inst.operands[0].reg << 8;
10426 }
10427 else
10428 {
10429 inst.instruction = inst.operands[0].reg;
10430 inst.instruction |= inst.operands[1].reg << 3;
10431 }
10432 inst.instruction |= THUMB_OP16 (opcode);
10433 if (inst.size_req == 2)
10434 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10435 else
10436 inst.relax = opcode;
10437 return;
10438 }
c19d1205 10439 }
0110f2b8 10440 /* Definitely a 32-bit variant. */
5be8be5d 10441
8d67f500
NC
10442 /* Warning for Erratum 752419. */
10443 if (opcode == T_MNEM_ldr
10444 && inst.operands[0].reg == REG_SP
10445 && inst.operands[1].writeback == 1
10446 && !inst.operands[1].immisreg)
10447 {
10448 if (no_cpu_selected ()
10449 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10450 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10451 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10452 as_warn (_("This instruction may be unpredictable "
10453 "if executed on M-profile cores "
10454 "with interrupts enabled."));
10455 }
10456
5be8be5d
DG
10457 /* Do some validations regarding addressing modes. */
10458 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10459 && opcode != T_MNEM_str)
10460 reject_bad_reg (inst.operands[1].imm);
10461
0110f2b8 10462 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10463 inst.instruction |= inst.operands[0].reg << 12;
10464 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10465 return;
10466 }
10467
c19d1205
ZW
10468 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10469
10470 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10471 {
c19d1205
ZW
10472 /* Only [Rn,Rm] is acceptable. */
10473 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10474 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10475 || inst.operands[1].postind || inst.operands[1].shifted
10476 || inst.operands[1].negative,
10477 _("Thumb does not support this addressing mode"));
10478 inst.instruction = THUMB_OP16 (inst.instruction);
10479 goto op16;
b99bd4ef 10480 }
5f4273c7 10481
c19d1205
ZW
10482 inst.instruction = THUMB_OP16 (inst.instruction);
10483 if (!inst.operands[1].isreg)
10484 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10485 return;
b99bd4ef 10486
c19d1205
ZW
10487 constraint (!inst.operands[1].preind
10488 || inst.operands[1].shifted
10489 || inst.operands[1].writeback,
10490 _("Thumb does not support this addressing mode"));
10491 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10492 {
c19d1205
ZW
10493 constraint (inst.instruction & 0x0600,
10494 _("byte or halfword not valid for base register"));
10495 constraint (inst.operands[1].reg == REG_PC
10496 && !(inst.instruction & THUMB_LOAD_BIT),
10497 _("r15 based store not allowed"));
10498 constraint (inst.operands[1].immisreg,
10499 _("invalid base register for register offset"));
b99bd4ef 10500
c19d1205
ZW
10501 if (inst.operands[1].reg == REG_PC)
10502 inst.instruction = T_OPCODE_LDR_PC;
10503 else if (inst.instruction & THUMB_LOAD_BIT)
10504 inst.instruction = T_OPCODE_LDR_SP;
10505 else
10506 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10507
c19d1205
ZW
10508 inst.instruction |= inst.operands[0].reg << 8;
10509 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10510 return;
10511 }
90e4755a 10512
c19d1205
ZW
10513 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10514 if (!inst.operands[1].immisreg)
10515 {
10516 /* Immediate offset. */
10517 inst.instruction |= inst.operands[0].reg;
10518 inst.instruction |= inst.operands[1].reg << 3;
10519 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10520 return;
10521 }
90e4755a 10522
c19d1205
ZW
10523 /* Register offset. */
10524 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10525 constraint (inst.operands[1].negative,
10526 _("Thumb does not support this addressing mode"));
90e4755a 10527
c19d1205
ZW
10528 op16:
10529 switch (inst.instruction)
10530 {
10531 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10532 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10533 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10534 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10535 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10536 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10537 case 0x5600 /* ldrsb */:
10538 case 0x5e00 /* ldrsh */: break;
10539 default: abort ();
10540 }
90e4755a 10541
c19d1205
ZW
10542 inst.instruction |= inst.operands[0].reg;
10543 inst.instruction |= inst.operands[1].reg << 3;
10544 inst.instruction |= inst.operands[1].imm << 6;
10545}
90e4755a 10546
c19d1205
ZW
10547static void
10548do_t_ldstd (void)
10549{
10550 if (!inst.operands[1].present)
b99bd4ef 10551 {
c19d1205
ZW
10552 inst.operands[1].reg = inst.operands[0].reg + 1;
10553 constraint (inst.operands[0].reg == REG_LR,
10554 _("r14 not allowed here"));
b99bd4ef 10555 }
c19d1205
ZW
10556 inst.instruction |= inst.operands[0].reg << 12;
10557 inst.instruction |= inst.operands[1].reg << 8;
10558 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10559}
10560
c19d1205
ZW
10561static void
10562do_t_ldstt (void)
10563{
10564 inst.instruction |= inst.operands[0].reg << 12;
10565 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10566}
a737bd4d 10567
b99bd4ef 10568static void
c19d1205 10569do_t_mla (void)
b99bd4ef 10570{
fdfde340 10571 unsigned Rd, Rn, Rm, Ra;
c921be7d 10572
fdfde340
JM
10573 Rd = inst.operands[0].reg;
10574 Rn = inst.operands[1].reg;
10575 Rm = inst.operands[2].reg;
10576 Ra = inst.operands[3].reg;
10577
10578 reject_bad_reg (Rd);
10579 reject_bad_reg (Rn);
10580 reject_bad_reg (Rm);
10581 reject_bad_reg (Ra);
10582
10583 inst.instruction |= Rd << 8;
10584 inst.instruction |= Rn << 16;
10585 inst.instruction |= Rm;
10586 inst.instruction |= Ra << 12;
c19d1205 10587}
b99bd4ef 10588
c19d1205
ZW
10589static void
10590do_t_mlal (void)
10591{
fdfde340
JM
10592 unsigned RdLo, RdHi, Rn, Rm;
10593
10594 RdLo = inst.operands[0].reg;
10595 RdHi = inst.operands[1].reg;
10596 Rn = inst.operands[2].reg;
10597 Rm = inst.operands[3].reg;
10598
10599 reject_bad_reg (RdLo);
10600 reject_bad_reg (RdHi);
10601 reject_bad_reg (Rn);
10602 reject_bad_reg (Rm);
10603
10604 inst.instruction |= RdLo << 12;
10605 inst.instruction |= RdHi << 8;
10606 inst.instruction |= Rn << 16;
10607 inst.instruction |= Rm;
c19d1205 10608}
b99bd4ef 10609
c19d1205
ZW
10610static void
10611do_t_mov_cmp (void)
10612{
fdfde340
JM
10613 unsigned Rn, Rm;
10614
10615 Rn = inst.operands[0].reg;
10616 Rm = inst.operands[1].reg;
10617
e07e6e58
NC
10618 if (Rn == REG_PC)
10619 set_it_insn_type_last ();
10620
c19d1205 10621 if (unified_syntax)
b99bd4ef 10622 {
c19d1205
ZW
10623 int r0off = (inst.instruction == T_MNEM_mov
10624 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10625 unsigned long opcode;
3d388997
PB
10626 bfd_boolean narrow;
10627 bfd_boolean low_regs;
10628
fdfde340 10629 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10630 opcode = inst.instruction;
e07e6e58 10631 if (in_it_block ())
0110f2b8 10632 narrow = opcode != T_MNEM_movs;
3d388997 10633 else
0110f2b8 10634 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10635 if (inst.size_req == 4
10636 || inst.operands[1].shifted)
10637 narrow = FALSE;
10638
efd81785
PB
10639 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10640 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10641 && !inst.operands[1].shifted
fdfde340
JM
10642 && Rn == REG_PC
10643 && Rm == REG_LR)
efd81785
PB
10644 {
10645 inst.instruction = T2_SUBS_PC_LR;
10646 return;
10647 }
10648
fdfde340
JM
10649 if (opcode == T_MNEM_cmp)
10650 {
10651 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10652 if (narrow)
10653 {
10654 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10655 but valid. */
10656 warn_deprecated_sp (Rm);
10657 /* R15 was documented as a valid choice for Rm in ARMv6,
10658 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10659 tools reject R15, so we do too. */
10660 constraint (Rm == REG_PC, BAD_PC);
10661 }
10662 else
10663 reject_bad_reg (Rm);
fdfde340
JM
10664 }
10665 else if (opcode == T_MNEM_mov
10666 || opcode == T_MNEM_movs)
10667 {
10668 if (inst.operands[1].isreg)
10669 {
10670 if (opcode == T_MNEM_movs)
10671 {
10672 reject_bad_reg (Rn);
10673 reject_bad_reg (Rm);
10674 }
76fa04a4
MGD
10675 else if (narrow)
10676 {
10677 /* This is mov.n. */
10678 if ((Rn == REG_SP || Rn == REG_PC)
10679 && (Rm == REG_SP || Rm == REG_PC))
10680 {
10681 as_warn (_("Use of r%u as a source register is "
10682 "deprecated when r%u is the destination "
10683 "register."), Rm, Rn);
10684 }
10685 }
10686 else
10687 {
10688 /* This is mov.w. */
10689 constraint (Rn == REG_PC, BAD_PC);
10690 constraint (Rm == REG_PC, BAD_PC);
10691 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10692 }
fdfde340
JM
10693 }
10694 else
10695 reject_bad_reg (Rn);
10696 }
10697
c19d1205
ZW
10698 if (!inst.operands[1].isreg)
10699 {
0110f2b8 10700 /* Immediate operand. */
e07e6e58 10701 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10702 narrow = 0;
10703 if (low_regs && narrow)
10704 {
10705 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10706 inst.instruction |= Rn << 8;
0110f2b8
PB
10707 if (inst.size_req == 2)
10708 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10709 else
10710 inst.relax = opcode;
10711 }
10712 else
10713 {
10714 inst.instruction = THUMB_OP32 (inst.instruction);
10715 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10716 inst.instruction |= Rn << r0off;
0110f2b8
PB
10717 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10718 }
c19d1205 10719 }
728ca7c9
PB
10720 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10721 && (inst.instruction == T_MNEM_mov
10722 || inst.instruction == T_MNEM_movs))
10723 {
10724 /* Register shifts are encoded as separate shift instructions. */
10725 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10726
e07e6e58 10727 if (in_it_block ())
728ca7c9
PB
10728 narrow = !flags;
10729 else
10730 narrow = flags;
10731
10732 if (inst.size_req == 4)
10733 narrow = FALSE;
10734
10735 if (!low_regs || inst.operands[1].imm > 7)
10736 narrow = FALSE;
10737
fdfde340 10738 if (Rn != Rm)
728ca7c9
PB
10739 narrow = FALSE;
10740
10741 switch (inst.operands[1].shift_kind)
10742 {
10743 case SHIFT_LSL:
10744 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10745 break;
10746 case SHIFT_ASR:
10747 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10748 break;
10749 case SHIFT_LSR:
10750 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10751 break;
10752 case SHIFT_ROR:
10753 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10754 break;
10755 default:
5f4273c7 10756 abort ();
728ca7c9
PB
10757 }
10758
10759 inst.instruction = opcode;
10760 if (narrow)
10761 {
fdfde340 10762 inst.instruction |= Rn;
728ca7c9
PB
10763 inst.instruction |= inst.operands[1].imm << 3;
10764 }
10765 else
10766 {
10767 if (flags)
10768 inst.instruction |= CONDS_BIT;
10769
fdfde340
JM
10770 inst.instruction |= Rn << 8;
10771 inst.instruction |= Rm << 16;
728ca7c9
PB
10772 inst.instruction |= inst.operands[1].imm;
10773 }
10774 }
3d388997 10775 else if (!narrow)
c19d1205 10776 {
728ca7c9
PB
10777 /* Some mov with immediate shift have narrow variants.
10778 Register shifts are handled above. */
10779 if (low_regs && inst.operands[1].shifted
10780 && (inst.instruction == T_MNEM_mov
10781 || inst.instruction == T_MNEM_movs))
10782 {
e07e6e58 10783 if (in_it_block ())
728ca7c9
PB
10784 narrow = (inst.instruction == T_MNEM_mov);
10785 else
10786 narrow = (inst.instruction == T_MNEM_movs);
10787 }
10788
10789 if (narrow)
10790 {
10791 switch (inst.operands[1].shift_kind)
10792 {
10793 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10794 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10795 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10796 default: narrow = FALSE; break;
10797 }
10798 }
10799
10800 if (narrow)
10801 {
fdfde340
JM
10802 inst.instruction |= Rn;
10803 inst.instruction |= Rm << 3;
728ca7c9
PB
10804 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10805 }
10806 else
10807 {
10808 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10809 inst.instruction |= Rn << r0off;
728ca7c9
PB
10810 encode_thumb32_shifted_operand (1);
10811 }
c19d1205
ZW
10812 }
10813 else
10814 switch (inst.instruction)
10815 {
10816 case T_MNEM_mov:
10817 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10818 inst.instruction |= (Rn & 0x8) << 4;
10819 inst.instruction |= (Rn & 0x7);
10820 inst.instruction |= Rm << 3;
c19d1205 10821 break;
b99bd4ef 10822
c19d1205
ZW
10823 case T_MNEM_movs:
10824 /* We know we have low registers at this point.
941a8a52
MGD
10825 Generate LSLS Rd, Rs, #0. */
10826 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10827 inst.instruction |= Rn;
10828 inst.instruction |= Rm << 3;
c19d1205
ZW
10829 break;
10830
10831 case T_MNEM_cmp:
3d388997 10832 if (low_regs)
c19d1205
ZW
10833 {
10834 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10835 inst.instruction |= Rn;
10836 inst.instruction |= Rm << 3;
c19d1205
ZW
10837 }
10838 else
10839 {
10840 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10841 inst.instruction |= (Rn & 0x8) << 4;
10842 inst.instruction |= (Rn & 0x7);
10843 inst.instruction |= Rm << 3;
c19d1205
ZW
10844 }
10845 break;
10846 }
b99bd4ef
NC
10847 return;
10848 }
10849
c19d1205 10850 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10851
10852 /* PR 10443: Do not silently ignore shifted operands. */
10853 constraint (inst.operands[1].shifted,
10854 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10855
c19d1205 10856 if (inst.operands[1].isreg)
b99bd4ef 10857 {
fdfde340 10858 if (Rn < 8 && Rm < 8)
b99bd4ef 10859 {
c19d1205
ZW
10860 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10861 since a MOV instruction produces unpredictable results. */
10862 if (inst.instruction == T_OPCODE_MOV_I8)
10863 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10864 else
c19d1205 10865 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10866
fdfde340
JM
10867 inst.instruction |= Rn;
10868 inst.instruction |= Rm << 3;
b99bd4ef
NC
10869 }
10870 else
10871 {
c19d1205
ZW
10872 if (inst.instruction == T_OPCODE_MOV_I8)
10873 inst.instruction = T_OPCODE_MOV_HR;
10874 else
10875 inst.instruction = T_OPCODE_CMP_HR;
10876 do_t_cpy ();
b99bd4ef
NC
10877 }
10878 }
c19d1205 10879 else
b99bd4ef 10880 {
fdfde340 10881 constraint (Rn > 7,
c19d1205 10882 _("only lo regs allowed with immediate"));
fdfde340 10883 inst.instruction |= Rn << 8;
c19d1205
ZW
10884 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10885 }
10886}
b99bd4ef 10887
c19d1205
ZW
10888static void
10889do_t_mov16 (void)
10890{
fdfde340 10891 unsigned Rd;
b6895b4f
PB
10892 bfd_vma imm;
10893 bfd_boolean top;
10894
10895 top = (inst.instruction & 0x00800000) != 0;
10896 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10897 {
10898 constraint (top, _(":lower16: not allowed this instruction"));
10899 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10900 }
10901 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10902 {
10903 constraint (!top, _(":upper16: not allowed this instruction"));
10904 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10905 }
10906
fdfde340
JM
10907 Rd = inst.operands[0].reg;
10908 reject_bad_reg (Rd);
10909
10910 inst.instruction |= Rd << 8;
b6895b4f
PB
10911 if (inst.reloc.type == BFD_RELOC_UNUSED)
10912 {
10913 imm = inst.reloc.exp.X_add_number;
10914 inst.instruction |= (imm & 0xf000) << 4;
10915 inst.instruction |= (imm & 0x0800) << 15;
10916 inst.instruction |= (imm & 0x0700) << 4;
10917 inst.instruction |= (imm & 0x00ff);
10918 }
c19d1205 10919}
b99bd4ef 10920
c19d1205
ZW
10921static void
10922do_t_mvn_tst (void)
10923{
fdfde340 10924 unsigned Rn, Rm;
c921be7d 10925
fdfde340
JM
10926 Rn = inst.operands[0].reg;
10927 Rm = inst.operands[1].reg;
10928
10929 if (inst.instruction == T_MNEM_cmp
10930 || inst.instruction == T_MNEM_cmn)
10931 constraint (Rn == REG_PC, BAD_PC);
10932 else
10933 reject_bad_reg (Rn);
10934 reject_bad_reg (Rm);
10935
c19d1205
ZW
10936 if (unified_syntax)
10937 {
10938 int r0off = (inst.instruction == T_MNEM_mvn
10939 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10940 bfd_boolean narrow;
10941
10942 if (inst.size_req == 4
10943 || inst.instruction > 0xffff
10944 || inst.operands[1].shifted
fdfde340 10945 || Rn > 7 || Rm > 7)
3d388997
PB
10946 narrow = FALSE;
10947 else if (inst.instruction == T_MNEM_cmn)
10948 narrow = TRUE;
10949 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10950 narrow = !in_it_block ();
3d388997 10951 else
e07e6e58 10952 narrow = in_it_block ();
3d388997 10953
c19d1205 10954 if (!inst.operands[1].isreg)
b99bd4ef 10955 {
c19d1205
ZW
10956 /* For an immediate, we always generate a 32-bit opcode;
10957 section relaxation will shrink it later if possible. */
10958 if (inst.instruction < 0xffff)
10959 inst.instruction = THUMB_OP32 (inst.instruction);
10960 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10961 inst.instruction |= Rn << r0off;
c19d1205 10962 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10963 }
c19d1205 10964 else
b99bd4ef 10965 {
c19d1205 10966 /* See if we can do this with a 16-bit instruction. */
3d388997 10967 if (narrow)
b99bd4ef 10968 {
c19d1205 10969 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10970 inst.instruction |= Rn;
10971 inst.instruction |= Rm << 3;
b99bd4ef 10972 }
c19d1205 10973 else
b99bd4ef 10974 {
c19d1205
ZW
10975 constraint (inst.operands[1].shifted
10976 && inst.operands[1].immisreg,
10977 _("shift must be constant"));
10978 if (inst.instruction < 0xffff)
10979 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10980 inst.instruction |= Rn << r0off;
c19d1205 10981 encode_thumb32_shifted_operand (1);
b99bd4ef 10982 }
b99bd4ef
NC
10983 }
10984 }
10985 else
10986 {
c19d1205
ZW
10987 constraint (inst.instruction > 0xffff
10988 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10989 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10990 _("unshifted register required"));
fdfde340 10991 constraint (Rn > 7 || Rm > 7,
c19d1205 10992 BAD_HIREG);
b99bd4ef 10993
c19d1205 10994 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10995 inst.instruction |= Rn;
10996 inst.instruction |= Rm << 3;
b99bd4ef 10997 }
b99bd4ef
NC
10998}
10999
b05fe5cf 11000static void
c19d1205 11001do_t_mrs (void)
b05fe5cf 11002{
fdfde340 11003 unsigned Rd;
037e8744
JB
11004
11005 if (do_vfp_nsyn_mrs () == SUCCESS)
11006 return;
11007
90ec0d68
MGD
11008 Rd = inst.operands[0].reg;
11009 reject_bad_reg (Rd);
11010 inst.instruction |= Rd << 8;
11011
11012 if (inst.operands[1].isreg)
62b3e311 11013 {
90ec0d68
MGD
11014 unsigned br = inst.operands[1].reg;
11015 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11016 as_bad (_("bad register for mrs"));
11017
11018 inst.instruction |= br & (0xf << 16);
11019 inst.instruction |= (br & 0x300) >> 4;
11020 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11021 }
11022 else
11023 {
90ec0d68 11024 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11025
d2cd1205
JB
11026 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11027 constraint (flags != 0, _("selected processor does not support "
11028 "requested special purpose register"));
90ec0d68 11029 else
d2cd1205
JB
11030 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11031 devices). */
11032 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11033 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11034
90ec0d68
MGD
11035 inst.instruction |= (flags & SPSR_BIT) >> 2;
11036 inst.instruction |= inst.operands[1].imm & 0xff;
11037 inst.instruction |= 0xf0000;
11038 }
c19d1205 11039}
b05fe5cf 11040
c19d1205
ZW
11041static void
11042do_t_msr (void)
11043{
62b3e311 11044 int flags;
fdfde340 11045 unsigned Rn;
62b3e311 11046
037e8744
JB
11047 if (do_vfp_nsyn_msr () == SUCCESS)
11048 return;
11049
c19d1205
ZW
11050 constraint (!inst.operands[1].isreg,
11051 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11052
11053 if (inst.operands[0].isreg)
11054 flags = (int)(inst.operands[0].reg);
11055 else
11056 flags = inst.operands[0].imm;
11057
d2cd1205 11058 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11059 {
d2cd1205
JB
11060 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11061
11062 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11063 && (bits & ~(PSR_s | PSR_f)) != 0)
11064 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11065 && bits != PSR_f),
11066 _("selected processor does not support requested special "
11067 "purpose register"));
62b3e311
PB
11068 }
11069 else
d2cd1205
JB
11070 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11071 "requested special purpose register"));
c921be7d 11072
fdfde340
JM
11073 Rn = inst.operands[1].reg;
11074 reject_bad_reg (Rn);
11075
62b3e311 11076 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11077 inst.instruction |= (flags & 0xf0000) >> 8;
11078 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11079 inst.instruction |= (flags & 0xff);
fdfde340 11080 inst.instruction |= Rn << 16;
c19d1205 11081}
b05fe5cf 11082
c19d1205
ZW
11083static void
11084do_t_mul (void)
11085{
17828f45 11086 bfd_boolean narrow;
fdfde340 11087 unsigned Rd, Rn, Rm;
17828f45 11088
c19d1205
ZW
11089 if (!inst.operands[2].present)
11090 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11091
fdfde340
JM
11092 Rd = inst.operands[0].reg;
11093 Rn = inst.operands[1].reg;
11094 Rm = inst.operands[2].reg;
11095
17828f45 11096 if (unified_syntax)
b05fe5cf 11097 {
17828f45 11098 if (inst.size_req == 4
fdfde340
JM
11099 || (Rd != Rn
11100 && Rd != Rm)
11101 || Rn > 7
11102 || Rm > 7)
17828f45
JM
11103 narrow = FALSE;
11104 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11105 narrow = !in_it_block ();
17828f45 11106 else
e07e6e58 11107 narrow = in_it_block ();
b05fe5cf 11108 }
c19d1205 11109 else
b05fe5cf 11110 {
17828f45 11111 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11112 constraint (Rn > 7 || Rm > 7,
c19d1205 11113 BAD_HIREG);
17828f45
JM
11114 narrow = TRUE;
11115 }
b05fe5cf 11116
17828f45
JM
11117 if (narrow)
11118 {
11119 /* 16-bit MULS/Conditional MUL. */
c19d1205 11120 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11121 inst.instruction |= Rd;
b05fe5cf 11122
fdfde340
JM
11123 if (Rd == Rn)
11124 inst.instruction |= Rm << 3;
11125 else if (Rd == Rm)
11126 inst.instruction |= Rn << 3;
c19d1205
ZW
11127 else
11128 constraint (1, _("dest must overlap one source register"));
11129 }
17828f45
JM
11130 else
11131 {
e07e6e58
NC
11132 constraint (inst.instruction != T_MNEM_mul,
11133 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11134 /* 32-bit MUL. */
11135 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11136 inst.instruction |= Rd << 8;
11137 inst.instruction |= Rn << 16;
11138 inst.instruction |= Rm << 0;
11139
11140 reject_bad_reg (Rd);
11141 reject_bad_reg (Rn);
11142 reject_bad_reg (Rm);
17828f45 11143 }
c19d1205 11144}
b05fe5cf 11145
c19d1205
ZW
11146static void
11147do_t_mull (void)
11148{
fdfde340 11149 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11150
fdfde340
JM
11151 RdLo = inst.operands[0].reg;
11152 RdHi = inst.operands[1].reg;
11153 Rn = inst.operands[2].reg;
11154 Rm = inst.operands[3].reg;
11155
11156 reject_bad_reg (RdLo);
11157 reject_bad_reg (RdHi);
11158 reject_bad_reg (Rn);
11159 reject_bad_reg (Rm);
11160
11161 inst.instruction |= RdLo << 12;
11162 inst.instruction |= RdHi << 8;
11163 inst.instruction |= Rn << 16;
11164 inst.instruction |= Rm;
11165
11166 if (RdLo == RdHi)
c19d1205
ZW
11167 as_tsktsk (_("rdhi and rdlo must be different"));
11168}
b05fe5cf 11169
c19d1205
ZW
11170static void
11171do_t_nop (void)
11172{
e07e6e58
NC
11173 set_it_insn_type (NEUTRAL_IT_INSN);
11174
c19d1205
ZW
11175 if (unified_syntax)
11176 {
11177 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11178 {
c19d1205
ZW
11179 inst.instruction = THUMB_OP32 (inst.instruction);
11180 inst.instruction |= inst.operands[0].imm;
11181 }
11182 else
11183 {
bc2d1808
NC
11184 /* PR9722: Check for Thumb2 availability before
11185 generating a thumb2 nop instruction. */
afa62d5e 11186 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11187 {
11188 inst.instruction = THUMB_OP16 (inst.instruction);
11189 inst.instruction |= inst.operands[0].imm << 4;
11190 }
11191 else
11192 inst.instruction = 0x46c0;
c19d1205
ZW
11193 }
11194 }
11195 else
11196 {
11197 constraint (inst.operands[0].present,
11198 _("Thumb does not support NOP with hints"));
11199 inst.instruction = 0x46c0;
11200 }
11201}
b05fe5cf 11202
c19d1205
ZW
11203static void
11204do_t_neg (void)
11205{
11206 if (unified_syntax)
11207 {
3d388997
PB
11208 bfd_boolean narrow;
11209
11210 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11211 narrow = !in_it_block ();
3d388997 11212 else
e07e6e58 11213 narrow = in_it_block ();
3d388997
PB
11214 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11215 narrow = FALSE;
11216 if (inst.size_req == 4)
11217 narrow = FALSE;
11218
11219 if (!narrow)
c19d1205
ZW
11220 {
11221 inst.instruction = THUMB_OP32 (inst.instruction);
11222 inst.instruction |= inst.operands[0].reg << 8;
11223 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11224 }
11225 else
11226 {
c19d1205
ZW
11227 inst.instruction = THUMB_OP16 (inst.instruction);
11228 inst.instruction |= inst.operands[0].reg;
11229 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11230 }
11231 }
11232 else
11233 {
c19d1205
ZW
11234 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11235 BAD_HIREG);
11236 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11237
11238 inst.instruction = THUMB_OP16 (inst.instruction);
11239 inst.instruction |= inst.operands[0].reg;
11240 inst.instruction |= inst.operands[1].reg << 3;
11241 }
11242}
11243
1c444d06
JM
11244static void
11245do_t_orn (void)
11246{
11247 unsigned Rd, Rn;
11248
11249 Rd = inst.operands[0].reg;
11250 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11251
fdfde340
JM
11252 reject_bad_reg (Rd);
11253 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11254 reject_bad_reg (Rn);
11255
1c444d06
JM
11256 inst.instruction |= Rd << 8;
11257 inst.instruction |= Rn << 16;
11258
11259 if (!inst.operands[2].isreg)
11260 {
11261 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11262 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11263 }
11264 else
11265 {
11266 unsigned Rm;
11267
11268 Rm = inst.operands[2].reg;
fdfde340 11269 reject_bad_reg (Rm);
1c444d06
JM
11270
11271 constraint (inst.operands[2].shifted
11272 && inst.operands[2].immisreg,
11273 _("shift must be constant"));
11274 encode_thumb32_shifted_operand (2);
11275 }
11276}
11277
c19d1205
ZW
11278static void
11279do_t_pkhbt (void)
11280{
fdfde340
JM
11281 unsigned Rd, Rn, Rm;
11282
11283 Rd = inst.operands[0].reg;
11284 Rn = inst.operands[1].reg;
11285 Rm = inst.operands[2].reg;
11286
11287 reject_bad_reg (Rd);
11288 reject_bad_reg (Rn);
11289 reject_bad_reg (Rm);
11290
11291 inst.instruction |= Rd << 8;
11292 inst.instruction |= Rn << 16;
11293 inst.instruction |= Rm;
c19d1205
ZW
11294 if (inst.operands[3].present)
11295 {
11296 unsigned int val = inst.reloc.exp.X_add_number;
11297 constraint (inst.reloc.exp.X_op != O_constant,
11298 _("expression too complex"));
11299 inst.instruction |= (val & 0x1c) << 10;
11300 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11301 }
c19d1205 11302}
b05fe5cf 11303
c19d1205
ZW
11304static void
11305do_t_pkhtb (void)
11306{
11307 if (!inst.operands[3].present)
1ef52f49
NC
11308 {
11309 unsigned Rtmp;
11310
11311 inst.instruction &= ~0x00000020;
11312
11313 /* PR 10168. Swap the Rm and Rn registers. */
11314 Rtmp = inst.operands[1].reg;
11315 inst.operands[1].reg = inst.operands[2].reg;
11316 inst.operands[2].reg = Rtmp;
11317 }
c19d1205 11318 do_t_pkhbt ();
b05fe5cf
ZW
11319}
11320
c19d1205
ZW
11321static void
11322do_t_pld (void)
11323{
fdfde340
JM
11324 if (inst.operands[0].immisreg)
11325 reject_bad_reg (inst.operands[0].imm);
11326
c19d1205
ZW
11327 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11328}
b05fe5cf 11329
c19d1205
ZW
11330static void
11331do_t_push_pop (void)
b99bd4ef 11332{
e9f89963 11333 unsigned mask;
5f4273c7 11334
c19d1205
ZW
11335 constraint (inst.operands[0].writeback,
11336 _("push/pop do not support {reglist}^"));
11337 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11338 _("expression too complex"));
b99bd4ef 11339
e9f89963
PB
11340 mask = inst.operands[0].imm;
11341 if ((mask & ~0xff) == 0)
3c707909 11342 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11343 else if ((inst.instruction == T_MNEM_push
e9f89963 11344 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11345 || (inst.instruction == T_MNEM_pop
e9f89963 11346 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11347 {
c19d1205
ZW
11348 inst.instruction = THUMB_OP16 (inst.instruction);
11349 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11350 inst.instruction |= mask & 0xff;
c19d1205
ZW
11351 }
11352 else if (unified_syntax)
11353 {
3c707909 11354 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11355 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11356 }
11357 else
11358 {
11359 inst.error = _("invalid register list to push/pop instruction");
11360 return;
11361 }
c19d1205 11362}
b99bd4ef 11363
c19d1205
ZW
11364static void
11365do_t_rbit (void)
11366{
fdfde340
JM
11367 unsigned Rd, Rm;
11368
11369 Rd = inst.operands[0].reg;
11370 Rm = inst.operands[1].reg;
11371
11372 reject_bad_reg (Rd);
11373 reject_bad_reg (Rm);
11374
11375 inst.instruction |= Rd << 8;
11376 inst.instruction |= Rm << 16;
11377 inst.instruction |= Rm;
c19d1205 11378}
b99bd4ef 11379
c19d1205
ZW
11380static void
11381do_t_rev (void)
11382{
fdfde340
JM
11383 unsigned Rd, Rm;
11384
11385 Rd = inst.operands[0].reg;
11386 Rm = inst.operands[1].reg;
11387
11388 reject_bad_reg (Rd);
11389 reject_bad_reg (Rm);
11390
11391 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11392 && inst.size_req != 4)
11393 {
11394 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11395 inst.instruction |= Rd;
11396 inst.instruction |= Rm << 3;
c19d1205
ZW
11397 }
11398 else if (unified_syntax)
11399 {
11400 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11401 inst.instruction |= Rd << 8;
11402 inst.instruction |= Rm << 16;
11403 inst.instruction |= Rm;
c19d1205
ZW
11404 }
11405 else
11406 inst.error = BAD_HIREG;
11407}
b99bd4ef 11408
1c444d06
JM
11409static void
11410do_t_rrx (void)
11411{
11412 unsigned Rd, Rm;
11413
11414 Rd = inst.operands[0].reg;
11415 Rm = inst.operands[1].reg;
11416
fdfde340
JM
11417 reject_bad_reg (Rd);
11418 reject_bad_reg (Rm);
c921be7d 11419
1c444d06
JM
11420 inst.instruction |= Rd << 8;
11421 inst.instruction |= Rm;
11422}
11423
c19d1205
ZW
11424static void
11425do_t_rsb (void)
11426{
fdfde340 11427 unsigned Rd, Rs;
b99bd4ef 11428
c19d1205
ZW
11429 Rd = inst.operands[0].reg;
11430 Rs = (inst.operands[1].present
11431 ? inst.operands[1].reg /* Rd, Rs, foo */
11432 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11433
fdfde340
JM
11434 reject_bad_reg (Rd);
11435 reject_bad_reg (Rs);
11436 if (inst.operands[2].isreg)
11437 reject_bad_reg (inst.operands[2].reg);
11438
c19d1205
ZW
11439 inst.instruction |= Rd << 8;
11440 inst.instruction |= Rs << 16;
11441 if (!inst.operands[2].isreg)
11442 {
026d3abb
PB
11443 bfd_boolean narrow;
11444
11445 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11446 narrow = !in_it_block ();
026d3abb 11447 else
e07e6e58 11448 narrow = in_it_block ();
026d3abb
PB
11449
11450 if (Rd > 7 || Rs > 7)
11451 narrow = FALSE;
11452
11453 if (inst.size_req == 4 || !unified_syntax)
11454 narrow = FALSE;
11455
11456 if (inst.reloc.exp.X_op != O_constant
11457 || inst.reloc.exp.X_add_number != 0)
11458 narrow = FALSE;
11459
11460 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11461 relaxation, but it doesn't seem worth the hassle. */
11462 if (narrow)
11463 {
11464 inst.reloc.type = BFD_RELOC_UNUSED;
11465 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11466 inst.instruction |= Rs << 3;
11467 inst.instruction |= Rd;
11468 }
11469 else
11470 {
11471 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11472 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11473 }
c19d1205
ZW
11474 }
11475 else
11476 encode_thumb32_shifted_operand (2);
11477}
b99bd4ef 11478
c19d1205
ZW
11479static void
11480do_t_setend (void)
11481{
e07e6e58 11482 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11483 if (inst.operands[0].imm)
11484 inst.instruction |= 0x8;
11485}
b99bd4ef 11486
c19d1205
ZW
11487static void
11488do_t_shift (void)
11489{
11490 if (!inst.operands[1].present)
11491 inst.operands[1].reg = inst.operands[0].reg;
11492
11493 if (unified_syntax)
11494 {
3d388997
PB
11495 bfd_boolean narrow;
11496 int shift_kind;
11497
11498 switch (inst.instruction)
11499 {
11500 case T_MNEM_asr:
11501 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11502 case T_MNEM_lsl:
11503 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11504 case T_MNEM_lsr:
11505 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11506 case T_MNEM_ror:
11507 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11508 default: abort ();
11509 }
11510
11511 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11512 narrow = !in_it_block ();
3d388997 11513 else
e07e6e58 11514 narrow = in_it_block ();
3d388997
PB
11515 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11516 narrow = FALSE;
11517 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11518 narrow = FALSE;
11519 if (inst.operands[2].isreg
11520 && (inst.operands[1].reg != inst.operands[0].reg
11521 || inst.operands[2].reg > 7))
11522 narrow = FALSE;
11523 if (inst.size_req == 4)
11524 narrow = FALSE;
11525
fdfde340
JM
11526 reject_bad_reg (inst.operands[0].reg);
11527 reject_bad_reg (inst.operands[1].reg);
c921be7d 11528
3d388997 11529 if (!narrow)
c19d1205
ZW
11530 {
11531 if (inst.operands[2].isreg)
b99bd4ef 11532 {
fdfde340 11533 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11534 inst.instruction = THUMB_OP32 (inst.instruction);
11535 inst.instruction |= inst.operands[0].reg << 8;
11536 inst.instruction |= inst.operands[1].reg << 16;
11537 inst.instruction |= inst.operands[2].reg;
11538 }
11539 else
11540 {
11541 inst.operands[1].shifted = 1;
3d388997 11542 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11543 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11544 ? T_MNEM_movs : T_MNEM_mov);
11545 inst.instruction |= inst.operands[0].reg << 8;
11546 encode_thumb32_shifted_operand (1);
11547 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11548 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11549 }
11550 }
11551 else
11552 {
c19d1205 11553 if (inst.operands[2].isreg)
b99bd4ef 11554 {
3d388997 11555 switch (shift_kind)
b99bd4ef 11556 {
3d388997
PB
11557 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11558 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11559 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11560 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11561 default: abort ();
b99bd4ef 11562 }
5f4273c7 11563
c19d1205
ZW
11564 inst.instruction |= inst.operands[0].reg;
11565 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11566 }
11567 else
11568 {
3d388997 11569 switch (shift_kind)
b99bd4ef 11570 {
3d388997
PB
11571 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11572 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11573 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11574 default: abort ();
b99bd4ef 11575 }
c19d1205
ZW
11576 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11577 inst.instruction |= inst.operands[0].reg;
11578 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11579 }
11580 }
c19d1205
ZW
11581 }
11582 else
11583 {
11584 constraint (inst.operands[0].reg > 7
11585 || inst.operands[1].reg > 7, BAD_HIREG);
11586 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11587
c19d1205
ZW
11588 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11589 {
11590 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11591 constraint (inst.operands[0].reg != inst.operands[1].reg,
11592 _("source1 and dest must be same register"));
b99bd4ef 11593
c19d1205
ZW
11594 switch (inst.instruction)
11595 {
11596 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11597 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11598 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11599 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11600 default: abort ();
11601 }
5f4273c7 11602
c19d1205
ZW
11603 inst.instruction |= inst.operands[0].reg;
11604 inst.instruction |= inst.operands[2].reg << 3;
11605 }
11606 else
b99bd4ef 11607 {
c19d1205
ZW
11608 switch (inst.instruction)
11609 {
11610 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11611 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11612 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11613 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11614 default: abort ();
11615 }
11616 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11617 inst.instruction |= inst.operands[0].reg;
11618 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11619 }
11620 }
b99bd4ef
NC
11621}
11622
11623static void
c19d1205 11624do_t_simd (void)
b99bd4ef 11625{
fdfde340
JM
11626 unsigned Rd, Rn, Rm;
11627
11628 Rd = inst.operands[0].reg;
11629 Rn = inst.operands[1].reg;
11630 Rm = inst.operands[2].reg;
11631
11632 reject_bad_reg (Rd);
11633 reject_bad_reg (Rn);
11634 reject_bad_reg (Rm);
11635
11636 inst.instruction |= Rd << 8;
11637 inst.instruction |= Rn << 16;
11638 inst.instruction |= Rm;
c19d1205 11639}
b99bd4ef 11640
03ee1b7f
NC
11641static void
11642do_t_simd2 (void)
11643{
11644 unsigned Rd, Rn, Rm;
11645
11646 Rd = inst.operands[0].reg;
11647 Rm = inst.operands[1].reg;
11648 Rn = inst.operands[2].reg;
11649
11650 reject_bad_reg (Rd);
11651 reject_bad_reg (Rn);
11652 reject_bad_reg (Rm);
11653
11654 inst.instruction |= Rd << 8;
11655 inst.instruction |= Rn << 16;
11656 inst.instruction |= Rm;
11657}
11658
c19d1205 11659static void
3eb17e6b 11660do_t_smc (void)
c19d1205
ZW
11661{
11662 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11663 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11664 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11665 constraint (inst.reloc.exp.X_op != O_constant,
11666 _("expression too complex"));
11667 inst.reloc.type = BFD_RELOC_UNUSED;
11668 inst.instruction |= (value & 0xf000) >> 12;
11669 inst.instruction |= (value & 0x0ff0);
11670 inst.instruction |= (value & 0x000f) << 16;
11671}
b99bd4ef 11672
90ec0d68
MGD
11673static void
11674do_t_hvc (void)
11675{
11676 unsigned int value = inst.reloc.exp.X_add_number;
11677
11678 inst.reloc.type = BFD_RELOC_UNUSED;
11679 inst.instruction |= (value & 0x0fff);
11680 inst.instruction |= (value & 0xf000) << 4;
11681}
11682
c19d1205 11683static void
3a21c15a 11684do_t_ssat_usat (int bias)
c19d1205 11685{
fdfde340
JM
11686 unsigned Rd, Rn;
11687
11688 Rd = inst.operands[0].reg;
11689 Rn = inst.operands[2].reg;
11690
11691 reject_bad_reg (Rd);
11692 reject_bad_reg (Rn);
11693
11694 inst.instruction |= Rd << 8;
3a21c15a 11695 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11696 inst.instruction |= Rn << 16;
b99bd4ef 11697
c19d1205 11698 if (inst.operands[3].present)
b99bd4ef 11699 {
3a21c15a
NC
11700 offsetT shift_amount = inst.reloc.exp.X_add_number;
11701
11702 inst.reloc.type = BFD_RELOC_UNUSED;
11703
c19d1205
ZW
11704 constraint (inst.reloc.exp.X_op != O_constant,
11705 _("expression too complex"));
b99bd4ef 11706
3a21c15a 11707 if (shift_amount != 0)
6189168b 11708 {
3a21c15a
NC
11709 constraint (shift_amount > 31,
11710 _("shift expression is too large"));
11711
c19d1205 11712 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11713 inst.instruction |= 0x00200000; /* sh bit. */
11714
11715 inst.instruction |= (shift_amount & 0x1c) << 10;
11716 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11717 }
11718 }
b99bd4ef 11719}
c921be7d 11720
3a21c15a
NC
11721static void
11722do_t_ssat (void)
11723{
11724 do_t_ssat_usat (1);
11725}
b99bd4ef 11726
0dd132b6 11727static void
c19d1205 11728do_t_ssat16 (void)
0dd132b6 11729{
fdfde340
JM
11730 unsigned Rd, Rn;
11731
11732 Rd = inst.operands[0].reg;
11733 Rn = inst.operands[2].reg;
11734
11735 reject_bad_reg (Rd);
11736 reject_bad_reg (Rn);
11737
11738 inst.instruction |= Rd << 8;
c19d1205 11739 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11740 inst.instruction |= Rn << 16;
c19d1205 11741}
0dd132b6 11742
c19d1205
ZW
11743static void
11744do_t_strex (void)
11745{
11746 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11747 || inst.operands[2].postind || inst.operands[2].writeback
11748 || inst.operands[2].immisreg || inst.operands[2].shifted
11749 || inst.operands[2].negative,
01cfc07f 11750 BAD_ADDR_MODE);
0dd132b6 11751
5be8be5d
DG
11752 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11753
c19d1205
ZW
11754 inst.instruction |= inst.operands[0].reg << 8;
11755 inst.instruction |= inst.operands[1].reg << 12;
11756 inst.instruction |= inst.operands[2].reg << 16;
11757 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11758}
11759
b99bd4ef 11760static void
c19d1205 11761do_t_strexd (void)
b99bd4ef 11762{
c19d1205
ZW
11763 if (!inst.operands[2].present)
11764 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11765
c19d1205
ZW
11766 constraint (inst.operands[0].reg == inst.operands[1].reg
11767 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11768 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11769 BAD_OVERLAP);
b99bd4ef 11770
c19d1205
ZW
11771 inst.instruction |= inst.operands[0].reg;
11772 inst.instruction |= inst.operands[1].reg << 12;
11773 inst.instruction |= inst.operands[2].reg << 8;
11774 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11775}
11776
11777static void
c19d1205 11778do_t_sxtah (void)
b99bd4ef 11779{
fdfde340
JM
11780 unsigned Rd, Rn, Rm;
11781
11782 Rd = inst.operands[0].reg;
11783 Rn = inst.operands[1].reg;
11784 Rm = inst.operands[2].reg;
11785
11786 reject_bad_reg (Rd);
11787 reject_bad_reg (Rn);
11788 reject_bad_reg (Rm);
11789
11790 inst.instruction |= Rd << 8;
11791 inst.instruction |= Rn << 16;
11792 inst.instruction |= Rm;
c19d1205
ZW
11793 inst.instruction |= inst.operands[3].imm << 4;
11794}
b99bd4ef 11795
c19d1205
ZW
11796static void
11797do_t_sxth (void)
11798{
fdfde340
JM
11799 unsigned Rd, Rm;
11800
11801 Rd = inst.operands[0].reg;
11802 Rm = inst.operands[1].reg;
11803
11804 reject_bad_reg (Rd);
11805 reject_bad_reg (Rm);
c921be7d
NC
11806
11807 if (inst.instruction <= 0xffff
11808 && inst.size_req != 4
fdfde340 11809 && Rd <= 7 && Rm <= 7
c19d1205 11810 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11811 {
c19d1205 11812 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11813 inst.instruction |= Rd;
11814 inst.instruction |= Rm << 3;
b99bd4ef 11815 }
c19d1205 11816 else if (unified_syntax)
b99bd4ef 11817 {
c19d1205
ZW
11818 if (inst.instruction <= 0xffff)
11819 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11820 inst.instruction |= Rd << 8;
11821 inst.instruction |= Rm;
c19d1205 11822 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11823 }
c19d1205 11824 else
b99bd4ef 11825 {
c19d1205
ZW
11826 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11827 _("Thumb encoding does not support rotation"));
11828 constraint (1, BAD_HIREG);
b99bd4ef 11829 }
c19d1205 11830}
b99bd4ef 11831
c19d1205
ZW
11832static void
11833do_t_swi (void)
11834{
b2a5fbdc
MGD
11835 /* We have to do the following check manually as ARM_EXT_OS only applies
11836 to ARM_EXT_V6M. */
11837 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11838 {
ac7f631b
NC
11839 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11840 /* This only applies to the v6m howver, not later architectures. */
11841 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
11842 as_bad (_("SVC is not permitted on this architecture"));
11843 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11844 }
11845
c19d1205
ZW
11846 inst.reloc.type = BFD_RELOC_ARM_SWI;
11847}
b99bd4ef 11848
92e90b6e
PB
11849static void
11850do_t_tb (void)
11851{
fdfde340 11852 unsigned Rn, Rm;
92e90b6e
PB
11853 int half;
11854
11855 half = (inst.instruction & 0x10) != 0;
e07e6e58 11856 set_it_insn_type_last ();
dfa9f0d5
PB
11857 constraint (inst.operands[0].immisreg,
11858 _("instruction requires register index"));
fdfde340
JM
11859
11860 Rn = inst.operands[0].reg;
11861 Rm = inst.operands[0].imm;
c921be7d 11862
fdfde340
JM
11863 constraint (Rn == REG_SP, BAD_SP);
11864 reject_bad_reg (Rm);
11865
92e90b6e
PB
11866 constraint (!half && inst.operands[0].shifted,
11867 _("instruction does not allow shifted index"));
fdfde340 11868 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11869}
11870
c19d1205
ZW
11871static void
11872do_t_usat (void)
11873{
3a21c15a 11874 do_t_ssat_usat (0);
b99bd4ef
NC
11875}
11876
11877static void
c19d1205 11878do_t_usat16 (void)
b99bd4ef 11879{
fdfde340
JM
11880 unsigned Rd, Rn;
11881
11882 Rd = inst.operands[0].reg;
11883 Rn = inst.operands[2].reg;
11884
11885 reject_bad_reg (Rd);
11886 reject_bad_reg (Rn);
11887
11888 inst.instruction |= Rd << 8;
c19d1205 11889 inst.instruction |= inst.operands[1].imm;
fdfde340 11890 inst.instruction |= Rn << 16;
b99bd4ef 11891}
c19d1205 11892
5287ad62 11893/* Neon instruction encoder helpers. */
5f4273c7 11894
5287ad62 11895/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11896
5287ad62
JB
11897/* An "invalid" code for the following tables. */
11898#define N_INV -1u
11899
11900struct neon_tab_entry
b99bd4ef 11901{
5287ad62
JB
11902 unsigned integer;
11903 unsigned float_or_poly;
11904 unsigned scalar_or_imm;
11905};
5f4273c7 11906
5287ad62
JB
11907/* Map overloaded Neon opcodes to their respective encodings. */
11908#define NEON_ENC_TAB \
11909 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11910 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11911 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11912 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11913 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11914 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11915 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11916 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11917 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11918 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11919 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11920 /* Register variants of the following two instructions are encoded as
e07e6e58 11921 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11922 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11923 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11924 X(vfma, N_INV, 0x0000c10, N_INV), \
11925 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11926 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11927 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11928 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11929 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11930 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11931 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11932 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11933 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11934 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11935 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11936 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11937 X(vshl, 0x0000400, N_INV, 0x0800510), \
11938 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11939 X(vand, 0x0000110, N_INV, 0x0800030), \
11940 X(vbic, 0x0100110, N_INV, 0x0800030), \
11941 X(veor, 0x1000110, N_INV, N_INV), \
11942 X(vorn, 0x0300110, N_INV, 0x0800010), \
11943 X(vorr, 0x0200110, N_INV, 0x0800010), \
11944 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11945 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11946 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11947 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11948 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11949 X(vst1, 0x0000000, 0x0800000, N_INV), \
11950 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11951 X(vst2, 0x0000100, 0x0800100, N_INV), \
11952 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11953 X(vst3, 0x0000200, 0x0800200, N_INV), \
11954 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11955 X(vst4, 0x0000300, 0x0800300, N_INV), \
11956 X(vmovn, 0x1b20200, N_INV, N_INV), \
11957 X(vtrn, 0x1b20080, N_INV, N_INV), \
11958 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11959 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11960 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11961 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11962 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11963 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11964 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11965 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11966 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11967 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11968 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11969
11970enum neon_opc
11971{
11972#define X(OPC,I,F,S) N_MNEM_##OPC
11973NEON_ENC_TAB
11974#undef X
11975};
b99bd4ef 11976
5287ad62
JB
11977static const struct neon_tab_entry neon_enc_tab[] =
11978{
11979#define X(OPC,I,F,S) { (I), (F), (S) }
11980NEON_ENC_TAB
11981#undef X
11982};
b99bd4ef 11983
88714cb8
DG
11984/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11985#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11986#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11987#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11988#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11989#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11990#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11991#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11992#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11993#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11994#define NEON_ENC_SINGLE_(X) \
037e8744 11995 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11996#define NEON_ENC_DOUBLE_(X) \
037e8744 11997 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11998
88714cb8
DG
11999#define NEON_ENCODE(type, inst) \
12000 do \
12001 { \
12002 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12003 inst.is_neon = 1; \
12004 } \
12005 while (0)
12006
12007#define check_neon_suffixes \
12008 do \
12009 { \
12010 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12011 { \
12012 as_bad (_("invalid neon suffix for non neon instruction")); \
12013 return; \
12014 } \
12015 } \
12016 while (0)
12017
037e8744
JB
12018/* Define shapes for instruction operands. The following mnemonic characters
12019 are used in this table:
5287ad62 12020
037e8744 12021 F - VFP S<n> register
5287ad62
JB
12022 D - Neon D<n> register
12023 Q - Neon Q<n> register
12024 I - Immediate
12025 S - Scalar
12026 R - ARM register
12027 L - D<n> register list
5f4273c7 12028
037e8744
JB
12029 This table is used to generate various data:
12030 - enumerations of the form NS_DDR to be used as arguments to
12031 neon_select_shape.
12032 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12033 - a table used to drive neon_select_shape. */
b99bd4ef 12034
037e8744
JB
12035#define NEON_SHAPE_DEF \
12036 X(3, (D, D, D), DOUBLE), \
12037 X(3, (Q, Q, Q), QUAD), \
12038 X(3, (D, D, I), DOUBLE), \
12039 X(3, (Q, Q, I), QUAD), \
12040 X(3, (D, D, S), DOUBLE), \
12041 X(3, (Q, Q, S), QUAD), \
12042 X(2, (D, D), DOUBLE), \
12043 X(2, (Q, Q), QUAD), \
12044 X(2, (D, S), DOUBLE), \
12045 X(2, (Q, S), QUAD), \
12046 X(2, (D, R), DOUBLE), \
12047 X(2, (Q, R), QUAD), \
12048 X(2, (D, I), DOUBLE), \
12049 X(2, (Q, I), QUAD), \
12050 X(3, (D, L, D), DOUBLE), \
12051 X(2, (D, Q), MIXED), \
12052 X(2, (Q, D), MIXED), \
12053 X(3, (D, Q, I), MIXED), \
12054 X(3, (Q, D, I), MIXED), \
12055 X(3, (Q, D, D), MIXED), \
12056 X(3, (D, Q, Q), MIXED), \
12057 X(3, (Q, Q, D), MIXED), \
12058 X(3, (Q, D, S), MIXED), \
12059 X(3, (D, Q, S), MIXED), \
12060 X(4, (D, D, D, I), DOUBLE), \
12061 X(4, (Q, Q, Q, I), QUAD), \
12062 X(2, (F, F), SINGLE), \
12063 X(3, (F, F, F), SINGLE), \
12064 X(2, (F, I), SINGLE), \
12065 X(2, (F, D), MIXED), \
12066 X(2, (D, F), MIXED), \
12067 X(3, (F, F, I), MIXED), \
12068 X(4, (R, R, F, F), SINGLE), \
12069 X(4, (F, F, R, R), SINGLE), \
12070 X(3, (D, R, R), DOUBLE), \
12071 X(3, (R, R, D), DOUBLE), \
12072 X(2, (S, R), SINGLE), \
12073 X(2, (R, S), SINGLE), \
12074 X(2, (F, R), SINGLE), \
12075 X(2, (R, F), SINGLE)
12076
12077#define S2(A,B) NS_##A##B
12078#define S3(A,B,C) NS_##A##B##C
12079#define S4(A,B,C,D) NS_##A##B##C##D
12080
12081#define X(N, L, C) S##N L
12082
5287ad62
JB
12083enum neon_shape
12084{
037e8744
JB
12085 NEON_SHAPE_DEF,
12086 NS_NULL
5287ad62 12087};
b99bd4ef 12088
037e8744
JB
12089#undef X
12090#undef S2
12091#undef S3
12092#undef S4
12093
12094enum neon_shape_class
12095{
12096 SC_SINGLE,
12097 SC_DOUBLE,
12098 SC_QUAD,
12099 SC_MIXED
12100};
12101
12102#define X(N, L, C) SC_##C
12103
12104static enum neon_shape_class neon_shape_class[] =
12105{
12106 NEON_SHAPE_DEF
12107};
12108
12109#undef X
12110
12111enum neon_shape_el
12112{
12113 SE_F,
12114 SE_D,
12115 SE_Q,
12116 SE_I,
12117 SE_S,
12118 SE_R,
12119 SE_L
12120};
12121
12122/* Register widths of above. */
12123static unsigned neon_shape_el_size[] =
12124{
12125 32,
12126 64,
12127 128,
12128 0,
12129 32,
12130 32,
12131 0
12132};
12133
12134struct neon_shape_info
12135{
12136 unsigned els;
12137 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12138};
12139
12140#define S2(A,B) { SE_##A, SE_##B }
12141#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12142#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12143
12144#define X(N, L, C) { N, S##N L }
12145
12146static struct neon_shape_info neon_shape_tab[] =
12147{
12148 NEON_SHAPE_DEF
12149};
12150
12151#undef X
12152#undef S2
12153#undef S3
12154#undef S4
12155
5287ad62
JB
12156/* Bit masks used in type checking given instructions.
12157 'N_EQK' means the type must be the same as (or based on in some way) the key
12158 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12159 set, various other bits can be set as well in order to modify the meaning of
12160 the type constraint. */
12161
12162enum neon_type_mask
12163{
8e79c3df
CM
12164 N_S8 = 0x0000001,
12165 N_S16 = 0x0000002,
12166 N_S32 = 0x0000004,
12167 N_S64 = 0x0000008,
12168 N_U8 = 0x0000010,
12169 N_U16 = 0x0000020,
12170 N_U32 = 0x0000040,
12171 N_U64 = 0x0000080,
12172 N_I8 = 0x0000100,
12173 N_I16 = 0x0000200,
12174 N_I32 = 0x0000400,
12175 N_I64 = 0x0000800,
12176 N_8 = 0x0001000,
12177 N_16 = 0x0002000,
12178 N_32 = 0x0004000,
12179 N_64 = 0x0008000,
12180 N_P8 = 0x0010000,
12181 N_P16 = 0x0020000,
12182 N_F16 = 0x0040000,
12183 N_F32 = 0x0080000,
12184 N_F64 = 0x0100000,
c921be7d
NC
12185 N_KEY = 0x1000000, /* Key element (main type specifier). */
12186 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12187 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12188 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12189 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12190 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12191 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12192 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12193 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12194 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12195 N_UTYP = 0,
037e8744 12196 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12197};
12198
dcbf9037
JB
12199#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12200
5287ad62
JB
12201#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12202#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12203#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12204#define N_SUF_32 (N_SU_32 | N_F32)
12205#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12206#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12207
12208/* Pass this as the first type argument to neon_check_type to ignore types
12209 altogether. */
12210#define N_IGNORE_TYPE (N_KEY | N_EQK)
12211
037e8744
JB
12212/* Select a "shape" for the current instruction (describing register types or
12213 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12214 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12215 function of operand parsing, so this function doesn't need to be called.
12216 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12217
12218static enum neon_shape
037e8744 12219neon_select_shape (enum neon_shape shape, ...)
5287ad62 12220{
037e8744
JB
12221 va_list ap;
12222 enum neon_shape first_shape = shape;
5287ad62
JB
12223
12224 /* Fix missing optional operands. FIXME: we don't know at this point how
12225 many arguments we should have, so this makes the assumption that we have
12226 > 1. This is true of all current Neon opcodes, I think, but may not be
12227 true in the future. */
12228 if (!inst.operands[1].present)
12229 inst.operands[1] = inst.operands[0];
12230
037e8744 12231 va_start (ap, shape);
5f4273c7 12232
21d799b5 12233 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12234 {
12235 unsigned j;
12236 int matches = 1;
12237
12238 for (j = 0; j < neon_shape_tab[shape].els; j++)
12239 {
12240 if (!inst.operands[j].present)
12241 {
12242 matches = 0;
12243 break;
12244 }
12245
12246 switch (neon_shape_tab[shape].el[j])
12247 {
12248 case SE_F:
12249 if (!(inst.operands[j].isreg
12250 && inst.operands[j].isvec
12251 && inst.operands[j].issingle
12252 && !inst.operands[j].isquad))
12253 matches = 0;
12254 break;
12255
12256 case SE_D:
12257 if (!(inst.operands[j].isreg
12258 && inst.operands[j].isvec
12259 && !inst.operands[j].isquad
12260 && !inst.operands[j].issingle))
12261 matches = 0;
12262 break;
12263
12264 case SE_R:
12265 if (!(inst.operands[j].isreg
12266 && !inst.operands[j].isvec))
12267 matches = 0;
12268 break;
12269
12270 case SE_Q:
12271 if (!(inst.operands[j].isreg
12272 && inst.operands[j].isvec
12273 && inst.operands[j].isquad
12274 && !inst.operands[j].issingle))
12275 matches = 0;
12276 break;
12277
12278 case SE_I:
12279 if (!(!inst.operands[j].isreg
12280 && !inst.operands[j].isscalar))
12281 matches = 0;
12282 break;
12283
12284 case SE_S:
12285 if (!(!inst.operands[j].isreg
12286 && inst.operands[j].isscalar))
12287 matches = 0;
12288 break;
12289
12290 case SE_L:
12291 break;
12292 }
3fde54a2
JZ
12293 if (!matches)
12294 break;
037e8744
JB
12295 }
12296 if (matches)
5287ad62 12297 break;
037e8744 12298 }
5f4273c7 12299
037e8744 12300 va_end (ap);
5287ad62 12301
037e8744
JB
12302 if (shape == NS_NULL && first_shape != NS_NULL)
12303 first_error (_("invalid instruction shape"));
5287ad62 12304
037e8744
JB
12305 return shape;
12306}
5287ad62 12307
037e8744
JB
12308/* True if SHAPE is predominantly a quadword operation (most of the time, this
12309 means the Q bit should be set). */
12310
12311static int
12312neon_quad (enum neon_shape shape)
12313{
12314 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12315}
037e8744 12316
5287ad62
JB
12317static void
12318neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12319 unsigned *g_size)
12320{
12321 /* Allow modification to be made to types which are constrained to be
12322 based on the key element, based on bits set alongside N_EQK. */
12323 if ((typebits & N_EQK) != 0)
12324 {
12325 if ((typebits & N_HLF) != 0)
12326 *g_size /= 2;
12327 else if ((typebits & N_DBL) != 0)
12328 *g_size *= 2;
12329 if ((typebits & N_SGN) != 0)
12330 *g_type = NT_signed;
12331 else if ((typebits & N_UNS) != 0)
12332 *g_type = NT_unsigned;
12333 else if ((typebits & N_INT) != 0)
12334 *g_type = NT_integer;
12335 else if ((typebits & N_FLT) != 0)
12336 *g_type = NT_float;
dcbf9037
JB
12337 else if ((typebits & N_SIZ) != 0)
12338 *g_type = NT_untyped;
5287ad62
JB
12339 }
12340}
5f4273c7 12341
5287ad62
JB
12342/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12343 operand type, i.e. the single type specified in a Neon instruction when it
12344 is the only one given. */
12345
12346static struct neon_type_el
12347neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12348{
12349 struct neon_type_el dest = *key;
5f4273c7 12350
9c2799c2 12351 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12352
5287ad62
JB
12353 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12354
12355 return dest;
12356}
12357
12358/* Convert Neon type and size into compact bitmask representation. */
12359
12360static enum neon_type_mask
12361type_chk_of_el_type (enum neon_el_type type, unsigned size)
12362{
12363 switch (type)
12364 {
12365 case NT_untyped:
12366 switch (size)
12367 {
12368 case 8: return N_8;
12369 case 16: return N_16;
12370 case 32: return N_32;
12371 case 64: return N_64;
12372 default: ;
12373 }
12374 break;
12375
12376 case NT_integer:
12377 switch (size)
12378 {
12379 case 8: return N_I8;
12380 case 16: return N_I16;
12381 case 32: return N_I32;
12382 case 64: return N_I64;
12383 default: ;
12384 }
12385 break;
12386
12387 case NT_float:
037e8744
JB
12388 switch (size)
12389 {
8e79c3df 12390 case 16: return N_F16;
037e8744
JB
12391 case 32: return N_F32;
12392 case 64: return N_F64;
12393 default: ;
12394 }
5287ad62
JB
12395 break;
12396
12397 case NT_poly:
12398 switch (size)
12399 {
12400 case 8: return N_P8;
12401 case 16: return N_P16;
12402 default: ;
12403 }
12404 break;
12405
12406 case NT_signed:
12407 switch (size)
12408 {
12409 case 8: return N_S8;
12410 case 16: return N_S16;
12411 case 32: return N_S32;
12412 case 64: return N_S64;
12413 default: ;
12414 }
12415 break;
12416
12417 case NT_unsigned:
12418 switch (size)
12419 {
12420 case 8: return N_U8;
12421 case 16: return N_U16;
12422 case 32: return N_U32;
12423 case 64: return N_U64;
12424 default: ;
12425 }
12426 break;
12427
12428 default: ;
12429 }
5f4273c7 12430
5287ad62
JB
12431 return N_UTYP;
12432}
12433
12434/* Convert compact Neon bitmask type representation to a type and size. Only
12435 handles the case where a single bit is set in the mask. */
12436
dcbf9037 12437static int
5287ad62
JB
12438el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12439 enum neon_type_mask mask)
12440{
dcbf9037
JB
12441 if ((mask & N_EQK) != 0)
12442 return FAIL;
12443
5287ad62
JB
12444 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12445 *size = 8;
dcbf9037 12446 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12447 *size = 16;
dcbf9037 12448 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12449 *size = 32;
037e8744 12450 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12451 *size = 64;
dcbf9037
JB
12452 else
12453 return FAIL;
12454
5287ad62
JB
12455 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12456 *type = NT_signed;
dcbf9037 12457 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12458 *type = NT_unsigned;
dcbf9037 12459 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12460 *type = NT_integer;
dcbf9037 12461 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12462 *type = NT_untyped;
dcbf9037 12463 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12464 *type = NT_poly;
037e8744 12465 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12466 *type = NT_float;
dcbf9037
JB
12467 else
12468 return FAIL;
5f4273c7 12469
dcbf9037 12470 return SUCCESS;
5287ad62
JB
12471}
12472
12473/* Modify a bitmask of allowed types. This is only needed for type
12474 relaxation. */
12475
12476static unsigned
12477modify_types_allowed (unsigned allowed, unsigned mods)
12478{
12479 unsigned size;
12480 enum neon_el_type type;
12481 unsigned destmask;
12482 int i;
5f4273c7 12483
5287ad62 12484 destmask = 0;
5f4273c7 12485
5287ad62
JB
12486 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12487 {
21d799b5
NC
12488 if (el_type_of_type_chk (&type, &size,
12489 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12490 {
12491 neon_modify_type_size (mods, &type, &size);
12492 destmask |= type_chk_of_el_type (type, size);
12493 }
5287ad62 12494 }
5f4273c7 12495
5287ad62
JB
12496 return destmask;
12497}
12498
12499/* Check type and return type classification.
12500 The manual states (paraphrase): If one datatype is given, it indicates the
12501 type given in:
12502 - the second operand, if there is one
12503 - the operand, if there is no second operand
12504 - the result, if there are no operands.
12505 This isn't quite good enough though, so we use a concept of a "key" datatype
12506 which is set on a per-instruction basis, which is the one which matters when
12507 only one data type is written.
12508 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12509 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12510
12511static struct neon_type_el
12512neon_check_type (unsigned els, enum neon_shape ns, ...)
12513{
12514 va_list ap;
12515 unsigned i, pass, key_el = 0;
12516 unsigned types[NEON_MAX_TYPE_ELS];
12517 enum neon_el_type k_type = NT_invtype;
12518 unsigned k_size = -1u;
12519 struct neon_type_el badtype = {NT_invtype, -1};
12520 unsigned key_allowed = 0;
12521
12522 /* Optional registers in Neon instructions are always (not) in operand 1.
12523 Fill in the missing operand here, if it was omitted. */
12524 if (els > 1 && !inst.operands[1].present)
12525 inst.operands[1] = inst.operands[0];
12526
12527 /* Suck up all the varargs. */
12528 va_start (ap, ns);
12529 for (i = 0; i < els; i++)
12530 {
12531 unsigned thisarg = va_arg (ap, unsigned);
12532 if (thisarg == N_IGNORE_TYPE)
12533 {
12534 va_end (ap);
12535 return badtype;
12536 }
12537 types[i] = thisarg;
12538 if ((thisarg & N_KEY) != 0)
12539 key_el = i;
12540 }
12541 va_end (ap);
12542
dcbf9037
JB
12543 if (inst.vectype.elems > 0)
12544 for (i = 0; i < els; i++)
12545 if (inst.operands[i].vectype.type != NT_invtype)
12546 {
12547 first_error (_("types specified in both the mnemonic and operands"));
12548 return badtype;
12549 }
12550
5287ad62
JB
12551 /* Duplicate inst.vectype elements here as necessary.
12552 FIXME: No idea if this is exactly the same as the ARM assembler,
12553 particularly when an insn takes one register and one non-register
12554 operand. */
12555 if (inst.vectype.elems == 1 && els > 1)
12556 {
12557 unsigned j;
12558 inst.vectype.elems = els;
12559 inst.vectype.el[key_el] = inst.vectype.el[0];
12560 for (j = 0; j < els; j++)
dcbf9037
JB
12561 if (j != key_el)
12562 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12563 types[j]);
12564 }
12565 else if (inst.vectype.elems == 0 && els > 0)
12566 {
12567 unsigned j;
12568 /* No types were given after the mnemonic, so look for types specified
12569 after each operand. We allow some flexibility here; as long as the
12570 "key" operand has a type, we can infer the others. */
12571 for (j = 0; j < els; j++)
12572 if (inst.operands[j].vectype.type != NT_invtype)
12573 inst.vectype.el[j] = inst.operands[j].vectype;
12574
12575 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12576 {
dcbf9037
JB
12577 for (j = 0; j < els; j++)
12578 if (inst.operands[j].vectype.type == NT_invtype)
12579 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12580 types[j]);
12581 }
12582 else
12583 {
12584 first_error (_("operand types can't be inferred"));
12585 return badtype;
5287ad62
JB
12586 }
12587 }
12588 else if (inst.vectype.elems != els)
12589 {
dcbf9037 12590 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12591 return badtype;
12592 }
12593
12594 for (pass = 0; pass < 2; pass++)
12595 {
12596 for (i = 0; i < els; i++)
12597 {
12598 unsigned thisarg = types[i];
12599 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12600 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12601 enum neon_el_type g_type = inst.vectype.el[i].type;
12602 unsigned g_size = inst.vectype.el[i].size;
12603
12604 /* Decay more-specific signed & unsigned types to sign-insensitive
12605 integer types if sign-specific variants are unavailable. */
12606 if ((g_type == NT_signed || g_type == NT_unsigned)
12607 && (types_allowed & N_SU_ALL) == 0)
12608 g_type = NT_integer;
12609
12610 /* If only untyped args are allowed, decay any more specific types to
12611 them. Some instructions only care about signs for some element
12612 sizes, so handle that properly. */
12613 if ((g_size == 8 && (types_allowed & N_8) != 0)
12614 || (g_size == 16 && (types_allowed & N_16) != 0)
12615 || (g_size == 32 && (types_allowed & N_32) != 0)
12616 || (g_size == 64 && (types_allowed & N_64) != 0))
12617 g_type = NT_untyped;
12618
12619 if (pass == 0)
12620 {
12621 if ((thisarg & N_KEY) != 0)
12622 {
12623 k_type = g_type;
12624 k_size = g_size;
12625 key_allowed = thisarg & ~N_KEY;
12626 }
12627 }
12628 else
12629 {
037e8744
JB
12630 if ((thisarg & N_VFP) != 0)
12631 {
99b253c5
NC
12632 enum neon_shape_el regshape;
12633 unsigned regwidth, match;
12634
12635 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12636 if (ns == NS_NULL)
12637 {
12638 first_error (_("invalid instruction shape"));
12639 return badtype;
12640 }
12641 regshape = neon_shape_tab[ns].el[i];
12642 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12643
12644 /* In VFP mode, operands must match register widths. If we
12645 have a key operand, use its width, else use the width of
12646 the current operand. */
12647 if (k_size != -1u)
12648 match = k_size;
12649 else
12650 match = g_size;
12651
12652 if (regwidth != match)
12653 {
12654 first_error (_("operand size must match register width"));
12655 return badtype;
12656 }
12657 }
5f4273c7 12658
5287ad62
JB
12659 if ((thisarg & N_EQK) == 0)
12660 {
12661 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12662
12663 if ((given_type & types_allowed) == 0)
12664 {
dcbf9037 12665 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12666 return badtype;
12667 }
12668 }
12669 else
12670 {
12671 enum neon_el_type mod_k_type = k_type;
12672 unsigned mod_k_size = k_size;
12673 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12674 if (g_type != mod_k_type || g_size != mod_k_size)
12675 {
dcbf9037 12676 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12677 return badtype;
12678 }
12679 }
12680 }
12681 }
12682 }
12683
12684 return inst.vectype.el[key_el];
12685}
12686
037e8744 12687/* Neon-style VFP instruction forwarding. */
5287ad62 12688
037e8744
JB
12689/* Thumb VFP instructions have 0xE in the condition field. */
12690
12691static void
12692do_vfp_cond_or_thumb (void)
5287ad62 12693{
88714cb8
DG
12694 inst.is_neon = 1;
12695
5287ad62 12696 if (thumb_mode)
037e8744 12697 inst.instruction |= 0xe0000000;
5287ad62 12698 else
037e8744 12699 inst.instruction |= inst.cond << 28;
5287ad62
JB
12700}
12701
037e8744
JB
12702/* Look up and encode a simple mnemonic, for use as a helper function for the
12703 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12704 etc. It is assumed that operand parsing has already been done, and that the
12705 operands are in the form expected by the given opcode (this isn't necessarily
12706 the same as the form in which they were parsed, hence some massaging must
12707 take place before this function is called).
12708 Checks current arch version against that in the looked-up opcode. */
5287ad62 12709
037e8744
JB
12710static void
12711do_vfp_nsyn_opcode (const char *opname)
5287ad62 12712{
037e8744 12713 const struct asm_opcode *opcode;
5f4273c7 12714
21d799b5 12715 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12716
037e8744
JB
12717 if (!opcode)
12718 abort ();
5287ad62 12719
037e8744
JB
12720 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12721 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12722 _(BAD_FPU));
5287ad62 12723
88714cb8
DG
12724 inst.is_neon = 1;
12725
037e8744
JB
12726 if (thumb_mode)
12727 {
12728 inst.instruction = opcode->tvalue;
12729 opcode->tencode ();
12730 }
12731 else
12732 {
12733 inst.instruction = (inst.cond << 28) | opcode->avalue;
12734 opcode->aencode ();
12735 }
12736}
5287ad62
JB
12737
12738static void
037e8744 12739do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12740{
037e8744
JB
12741 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12742
12743 if (rs == NS_FFF)
12744 {
12745 if (is_add)
12746 do_vfp_nsyn_opcode ("fadds");
12747 else
12748 do_vfp_nsyn_opcode ("fsubs");
12749 }
12750 else
12751 {
12752 if (is_add)
12753 do_vfp_nsyn_opcode ("faddd");
12754 else
12755 do_vfp_nsyn_opcode ("fsubd");
12756 }
12757}
12758
12759/* Check operand types to see if this is a VFP instruction, and if so call
12760 PFN (). */
12761
12762static int
12763try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12764{
12765 enum neon_shape rs;
12766 struct neon_type_el et;
12767
12768 switch (args)
12769 {
12770 case 2:
12771 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12772 et = neon_check_type (2, rs,
12773 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12774 break;
5f4273c7 12775
037e8744
JB
12776 case 3:
12777 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12778 et = neon_check_type (3, rs,
12779 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12780 break;
12781
12782 default:
12783 abort ();
12784 }
12785
12786 if (et.type != NT_invtype)
12787 {
12788 pfn (rs);
12789 return SUCCESS;
12790 }
037e8744 12791
99b253c5 12792 inst.error = NULL;
037e8744
JB
12793 return FAIL;
12794}
12795
12796static void
12797do_vfp_nsyn_mla_mls (enum neon_shape rs)
12798{
12799 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12800
037e8744
JB
12801 if (rs == NS_FFF)
12802 {
12803 if (is_mla)
12804 do_vfp_nsyn_opcode ("fmacs");
12805 else
1ee69515 12806 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12807 }
12808 else
12809 {
12810 if (is_mla)
12811 do_vfp_nsyn_opcode ("fmacd");
12812 else
1ee69515 12813 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12814 }
12815}
12816
62f3b8c8
PB
12817static void
12818do_vfp_nsyn_fma_fms (enum neon_shape rs)
12819{
12820 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12821
12822 if (rs == NS_FFF)
12823 {
12824 if (is_fma)
12825 do_vfp_nsyn_opcode ("ffmas");
12826 else
12827 do_vfp_nsyn_opcode ("ffnmas");
12828 }
12829 else
12830 {
12831 if (is_fma)
12832 do_vfp_nsyn_opcode ("ffmad");
12833 else
12834 do_vfp_nsyn_opcode ("ffnmad");
12835 }
12836}
12837
037e8744
JB
12838static void
12839do_vfp_nsyn_mul (enum neon_shape rs)
12840{
12841 if (rs == NS_FFF)
12842 do_vfp_nsyn_opcode ("fmuls");
12843 else
12844 do_vfp_nsyn_opcode ("fmuld");
12845}
12846
12847static void
12848do_vfp_nsyn_abs_neg (enum neon_shape rs)
12849{
12850 int is_neg = (inst.instruction & 0x80) != 0;
12851 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12852
12853 if (rs == NS_FF)
12854 {
12855 if (is_neg)
12856 do_vfp_nsyn_opcode ("fnegs");
12857 else
12858 do_vfp_nsyn_opcode ("fabss");
12859 }
12860 else
12861 {
12862 if (is_neg)
12863 do_vfp_nsyn_opcode ("fnegd");
12864 else
12865 do_vfp_nsyn_opcode ("fabsd");
12866 }
12867}
12868
12869/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12870 insns belong to Neon, and are handled elsewhere. */
12871
12872static void
12873do_vfp_nsyn_ldm_stm (int is_dbmode)
12874{
12875 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12876 if (is_ldm)
12877 {
12878 if (is_dbmode)
12879 do_vfp_nsyn_opcode ("fldmdbs");
12880 else
12881 do_vfp_nsyn_opcode ("fldmias");
12882 }
12883 else
12884 {
12885 if (is_dbmode)
12886 do_vfp_nsyn_opcode ("fstmdbs");
12887 else
12888 do_vfp_nsyn_opcode ("fstmias");
12889 }
12890}
12891
037e8744
JB
12892static void
12893do_vfp_nsyn_sqrt (void)
12894{
12895 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12896 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12897
037e8744
JB
12898 if (rs == NS_FF)
12899 do_vfp_nsyn_opcode ("fsqrts");
12900 else
12901 do_vfp_nsyn_opcode ("fsqrtd");
12902}
12903
12904static void
12905do_vfp_nsyn_div (void)
12906{
12907 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12908 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12909 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12910
037e8744
JB
12911 if (rs == NS_FFF)
12912 do_vfp_nsyn_opcode ("fdivs");
12913 else
12914 do_vfp_nsyn_opcode ("fdivd");
12915}
12916
12917static void
12918do_vfp_nsyn_nmul (void)
12919{
12920 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12921 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12922 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12923
037e8744
JB
12924 if (rs == NS_FFF)
12925 {
88714cb8 12926 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12927 do_vfp_sp_dyadic ();
12928 }
12929 else
12930 {
88714cb8 12931 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12932 do_vfp_dp_rd_rn_rm ();
12933 }
12934 do_vfp_cond_or_thumb ();
12935}
12936
12937static void
12938do_vfp_nsyn_cmp (void)
12939{
12940 if (inst.operands[1].isreg)
12941 {
12942 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12943 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12944
037e8744
JB
12945 if (rs == NS_FF)
12946 {
88714cb8 12947 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12948 do_vfp_sp_monadic ();
12949 }
12950 else
12951 {
88714cb8 12952 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12953 do_vfp_dp_rd_rm ();
12954 }
12955 }
12956 else
12957 {
12958 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12959 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12960
12961 switch (inst.instruction & 0x0fffffff)
12962 {
12963 case N_MNEM_vcmp:
12964 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12965 break;
12966 case N_MNEM_vcmpe:
12967 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12968 break;
12969 default:
12970 abort ();
12971 }
5f4273c7 12972
037e8744
JB
12973 if (rs == NS_FI)
12974 {
88714cb8 12975 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12976 do_vfp_sp_compare_z ();
12977 }
12978 else
12979 {
88714cb8 12980 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12981 do_vfp_dp_rd ();
12982 }
12983 }
12984 do_vfp_cond_or_thumb ();
12985}
12986
12987static void
12988nsyn_insert_sp (void)
12989{
12990 inst.operands[1] = inst.operands[0];
12991 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12992 inst.operands[0].reg = REG_SP;
037e8744
JB
12993 inst.operands[0].isreg = 1;
12994 inst.operands[0].writeback = 1;
12995 inst.operands[0].present = 1;
12996}
12997
12998static void
12999do_vfp_nsyn_push (void)
13000{
13001 nsyn_insert_sp ();
13002 if (inst.operands[1].issingle)
13003 do_vfp_nsyn_opcode ("fstmdbs");
13004 else
13005 do_vfp_nsyn_opcode ("fstmdbd");
13006}
13007
13008static void
13009do_vfp_nsyn_pop (void)
13010{
13011 nsyn_insert_sp ();
13012 if (inst.operands[1].issingle)
22b5b651 13013 do_vfp_nsyn_opcode ("fldmias");
037e8744 13014 else
22b5b651 13015 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13016}
13017
13018/* Fix up Neon data-processing instructions, ORing in the correct bits for
13019 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13020
88714cb8
DG
13021static void
13022neon_dp_fixup (struct arm_it* insn)
037e8744 13023{
88714cb8
DG
13024 unsigned int i = insn->instruction;
13025 insn->is_neon = 1;
13026
037e8744
JB
13027 if (thumb_mode)
13028 {
13029 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13030 if (i & (1 << 24))
13031 i |= 1 << 28;
5f4273c7 13032
037e8744 13033 i &= ~(1 << 24);
5f4273c7 13034
037e8744
JB
13035 i |= 0xef000000;
13036 }
13037 else
13038 i |= 0xf2000000;
5f4273c7 13039
88714cb8 13040 insn->instruction = i;
037e8744
JB
13041}
13042
13043/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13044 (0, 1, 2, 3). */
13045
13046static unsigned
13047neon_logbits (unsigned x)
13048{
13049 return ffs (x) - 4;
13050}
13051
13052#define LOW4(R) ((R) & 0xf)
13053#define HI1(R) (((R) >> 4) & 1)
13054
13055/* Encode insns with bit pattern:
13056
13057 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13058 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13059
037e8744
JB
13060 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13061 different meaning for some instruction. */
13062
13063static void
13064neon_three_same (int isquad, int ubit, int size)
13065{
13066 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13067 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13068 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13069 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13070 inst.instruction |= LOW4 (inst.operands[2].reg);
13071 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13072 inst.instruction |= (isquad != 0) << 6;
13073 inst.instruction |= (ubit != 0) << 24;
13074 if (size != -1)
13075 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13076
88714cb8 13077 neon_dp_fixup (&inst);
037e8744
JB
13078}
13079
13080/* Encode instructions of the form:
13081
13082 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13083 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13084
13085 Don't write size if SIZE == -1. */
13086
13087static void
13088neon_two_same (int qbit, int ubit, int size)
13089{
13090 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13091 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13092 inst.instruction |= LOW4 (inst.operands[1].reg);
13093 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13094 inst.instruction |= (qbit != 0) << 6;
13095 inst.instruction |= (ubit != 0) << 24;
13096
13097 if (size != -1)
13098 inst.instruction |= neon_logbits (size) << 18;
13099
88714cb8 13100 neon_dp_fixup (&inst);
5287ad62
JB
13101}
13102
13103/* Neon instruction encoders, in approximate order of appearance. */
13104
13105static void
13106do_neon_dyadic_i_su (void)
13107{
037e8744 13108 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13109 struct neon_type_el et = neon_check_type (3, rs,
13110 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13111 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13112}
13113
13114static void
13115do_neon_dyadic_i64_su (void)
13116{
037e8744 13117 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13118 struct neon_type_el et = neon_check_type (3, rs,
13119 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13120 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13121}
13122
13123static void
13124neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13125 unsigned immbits)
13126{
13127 unsigned size = et.size >> 3;
13128 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13129 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13130 inst.instruction |= LOW4 (inst.operands[1].reg);
13131 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13132 inst.instruction |= (isquad != 0) << 6;
13133 inst.instruction |= immbits << 16;
13134 inst.instruction |= (size >> 3) << 7;
13135 inst.instruction |= (size & 0x7) << 19;
13136 if (write_ubit)
13137 inst.instruction |= (uval != 0) << 24;
13138
88714cb8 13139 neon_dp_fixup (&inst);
5287ad62
JB
13140}
13141
13142static void
13143do_neon_shl_imm (void)
13144{
13145 if (!inst.operands[2].isreg)
13146 {
037e8744 13147 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13148 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13149 NEON_ENCODE (IMMED, inst);
037e8744 13150 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13151 }
13152 else
13153 {
037e8744 13154 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13155 struct neon_type_el et = neon_check_type (3, rs,
13156 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13157 unsigned int tmp;
13158
13159 /* VSHL/VQSHL 3-register variants have syntax such as:
13160 vshl.xx Dd, Dm, Dn
13161 whereas other 3-register operations encoded by neon_three_same have
13162 syntax like:
13163 vadd.xx Dd, Dn, Dm
13164 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13165 here. */
13166 tmp = inst.operands[2].reg;
13167 inst.operands[2].reg = inst.operands[1].reg;
13168 inst.operands[1].reg = tmp;
88714cb8 13169 NEON_ENCODE (INTEGER, inst);
037e8744 13170 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13171 }
13172}
13173
13174static void
13175do_neon_qshl_imm (void)
13176{
13177 if (!inst.operands[2].isreg)
13178 {
037e8744 13179 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13180 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13181
88714cb8 13182 NEON_ENCODE (IMMED, inst);
037e8744 13183 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13184 inst.operands[2].imm);
13185 }
13186 else
13187 {
037e8744 13188 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13189 struct neon_type_el et = neon_check_type (3, rs,
13190 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13191 unsigned int tmp;
13192
13193 /* See note in do_neon_shl_imm. */
13194 tmp = inst.operands[2].reg;
13195 inst.operands[2].reg = inst.operands[1].reg;
13196 inst.operands[1].reg = tmp;
88714cb8 13197 NEON_ENCODE (INTEGER, inst);
037e8744 13198 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13199 }
13200}
13201
627907b7
JB
13202static void
13203do_neon_rshl (void)
13204{
13205 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13206 struct neon_type_el et = neon_check_type (3, rs,
13207 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13208 unsigned int tmp;
13209
13210 tmp = inst.operands[2].reg;
13211 inst.operands[2].reg = inst.operands[1].reg;
13212 inst.operands[1].reg = tmp;
13213 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13214}
13215
5287ad62
JB
13216static int
13217neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13218{
036dc3f7
PB
13219 /* Handle .I8 pseudo-instructions. */
13220 if (size == 8)
5287ad62 13221 {
5287ad62
JB
13222 /* Unfortunately, this will make everything apart from zero out-of-range.
13223 FIXME is this the intended semantics? There doesn't seem much point in
13224 accepting .I8 if so. */
13225 immediate |= immediate << 8;
13226 size = 16;
036dc3f7
PB
13227 }
13228
13229 if (size >= 32)
13230 {
13231 if (immediate == (immediate & 0x000000ff))
13232 {
13233 *immbits = immediate;
13234 return 0x1;
13235 }
13236 else if (immediate == (immediate & 0x0000ff00))
13237 {
13238 *immbits = immediate >> 8;
13239 return 0x3;
13240 }
13241 else if (immediate == (immediate & 0x00ff0000))
13242 {
13243 *immbits = immediate >> 16;
13244 return 0x5;
13245 }
13246 else if (immediate == (immediate & 0xff000000))
13247 {
13248 *immbits = immediate >> 24;
13249 return 0x7;
13250 }
13251 if ((immediate & 0xffff) != (immediate >> 16))
13252 goto bad_immediate;
13253 immediate &= 0xffff;
5287ad62
JB
13254 }
13255
13256 if (immediate == (immediate & 0x000000ff))
13257 {
13258 *immbits = immediate;
036dc3f7 13259 return 0x9;
5287ad62
JB
13260 }
13261 else if (immediate == (immediate & 0x0000ff00))
13262 {
13263 *immbits = immediate >> 8;
036dc3f7 13264 return 0xb;
5287ad62
JB
13265 }
13266
13267 bad_immediate:
dcbf9037 13268 first_error (_("immediate value out of range"));
5287ad62
JB
13269 return FAIL;
13270}
13271
13272/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13273 A, B, C, D. */
13274
13275static int
13276neon_bits_same_in_bytes (unsigned imm)
13277{
13278 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13279 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13280 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13281 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13282}
13283
13284/* For immediate of above form, return 0bABCD. */
13285
13286static unsigned
13287neon_squash_bits (unsigned imm)
13288{
13289 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13290 | ((imm & 0x01000000) >> 21);
13291}
13292
136da414 13293/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13294
13295static unsigned
13296neon_qfloat_bits (unsigned imm)
13297{
136da414 13298 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13299}
13300
13301/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13302 the instruction. *OP is passed as the initial value of the op field, and
13303 may be set to a different value depending on the constant (i.e.
13304 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13305 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13306 try smaller element sizes. */
5287ad62
JB
13307
13308static int
c96612cc
JB
13309neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13310 unsigned *immbits, int *op, int size,
13311 enum neon_el_type type)
5287ad62 13312{
c96612cc
JB
13313 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13314 float. */
13315 if (type == NT_float && !float_p)
13316 return FAIL;
13317
136da414
JB
13318 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13319 {
13320 if (size != 32 || *op == 1)
13321 return FAIL;
13322 *immbits = neon_qfloat_bits (immlo);
13323 return 0xf;
13324 }
036dc3f7
PB
13325
13326 if (size == 64)
5287ad62 13327 {
036dc3f7
PB
13328 if (neon_bits_same_in_bytes (immhi)
13329 && neon_bits_same_in_bytes (immlo))
13330 {
13331 if (*op == 1)
13332 return FAIL;
13333 *immbits = (neon_squash_bits (immhi) << 4)
13334 | neon_squash_bits (immlo);
13335 *op = 1;
13336 return 0xe;
13337 }
13338
13339 if (immhi != immlo)
13340 return FAIL;
5287ad62 13341 }
036dc3f7
PB
13342
13343 if (size >= 32)
5287ad62 13344 {
036dc3f7
PB
13345 if (immlo == (immlo & 0x000000ff))
13346 {
13347 *immbits = immlo;
13348 return 0x0;
13349 }
13350 else if (immlo == (immlo & 0x0000ff00))
13351 {
13352 *immbits = immlo >> 8;
13353 return 0x2;
13354 }
13355 else if (immlo == (immlo & 0x00ff0000))
13356 {
13357 *immbits = immlo >> 16;
13358 return 0x4;
13359 }
13360 else if (immlo == (immlo & 0xff000000))
13361 {
13362 *immbits = immlo >> 24;
13363 return 0x6;
13364 }
13365 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13366 {
13367 *immbits = (immlo >> 8) & 0xff;
13368 return 0xc;
13369 }
13370 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13371 {
13372 *immbits = (immlo >> 16) & 0xff;
13373 return 0xd;
13374 }
13375
13376 if ((immlo & 0xffff) != (immlo >> 16))
13377 return FAIL;
13378 immlo &= 0xffff;
5287ad62 13379 }
036dc3f7
PB
13380
13381 if (size >= 16)
5287ad62 13382 {
036dc3f7
PB
13383 if (immlo == (immlo & 0x000000ff))
13384 {
13385 *immbits = immlo;
13386 return 0x8;
13387 }
13388 else if (immlo == (immlo & 0x0000ff00))
13389 {
13390 *immbits = immlo >> 8;
13391 return 0xa;
13392 }
13393
13394 if ((immlo & 0xff) != (immlo >> 8))
13395 return FAIL;
13396 immlo &= 0xff;
5287ad62 13397 }
036dc3f7
PB
13398
13399 if (immlo == (immlo & 0x000000ff))
5287ad62 13400 {
036dc3f7
PB
13401 /* Don't allow MVN with 8-bit immediate. */
13402 if (*op == 1)
13403 return FAIL;
13404 *immbits = immlo;
13405 return 0xe;
5287ad62 13406 }
5287ad62
JB
13407
13408 return FAIL;
13409}
13410
13411/* Write immediate bits [7:0] to the following locations:
13412
13413 |28/24|23 19|18 16|15 4|3 0|
13414 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13415
13416 This function is used by VMOV/VMVN/VORR/VBIC. */
13417
13418static void
13419neon_write_immbits (unsigned immbits)
13420{
13421 inst.instruction |= immbits & 0xf;
13422 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13423 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13424}
13425
13426/* Invert low-order SIZE bits of XHI:XLO. */
13427
13428static void
13429neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13430{
13431 unsigned immlo = xlo ? *xlo : 0;
13432 unsigned immhi = xhi ? *xhi : 0;
13433
13434 switch (size)
13435 {
13436 case 8:
13437 immlo = (~immlo) & 0xff;
13438 break;
13439
13440 case 16:
13441 immlo = (~immlo) & 0xffff;
13442 break;
13443
13444 case 64:
13445 immhi = (~immhi) & 0xffffffff;
13446 /* fall through. */
13447
13448 case 32:
13449 immlo = (~immlo) & 0xffffffff;
13450 break;
13451
13452 default:
13453 abort ();
13454 }
13455
13456 if (xlo)
13457 *xlo = immlo;
13458
13459 if (xhi)
13460 *xhi = immhi;
13461}
13462
13463static void
13464do_neon_logic (void)
13465{
13466 if (inst.operands[2].present && inst.operands[2].isreg)
13467 {
037e8744 13468 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13469 neon_check_type (3, rs, N_IGNORE_TYPE);
13470 /* U bit and size field were set as part of the bitmask. */
88714cb8 13471 NEON_ENCODE (INTEGER, inst);
037e8744 13472 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13473 }
13474 else
13475 {
4316f0d2
DG
13476 const int three_ops_form = (inst.operands[2].present
13477 && !inst.operands[2].isreg);
13478 const int immoperand = (three_ops_form ? 2 : 1);
13479 enum neon_shape rs = (three_ops_form
13480 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13481 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13482 struct neon_type_el et = neon_check_type (2, rs,
13483 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13484 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13485 unsigned immbits;
13486 int cmode;
5f4273c7 13487
5287ad62
JB
13488 if (et.type == NT_invtype)
13489 return;
5f4273c7 13490
4316f0d2
DG
13491 if (three_ops_form)
13492 constraint (inst.operands[0].reg != inst.operands[1].reg,
13493 _("first and second operands shall be the same register"));
13494
88714cb8 13495 NEON_ENCODE (IMMED, inst);
5287ad62 13496
4316f0d2 13497 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13498 if (et.size == 64)
13499 {
13500 /* .i64 is a pseudo-op, so the immediate must be a repeating
13501 pattern. */
4316f0d2
DG
13502 if (immbits != (inst.operands[immoperand].regisimm ?
13503 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13504 {
13505 /* Set immbits to an invalid constant. */
13506 immbits = 0xdeadbeef;
13507 }
13508 }
13509
5287ad62
JB
13510 switch (opcode)
13511 {
13512 case N_MNEM_vbic:
036dc3f7 13513 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13514 break;
5f4273c7 13515
5287ad62 13516 case N_MNEM_vorr:
036dc3f7 13517 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13518 break;
5f4273c7 13519
5287ad62
JB
13520 case N_MNEM_vand:
13521 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13522 neon_invert_size (&immbits, 0, et.size);
13523 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13524 break;
5f4273c7 13525
5287ad62
JB
13526 case N_MNEM_vorn:
13527 /* Pseudo-instruction for VORR. */
5287ad62
JB
13528 neon_invert_size (&immbits, 0, et.size);
13529 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13530 break;
5f4273c7 13531
5287ad62
JB
13532 default:
13533 abort ();
13534 }
13535
13536 if (cmode == FAIL)
13537 return;
13538
037e8744 13539 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13540 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13541 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13542 inst.instruction |= cmode << 8;
13543 neon_write_immbits (immbits);
5f4273c7 13544
88714cb8 13545 neon_dp_fixup (&inst);
5287ad62
JB
13546 }
13547}
13548
13549static void
13550do_neon_bitfield (void)
13551{
037e8744 13552 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13553 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13554 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13555}
13556
13557static void
dcbf9037
JB
13558neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13559 unsigned destbits)
5287ad62 13560{
037e8744 13561 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13562 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13563 types | N_KEY);
5287ad62
JB
13564 if (et.type == NT_float)
13565 {
88714cb8 13566 NEON_ENCODE (FLOAT, inst);
037e8744 13567 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13568 }
13569 else
13570 {
88714cb8 13571 NEON_ENCODE (INTEGER, inst);
037e8744 13572 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13573 }
13574}
13575
13576static void
13577do_neon_dyadic_if_su (void)
13578{
dcbf9037 13579 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13580}
13581
13582static void
13583do_neon_dyadic_if_su_d (void)
13584{
13585 /* This version only allow D registers, but that constraint is enforced during
13586 operand parsing so we don't need to do anything extra here. */
dcbf9037 13587 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13588}
13589
5287ad62
JB
13590static void
13591do_neon_dyadic_if_i_d (void)
13592{
428e3f1f
PB
13593 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13594 affected if we specify unsigned args. */
13595 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13596}
13597
037e8744
JB
13598enum vfp_or_neon_is_neon_bits
13599{
13600 NEON_CHECK_CC = 1,
13601 NEON_CHECK_ARCH = 2
13602};
13603
13604/* Call this function if an instruction which may have belonged to the VFP or
13605 Neon instruction sets, but turned out to be a Neon instruction (due to the
13606 operand types involved, etc.). We have to check and/or fix-up a couple of
13607 things:
13608
13609 - Make sure the user hasn't attempted to make a Neon instruction
13610 conditional.
13611 - Alter the value in the condition code field if necessary.
13612 - Make sure that the arch supports Neon instructions.
13613
13614 Which of these operations take place depends on bits from enum
13615 vfp_or_neon_is_neon_bits.
13616
13617 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13618 current instruction's condition is COND_ALWAYS, the condition field is
13619 changed to inst.uncond_value. This is necessary because instructions shared
13620 between VFP and Neon may be conditional for the VFP variants only, and the
13621 unconditional Neon version must have, e.g., 0xF in the condition field. */
13622
13623static int
13624vfp_or_neon_is_neon (unsigned check)
13625{
13626 /* Conditions are always legal in Thumb mode (IT blocks). */
13627 if (!thumb_mode && (check & NEON_CHECK_CC))
13628 {
13629 if (inst.cond != COND_ALWAYS)
13630 {
13631 first_error (_(BAD_COND));
13632 return FAIL;
13633 }
13634 if (inst.uncond_value != -1)
13635 inst.instruction |= inst.uncond_value << 28;
13636 }
5f4273c7 13637
037e8744
JB
13638 if ((check & NEON_CHECK_ARCH)
13639 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13640 {
13641 first_error (_(BAD_FPU));
13642 return FAIL;
13643 }
5f4273c7 13644
037e8744
JB
13645 return SUCCESS;
13646}
13647
5287ad62
JB
13648static void
13649do_neon_addsub_if_i (void)
13650{
037e8744
JB
13651 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13652 return;
13653
13654 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13655 return;
13656
5287ad62
JB
13657 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13658 affected if we specify unsigned args. */
dcbf9037 13659 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13660}
13661
13662/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13663 result to be:
13664 V<op> A,B (A is operand 0, B is operand 2)
13665 to mean:
13666 V<op> A,B,A
13667 not:
13668 V<op> A,B,B
13669 so handle that case specially. */
13670
13671static void
13672neon_exchange_operands (void)
13673{
13674 void *scratch = alloca (sizeof (inst.operands[0]));
13675 if (inst.operands[1].present)
13676 {
13677 /* Swap operands[1] and operands[2]. */
13678 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13679 inst.operands[1] = inst.operands[2];
13680 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13681 }
13682 else
13683 {
13684 inst.operands[1] = inst.operands[2];
13685 inst.operands[2] = inst.operands[0];
13686 }
13687}
13688
13689static void
13690neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13691{
13692 if (inst.operands[2].isreg)
13693 {
13694 if (invert)
13695 neon_exchange_operands ();
dcbf9037 13696 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13697 }
13698 else
13699 {
037e8744 13700 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13701 struct neon_type_el et = neon_check_type (2, rs,
13702 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13703
88714cb8 13704 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13705 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13706 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13707 inst.instruction |= LOW4 (inst.operands[1].reg);
13708 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13709 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13710 inst.instruction |= (et.type == NT_float) << 10;
13711 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13712
88714cb8 13713 neon_dp_fixup (&inst);
5287ad62
JB
13714 }
13715}
13716
13717static void
13718do_neon_cmp (void)
13719{
13720 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13721}
13722
13723static void
13724do_neon_cmp_inv (void)
13725{
13726 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13727}
13728
13729static void
13730do_neon_ceq (void)
13731{
13732 neon_compare (N_IF_32, N_IF_32, FALSE);
13733}
13734
13735/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13736 scalars, which are encoded in 5 bits, M : Rm.
13737 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13738 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13739 index in M. */
13740
13741static unsigned
13742neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13743{
dcbf9037
JB
13744 unsigned regno = NEON_SCALAR_REG (scalar);
13745 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13746
13747 switch (elsize)
13748 {
13749 case 16:
13750 if (regno > 7 || elno > 3)
13751 goto bad_scalar;
13752 return regno | (elno << 3);
5f4273c7 13753
5287ad62
JB
13754 case 32:
13755 if (regno > 15 || elno > 1)
13756 goto bad_scalar;
13757 return regno | (elno << 4);
13758
13759 default:
13760 bad_scalar:
dcbf9037 13761 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13762 }
13763
13764 return 0;
13765}
13766
13767/* Encode multiply / multiply-accumulate scalar instructions. */
13768
13769static void
13770neon_mul_mac (struct neon_type_el et, int ubit)
13771{
dcbf9037
JB
13772 unsigned scalar;
13773
13774 /* Give a more helpful error message if we have an invalid type. */
13775 if (et.type == NT_invtype)
13776 return;
5f4273c7 13777
dcbf9037 13778 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13779 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13780 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13781 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13782 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13783 inst.instruction |= LOW4 (scalar);
13784 inst.instruction |= HI1 (scalar) << 5;
13785 inst.instruction |= (et.type == NT_float) << 8;
13786 inst.instruction |= neon_logbits (et.size) << 20;
13787 inst.instruction |= (ubit != 0) << 24;
13788
88714cb8 13789 neon_dp_fixup (&inst);
5287ad62
JB
13790}
13791
13792static void
13793do_neon_mac_maybe_scalar (void)
13794{
037e8744
JB
13795 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13796 return;
13797
13798 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13799 return;
13800
5287ad62
JB
13801 if (inst.operands[2].isscalar)
13802 {
037e8744 13803 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13804 struct neon_type_el et = neon_check_type (3, rs,
13805 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13806 NEON_ENCODE (SCALAR, inst);
037e8744 13807 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13808 }
13809 else
428e3f1f
PB
13810 {
13811 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13812 affected if we specify unsigned args. */
13813 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13814 }
5287ad62
JB
13815}
13816
62f3b8c8
PB
13817static void
13818do_neon_fmac (void)
13819{
13820 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13821 return;
13822
13823 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13824 return;
13825
13826 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13827}
13828
5287ad62
JB
13829static void
13830do_neon_tst (void)
13831{
037e8744 13832 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13833 struct neon_type_el et = neon_check_type (3, rs,
13834 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13835 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13836}
13837
13838/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13839 same types as the MAC equivalents. The polynomial type for this instruction
13840 is encoded the same as the integer type. */
13841
13842static void
13843do_neon_mul (void)
13844{
037e8744
JB
13845 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13846 return;
13847
13848 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13849 return;
13850
5287ad62
JB
13851 if (inst.operands[2].isscalar)
13852 do_neon_mac_maybe_scalar ();
13853 else
dcbf9037 13854 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13855}
13856
13857static void
13858do_neon_qdmulh (void)
13859{
13860 if (inst.operands[2].isscalar)
13861 {
037e8744 13862 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13863 struct neon_type_el et = neon_check_type (3, rs,
13864 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13865 NEON_ENCODE (SCALAR, inst);
037e8744 13866 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13867 }
13868 else
13869 {
037e8744 13870 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13871 struct neon_type_el et = neon_check_type (3, rs,
13872 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13873 NEON_ENCODE (INTEGER, inst);
5287ad62 13874 /* The U bit (rounding) comes from bit mask. */
037e8744 13875 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13876 }
13877}
13878
13879static void
13880do_neon_fcmp_absolute (void)
13881{
037e8744 13882 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13883 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13884 /* Size field comes from bit mask. */
037e8744 13885 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13886}
13887
13888static void
13889do_neon_fcmp_absolute_inv (void)
13890{
13891 neon_exchange_operands ();
13892 do_neon_fcmp_absolute ();
13893}
13894
13895static void
13896do_neon_step (void)
13897{
037e8744 13898 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13899 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13900 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13901}
13902
13903static void
13904do_neon_abs_neg (void)
13905{
037e8744
JB
13906 enum neon_shape rs;
13907 struct neon_type_el et;
5f4273c7 13908
037e8744
JB
13909 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13910 return;
13911
13912 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13913 return;
13914
13915 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13916 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13917
5287ad62
JB
13918 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13919 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13920 inst.instruction |= LOW4 (inst.operands[1].reg);
13921 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13922 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13923 inst.instruction |= (et.type == NT_float) << 10;
13924 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13925
88714cb8 13926 neon_dp_fixup (&inst);
5287ad62
JB
13927}
13928
13929static void
13930do_neon_sli (void)
13931{
037e8744 13932 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13933 struct neon_type_el et = neon_check_type (2, rs,
13934 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13935 int imm = inst.operands[2].imm;
13936 constraint (imm < 0 || (unsigned)imm >= et.size,
13937 _("immediate out of range for insert"));
037e8744 13938 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13939}
13940
13941static void
13942do_neon_sri (void)
13943{
037e8744 13944 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13945 struct neon_type_el et = neon_check_type (2, rs,
13946 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13947 int imm = inst.operands[2].imm;
13948 constraint (imm < 1 || (unsigned)imm > et.size,
13949 _("immediate out of range for insert"));
037e8744 13950 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13951}
13952
13953static void
13954do_neon_qshlu_imm (void)
13955{
037e8744 13956 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13957 struct neon_type_el et = neon_check_type (2, rs,
13958 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13959 int imm = inst.operands[2].imm;
13960 constraint (imm < 0 || (unsigned)imm >= et.size,
13961 _("immediate out of range for shift"));
13962 /* Only encodes the 'U present' variant of the instruction.
13963 In this case, signed types have OP (bit 8) set to 0.
13964 Unsigned types have OP set to 1. */
13965 inst.instruction |= (et.type == NT_unsigned) << 8;
13966 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13967 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13968}
13969
13970static void
13971do_neon_qmovn (void)
13972{
13973 struct neon_type_el et = neon_check_type (2, NS_DQ,
13974 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13975 /* Saturating move where operands can be signed or unsigned, and the
13976 destination has the same signedness. */
88714cb8 13977 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13978 if (et.type == NT_unsigned)
13979 inst.instruction |= 0xc0;
13980 else
13981 inst.instruction |= 0x80;
13982 neon_two_same (0, 1, et.size / 2);
13983}
13984
13985static void
13986do_neon_qmovun (void)
13987{
13988 struct neon_type_el et = neon_check_type (2, NS_DQ,
13989 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13990 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13991 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13992 neon_two_same (0, 1, et.size / 2);
13993}
13994
13995static void
13996do_neon_rshift_sat_narrow (void)
13997{
13998 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13999 or unsigned. If operands are unsigned, results must also be unsigned. */
14000 struct neon_type_el et = neon_check_type (2, NS_DQI,
14001 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14002 int imm = inst.operands[2].imm;
14003 /* This gets the bounds check, size encoding and immediate bits calculation
14004 right. */
14005 et.size /= 2;
5f4273c7 14006
5287ad62
JB
14007 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14008 VQMOVN.I<size> <Dd>, <Qm>. */
14009 if (imm == 0)
14010 {
14011 inst.operands[2].present = 0;
14012 inst.instruction = N_MNEM_vqmovn;
14013 do_neon_qmovn ();
14014 return;
14015 }
5f4273c7 14016
5287ad62
JB
14017 constraint (imm < 1 || (unsigned)imm > et.size,
14018 _("immediate out of range"));
14019 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14020}
14021
14022static void
14023do_neon_rshift_sat_narrow_u (void)
14024{
14025 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14026 or unsigned. If operands are unsigned, results must also be unsigned. */
14027 struct neon_type_el et = neon_check_type (2, NS_DQI,
14028 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14029 int imm = inst.operands[2].imm;
14030 /* This gets the bounds check, size encoding and immediate bits calculation
14031 right. */
14032 et.size /= 2;
14033
14034 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14035 VQMOVUN.I<size> <Dd>, <Qm>. */
14036 if (imm == 0)
14037 {
14038 inst.operands[2].present = 0;
14039 inst.instruction = N_MNEM_vqmovun;
14040 do_neon_qmovun ();
14041 return;
14042 }
14043
14044 constraint (imm < 1 || (unsigned)imm > et.size,
14045 _("immediate out of range"));
14046 /* FIXME: The manual is kind of unclear about what value U should have in
14047 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14048 must be 1. */
14049 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14050}
14051
14052static void
14053do_neon_movn (void)
14054{
14055 struct neon_type_el et = neon_check_type (2, NS_DQ,
14056 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14057 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14058 neon_two_same (0, 1, et.size / 2);
14059}
14060
14061static void
14062do_neon_rshift_narrow (void)
14063{
14064 struct neon_type_el et = neon_check_type (2, NS_DQI,
14065 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14066 int imm = inst.operands[2].imm;
14067 /* This gets the bounds check, size encoding and immediate bits calculation
14068 right. */
14069 et.size /= 2;
5f4273c7 14070
5287ad62
JB
14071 /* If immediate is zero then we are a pseudo-instruction for
14072 VMOVN.I<size> <Dd>, <Qm> */
14073 if (imm == 0)
14074 {
14075 inst.operands[2].present = 0;
14076 inst.instruction = N_MNEM_vmovn;
14077 do_neon_movn ();
14078 return;
14079 }
5f4273c7 14080
5287ad62
JB
14081 constraint (imm < 1 || (unsigned)imm > et.size,
14082 _("immediate out of range for narrowing operation"));
14083 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14084}
14085
14086static void
14087do_neon_shll (void)
14088{
14089 /* FIXME: Type checking when lengthening. */
14090 struct neon_type_el et = neon_check_type (2, NS_QDI,
14091 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14092 unsigned imm = inst.operands[2].imm;
14093
14094 if (imm == et.size)
14095 {
14096 /* Maximum shift variant. */
88714cb8 14097 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14098 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14099 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14100 inst.instruction |= LOW4 (inst.operands[1].reg);
14101 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14102 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14103
88714cb8 14104 neon_dp_fixup (&inst);
5287ad62
JB
14105 }
14106 else
14107 {
14108 /* A more-specific type check for non-max versions. */
14109 et = neon_check_type (2, NS_QDI,
14110 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14111 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14112 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14113 }
14114}
14115
037e8744 14116/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14117 the current instruction is. */
14118
14119static int
14120neon_cvt_flavour (enum neon_shape rs)
14121{
037e8744
JB
14122#define CVT_VAR(C,X,Y) \
14123 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14124 if (et.type != NT_invtype) \
14125 { \
14126 inst.error = NULL; \
14127 return (C); \
5287ad62
JB
14128 }
14129 struct neon_type_el et;
037e8744
JB
14130 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14131 || rs == NS_FF) ? N_VFP : 0;
14132 /* The instruction versions which take an immediate take one register
14133 argument, which is extended to the width of the full register. Thus the
14134 "source" and "destination" registers must have the same width. Hack that
14135 here by making the size equal to the key (wider, in this case) operand. */
14136 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14137
5287ad62
JB
14138 CVT_VAR (0, N_S32, N_F32);
14139 CVT_VAR (1, N_U32, N_F32);
14140 CVT_VAR (2, N_F32, N_S32);
14141 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14142 /* Half-precision conversions. */
14143 CVT_VAR (4, N_F32, N_F16);
14144 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14145
037e8744 14146 whole_reg = N_VFP;
5f4273c7 14147
037e8744 14148 /* VFP instructions. */
8e79c3df
CM
14149 CVT_VAR (6, N_F32, N_F64);
14150 CVT_VAR (7, N_F64, N_F32);
14151 CVT_VAR (8, N_S32, N_F64 | key);
14152 CVT_VAR (9, N_U32, N_F64 | key);
14153 CVT_VAR (10, N_F64 | key, N_S32);
14154 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14155 /* VFP instructions with bitshift. */
8e79c3df
CM
14156 CVT_VAR (12, N_F32 | key, N_S16);
14157 CVT_VAR (13, N_F32 | key, N_U16);
14158 CVT_VAR (14, N_F64 | key, N_S16);
14159 CVT_VAR (15, N_F64 | key, N_U16);
14160 CVT_VAR (16, N_S16, N_F32 | key);
14161 CVT_VAR (17, N_U16, N_F32 | key);
14162 CVT_VAR (18, N_S16, N_F64 | key);
14163 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14164
5287ad62
JB
14165 return -1;
14166#undef CVT_VAR
14167}
14168
037e8744
JB
14169/* Neon-syntax VFP conversions. */
14170
5287ad62 14171static void
037e8744 14172do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14173{
037e8744 14174 const char *opname = 0;
5f4273c7 14175
037e8744 14176 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14177 {
037e8744
JB
14178 /* Conversions with immediate bitshift. */
14179 const char *enc[] =
14180 {
14181 "ftosls",
14182 "ftouls",
14183 "fsltos",
14184 "fultos",
14185 NULL,
14186 NULL,
8e79c3df
CM
14187 NULL,
14188 NULL,
037e8744
JB
14189 "ftosld",
14190 "ftould",
14191 "fsltod",
14192 "fultod",
14193 "fshtos",
14194 "fuhtos",
14195 "fshtod",
14196 "fuhtod",
14197 "ftoshs",
14198 "ftouhs",
14199 "ftoshd",
14200 "ftouhd"
14201 };
14202
14203 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14204 {
14205 opname = enc[flavour];
14206 constraint (inst.operands[0].reg != inst.operands[1].reg,
14207 _("operands 0 and 1 must be the same register"));
14208 inst.operands[1] = inst.operands[2];
14209 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14210 }
5287ad62
JB
14211 }
14212 else
14213 {
037e8744
JB
14214 /* Conversions without bitshift. */
14215 const char *enc[] =
14216 {
14217 "ftosis",
14218 "ftouis",
14219 "fsitos",
14220 "fuitos",
8e79c3df
CM
14221 "NULL",
14222 "NULL",
037e8744
JB
14223 "fcvtsd",
14224 "fcvtds",
14225 "ftosid",
14226 "ftouid",
14227 "fsitod",
14228 "fuitod"
14229 };
14230
14231 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14232 opname = enc[flavour];
14233 }
14234
14235 if (opname)
14236 do_vfp_nsyn_opcode (opname);
14237}
14238
14239static void
14240do_vfp_nsyn_cvtz (void)
14241{
14242 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14243 int flavour = neon_cvt_flavour (rs);
14244 const char *enc[] =
14245 {
14246 "ftosizs",
14247 "ftouizs",
14248 NULL,
14249 NULL,
14250 NULL,
14251 NULL,
8e79c3df
CM
14252 NULL,
14253 NULL,
037e8744
JB
14254 "ftosizd",
14255 "ftouizd"
14256 };
14257
14258 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14259 do_vfp_nsyn_opcode (enc[flavour]);
14260}
f31fef98 14261
037e8744 14262static void
e3e535bc 14263do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14264{
14265 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14266 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14267 int flavour = neon_cvt_flavour (rs);
14268
e3e535bc
NC
14269 /* PR11109: Handle round-to-zero for VCVT conversions. */
14270 if (round_to_zero
14271 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14272 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14273 && (rs == NS_FD || rs == NS_FF))
14274 {
14275 do_vfp_nsyn_cvtz ();
14276 return;
14277 }
14278
037e8744 14279 /* VFP rather than Neon conversions. */
8e79c3df 14280 if (flavour >= 6)
037e8744
JB
14281 {
14282 do_vfp_nsyn_cvt (rs, flavour);
14283 return;
14284 }
14285
14286 switch (rs)
14287 {
14288 case NS_DDI:
14289 case NS_QQI:
14290 {
35997600
NC
14291 unsigned immbits;
14292 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14293
037e8744
JB
14294 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14295 return;
14296
14297 /* Fixed-point conversion with #0 immediate is encoded as an
14298 integer conversion. */
14299 if (inst.operands[2].present && inst.operands[2].imm == 0)
14300 goto int_encode;
35997600 14301 immbits = 32 - inst.operands[2].imm;
88714cb8 14302 NEON_ENCODE (IMMED, inst);
037e8744
JB
14303 if (flavour != -1)
14304 inst.instruction |= enctab[flavour];
14305 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14306 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14307 inst.instruction |= LOW4 (inst.operands[1].reg);
14308 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14309 inst.instruction |= neon_quad (rs) << 6;
14310 inst.instruction |= 1 << 21;
14311 inst.instruction |= immbits << 16;
14312
88714cb8 14313 neon_dp_fixup (&inst);
037e8744
JB
14314 }
14315 break;
14316
14317 case NS_DD:
14318 case NS_QQ:
14319 int_encode:
14320 {
14321 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14322
88714cb8 14323 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14324
14325 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14326 return;
14327
14328 if (flavour != -1)
14329 inst.instruction |= enctab[flavour];
14330
14331 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14332 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14333 inst.instruction |= LOW4 (inst.operands[1].reg);
14334 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14335 inst.instruction |= neon_quad (rs) << 6;
14336 inst.instruction |= 2 << 18;
14337
88714cb8 14338 neon_dp_fixup (&inst);
037e8744
JB
14339 }
14340 break;
14341
8e79c3df
CM
14342 /* Half-precision conversions for Advanced SIMD -- neon. */
14343 case NS_QD:
14344 case NS_DQ:
14345
14346 if ((rs == NS_DQ)
14347 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14348 {
14349 as_bad (_("operand size must match register width"));
14350 break;
14351 }
14352
14353 if ((rs == NS_QD)
14354 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14355 {
14356 as_bad (_("operand size must match register width"));
14357 break;
14358 }
14359
14360 if (rs == NS_DQ)
14361 inst.instruction = 0x3b60600;
14362 else
14363 inst.instruction = 0x3b60700;
14364
14365 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14366 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14367 inst.instruction |= LOW4 (inst.operands[1].reg);
14368 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14369 neon_dp_fixup (&inst);
8e79c3df
CM
14370 break;
14371
037e8744
JB
14372 default:
14373 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14374 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14375 }
5287ad62
JB
14376}
14377
e3e535bc
NC
14378static void
14379do_neon_cvtr (void)
14380{
14381 do_neon_cvt_1 (FALSE);
14382}
14383
14384static void
14385do_neon_cvt (void)
14386{
14387 do_neon_cvt_1 (TRUE);
14388}
14389
8e79c3df
CM
14390static void
14391do_neon_cvtb (void)
14392{
14393 inst.instruction = 0xeb20a40;
14394
14395 /* The sizes are attached to the mnemonic. */
14396 if (inst.vectype.el[0].type != NT_invtype
14397 && inst.vectype.el[0].size == 16)
14398 inst.instruction |= 0x00010000;
14399
14400 /* Programmer's syntax: the sizes are attached to the operands. */
14401 else if (inst.operands[0].vectype.type != NT_invtype
14402 && inst.operands[0].vectype.size == 16)
14403 inst.instruction |= 0x00010000;
14404
14405 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14406 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14407 do_vfp_cond_or_thumb ();
14408}
14409
14410
14411static void
14412do_neon_cvtt (void)
14413{
14414 do_neon_cvtb ();
14415 inst.instruction |= 0x80;
14416}
14417
5287ad62
JB
14418static void
14419neon_move_immediate (void)
14420{
037e8744
JB
14421 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14422 struct neon_type_el et = neon_check_type (2, rs,
14423 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14424 unsigned immlo, immhi = 0, immbits;
c96612cc 14425 int op, cmode, float_p;
5287ad62 14426
037e8744
JB
14427 constraint (et.type == NT_invtype,
14428 _("operand size must be specified for immediate VMOV"));
14429
5287ad62
JB
14430 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14431 op = (inst.instruction & (1 << 5)) != 0;
14432
14433 immlo = inst.operands[1].imm;
14434 if (inst.operands[1].regisimm)
14435 immhi = inst.operands[1].reg;
14436
14437 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14438 _("immediate has bits set outside the operand size"));
14439
c96612cc
JB
14440 float_p = inst.operands[1].immisfloat;
14441
14442 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14443 et.size, et.type)) == FAIL)
5287ad62
JB
14444 {
14445 /* Invert relevant bits only. */
14446 neon_invert_size (&immlo, &immhi, et.size);
14447 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14448 with one or the other; those cases are caught by
14449 neon_cmode_for_move_imm. */
14450 op = !op;
c96612cc
JB
14451 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14452 &op, et.size, et.type)) == FAIL)
5287ad62 14453 {
dcbf9037 14454 first_error (_("immediate out of range"));
5287ad62
JB
14455 return;
14456 }
14457 }
14458
14459 inst.instruction &= ~(1 << 5);
14460 inst.instruction |= op << 5;
14461
14462 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14463 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14464 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14465 inst.instruction |= cmode << 8;
14466
14467 neon_write_immbits (immbits);
14468}
14469
14470static void
14471do_neon_mvn (void)
14472{
14473 if (inst.operands[1].isreg)
14474 {
037e8744 14475 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14476
88714cb8 14477 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14478 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14479 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14480 inst.instruction |= LOW4 (inst.operands[1].reg);
14481 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14482 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14483 }
14484 else
14485 {
88714cb8 14486 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14487 neon_move_immediate ();
14488 }
14489
88714cb8 14490 neon_dp_fixup (&inst);
5287ad62
JB
14491}
14492
14493/* Encode instructions of form:
14494
14495 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14496 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14497
14498static void
14499neon_mixed_length (struct neon_type_el et, unsigned size)
14500{
14501 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14502 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14503 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14504 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14505 inst.instruction |= LOW4 (inst.operands[2].reg);
14506 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14507 inst.instruction |= (et.type == NT_unsigned) << 24;
14508 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14509
88714cb8 14510 neon_dp_fixup (&inst);
5287ad62
JB
14511}
14512
14513static void
14514do_neon_dyadic_long (void)
14515{
14516 /* FIXME: Type checking for lengthening op. */
14517 struct neon_type_el et = neon_check_type (3, NS_QDD,
14518 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14519 neon_mixed_length (et, et.size);
14520}
14521
14522static void
14523do_neon_abal (void)
14524{
14525 struct neon_type_el et = neon_check_type (3, NS_QDD,
14526 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14527 neon_mixed_length (et, et.size);
14528}
14529
14530static void
14531neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14532{
14533 if (inst.operands[2].isscalar)
14534 {
dcbf9037
JB
14535 struct neon_type_el et = neon_check_type (3, NS_QDS,
14536 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14537 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14538 neon_mul_mac (et, et.type == NT_unsigned);
14539 }
14540 else
14541 {
14542 struct neon_type_el et = neon_check_type (3, NS_QDD,
14543 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14544 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14545 neon_mixed_length (et, et.size);
14546 }
14547}
14548
14549static void
14550do_neon_mac_maybe_scalar_long (void)
14551{
14552 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14553}
14554
14555static void
14556do_neon_dyadic_wide (void)
14557{
14558 struct neon_type_el et = neon_check_type (3, NS_QQD,
14559 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14560 neon_mixed_length (et, et.size);
14561}
14562
14563static void
14564do_neon_dyadic_narrow (void)
14565{
14566 struct neon_type_el et = neon_check_type (3, NS_QDD,
14567 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14568 /* Operand sign is unimportant, and the U bit is part of the opcode,
14569 so force the operand type to integer. */
14570 et.type = NT_integer;
5287ad62
JB
14571 neon_mixed_length (et, et.size / 2);
14572}
14573
14574static void
14575do_neon_mul_sat_scalar_long (void)
14576{
14577 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14578}
14579
14580static void
14581do_neon_vmull (void)
14582{
14583 if (inst.operands[2].isscalar)
14584 do_neon_mac_maybe_scalar_long ();
14585 else
14586 {
14587 struct neon_type_el et = neon_check_type (3, NS_QDD,
14588 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14589 if (et.type == NT_poly)
88714cb8 14590 NEON_ENCODE (POLY, inst);
5287ad62 14591 else
88714cb8 14592 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14593 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14594 zero. Should be OK as-is. */
14595 neon_mixed_length (et, et.size);
14596 }
14597}
14598
14599static void
14600do_neon_ext (void)
14601{
037e8744 14602 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14603 struct neon_type_el et = neon_check_type (3, rs,
14604 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14605 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14606
14607 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14608 _("shift out of range"));
5287ad62
JB
14609 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14610 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14611 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14612 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14613 inst.instruction |= LOW4 (inst.operands[2].reg);
14614 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14615 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14616 inst.instruction |= imm << 8;
5f4273c7 14617
88714cb8 14618 neon_dp_fixup (&inst);
5287ad62
JB
14619}
14620
14621static void
14622do_neon_rev (void)
14623{
037e8744 14624 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14625 struct neon_type_el et = neon_check_type (2, rs,
14626 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14627 unsigned op = (inst.instruction >> 7) & 3;
14628 /* N (width of reversed regions) is encoded as part of the bitmask. We
14629 extract it here to check the elements to be reversed are smaller.
14630 Otherwise we'd get a reserved instruction. */
14631 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14632 gas_assert (elsize != 0);
5287ad62
JB
14633 constraint (et.size >= elsize,
14634 _("elements must be smaller than reversal region"));
037e8744 14635 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14636}
14637
14638static void
14639do_neon_dup (void)
14640{
14641 if (inst.operands[1].isscalar)
14642 {
037e8744 14643 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14644 struct neon_type_el et = neon_check_type (2, rs,
14645 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14646 unsigned sizebits = et.size >> 3;
dcbf9037 14647 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14648 int logsize = neon_logbits (et.size);
dcbf9037 14649 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14650
14651 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14652 return;
14653
88714cb8 14654 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14655 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14657 inst.instruction |= LOW4 (dm);
14658 inst.instruction |= HI1 (dm) << 5;
037e8744 14659 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14660 inst.instruction |= x << 17;
14661 inst.instruction |= sizebits << 16;
5f4273c7 14662
88714cb8 14663 neon_dp_fixup (&inst);
5287ad62
JB
14664 }
14665 else
14666 {
037e8744
JB
14667 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14668 struct neon_type_el et = neon_check_type (2, rs,
14669 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14670 /* Duplicate ARM register to lanes of vector. */
88714cb8 14671 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14672 switch (et.size)
14673 {
14674 case 8: inst.instruction |= 0x400000; break;
14675 case 16: inst.instruction |= 0x000020; break;
14676 case 32: inst.instruction |= 0x000000; break;
14677 default: break;
14678 }
14679 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14680 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14681 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14682 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14683 /* The encoding for this instruction is identical for the ARM and Thumb
14684 variants, except for the condition field. */
037e8744 14685 do_vfp_cond_or_thumb ();
5287ad62
JB
14686 }
14687}
14688
14689/* VMOV has particularly many variations. It can be one of:
14690 0. VMOV<c><q> <Qd>, <Qm>
14691 1. VMOV<c><q> <Dd>, <Dm>
14692 (Register operations, which are VORR with Rm = Rn.)
14693 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14694 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14695 (Immediate loads.)
14696 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14697 (ARM register to scalar.)
14698 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14699 (Two ARM registers to vector.)
14700 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14701 (Scalar to ARM register.)
14702 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14703 (Vector to two ARM registers.)
037e8744
JB
14704 8. VMOV.F32 <Sd>, <Sm>
14705 9. VMOV.F64 <Dd>, <Dm>
14706 (VFP register moves.)
14707 10. VMOV.F32 <Sd>, #imm
14708 11. VMOV.F64 <Dd>, #imm
14709 (VFP float immediate load.)
14710 12. VMOV <Rd>, <Sm>
14711 (VFP single to ARM reg.)
14712 13. VMOV <Sd>, <Rm>
14713 (ARM reg to VFP single.)
14714 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14715 (Two ARM regs to two VFP singles.)
14716 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14717 (Two VFP singles to two ARM regs.)
5f4273c7 14718
037e8744
JB
14719 These cases can be disambiguated using neon_select_shape, except cases 1/9
14720 and 3/11 which depend on the operand type too.
5f4273c7 14721
5287ad62 14722 All the encoded bits are hardcoded by this function.
5f4273c7 14723
b7fc2769
JB
14724 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14725 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14726
5287ad62 14727 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14728 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14729
14730static void
14731do_neon_mov (void)
14732{
037e8744
JB
14733 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14734 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14735 NS_NULL);
14736 struct neon_type_el et;
14737 const char *ldconst = 0;
5287ad62 14738
037e8744 14739 switch (rs)
5287ad62 14740 {
037e8744
JB
14741 case NS_DD: /* case 1/9. */
14742 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14743 /* It is not an error here if no type is given. */
14744 inst.error = NULL;
14745 if (et.type == NT_float && et.size == 64)
5287ad62 14746 {
037e8744
JB
14747 do_vfp_nsyn_opcode ("fcpyd");
14748 break;
5287ad62 14749 }
037e8744 14750 /* fall through. */
5287ad62 14751
037e8744
JB
14752 case NS_QQ: /* case 0/1. */
14753 {
14754 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14755 return;
14756 /* The architecture manual I have doesn't explicitly state which
14757 value the U bit should have for register->register moves, but
14758 the equivalent VORR instruction has U = 0, so do that. */
14759 inst.instruction = 0x0200110;
14760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14762 inst.instruction |= LOW4 (inst.operands[1].reg);
14763 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14764 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14765 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14766 inst.instruction |= neon_quad (rs) << 6;
14767
88714cb8 14768 neon_dp_fixup (&inst);
037e8744
JB
14769 }
14770 break;
5f4273c7 14771
037e8744
JB
14772 case NS_DI: /* case 3/11. */
14773 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14774 inst.error = NULL;
14775 if (et.type == NT_float && et.size == 64)
5287ad62 14776 {
037e8744
JB
14777 /* case 11 (fconstd). */
14778 ldconst = "fconstd";
14779 goto encode_fconstd;
5287ad62 14780 }
037e8744
JB
14781 /* fall through. */
14782
14783 case NS_QI: /* case 2/3. */
14784 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14785 return;
14786 inst.instruction = 0x0800010;
14787 neon_move_immediate ();
88714cb8 14788 neon_dp_fixup (&inst);
5287ad62 14789 break;
5f4273c7 14790
037e8744
JB
14791 case NS_SR: /* case 4. */
14792 {
14793 unsigned bcdebits = 0;
91d6fa6a 14794 int logsize;
037e8744
JB
14795 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14796 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14797
91d6fa6a
NC
14798 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14799 logsize = neon_logbits (et.size);
14800
037e8744
JB
14801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14802 _(BAD_FPU));
14803 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14804 && et.size != 32, _(BAD_FPU));
14805 constraint (et.type == NT_invtype, _("bad type for scalar"));
14806 constraint (x >= 64 / et.size, _("scalar index out of range"));
14807
14808 switch (et.size)
14809 {
14810 case 8: bcdebits = 0x8; break;
14811 case 16: bcdebits = 0x1; break;
14812 case 32: bcdebits = 0x0; break;
14813 default: ;
14814 }
14815
14816 bcdebits |= x << logsize;
14817
14818 inst.instruction = 0xe000b10;
14819 do_vfp_cond_or_thumb ();
14820 inst.instruction |= LOW4 (dn) << 16;
14821 inst.instruction |= HI1 (dn) << 7;
14822 inst.instruction |= inst.operands[1].reg << 12;
14823 inst.instruction |= (bcdebits & 3) << 5;
14824 inst.instruction |= (bcdebits >> 2) << 21;
14825 }
14826 break;
5f4273c7 14827
037e8744 14828 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14829 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14830 _(BAD_FPU));
b7fc2769 14831
037e8744
JB
14832 inst.instruction = 0xc400b10;
14833 do_vfp_cond_or_thumb ();
14834 inst.instruction |= LOW4 (inst.operands[0].reg);
14835 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14836 inst.instruction |= inst.operands[1].reg << 12;
14837 inst.instruction |= inst.operands[2].reg << 16;
14838 break;
5f4273c7 14839
037e8744
JB
14840 case NS_RS: /* case 6. */
14841 {
91d6fa6a 14842 unsigned logsize;
037e8744
JB
14843 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14844 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14845 unsigned abcdebits = 0;
14846
91d6fa6a
NC
14847 et = neon_check_type (2, NS_NULL,
14848 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14849 logsize = neon_logbits (et.size);
14850
037e8744
JB
14851 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14852 _(BAD_FPU));
14853 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14854 && et.size != 32, _(BAD_FPU));
14855 constraint (et.type == NT_invtype, _("bad type for scalar"));
14856 constraint (x >= 64 / et.size, _("scalar index out of range"));
14857
14858 switch (et.size)
14859 {
14860 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14861 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14862 case 32: abcdebits = 0x00; break;
14863 default: ;
14864 }
14865
14866 abcdebits |= x << logsize;
14867 inst.instruction = 0xe100b10;
14868 do_vfp_cond_or_thumb ();
14869 inst.instruction |= LOW4 (dn) << 16;
14870 inst.instruction |= HI1 (dn) << 7;
14871 inst.instruction |= inst.operands[0].reg << 12;
14872 inst.instruction |= (abcdebits & 3) << 5;
14873 inst.instruction |= (abcdebits >> 2) << 21;
14874 }
14875 break;
5f4273c7 14876
037e8744
JB
14877 case NS_RRD: /* case 7 (fmrrd). */
14878 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14879 _(BAD_FPU));
14880
14881 inst.instruction = 0xc500b10;
14882 do_vfp_cond_or_thumb ();
14883 inst.instruction |= inst.operands[0].reg << 12;
14884 inst.instruction |= inst.operands[1].reg << 16;
14885 inst.instruction |= LOW4 (inst.operands[2].reg);
14886 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14887 break;
5f4273c7 14888
037e8744
JB
14889 case NS_FF: /* case 8 (fcpys). */
14890 do_vfp_nsyn_opcode ("fcpys");
14891 break;
5f4273c7 14892
037e8744
JB
14893 case NS_FI: /* case 10 (fconsts). */
14894 ldconst = "fconsts";
14895 encode_fconstd:
14896 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14897 {
037e8744
JB
14898 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14899 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14900 }
14901 else
037e8744
JB
14902 first_error (_("immediate out of range"));
14903 break;
5f4273c7 14904
037e8744
JB
14905 case NS_RF: /* case 12 (fmrs). */
14906 do_vfp_nsyn_opcode ("fmrs");
14907 break;
5f4273c7 14908
037e8744
JB
14909 case NS_FR: /* case 13 (fmsr). */
14910 do_vfp_nsyn_opcode ("fmsr");
14911 break;
5f4273c7 14912
037e8744
JB
14913 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14914 (one of which is a list), but we have parsed four. Do some fiddling to
14915 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14916 expect. */
14917 case NS_RRFF: /* case 14 (fmrrs). */
14918 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14919 _("VFP registers must be adjacent"));
14920 inst.operands[2].imm = 2;
14921 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14922 do_vfp_nsyn_opcode ("fmrrs");
14923 break;
5f4273c7 14924
037e8744
JB
14925 case NS_FFRR: /* case 15 (fmsrr). */
14926 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14927 _("VFP registers must be adjacent"));
14928 inst.operands[1] = inst.operands[2];
14929 inst.operands[2] = inst.operands[3];
14930 inst.operands[0].imm = 2;
14931 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14932 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14933 break;
5f4273c7 14934
5287ad62
JB
14935 default:
14936 abort ();
14937 }
14938}
14939
14940static void
14941do_neon_rshift_round_imm (void)
14942{
037e8744 14943 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14944 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14945 int imm = inst.operands[2].imm;
14946
14947 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14948 if (imm == 0)
14949 {
14950 inst.operands[2].present = 0;
14951 do_neon_mov ();
14952 return;
14953 }
14954
14955 constraint (imm < 1 || (unsigned)imm > et.size,
14956 _("immediate out of range for shift"));
037e8744 14957 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14958 et.size - imm);
14959}
14960
14961static void
14962do_neon_movl (void)
14963{
14964 struct neon_type_el et = neon_check_type (2, NS_QD,
14965 N_EQK | N_DBL, N_SU_32 | N_KEY);
14966 unsigned sizebits = et.size >> 3;
14967 inst.instruction |= sizebits << 19;
14968 neon_two_same (0, et.type == NT_unsigned, -1);
14969}
14970
14971static void
14972do_neon_trn (void)
14973{
037e8744 14974 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14975 struct neon_type_el et = neon_check_type (2, rs,
14976 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14977 NEON_ENCODE (INTEGER, inst);
037e8744 14978 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14979}
14980
14981static void
14982do_neon_zip_uzp (void)
14983{
037e8744 14984 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14985 struct neon_type_el et = neon_check_type (2, rs,
14986 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14987 if (rs == NS_DD && et.size == 32)
14988 {
14989 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14990 inst.instruction = N_MNEM_vtrn;
14991 do_neon_trn ();
14992 return;
14993 }
037e8744 14994 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14995}
14996
14997static void
14998do_neon_sat_abs_neg (void)
14999{
037e8744 15000 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15001 struct neon_type_el et = neon_check_type (2, rs,
15002 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15003 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15004}
15005
15006static void
15007do_neon_pair_long (void)
15008{
037e8744 15009 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15010 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15011 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15012 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15013 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15014}
15015
15016static void
15017do_neon_recip_est (void)
15018{
037e8744 15019 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15020 struct neon_type_el et = neon_check_type (2, rs,
15021 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15022 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15023 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15024}
15025
15026static void
15027do_neon_cls (void)
15028{
037e8744 15029 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15030 struct neon_type_el et = neon_check_type (2, rs,
15031 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15032 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15033}
15034
15035static void
15036do_neon_clz (void)
15037{
037e8744 15038 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15039 struct neon_type_el et = neon_check_type (2, rs,
15040 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15041 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15042}
15043
15044static void
15045do_neon_cnt (void)
15046{
037e8744 15047 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15048 struct neon_type_el et = neon_check_type (2, rs,
15049 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15050 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15051}
15052
15053static void
15054do_neon_swp (void)
15055{
037e8744
JB
15056 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15057 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15058}
15059
15060static void
15061do_neon_tbl_tbx (void)
15062{
15063 unsigned listlenbits;
dcbf9037 15064 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15065
5287ad62
JB
15066 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15067 {
dcbf9037 15068 first_error (_("bad list length for table lookup"));
5287ad62
JB
15069 return;
15070 }
5f4273c7 15071
5287ad62
JB
15072 listlenbits = inst.operands[1].imm - 1;
15073 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15074 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15075 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15076 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15077 inst.instruction |= LOW4 (inst.operands[2].reg);
15078 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15079 inst.instruction |= listlenbits << 8;
5f4273c7 15080
88714cb8 15081 neon_dp_fixup (&inst);
5287ad62
JB
15082}
15083
15084static void
15085do_neon_ldm_stm (void)
15086{
15087 /* P, U and L bits are part of bitmask. */
15088 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15089 unsigned offsetbits = inst.operands[1].imm * 2;
15090
037e8744
JB
15091 if (inst.operands[1].issingle)
15092 {
15093 do_vfp_nsyn_ldm_stm (is_dbmode);
15094 return;
15095 }
15096
5287ad62
JB
15097 constraint (is_dbmode && !inst.operands[0].writeback,
15098 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15099
15100 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15101 _("register list must contain at least 1 and at most 16 "
15102 "registers"));
15103
15104 inst.instruction |= inst.operands[0].reg << 16;
15105 inst.instruction |= inst.operands[0].writeback << 21;
15106 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15107 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15108
15109 inst.instruction |= offsetbits;
5f4273c7 15110
037e8744 15111 do_vfp_cond_or_thumb ();
5287ad62
JB
15112}
15113
15114static void
15115do_neon_ldr_str (void)
15116{
5287ad62 15117 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15118
6844b2c2
MGD
15119 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15120 And is UNPREDICTABLE in thumb mode. */
15121 if (!is_ldr
15122 && inst.operands[1].reg == REG_PC
15123 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15124 {
15125 if (!thumb_mode && warn_on_deprecated)
15126 as_warn (_("Use of PC here is deprecated"));
15127 else
15128 inst.error = _("Use of PC here is UNPREDICTABLE");
15129 }
15130
037e8744
JB
15131 if (inst.operands[0].issingle)
15132 {
cd2f129f
JB
15133 if (is_ldr)
15134 do_vfp_nsyn_opcode ("flds");
15135 else
15136 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15137 }
15138 else
5287ad62 15139 {
cd2f129f
JB
15140 if (is_ldr)
15141 do_vfp_nsyn_opcode ("fldd");
5287ad62 15142 else
cd2f129f 15143 do_vfp_nsyn_opcode ("fstd");
5287ad62 15144 }
5287ad62
JB
15145}
15146
15147/* "interleave" version also handles non-interleaving register VLD1/VST1
15148 instructions. */
15149
15150static void
15151do_neon_ld_st_interleave (void)
15152{
037e8744 15153 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15154 N_8 | N_16 | N_32 | N_64);
15155 unsigned alignbits = 0;
15156 unsigned idx;
15157 /* The bits in this table go:
15158 0: register stride of one (0) or two (1)
15159 1,2: register list length, minus one (1, 2, 3, 4).
15160 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15161 We use -1 for invalid entries. */
15162 const int typetable[] =
15163 {
15164 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15165 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15166 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15167 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15168 };
15169 int typebits;
15170
dcbf9037
JB
15171 if (et.type == NT_invtype)
15172 return;
15173
5287ad62
JB
15174 if (inst.operands[1].immisalign)
15175 switch (inst.operands[1].imm >> 8)
15176 {
15177 case 64: alignbits = 1; break;
15178 case 128:
e23c0ad8
JZ
15179 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15180 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15181 goto bad_alignment;
15182 alignbits = 2;
15183 break;
15184 case 256:
e23c0ad8 15185 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15186 goto bad_alignment;
15187 alignbits = 3;
15188 break;
15189 default:
15190 bad_alignment:
dcbf9037 15191 first_error (_("bad alignment"));
5287ad62
JB
15192 return;
15193 }
15194
15195 inst.instruction |= alignbits << 4;
15196 inst.instruction |= neon_logbits (et.size) << 6;
15197
15198 /* Bits [4:6] of the immediate in a list specifier encode register stride
15199 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15200 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15201 up the right value for "type" in a table based on this value and the given
15202 list style, then stick it back. */
15203 idx = ((inst.operands[0].imm >> 4) & 7)
15204 | (((inst.instruction >> 8) & 3) << 3);
15205
15206 typebits = typetable[idx];
5f4273c7 15207
5287ad62
JB
15208 constraint (typebits == -1, _("bad list type for instruction"));
15209
15210 inst.instruction &= ~0xf00;
15211 inst.instruction |= typebits << 8;
15212}
15213
15214/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15215 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15216 otherwise. The variable arguments are a list of pairs of legal (size, align)
15217 values, terminated with -1. */
15218
15219static int
15220neon_alignment_bit (int size, int align, int *do_align, ...)
15221{
15222 va_list ap;
15223 int result = FAIL, thissize, thisalign;
5f4273c7 15224
5287ad62
JB
15225 if (!inst.operands[1].immisalign)
15226 {
15227 *do_align = 0;
15228 return SUCCESS;
15229 }
5f4273c7 15230
5287ad62
JB
15231 va_start (ap, do_align);
15232
15233 do
15234 {
15235 thissize = va_arg (ap, int);
15236 if (thissize == -1)
15237 break;
15238 thisalign = va_arg (ap, int);
15239
15240 if (size == thissize && align == thisalign)
15241 result = SUCCESS;
15242 }
15243 while (result != SUCCESS);
15244
15245 va_end (ap);
15246
15247 if (result == SUCCESS)
15248 *do_align = 1;
15249 else
dcbf9037 15250 first_error (_("unsupported alignment for instruction"));
5f4273c7 15251
5287ad62
JB
15252 return result;
15253}
15254
15255static void
15256do_neon_ld_st_lane (void)
15257{
037e8744 15258 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15259 int align_good, do_align = 0;
15260 int logsize = neon_logbits (et.size);
15261 int align = inst.operands[1].imm >> 8;
15262 int n = (inst.instruction >> 8) & 3;
15263 int max_el = 64 / et.size;
5f4273c7 15264
dcbf9037
JB
15265 if (et.type == NT_invtype)
15266 return;
5f4273c7 15267
5287ad62
JB
15268 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15269 _("bad list length"));
15270 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15271 _("scalar index out of range"));
15272 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15273 && et.size == 8,
15274 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15275
5287ad62
JB
15276 switch (n)
15277 {
15278 case 0: /* VLD1 / VST1. */
15279 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15280 32, 32, -1);
15281 if (align_good == FAIL)
15282 return;
15283 if (do_align)
15284 {
15285 unsigned alignbits = 0;
15286 switch (et.size)
15287 {
15288 case 16: alignbits = 0x1; break;
15289 case 32: alignbits = 0x3; break;
15290 default: ;
15291 }
15292 inst.instruction |= alignbits << 4;
15293 }
15294 break;
15295
15296 case 1: /* VLD2 / VST2. */
15297 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15298 32, 64, -1);
15299 if (align_good == FAIL)
15300 return;
15301 if (do_align)
15302 inst.instruction |= 1 << 4;
15303 break;
15304
15305 case 2: /* VLD3 / VST3. */
15306 constraint (inst.operands[1].immisalign,
15307 _("can't use alignment with this instruction"));
15308 break;
15309
15310 case 3: /* VLD4 / VST4. */
15311 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15312 16, 64, 32, 64, 32, 128, -1);
15313 if (align_good == FAIL)
15314 return;
15315 if (do_align)
15316 {
15317 unsigned alignbits = 0;
15318 switch (et.size)
15319 {
15320 case 8: alignbits = 0x1; break;
15321 case 16: alignbits = 0x1; break;
15322 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15323 default: ;
15324 }
15325 inst.instruction |= alignbits << 4;
15326 }
15327 break;
15328
15329 default: ;
15330 }
15331
15332 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15333 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15334 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15335
5287ad62
JB
15336 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15337 inst.instruction |= logsize << 10;
15338}
15339
15340/* Encode single n-element structure to all lanes VLD<n> instructions. */
15341
15342static void
15343do_neon_ld_dup (void)
15344{
037e8744 15345 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15346 int align_good, do_align = 0;
15347
dcbf9037
JB
15348 if (et.type == NT_invtype)
15349 return;
15350
5287ad62
JB
15351 switch ((inst.instruction >> 8) & 3)
15352 {
15353 case 0: /* VLD1. */
9c2799c2 15354 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15355 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15356 &do_align, 16, 16, 32, 32, -1);
15357 if (align_good == FAIL)
15358 return;
15359 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15360 {
15361 case 1: break;
15362 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15363 default: first_error (_("bad list length")); return;
5287ad62
JB
15364 }
15365 inst.instruction |= neon_logbits (et.size) << 6;
15366 break;
15367
15368 case 1: /* VLD2. */
15369 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15370 &do_align, 8, 16, 16, 32, 32, 64, -1);
15371 if (align_good == FAIL)
15372 return;
15373 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15374 _("bad list length"));
15375 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15376 inst.instruction |= 1 << 5;
15377 inst.instruction |= neon_logbits (et.size) << 6;
15378 break;
15379
15380 case 2: /* VLD3. */
15381 constraint (inst.operands[1].immisalign,
15382 _("can't use alignment with this instruction"));
15383 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15384 _("bad list length"));
15385 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15386 inst.instruction |= 1 << 5;
15387 inst.instruction |= neon_logbits (et.size) << 6;
15388 break;
15389
15390 case 3: /* VLD4. */
15391 {
15392 int align = inst.operands[1].imm >> 8;
15393 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15394 16, 64, 32, 64, 32, 128, -1);
15395 if (align_good == FAIL)
15396 return;
15397 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15398 _("bad list length"));
15399 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15400 inst.instruction |= 1 << 5;
15401 if (et.size == 32 && align == 128)
15402 inst.instruction |= 0x3 << 6;
15403 else
15404 inst.instruction |= neon_logbits (et.size) << 6;
15405 }
15406 break;
15407
15408 default: ;
15409 }
15410
15411 inst.instruction |= do_align << 4;
15412}
15413
15414/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15415 apart from bits [11:4]. */
15416
15417static void
15418do_neon_ldx_stx (void)
15419{
b1a769ed
DG
15420 if (inst.operands[1].isreg)
15421 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15422
5287ad62
JB
15423 switch (NEON_LANE (inst.operands[0].imm))
15424 {
15425 case NEON_INTERLEAVE_LANES:
88714cb8 15426 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15427 do_neon_ld_st_interleave ();
15428 break;
5f4273c7 15429
5287ad62 15430 case NEON_ALL_LANES:
88714cb8 15431 NEON_ENCODE (DUP, inst);
5287ad62
JB
15432 do_neon_ld_dup ();
15433 break;
5f4273c7 15434
5287ad62 15435 default:
88714cb8 15436 NEON_ENCODE (LANE, inst);
5287ad62
JB
15437 do_neon_ld_st_lane ();
15438 }
15439
15440 /* L bit comes from bit mask. */
15441 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15442 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15443 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15444
5287ad62
JB
15445 if (inst.operands[1].postind)
15446 {
15447 int postreg = inst.operands[1].imm & 0xf;
15448 constraint (!inst.operands[1].immisreg,
15449 _("post-index must be a register"));
15450 constraint (postreg == 0xd || postreg == 0xf,
15451 _("bad register for post-index"));
15452 inst.instruction |= postreg;
15453 }
15454 else if (inst.operands[1].writeback)
15455 {
15456 inst.instruction |= 0xd;
15457 }
15458 else
5f4273c7
NC
15459 inst.instruction |= 0xf;
15460
5287ad62
JB
15461 if (thumb_mode)
15462 inst.instruction |= 0xf9000000;
15463 else
15464 inst.instruction |= 0xf4000000;
15465}
5287ad62
JB
15466\f
15467/* Overall per-instruction processing. */
15468
15469/* We need to be able to fix up arbitrary expressions in some statements.
15470 This is so that we can handle symbols that are an arbitrary distance from
15471 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15472 which returns part of an address in a form which will be valid for
15473 a data instruction. We do this by pushing the expression into a symbol
15474 in the expr_section, and creating a fix for that. */
15475
15476static void
15477fix_new_arm (fragS * frag,
15478 int where,
15479 short int size,
15480 expressionS * exp,
15481 int pc_rel,
15482 int reloc)
15483{
15484 fixS * new_fix;
15485
15486 switch (exp->X_op)
15487 {
15488 case O_constant:
6e7ce2cd
PB
15489 if (pc_rel)
15490 {
15491 /* Create an absolute valued symbol, so we have something to
15492 refer to in the object file. Unfortunately for us, gas's
15493 generic expression parsing will already have folded out
15494 any use of .set foo/.type foo %function that may have
15495 been used to set type information of the target location,
15496 that's being specified symbolically. We have to presume
15497 the user knows what they are doing. */
15498 char name[16 + 8];
15499 symbolS *symbol;
15500
15501 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15502
15503 symbol = symbol_find_or_make (name);
15504 S_SET_SEGMENT (symbol, absolute_section);
15505 symbol_set_frag (symbol, &zero_address_frag);
15506 S_SET_VALUE (symbol, exp->X_add_number);
15507 exp->X_op = O_symbol;
15508 exp->X_add_symbol = symbol;
15509 exp->X_add_number = 0;
15510 }
15511 /* FALLTHROUGH */
5287ad62
JB
15512 case O_symbol:
15513 case O_add:
15514 case O_subtract:
21d799b5
NC
15515 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15516 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15517 break;
15518
15519 default:
21d799b5
NC
15520 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15521 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15522 break;
15523 }
15524
15525 /* Mark whether the fix is to a THUMB instruction, or an ARM
15526 instruction. */
15527 new_fix->tc_fix_data = thumb_mode;
15528}
15529
15530/* Create a frg for an instruction requiring relaxation. */
15531static void
15532output_relax_insn (void)
15533{
15534 char * to;
15535 symbolS *sym;
0110f2b8
PB
15536 int offset;
15537
6e1cb1a6
PB
15538 /* The size of the instruction is unknown, so tie the debug info to the
15539 start of the instruction. */
15540 dwarf2_emit_insn (0);
6e1cb1a6 15541
0110f2b8
PB
15542 switch (inst.reloc.exp.X_op)
15543 {
15544 case O_symbol:
15545 sym = inst.reloc.exp.X_add_symbol;
15546 offset = inst.reloc.exp.X_add_number;
15547 break;
15548 case O_constant:
15549 sym = NULL;
15550 offset = inst.reloc.exp.X_add_number;
15551 break;
15552 default:
15553 sym = make_expr_symbol (&inst.reloc.exp);
15554 offset = 0;
15555 break;
15556 }
15557 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15558 inst.relax, sym, offset, NULL/*offset, opcode*/);
15559 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15560}
15561
15562/* Write a 32-bit thumb instruction to buf. */
15563static void
15564put_thumb32_insn (char * buf, unsigned long insn)
15565{
15566 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15567 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15568}
15569
b99bd4ef 15570static void
c19d1205 15571output_inst (const char * str)
b99bd4ef 15572{
c19d1205 15573 char * to = NULL;
b99bd4ef 15574
c19d1205 15575 if (inst.error)
b99bd4ef 15576 {
c19d1205 15577 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15578 return;
15579 }
5f4273c7
NC
15580 if (inst.relax)
15581 {
15582 output_relax_insn ();
0110f2b8 15583 return;
5f4273c7 15584 }
c19d1205
ZW
15585 if (inst.size == 0)
15586 return;
b99bd4ef 15587
c19d1205 15588 to = frag_more (inst.size);
8dc2430f
NC
15589 /* PR 9814: Record the thumb mode into the current frag so that we know
15590 what type of NOP padding to use, if necessary. We override any previous
15591 setting so that if the mode has changed then the NOPS that we use will
15592 match the encoding of the last instruction in the frag. */
cd000bff 15593 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15594
15595 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15596 {
9c2799c2 15597 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15598 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15599 }
c19d1205 15600 else if (inst.size > INSN_SIZE)
b99bd4ef 15601 {
9c2799c2 15602 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15603 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15604 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15605 }
c19d1205
ZW
15606 else
15607 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15608
c19d1205
ZW
15609 if (inst.reloc.type != BFD_RELOC_UNUSED)
15610 fix_new_arm (frag_now, to - frag_now->fr_literal,
15611 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15612 inst.reloc.type);
b99bd4ef 15613
c19d1205 15614 dwarf2_emit_insn (inst.size);
c19d1205 15615}
b99bd4ef 15616
e07e6e58
NC
15617static char *
15618output_it_inst (int cond, int mask, char * to)
15619{
15620 unsigned long instruction = 0xbf00;
15621
15622 mask &= 0xf;
15623 instruction |= mask;
15624 instruction |= cond << 4;
15625
15626 if (to == NULL)
15627 {
15628 to = frag_more (2);
15629#ifdef OBJ_ELF
15630 dwarf2_emit_insn (2);
15631#endif
15632 }
15633
15634 md_number_to_chars (to, instruction, 2);
15635
15636 return to;
15637}
15638
c19d1205
ZW
15639/* Tag values used in struct asm_opcode's tag field. */
15640enum opcode_tag
15641{
15642 OT_unconditional, /* Instruction cannot be conditionalized.
15643 The ARM condition field is still 0xE. */
15644 OT_unconditionalF, /* Instruction cannot be conditionalized
15645 and carries 0xF in its ARM condition field. */
15646 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15647 OT_csuffixF, /* Some forms of the instruction take a conditional
15648 suffix, others place 0xF where the condition field
15649 would be. */
c19d1205
ZW
15650 OT_cinfix3, /* Instruction takes a conditional infix,
15651 beginning at character index 3. (In
15652 unified mode, it becomes a suffix.) */
088fa78e
KH
15653 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15654 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15655 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15656 character index 3, even in unified mode. Used for
15657 legacy instructions where suffix and infix forms
15658 may be ambiguous. */
c19d1205 15659 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15660 suffix or an infix at character index 3. */
c19d1205
ZW
15661 OT_odd_infix_unc, /* This is the unconditional variant of an
15662 instruction that takes a conditional infix
15663 at an unusual position. In unified mode,
15664 this variant will accept a suffix. */
15665 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15666 are the conditional variants of instructions that
15667 take conditional infixes in unusual positions.
15668 The infix appears at character index
15669 (tag - OT_odd_infix_0). These are not accepted
15670 in unified mode. */
15671};
b99bd4ef 15672
c19d1205
ZW
15673/* Subroutine of md_assemble, responsible for looking up the primary
15674 opcode from the mnemonic the user wrote. STR points to the
15675 beginning of the mnemonic.
15676
15677 This is not simply a hash table lookup, because of conditional
15678 variants. Most instructions have conditional variants, which are
15679 expressed with a _conditional affix_ to the mnemonic. If we were
15680 to encode each conditional variant as a literal string in the opcode
15681 table, it would have approximately 20,000 entries.
15682
15683 Most mnemonics take this affix as a suffix, and in unified syntax,
15684 'most' is upgraded to 'all'. However, in the divided syntax, some
15685 instructions take the affix as an infix, notably the s-variants of
15686 the arithmetic instructions. Of those instructions, all but six
15687 have the infix appear after the third character of the mnemonic.
15688
15689 Accordingly, the algorithm for looking up primary opcodes given
15690 an identifier is:
15691
15692 1. Look up the identifier in the opcode table.
15693 If we find a match, go to step U.
15694
15695 2. Look up the last two characters of the identifier in the
15696 conditions table. If we find a match, look up the first N-2
15697 characters of the identifier in the opcode table. If we
15698 find a match, go to step CE.
15699
15700 3. Look up the fourth and fifth characters of the identifier in
15701 the conditions table. If we find a match, extract those
15702 characters from the identifier, and look up the remaining
15703 characters in the opcode table. If we find a match, go
15704 to step CM.
15705
15706 4. Fail.
15707
15708 U. Examine the tag field of the opcode structure, in case this is
15709 one of the six instructions with its conditional infix in an
15710 unusual place. If it is, the tag tells us where to find the
15711 infix; look it up in the conditions table and set inst.cond
15712 accordingly. Otherwise, this is an unconditional instruction.
15713 Again set inst.cond accordingly. Return the opcode structure.
15714
15715 CE. Examine the tag field to make sure this is an instruction that
15716 should receive a conditional suffix. If it is not, fail.
15717 Otherwise, set inst.cond from the suffix we already looked up,
15718 and return the opcode structure.
15719
15720 CM. Examine the tag field to make sure this is an instruction that
15721 should receive a conditional infix after the third character.
15722 If it is not, fail. Otherwise, undo the edits to the current
15723 line of input and proceed as for case CE. */
15724
15725static const struct asm_opcode *
15726opcode_lookup (char **str)
15727{
15728 char *end, *base;
15729 char *affix;
15730 const struct asm_opcode *opcode;
15731 const struct asm_cond *cond;
e3cb604e 15732 char save[2];
c19d1205
ZW
15733
15734 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15735 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15736 for (base = end = *str; *end != '\0'; end++)
721a8186 15737 if (*end == ' ' || *end == '.')
c19d1205 15738 break;
b99bd4ef 15739
c19d1205 15740 if (end == base)
c921be7d 15741 return NULL;
b99bd4ef 15742
5287ad62 15743 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15744 if (end[0] == '.')
b99bd4ef 15745 {
5287ad62 15746 int offset = 2;
5f4273c7 15747
267d2029
JB
15748 /* The .w and .n suffixes are only valid if the unified syntax is in
15749 use. */
15750 if (unified_syntax && end[1] == 'w')
c19d1205 15751 inst.size_req = 4;
267d2029 15752 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15753 inst.size_req = 2;
15754 else
5287ad62
JB
15755 offset = 0;
15756
15757 inst.vectype.elems = 0;
15758
15759 *str = end + offset;
b99bd4ef 15760
5f4273c7 15761 if (end[offset] == '.')
5287ad62 15762 {
267d2029
JB
15763 /* See if we have a Neon type suffix (possible in either unified or
15764 non-unified ARM syntax mode). */
dcbf9037 15765 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15766 return NULL;
5287ad62
JB
15767 }
15768 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15769 return NULL;
b99bd4ef 15770 }
c19d1205
ZW
15771 else
15772 *str = end;
b99bd4ef 15773
c19d1205 15774 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15775 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15776 end - base);
c19d1205 15777 if (opcode)
b99bd4ef 15778 {
c19d1205
ZW
15779 /* step U */
15780 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15781 {
c19d1205
ZW
15782 inst.cond = COND_ALWAYS;
15783 return opcode;
b99bd4ef 15784 }
b99bd4ef 15785
278df34e 15786 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15787 as_warn (_("conditional infixes are deprecated in unified syntax"));
15788 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15789 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15790 gas_assert (cond);
b99bd4ef 15791
c19d1205
ZW
15792 inst.cond = cond->value;
15793 return opcode;
15794 }
b99bd4ef 15795
c19d1205
ZW
15796 /* Cannot have a conditional suffix on a mnemonic of less than two
15797 characters. */
15798 if (end - base < 3)
c921be7d 15799 return NULL;
b99bd4ef 15800
c19d1205
ZW
15801 /* Look for suffixed mnemonic. */
15802 affix = end - 2;
21d799b5
NC
15803 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15804 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15805 affix - base);
c19d1205
ZW
15806 if (opcode && cond)
15807 {
15808 /* step CE */
15809 switch (opcode->tag)
15810 {
e3cb604e
PB
15811 case OT_cinfix3_legacy:
15812 /* Ignore conditional suffixes matched on infix only mnemonics. */
15813 break;
15814
c19d1205 15815 case OT_cinfix3:
088fa78e 15816 case OT_cinfix3_deprecated:
c19d1205
ZW
15817 case OT_odd_infix_unc:
15818 if (!unified_syntax)
e3cb604e 15819 return 0;
c19d1205
ZW
15820 /* else fall through */
15821
15822 case OT_csuffix:
037e8744 15823 case OT_csuffixF:
c19d1205
ZW
15824 case OT_csuf_or_in3:
15825 inst.cond = cond->value;
15826 return opcode;
15827
15828 case OT_unconditional:
15829 case OT_unconditionalF:
dfa9f0d5 15830 if (thumb_mode)
c921be7d 15831 inst.cond = cond->value;
dfa9f0d5
PB
15832 else
15833 {
c921be7d 15834 /* Delayed diagnostic. */
dfa9f0d5
PB
15835 inst.error = BAD_COND;
15836 inst.cond = COND_ALWAYS;
15837 }
c19d1205 15838 return opcode;
b99bd4ef 15839
c19d1205 15840 default:
c921be7d 15841 return NULL;
c19d1205
ZW
15842 }
15843 }
b99bd4ef 15844
c19d1205
ZW
15845 /* Cannot have a usual-position infix on a mnemonic of less than
15846 six characters (five would be a suffix). */
15847 if (end - base < 6)
c921be7d 15848 return NULL;
b99bd4ef 15849
c19d1205
ZW
15850 /* Look for infixed mnemonic in the usual position. */
15851 affix = base + 3;
21d799b5 15852 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15853 if (!cond)
c921be7d 15854 return NULL;
e3cb604e
PB
15855
15856 memcpy (save, affix, 2);
15857 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15858 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15859 (end - base) - 2);
e3cb604e
PB
15860 memmove (affix + 2, affix, (end - affix) - 2);
15861 memcpy (affix, save, 2);
15862
088fa78e
KH
15863 if (opcode
15864 && (opcode->tag == OT_cinfix3
15865 || opcode->tag == OT_cinfix3_deprecated
15866 || opcode->tag == OT_csuf_or_in3
15867 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15868 {
c921be7d 15869 /* Step CM. */
278df34e 15870 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15871 && (opcode->tag == OT_cinfix3
15872 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15873 as_warn (_("conditional infixes are deprecated in unified syntax"));
15874
15875 inst.cond = cond->value;
15876 return opcode;
b99bd4ef
NC
15877 }
15878
c921be7d 15879 return NULL;
b99bd4ef
NC
15880}
15881
e07e6e58
NC
15882/* This function generates an initial IT instruction, leaving its block
15883 virtually open for the new instructions. Eventually,
15884 the mask will be updated by now_it_add_mask () each time
15885 a new instruction needs to be included in the IT block.
15886 Finally, the block is closed with close_automatic_it_block ().
15887 The block closure can be requested either from md_assemble (),
15888 a tencode (), or due to a label hook. */
15889
15890static void
15891new_automatic_it_block (int cond)
15892{
15893 now_it.state = AUTOMATIC_IT_BLOCK;
15894 now_it.mask = 0x18;
15895 now_it.cc = cond;
15896 now_it.block_length = 1;
cd000bff 15897 mapping_state (MAP_THUMB);
e07e6e58
NC
15898 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15899}
15900
15901/* Close an automatic IT block.
15902 See comments in new_automatic_it_block (). */
15903
15904static void
15905close_automatic_it_block (void)
15906{
15907 now_it.mask = 0x10;
15908 now_it.block_length = 0;
15909}
15910
15911/* Update the mask of the current automatically-generated IT
15912 instruction. See comments in new_automatic_it_block (). */
15913
15914static void
15915now_it_add_mask (int cond)
15916{
15917#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15918#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15919 | ((bitvalue) << (nbit)))
e07e6e58 15920 const int resulting_bit = (cond & 1);
c921be7d 15921
e07e6e58
NC
15922 now_it.mask &= 0xf;
15923 now_it.mask = SET_BIT_VALUE (now_it.mask,
15924 resulting_bit,
15925 (5 - now_it.block_length));
15926 now_it.mask = SET_BIT_VALUE (now_it.mask,
15927 1,
15928 ((5 - now_it.block_length) - 1) );
15929 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15930
15931#undef CLEAR_BIT
15932#undef SET_BIT_VALUE
e07e6e58
NC
15933}
15934
15935/* The IT blocks handling machinery is accessed through the these functions:
15936 it_fsm_pre_encode () from md_assemble ()
15937 set_it_insn_type () optional, from the tencode functions
15938 set_it_insn_type_last () ditto
15939 in_it_block () ditto
15940 it_fsm_post_encode () from md_assemble ()
15941 force_automatic_it_block_close () from label habdling functions
15942
15943 Rationale:
15944 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15945 initializing the IT insn type with a generic initial value depending
15946 on the inst.condition.
15947 2) During the tencode function, two things may happen:
15948 a) The tencode function overrides the IT insn type by
15949 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15950 b) The tencode function queries the IT block state by
15951 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15952
15953 Both set_it_insn_type and in_it_block run the internal FSM state
15954 handling function (handle_it_state), because: a) setting the IT insn
15955 type may incur in an invalid state (exiting the function),
15956 and b) querying the state requires the FSM to be updated.
15957 Specifically we want to avoid creating an IT block for conditional
15958 branches, so it_fsm_pre_encode is actually a guess and we can't
15959 determine whether an IT block is required until the tencode () routine
15960 has decided what type of instruction this actually it.
15961 Because of this, if set_it_insn_type and in_it_block have to be used,
15962 set_it_insn_type has to be called first.
15963
15964 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15965 determines the insn IT type depending on the inst.cond code.
15966 When a tencode () routine encodes an instruction that can be
15967 either outside an IT block, or, in the case of being inside, has to be
15968 the last one, set_it_insn_type_last () will determine the proper
15969 IT instruction type based on the inst.cond code. Otherwise,
15970 set_it_insn_type can be called for overriding that logic or
15971 for covering other cases.
15972
15973 Calling handle_it_state () may not transition the IT block state to
15974 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15975 still queried. Instead, if the FSM determines that the state should
15976 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15977 after the tencode () function: that's what it_fsm_post_encode () does.
15978
15979 Since in_it_block () calls the state handling function to get an
15980 updated state, an error may occur (due to invalid insns combination).
15981 In that case, inst.error is set.
15982 Therefore, inst.error has to be checked after the execution of
15983 the tencode () routine.
15984
15985 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15986 any pending state change (if any) that didn't take place in
15987 handle_it_state () as explained above. */
15988
15989static void
15990it_fsm_pre_encode (void)
15991{
15992 if (inst.cond != COND_ALWAYS)
15993 inst.it_insn_type = INSIDE_IT_INSN;
15994 else
15995 inst.it_insn_type = OUTSIDE_IT_INSN;
15996
15997 now_it.state_handled = 0;
15998}
15999
16000/* IT state FSM handling function. */
16001
16002static int
16003handle_it_state (void)
16004{
16005 now_it.state_handled = 1;
16006
16007 switch (now_it.state)
16008 {
16009 case OUTSIDE_IT_BLOCK:
16010 switch (inst.it_insn_type)
16011 {
16012 case OUTSIDE_IT_INSN:
16013 break;
16014
16015 case INSIDE_IT_INSN:
16016 case INSIDE_IT_LAST_INSN:
16017 if (thumb_mode == 0)
16018 {
c921be7d 16019 if (unified_syntax
e07e6e58
NC
16020 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16021 as_tsktsk (_("Warning: conditional outside an IT block"\
16022 " for Thumb."));
16023 }
16024 else
16025 {
16026 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16027 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16028 {
16029 /* Automatically generate the IT instruction. */
16030 new_automatic_it_block (inst.cond);
16031 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16032 close_automatic_it_block ();
16033 }
16034 else
16035 {
16036 inst.error = BAD_OUT_IT;
16037 return FAIL;
16038 }
16039 }
16040 break;
16041
16042 case IF_INSIDE_IT_LAST_INSN:
16043 case NEUTRAL_IT_INSN:
16044 break;
16045
16046 case IT_INSN:
16047 now_it.state = MANUAL_IT_BLOCK;
16048 now_it.block_length = 0;
16049 break;
16050 }
16051 break;
16052
16053 case AUTOMATIC_IT_BLOCK:
16054 /* Three things may happen now:
16055 a) We should increment current it block size;
16056 b) We should close current it block (closing insn or 4 insns);
16057 c) We should close current it block and start a new one (due
16058 to incompatible conditions or
16059 4 insns-length block reached). */
16060
16061 switch (inst.it_insn_type)
16062 {
16063 case OUTSIDE_IT_INSN:
16064 /* The closure of the block shall happen immediatelly,
16065 so any in_it_block () call reports the block as closed. */
16066 force_automatic_it_block_close ();
16067 break;
16068
16069 case INSIDE_IT_INSN:
16070 case INSIDE_IT_LAST_INSN:
16071 case IF_INSIDE_IT_LAST_INSN:
16072 now_it.block_length++;
16073
16074 if (now_it.block_length > 4
16075 || !now_it_compatible (inst.cond))
16076 {
16077 force_automatic_it_block_close ();
16078 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16079 new_automatic_it_block (inst.cond);
16080 }
16081 else
16082 {
16083 now_it_add_mask (inst.cond);
16084 }
16085
16086 if (now_it.state == AUTOMATIC_IT_BLOCK
16087 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16088 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16089 close_automatic_it_block ();
16090 break;
16091
16092 case NEUTRAL_IT_INSN:
16093 now_it.block_length++;
16094
16095 if (now_it.block_length > 4)
16096 force_automatic_it_block_close ();
16097 else
16098 now_it_add_mask (now_it.cc & 1);
16099 break;
16100
16101 case IT_INSN:
16102 close_automatic_it_block ();
16103 now_it.state = MANUAL_IT_BLOCK;
16104 break;
16105 }
16106 break;
16107
16108 case MANUAL_IT_BLOCK:
16109 {
16110 /* Check conditional suffixes. */
16111 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16112 int is_last;
16113 now_it.mask <<= 1;
16114 now_it.mask &= 0x1f;
16115 is_last = (now_it.mask == 0x10);
16116
16117 switch (inst.it_insn_type)
16118 {
16119 case OUTSIDE_IT_INSN:
16120 inst.error = BAD_NOT_IT;
16121 return FAIL;
16122
16123 case INSIDE_IT_INSN:
16124 if (cond != inst.cond)
16125 {
16126 inst.error = BAD_IT_COND;
16127 return FAIL;
16128 }
16129 break;
16130
16131 case INSIDE_IT_LAST_INSN:
16132 case IF_INSIDE_IT_LAST_INSN:
16133 if (cond != inst.cond)
16134 {
16135 inst.error = BAD_IT_COND;
16136 return FAIL;
16137 }
16138 if (!is_last)
16139 {
16140 inst.error = BAD_BRANCH;
16141 return FAIL;
16142 }
16143 break;
16144
16145 case NEUTRAL_IT_INSN:
16146 /* The BKPT instruction is unconditional even in an IT block. */
16147 break;
16148
16149 case IT_INSN:
16150 inst.error = BAD_IT_IT;
16151 return FAIL;
16152 }
16153 }
16154 break;
16155 }
16156
16157 return SUCCESS;
16158}
16159
16160static void
16161it_fsm_post_encode (void)
16162{
16163 int is_last;
16164
16165 if (!now_it.state_handled)
16166 handle_it_state ();
16167
16168 is_last = (now_it.mask == 0x10);
16169 if (is_last)
16170 {
16171 now_it.state = OUTSIDE_IT_BLOCK;
16172 now_it.mask = 0;
16173 }
16174}
16175
16176static void
16177force_automatic_it_block_close (void)
16178{
16179 if (now_it.state == AUTOMATIC_IT_BLOCK)
16180 {
16181 close_automatic_it_block ();
16182 now_it.state = OUTSIDE_IT_BLOCK;
16183 now_it.mask = 0;
16184 }
16185}
16186
16187static int
16188in_it_block (void)
16189{
16190 if (!now_it.state_handled)
16191 handle_it_state ();
16192
16193 return now_it.state != OUTSIDE_IT_BLOCK;
16194}
16195
c19d1205
ZW
16196void
16197md_assemble (char *str)
b99bd4ef 16198{
c19d1205
ZW
16199 char *p = str;
16200 const struct asm_opcode * opcode;
b99bd4ef 16201
c19d1205
ZW
16202 /* Align the previous label if needed. */
16203 if (last_label_seen != NULL)
b99bd4ef 16204 {
c19d1205
ZW
16205 symbol_set_frag (last_label_seen, frag_now);
16206 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16207 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16208 }
16209
c19d1205
ZW
16210 memset (&inst, '\0', sizeof (inst));
16211 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16212
c19d1205
ZW
16213 opcode = opcode_lookup (&p);
16214 if (!opcode)
b99bd4ef 16215 {
c19d1205 16216 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16217 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16218 if (! create_register_alias (str, p)
16219 && ! create_neon_reg_alias (str, p))
c19d1205 16220 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16221
b99bd4ef
NC
16222 return;
16223 }
16224
278df34e 16225 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16226 as_warn (_("s suffix on comparison instruction is deprecated"));
16227
037e8744
JB
16228 /* The value which unconditional instructions should have in place of the
16229 condition field. */
16230 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16231
c19d1205 16232 if (thumb_mode)
b99bd4ef 16233 {
e74cfd16 16234 arm_feature_set variant;
8f06b2d8
PB
16235
16236 variant = cpu_variant;
16237 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16238 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16239 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16240 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16241 if (!opcode->tvariant
16242 || (thumb_mode == 1
16243 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16244 {
bf3eeda7 16245 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16246 return;
16247 }
c19d1205
ZW
16248 if (inst.cond != COND_ALWAYS && !unified_syntax
16249 && opcode->tencode != do_t_branch)
b99bd4ef 16250 {
c19d1205 16251 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16252 return;
16253 }
16254
752d5da4 16255 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16256 {
7e806470 16257 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16258 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16259 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16260 {
16261 /* Two things are addressed here.
16262 1) Implicit require narrow instructions on Thumb-1.
16263 This avoids relaxation accidentally introducing Thumb-2
16264 instructions.
16265 2) Reject wide instructions in non Thumb-2 cores. */
16266 if (inst.size_req == 0)
16267 inst.size_req = 2;
16268 else if (inst.size_req == 4)
16269 {
bf3eeda7 16270 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16271 return;
16272 }
16273 }
076d447c
PB
16274 }
16275
c19d1205
ZW
16276 inst.instruction = opcode->tvalue;
16277
5be8be5d 16278 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16279 {
16280 /* Prepare the it_insn_type for those encodings that don't set
16281 it. */
16282 it_fsm_pre_encode ();
c19d1205 16283
e07e6e58
NC
16284 opcode->tencode ();
16285
16286 it_fsm_post_encode ();
16287 }
e27ec89e 16288
0110f2b8 16289 if (!(inst.error || inst.relax))
b99bd4ef 16290 {
9c2799c2 16291 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16292 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16293 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16294 {
c19d1205 16295 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16296 return;
16297 }
16298 }
076d447c
PB
16299
16300 /* Something has gone badly wrong if we try to relax a fixed size
16301 instruction. */
9c2799c2 16302 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16303
e74cfd16
PB
16304 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16305 *opcode->tvariant);
ee065d83 16306 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16307 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16308 anything other than bl/blx and v6-M instructions.
ee065d83 16309 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16310 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16311 || inst.relax)
e07e6e58
NC
16312 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16313 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16314 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16315 arm_ext_v6t2);
cd000bff 16316
88714cb8
DG
16317 check_neon_suffixes;
16318
cd000bff 16319 if (!inst.error)
c877a2f2
NC
16320 {
16321 mapping_state (MAP_THUMB);
16322 }
c19d1205 16323 }
3e9e4fcf 16324 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16325 {
845b51d6
PB
16326 bfd_boolean is_bx;
16327
16328 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16329 is_bx = (opcode->aencode == do_bx);
16330
c19d1205 16331 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16332 if (!(is_bx && fix_v4bx)
16333 && !(opcode->avariant &&
16334 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16335 {
bf3eeda7 16336 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16337 return;
b99bd4ef 16338 }
c19d1205 16339 if (inst.size_req)
b99bd4ef 16340 {
c19d1205
ZW
16341 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16342 return;
b99bd4ef
NC
16343 }
16344
c19d1205
ZW
16345 inst.instruction = opcode->avalue;
16346 if (opcode->tag == OT_unconditionalF)
16347 inst.instruction |= 0xF << 28;
16348 else
16349 inst.instruction |= inst.cond << 28;
16350 inst.size = INSN_SIZE;
5be8be5d 16351 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16352 {
16353 it_fsm_pre_encode ();
16354 opcode->aencode ();
16355 it_fsm_post_encode ();
16356 }
ee065d83
PB
16357 /* Arm mode bx is marked as both v4T and v5 because it's still required
16358 on a hypothetical non-thumb v5 core. */
845b51d6 16359 if (is_bx)
e74cfd16 16360 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16361 else
e74cfd16
PB
16362 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16363 *opcode->avariant);
88714cb8
DG
16364
16365 check_neon_suffixes;
16366
cd000bff 16367 if (!inst.error)
c877a2f2
NC
16368 {
16369 mapping_state (MAP_ARM);
16370 }
b99bd4ef 16371 }
3e9e4fcf
JB
16372 else
16373 {
16374 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16375 "-- `%s'"), str);
16376 return;
16377 }
c19d1205
ZW
16378 output_inst (str);
16379}
b99bd4ef 16380
e07e6e58
NC
16381static void
16382check_it_blocks_finished (void)
16383{
16384#ifdef OBJ_ELF
16385 asection *sect;
16386
16387 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16388 if (seg_info (sect)->tc_segment_info_data.current_it.state
16389 == MANUAL_IT_BLOCK)
16390 {
16391 as_warn (_("section '%s' finished with an open IT block."),
16392 sect->name);
16393 }
16394#else
16395 if (now_it.state == MANUAL_IT_BLOCK)
16396 as_warn (_("file finished with an open IT block."));
16397#endif
16398}
16399
c19d1205
ZW
16400/* Various frobbings of labels and their addresses. */
16401
16402void
16403arm_start_line_hook (void)
16404{
16405 last_label_seen = NULL;
b99bd4ef
NC
16406}
16407
c19d1205
ZW
16408void
16409arm_frob_label (symbolS * sym)
b99bd4ef 16410{
c19d1205 16411 last_label_seen = sym;
b99bd4ef 16412
c19d1205 16413 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16414
c19d1205
ZW
16415#if defined OBJ_COFF || defined OBJ_ELF
16416 ARM_SET_INTERWORK (sym, support_interwork);
16417#endif
b99bd4ef 16418
e07e6e58
NC
16419 force_automatic_it_block_close ();
16420
5f4273c7 16421 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16422 as Thumb functions. This is because these labels, whilst
16423 they exist inside Thumb code, are not the entry points for
16424 possible ARM->Thumb calls. Also, these labels can be used
16425 as part of a computed goto or switch statement. eg gcc
16426 can generate code that looks like this:
b99bd4ef 16427
c19d1205
ZW
16428 ldr r2, [pc, .Laaa]
16429 lsl r3, r3, #2
16430 ldr r2, [r3, r2]
16431 mov pc, r2
b99bd4ef 16432
c19d1205
ZW
16433 .Lbbb: .word .Lxxx
16434 .Lccc: .word .Lyyy
16435 ..etc...
16436 .Laaa: .word Lbbb
b99bd4ef 16437
c19d1205
ZW
16438 The first instruction loads the address of the jump table.
16439 The second instruction converts a table index into a byte offset.
16440 The third instruction gets the jump address out of the table.
16441 The fourth instruction performs the jump.
b99bd4ef 16442
c19d1205
ZW
16443 If the address stored at .Laaa is that of a symbol which has the
16444 Thumb_Func bit set, then the linker will arrange for this address
16445 to have the bottom bit set, which in turn would mean that the
16446 address computation performed by the third instruction would end
16447 up with the bottom bit set. Since the ARM is capable of unaligned
16448 word loads, the instruction would then load the incorrect address
16449 out of the jump table, and chaos would ensue. */
16450 if (label_is_thumb_function_name
16451 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16452 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16453 {
c19d1205
ZW
16454 /* When the address of a Thumb function is taken the bottom
16455 bit of that address should be set. This will allow
16456 interworking between Arm and Thumb functions to work
16457 correctly. */
b99bd4ef 16458
c19d1205 16459 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16460
c19d1205 16461 label_is_thumb_function_name = FALSE;
b99bd4ef 16462 }
07a53e5c 16463
07a53e5c 16464 dwarf2_emit_label (sym);
b99bd4ef
NC
16465}
16466
c921be7d 16467bfd_boolean
c19d1205 16468arm_data_in_code (void)
b99bd4ef 16469{
c19d1205 16470 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16471 {
c19d1205
ZW
16472 *input_line_pointer = '/';
16473 input_line_pointer += 5;
16474 *input_line_pointer = 0;
c921be7d 16475 return TRUE;
b99bd4ef
NC
16476 }
16477
c921be7d 16478 return FALSE;
b99bd4ef
NC
16479}
16480
c19d1205
ZW
16481char *
16482arm_canonicalize_symbol_name (char * name)
b99bd4ef 16483{
c19d1205 16484 int len;
b99bd4ef 16485
c19d1205
ZW
16486 if (thumb_mode && (len = strlen (name)) > 5
16487 && streq (name + len - 5, "/data"))
16488 *(name + len - 5) = 0;
b99bd4ef 16489
c19d1205 16490 return name;
b99bd4ef 16491}
c19d1205
ZW
16492\f
16493/* Table of all register names defined by default. The user can
16494 define additional names with .req. Note that all register names
16495 should appear in both upper and lowercase variants. Some registers
16496 also have mixed-case names. */
b99bd4ef 16497
dcbf9037 16498#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16499#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16500#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16501#define REGSET(p,t) \
16502 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16503 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16504 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16505 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16506#define REGSETH(p,t) \
16507 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16508 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16509 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16510 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16511#define REGSET2(p,t) \
16512 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16513 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16514 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16515 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16516#define SPLRBANK(base,bank,t) \
16517 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16518 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16519 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16520 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16521 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16522 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16523
c19d1205 16524static const struct reg_entry reg_names[] =
7ed4c4c5 16525{
c19d1205
ZW
16526 /* ARM integer registers. */
16527 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16528
c19d1205
ZW
16529 /* ATPCS synonyms. */
16530 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16531 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16532 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16533
c19d1205
ZW
16534 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16535 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16536 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16537
c19d1205
ZW
16538 /* Well-known aliases. */
16539 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16540 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16541
16542 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16543 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16544
16545 /* Coprocessor numbers. */
16546 REGSET(p, CP), REGSET(P, CP),
16547
16548 /* Coprocessor register numbers. The "cr" variants are for backward
16549 compatibility. */
16550 REGSET(c, CN), REGSET(C, CN),
16551 REGSET(cr, CN), REGSET(CR, CN),
16552
90ec0d68
MGD
16553 /* ARM banked registers. */
16554 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16555 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16556 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16557 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16558 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16559 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16560 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16561
16562 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16563 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16564 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16565 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16566 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16567 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16568 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16569 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16570
16571 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16572 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16573 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16574 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16575 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16576 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16577 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16578 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16579 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16580
c19d1205
ZW
16581 /* FPA registers. */
16582 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16583 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16584
16585 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16586 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16587
16588 /* VFP SP registers. */
5287ad62
JB
16589 REGSET(s,VFS), REGSET(S,VFS),
16590 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16591
16592 /* VFP DP Registers. */
5287ad62
JB
16593 REGSET(d,VFD), REGSET(D,VFD),
16594 /* Extra Neon DP registers. */
16595 REGSETH(d,VFD), REGSETH(D,VFD),
16596
16597 /* Neon QP registers. */
16598 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16599
16600 /* VFP control registers. */
16601 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16602 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16603 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16604 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16605 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16606 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16607
16608 /* Maverick DSP coprocessor registers. */
16609 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16610 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16611
16612 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16613 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16614 REGDEF(dspsc,0,DSPSC),
16615
16616 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16617 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16618 REGDEF(DSPSC,0,DSPSC),
16619
16620 /* iWMMXt data registers - p0, c0-15. */
16621 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16622
16623 /* iWMMXt control registers - p1, c0-3. */
16624 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16625 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16626 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16627 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16628
16629 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16630 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16631 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16632 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16633 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16634
16635 /* XScale accumulator registers. */
16636 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16637};
16638#undef REGDEF
16639#undef REGNUM
16640#undef REGSET
7ed4c4c5 16641
c19d1205
ZW
16642/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16643 within psr_required_here. */
16644static const struct asm_psr psrs[] =
16645{
16646 /* Backward compatibility notation. Note that "all" is no longer
16647 truly all possible PSR bits. */
16648 {"all", PSR_c | PSR_f},
16649 {"flg", PSR_f},
16650 {"ctl", PSR_c},
16651
16652 /* Individual flags. */
16653 {"f", PSR_f},
16654 {"c", PSR_c},
16655 {"x", PSR_x},
16656 {"s", PSR_s},
59b42a0d 16657
c19d1205
ZW
16658 /* Combinations of flags. */
16659 {"fs", PSR_f | PSR_s},
16660 {"fx", PSR_f | PSR_x},
16661 {"fc", PSR_f | PSR_c},
16662 {"sf", PSR_s | PSR_f},
16663 {"sx", PSR_s | PSR_x},
16664 {"sc", PSR_s | PSR_c},
16665 {"xf", PSR_x | PSR_f},
16666 {"xs", PSR_x | PSR_s},
16667 {"xc", PSR_x | PSR_c},
16668 {"cf", PSR_c | PSR_f},
16669 {"cs", PSR_c | PSR_s},
16670 {"cx", PSR_c | PSR_x},
16671 {"fsx", PSR_f | PSR_s | PSR_x},
16672 {"fsc", PSR_f | PSR_s | PSR_c},
16673 {"fxs", PSR_f | PSR_x | PSR_s},
16674 {"fxc", PSR_f | PSR_x | PSR_c},
16675 {"fcs", PSR_f | PSR_c | PSR_s},
16676 {"fcx", PSR_f | PSR_c | PSR_x},
16677 {"sfx", PSR_s | PSR_f | PSR_x},
16678 {"sfc", PSR_s | PSR_f | PSR_c},
16679 {"sxf", PSR_s | PSR_x | PSR_f},
16680 {"sxc", PSR_s | PSR_x | PSR_c},
16681 {"scf", PSR_s | PSR_c | PSR_f},
16682 {"scx", PSR_s | PSR_c | PSR_x},
16683 {"xfs", PSR_x | PSR_f | PSR_s},
16684 {"xfc", PSR_x | PSR_f | PSR_c},
16685 {"xsf", PSR_x | PSR_s | PSR_f},
16686 {"xsc", PSR_x | PSR_s | PSR_c},
16687 {"xcf", PSR_x | PSR_c | PSR_f},
16688 {"xcs", PSR_x | PSR_c | PSR_s},
16689 {"cfs", PSR_c | PSR_f | PSR_s},
16690 {"cfx", PSR_c | PSR_f | PSR_x},
16691 {"csf", PSR_c | PSR_s | PSR_f},
16692 {"csx", PSR_c | PSR_s | PSR_x},
16693 {"cxf", PSR_c | PSR_x | PSR_f},
16694 {"cxs", PSR_c | PSR_x | PSR_s},
16695 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16696 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16697 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16698 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16699 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16700 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16701 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16702 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16703 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16704 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16705 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16706 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16707 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16708 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16709 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16710 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16711 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16712 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16713 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16714 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16715 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16716 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16717 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16718 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16719};
16720
62b3e311
PB
16721/* Table of V7M psr names. */
16722static const struct asm_psr v7m_psrs[] =
16723{
2b744c99
PB
16724 {"apsr", 0 }, {"APSR", 0 },
16725 {"iapsr", 1 }, {"IAPSR", 1 },
16726 {"eapsr", 2 }, {"EAPSR", 2 },
16727 {"psr", 3 }, {"PSR", 3 },
16728 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16729 {"ipsr", 5 }, {"IPSR", 5 },
16730 {"epsr", 6 }, {"EPSR", 6 },
16731 {"iepsr", 7 }, {"IEPSR", 7 },
16732 {"msp", 8 }, {"MSP", 8 },
16733 {"psp", 9 }, {"PSP", 9 },
16734 {"primask", 16}, {"PRIMASK", 16},
16735 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
16736 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16737 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
16738 {"faultmask", 19}, {"FAULTMASK", 19},
16739 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16740};
16741
c19d1205
ZW
16742/* Table of all shift-in-operand names. */
16743static const struct asm_shift_name shift_names [] =
b99bd4ef 16744{
c19d1205
ZW
16745 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16746 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16747 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16748 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16749 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16750 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16751};
b99bd4ef 16752
c19d1205
ZW
16753/* Table of all explicit relocation names. */
16754#ifdef OBJ_ELF
16755static struct reloc_entry reloc_names[] =
16756{
16757 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16758 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16759 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16760 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16761 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16762 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16763 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16764 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16765 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16766 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 16767 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
16768 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16769 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16770 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16771 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16772 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16773 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16774 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
16775};
16776#endif
b99bd4ef 16777
c19d1205
ZW
16778/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16779static const struct asm_cond conds[] =
16780{
16781 {"eq", 0x0},
16782 {"ne", 0x1},
16783 {"cs", 0x2}, {"hs", 0x2},
16784 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16785 {"mi", 0x4},
16786 {"pl", 0x5},
16787 {"vs", 0x6},
16788 {"vc", 0x7},
16789 {"hi", 0x8},
16790 {"ls", 0x9},
16791 {"ge", 0xa},
16792 {"lt", 0xb},
16793 {"gt", 0xc},
16794 {"le", 0xd},
16795 {"al", 0xe}
16796};
bfae80f2 16797
62b3e311
PB
16798static struct asm_barrier_opt barrier_opt_names[] =
16799{
52e7f43d
RE
16800 { "sy", 0xf }, { "SY", 0xf },
16801 { "un", 0x7 }, { "UN", 0x7 },
16802 { "st", 0xe }, { "ST", 0xe },
16803 { "unst", 0x6 }, { "UNST", 0x6 },
16804 { "ish", 0xb }, { "ISH", 0xb },
16805 { "sh", 0xb }, { "SH", 0xb },
16806 { "ishst", 0xa }, { "ISHST", 0xa },
16807 { "shst", 0xa }, { "SHST", 0xa },
16808 { "nsh", 0x7 }, { "NSH", 0x7 },
16809 { "nshst", 0x6 }, { "NSHST", 0x6 },
16810 { "osh", 0x3 }, { "OSH", 0x3 },
16811 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16812};
16813
c19d1205
ZW
16814/* Table of ARM-format instructions. */
16815
16816/* Macros for gluing together operand strings. N.B. In all cases
16817 other than OPS0, the trailing OP_stop comes from default
16818 zero-initialization of the unspecified elements of the array. */
16819#define OPS0() { OP_stop, }
16820#define OPS1(a) { OP_##a, }
16821#define OPS2(a,b) { OP_##a,OP_##b, }
16822#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16823#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16824#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16825#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16826
5be8be5d
DG
16827/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16828 This is useful when mixing operands for ARM and THUMB, i.e. using the
16829 MIX_ARM_THUMB_OPERANDS macro.
16830 In order to use these macros, prefix the number of operands with _
16831 e.g. _3. */
16832#define OPS_1(a) { a, }
16833#define OPS_2(a,b) { a,b, }
16834#define OPS_3(a,b,c) { a,b,c, }
16835#define OPS_4(a,b,c,d) { a,b,c,d, }
16836#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16837#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16838
c19d1205
ZW
16839/* These macros abstract out the exact format of the mnemonic table and
16840 save some repeated characters. */
16841
16842/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16843#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16844 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16845 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16846
16847/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16848 a T_MNEM_xyz enumerator. */
16849#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16850 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16851#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16852 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16853
16854/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16855 infix after the third character. */
16856#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16857 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16858 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16859#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16860 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16861 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16862#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16863 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16864#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16865 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16866#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16867 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16868#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16869 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16870
16871/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16872 appear in the condition table. */
16873#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16874 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16875 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16876
16877#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16878 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16879 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16880 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16881 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16882 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16883 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16884 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16885 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16886 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16887 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16888 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16889 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16890 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16891 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16892 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16893 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16894 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16895 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16896 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16897
16898#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16899 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16900#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16901 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16902
16903/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16904 field is still 0xE. Many of the Thumb variants can be executed
16905 conditionally, so this is checked separately. */
c19d1205 16906#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16907 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16908 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16909
16910/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16911 condition code field. */
16912#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16913 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16914 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16915
16916/* ARM-only variants of all the above. */
6a86118a 16917#define CE(mnem, op, nops, ops, ae) \
21d799b5 16918 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16919
16920#define C3(mnem, op, nops, ops, ae) \
16921 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16922
e3cb604e
PB
16923/* Legacy mnemonics that always have conditional infix after the third
16924 character. */
16925#define CL(mnem, op, nops, ops, ae) \
21d799b5 16926 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16927 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16928
8f06b2d8
PB
16929/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16930#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16931 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16932
e3cb604e
PB
16933/* Legacy coprocessor instructions where conditional infix and conditional
16934 suffix are ambiguous. For consistency this includes all FPA instructions,
16935 not just the potentially ambiguous ones. */
16936#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16937 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16938 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16939
16940/* Coprocessor, takes either a suffix or a position-3 infix
16941 (for an FPA corner case). */
16942#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16943 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16944 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16945
6a86118a 16946#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16947 { m1 #m2 m3, OPS##nops ops, \
16948 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16949 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16950
16951#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16952 xCM_ (m1, , m2, op, nops, ops, ae), \
16953 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16954 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16955 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16956 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16957 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16958 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16959 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16960 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16961 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16962 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16963 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16964 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16965 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16966 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16967 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16968 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16969 xCM_ (m1, le, m2, op, nops, ops, ae), \
16970 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16971
16972#define UE(mnem, op, nops, ops, ae) \
16973 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16974
16975#define UF(mnem, op, nops, ops, ae) \
16976 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16977
5287ad62
JB
16978/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16979 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16980 use the same encoding function for each. */
16981#define NUF(mnem, op, nops, ops, enc) \
16982 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16983 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16984
16985/* Neon data processing, version which indirects through neon_enc_tab for
16986 the various overloaded versions of opcodes. */
16987#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16988 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16989 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16990
16991/* Neon insn with conditional suffix for the ARM version, non-overloaded
16992 version. */
037e8744
JB
16993#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16994 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16995 THUMB_VARIANT, do_##enc, do_##enc }
16996
037e8744 16997#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16998 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16999
17000#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17001 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17002
5287ad62 17003/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17004#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17005 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17006 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17007
037e8744 17008#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17009 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17010
17011#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17012 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17013
c19d1205
ZW
17014#define do_0 0
17015
c19d1205 17016static const struct asm_opcode insns[] =
bfae80f2 17017{
e74cfd16
PB
17018#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17019#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17020 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17021 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17022 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17023 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17024 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17025 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17026 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17027 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17028 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17029 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17030 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17031 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17032 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17033 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17034 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17035 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17036
17037 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17038 for setting PSR flag bits. They are obsolete in V6 and do not
17039 have Thumb equivalents. */
21d799b5
NC
17040 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17041 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17042 CL("tstp", 110f000, 2, (RR, SH), cmp),
17043 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17044 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17045 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17046 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17047 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17048 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17049
17050 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17051 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17052 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17053 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17054
17055 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17056 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17057 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17058 OP_RRnpc),
17059 OP_ADDRGLDR),ldst, t_ldst),
17060 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17061
17062 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17063 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17064 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17065 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17066 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17067 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17068
17069 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17070 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17071 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17072 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17073
c19d1205 17074 /* Pseudo ops. */
21d799b5 17075 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17076 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17077 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17078
17079 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17080 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17081 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17082 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17083 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17084 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17085 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17086 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17087 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17088 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17089 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17090 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17091 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17092
16a4cf17 17093 /* These may simplify to neg. */
21d799b5
NC
17094 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17095 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17096
c921be7d
NC
17097#undef THUMB_VARIANT
17098#define THUMB_VARIANT & arm_ext_v6
17099
21d799b5 17100 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17101
17102 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17103#undef THUMB_VARIANT
17104#define THUMB_VARIANT & arm_ext_v6t2
17105
21d799b5
NC
17106 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17107 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17108 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17109
5be8be5d
DG
17110 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17111 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17112 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17113 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17114
21d799b5
NC
17115 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17116 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17117
21d799b5
NC
17118 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17119 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17120
17121 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17122 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17123 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17124
17125 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17126 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17127 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17128 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17129 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17130 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17131 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17132 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17133
c921be7d
NC
17134#undef ARM_VARIANT
17135#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17136#undef THUMB_VARIANT
17137#define THUMB_VARIANT & arm_ext_v4t
17138
21d799b5
NC
17139 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17140 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17141
c921be7d
NC
17142#undef THUMB_VARIANT
17143#define THUMB_VARIANT & arm_ext_v6t2
17144
21d799b5 17145 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17146 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17147
17148 /* Generic coprocessor instructions. */
21d799b5
NC
17149 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17150 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17151 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17152 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17153 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17154 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17155 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17156
c921be7d
NC
17157#undef ARM_VARIANT
17158#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17159
21d799b5 17160 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17161 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17162
c921be7d
NC
17163#undef ARM_VARIANT
17164#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17165#undef THUMB_VARIANT
17166#define THUMB_VARIANT & arm_ext_msr
17167
d2cd1205
JB
17168 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17169 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17170
c921be7d
NC
17171#undef ARM_VARIANT
17172#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17173#undef THUMB_VARIANT
17174#define THUMB_VARIANT & arm_ext_v6t2
17175
21d799b5
NC
17176 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17177 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17178 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17179 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17180 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17181 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17182 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17183 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17184
c921be7d
NC
17185#undef ARM_VARIANT
17186#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17187#undef THUMB_VARIANT
17188#define THUMB_VARIANT & arm_ext_v4t
17189
5be8be5d
DG
17190 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17191 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17192 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17193 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17194 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17195 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17196
c921be7d
NC
17197#undef ARM_VARIANT
17198#define ARM_VARIANT & arm_ext_v4t_5
17199
c19d1205
ZW
17200 /* ARM Architecture 4T. */
17201 /* Note: bx (and blx) are required on V5, even if the processor does
17202 not support Thumb. */
21d799b5 17203 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17204
c921be7d
NC
17205#undef ARM_VARIANT
17206#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17207#undef THUMB_VARIANT
17208#define THUMB_VARIANT & arm_ext_v5t
17209
c19d1205
ZW
17210 /* Note: blx has 2 variants; the .value coded here is for
17211 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17212 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17213 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17214
c921be7d
NC
17215#undef THUMB_VARIANT
17216#define THUMB_VARIANT & arm_ext_v6t2
17217
21d799b5
NC
17218 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17219 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17220 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17221 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17222 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17223 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17224 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17225 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17226
c921be7d
NC
17227#undef ARM_VARIANT
17228#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17229#undef THUMB_VARIANT
17230#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17231
21d799b5
NC
17232 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17233 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17234 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17235 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17236
21d799b5
NC
17237 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17238 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17239
21d799b5
NC
17240 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17241 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17242 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17243 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17244
21d799b5
NC
17245 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17246 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17247 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17248 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17249
21d799b5
NC
17250 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17251 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17252
03ee1b7f
NC
17253 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17254 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17255 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17256 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17257
c921be7d
NC
17258#undef ARM_VARIANT
17259#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17260#undef THUMB_VARIANT
17261#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17262
21d799b5 17263 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17264 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17265 ldrd, t_ldstd),
17266 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17267 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17268
21d799b5
NC
17269 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17270 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17271
c921be7d
NC
17272#undef ARM_VARIANT
17273#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17274
21d799b5 17275 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17276
c921be7d
NC
17277#undef ARM_VARIANT
17278#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17279#undef THUMB_VARIANT
17280#define THUMB_VARIANT & arm_ext_v6
17281
21d799b5
NC
17282 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17283 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17284 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17285 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17286 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17287 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17288 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17289 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17290 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17291 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17292
c921be7d
NC
17293#undef THUMB_VARIANT
17294#define THUMB_VARIANT & arm_ext_v6t2
17295
5be8be5d
DG
17296 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17297 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17298 strex, t_strex),
21d799b5
NC
17299 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17300 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17301
21d799b5
NC
17302 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17303 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17304
9e3c6df6 17305/* ARM V6 not included in V7M. */
c921be7d
NC
17306#undef THUMB_VARIANT
17307#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17308 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17309 UF(rfeib, 9900a00, 1, (RRw), rfe),
17310 UF(rfeda, 8100a00, 1, (RRw), rfe),
17311 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17312 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17313 UF(rfefa, 9900a00, 1, (RRw), rfe),
17314 UF(rfeea, 8100a00, 1, (RRw), rfe),
17315 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17316 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17317 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17318 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17319 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17320
9e3c6df6
PB
17321/* ARM V6 not included in V7M (eg. integer SIMD). */
17322#undef THUMB_VARIANT
17323#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17324 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17325 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17326 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17327 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17328 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17329 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17330 /* Old name for QASX. */
21d799b5
NC
17331 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17332 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17333 /* Old name for QSAX. */
21d799b5
NC
17334 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17335 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17336 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17337 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17338 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17339 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17340 /* Old name for SASX. */
21d799b5
NC
17341 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17342 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17343 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17344 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17345 /* Old name for SHASX. */
21d799b5
NC
17346 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17347 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17348 /* Old name for SHSAX. */
21d799b5
NC
17349 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17350 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17351 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17352 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17353 /* Old name for SSAX. */
21d799b5
NC
17354 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17355 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17356 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17357 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17358 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17359 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17360 /* Old name for UASX. */
21d799b5
NC
17361 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17362 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17363 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17364 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17365 /* Old name for UHASX. */
21d799b5
NC
17366 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17367 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17368 /* Old name for UHSAX. */
21d799b5
NC
17369 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17370 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17371 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17372 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17373 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17374 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17375 /* Old name for UQASX. */
21d799b5
NC
17376 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17377 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17378 /* Old name for UQSAX. */
21d799b5
NC
17379 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17380 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17381 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17382 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17383 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17384 /* Old name for USAX. */
21d799b5
NC
17385 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17386 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17387 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17388 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17389 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17390 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17391 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17392 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17393 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17394 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17395 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17396 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17397 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17398 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17399 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17400 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17401 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17402 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17403 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17404 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17405 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17406 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17407 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17408 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17409 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17410 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17411 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17412 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17413 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17414 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17415 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17416 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17417 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17418 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17419
c921be7d
NC
17420#undef ARM_VARIANT
17421#define ARM_VARIANT & arm_ext_v6k
17422#undef THUMB_VARIANT
17423#define THUMB_VARIANT & arm_ext_v6k
17424
21d799b5
NC
17425 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17426 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17427 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17428 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17429
c921be7d
NC
17430#undef THUMB_VARIANT
17431#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17432 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17433 ldrexd, t_ldrexd),
17434 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17435 RRnpcb), strexd, t_strexd),
ebdca51a 17436
c921be7d
NC
17437#undef THUMB_VARIANT
17438#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17439 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17440 rd_rn, rd_rn),
17441 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17442 rd_rn, rd_rn),
17443 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17444 strex, rm_rd_rn),
17445 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17446 strex, rm_rd_rn),
21d799b5 17447 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17448
c921be7d 17449#undef ARM_VARIANT
f4c65163
MGD
17450#define ARM_VARIANT & arm_ext_sec
17451#undef THUMB_VARIANT
17452#define THUMB_VARIANT & arm_ext_sec
c921be7d 17453
21d799b5 17454 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17455
90ec0d68
MGD
17456#undef ARM_VARIANT
17457#define ARM_VARIANT & arm_ext_virt
17458#undef THUMB_VARIANT
17459#define THUMB_VARIANT & arm_ext_virt
17460
17461 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17462 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17463
c921be7d
NC
17464#undef ARM_VARIANT
17465#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17466#undef THUMB_VARIANT
17467#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17468
21d799b5
NC
17469 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17470 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17471 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17472 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17473
21d799b5
NC
17474 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17475 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17476 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17477 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17478
5be8be5d
DG
17479 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17480 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17481 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17482 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17483
bf3eeda7
NS
17484 /* Thumb-only instructions. */
17485#undef ARM_VARIANT
17486#define ARM_VARIANT NULL
17487 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17488 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17489
17490 /* ARM does not really have an IT instruction, so always allow it.
17491 The opcode is copied from Thumb in order to allow warnings in
17492 -mimplicit-it=[never | arm] modes. */
17493#undef ARM_VARIANT
17494#define ARM_VARIANT & arm_ext_v1
17495
21d799b5
NC
17496 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17497 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17498 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17499 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17500 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17501 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17502 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17503 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17504 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17505 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17506 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17507 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17508 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17509 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17510 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17511 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17512 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17513 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17514
92e90b6e 17515 /* Thumb2 only instructions. */
c921be7d
NC
17516#undef ARM_VARIANT
17517#define ARM_VARIANT NULL
92e90b6e 17518
21d799b5
NC
17519 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17520 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17521 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17522 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17523 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17524 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17525
eea54501
MGD
17526 /* Hardware division instructions. */
17527#undef ARM_VARIANT
17528#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17529#undef THUMB_VARIANT
17530#define THUMB_VARIANT & arm_ext_div
17531
eea54501
MGD
17532 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17533 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17534
7e806470 17535 /* ARM V6M/V7 instructions. */
c921be7d
NC
17536#undef ARM_VARIANT
17537#define ARM_VARIANT & arm_ext_barrier
17538#undef THUMB_VARIANT
17539#define THUMB_VARIANT & arm_ext_barrier
17540
52e7f43d
RE
17541 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17542 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17543 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17544
62b3e311 17545 /* ARM V7 instructions. */
c921be7d
NC
17546#undef ARM_VARIANT
17547#define ARM_VARIANT & arm_ext_v7
17548#undef THUMB_VARIANT
17549#define THUMB_VARIANT & arm_ext_v7
17550
21d799b5
NC
17551 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17552 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17553
60e5ef9f
MGD
17554#undef ARM_VARIANT
17555#define ARM_VARIANT & arm_ext_mp
17556#undef THUMB_VARIANT
17557#define THUMB_VARIANT & arm_ext_mp
17558
17559 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17560
c921be7d
NC
17561#undef ARM_VARIANT
17562#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17563
21d799b5
NC
17564 cCE("wfs", e200110, 1, (RR), rd),
17565 cCE("rfs", e300110, 1, (RR), rd),
17566 cCE("wfc", e400110, 1, (RR), rd),
17567 cCE("rfc", e500110, 1, (RR), rd),
17568
17569 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17570 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17571 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17572 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17573
17574 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17575 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17576 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17577 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17578
17579 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17580 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17581 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17582 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17583 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17584 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17585 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17586 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17587 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17588 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17589 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17590 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17591
17592 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17593 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17594 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17595 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17596 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17597 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17598 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17599 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17600 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17601 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17602 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17603 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17604
17605 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17606 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17607 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17608 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17609 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17610 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17611 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17612 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17613 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17614 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17615 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17616 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17617
17618 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17619 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17620 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17621 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17622 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17623 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17624 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17625 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17626 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17627 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17628 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17629 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17630
17631 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17632 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17633 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17634 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17635 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17636 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17637 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17638 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17639 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17640 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17641 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17642 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17643
17644 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17645 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17646 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17647 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17648 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17649 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17650 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17651 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17652 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17653 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17654 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17655 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17656
17657 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17658 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17659 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17660 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17661 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17662 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17663 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17664 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17665 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17666 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17667 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17668 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17669
17670 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17671 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17672 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17673 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17674 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17675 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17676 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17677 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17678 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17679 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17680 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17681 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17682
17683 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17684 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17685 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17686 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17687 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17688 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17689 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17690 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17691 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17692 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17693 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17694 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17695
17696 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17697 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17698 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17699 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17700 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17701 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17702 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17703 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17704 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17705 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17706 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17707 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17708
17709 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17710 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17711 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17712 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17713 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17714 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17715 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17716 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17717 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17718 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17719 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17720 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17721
17722 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17723 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17724 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17725 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17726 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17727 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17728 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17729 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17730 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17731 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17732 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17733 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17734
17735 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17736 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17737 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17738 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17739 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17740 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17741 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17742 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17743 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17744 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17745 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17746 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17747
17748 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17749 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17750 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17751 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17752 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17753 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17754 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17755 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17756 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17757 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17758 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17759 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17760
17761 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17762 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17763 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17764 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17765 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17766 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17767 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17768 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17769 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17770 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17771 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17772 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17773
17774 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17775 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17776 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17777 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17778 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17779 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17780 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17781 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17782 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17783 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17784 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17785 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17786
17787 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17788 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17789 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17790 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17791 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17792 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17793 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17794 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17795 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17796 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17797 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17798 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17799
17800 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17801 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17802 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17804 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17805 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17807 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17808 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17812
17813 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17814 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17815 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17817 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17818 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17820 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17821 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17825
17826 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17827 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17828 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17830 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17831 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17833 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17834 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17838
17839 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17840 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17841 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17843 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17844 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17846 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17847 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17851
17852 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17853 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17854 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17856 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17857 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17858 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17859 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17860 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17861 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17862 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17863 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17864
17865 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17866 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17867 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17868 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17869 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17870 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17871 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17872 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17873 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17874 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17875 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17876 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17877
17878 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17879 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17880 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17881 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17882 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17883 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17884 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17885 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17886 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17887 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17888 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17889 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17890
17891 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17892 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17893 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17894 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17895 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17896 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17897 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17898 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17899 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17902 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17903
17904 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17905 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17906 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17907 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17908 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17909 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17911 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17916
17917 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17929
17930 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17942
17943 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17954 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17955
17956 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17957 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17958 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17959 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17960
17961 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17962 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17963 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17964 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17965 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17966 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17967 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17968 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17969 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17970 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17971 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17972 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17973
c19d1205
ZW
17974 /* The implementation of the FIX instruction is broken on some
17975 assemblers, in that it accepts a precision specifier as well as a
17976 rounding specifier, despite the fact that this is meaningless.
17977 To be more compatible, we accept it as well, though of course it
17978 does not set any bits. */
21d799b5
NC
17979 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17980 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17981 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17982 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17983 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17984 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17985 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17986 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17987 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17988 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17989 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17990 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17991 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17992
c19d1205 17993 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17994#undef ARM_VARIANT
17995#define ARM_VARIANT & fpu_fpa_ext_v2
17996
21d799b5
NC
17997 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17998 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17999 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18000 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18001 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18002 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18003
c921be7d
NC
18004#undef ARM_VARIANT
18005#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18006
c19d1205 18007 /* Moves and type conversions. */
21d799b5
NC
18008 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18009 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18010 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18011 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
18012 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18013 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18014 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18015 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18016 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18017 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18018 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18019 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18020 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18021 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18022
18023 /* Memory operations. */
21d799b5
NC
18024 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18025 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18026 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18027 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18028 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18029 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18030 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18031 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18032 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18033 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18034 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18035 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18036 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18037 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18038 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18039 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18040 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18041 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18042
c19d1205 18043 /* Monadic operations. */
21d799b5
NC
18044 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18045 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18046 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18047
18048 /* Dyadic operations. */
21d799b5
NC
18049 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18050 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18051 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18052 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18053 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18054 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18055 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18056 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18057 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18058
c19d1205 18059 /* Comparisons. */
21d799b5
NC
18060 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18061 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18062 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18063 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18064
62f3b8c8
PB
18065 /* Double precision load/store are still present on single precision
18066 implementations. */
18067 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18068 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18069 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18070 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18071 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18072 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18073 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18074 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18075 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18076 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18077
c921be7d
NC
18078#undef ARM_VARIANT
18079#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18080
c19d1205 18081 /* Moves and type conversions. */
21d799b5
NC
18082 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18083 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18084 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18085 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18086 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18087 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18088 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18089 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18090 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18091 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18092 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18093 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18094 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18095
c19d1205 18096 /* Monadic operations. */
21d799b5
NC
18097 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18098 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18099 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18100
18101 /* Dyadic operations. */
21d799b5
NC
18102 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18103 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18104 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18105 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18106 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18107 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18108 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18109 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18110 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18111
c19d1205 18112 /* Comparisons. */
21d799b5
NC
18113 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18114 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18115 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18116 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18117
c921be7d
NC
18118#undef ARM_VARIANT
18119#define ARM_VARIANT & fpu_vfp_ext_v2
18120
21d799b5
NC
18121 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18122 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18123 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18124 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18125
037e8744
JB
18126/* Instructions which may belong to either the Neon or VFP instruction sets.
18127 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18128#undef ARM_VARIANT
18129#define ARM_VARIANT & fpu_vfp_ext_v1xd
18130#undef THUMB_VARIANT
18131#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18132
037e8744
JB
18133 /* These mnemonics are unique to VFP. */
18134 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18135 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18136 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18137 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18138 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18139 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18140 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18141 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18142 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18143 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18144
18145 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18146 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18147 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18148 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18149
21d799b5
NC
18150 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18151 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18152
18153 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18154 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18155
55881a11
MGD
18156 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18157 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18158 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18159 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18160 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18161 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18162 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18163 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18164
e3e535bc
NC
18165 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18166 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18167 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18168 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18169
037e8744
JB
18170
18171 /* NOTE: All VMOV encoding is special-cased! */
18172 NCE(vmov, 0, 1, (VMOV), neon_mov),
18173 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18174
c921be7d
NC
18175#undef THUMB_VARIANT
18176#define THUMB_VARIANT & fpu_neon_ext_v1
18177#undef ARM_VARIANT
18178#define ARM_VARIANT & fpu_neon_ext_v1
18179
5287ad62
JB
18180 /* Data processing with three registers of the same length. */
18181 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18182 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18183 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18184 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18185 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18186 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18187 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18188 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18189 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18190 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18191 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18192 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18193 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18194 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18195 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18196 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18197 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18198 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18199 /* If not immediate, fall back to neon_dyadic_i64_su.
18200 shl_imm should accept I8 I16 I32 I64,
18201 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18202 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18203 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18204 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18205 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18206 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18207 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18208 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18209 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18210 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18211 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18212 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18213 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18214 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18215 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18216 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18217 /* Bitfield ops, untyped. */
18218 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18219 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18220 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18221 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18222 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18223 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18224 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18225 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18226 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18227 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18228 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18229 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18230 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18231 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18232 back to neon_dyadic_if_su. */
21d799b5
NC
18233 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18234 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18235 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18236 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18237 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18238 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18239 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18240 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18241 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18242 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18243 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18244 /* As above, D registers only. */
21d799b5
NC
18245 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18246 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18247 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18248 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18249 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18250 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18251 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18252 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18253 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18254 /* vtst takes sizes 8, 16, 32. */
18255 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18256 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18257 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18258 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18259 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18260 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18261 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18262 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18263 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18264 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18265 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18266 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18267 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18268 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18269 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18270 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18271 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18272 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18273 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18274 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18275 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18276
18277 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18278 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18279 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18280
18281 /* Data processing with two registers and a shift amount. */
18282 /* Right shifts, and variants with rounding.
18283 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18284 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18285 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18286 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18287 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18288 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18289 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18290 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18291 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18292 /* Shift and insert. Sizes accepted 8 16 32 64. */
18293 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18294 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18295 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18296 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18297 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18298 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18299 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18300 /* Right shift immediate, saturating & narrowing, with rounding variants.
18301 Types accepted S16 S32 S64 U16 U32 U64. */
18302 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18303 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18304 /* As above, unsigned. Types accepted S16 S32 S64. */
18305 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18306 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18307 /* Right shift narrowing. Types accepted I16 I32 I64. */
18308 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18309 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18310 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18311 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18312 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18313 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18314
4316f0d2
DG
18315 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18316 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18317
18318 /* Data processing, three registers of different lengths. */
18319 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18320 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18321 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18322 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18323 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18324 /* If not scalar, fall back to neon_dyadic_long.
18325 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18326 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18327 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18328 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18329 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18330 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18331 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18332 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18333 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18334 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18335 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18336 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18337 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18338 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18339 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18340 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18341 S16 S32 U16 U32. */
21d799b5 18342 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18343
18344 /* Extract. Size 8. */
3b8d421e
PB
18345 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18346 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18347
18348 /* Two registers, miscellaneous. */
18349 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18350 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18351 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18352 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18353 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18354 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18355 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18356 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18357 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18358 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18359 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18360 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18361 /* VMOVN. Types I16 I32 I64. */
21d799b5 18362 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18363 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18364 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18365 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18366 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18367 /* VZIP / VUZP. Sizes 8 16 32. */
18368 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18369 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18370 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18371 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18372 /* VQABS / VQNEG. Types S8 S16 S32. */
18373 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18374 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18375 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18376 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18377 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18378 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18379 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18380 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18381 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18382 /* Reciprocal estimates. Types U32 F32. */
18383 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18384 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18385 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18386 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18387 /* VCLS. Types S8 S16 S32. */
18388 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18389 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18390 /* VCLZ. Types I8 I16 I32. */
18391 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18392 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18393 /* VCNT. Size 8. */
18394 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18395 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18396 /* Two address, untyped. */
18397 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18398 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18399 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18400 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18401 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18402
18403 /* Table lookup. Size 8. */
18404 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18405 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18406
c921be7d
NC
18407#undef THUMB_VARIANT
18408#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18409#undef ARM_VARIANT
18410#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18411
5287ad62 18412 /* Neon element/structure load/store. */
21d799b5
NC
18413 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18414 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18415 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18416 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18417 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18418 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18419 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18420 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18421
c921be7d 18422#undef THUMB_VARIANT
62f3b8c8
PB
18423#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18424#undef ARM_VARIANT
18425#define ARM_VARIANT &fpu_vfp_ext_v3xd
18426 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18427 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18428 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18429 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18430 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18431 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18432 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18433 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18434 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18435
18436#undef THUMB_VARIANT
c921be7d
NC
18437#define THUMB_VARIANT & fpu_vfp_ext_v3
18438#undef ARM_VARIANT
18439#define ARM_VARIANT & fpu_vfp_ext_v3
18440
21d799b5 18441 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18442 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18443 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18444 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18445 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18446 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18447 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18448 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18449 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18450
62f3b8c8
PB
18451#undef ARM_VARIANT
18452#define ARM_VARIANT &fpu_vfp_ext_fma
18453#undef THUMB_VARIANT
18454#define THUMB_VARIANT &fpu_vfp_ext_fma
18455 /* Mnemonics shared by Neon and VFP. These are included in the
18456 VFP FMA variant; NEON and VFP FMA always includes the NEON
18457 FMA instructions. */
18458 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18459 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18460 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18461 the v form should always be used. */
18462 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18463 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18464 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18465 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18466 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18467 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18468
5287ad62 18469#undef THUMB_VARIANT
c921be7d
NC
18470#undef ARM_VARIANT
18471#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18472
21d799b5
NC
18473 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18474 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18475 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18476 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18477 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18478 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18479 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18480 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18481
c921be7d
NC
18482#undef ARM_VARIANT
18483#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18484
21d799b5
NC
18485 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18486 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18487 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18488 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18489 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18490 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18491 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18492 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18493 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18494 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18495 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18496 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18497 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18498 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18499 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18500 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18501 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18502 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18503 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18504 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18505 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18506 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18507 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18508 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18509 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18510 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18511 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18512 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18513 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18514 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18515 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18516 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18517 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18518 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18519 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18520 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18521 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18522 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18523 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18524 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18525 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18526 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18527 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18528 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18529 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18530 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18531 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18532 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18533 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18534 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18535 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18536 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18537 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18538 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18539 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18540 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18541 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18542 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18543 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18544 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18545 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18546 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18547 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18548 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18549 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18550 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18551 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18552 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18553 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18554 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18555 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18556 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18557 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18558 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18559 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18560 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18561 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18562 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18563 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18564 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18565 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18566 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18567 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18568 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18569 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18570 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18573 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18574 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18575 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18576 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18577 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18578 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18579 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18580 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18581 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18582 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18583 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18584 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18585 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18586 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18587 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18588 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18589 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18590 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18591 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18592 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18593 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18594 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18595 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18596 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18597 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18598 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18599 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18600 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18601 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18602 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18603 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18604 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18605 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18606 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18607 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18608 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18609 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18610 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18611 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18612 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18613 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18614 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18615 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18616 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18617 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18618 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18619 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18620 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18621 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18622 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18623 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18624 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18625 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18626 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18627 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18628 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18629 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18630 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18631 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18632 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18633 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18634 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18635 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18636 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18637 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18638 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18639 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18640 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18641 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18642 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18643 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18644 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18647
c921be7d
NC
18648#undef ARM_VARIANT
18649#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18650
21d799b5
NC
18651 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18652 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18653 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18654 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18655 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18656 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18657 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18664 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18672 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18676 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18677 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18696 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18701 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18702 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18703 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18704 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18705 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18706 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18707 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18708
c921be7d
NC
18709#undef ARM_VARIANT
18710#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18711
21d799b5
NC
18712 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18713 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18714 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18715 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18716 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18717 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18718 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18719 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18720 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18721 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18722 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18723 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18724 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18725 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18726 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18727 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18728 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18729 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18730 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18731 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18732 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18733 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18734 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18735 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18736 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18737 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18738 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18739 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18740 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18741 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18742 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18743 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18744 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18745 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18746 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18747 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18748 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18749 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18750 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18751 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18752 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18753 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18754 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18755 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18756 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18757 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18758 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18759 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18760 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18761 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18762 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18763 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18764 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18765 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18766 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18767 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18768 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18769 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18770 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18771 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18772 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18773 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18774 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18775 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18776 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18777 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18778 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18779 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18780 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18781 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18782 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18783 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18784 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18785 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18786 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18787 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18788};
18789#undef ARM_VARIANT
18790#undef THUMB_VARIANT
18791#undef TCE
18792#undef TCM
18793#undef TUE
18794#undef TUF
18795#undef TCC
8f06b2d8 18796#undef cCE
e3cb604e
PB
18797#undef cCL
18798#undef C3E
c19d1205
ZW
18799#undef CE
18800#undef CM
18801#undef UE
18802#undef UF
18803#undef UT
5287ad62
JB
18804#undef NUF
18805#undef nUF
18806#undef NCE
18807#undef nCE
c19d1205
ZW
18808#undef OPS0
18809#undef OPS1
18810#undef OPS2
18811#undef OPS3
18812#undef OPS4
18813#undef OPS5
18814#undef OPS6
18815#undef do_0
18816\f
18817/* MD interface: bits in the object file. */
bfae80f2 18818
c19d1205
ZW
18819/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18820 for use in the a.out file, and stores them in the array pointed to by buf.
18821 This knows about the endian-ness of the target machine and does
18822 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18823 2 (short) and 4 (long) Floating numbers are put out as a series of
18824 LITTLENUMS (shorts, here at least). */
b99bd4ef 18825
c19d1205
ZW
18826void
18827md_number_to_chars (char * buf, valueT val, int n)
18828{
18829 if (target_big_endian)
18830 number_to_chars_bigendian (buf, val, n);
18831 else
18832 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18833}
18834
c19d1205
ZW
18835static valueT
18836md_chars_to_number (char * buf, int n)
bfae80f2 18837{
c19d1205
ZW
18838 valueT result = 0;
18839 unsigned char * where = (unsigned char *) buf;
bfae80f2 18840
c19d1205 18841 if (target_big_endian)
b99bd4ef 18842 {
c19d1205
ZW
18843 while (n--)
18844 {
18845 result <<= 8;
18846 result |= (*where++ & 255);
18847 }
b99bd4ef 18848 }
c19d1205 18849 else
b99bd4ef 18850 {
c19d1205
ZW
18851 while (n--)
18852 {
18853 result <<= 8;
18854 result |= (where[n] & 255);
18855 }
bfae80f2 18856 }
b99bd4ef 18857
c19d1205 18858 return result;
bfae80f2 18859}
b99bd4ef 18860
c19d1205 18861/* MD interface: Sections. */
b99bd4ef 18862
0110f2b8
PB
18863/* Estimate the size of a frag before relaxing. Assume everything fits in
18864 2 bytes. */
18865
c19d1205 18866int
0110f2b8 18867md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18868 segT segtype ATTRIBUTE_UNUSED)
18869{
0110f2b8
PB
18870 fragp->fr_var = 2;
18871 return 2;
18872}
18873
18874/* Convert a machine dependent frag. */
18875
18876void
18877md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18878{
18879 unsigned long insn;
18880 unsigned long old_op;
18881 char *buf;
18882 expressionS exp;
18883 fixS *fixp;
18884 int reloc_type;
18885 int pc_rel;
18886 int opcode;
18887
18888 buf = fragp->fr_literal + fragp->fr_fix;
18889
18890 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18891 if (fragp->fr_symbol)
18892 {
0110f2b8
PB
18893 exp.X_op = O_symbol;
18894 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18895 }
18896 else
18897 {
0110f2b8 18898 exp.X_op = O_constant;
5f4273c7 18899 }
0110f2b8
PB
18900 exp.X_add_number = fragp->fr_offset;
18901 opcode = fragp->fr_subtype;
18902 switch (opcode)
18903 {
18904 case T_MNEM_ldr_pc:
18905 case T_MNEM_ldr_pc2:
18906 case T_MNEM_ldr_sp:
18907 case T_MNEM_str_sp:
18908 case T_MNEM_ldr:
18909 case T_MNEM_ldrb:
18910 case T_MNEM_ldrh:
18911 case T_MNEM_str:
18912 case T_MNEM_strb:
18913 case T_MNEM_strh:
18914 if (fragp->fr_var == 4)
18915 {
5f4273c7 18916 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18917 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18918 {
18919 insn |= (old_op & 0x700) << 4;
18920 }
18921 else
18922 {
18923 insn |= (old_op & 7) << 12;
18924 insn |= (old_op & 0x38) << 13;
18925 }
18926 insn |= 0x00000c00;
18927 put_thumb32_insn (buf, insn);
18928 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18929 }
18930 else
18931 {
18932 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18933 }
18934 pc_rel = (opcode == T_MNEM_ldr_pc2);
18935 break;
18936 case T_MNEM_adr:
18937 if (fragp->fr_var == 4)
18938 {
18939 insn = THUMB_OP32 (opcode);
18940 insn |= (old_op & 0xf0) << 4;
18941 put_thumb32_insn (buf, insn);
18942 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18943 }
18944 else
18945 {
18946 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18947 exp.X_add_number -= 4;
18948 }
18949 pc_rel = 1;
18950 break;
18951 case T_MNEM_mov:
18952 case T_MNEM_movs:
18953 case T_MNEM_cmp:
18954 case T_MNEM_cmn:
18955 if (fragp->fr_var == 4)
18956 {
18957 int r0off = (opcode == T_MNEM_mov
18958 || opcode == T_MNEM_movs) ? 0 : 8;
18959 insn = THUMB_OP32 (opcode);
18960 insn = (insn & 0xe1ffffff) | 0x10000000;
18961 insn |= (old_op & 0x700) << r0off;
18962 put_thumb32_insn (buf, insn);
18963 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18964 }
18965 else
18966 {
18967 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18968 }
18969 pc_rel = 0;
18970 break;
18971 case T_MNEM_b:
18972 if (fragp->fr_var == 4)
18973 {
18974 insn = THUMB_OP32(opcode);
18975 put_thumb32_insn (buf, insn);
18976 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18977 }
18978 else
18979 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18980 pc_rel = 1;
18981 break;
18982 case T_MNEM_bcond:
18983 if (fragp->fr_var == 4)
18984 {
18985 insn = THUMB_OP32(opcode);
18986 insn |= (old_op & 0xf00) << 14;
18987 put_thumb32_insn (buf, insn);
18988 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18989 }
18990 else
18991 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18992 pc_rel = 1;
18993 break;
18994 case T_MNEM_add_sp:
18995 case T_MNEM_add_pc:
18996 case T_MNEM_inc_sp:
18997 case T_MNEM_dec_sp:
18998 if (fragp->fr_var == 4)
18999 {
19000 /* ??? Choose between add and addw. */
19001 insn = THUMB_OP32 (opcode);
19002 insn |= (old_op & 0xf0) << 4;
19003 put_thumb32_insn (buf, insn);
16805f35
PB
19004 if (opcode == T_MNEM_add_pc)
19005 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19006 else
19007 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19008 }
19009 else
19010 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19011 pc_rel = 0;
19012 break;
19013
19014 case T_MNEM_addi:
19015 case T_MNEM_addis:
19016 case T_MNEM_subi:
19017 case T_MNEM_subis:
19018 if (fragp->fr_var == 4)
19019 {
19020 insn = THUMB_OP32 (opcode);
19021 insn |= (old_op & 0xf0) << 4;
19022 insn |= (old_op & 0xf) << 16;
19023 put_thumb32_insn (buf, insn);
16805f35
PB
19024 if (insn & (1 << 20))
19025 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19026 else
19027 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19028 }
19029 else
19030 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19031 pc_rel = 0;
19032 break;
19033 default:
5f4273c7 19034 abort ();
0110f2b8
PB
19035 }
19036 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19037 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19038 fixp->fx_file = fragp->fr_file;
19039 fixp->fx_line = fragp->fr_line;
19040 fragp->fr_fix += fragp->fr_var;
19041}
19042
19043/* Return the size of a relaxable immediate operand instruction.
19044 SHIFT and SIZE specify the form of the allowable immediate. */
19045static int
19046relax_immediate (fragS *fragp, int size, int shift)
19047{
19048 offsetT offset;
19049 offsetT mask;
19050 offsetT low;
19051
19052 /* ??? Should be able to do better than this. */
19053 if (fragp->fr_symbol)
19054 return 4;
19055
19056 low = (1 << shift) - 1;
19057 mask = (1 << (shift + size)) - (1 << shift);
19058 offset = fragp->fr_offset;
19059 /* Force misaligned offsets to 32-bit variant. */
19060 if (offset & low)
5e77afaa 19061 return 4;
0110f2b8
PB
19062 if (offset & ~mask)
19063 return 4;
19064 return 2;
19065}
19066
5e77afaa
PB
19067/* Get the address of a symbol during relaxation. */
19068static addressT
5f4273c7 19069relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19070{
19071 fragS *sym_frag;
19072 addressT addr;
19073 symbolS *sym;
19074
19075 sym = fragp->fr_symbol;
19076 sym_frag = symbol_get_frag (sym);
19077 know (S_GET_SEGMENT (sym) != absolute_section
19078 || sym_frag == &zero_address_frag);
19079 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19080
19081 /* If frag has yet to be reached on this pass, assume it will
19082 move by STRETCH just as we did. If this is not so, it will
19083 be because some frag between grows, and that will force
19084 another pass. */
19085
19086 if (stretch != 0
19087 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19088 {
19089 fragS *f;
19090
19091 /* Adjust stretch for any alignment frag. Note that if have
19092 been expanding the earlier code, the symbol may be
19093 defined in what appears to be an earlier frag. FIXME:
19094 This doesn't handle the fr_subtype field, which specifies
19095 a maximum number of bytes to skip when doing an
19096 alignment. */
19097 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19098 {
19099 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19100 {
19101 if (stretch < 0)
19102 stretch = - ((- stretch)
19103 & ~ ((1 << (int) f->fr_offset) - 1));
19104 else
19105 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19106 if (stretch == 0)
19107 break;
19108 }
19109 }
19110 if (f != NULL)
19111 addr += stretch;
19112 }
5e77afaa
PB
19113
19114 return addr;
19115}
19116
0110f2b8
PB
19117/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19118 load. */
19119static int
5e77afaa 19120relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19121{
19122 addressT addr;
19123 offsetT val;
19124
19125 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19126 if (fragp->fr_symbol == NULL
19127 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19128 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19129 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19130 return 4;
19131
5f4273c7 19132 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19133 addr = fragp->fr_address + fragp->fr_fix;
19134 addr = (addr + 4) & ~3;
5e77afaa 19135 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19136 if (val & 3)
5e77afaa 19137 return 4;
0110f2b8
PB
19138 val -= addr;
19139 if (val < 0 || val > 1020)
19140 return 4;
19141 return 2;
19142}
19143
19144/* Return the size of a relaxable add/sub immediate instruction. */
19145static int
19146relax_addsub (fragS *fragp, asection *sec)
19147{
19148 char *buf;
19149 int op;
19150
19151 buf = fragp->fr_literal + fragp->fr_fix;
19152 op = bfd_get_16(sec->owner, buf);
19153 if ((op & 0xf) == ((op >> 4) & 0xf))
19154 return relax_immediate (fragp, 8, 0);
19155 else
19156 return relax_immediate (fragp, 3, 0);
19157}
19158
19159
19160/* Return the size of a relaxable branch instruction. BITS is the
19161 size of the offset field in the narrow instruction. */
19162
19163static int
5e77afaa 19164relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19165{
19166 addressT addr;
19167 offsetT val;
19168 offsetT limit;
19169
19170 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19171 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19172 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19173 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19174 return 4;
19175
267bf995
RR
19176#ifdef OBJ_ELF
19177 if (S_IS_DEFINED (fragp->fr_symbol)
19178 && ARM_IS_FUNC (fragp->fr_symbol))
19179 return 4;
0d9b4b55
NC
19180
19181 /* PR 12532. Global symbols with default visibility might
19182 be preempted, so do not relax relocations to them. */
19183 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19184 && (! S_IS_LOCAL (fragp->fr_symbol)))
19185 return 4;
267bf995
RR
19186#endif
19187
5f4273c7 19188 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19189 addr = fragp->fr_address + fragp->fr_fix + 4;
19190 val -= addr;
19191
19192 /* Offset is a signed value *2 */
19193 limit = 1 << bits;
19194 if (val >= limit || val < -limit)
19195 return 4;
19196 return 2;
19197}
19198
19199
19200/* Relax a machine dependent frag. This returns the amount by which
19201 the current size of the frag should change. */
19202
19203int
5e77afaa 19204arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19205{
19206 int oldsize;
19207 int newsize;
19208
19209 oldsize = fragp->fr_var;
19210 switch (fragp->fr_subtype)
19211 {
19212 case T_MNEM_ldr_pc2:
5f4273c7 19213 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19214 break;
19215 case T_MNEM_ldr_pc:
19216 case T_MNEM_ldr_sp:
19217 case T_MNEM_str_sp:
5f4273c7 19218 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19219 break;
19220 case T_MNEM_ldr:
19221 case T_MNEM_str:
5f4273c7 19222 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19223 break;
19224 case T_MNEM_ldrh:
19225 case T_MNEM_strh:
5f4273c7 19226 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19227 break;
19228 case T_MNEM_ldrb:
19229 case T_MNEM_strb:
5f4273c7 19230 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19231 break;
19232 case T_MNEM_adr:
5f4273c7 19233 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19234 break;
19235 case T_MNEM_mov:
19236 case T_MNEM_movs:
19237 case T_MNEM_cmp:
19238 case T_MNEM_cmn:
5f4273c7 19239 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19240 break;
19241 case T_MNEM_b:
5f4273c7 19242 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19243 break;
19244 case T_MNEM_bcond:
5f4273c7 19245 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19246 break;
19247 case T_MNEM_add_sp:
19248 case T_MNEM_add_pc:
19249 newsize = relax_immediate (fragp, 8, 2);
19250 break;
19251 case T_MNEM_inc_sp:
19252 case T_MNEM_dec_sp:
19253 newsize = relax_immediate (fragp, 7, 2);
19254 break;
19255 case T_MNEM_addi:
19256 case T_MNEM_addis:
19257 case T_MNEM_subi:
19258 case T_MNEM_subis:
19259 newsize = relax_addsub (fragp, sec);
19260 break;
19261 default:
5f4273c7 19262 abort ();
0110f2b8 19263 }
5e77afaa
PB
19264
19265 fragp->fr_var = newsize;
19266 /* Freeze wide instructions that are at or before the same location as
19267 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19268 Don't freeze them unconditionally because targets may be artificially
19269 misaligned by the expansion of preceding frags. */
5e77afaa 19270 if (stretch <= 0 && newsize > 2)
0110f2b8 19271 {
0110f2b8 19272 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19273 frag_wane (fragp);
0110f2b8 19274 }
5e77afaa 19275
0110f2b8 19276 return newsize - oldsize;
c19d1205 19277}
b99bd4ef 19278
c19d1205 19279/* Round up a section size to the appropriate boundary. */
b99bd4ef 19280
c19d1205
ZW
19281valueT
19282md_section_align (segT segment ATTRIBUTE_UNUSED,
19283 valueT size)
19284{
f0927246
NC
19285#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19286 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19287 {
19288 /* For a.out, force the section size to be aligned. If we don't do
19289 this, BFD will align it for us, but it will not write out the
19290 final bytes of the section. This may be a bug in BFD, but it is
19291 easier to fix it here since that is how the other a.out targets
19292 work. */
19293 int align;
19294
19295 align = bfd_get_section_alignment (stdoutput, segment);
19296 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19297 }
c19d1205 19298#endif
f0927246
NC
19299
19300 return size;
bfae80f2 19301}
b99bd4ef 19302
c19d1205
ZW
19303/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19304 of an rs_align_code fragment. */
19305
19306void
19307arm_handle_align (fragS * fragP)
bfae80f2 19308{
e7495e45
NS
19309 static char const arm_noop[2][2][4] =
19310 {
19311 { /* ARMv1 */
19312 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19313 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19314 },
19315 { /* ARMv6k */
19316 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19317 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19318 },
19319 };
19320 static char const thumb_noop[2][2][2] =
19321 {
19322 { /* Thumb-1 */
19323 {0xc0, 0x46}, /* LE */
19324 {0x46, 0xc0}, /* BE */
19325 },
19326 { /* Thumb-2 */
19327 {0x00, 0xbf}, /* LE */
19328 {0xbf, 0x00} /* BE */
19329 }
19330 };
19331 static char const wide_thumb_noop[2][4] =
19332 { /* Wide Thumb-2 */
19333 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19334 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19335 };
c921be7d 19336
e7495e45 19337 unsigned bytes, fix, noop_size;
c19d1205
ZW
19338 char * p;
19339 const char * noop;
e7495e45 19340 const char *narrow_noop = NULL;
cd000bff
DJ
19341#ifdef OBJ_ELF
19342 enum mstate state;
19343#endif
bfae80f2 19344
c19d1205 19345 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19346 return;
19347
c19d1205
ZW
19348 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19349 p = fragP->fr_literal + fragP->fr_fix;
19350 fix = 0;
bfae80f2 19351
c19d1205
ZW
19352 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19353 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19354
cd000bff 19355 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19356
cd000bff 19357 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19358 {
e7495e45
NS
19359 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19360 {
19361 narrow_noop = thumb_noop[1][target_big_endian];
19362 noop = wide_thumb_noop[target_big_endian];
19363 }
c19d1205 19364 else
e7495e45
NS
19365 noop = thumb_noop[0][target_big_endian];
19366 noop_size = 2;
cd000bff
DJ
19367#ifdef OBJ_ELF
19368 state = MAP_THUMB;
19369#endif
7ed4c4c5
NC
19370 }
19371 else
19372 {
e7495e45
NS
19373 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19374 [target_big_endian];
19375 noop_size = 4;
cd000bff
DJ
19376#ifdef OBJ_ELF
19377 state = MAP_ARM;
19378#endif
7ed4c4c5 19379 }
c921be7d 19380
e7495e45 19381 fragP->fr_var = noop_size;
c921be7d 19382
c19d1205 19383 if (bytes & (noop_size - 1))
7ed4c4c5 19384 {
c19d1205 19385 fix = bytes & (noop_size - 1);
cd000bff
DJ
19386#ifdef OBJ_ELF
19387 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19388#endif
c19d1205
ZW
19389 memset (p, 0, fix);
19390 p += fix;
19391 bytes -= fix;
a737bd4d 19392 }
a737bd4d 19393
e7495e45
NS
19394 if (narrow_noop)
19395 {
19396 if (bytes & noop_size)
19397 {
19398 /* Insert a narrow noop. */
19399 memcpy (p, narrow_noop, noop_size);
19400 p += noop_size;
19401 bytes -= noop_size;
19402 fix += noop_size;
19403 }
19404
19405 /* Use wide noops for the remainder */
19406 noop_size = 4;
19407 }
19408
c19d1205 19409 while (bytes >= noop_size)
a737bd4d 19410 {
c19d1205
ZW
19411 memcpy (p, noop, noop_size);
19412 p += noop_size;
19413 bytes -= noop_size;
19414 fix += noop_size;
a737bd4d
NC
19415 }
19416
c19d1205 19417 fragP->fr_fix += fix;
a737bd4d
NC
19418}
19419
c19d1205
ZW
19420/* Called from md_do_align. Used to create an alignment
19421 frag in a code section. */
19422
19423void
19424arm_frag_align_code (int n, int max)
bfae80f2 19425{
c19d1205 19426 char * p;
7ed4c4c5 19427
c19d1205 19428 /* We assume that there will never be a requirement
6ec8e702 19429 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19430 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19431 {
19432 char err_msg[128];
19433
19434 sprintf (err_msg,
19435 _("alignments greater than %d bytes not supported in .text sections."),
19436 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19437 as_fatal ("%s", err_msg);
6ec8e702 19438 }
bfae80f2 19439
c19d1205
ZW
19440 p = frag_var (rs_align_code,
19441 MAX_MEM_FOR_RS_ALIGN_CODE,
19442 1,
19443 (relax_substateT) max,
19444 (symbolS *) NULL,
19445 (offsetT) n,
19446 (char *) NULL);
19447 *p = 0;
19448}
bfae80f2 19449
8dc2430f
NC
19450/* Perform target specific initialisation of a frag.
19451 Note - despite the name this initialisation is not done when the frag
19452 is created, but only when its type is assigned. A frag can be created
19453 and used a long time before its type is set, so beware of assuming that
19454 this initialisationis performed first. */
bfae80f2 19455
cd000bff
DJ
19456#ifndef OBJ_ELF
19457void
19458arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19459{
19460 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19461 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19462}
19463
19464#else /* OBJ_ELF is defined. */
c19d1205 19465void
cd000bff 19466arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19467{
8dc2430f
NC
19468 /* If the current ARM vs THUMB mode has not already
19469 been recorded into this frag then do so now. */
cd000bff
DJ
19470 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19471 {
19472 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19473
19474 /* Record a mapping symbol for alignment frags. We will delete this
19475 later if the alignment ends up empty. */
19476 switch (fragP->fr_type)
19477 {
19478 case rs_align:
19479 case rs_align_test:
19480 case rs_fill:
19481 mapping_state_2 (MAP_DATA, max_chars);
19482 break;
19483 case rs_align_code:
19484 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19485 break;
19486 default:
19487 break;
19488 }
19489 }
bfae80f2
RE
19490}
19491
c19d1205
ZW
19492/* When we change sections we need to issue a new mapping symbol. */
19493
19494void
19495arm_elf_change_section (void)
bfae80f2 19496{
c19d1205
ZW
19497 /* Link an unlinked unwind index table section to the .text section. */
19498 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19499 && elf_linked_to_section (now_seg) == NULL)
19500 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19501}
19502
c19d1205
ZW
19503int
19504arm_elf_section_type (const char * str, size_t len)
e45d0630 19505{
c19d1205
ZW
19506 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19507 return SHT_ARM_EXIDX;
e45d0630 19508
c19d1205
ZW
19509 return -1;
19510}
19511\f
19512/* Code to deal with unwinding tables. */
e45d0630 19513
c19d1205 19514static void add_unwind_adjustsp (offsetT);
e45d0630 19515
5f4273c7 19516/* Generate any deferred unwind frame offset. */
e45d0630 19517
bfae80f2 19518static void
c19d1205 19519flush_pending_unwind (void)
bfae80f2 19520{
c19d1205 19521 offsetT offset;
bfae80f2 19522
c19d1205
ZW
19523 offset = unwind.pending_offset;
19524 unwind.pending_offset = 0;
19525 if (offset != 0)
19526 add_unwind_adjustsp (offset);
bfae80f2
RE
19527}
19528
c19d1205
ZW
19529/* Add an opcode to this list for this function. Two-byte opcodes should
19530 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19531 order. */
19532
bfae80f2 19533static void
c19d1205 19534add_unwind_opcode (valueT op, int length)
bfae80f2 19535{
c19d1205
ZW
19536 /* Add any deferred stack adjustment. */
19537 if (unwind.pending_offset)
19538 flush_pending_unwind ();
bfae80f2 19539
c19d1205 19540 unwind.sp_restored = 0;
bfae80f2 19541
c19d1205 19542 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19543 {
c19d1205
ZW
19544 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19545 if (unwind.opcodes)
21d799b5
NC
19546 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19547 unwind.opcode_alloc);
c19d1205 19548 else
21d799b5 19549 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19550 }
c19d1205 19551 while (length > 0)
bfae80f2 19552 {
c19d1205
ZW
19553 length--;
19554 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19555 op >>= 8;
19556 unwind.opcode_count++;
bfae80f2 19557 }
bfae80f2
RE
19558}
19559
c19d1205
ZW
19560/* Add unwind opcodes to adjust the stack pointer. */
19561
bfae80f2 19562static void
c19d1205 19563add_unwind_adjustsp (offsetT offset)
bfae80f2 19564{
c19d1205 19565 valueT op;
bfae80f2 19566
c19d1205 19567 if (offset > 0x200)
bfae80f2 19568 {
c19d1205
ZW
19569 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19570 char bytes[5];
19571 int n;
19572 valueT o;
bfae80f2 19573
c19d1205
ZW
19574 /* Long form: 0xb2, uleb128. */
19575 /* This might not fit in a word so add the individual bytes,
19576 remembering the list is built in reverse order. */
19577 o = (valueT) ((offset - 0x204) >> 2);
19578 if (o == 0)
19579 add_unwind_opcode (0, 1);
bfae80f2 19580
c19d1205
ZW
19581 /* Calculate the uleb128 encoding of the offset. */
19582 n = 0;
19583 while (o)
19584 {
19585 bytes[n] = o & 0x7f;
19586 o >>= 7;
19587 if (o)
19588 bytes[n] |= 0x80;
19589 n++;
19590 }
19591 /* Add the insn. */
19592 for (; n; n--)
19593 add_unwind_opcode (bytes[n - 1], 1);
19594 add_unwind_opcode (0xb2, 1);
19595 }
19596 else if (offset > 0x100)
bfae80f2 19597 {
c19d1205
ZW
19598 /* Two short opcodes. */
19599 add_unwind_opcode (0x3f, 1);
19600 op = (offset - 0x104) >> 2;
19601 add_unwind_opcode (op, 1);
bfae80f2 19602 }
c19d1205
ZW
19603 else if (offset > 0)
19604 {
19605 /* Short opcode. */
19606 op = (offset - 4) >> 2;
19607 add_unwind_opcode (op, 1);
19608 }
19609 else if (offset < 0)
bfae80f2 19610 {
c19d1205
ZW
19611 offset = -offset;
19612 while (offset > 0x100)
bfae80f2 19613 {
c19d1205
ZW
19614 add_unwind_opcode (0x7f, 1);
19615 offset -= 0x100;
bfae80f2 19616 }
c19d1205
ZW
19617 op = ((offset - 4) >> 2) | 0x40;
19618 add_unwind_opcode (op, 1);
bfae80f2 19619 }
bfae80f2
RE
19620}
19621
c19d1205
ZW
19622/* Finish the list of unwind opcodes for this function. */
19623static void
19624finish_unwind_opcodes (void)
bfae80f2 19625{
c19d1205 19626 valueT op;
bfae80f2 19627
c19d1205 19628 if (unwind.fp_used)
bfae80f2 19629 {
708587a4 19630 /* Adjust sp as necessary. */
c19d1205
ZW
19631 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19632 flush_pending_unwind ();
bfae80f2 19633
c19d1205
ZW
19634 /* After restoring sp from the frame pointer. */
19635 op = 0x90 | unwind.fp_reg;
19636 add_unwind_opcode (op, 1);
19637 }
19638 else
19639 flush_pending_unwind ();
bfae80f2
RE
19640}
19641
bfae80f2 19642
c19d1205
ZW
19643/* Start an exception table entry. If idx is nonzero this is an index table
19644 entry. */
bfae80f2
RE
19645
19646static void
c19d1205 19647start_unwind_section (const segT text_seg, int idx)
bfae80f2 19648{
c19d1205
ZW
19649 const char * text_name;
19650 const char * prefix;
19651 const char * prefix_once;
19652 const char * group_name;
19653 size_t prefix_len;
19654 size_t text_len;
19655 char * sec_name;
19656 size_t sec_name_len;
19657 int type;
19658 int flags;
19659 int linkonce;
bfae80f2 19660
c19d1205 19661 if (idx)
bfae80f2 19662 {
c19d1205
ZW
19663 prefix = ELF_STRING_ARM_unwind;
19664 prefix_once = ELF_STRING_ARM_unwind_once;
19665 type = SHT_ARM_EXIDX;
bfae80f2 19666 }
c19d1205 19667 else
bfae80f2 19668 {
c19d1205
ZW
19669 prefix = ELF_STRING_ARM_unwind_info;
19670 prefix_once = ELF_STRING_ARM_unwind_info_once;
19671 type = SHT_PROGBITS;
bfae80f2
RE
19672 }
19673
c19d1205
ZW
19674 text_name = segment_name (text_seg);
19675 if (streq (text_name, ".text"))
19676 text_name = "";
19677
19678 if (strncmp (text_name, ".gnu.linkonce.t.",
19679 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19680 {
c19d1205
ZW
19681 prefix = prefix_once;
19682 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19683 }
19684
c19d1205
ZW
19685 prefix_len = strlen (prefix);
19686 text_len = strlen (text_name);
19687 sec_name_len = prefix_len + text_len;
21d799b5 19688 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19689 memcpy (sec_name, prefix, prefix_len);
19690 memcpy (sec_name + prefix_len, text_name, text_len);
19691 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19692
c19d1205
ZW
19693 flags = SHF_ALLOC;
19694 linkonce = 0;
19695 group_name = 0;
bfae80f2 19696
c19d1205
ZW
19697 /* Handle COMDAT group. */
19698 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19699 {
c19d1205
ZW
19700 group_name = elf_group_name (text_seg);
19701 if (group_name == NULL)
19702 {
bd3ba5d1 19703 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19704 segment_name (text_seg));
19705 ignore_rest_of_line ();
19706 return;
19707 }
19708 flags |= SHF_GROUP;
19709 linkonce = 1;
bfae80f2
RE
19710 }
19711
c19d1205 19712 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19713
5f4273c7 19714 /* Set the section link for index tables. */
c19d1205
ZW
19715 if (idx)
19716 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19717}
19718
bfae80f2 19719
c19d1205
ZW
19720/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19721 personality routine data. Returns zero, or the index table value for
19722 and inline entry. */
19723
19724static valueT
19725create_unwind_entry (int have_data)
bfae80f2 19726{
c19d1205
ZW
19727 int size;
19728 addressT where;
19729 char *ptr;
19730 /* The current word of data. */
19731 valueT data;
19732 /* The number of bytes left in this word. */
19733 int n;
bfae80f2 19734
c19d1205 19735 finish_unwind_opcodes ();
bfae80f2 19736
c19d1205
ZW
19737 /* Remember the current text section. */
19738 unwind.saved_seg = now_seg;
19739 unwind.saved_subseg = now_subseg;
bfae80f2 19740
c19d1205 19741 start_unwind_section (now_seg, 0);
bfae80f2 19742
c19d1205 19743 if (unwind.personality_routine == NULL)
bfae80f2 19744 {
c19d1205
ZW
19745 if (unwind.personality_index == -2)
19746 {
19747 if (have_data)
5f4273c7 19748 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19749 return 1; /* EXIDX_CANTUNWIND. */
19750 }
bfae80f2 19751
c19d1205
ZW
19752 /* Use a default personality routine if none is specified. */
19753 if (unwind.personality_index == -1)
19754 {
19755 if (unwind.opcode_count > 3)
19756 unwind.personality_index = 1;
19757 else
19758 unwind.personality_index = 0;
19759 }
bfae80f2 19760
c19d1205
ZW
19761 /* Space for the personality routine entry. */
19762 if (unwind.personality_index == 0)
19763 {
19764 if (unwind.opcode_count > 3)
19765 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19766
c19d1205
ZW
19767 if (!have_data)
19768 {
19769 /* All the data is inline in the index table. */
19770 data = 0x80;
19771 n = 3;
19772 while (unwind.opcode_count > 0)
19773 {
19774 unwind.opcode_count--;
19775 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19776 n--;
19777 }
bfae80f2 19778
c19d1205
ZW
19779 /* Pad with "finish" opcodes. */
19780 while (n--)
19781 data = (data << 8) | 0xb0;
bfae80f2 19782
c19d1205
ZW
19783 return data;
19784 }
19785 size = 0;
19786 }
19787 else
19788 /* We get two opcodes "free" in the first word. */
19789 size = unwind.opcode_count - 2;
19790 }
19791 else
19792 /* An extra byte is required for the opcode count. */
19793 size = unwind.opcode_count + 1;
bfae80f2 19794
c19d1205
ZW
19795 size = (size + 3) >> 2;
19796 if (size > 0xff)
19797 as_bad (_("too many unwind opcodes"));
bfae80f2 19798
c19d1205
ZW
19799 frag_align (2, 0, 0);
19800 record_alignment (now_seg, 2);
19801 unwind.table_entry = expr_build_dot ();
19802
19803 /* Allocate the table entry. */
19804 ptr = frag_more ((size << 2) + 4);
19805 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19806
c19d1205 19807 switch (unwind.personality_index)
bfae80f2 19808 {
c19d1205
ZW
19809 case -1:
19810 /* ??? Should this be a PLT generating relocation? */
19811 /* Custom personality routine. */
19812 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19813 BFD_RELOC_ARM_PREL31);
bfae80f2 19814
c19d1205
ZW
19815 where += 4;
19816 ptr += 4;
bfae80f2 19817
c19d1205
ZW
19818 /* Set the first byte to the number of additional words. */
19819 data = size - 1;
19820 n = 3;
19821 break;
bfae80f2 19822
c19d1205
ZW
19823 /* ABI defined personality routines. */
19824 case 0:
19825 /* Three opcodes bytes are packed into the first word. */
19826 data = 0x80;
19827 n = 3;
19828 break;
bfae80f2 19829
c19d1205
ZW
19830 case 1:
19831 case 2:
19832 /* The size and first two opcode bytes go in the first word. */
19833 data = ((0x80 + unwind.personality_index) << 8) | size;
19834 n = 2;
19835 break;
bfae80f2 19836
c19d1205
ZW
19837 default:
19838 /* Should never happen. */
19839 abort ();
19840 }
bfae80f2 19841
c19d1205
ZW
19842 /* Pack the opcodes into words (MSB first), reversing the list at the same
19843 time. */
19844 while (unwind.opcode_count > 0)
19845 {
19846 if (n == 0)
19847 {
19848 md_number_to_chars (ptr, data, 4);
19849 ptr += 4;
19850 n = 4;
19851 data = 0;
19852 }
19853 unwind.opcode_count--;
19854 n--;
19855 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19856 }
19857
19858 /* Finish off the last word. */
19859 if (n < 4)
19860 {
19861 /* Pad with "finish" opcodes. */
19862 while (n--)
19863 data = (data << 8) | 0xb0;
19864
19865 md_number_to_chars (ptr, data, 4);
19866 }
19867
19868 if (!have_data)
19869 {
19870 /* Add an empty descriptor if there is no user-specified data. */
19871 ptr = frag_more (4);
19872 md_number_to_chars (ptr, 0, 4);
19873 }
19874
19875 return 0;
bfae80f2
RE
19876}
19877
f0927246
NC
19878
19879/* Initialize the DWARF-2 unwind information for this procedure. */
19880
19881void
19882tc_arm_frame_initial_instructions (void)
19883{
19884 cfi_add_CFA_def_cfa (REG_SP, 0);
19885}
19886#endif /* OBJ_ELF */
19887
c19d1205
ZW
19888/* Convert REGNAME to a DWARF-2 register number. */
19889
19890int
1df69f4f 19891tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19892{
1df69f4f 19893 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19894
19895 if (reg == FAIL)
19896 return -1;
19897
19898 return reg;
bfae80f2
RE
19899}
19900
f0927246 19901#ifdef TE_PE
c19d1205 19902void
f0927246 19903tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19904{
91d6fa6a 19905 expressionS exp;
bfae80f2 19906
91d6fa6a
NC
19907 exp.X_op = O_secrel;
19908 exp.X_add_symbol = symbol;
19909 exp.X_add_number = 0;
19910 emit_expr (&exp, size);
f0927246
NC
19911}
19912#endif
bfae80f2 19913
c19d1205 19914/* MD interface: Symbol and relocation handling. */
bfae80f2 19915
2fc8bdac
ZW
19916/* Return the address within the segment that a PC-relative fixup is
19917 relative to. For ARM, PC-relative fixups applied to instructions
19918 are generally relative to the location of the fixup plus 8 bytes.
19919 Thumb branches are offset by 4, and Thumb loads relative to PC
19920 require special handling. */
bfae80f2 19921
c19d1205 19922long
2fc8bdac 19923md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19924{
2fc8bdac
ZW
19925 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19926
19927 /* If this is pc-relative and we are going to emit a relocation
19928 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19929 will need. Otherwise we want to use the calculated base.
19930 For WinCE we skip the bias for externals as well, since this
19931 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19932 if (fixP->fx_pcrel
2fc8bdac 19933 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19934 || (arm_force_relocation (fixP)
19935#ifdef TE_WINCE
19936 && !S_IS_EXTERNAL (fixP->fx_addsy)
19937#endif
19938 )))
2fc8bdac 19939 base = 0;
bfae80f2 19940
267bf995 19941
c19d1205 19942 switch (fixP->fx_r_type)
bfae80f2 19943 {
2fc8bdac
ZW
19944 /* PC relative addressing on the Thumb is slightly odd as the
19945 bottom two bits of the PC are forced to zero for the
19946 calculation. This happens *after* application of the
19947 pipeline offset. However, Thumb adrl already adjusts for
19948 this, so we need not do it again. */
c19d1205 19949 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19950 return base & ~3;
c19d1205
ZW
19951
19952 case BFD_RELOC_ARM_THUMB_OFFSET:
19953 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19954 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19955 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19956 return (base + 4) & ~3;
c19d1205 19957
2fc8bdac
ZW
19958 /* Thumb branches are simply offset by +4. */
19959 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19960 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19961 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19962 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19963 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19964 return base + 4;
bfae80f2 19965
267bf995 19966 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19967 if (fixP->fx_addsy
19968 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19969 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19970 && ARM_IS_FUNC (fixP->fx_addsy)
19971 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19972 base = fixP->fx_where + fixP->fx_frag->fr_address;
19973 return base + 4;
19974
00adf2d4
JB
19975 /* BLX is like branches above, but forces the low two bits of PC to
19976 zero. */
486499d0
CL
19977 case BFD_RELOC_THUMB_PCREL_BLX:
19978 if (fixP->fx_addsy
19979 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19980 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19981 && THUMB_IS_FUNC (fixP->fx_addsy)
19982 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19983 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19984 return (base + 4) & ~3;
19985
2fc8bdac
ZW
19986 /* ARM mode branches are offset by +8. However, the Windows CE
19987 loader expects the relocation not to take this into account. */
267bf995 19988 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19989 if (fixP->fx_addsy
19990 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19991 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19992 && ARM_IS_FUNC (fixP->fx_addsy)
19993 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19994 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19995 return base + 8;
267bf995 19996
486499d0
CL
19997 case BFD_RELOC_ARM_PCREL_CALL:
19998 if (fixP->fx_addsy
19999 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20000 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20001 && THUMB_IS_FUNC (fixP->fx_addsy)
20002 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20003 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20004 return base + 8;
267bf995 20005
2fc8bdac 20006 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20007 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20008 case BFD_RELOC_ARM_PLT32:
c19d1205 20009#ifdef TE_WINCE
5f4273c7 20010 /* When handling fixups immediately, because we have already
53baae48
NC
20011 discovered the value of a symbol, or the address of the frag involved
20012 we must account for the offset by +8, as the OS loader will never see the reloc.
20013 see fixup_segment() in write.c
20014 The S_IS_EXTERNAL test handles the case of global symbols.
20015 Those need the calculated base, not just the pipe compensation the linker will need. */
20016 if (fixP->fx_pcrel
20017 && fixP->fx_addsy != NULL
20018 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20019 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20020 return base + 8;
2fc8bdac 20021 return base;
c19d1205 20022#else
2fc8bdac 20023 return base + 8;
c19d1205 20024#endif
2fc8bdac 20025
267bf995 20026
2fc8bdac
ZW
20027 /* ARM mode loads relative to PC are also offset by +8. Unlike
20028 branches, the Windows CE loader *does* expect the relocation
20029 to take this into account. */
20030 case BFD_RELOC_ARM_OFFSET_IMM:
20031 case BFD_RELOC_ARM_OFFSET_IMM8:
20032 case BFD_RELOC_ARM_HWLITERAL:
20033 case BFD_RELOC_ARM_LITERAL:
20034 case BFD_RELOC_ARM_CP_OFF_IMM:
20035 return base + 8;
20036
20037
20038 /* Other PC-relative relocations are un-offset. */
20039 default:
20040 return base;
20041 }
bfae80f2
RE
20042}
20043
c19d1205
ZW
20044/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20045 Otherwise we have no need to default values of symbols. */
20046
20047symbolS *
20048md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20049{
c19d1205
ZW
20050#ifdef OBJ_ELF
20051 if (name[0] == '_' && name[1] == 'G'
20052 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20053 {
20054 if (!GOT_symbol)
20055 {
20056 if (symbol_find (name))
bd3ba5d1 20057 as_bad (_("GOT already in the symbol table"));
bfae80f2 20058
c19d1205
ZW
20059 GOT_symbol = symbol_new (name, undefined_section,
20060 (valueT) 0, & zero_address_frag);
20061 }
bfae80f2 20062
c19d1205 20063 return GOT_symbol;
bfae80f2 20064 }
c19d1205 20065#endif
bfae80f2 20066
c921be7d 20067 return NULL;
bfae80f2
RE
20068}
20069
55cf6793 20070/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20071 computed as two separate immediate values, added together. We
20072 already know that this value cannot be computed by just one ARM
20073 instruction. */
20074
20075static unsigned int
20076validate_immediate_twopart (unsigned int val,
20077 unsigned int * highpart)
bfae80f2 20078{
c19d1205
ZW
20079 unsigned int a;
20080 unsigned int i;
bfae80f2 20081
c19d1205
ZW
20082 for (i = 0; i < 32; i += 2)
20083 if (((a = rotate_left (val, i)) & 0xff) != 0)
20084 {
20085 if (a & 0xff00)
20086 {
20087 if (a & ~ 0xffff)
20088 continue;
20089 * highpart = (a >> 8) | ((i + 24) << 7);
20090 }
20091 else if (a & 0xff0000)
20092 {
20093 if (a & 0xff000000)
20094 continue;
20095 * highpart = (a >> 16) | ((i + 16) << 7);
20096 }
20097 else
20098 {
9c2799c2 20099 gas_assert (a & 0xff000000);
c19d1205
ZW
20100 * highpart = (a >> 24) | ((i + 8) << 7);
20101 }
bfae80f2 20102
c19d1205
ZW
20103 return (a & 0xff) | (i << 7);
20104 }
bfae80f2 20105
c19d1205 20106 return FAIL;
bfae80f2
RE
20107}
20108
c19d1205
ZW
20109static int
20110validate_offset_imm (unsigned int val, int hwse)
20111{
20112 if ((hwse && val > 255) || val > 4095)
20113 return FAIL;
20114 return val;
20115}
bfae80f2 20116
55cf6793 20117/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20118 negative immediate constant by altering the instruction. A bit of
20119 a hack really.
20120 MOV <-> MVN
20121 AND <-> BIC
20122 ADC <-> SBC
20123 by inverting the second operand, and
20124 ADD <-> SUB
20125 CMP <-> CMN
20126 by negating the second operand. */
bfae80f2 20127
c19d1205
ZW
20128static int
20129negate_data_op (unsigned long * instruction,
20130 unsigned long value)
bfae80f2 20131{
c19d1205
ZW
20132 int op, new_inst;
20133 unsigned long negated, inverted;
bfae80f2 20134
c19d1205
ZW
20135 negated = encode_arm_immediate (-value);
20136 inverted = encode_arm_immediate (~value);
bfae80f2 20137
c19d1205
ZW
20138 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20139 switch (op)
bfae80f2 20140 {
c19d1205
ZW
20141 /* First negates. */
20142 case OPCODE_SUB: /* ADD <-> SUB */
20143 new_inst = OPCODE_ADD;
20144 value = negated;
20145 break;
bfae80f2 20146
c19d1205
ZW
20147 case OPCODE_ADD:
20148 new_inst = OPCODE_SUB;
20149 value = negated;
20150 break;
bfae80f2 20151
c19d1205
ZW
20152 case OPCODE_CMP: /* CMP <-> CMN */
20153 new_inst = OPCODE_CMN;
20154 value = negated;
20155 break;
bfae80f2 20156
c19d1205
ZW
20157 case OPCODE_CMN:
20158 new_inst = OPCODE_CMP;
20159 value = negated;
20160 break;
bfae80f2 20161
c19d1205
ZW
20162 /* Now Inverted ops. */
20163 case OPCODE_MOV: /* MOV <-> MVN */
20164 new_inst = OPCODE_MVN;
20165 value = inverted;
20166 break;
bfae80f2 20167
c19d1205
ZW
20168 case OPCODE_MVN:
20169 new_inst = OPCODE_MOV;
20170 value = inverted;
20171 break;
bfae80f2 20172
c19d1205
ZW
20173 case OPCODE_AND: /* AND <-> BIC */
20174 new_inst = OPCODE_BIC;
20175 value = inverted;
20176 break;
bfae80f2 20177
c19d1205
ZW
20178 case OPCODE_BIC:
20179 new_inst = OPCODE_AND;
20180 value = inverted;
20181 break;
bfae80f2 20182
c19d1205
ZW
20183 case OPCODE_ADC: /* ADC <-> SBC */
20184 new_inst = OPCODE_SBC;
20185 value = inverted;
20186 break;
bfae80f2 20187
c19d1205
ZW
20188 case OPCODE_SBC:
20189 new_inst = OPCODE_ADC;
20190 value = inverted;
20191 break;
bfae80f2 20192
c19d1205
ZW
20193 /* We cannot do anything. */
20194 default:
20195 return FAIL;
b99bd4ef
NC
20196 }
20197
c19d1205
ZW
20198 if (value == (unsigned) FAIL)
20199 return FAIL;
20200
20201 *instruction &= OPCODE_MASK;
20202 *instruction |= new_inst << DATA_OP_SHIFT;
20203 return value;
b99bd4ef
NC
20204}
20205
ef8d22e6
PB
20206/* Like negate_data_op, but for Thumb-2. */
20207
20208static unsigned int
16dd5e42 20209thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20210{
20211 int op, new_inst;
20212 int rd;
16dd5e42 20213 unsigned int negated, inverted;
ef8d22e6
PB
20214
20215 negated = encode_thumb32_immediate (-value);
20216 inverted = encode_thumb32_immediate (~value);
20217
20218 rd = (*instruction >> 8) & 0xf;
20219 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20220 switch (op)
20221 {
20222 /* ADD <-> SUB. Includes CMP <-> CMN. */
20223 case T2_OPCODE_SUB:
20224 new_inst = T2_OPCODE_ADD;
20225 value = negated;
20226 break;
20227
20228 case T2_OPCODE_ADD:
20229 new_inst = T2_OPCODE_SUB;
20230 value = negated;
20231 break;
20232
20233 /* ORR <-> ORN. Includes MOV <-> MVN. */
20234 case T2_OPCODE_ORR:
20235 new_inst = T2_OPCODE_ORN;
20236 value = inverted;
20237 break;
20238
20239 case T2_OPCODE_ORN:
20240 new_inst = T2_OPCODE_ORR;
20241 value = inverted;
20242 break;
20243
20244 /* AND <-> BIC. TST has no inverted equivalent. */
20245 case T2_OPCODE_AND:
20246 new_inst = T2_OPCODE_BIC;
20247 if (rd == 15)
20248 value = FAIL;
20249 else
20250 value = inverted;
20251 break;
20252
20253 case T2_OPCODE_BIC:
20254 new_inst = T2_OPCODE_AND;
20255 value = inverted;
20256 break;
20257
20258 /* ADC <-> SBC */
20259 case T2_OPCODE_ADC:
20260 new_inst = T2_OPCODE_SBC;
20261 value = inverted;
20262 break;
20263
20264 case T2_OPCODE_SBC:
20265 new_inst = T2_OPCODE_ADC;
20266 value = inverted;
20267 break;
20268
20269 /* We cannot do anything. */
20270 default:
20271 return FAIL;
20272 }
20273
16dd5e42 20274 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20275 return FAIL;
20276
20277 *instruction &= T2_OPCODE_MASK;
20278 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20279 return value;
20280}
20281
8f06b2d8
PB
20282/* Read a 32-bit thumb instruction from buf. */
20283static unsigned long
20284get_thumb32_insn (char * buf)
20285{
20286 unsigned long insn;
20287 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20288 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20289
20290 return insn;
20291}
20292
a8bc6c78
PB
20293
20294/* We usually want to set the low bit on the address of thumb function
20295 symbols. In particular .word foo - . should have the low bit set.
20296 Generic code tries to fold the difference of two symbols to
20297 a constant. Prevent this and force a relocation when the first symbols
20298 is a thumb function. */
c921be7d
NC
20299
20300bfd_boolean
a8bc6c78
PB
20301arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20302{
20303 if (op == O_subtract
20304 && l->X_op == O_symbol
20305 && r->X_op == O_symbol
20306 && THUMB_IS_FUNC (l->X_add_symbol))
20307 {
20308 l->X_op = O_subtract;
20309 l->X_op_symbol = r->X_add_symbol;
20310 l->X_add_number -= r->X_add_number;
c921be7d 20311 return TRUE;
a8bc6c78 20312 }
c921be7d 20313
a8bc6c78 20314 /* Process as normal. */
c921be7d 20315 return FALSE;
a8bc6c78
PB
20316}
20317
4a42ebbc
RR
20318/* Encode Thumb2 unconditional branches and calls. The encoding
20319 for the 2 are identical for the immediate values. */
20320
20321static void
20322encode_thumb2_b_bl_offset (char * buf, offsetT value)
20323{
20324#define T2I1I2MASK ((1 << 13) | (1 << 11))
20325 offsetT newval;
20326 offsetT newval2;
20327 addressT S, I1, I2, lo, hi;
20328
20329 S = (value >> 24) & 0x01;
20330 I1 = (value >> 23) & 0x01;
20331 I2 = (value >> 22) & 0x01;
20332 hi = (value >> 12) & 0x3ff;
20333 lo = (value >> 1) & 0x7ff;
20334 newval = md_chars_to_number (buf, THUMB_SIZE);
20335 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20336 newval |= (S << 10) | hi;
20337 newval2 &= ~T2I1I2MASK;
20338 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20339 md_number_to_chars (buf, newval, THUMB_SIZE);
20340 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20341}
20342
c19d1205 20343void
55cf6793 20344md_apply_fix (fixS * fixP,
c19d1205
ZW
20345 valueT * valP,
20346 segT seg)
20347{
20348 offsetT value = * valP;
20349 offsetT newval;
20350 unsigned int newimm;
20351 unsigned long temp;
20352 int sign;
20353 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20354
9c2799c2 20355 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20356
c19d1205 20357 /* Note whether this will delete the relocation. */
4962c51a 20358
c19d1205
ZW
20359 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20360 fixP->fx_done = 1;
b99bd4ef 20361
adbaf948 20362 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20363 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20364 for emit_reloc. */
20365 value &= 0xffffffff;
20366 value ^= 0x80000000;
5f4273c7 20367 value -= 0x80000000;
adbaf948
ZW
20368
20369 *valP = value;
c19d1205 20370 fixP->fx_addnumber = value;
b99bd4ef 20371
adbaf948
ZW
20372 /* Same treatment for fixP->fx_offset. */
20373 fixP->fx_offset &= 0xffffffff;
20374 fixP->fx_offset ^= 0x80000000;
20375 fixP->fx_offset -= 0x80000000;
20376
c19d1205 20377 switch (fixP->fx_r_type)
b99bd4ef 20378 {
c19d1205
ZW
20379 case BFD_RELOC_NONE:
20380 /* This will need to go in the object file. */
20381 fixP->fx_done = 0;
20382 break;
b99bd4ef 20383
c19d1205
ZW
20384 case BFD_RELOC_ARM_IMMEDIATE:
20385 /* We claim that this fixup has been processed here,
20386 even if in fact we generate an error because we do
20387 not have a reloc for it, so tc_gen_reloc will reject it. */
20388 fixP->fx_done = 1;
b99bd4ef 20389
77db8e2e 20390 if (fixP->fx_addsy)
b99bd4ef 20391 {
77db8e2e 20392 const char *msg = 0;
b99bd4ef 20393
77db8e2e
NC
20394 if (! S_IS_DEFINED (fixP->fx_addsy))
20395 msg = _("undefined symbol %s used as an immediate value");
20396 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20397 msg = _("symbol %s is in a different section");
20398 else if (S_IS_WEAK (fixP->fx_addsy))
20399 msg = _("symbol %s is weak and may be overridden later");
20400
20401 if (msg)
20402 {
20403 as_bad_where (fixP->fx_file, fixP->fx_line,
20404 msg, S_GET_NAME (fixP->fx_addsy));
20405 break;
20406 }
42e5fcbf
AS
20407 }
20408
c19d1205
ZW
20409 newimm = encode_arm_immediate (value);
20410 temp = md_chars_to_number (buf, INSN_SIZE);
20411
20412 /* If the instruction will fail, see if we can fix things up by
20413 changing the opcode. */
20414 if (newimm == (unsigned int) FAIL
20415 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20416 {
c19d1205
ZW
20417 as_bad_where (fixP->fx_file, fixP->fx_line,
20418 _("invalid constant (%lx) after fixup"),
20419 (unsigned long) value);
20420 break;
b99bd4ef 20421 }
b99bd4ef 20422
c19d1205
ZW
20423 newimm |= (temp & 0xfffff000);
20424 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20425 break;
b99bd4ef 20426
c19d1205
ZW
20427 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20428 {
20429 unsigned int highpart = 0;
20430 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20431
77db8e2e 20432 if (fixP->fx_addsy)
42e5fcbf 20433 {
77db8e2e 20434 const char *msg = 0;
42e5fcbf 20435
77db8e2e
NC
20436 if (! S_IS_DEFINED (fixP->fx_addsy))
20437 msg = _("undefined symbol %s used as an immediate value");
20438 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20439 msg = _("symbol %s is in a different section");
20440 else if (S_IS_WEAK (fixP->fx_addsy))
20441 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20442
77db8e2e
NC
20443 if (msg)
20444 {
20445 as_bad_where (fixP->fx_file, fixP->fx_line,
20446 msg, S_GET_NAME (fixP->fx_addsy));
20447 break;
20448 }
20449 }
20450
c19d1205
ZW
20451 newimm = encode_arm_immediate (value);
20452 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20453
c19d1205
ZW
20454 /* If the instruction will fail, see if we can fix things up by
20455 changing the opcode. */
20456 if (newimm == (unsigned int) FAIL
20457 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20458 {
20459 /* No ? OK - try using two ADD instructions to generate
20460 the value. */
20461 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20462
c19d1205
ZW
20463 /* Yes - then make sure that the second instruction is
20464 also an add. */
20465 if (newimm != (unsigned int) FAIL)
20466 newinsn = temp;
20467 /* Still No ? Try using a negated value. */
20468 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20469 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20470 /* Otherwise - give up. */
20471 else
20472 {
20473 as_bad_where (fixP->fx_file, fixP->fx_line,
20474 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20475 (long) value);
20476 break;
20477 }
b99bd4ef 20478
c19d1205
ZW
20479 /* Replace the first operand in the 2nd instruction (which
20480 is the PC) with the destination register. We have
20481 already added in the PC in the first instruction and we
20482 do not want to do it again. */
20483 newinsn &= ~ 0xf0000;
20484 newinsn |= ((newinsn & 0x0f000) << 4);
20485 }
b99bd4ef 20486
c19d1205
ZW
20487 newimm |= (temp & 0xfffff000);
20488 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20489
c19d1205
ZW
20490 highpart |= (newinsn & 0xfffff000);
20491 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20492 }
20493 break;
b99bd4ef 20494
c19d1205 20495 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20496 if (!fixP->fx_done && seg->use_rela_p)
20497 value = 0;
20498
c19d1205 20499 case BFD_RELOC_ARM_LITERAL:
26d97720 20500 sign = value > 0;
b99bd4ef 20501
c19d1205
ZW
20502 if (value < 0)
20503 value = - value;
b99bd4ef 20504
c19d1205 20505 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20506 {
c19d1205
ZW
20507 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20508 as_bad_where (fixP->fx_file, fixP->fx_line,
20509 _("invalid literal constant: pool needs to be closer"));
20510 else
20511 as_bad_where (fixP->fx_file, fixP->fx_line,
20512 _("bad immediate value for offset (%ld)"),
20513 (long) value);
20514 break;
f03698e6
RE
20515 }
20516
c19d1205 20517 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20518 if (value == 0)
20519 newval &= 0xfffff000;
20520 else
20521 {
20522 newval &= 0xff7ff000;
20523 newval |= value | (sign ? INDEX_UP : 0);
20524 }
c19d1205
ZW
20525 md_number_to_chars (buf, newval, INSN_SIZE);
20526 break;
b99bd4ef 20527
c19d1205
ZW
20528 case BFD_RELOC_ARM_OFFSET_IMM8:
20529 case BFD_RELOC_ARM_HWLITERAL:
26d97720 20530 sign = value > 0;
b99bd4ef 20531
c19d1205
ZW
20532 if (value < 0)
20533 value = - value;
b99bd4ef 20534
c19d1205 20535 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20536 {
c19d1205
ZW
20537 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20538 as_bad_where (fixP->fx_file, fixP->fx_line,
20539 _("invalid literal constant: pool needs to be closer"));
20540 else
f9d4405b 20541 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20542 (long) value);
20543 break;
b99bd4ef
NC
20544 }
20545
c19d1205 20546 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20547 if (value == 0)
20548 newval &= 0xfffff0f0;
20549 else
20550 {
20551 newval &= 0xff7ff0f0;
20552 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20553 }
c19d1205
ZW
20554 md_number_to_chars (buf, newval, INSN_SIZE);
20555 break;
b99bd4ef 20556
c19d1205
ZW
20557 case BFD_RELOC_ARM_T32_OFFSET_U8:
20558 if (value < 0 || value > 1020 || value % 4 != 0)
20559 as_bad_where (fixP->fx_file, fixP->fx_line,
20560 _("bad immediate value for offset (%ld)"), (long) value);
20561 value /= 4;
b99bd4ef 20562
c19d1205 20563 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20564 newval |= value;
20565 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20566 break;
b99bd4ef 20567
c19d1205
ZW
20568 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20569 /* This is a complicated relocation used for all varieties of Thumb32
20570 load/store instruction with immediate offset:
20571
20572 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20573 *4, optional writeback(W)
20574 (doubleword load/store)
20575
20576 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20577 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20578 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20579 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20580 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20581
20582 Uppercase letters indicate bits that are already encoded at
20583 this point. Lowercase letters are our problem. For the
20584 second block of instructions, the secondary opcode nybble
20585 (bits 8..11) is present, and bit 23 is zero, even if this is
20586 a PC-relative operation. */
20587 newval = md_chars_to_number (buf, THUMB_SIZE);
20588 newval <<= 16;
20589 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20590
c19d1205 20591 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20592 {
c19d1205
ZW
20593 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20594 if (value >= 0)
20595 newval |= (1 << 23);
20596 else
20597 value = -value;
20598 if (value % 4 != 0)
20599 {
20600 as_bad_where (fixP->fx_file, fixP->fx_line,
20601 _("offset not a multiple of 4"));
20602 break;
20603 }
20604 value /= 4;
216d22bc 20605 if (value > 0xff)
c19d1205
ZW
20606 {
20607 as_bad_where (fixP->fx_file, fixP->fx_line,
20608 _("offset out of range"));
20609 break;
20610 }
20611 newval &= ~0xff;
b99bd4ef 20612 }
c19d1205 20613 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20614 {
c19d1205
ZW
20615 /* PC-relative, 12-bit offset. */
20616 if (value >= 0)
20617 newval |= (1 << 23);
20618 else
20619 value = -value;
216d22bc 20620 if (value > 0xfff)
c19d1205
ZW
20621 {
20622 as_bad_where (fixP->fx_file, fixP->fx_line,
20623 _("offset out of range"));
20624 break;
20625 }
20626 newval &= ~0xfff;
b99bd4ef 20627 }
c19d1205 20628 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20629 {
c19d1205
ZW
20630 /* Writeback: 8-bit, +/- offset. */
20631 if (value >= 0)
20632 newval |= (1 << 9);
20633 else
20634 value = -value;
216d22bc 20635 if (value > 0xff)
c19d1205
ZW
20636 {
20637 as_bad_where (fixP->fx_file, fixP->fx_line,
20638 _("offset out of range"));
20639 break;
20640 }
20641 newval &= ~0xff;
b99bd4ef 20642 }
c19d1205 20643 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20644 {
c19d1205 20645 /* T-instruction: positive 8-bit offset. */
216d22bc 20646 if (value < 0 || value > 0xff)
b99bd4ef 20647 {
c19d1205
ZW
20648 as_bad_where (fixP->fx_file, fixP->fx_line,
20649 _("offset out of range"));
20650 break;
b99bd4ef 20651 }
c19d1205
ZW
20652 newval &= ~0xff;
20653 newval |= value;
b99bd4ef
NC
20654 }
20655 else
b99bd4ef 20656 {
c19d1205
ZW
20657 /* Positive 12-bit or negative 8-bit offset. */
20658 int limit;
20659 if (value >= 0)
b99bd4ef 20660 {
c19d1205
ZW
20661 newval |= (1 << 23);
20662 limit = 0xfff;
20663 }
20664 else
20665 {
20666 value = -value;
20667 limit = 0xff;
20668 }
20669 if (value > limit)
20670 {
20671 as_bad_where (fixP->fx_file, fixP->fx_line,
20672 _("offset out of range"));
20673 break;
b99bd4ef 20674 }
c19d1205 20675 newval &= ~limit;
b99bd4ef 20676 }
b99bd4ef 20677
c19d1205
ZW
20678 newval |= value;
20679 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20680 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20681 break;
404ff6b5 20682
c19d1205
ZW
20683 case BFD_RELOC_ARM_SHIFT_IMM:
20684 newval = md_chars_to_number (buf, INSN_SIZE);
20685 if (((unsigned long) value) > 32
20686 || (value == 32
20687 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20688 {
20689 as_bad_where (fixP->fx_file, fixP->fx_line,
20690 _("shift expression is too large"));
20691 break;
20692 }
404ff6b5 20693
c19d1205
ZW
20694 if (value == 0)
20695 /* Shifts of zero must be done as lsl. */
20696 newval &= ~0x60;
20697 else if (value == 32)
20698 value = 0;
20699 newval &= 0xfffff07f;
20700 newval |= (value & 0x1f) << 7;
20701 md_number_to_chars (buf, newval, INSN_SIZE);
20702 break;
404ff6b5 20703
c19d1205 20704 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20705 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20706 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20707 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20708 /* We claim that this fixup has been processed here,
20709 even if in fact we generate an error because we do
20710 not have a reloc for it, so tc_gen_reloc will reject it. */
20711 fixP->fx_done = 1;
404ff6b5 20712
c19d1205
ZW
20713 if (fixP->fx_addsy
20714 && ! S_IS_DEFINED (fixP->fx_addsy))
20715 {
20716 as_bad_where (fixP->fx_file, fixP->fx_line,
20717 _("undefined symbol %s used as an immediate value"),
20718 S_GET_NAME (fixP->fx_addsy));
20719 break;
20720 }
404ff6b5 20721
c19d1205
ZW
20722 newval = md_chars_to_number (buf, THUMB_SIZE);
20723 newval <<= 16;
20724 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20725
16805f35
PB
20726 newimm = FAIL;
20727 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20728 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20729 {
20730 newimm = encode_thumb32_immediate (value);
20731 if (newimm == (unsigned int) FAIL)
20732 newimm = thumb32_negate_data_op (&newval, value);
20733 }
16805f35
PB
20734 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20735 && newimm == (unsigned int) FAIL)
92e90b6e 20736 {
16805f35
PB
20737 /* Turn add/sum into addw/subw. */
20738 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20739 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20740 /* No flat 12-bit imm encoding for addsw/subsw. */
20741 if ((newval & 0x00100000) == 0)
e9f89963 20742 {
40f246e3
NC
20743 /* 12 bit immediate for addw/subw. */
20744 if (value < 0)
20745 {
20746 value = -value;
20747 newval ^= 0x00a00000;
20748 }
20749 if (value > 0xfff)
20750 newimm = (unsigned int) FAIL;
20751 else
20752 newimm = value;
e9f89963 20753 }
92e90b6e 20754 }
cc8a6dd0 20755
c19d1205 20756 if (newimm == (unsigned int)FAIL)
3631a3c8 20757 {
c19d1205
ZW
20758 as_bad_where (fixP->fx_file, fixP->fx_line,
20759 _("invalid constant (%lx) after fixup"),
20760 (unsigned long) value);
20761 break;
3631a3c8
NC
20762 }
20763
c19d1205
ZW
20764 newval |= (newimm & 0x800) << 15;
20765 newval |= (newimm & 0x700) << 4;
20766 newval |= (newimm & 0x0ff);
cc8a6dd0 20767
c19d1205
ZW
20768 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20769 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20770 break;
a737bd4d 20771
3eb17e6b 20772 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20773 if (((unsigned long) value) > 0xffff)
20774 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20775 _("invalid smc expression"));
2fc8bdac 20776 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20777 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20778 md_number_to_chars (buf, newval, INSN_SIZE);
20779 break;
a737bd4d 20780
90ec0d68
MGD
20781 case BFD_RELOC_ARM_HVC:
20782 if (((unsigned long) value) > 0xffff)
20783 as_bad_where (fixP->fx_file, fixP->fx_line,
20784 _("invalid hvc expression"));
20785 newval = md_chars_to_number (buf, INSN_SIZE);
20786 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20787 md_number_to_chars (buf, newval, INSN_SIZE);
20788 break;
20789
c19d1205 20790 case BFD_RELOC_ARM_SWI:
adbaf948 20791 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20792 {
20793 if (((unsigned long) value) > 0xff)
20794 as_bad_where (fixP->fx_file, fixP->fx_line,
20795 _("invalid swi expression"));
2fc8bdac 20796 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20797 newval |= value;
20798 md_number_to_chars (buf, newval, THUMB_SIZE);
20799 }
20800 else
20801 {
20802 if (((unsigned long) value) > 0x00ffffff)
20803 as_bad_where (fixP->fx_file, fixP->fx_line,
20804 _("invalid swi expression"));
2fc8bdac 20805 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20806 newval |= value;
20807 md_number_to_chars (buf, newval, INSN_SIZE);
20808 }
20809 break;
a737bd4d 20810
c19d1205
ZW
20811 case BFD_RELOC_ARM_MULTI:
20812 if (((unsigned long) value) > 0xffff)
20813 as_bad_where (fixP->fx_file, fixP->fx_line,
20814 _("invalid expression in load/store multiple"));
20815 newval = value | md_chars_to_number (buf, INSN_SIZE);
20816 md_number_to_chars (buf, newval, INSN_SIZE);
20817 break;
a737bd4d 20818
c19d1205 20819#ifdef OBJ_ELF
39b41c9c 20820 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20821
20822 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20823 && fixP->fx_addsy
34e77a92 20824 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20825 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20826 && THUMB_IS_FUNC (fixP->fx_addsy))
20827 /* Flip the bl to blx. This is a simple flip
20828 bit here because we generate PCREL_CALL for
20829 unconditional bls. */
20830 {
20831 newval = md_chars_to_number (buf, INSN_SIZE);
20832 newval = newval | 0x10000000;
20833 md_number_to_chars (buf, newval, INSN_SIZE);
20834 temp = 1;
20835 fixP->fx_done = 1;
20836 }
39b41c9c
PB
20837 else
20838 temp = 3;
20839 goto arm_branch_common;
20840
20841 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20842 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20843 && fixP->fx_addsy
34e77a92 20844 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20845 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20846 && THUMB_IS_FUNC (fixP->fx_addsy))
20847 {
20848 /* This would map to a bl<cond>, b<cond>,
20849 b<always> to a Thumb function. We
20850 need to force a relocation for this particular
20851 case. */
20852 newval = md_chars_to_number (buf, INSN_SIZE);
20853 fixP->fx_done = 0;
20854 }
20855
2fc8bdac 20856 case BFD_RELOC_ARM_PLT32:
c19d1205 20857#endif
39b41c9c
PB
20858 case BFD_RELOC_ARM_PCREL_BRANCH:
20859 temp = 3;
20860 goto arm_branch_common;
a737bd4d 20861
39b41c9c 20862 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20863
39b41c9c 20864 temp = 1;
267bf995
RR
20865 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20866 && fixP->fx_addsy
34e77a92 20867 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20868 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20869 && ARM_IS_FUNC (fixP->fx_addsy))
20870 {
20871 /* Flip the blx to a bl and warn. */
20872 const char *name = S_GET_NAME (fixP->fx_addsy);
20873 newval = 0xeb000000;
20874 as_warn_where (fixP->fx_file, fixP->fx_line,
20875 _("blx to '%s' an ARM ISA state function changed to bl"),
20876 name);
20877 md_number_to_chars (buf, newval, INSN_SIZE);
20878 temp = 3;
20879 fixP->fx_done = 1;
20880 }
20881
20882#ifdef OBJ_ELF
20883 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20884 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20885#endif
20886
39b41c9c 20887 arm_branch_common:
c19d1205 20888 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20889 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20890 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20891 also be be clear. */
20892 if (value & temp)
c19d1205 20893 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20894 _("misaligned branch destination"));
20895 if ((value & (offsetT)0xfe000000) != (offsetT)0
20896 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20897 as_bad_where (fixP->fx_file, fixP->fx_line,
20898 _("branch out of range"));
a737bd4d 20899
2fc8bdac 20900 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20901 {
2fc8bdac
ZW
20902 newval = md_chars_to_number (buf, INSN_SIZE);
20903 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20904 /* Set the H bit on BLX instructions. */
20905 if (temp == 1)
20906 {
20907 if (value & 2)
20908 newval |= 0x01000000;
20909 else
20910 newval &= ~0x01000000;
20911 }
2fc8bdac 20912 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20913 }
c19d1205 20914 break;
a737bd4d 20915
25fe350b
MS
20916 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20917 /* CBZ can only branch forward. */
a737bd4d 20918
738755b0
MS
20919 /* Attempts to use CBZ to branch to the next instruction
20920 (which, strictly speaking, are prohibited) will be turned into
20921 no-ops.
20922
20923 FIXME: It may be better to remove the instruction completely and
20924 perform relaxation. */
20925 if (value == -2)
2fc8bdac
ZW
20926 {
20927 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20928 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20929 md_number_to_chars (buf, newval, THUMB_SIZE);
20930 }
738755b0
MS
20931 else
20932 {
20933 if (value & ~0x7e)
20934 as_bad_where (fixP->fx_file, fixP->fx_line,
20935 _("branch out of range"));
20936
20937 if (fixP->fx_done || !seg->use_rela_p)
20938 {
20939 newval = md_chars_to_number (buf, THUMB_SIZE);
20940 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20941 md_number_to_chars (buf, newval, THUMB_SIZE);
20942 }
20943 }
c19d1205 20944 break;
a737bd4d 20945
c19d1205 20946 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20947 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20948 as_bad_where (fixP->fx_file, fixP->fx_line,
20949 _("branch out of range"));
a737bd4d 20950
2fc8bdac
ZW
20951 if (fixP->fx_done || !seg->use_rela_p)
20952 {
20953 newval = md_chars_to_number (buf, THUMB_SIZE);
20954 newval |= (value & 0x1ff) >> 1;
20955 md_number_to_chars (buf, newval, THUMB_SIZE);
20956 }
c19d1205 20957 break;
a737bd4d 20958
c19d1205 20959 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20960 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20961 as_bad_where (fixP->fx_file, fixP->fx_line,
20962 _("branch out of range"));
a737bd4d 20963
2fc8bdac
ZW
20964 if (fixP->fx_done || !seg->use_rela_p)
20965 {
20966 newval = md_chars_to_number (buf, THUMB_SIZE);
20967 newval |= (value & 0xfff) >> 1;
20968 md_number_to_chars (buf, newval, THUMB_SIZE);
20969 }
c19d1205 20970 break;
a737bd4d 20971
c19d1205 20972 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20973 if (fixP->fx_addsy
20974 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20975 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20976 && ARM_IS_FUNC (fixP->fx_addsy)
20977 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20978 {
20979 /* Force a relocation for a branch 20 bits wide. */
20980 fixP->fx_done = 0;
20981 }
2fc8bdac
ZW
20982 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20983 as_bad_where (fixP->fx_file, fixP->fx_line,
20984 _("conditional branch out of range"));
404ff6b5 20985
2fc8bdac
ZW
20986 if (fixP->fx_done || !seg->use_rela_p)
20987 {
20988 offsetT newval2;
20989 addressT S, J1, J2, lo, hi;
404ff6b5 20990
2fc8bdac
ZW
20991 S = (value & 0x00100000) >> 20;
20992 J2 = (value & 0x00080000) >> 19;
20993 J1 = (value & 0x00040000) >> 18;
20994 hi = (value & 0x0003f000) >> 12;
20995 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20996
2fc8bdac
ZW
20997 newval = md_chars_to_number (buf, THUMB_SIZE);
20998 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20999 newval |= (S << 10) | hi;
21000 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21001 md_number_to_chars (buf, newval, THUMB_SIZE);
21002 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21003 }
c19d1205 21004 break;
6c43fab6 21005
c19d1205 21006 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21007
21008 /* If there is a blx from a thumb state function to
21009 another thumb function flip this to a bl and warn
21010 about it. */
21011
21012 if (fixP->fx_addsy
34e77a92 21013 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21014 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21015 && THUMB_IS_FUNC (fixP->fx_addsy))
21016 {
21017 const char *name = S_GET_NAME (fixP->fx_addsy);
21018 as_warn_where (fixP->fx_file, fixP->fx_line,
21019 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21020 name);
21021 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21022 newval = newval | 0x1000;
21023 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21024 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21025 fixP->fx_done = 1;
21026 }
21027
21028
21029 goto thumb_bl_common;
21030
c19d1205 21031 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21032
21033 /* A bl from Thumb state ISA to an internal ARM state function
21034 is converted to a blx. */
21035 if (fixP->fx_addsy
21036 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21037 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21038 && ARM_IS_FUNC (fixP->fx_addsy)
21039 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21040 {
21041 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21042 newval = newval & ~0x1000;
21043 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21044 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21045 fixP->fx_done = 1;
21046 }
21047
21048 thumb_bl_common:
21049
21050#ifdef OBJ_ELF
21051 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21052 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21053 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21054#endif
21055
2fc8bdac
ZW
21056 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21057 /* For a BLX instruction, make sure that the relocation is rounded up
21058 to a word boundary. This follows the semantics of the instruction
21059 which specifies that bit 1 of the target address will come from bit
21060 1 of the base address. */
21061 value = (value + 1) & ~ 1;
404ff6b5 21062
2fc8bdac 21063
4a42ebbc
RR
21064 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21065 {
21066 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21067 {
21068 as_bad_where (fixP->fx_file, fixP->fx_line,
21069 _("branch out of range"));
21070 }
21071 else if ((value & ~0x1ffffff)
21072 && ((value & ~0x1ffffff) != ~0x1ffffff))
21073 {
21074 as_bad_where (fixP->fx_file, fixP->fx_line,
21075 _("Thumb2 branch out of range"));
21076 }
c19d1205 21077 }
4a42ebbc
RR
21078
21079 if (fixP->fx_done || !seg->use_rela_p)
21080 encode_thumb2_b_bl_offset (buf, value);
21081
c19d1205 21082 break;
404ff6b5 21083
c19d1205 21084 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
21085 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
21086 as_bad_where (fixP->fx_file, fixP->fx_line,
21087 _("branch out of range"));
6c43fab6 21088
2fc8bdac 21089 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21090 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21091
2fc8bdac 21092 break;
a737bd4d 21093
2fc8bdac
ZW
21094 case BFD_RELOC_8:
21095 if (fixP->fx_done || !seg->use_rela_p)
21096 md_number_to_chars (buf, value, 1);
c19d1205 21097 break;
a737bd4d 21098
c19d1205 21099 case BFD_RELOC_16:
2fc8bdac 21100 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21101 md_number_to_chars (buf, value, 2);
c19d1205 21102 break;
a737bd4d 21103
c19d1205 21104#ifdef OBJ_ELF
0855e32b
NS
21105 case BFD_RELOC_ARM_TLS_CALL:
21106 case BFD_RELOC_ARM_THM_TLS_CALL:
21107 case BFD_RELOC_ARM_TLS_DESCSEQ:
21108 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21109 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21110 break;
21111
21112 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21113 case BFD_RELOC_ARM_TLS_GD32:
21114 case BFD_RELOC_ARM_TLS_LE32:
21115 case BFD_RELOC_ARM_TLS_IE32:
21116 case BFD_RELOC_ARM_TLS_LDM32:
21117 case BFD_RELOC_ARM_TLS_LDO32:
21118 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21119 /* fall through */
6c43fab6 21120
c19d1205
ZW
21121 case BFD_RELOC_ARM_GOT32:
21122 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21123 if (fixP->fx_done || !seg->use_rela_p)
21124 md_number_to_chars (buf, 0, 4);
c19d1205 21125 break;
b43420e6
NC
21126
21127 case BFD_RELOC_ARM_GOT_PREL:
21128 if (fixP->fx_done || !seg->use_rela_p)
21129 md_number_to_chars (buf, value, 4);
21130 break;
21131
9a6f4e97
NS
21132 case BFD_RELOC_ARM_TARGET2:
21133 /* TARGET2 is not partial-inplace, so we need to write the
21134 addend here for REL targets, because it won't be written out
21135 during reloc processing later. */
21136 if (fixP->fx_done || !seg->use_rela_p)
21137 md_number_to_chars (buf, fixP->fx_offset, 4);
21138 break;
c19d1205 21139#endif
6c43fab6 21140
c19d1205
ZW
21141 case BFD_RELOC_RVA:
21142 case BFD_RELOC_32:
21143 case BFD_RELOC_ARM_TARGET1:
21144 case BFD_RELOC_ARM_ROSEGREL32:
21145 case BFD_RELOC_ARM_SBREL32:
21146 case BFD_RELOC_32_PCREL:
f0927246
NC
21147#ifdef TE_PE
21148 case BFD_RELOC_32_SECREL:
21149#endif
2fc8bdac 21150 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21151#ifdef TE_WINCE
21152 /* For WinCE we only do this for pcrel fixups. */
21153 if (fixP->fx_done || fixP->fx_pcrel)
21154#endif
21155 md_number_to_chars (buf, value, 4);
c19d1205 21156 break;
6c43fab6 21157
c19d1205
ZW
21158#ifdef OBJ_ELF
21159 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21160 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21161 {
21162 newval = md_chars_to_number (buf, 4) & 0x80000000;
21163 if ((value ^ (value >> 1)) & 0x40000000)
21164 {
21165 as_bad_where (fixP->fx_file, fixP->fx_line,
21166 _("rel31 relocation overflow"));
21167 }
21168 newval |= value & 0x7fffffff;
21169 md_number_to_chars (buf, newval, 4);
21170 }
21171 break;
c19d1205 21172#endif
a737bd4d 21173
c19d1205 21174 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21175 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21176 if (value < -1023 || value > 1023 || (value & 3))
21177 as_bad_where (fixP->fx_file, fixP->fx_line,
21178 _("co-processor offset out of range"));
21179 cp_off_common:
26d97720 21180 sign = value > 0;
c19d1205
ZW
21181 if (value < 0)
21182 value = -value;
8f06b2d8
PB
21183 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21184 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21185 newval = md_chars_to_number (buf, INSN_SIZE);
21186 else
21187 newval = get_thumb32_insn (buf);
26d97720
NS
21188 if (value == 0)
21189 newval &= 0xffffff00;
21190 else
21191 {
21192 newval &= 0xff7fff00;
21193 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21194 }
8f06b2d8
PB
21195 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21196 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21197 md_number_to_chars (buf, newval, INSN_SIZE);
21198 else
21199 put_thumb32_insn (buf, newval);
c19d1205 21200 break;
a737bd4d 21201
c19d1205 21202 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21203 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21204 if (value < -255 || value > 255)
21205 as_bad_where (fixP->fx_file, fixP->fx_line,
21206 _("co-processor offset out of range"));
df7849c5 21207 value *= 4;
c19d1205 21208 goto cp_off_common;
6c43fab6 21209
c19d1205
ZW
21210 case BFD_RELOC_ARM_THUMB_OFFSET:
21211 newval = md_chars_to_number (buf, THUMB_SIZE);
21212 /* Exactly what ranges, and where the offset is inserted depends
21213 on the type of instruction, we can establish this from the
21214 top 4 bits. */
21215 switch (newval >> 12)
21216 {
21217 case 4: /* PC load. */
21218 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21219 forced to zero for these loads; md_pcrel_from has already
21220 compensated for this. */
21221 if (value & 3)
21222 as_bad_where (fixP->fx_file, fixP->fx_line,
21223 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21224 (((unsigned long) fixP->fx_frag->fr_address
21225 + (unsigned long) fixP->fx_where) & ~3)
21226 + (unsigned long) value);
a737bd4d 21227
c19d1205
ZW
21228 if (value & ~0x3fc)
21229 as_bad_where (fixP->fx_file, fixP->fx_line,
21230 _("invalid offset, value too big (0x%08lX)"),
21231 (long) value);
a737bd4d 21232
c19d1205
ZW
21233 newval |= value >> 2;
21234 break;
a737bd4d 21235
c19d1205
ZW
21236 case 9: /* SP load/store. */
21237 if (value & ~0x3fc)
21238 as_bad_where (fixP->fx_file, fixP->fx_line,
21239 _("invalid offset, value too big (0x%08lX)"),
21240 (long) value);
21241 newval |= value >> 2;
21242 break;
6c43fab6 21243
c19d1205
ZW
21244 case 6: /* Word load/store. */
21245 if (value & ~0x7c)
21246 as_bad_where (fixP->fx_file, fixP->fx_line,
21247 _("invalid offset, value too big (0x%08lX)"),
21248 (long) value);
21249 newval |= value << 4; /* 6 - 2. */
21250 break;
a737bd4d 21251
c19d1205
ZW
21252 case 7: /* Byte load/store. */
21253 if (value & ~0x1f)
21254 as_bad_where (fixP->fx_file, fixP->fx_line,
21255 _("invalid offset, value too big (0x%08lX)"),
21256 (long) value);
21257 newval |= value << 6;
21258 break;
a737bd4d 21259
c19d1205
ZW
21260 case 8: /* Halfword load/store. */
21261 if (value & ~0x3e)
21262 as_bad_where (fixP->fx_file, fixP->fx_line,
21263 _("invalid offset, value too big (0x%08lX)"),
21264 (long) value);
21265 newval |= value << 5; /* 6 - 1. */
21266 break;
a737bd4d 21267
c19d1205
ZW
21268 default:
21269 as_bad_where (fixP->fx_file, fixP->fx_line,
21270 "Unable to process relocation for thumb opcode: %lx",
21271 (unsigned long) newval);
21272 break;
21273 }
21274 md_number_to_chars (buf, newval, THUMB_SIZE);
21275 break;
a737bd4d 21276
c19d1205
ZW
21277 case BFD_RELOC_ARM_THUMB_ADD:
21278 /* This is a complicated relocation, since we use it for all of
21279 the following immediate relocations:
a737bd4d 21280
c19d1205
ZW
21281 3bit ADD/SUB
21282 8bit ADD/SUB
21283 9bit ADD/SUB SP word-aligned
21284 10bit ADD PC/SP word-aligned
a737bd4d 21285
c19d1205
ZW
21286 The type of instruction being processed is encoded in the
21287 instruction field:
a737bd4d 21288
c19d1205
ZW
21289 0x8000 SUB
21290 0x00F0 Rd
21291 0x000F Rs
21292 */
21293 newval = md_chars_to_number (buf, THUMB_SIZE);
21294 {
21295 int rd = (newval >> 4) & 0xf;
21296 int rs = newval & 0xf;
21297 int subtract = !!(newval & 0x8000);
a737bd4d 21298
c19d1205
ZW
21299 /* Check for HI regs, only very restricted cases allowed:
21300 Adjusting SP, and using PC or SP to get an address. */
21301 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21302 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21303 as_bad_where (fixP->fx_file, fixP->fx_line,
21304 _("invalid Hi register with immediate"));
a737bd4d 21305
c19d1205
ZW
21306 /* If value is negative, choose the opposite instruction. */
21307 if (value < 0)
21308 {
21309 value = -value;
21310 subtract = !subtract;
21311 if (value < 0)
21312 as_bad_where (fixP->fx_file, fixP->fx_line,
21313 _("immediate value out of range"));
21314 }
a737bd4d 21315
c19d1205
ZW
21316 if (rd == REG_SP)
21317 {
21318 if (value & ~0x1fc)
21319 as_bad_where (fixP->fx_file, fixP->fx_line,
21320 _("invalid immediate for stack address calculation"));
21321 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21322 newval |= value >> 2;
21323 }
21324 else if (rs == REG_PC || rs == REG_SP)
21325 {
21326 if (subtract || value & ~0x3fc)
21327 as_bad_where (fixP->fx_file, fixP->fx_line,
21328 _("invalid immediate for address calculation (value = 0x%08lX)"),
21329 (unsigned long) value);
21330 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21331 newval |= rd << 8;
21332 newval |= value >> 2;
21333 }
21334 else if (rs == rd)
21335 {
21336 if (value & ~0xff)
21337 as_bad_where (fixP->fx_file, fixP->fx_line,
21338 _("immediate value out of range"));
21339 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21340 newval |= (rd << 8) | value;
21341 }
21342 else
21343 {
21344 if (value & ~0x7)
21345 as_bad_where (fixP->fx_file, fixP->fx_line,
21346 _("immediate value out of range"));
21347 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21348 newval |= rd | (rs << 3) | (value << 6);
21349 }
21350 }
21351 md_number_to_chars (buf, newval, THUMB_SIZE);
21352 break;
a737bd4d 21353
c19d1205
ZW
21354 case BFD_RELOC_ARM_THUMB_IMM:
21355 newval = md_chars_to_number (buf, THUMB_SIZE);
21356 if (value < 0 || value > 255)
21357 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21358 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21359 (long) value);
21360 newval |= value;
21361 md_number_to_chars (buf, newval, THUMB_SIZE);
21362 break;
a737bd4d 21363
c19d1205
ZW
21364 case BFD_RELOC_ARM_THUMB_SHIFT:
21365 /* 5bit shift value (0..32). LSL cannot take 32. */
21366 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21367 temp = newval & 0xf800;
21368 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21369 as_bad_where (fixP->fx_file, fixP->fx_line,
21370 _("invalid shift value: %ld"), (long) value);
21371 /* Shifts of zero must be encoded as LSL. */
21372 if (value == 0)
21373 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21374 /* Shifts of 32 are encoded as zero. */
21375 else if (value == 32)
21376 value = 0;
21377 newval |= value << 6;
21378 md_number_to_chars (buf, newval, THUMB_SIZE);
21379 break;
a737bd4d 21380
c19d1205
ZW
21381 case BFD_RELOC_VTABLE_INHERIT:
21382 case BFD_RELOC_VTABLE_ENTRY:
21383 fixP->fx_done = 0;
21384 return;
6c43fab6 21385
b6895b4f
PB
21386 case BFD_RELOC_ARM_MOVW:
21387 case BFD_RELOC_ARM_MOVT:
21388 case BFD_RELOC_ARM_THUMB_MOVW:
21389 case BFD_RELOC_ARM_THUMB_MOVT:
21390 if (fixP->fx_done || !seg->use_rela_p)
21391 {
21392 /* REL format relocations are limited to a 16-bit addend. */
21393 if (!fixP->fx_done)
21394 {
39623e12 21395 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21396 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21397 _("offset out of range"));
b6895b4f
PB
21398 }
21399 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21400 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21401 {
21402 value >>= 16;
21403 }
21404
21405 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21406 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21407 {
21408 newval = get_thumb32_insn (buf);
21409 newval &= 0xfbf08f00;
21410 newval |= (value & 0xf000) << 4;
21411 newval |= (value & 0x0800) << 15;
21412 newval |= (value & 0x0700) << 4;
21413 newval |= (value & 0x00ff);
21414 put_thumb32_insn (buf, newval);
21415 }
21416 else
21417 {
21418 newval = md_chars_to_number (buf, 4);
21419 newval &= 0xfff0f000;
21420 newval |= value & 0x0fff;
21421 newval |= (value & 0xf000) << 4;
21422 md_number_to_chars (buf, newval, 4);
21423 }
21424 }
21425 return;
21426
4962c51a
MS
21427 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21428 case BFD_RELOC_ARM_ALU_PC_G0:
21429 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21430 case BFD_RELOC_ARM_ALU_PC_G1:
21431 case BFD_RELOC_ARM_ALU_PC_G2:
21432 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21433 case BFD_RELOC_ARM_ALU_SB_G0:
21434 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21435 case BFD_RELOC_ARM_ALU_SB_G1:
21436 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21437 gas_assert (!fixP->fx_done);
4962c51a
MS
21438 if (!seg->use_rela_p)
21439 {
21440 bfd_vma insn;
21441 bfd_vma encoded_addend;
21442 bfd_vma addend_abs = abs (value);
21443
21444 /* Check that the absolute value of the addend can be
21445 expressed as an 8-bit constant plus a rotation. */
21446 encoded_addend = encode_arm_immediate (addend_abs);
21447 if (encoded_addend == (unsigned int) FAIL)
21448 as_bad_where (fixP->fx_file, fixP->fx_line,
21449 _("the offset 0x%08lX is not representable"),
495bde8e 21450 (unsigned long) addend_abs);
4962c51a
MS
21451
21452 /* Extract the instruction. */
21453 insn = md_chars_to_number (buf, INSN_SIZE);
21454
21455 /* If the addend is positive, use an ADD instruction.
21456 Otherwise use a SUB. Take care not to destroy the S bit. */
21457 insn &= 0xff1fffff;
21458 if (value < 0)
21459 insn |= 1 << 22;
21460 else
21461 insn |= 1 << 23;
21462
21463 /* Place the encoded addend into the first 12 bits of the
21464 instruction. */
21465 insn &= 0xfffff000;
21466 insn |= encoded_addend;
5f4273c7
NC
21467
21468 /* Update the instruction. */
4962c51a
MS
21469 md_number_to_chars (buf, insn, INSN_SIZE);
21470 }
21471 break;
21472
21473 case BFD_RELOC_ARM_LDR_PC_G0:
21474 case BFD_RELOC_ARM_LDR_PC_G1:
21475 case BFD_RELOC_ARM_LDR_PC_G2:
21476 case BFD_RELOC_ARM_LDR_SB_G0:
21477 case BFD_RELOC_ARM_LDR_SB_G1:
21478 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21479 gas_assert (!fixP->fx_done);
4962c51a
MS
21480 if (!seg->use_rela_p)
21481 {
21482 bfd_vma insn;
21483 bfd_vma addend_abs = abs (value);
21484
21485 /* Check that the absolute value of the addend can be
21486 encoded in 12 bits. */
21487 if (addend_abs >= 0x1000)
21488 as_bad_where (fixP->fx_file, fixP->fx_line,
21489 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21490 (unsigned long) addend_abs);
4962c51a
MS
21491
21492 /* Extract the instruction. */
21493 insn = md_chars_to_number (buf, INSN_SIZE);
21494
21495 /* If the addend is negative, clear bit 23 of the instruction.
21496 Otherwise set it. */
21497 if (value < 0)
21498 insn &= ~(1 << 23);
21499 else
21500 insn |= 1 << 23;
21501
21502 /* Place the absolute value of the addend into the first 12 bits
21503 of the instruction. */
21504 insn &= 0xfffff000;
21505 insn |= addend_abs;
5f4273c7
NC
21506
21507 /* Update the instruction. */
4962c51a
MS
21508 md_number_to_chars (buf, insn, INSN_SIZE);
21509 }
21510 break;
21511
21512 case BFD_RELOC_ARM_LDRS_PC_G0:
21513 case BFD_RELOC_ARM_LDRS_PC_G1:
21514 case BFD_RELOC_ARM_LDRS_PC_G2:
21515 case BFD_RELOC_ARM_LDRS_SB_G0:
21516 case BFD_RELOC_ARM_LDRS_SB_G1:
21517 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21518 gas_assert (!fixP->fx_done);
4962c51a
MS
21519 if (!seg->use_rela_p)
21520 {
21521 bfd_vma insn;
21522 bfd_vma addend_abs = abs (value);
21523
21524 /* Check that the absolute value of the addend can be
21525 encoded in 8 bits. */
21526 if (addend_abs >= 0x100)
21527 as_bad_where (fixP->fx_file, fixP->fx_line,
21528 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21529 (unsigned long) addend_abs);
4962c51a
MS
21530
21531 /* Extract the instruction. */
21532 insn = md_chars_to_number (buf, INSN_SIZE);
21533
21534 /* If the addend is negative, clear bit 23 of the instruction.
21535 Otherwise set it. */
21536 if (value < 0)
21537 insn &= ~(1 << 23);
21538 else
21539 insn |= 1 << 23;
21540
21541 /* Place the first four bits of the absolute value of the addend
21542 into the first 4 bits of the instruction, and the remaining
21543 four into bits 8 .. 11. */
21544 insn &= 0xfffff0f0;
21545 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21546
21547 /* Update the instruction. */
4962c51a
MS
21548 md_number_to_chars (buf, insn, INSN_SIZE);
21549 }
21550 break;
21551
21552 case BFD_RELOC_ARM_LDC_PC_G0:
21553 case BFD_RELOC_ARM_LDC_PC_G1:
21554 case BFD_RELOC_ARM_LDC_PC_G2:
21555 case BFD_RELOC_ARM_LDC_SB_G0:
21556 case BFD_RELOC_ARM_LDC_SB_G1:
21557 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21558 gas_assert (!fixP->fx_done);
4962c51a
MS
21559 if (!seg->use_rela_p)
21560 {
21561 bfd_vma insn;
21562 bfd_vma addend_abs = abs (value);
21563
21564 /* Check that the absolute value of the addend is a multiple of
21565 four and, when divided by four, fits in 8 bits. */
21566 if (addend_abs & 0x3)
21567 as_bad_where (fixP->fx_file, fixP->fx_line,
21568 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21569 (unsigned long) addend_abs);
4962c51a
MS
21570
21571 if ((addend_abs >> 2) > 0xff)
21572 as_bad_where (fixP->fx_file, fixP->fx_line,
21573 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21574 (unsigned long) addend_abs);
4962c51a
MS
21575
21576 /* Extract the instruction. */
21577 insn = md_chars_to_number (buf, INSN_SIZE);
21578
21579 /* If the addend is negative, clear bit 23 of the instruction.
21580 Otherwise set it. */
21581 if (value < 0)
21582 insn &= ~(1 << 23);
21583 else
21584 insn |= 1 << 23;
21585
21586 /* Place the addend (divided by four) into the first eight
21587 bits of the instruction. */
21588 insn &= 0xfffffff0;
21589 insn |= addend_abs >> 2;
5f4273c7
NC
21590
21591 /* Update the instruction. */
4962c51a
MS
21592 md_number_to_chars (buf, insn, INSN_SIZE);
21593 }
21594 break;
21595
845b51d6
PB
21596 case BFD_RELOC_ARM_V4BX:
21597 /* This will need to go in the object file. */
21598 fixP->fx_done = 0;
21599 break;
21600
c19d1205
ZW
21601 case BFD_RELOC_UNUSED:
21602 default:
21603 as_bad_where (fixP->fx_file, fixP->fx_line,
21604 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21605 }
6c43fab6
RE
21606}
21607
c19d1205
ZW
21608/* Translate internal representation of relocation info to BFD target
21609 format. */
a737bd4d 21610
c19d1205 21611arelent *
00a97672 21612tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21613{
c19d1205
ZW
21614 arelent * reloc;
21615 bfd_reloc_code_real_type code;
a737bd4d 21616
21d799b5 21617 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21618
21d799b5 21619 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21620 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21621 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21622
2fc8bdac 21623 if (fixp->fx_pcrel)
00a97672
RS
21624 {
21625 if (section->use_rela_p)
21626 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21627 else
21628 fixp->fx_offset = reloc->address;
21629 }
c19d1205 21630 reloc->addend = fixp->fx_offset;
a737bd4d 21631
c19d1205 21632 switch (fixp->fx_r_type)
a737bd4d 21633 {
c19d1205
ZW
21634 case BFD_RELOC_8:
21635 if (fixp->fx_pcrel)
21636 {
21637 code = BFD_RELOC_8_PCREL;
21638 break;
21639 }
a737bd4d 21640
c19d1205
ZW
21641 case BFD_RELOC_16:
21642 if (fixp->fx_pcrel)
21643 {
21644 code = BFD_RELOC_16_PCREL;
21645 break;
21646 }
6c43fab6 21647
c19d1205
ZW
21648 case BFD_RELOC_32:
21649 if (fixp->fx_pcrel)
21650 {
21651 code = BFD_RELOC_32_PCREL;
21652 break;
21653 }
a737bd4d 21654
b6895b4f
PB
21655 case BFD_RELOC_ARM_MOVW:
21656 if (fixp->fx_pcrel)
21657 {
21658 code = BFD_RELOC_ARM_MOVW_PCREL;
21659 break;
21660 }
21661
21662 case BFD_RELOC_ARM_MOVT:
21663 if (fixp->fx_pcrel)
21664 {
21665 code = BFD_RELOC_ARM_MOVT_PCREL;
21666 break;
21667 }
21668
21669 case BFD_RELOC_ARM_THUMB_MOVW:
21670 if (fixp->fx_pcrel)
21671 {
21672 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21673 break;
21674 }
21675
21676 case BFD_RELOC_ARM_THUMB_MOVT:
21677 if (fixp->fx_pcrel)
21678 {
21679 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21680 break;
21681 }
21682
c19d1205
ZW
21683 case BFD_RELOC_NONE:
21684 case BFD_RELOC_ARM_PCREL_BRANCH:
21685 case BFD_RELOC_ARM_PCREL_BLX:
21686 case BFD_RELOC_RVA:
21687 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21688 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21689 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21690 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21691 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21692 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21693 case BFD_RELOC_VTABLE_ENTRY:
21694 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21695#ifdef TE_PE
21696 case BFD_RELOC_32_SECREL:
21697#endif
c19d1205
ZW
21698 code = fixp->fx_r_type;
21699 break;
a737bd4d 21700
00adf2d4
JB
21701 case BFD_RELOC_THUMB_PCREL_BLX:
21702#ifdef OBJ_ELF
21703 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21704 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21705 else
21706#endif
21707 code = BFD_RELOC_THUMB_PCREL_BLX;
21708 break;
21709
c19d1205
ZW
21710 case BFD_RELOC_ARM_LITERAL:
21711 case BFD_RELOC_ARM_HWLITERAL:
21712 /* If this is called then the a literal has
21713 been referenced across a section boundary. */
21714 as_bad_where (fixp->fx_file, fixp->fx_line,
21715 _("literal referenced across section boundary"));
21716 return NULL;
a737bd4d 21717
c19d1205 21718#ifdef OBJ_ELF
0855e32b
NS
21719 case BFD_RELOC_ARM_TLS_CALL:
21720 case BFD_RELOC_ARM_THM_TLS_CALL:
21721 case BFD_RELOC_ARM_TLS_DESCSEQ:
21722 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
21723 case BFD_RELOC_ARM_GOT32:
21724 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21725 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21726 case BFD_RELOC_ARM_PLT32:
21727 case BFD_RELOC_ARM_TARGET1:
21728 case BFD_RELOC_ARM_ROSEGREL32:
21729 case BFD_RELOC_ARM_SBREL32:
21730 case BFD_RELOC_ARM_PREL31:
21731 case BFD_RELOC_ARM_TARGET2:
21732 case BFD_RELOC_ARM_TLS_LE32:
21733 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21734 case BFD_RELOC_ARM_PCREL_CALL:
21735 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21736 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21737 case BFD_RELOC_ARM_ALU_PC_G0:
21738 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21739 case BFD_RELOC_ARM_ALU_PC_G1:
21740 case BFD_RELOC_ARM_ALU_PC_G2:
21741 case BFD_RELOC_ARM_LDR_PC_G0:
21742 case BFD_RELOC_ARM_LDR_PC_G1:
21743 case BFD_RELOC_ARM_LDR_PC_G2:
21744 case BFD_RELOC_ARM_LDRS_PC_G0:
21745 case BFD_RELOC_ARM_LDRS_PC_G1:
21746 case BFD_RELOC_ARM_LDRS_PC_G2:
21747 case BFD_RELOC_ARM_LDC_PC_G0:
21748 case BFD_RELOC_ARM_LDC_PC_G1:
21749 case BFD_RELOC_ARM_LDC_PC_G2:
21750 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21751 case BFD_RELOC_ARM_ALU_SB_G0:
21752 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21753 case BFD_RELOC_ARM_ALU_SB_G1:
21754 case BFD_RELOC_ARM_ALU_SB_G2:
21755 case BFD_RELOC_ARM_LDR_SB_G0:
21756 case BFD_RELOC_ARM_LDR_SB_G1:
21757 case BFD_RELOC_ARM_LDR_SB_G2:
21758 case BFD_RELOC_ARM_LDRS_SB_G0:
21759 case BFD_RELOC_ARM_LDRS_SB_G1:
21760 case BFD_RELOC_ARM_LDRS_SB_G2:
21761 case BFD_RELOC_ARM_LDC_SB_G0:
21762 case BFD_RELOC_ARM_LDC_SB_G1:
21763 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21764 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21765 code = fixp->fx_r_type;
21766 break;
a737bd4d 21767
0855e32b 21768 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21769 case BFD_RELOC_ARM_TLS_GD32:
21770 case BFD_RELOC_ARM_TLS_IE32:
21771 case BFD_RELOC_ARM_TLS_LDM32:
21772 /* BFD will include the symbol's address in the addend.
21773 But we don't want that, so subtract it out again here. */
21774 if (!S_IS_COMMON (fixp->fx_addsy))
21775 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21776 code = fixp->fx_r_type;
21777 break;
21778#endif
a737bd4d 21779
c19d1205
ZW
21780 case BFD_RELOC_ARM_IMMEDIATE:
21781 as_bad_where (fixp->fx_file, fixp->fx_line,
21782 _("internal relocation (type: IMMEDIATE) not fixed up"));
21783 return NULL;
a737bd4d 21784
c19d1205
ZW
21785 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21786 as_bad_where (fixp->fx_file, fixp->fx_line,
21787 _("ADRL used for a symbol not defined in the same file"));
21788 return NULL;
a737bd4d 21789
c19d1205 21790 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21791 if (section->use_rela_p)
21792 {
21793 code = fixp->fx_r_type;
21794 break;
21795 }
21796
c19d1205
ZW
21797 if (fixp->fx_addsy != NULL
21798 && !S_IS_DEFINED (fixp->fx_addsy)
21799 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21800 {
c19d1205
ZW
21801 as_bad_where (fixp->fx_file, fixp->fx_line,
21802 _("undefined local label `%s'"),
21803 S_GET_NAME (fixp->fx_addsy));
21804 return NULL;
a737bd4d
NC
21805 }
21806
c19d1205
ZW
21807 as_bad_where (fixp->fx_file, fixp->fx_line,
21808 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21809 return NULL;
a737bd4d 21810
c19d1205
ZW
21811 default:
21812 {
21813 char * type;
6c43fab6 21814
c19d1205
ZW
21815 switch (fixp->fx_r_type)
21816 {
21817 case BFD_RELOC_NONE: type = "NONE"; break;
21818 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21819 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21820 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21821 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21822 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21823 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21824 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21825 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21826 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21827 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21828 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21829 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21830 default: type = _("<unknown>"); break;
21831 }
21832 as_bad_where (fixp->fx_file, fixp->fx_line,
21833 _("cannot represent %s relocation in this object file format"),
21834 type);
21835 return NULL;
21836 }
a737bd4d 21837 }
6c43fab6 21838
c19d1205
ZW
21839#ifdef OBJ_ELF
21840 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21841 && GOT_symbol
21842 && fixp->fx_addsy == GOT_symbol)
21843 {
21844 code = BFD_RELOC_ARM_GOTPC;
21845 reloc->addend = fixp->fx_offset = reloc->address;
21846 }
21847#endif
6c43fab6 21848
c19d1205 21849 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21850
c19d1205
ZW
21851 if (reloc->howto == NULL)
21852 {
21853 as_bad_where (fixp->fx_file, fixp->fx_line,
21854 _("cannot represent %s relocation in this object file format"),
21855 bfd_get_reloc_code_name (code));
21856 return NULL;
21857 }
6c43fab6 21858
c19d1205
ZW
21859 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21860 vtable entry to be used in the relocation's section offset. */
21861 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21862 reloc->address = fixp->fx_offset;
6c43fab6 21863
c19d1205 21864 return reloc;
6c43fab6
RE
21865}
21866
c19d1205 21867/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21868
c19d1205
ZW
21869void
21870cons_fix_new_arm (fragS * frag,
21871 int where,
21872 int size,
21873 expressionS * exp)
6c43fab6 21874{
c19d1205
ZW
21875 bfd_reloc_code_real_type type;
21876 int pcrel = 0;
6c43fab6 21877
c19d1205
ZW
21878 /* Pick a reloc.
21879 FIXME: @@ Should look at CPU word size. */
21880 switch (size)
21881 {
21882 case 1:
21883 type = BFD_RELOC_8;
21884 break;
21885 case 2:
21886 type = BFD_RELOC_16;
21887 break;
21888 case 4:
21889 default:
21890 type = BFD_RELOC_32;
21891 break;
21892 case 8:
21893 type = BFD_RELOC_64;
21894 break;
21895 }
6c43fab6 21896
f0927246
NC
21897#ifdef TE_PE
21898 if (exp->X_op == O_secrel)
21899 {
21900 exp->X_op = O_symbol;
21901 type = BFD_RELOC_32_SECREL;
21902 }
21903#endif
21904
c19d1205
ZW
21905 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21906}
6c43fab6 21907
4343666d 21908#if defined (OBJ_COFF)
c19d1205
ZW
21909void
21910arm_validate_fix (fixS * fixP)
6c43fab6 21911{
c19d1205
ZW
21912 /* If the destination of the branch is a defined symbol which does not have
21913 the THUMB_FUNC attribute, then we must be calling a function which has
21914 the (interfacearm) attribute. We look for the Thumb entry point to that
21915 function and change the branch to refer to that function instead. */
21916 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21917 && fixP->fx_addsy != NULL
21918 && S_IS_DEFINED (fixP->fx_addsy)
21919 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21920 {
c19d1205 21921 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21922 }
c19d1205
ZW
21923}
21924#endif
6c43fab6 21925
267bf995 21926
c19d1205
ZW
21927int
21928arm_force_relocation (struct fix * fixp)
21929{
21930#if defined (OBJ_COFF) && defined (TE_PE)
21931 if (fixp->fx_r_type == BFD_RELOC_RVA)
21932 return 1;
21933#endif
6c43fab6 21934
267bf995
RR
21935 /* In case we have a call or a branch to a function in ARM ISA mode from
21936 a thumb function or vice-versa force the relocation. These relocations
21937 are cleared off for some cores that might have blx and simple transformations
21938 are possible. */
21939
21940#ifdef OBJ_ELF
21941 switch (fixp->fx_r_type)
21942 {
21943 case BFD_RELOC_ARM_PCREL_JUMP:
21944 case BFD_RELOC_ARM_PCREL_CALL:
21945 case BFD_RELOC_THUMB_PCREL_BLX:
21946 if (THUMB_IS_FUNC (fixp->fx_addsy))
21947 return 1;
21948 break;
21949
21950 case BFD_RELOC_ARM_PCREL_BLX:
21951 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21952 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21953 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21954 if (ARM_IS_FUNC (fixp->fx_addsy))
21955 return 1;
21956 break;
21957
21958 default:
21959 break;
21960 }
21961#endif
21962
b5884301
PB
21963 /* Resolve these relocations even if the symbol is extern or weak.
21964 Technically this is probably wrong due to symbol preemption.
21965 In practice these relocations do not have enough range to be useful
21966 at dynamic link time, and some code (e.g. in the Linux kernel)
21967 expects these references to be resolved. */
c19d1205
ZW
21968 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21969 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 21970 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 21971 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
21972 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21973 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
21974 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 21975 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21976 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21977 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
21978 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
21979 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
21980 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
21981 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 21982 return 0;
a737bd4d 21983
4962c51a
MS
21984 /* Always leave these relocations for the linker. */
21985 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21986 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21987 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21988 return 1;
21989
f0291e4c
PB
21990 /* Always generate relocations against function symbols. */
21991 if (fixp->fx_r_type == BFD_RELOC_32
21992 && fixp->fx_addsy
21993 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21994 return 1;
21995
c19d1205 21996 return generic_force_reloc (fixp);
404ff6b5
AH
21997}
21998
0ffdc86c 21999#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22000/* Relocations against function names must be left unadjusted,
22001 so that the linker can use this information to generate interworking
22002 stubs. The MIPS version of this function
c19d1205
ZW
22003 also prevents relocations that are mips-16 specific, but I do not
22004 know why it does this.
404ff6b5 22005
c19d1205
ZW
22006 FIXME:
22007 There is one other problem that ought to be addressed here, but
22008 which currently is not: Taking the address of a label (rather
22009 than a function) and then later jumping to that address. Such
22010 addresses also ought to have their bottom bit set (assuming that
22011 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22012
c19d1205
ZW
22013bfd_boolean
22014arm_fix_adjustable (fixS * fixP)
404ff6b5 22015{
c19d1205
ZW
22016 if (fixP->fx_addsy == NULL)
22017 return 1;
404ff6b5 22018
e28387c3
PB
22019 /* Preserve relocations against symbols with function type. */
22020 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22021 return FALSE;
e28387c3 22022
c19d1205
ZW
22023 if (THUMB_IS_FUNC (fixP->fx_addsy)
22024 && fixP->fx_subsy == NULL)
c921be7d 22025 return FALSE;
a737bd4d 22026
c19d1205
ZW
22027 /* We need the symbol name for the VTABLE entries. */
22028 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22029 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22030 return FALSE;
404ff6b5 22031
c19d1205
ZW
22032 /* Don't allow symbols to be discarded on GOT related relocs. */
22033 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22034 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22035 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22036 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22037 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22038 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22039 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22040 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22041 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22042 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22043 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22044 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22045 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22046 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22047 return FALSE;
a737bd4d 22048
4962c51a
MS
22049 /* Similarly for group relocations. */
22050 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22051 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22052 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22053 return FALSE;
4962c51a 22054
79947c54
CD
22055 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22056 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22057 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22058 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22059 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22060 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22061 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22062 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22063 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22064 return FALSE;
79947c54 22065
c921be7d 22066 return TRUE;
a737bd4d 22067}
0ffdc86c
NC
22068#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22069
22070#ifdef OBJ_ELF
404ff6b5 22071
c19d1205
ZW
22072const char *
22073elf32_arm_target_format (void)
404ff6b5 22074{
c19d1205
ZW
22075#ifdef TE_SYMBIAN
22076 return (target_big_endian
22077 ? "elf32-bigarm-symbian"
22078 : "elf32-littlearm-symbian");
22079#elif defined (TE_VXWORKS)
22080 return (target_big_endian
22081 ? "elf32-bigarm-vxworks"
22082 : "elf32-littlearm-vxworks");
22083#else
22084 if (target_big_endian)
22085 return "elf32-bigarm";
22086 else
22087 return "elf32-littlearm";
22088#endif
404ff6b5
AH
22089}
22090
c19d1205
ZW
22091void
22092armelf_frob_symbol (symbolS * symp,
22093 int * puntp)
404ff6b5 22094{
c19d1205
ZW
22095 elf_frob_symbol (symp, puntp);
22096}
22097#endif
404ff6b5 22098
c19d1205 22099/* MD interface: Finalization. */
a737bd4d 22100
c19d1205
ZW
22101void
22102arm_cleanup (void)
22103{
22104 literal_pool * pool;
a737bd4d 22105
e07e6e58
NC
22106 /* Ensure that all the IT blocks are properly closed. */
22107 check_it_blocks_finished ();
22108
c19d1205
ZW
22109 for (pool = list_of_pools; pool; pool = pool->next)
22110 {
5f4273c7 22111 /* Put it at the end of the relevant section. */
c19d1205
ZW
22112 subseg_set (pool->section, pool->sub_section);
22113#ifdef OBJ_ELF
22114 arm_elf_change_section ();
22115#endif
22116 s_ltorg (0);
22117 }
404ff6b5
AH
22118}
22119
cd000bff
DJ
22120#ifdef OBJ_ELF
22121/* Remove any excess mapping symbols generated for alignment frags in
22122 SEC. We may have created a mapping symbol before a zero byte
22123 alignment; remove it if there's a mapping symbol after the
22124 alignment. */
22125static void
22126check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22127 void *dummy ATTRIBUTE_UNUSED)
22128{
22129 segment_info_type *seginfo = seg_info (sec);
22130 fragS *fragp;
22131
22132 if (seginfo == NULL || seginfo->frchainP == NULL)
22133 return;
22134
22135 for (fragp = seginfo->frchainP->frch_root;
22136 fragp != NULL;
22137 fragp = fragp->fr_next)
22138 {
22139 symbolS *sym = fragp->tc_frag_data.last_map;
22140 fragS *next = fragp->fr_next;
22141
22142 /* Variable-sized frags have been converted to fixed size by
22143 this point. But if this was variable-sized to start with,
22144 there will be a fixed-size frag after it. So don't handle
22145 next == NULL. */
22146 if (sym == NULL || next == NULL)
22147 continue;
22148
22149 if (S_GET_VALUE (sym) < next->fr_address)
22150 /* Not at the end of this frag. */
22151 continue;
22152 know (S_GET_VALUE (sym) == next->fr_address);
22153
22154 do
22155 {
22156 if (next->tc_frag_data.first_map != NULL)
22157 {
22158 /* Next frag starts with a mapping symbol. Discard this
22159 one. */
22160 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22161 break;
22162 }
22163
22164 if (next->fr_next == NULL)
22165 {
22166 /* This mapping symbol is at the end of the section. Discard
22167 it. */
22168 know (next->fr_fix == 0 && next->fr_var == 0);
22169 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22170 break;
22171 }
22172
22173 /* As long as we have empty frags without any mapping symbols,
22174 keep looking. */
22175 /* If the next frag is non-empty and does not start with a
22176 mapping symbol, then this mapping symbol is required. */
22177 if (next->fr_address != next->fr_next->fr_address)
22178 break;
22179
22180 next = next->fr_next;
22181 }
22182 while (next != NULL);
22183 }
22184}
22185#endif
22186
c19d1205
ZW
22187/* Adjust the symbol table. This marks Thumb symbols as distinct from
22188 ARM ones. */
404ff6b5 22189
c19d1205
ZW
22190void
22191arm_adjust_symtab (void)
404ff6b5 22192{
c19d1205
ZW
22193#ifdef OBJ_COFF
22194 symbolS * sym;
404ff6b5 22195
c19d1205
ZW
22196 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22197 {
22198 if (ARM_IS_THUMB (sym))
22199 {
22200 if (THUMB_IS_FUNC (sym))
22201 {
22202 /* Mark the symbol as a Thumb function. */
22203 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22204 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22205 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22206
c19d1205
ZW
22207 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22208 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22209 else
22210 as_bad (_("%s: unexpected function type: %d"),
22211 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22212 }
22213 else switch (S_GET_STORAGE_CLASS (sym))
22214 {
22215 case C_EXT:
22216 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22217 break;
22218 case C_STAT:
22219 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22220 break;
22221 case C_LABEL:
22222 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22223 break;
22224 default:
22225 /* Do nothing. */
22226 break;
22227 }
22228 }
a737bd4d 22229
c19d1205
ZW
22230 if (ARM_IS_INTERWORK (sym))
22231 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22232 }
c19d1205
ZW
22233#endif
22234#ifdef OBJ_ELF
22235 symbolS * sym;
22236 char bind;
404ff6b5 22237
c19d1205 22238 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22239 {
c19d1205
ZW
22240 if (ARM_IS_THUMB (sym))
22241 {
22242 elf_symbol_type * elf_sym;
404ff6b5 22243
c19d1205
ZW
22244 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22245 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22246
b0796911
PB
22247 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22248 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22249 {
22250 /* If it's a .thumb_func, declare it as so,
22251 otherwise tag label as .code 16. */
22252 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22253 elf_sym->internal_elf_sym.st_target_internal
22254 = ST_BRANCH_TO_THUMB;
3ba67470 22255 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22256 elf_sym->internal_elf_sym.st_info =
22257 ELF_ST_INFO (bind, STT_ARM_16BIT);
22258 }
22259 }
22260 }
cd000bff
DJ
22261
22262 /* Remove any overlapping mapping symbols generated by alignment frags. */
22263 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22264 /* Now do generic ELF adjustments. */
22265 elf_adjust_symtab ();
c19d1205 22266#endif
404ff6b5
AH
22267}
22268
c19d1205 22269/* MD interface: Initialization. */
404ff6b5 22270
a737bd4d 22271static void
c19d1205 22272set_constant_flonums (void)
a737bd4d 22273{
c19d1205 22274 int i;
404ff6b5 22275
c19d1205
ZW
22276 for (i = 0; i < NUM_FLOAT_VALS; i++)
22277 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22278 abort ();
a737bd4d 22279}
404ff6b5 22280
3e9e4fcf
JB
22281/* Auto-select Thumb mode if it's the only available instruction set for the
22282 given architecture. */
22283
22284static void
22285autoselect_thumb_from_cpu_variant (void)
22286{
22287 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22288 opcode_select (16);
22289}
22290
c19d1205
ZW
22291void
22292md_begin (void)
a737bd4d 22293{
c19d1205
ZW
22294 unsigned mach;
22295 unsigned int i;
404ff6b5 22296
c19d1205
ZW
22297 if ( (arm_ops_hsh = hash_new ()) == NULL
22298 || (arm_cond_hsh = hash_new ()) == NULL
22299 || (arm_shift_hsh = hash_new ()) == NULL
22300 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22301 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22302 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22303 || (arm_reloc_hsh = hash_new ()) == NULL
22304 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22305 as_fatal (_("virtual memory exhausted"));
22306
22307 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22308 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22309 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22310 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22311 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22312 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22313 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22314 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22315 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22316 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22317 (void *) (v7m_psrs + i));
c19d1205 22318 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22319 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22320 for (i = 0;
22321 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22322 i++)
d3ce72d0 22323 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22324 (void *) (barrier_opt_names + i));
c19d1205
ZW
22325#ifdef OBJ_ELF
22326 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 22327 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
22328#endif
22329
22330 set_constant_flonums ();
404ff6b5 22331
c19d1205
ZW
22332 /* Set the cpu variant based on the command-line options. We prefer
22333 -mcpu= over -march= if both are set (as for GCC); and we prefer
22334 -mfpu= over any other way of setting the floating point unit.
22335 Use of legacy options with new options are faulted. */
e74cfd16 22336 if (legacy_cpu)
404ff6b5 22337 {
e74cfd16 22338 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22339 as_bad (_("use of old and new-style options to set CPU type"));
22340
22341 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22342 }
e74cfd16 22343 else if (!mcpu_cpu_opt)
c19d1205 22344 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22345
e74cfd16 22346 if (legacy_fpu)
c19d1205 22347 {
e74cfd16 22348 if (mfpu_opt)
c19d1205 22349 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22350
22351 mfpu_opt = legacy_fpu;
22352 }
e74cfd16 22353 else if (!mfpu_opt)
03b1477f 22354 {
45eb4c1b
NS
22355#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22356 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22357 /* Some environments specify a default FPU. If they don't, infer it
22358 from the processor. */
e74cfd16 22359 if (mcpu_fpu_opt)
03b1477f
RE
22360 mfpu_opt = mcpu_fpu_opt;
22361 else
22362 mfpu_opt = march_fpu_opt;
39c2da32 22363#else
e74cfd16 22364 mfpu_opt = &fpu_default;
39c2da32 22365#endif
03b1477f
RE
22366 }
22367
e74cfd16 22368 if (!mfpu_opt)
03b1477f 22369 {
493cb6ef 22370 if (mcpu_cpu_opt != NULL)
e74cfd16 22371 mfpu_opt = &fpu_default;
493cb6ef 22372 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22373 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22374 else
e74cfd16 22375 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22376 }
22377
ee065d83 22378#ifdef CPU_DEFAULT
e74cfd16 22379 if (!mcpu_cpu_opt)
ee065d83 22380 {
e74cfd16
PB
22381 mcpu_cpu_opt = &cpu_default;
22382 selected_cpu = cpu_default;
ee065d83 22383 }
e74cfd16
PB
22384#else
22385 if (mcpu_cpu_opt)
22386 selected_cpu = *mcpu_cpu_opt;
ee065d83 22387 else
e74cfd16 22388 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22389#endif
03b1477f 22390
e74cfd16 22391 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22392
3e9e4fcf
JB
22393 autoselect_thumb_from_cpu_variant ();
22394
e74cfd16 22395 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22396
f17c130b 22397#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22398 {
7cc69913
NC
22399 unsigned int flags = 0;
22400
22401#if defined OBJ_ELF
22402 flags = meabi_flags;
d507cf36
PB
22403
22404 switch (meabi_flags)
33a392fb 22405 {
d507cf36 22406 case EF_ARM_EABI_UNKNOWN:
7cc69913 22407#endif
d507cf36
PB
22408 /* Set the flags in the private structure. */
22409 if (uses_apcs_26) flags |= F_APCS26;
22410 if (support_interwork) flags |= F_INTERWORK;
22411 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22412 if (pic_code) flags |= F_PIC;
e74cfd16 22413 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22414 flags |= F_SOFT_FLOAT;
22415
d507cf36
PB
22416 switch (mfloat_abi_opt)
22417 {
22418 case ARM_FLOAT_ABI_SOFT:
22419 case ARM_FLOAT_ABI_SOFTFP:
22420 flags |= F_SOFT_FLOAT;
22421 break;
33a392fb 22422
d507cf36
PB
22423 case ARM_FLOAT_ABI_HARD:
22424 if (flags & F_SOFT_FLOAT)
22425 as_bad (_("hard-float conflicts with specified fpu"));
22426 break;
22427 }
03b1477f 22428
e74cfd16
PB
22429 /* Using pure-endian doubles (even if soft-float). */
22430 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22431 flags |= F_VFP_FLOAT;
f17c130b 22432
fde78edd 22433#if defined OBJ_ELF
e74cfd16 22434 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22435 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22436 break;
22437
8cb51566 22438 case EF_ARM_EABI_VER4:
3a4a14e9 22439 case EF_ARM_EABI_VER5:
c19d1205 22440 /* No additional flags to set. */
d507cf36
PB
22441 break;
22442
22443 default:
22444 abort ();
22445 }
7cc69913 22446#endif
b99bd4ef
NC
22447 bfd_set_private_flags (stdoutput, flags);
22448
22449 /* We have run out flags in the COFF header to encode the
22450 status of ATPCS support, so instead we create a dummy,
c19d1205 22451 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22452 if (atpcs)
22453 {
22454 asection * sec;
22455
22456 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22457
22458 if (sec != NULL)
22459 {
22460 bfd_set_section_flags
22461 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22462 bfd_set_section_size (stdoutput, sec, 0);
22463 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22464 }
22465 }
7cc69913 22466 }
f17c130b 22467#endif
b99bd4ef
NC
22468
22469 /* Record the CPU type as well. */
2d447fca
JM
22470 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22471 mach = bfd_mach_arm_iWMMXt2;
22472 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22473 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22474 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22475 mach = bfd_mach_arm_XScale;
e74cfd16 22476 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22477 mach = bfd_mach_arm_ep9312;
e74cfd16 22478 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22479 mach = bfd_mach_arm_5TE;
e74cfd16 22480 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22481 {
e74cfd16 22482 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22483 mach = bfd_mach_arm_5T;
22484 else
22485 mach = bfd_mach_arm_5;
22486 }
e74cfd16 22487 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22488 {
e74cfd16 22489 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22490 mach = bfd_mach_arm_4T;
22491 else
22492 mach = bfd_mach_arm_4;
22493 }
e74cfd16 22494 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22495 mach = bfd_mach_arm_3M;
e74cfd16
PB
22496 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22497 mach = bfd_mach_arm_3;
22498 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22499 mach = bfd_mach_arm_2a;
22500 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22501 mach = bfd_mach_arm_2;
22502 else
22503 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22504
22505 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22506}
22507
c19d1205 22508/* Command line processing. */
b99bd4ef 22509
c19d1205
ZW
22510/* md_parse_option
22511 Invocation line includes a switch not recognized by the base assembler.
22512 See if it's a processor-specific option.
b99bd4ef 22513
c19d1205
ZW
22514 This routine is somewhat complicated by the need for backwards
22515 compatibility (since older releases of gcc can't be changed).
22516 The new options try to make the interface as compatible as
22517 possible with GCC.
b99bd4ef 22518
c19d1205 22519 New options (supported) are:
b99bd4ef 22520
c19d1205
ZW
22521 -mcpu=<cpu name> Assemble for selected processor
22522 -march=<architecture name> Assemble for selected architecture
22523 -mfpu=<fpu architecture> Assemble for selected FPU.
22524 -EB/-mbig-endian Big-endian
22525 -EL/-mlittle-endian Little-endian
22526 -k Generate PIC code
22527 -mthumb Start in Thumb mode
22528 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22529
278df34e 22530 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22531
c19d1205 22532 For now we will also provide support for:
b99bd4ef 22533
c19d1205
ZW
22534 -mapcs-32 32-bit Program counter
22535 -mapcs-26 26-bit Program counter
22536 -macps-float Floats passed in FP registers
22537 -mapcs-reentrant Reentrant code
22538 -matpcs
22539 (sometime these will probably be replaced with -mapcs=<list of options>
22540 and -matpcs=<list of options>)
b99bd4ef 22541
c19d1205
ZW
22542 The remaining options are only supported for back-wards compatibility.
22543 Cpu variants, the arm part is optional:
22544 -m[arm]1 Currently not supported.
22545 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22546 -m[arm]3 Arm 3 processor
22547 -m[arm]6[xx], Arm 6 processors
22548 -m[arm]7[xx][t][[d]m] Arm 7 processors
22549 -m[arm]8[10] Arm 8 processors
22550 -m[arm]9[20][tdmi] Arm 9 processors
22551 -mstrongarm[110[0]] StrongARM processors
22552 -mxscale XScale processors
22553 -m[arm]v[2345[t[e]]] Arm architectures
22554 -mall All (except the ARM1)
22555 FP variants:
22556 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22557 -mfpe-old (No float load/store multiples)
22558 -mvfpxd VFP Single precision
22559 -mvfp All VFP
22560 -mno-fpu Disable all floating point instructions
b99bd4ef 22561
c19d1205
ZW
22562 The following CPU names are recognized:
22563 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22564 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22565 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22566 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22567 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22568 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22569 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22570
c19d1205 22571 */
b99bd4ef 22572
c19d1205 22573const char * md_shortopts = "m:k";
b99bd4ef 22574
c19d1205
ZW
22575#ifdef ARM_BI_ENDIAN
22576#define OPTION_EB (OPTION_MD_BASE + 0)
22577#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22578#else
c19d1205
ZW
22579#if TARGET_BYTES_BIG_ENDIAN
22580#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22581#else
c19d1205
ZW
22582#define OPTION_EL (OPTION_MD_BASE + 1)
22583#endif
b99bd4ef 22584#endif
845b51d6 22585#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22586
c19d1205 22587struct option md_longopts[] =
b99bd4ef 22588{
c19d1205
ZW
22589#ifdef OPTION_EB
22590 {"EB", no_argument, NULL, OPTION_EB},
22591#endif
22592#ifdef OPTION_EL
22593 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22594#endif
845b51d6 22595 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22596 {NULL, no_argument, NULL, 0}
22597};
b99bd4ef 22598
c19d1205 22599size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22600
c19d1205 22601struct arm_option_table
b99bd4ef 22602{
c19d1205
ZW
22603 char *option; /* Option name to match. */
22604 char *help; /* Help information. */
22605 int *var; /* Variable to change. */
22606 int value; /* What to change it to. */
22607 char *deprecated; /* If non-null, print this message. */
22608};
b99bd4ef 22609
c19d1205
ZW
22610struct arm_option_table arm_opts[] =
22611{
22612 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22613 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22614 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22615 &support_interwork, 1, NULL},
22616 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22617 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22618 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22619 1, NULL},
22620 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22621 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22622 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22623 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22624 NULL},
b99bd4ef 22625
c19d1205
ZW
22626 /* These are recognized by the assembler, but have no affect on code. */
22627 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22628 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22629
22630 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22631 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22632 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22633 {NULL, NULL, NULL, 0, NULL}
22634};
22635
22636struct arm_legacy_option_table
22637{
22638 char *option; /* Option name to match. */
22639 const arm_feature_set **var; /* Variable to change. */
22640 const arm_feature_set value; /* What to change it to. */
22641 char *deprecated; /* If non-null, print this message. */
22642};
b99bd4ef 22643
e74cfd16
PB
22644const struct arm_legacy_option_table arm_legacy_opts[] =
22645{
c19d1205
ZW
22646 /* DON'T add any new processors to this list -- we want the whole list
22647 to go away... Add them to the processors table instead. */
e74cfd16
PB
22648 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22649 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22650 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22651 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22652 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22653 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22654 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22655 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22656 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22657 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22658 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22659 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22660 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22661 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22662 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22663 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22664 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22665 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22666 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22667 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22668 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22669 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22670 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22671 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22672 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22673 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22674 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22675 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22676 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22677 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22678 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22679 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22680 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22681 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22682 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22683 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22684 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22685 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22686 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22687 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22688 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22689 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22690 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22691 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22692 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22693 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22694 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22695 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22696 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22697 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22698 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22699 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22700 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22701 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22702 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22703 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22704 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22705 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22706 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22707 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22708 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22709 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22710 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22711 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22712 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22713 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22714 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22715 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22716 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22717 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22718 N_("use -mcpu=strongarm110")},
e74cfd16 22719 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22720 N_("use -mcpu=strongarm1100")},
e74cfd16 22721 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22722 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22723 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22724 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22725 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22726
c19d1205 22727 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22728 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22729 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22730 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22731 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22732 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22733 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22734 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22735 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22736 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22737 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22738 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22739 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22740 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22741 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22742 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22743 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22744 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22745 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22746
c19d1205 22747 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22748 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22749 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22750 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22751 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22752 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22753
e74cfd16 22754 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22755};
7ed4c4c5 22756
c19d1205 22757struct arm_cpu_option_table
7ed4c4c5 22758{
c19d1205 22759 char *name;
e74cfd16 22760 const arm_feature_set value;
c19d1205
ZW
22761 /* For some CPUs we assume an FPU unless the user explicitly sets
22762 -mfpu=... */
e74cfd16 22763 const arm_feature_set default_fpu;
ee065d83
PB
22764 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22765 case. */
22766 const char *canonical_name;
c19d1205 22767};
7ed4c4c5 22768
c19d1205
ZW
22769/* This list should, at a minimum, contain all the cpu names
22770 recognized by GCC. */
e74cfd16 22771static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22772{
ee065d83
PB
22773 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22774 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22775 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22776 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22777 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22778 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22779 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22780 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22781 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22782 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22783 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22784 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22785 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22786 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22787 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22788 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22789 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22790 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22791 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22792 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22793 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22794 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22795 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22796 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22797 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22798 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22799 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22800 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22801 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22802 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22803 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22804 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22805 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22806 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22807 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22808 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22809 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22810 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22811 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22812 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22813 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22814 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22815 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22816 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22817 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22818 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22819 /* For V5 or later processors we default to using VFP; but the user
22820 should really set the FPU type explicitly. */
ee065d83
PB
22821 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22822 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22823 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22824 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22825 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22826 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22827 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22828 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22829 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22830 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22831 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22832 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22833 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22834 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22835 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22836 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22837 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22838 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22839 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22840 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22841 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
4a58c4bd
NC
22842 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22843 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22844 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22845 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
7fac0536 22846 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22847 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22848 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22849 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22850 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22851 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22852 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22853 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22854 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22855 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22856 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22857 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22858 FPU_NONE, "Cortex-A5"},
22859 {"cortex-a8", ARM_ARCH_V7A_SEC,
22860 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22861 | FPU_NEON_EXT_V1),
4ff9b924 22862 "Cortex-A8"},
f4c65163
MGD
22863 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22864 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22865 | FPU_NEON_EXT_V1),
4ff9b924 22866 "Cortex-A9"},
90ec0d68 22867 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22868 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22869 "Cortex-A15"},
4ff9b924
MGD
22870 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22871 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22872 "Cortex-R4F"},
3b2f0793
PB
22873 {"cortex-r5", ARM_ARCH_V7R_IDIV,
22874 FPU_NONE, "Cortex-R5"},
4ff9b924
MGD
22875 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22876 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22877 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22878 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22879 /* ??? XSCALE is really an architecture. */
ee065d83 22880 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22881 /* ??? iwmmxt is not a processor. */
ee065d83 22882 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22883 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22884 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22885 /* Maverick */
e07e6e58 22886 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22887 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22888};
7ed4c4c5 22889
c19d1205 22890struct arm_arch_option_table
7ed4c4c5 22891{
c19d1205 22892 char *name;
e74cfd16
PB
22893 const arm_feature_set value;
22894 const arm_feature_set default_fpu;
c19d1205 22895};
7ed4c4c5 22896
c19d1205
ZW
22897/* This list should, at a minimum, contain all the architecture names
22898 recognized by GCC. */
e74cfd16 22899static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22900{
22901 {"all", ARM_ANY, FPU_ARCH_FPA},
22902 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22903 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22904 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22905 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22906 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22907 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22908 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22909 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22910 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22911 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22912 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22913 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22914 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22915 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22916 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22917 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22918 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22919 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22920 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22921 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22922 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22923 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22924 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22925 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22926 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22927 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 22928 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 22929 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22930 /* The official spelling of the ARMv7 profile variants is the dashed form.
22931 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22932 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22933 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22934 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22935 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22936 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22937 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22938 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22939 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22940 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22941 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22942 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22943};
7ed4c4c5 22944
69133863
MGD
22945/* ISA extensions in the co-processor and main instruction set space. */
22946struct arm_option_extension_value_table
c19d1205
ZW
22947{
22948 char *name;
e74cfd16 22949 const arm_feature_set value;
69133863 22950 const arm_feature_set allowed_archs;
c19d1205 22951};
7ed4c4c5 22952
69133863
MGD
22953/* The following table must be in alphabetical order with a NULL last entry.
22954 */
22955static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 22956{
eea54501 22957 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
3b2f0793 22958 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
69133863
MGD
22959 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22960 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22961 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
22962 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22963 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
22964 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22965 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
22966 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22967 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
22968 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22969 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 22970 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 22971 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
22972};
22973
22974/* ISA floating-point and Advanced SIMD extensions. */
22975struct arm_option_fpu_value_table
22976{
22977 char *name;
22978 const arm_feature_set value;
c19d1205 22979};
7ed4c4c5 22980
c19d1205
ZW
22981/* This list should, at a minimum, contain all the fpu names
22982 recognized by GCC. */
69133863 22983static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
22984{
22985 {"softfpa", FPU_NONE},
22986 {"fpe", FPU_ARCH_FPE},
22987 {"fpe2", FPU_ARCH_FPE},
22988 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22989 {"fpa", FPU_ARCH_FPA},
22990 {"fpa10", FPU_ARCH_FPA},
22991 {"fpa11", FPU_ARCH_FPA},
22992 {"arm7500fe", FPU_ARCH_FPA},
22993 {"softvfp", FPU_ARCH_VFP},
22994 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22995 {"vfp", FPU_ARCH_VFP_V2},
22996 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22997 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22998 {"vfp10", FPU_ARCH_VFP_V2},
22999 {"vfp10-r0", FPU_ARCH_VFP_V1},
23000 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23001 {"vfpv2", FPU_ARCH_VFP_V2},
23002 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23003 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23004 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23005 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23006 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23007 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23008 {"arm1020t", FPU_ARCH_VFP_V1},
23009 {"arm1020e", FPU_ARCH_VFP_V2},
23010 {"arm1136jfs", FPU_ARCH_VFP_V2},
23011 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23012 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23013 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23014 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23015 {"vfpv4", FPU_ARCH_VFP_V4},
23016 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23017 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23018 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
23019 {NULL, ARM_ARCH_NONE}
23020};
23021
23022struct arm_option_value_table
23023{
23024 char *name;
23025 long value;
c19d1205 23026};
7ed4c4c5 23027
e74cfd16 23028static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23029{
23030 {"hard", ARM_FLOAT_ABI_HARD},
23031 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23032 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23033 {NULL, 0}
c19d1205 23034};
7ed4c4c5 23035
c19d1205 23036#ifdef OBJ_ELF
3a4a14e9 23037/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23038static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23039{
23040 {"gnu", EF_ARM_EABI_UNKNOWN},
23041 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23042 {"5", EF_ARM_EABI_VER5},
e74cfd16 23043 {NULL, 0}
c19d1205
ZW
23044};
23045#endif
7ed4c4c5 23046
c19d1205
ZW
23047struct arm_long_option_table
23048{
23049 char * option; /* Substring to match. */
23050 char * help; /* Help information. */
23051 int (* func) (char * subopt); /* Function to decode sub-option. */
23052 char * deprecated; /* If non-null, print this message. */
23053};
7ed4c4c5 23054
c921be7d 23055static bfd_boolean
e74cfd16 23056arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 23057{
21d799b5
NC
23058 arm_feature_set *ext_set = (arm_feature_set *)
23059 xmalloc (sizeof (arm_feature_set));
e74cfd16 23060
69133863
MGD
23061 /* We insist on extensions being specified in alphabetical order, and with
23062 extensions being added before being removed. We achieve this by having
23063 the global ARM_EXTENSIONS table in alphabetical order, and using the
23064 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23065 or removing it (0) and only allowing it to change in the order
23066 -1 -> 1 -> 0. */
23067 const struct arm_option_extension_value_table * opt = NULL;
23068 int adding_value = -1;
23069
e74cfd16
PB
23070 /* Copy the feature set, so that we can modify it. */
23071 *ext_set = **opt_p;
23072 *opt_p = ext_set;
23073
c19d1205 23074 while (str != NULL && *str != 0)
7ed4c4c5 23075 {
c19d1205 23076 char * ext;
69133863 23077 size_t optlen;
7ed4c4c5 23078
c19d1205
ZW
23079 if (*str != '+')
23080 {
23081 as_bad (_("invalid architectural extension"));
c921be7d 23082 return FALSE;
c19d1205 23083 }
7ed4c4c5 23084
c19d1205
ZW
23085 str++;
23086 ext = strchr (str, '+');
7ed4c4c5 23087
c19d1205
ZW
23088 if (ext != NULL)
23089 optlen = ext - str;
23090 else
23091 optlen = strlen (str);
7ed4c4c5 23092
69133863
MGD
23093 if (optlen >= 2
23094 && strncmp (str, "no", 2) == 0)
23095 {
23096 if (adding_value != 0)
23097 {
23098 adding_value = 0;
23099 opt = arm_extensions;
23100 }
23101
23102 optlen -= 2;
23103 str += 2;
23104 }
23105 else if (optlen > 0)
23106 {
23107 if (adding_value == -1)
23108 {
23109 adding_value = 1;
23110 opt = arm_extensions;
23111 }
23112 else if (adding_value != 1)
23113 {
23114 as_bad (_("must specify extensions to add before specifying "
23115 "those to remove"));
23116 return FALSE;
23117 }
23118 }
23119
c19d1205
ZW
23120 if (optlen == 0)
23121 {
23122 as_bad (_("missing architectural extension"));
c921be7d 23123 return FALSE;
c19d1205 23124 }
7ed4c4c5 23125
69133863
MGD
23126 gas_assert (adding_value != -1);
23127 gas_assert (opt != NULL);
23128
23129 /* Scan over the options table trying to find an exact match. */
23130 for (; opt->name != NULL; opt++)
23131 if (strncmp (opt->name, str, optlen) == 0
23132 && strlen (opt->name) == optlen)
c19d1205 23133 {
69133863
MGD
23134 /* Check we can apply the extension to this architecture. */
23135 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23136 {
23137 as_bad (_("extension does not apply to the base architecture"));
23138 return FALSE;
23139 }
23140
23141 /* Add or remove the extension. */
23142 if (adding_value)
23143 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23144 else
23145 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23146
c19d1205
ZW
23147 break;
23148 }
7ed4c4c5 23149
c19d1205
ZW
23150 if (opt->name == NULL)
23151 {
69133863
MGD
23152 /* Did we fail to find an extension because it wasn't specified in
23153 alphabetical order, or because it does not exist? */
23154
23155 for (opt = arm_extensions; opt->name != NULL; opt++)
23156 if (strncmp (opt->name, str, optlen) == 0)
23157 break;
23158
23159 if (opt->name == NULL)
23160 as_bad (_("unknown architectural extension `%s'"), str);
23161 else
23162 as_bad (_("architectural extensions must be specified in "
23163 "alphabetical order"));
23164
c921be7d 23165 return FALSE;
c19d1205 23166 }
69133863
MGD
23167 else
23168 {
23169 /* We should skip the extension we've just matched the next time
23170 round. */
23171 opt++;
23172 }
7ed4c4c5 23173
c19d1205
ZW
23174 str = ext;
23175 };
7ed4c4c5 23176
c921be7d 23177 return TRUE;
c19d1205 23178}
7ed4c4c5 23179
c921be7d 23180static bfd_boolean
c19d1205 23181arm_parse_cpu (char * str)
7ed4c4c5 23182{
e74cfd16 23183 const struct arm_cpu_option_table * opt;
c19d1205
ZW
23184 char * ext = strchr (str, '+');
23185 int optlen;
7ed4c4c5 23186
c19d1205
ZW
23187 if (ext != NULL)
23188 optlen = ext - str;
7ed4c4c5 23189 else
c19d1205 23190 optlen = strlen (str);
7ed4c4c5 23191
c19d1205 23192 if (optlen == 0)
7ed4c4c5 23193 {
c19d1205 23194 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23195 return FALSE;
7ed4c4c5
NC
23196 }
23197
c19d1205
ZW
23198 for (opt = arm_cpus; opt->name != NULL; opt++)
23199 if (strncmp (opt->name, str, optlen) == 0)
23200 {
e74cfd16
PB
23201 mcpu_cpu_opt = &opt->value;
23202 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23203 if (opt->canonical_name)
5f4273c7 23204 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23205 else
23206 {
23207 int i;
c921be7d 23208
ee065d83
PB
23209 for (i = 0; i < optlen; i++)
23210 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23211 selected_cpu_name[i] = 0;
23212 }
7ed4c4c5 23213
c19d1205
ZW
23214 if (ext != NULL)
23215 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23216
c921be7d 23217 return TRUE;
c19d1205 23218 }
7ed4c4c5 23219
c19d1205 23220 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23221 return FALSE;
7ed4c4c5
NC
23222}
23223
c921be7d 23224static bfd_boolean
c19d1205 23225arm_parse_arch (char * str)
7ed4c4c5 23226{
e74cfd16 23227 const struct arm_arch_option_table *opt;
c19d1205
ZW
23228 char *ext = strchr (str, '+');
23229 int optlen;
7ed4c4c5 23230
c19d1205
ZW
23231 if (ext != NULL)
23232 optlen = ext - str;
7ed4c4c5 23233 else
c19d1205 23234 optlen = strlen (str);
7ed4c4c5 23235
c19d1205 23236 if (optlen == 0)
7ed4c4c5 23237 {
c19d1205 23238 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23239 return FALSE;
7ed4c4c5
NC
23240 }
23241
c19d1205 23242 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 23243 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 23244 {
e74cfd16
PB
23245 march_cpu_opt = &opt->value;
23246 march_fpu_opt = &opt->default_fpu;
5f4273c7 23247 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23248
c19d1205
ZW
23249 if (ext != NULL)
23250 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23251
c921be7d 23252 return TRUE;
c19d1205
ZW
23253 }
23254
23255 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23256 return FALSE;
7ed4c4c5 23257}
eb043451 23258
c921be7d 23259static bfd_boolean
c19d1205
ZW
23260arm_parse_fpu (char * str)
23261{
69133863 23262 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23263
c19d1205
ZW
23264 for (opt = arm_fpus; opt->name != NULL; opt++)
23265 if (streq (opt->name, str))
23266 {
e74cfd16 23267 mfpu_opt = &opt->value;
c921be7d 23268 return TRUE;
c19d1205 23269 }
b99bd4ef 23270
c19d1205 23271 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23272 return FALSE;
c19d1205
ZW
23273}
23274
c921be7d 23275static bfd_boolean
c19d1205 23276arm_parse_float_abi (char * str)
b99bd4ef 23277{
e74cfd16 23278 const struct arm_option_value_table * opt;
b99bd4ef 23279
c19d1205
ZW
23280 for (opt = arm_float_abis; opt->name != NULL; opt++)
23281 if (streq (opt->name, str))
23282 {
23283 mfloat_abi_opt = opt->value;
c921be7d 23284 return TRUE;
c19d1205 23285 }
cc8a6dd0 23286
c19d1205 23287 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23288 return FALSE;
c19d1205 23289}
b99bd4ef 23290
c19d1205 23291#ifdef OBJ_ELF
c921be7d 23292static bfd_boolean
c19d1205
ZW
23293arm_parse_eabi (char * str)
23294{
e74cfd16 23295 const struct arm_option_value_table *opt;
cc8a6dd0 23296
c19d1205
ZW
23297 for (opt = arm_eabis; opt->name != NULL; opt++)
23298 if (streq (opt->name, str))
23299 {
23300 meabi_flags = opt->value;
c921be7d 23301 return TRUE;
c19d1205
ZW
23302 }
23303 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23304 return FALSE;
c19d1205
ZW
23305}
23306#endif
cc8a6dd0 23307
c921be7d 23308static bfd_boolean
e07e6e58
NC
23309arm_parse_it_mode (char * str)
23310{
c921be7d 23311 bfd_boolean ret = TRUE;
e07e6e58
NC
23312
23313 if (streq ("arm", str))
23314 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23315 else if (streq ("thumb", str))
23316 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23317 else if (streq ("always", str))
23318 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23319 else if (streq ("never", str))
23320 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23321 else
23322 {
23323 as_bad (_("unknown implicit IT mode `%s', should be "\
23324 "arm, thumb, always, or never."), str);
c921be7d 23325 ret = FALSE;
e07e6e58
NC
23326 }
23327
23328 return ret;
23329}
23330
c19d1205
ZW
23331struct arm_long_option_table arm_long_opts[] =
23332{
23333 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23334 arm_parse_cpu, NULL},
23335 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23336 arm_parse_arch, NULL},
23337 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23338 arm_parse_fpu, NULL},
23339 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23340 arm_parse_float_abi, NULL},
23341#ifdef OBJ_ELF
7fac0536 23342 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23343 arm_parse_eabi, NULL},
23344#endif
e07e6e58
NC
23345 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23346 arm_parse_it_mode, NULL},
c19d1205
ZW
23347 {NULL, NULL, 0, NULL}
23348};
cc8a6dd0 23349
c19d1205
ZW
23350int
23351md_parse_option (int c, char * arg)
23352{
23353 struct arm_option_table *opt;
e74cfd16 23354 const struct arm_legacy_option_table *fopt;
c19d1205 23355 struct arm_long_option_table *lopt;
b99bd4ef 23356
c19d1205 23357 switch (c)
b99bd4ef 23358 {
c19d1205
ZW
23359#ifdef OPTION_EB
23360 case OPTION_EB:
23361 target_big_endian = 1;
23362 break;
23363#endif
cc8a6dd0 23364
c19d1205
ZW
23365#ifdef OPTION_EL
23366 case OPTION_EL:
23367 target_big_endian = 0;
23368 break;
23369#endif
b99bd4ef 23370
845b51d6
PB
23371 case OPTION_FIX_V4BX:
23372 fix_v4bx = TRUE;
23373 break;
23374
c19d1205
ZW
23375 case 'a':
23376 /* Listing option. Just ignore these, we don't support additional
23377 ones. */
23378 return 0;
b99bd4ef 23379
c19d1205
ZW
23380 default:
23381 for (opt = arm_opts; opt->option != NULL; opt++)
23382 {
23383 if (c == opt->option[0]
23384 && ((arg == NULL && opt->option[1] == 0)
23385 || streq (arg, opt->option + 1)))
23386 {
c19d1205 23387 /* If the option is deprecated, tell the user. */
278df34e 23388 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23389 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23390 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23391
c19d1205
ZW
23392 if (opt->var != NULL)
23393 *opt->var = opt->value;
cc8a6dd0 23394
c19d1205
ZW
23395 return 1;
23396 }
23397 }
b99bd4ef 23398
e74cfd16
PB
23399 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23400 {
23401 if (c == fopt->option[0]
23402 && ((arg == NULL && fopt->option[1] == 0)
23403 || streq (arg, fopt->option + 1)))
23404 {
e74cfd16 23405 /* If the option is deprecated, tell the user. */
278df34e 23406 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23407 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23408 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23409
23410 if (fopt->var != NULL)
23411 *fopt->var = &fopt->value;
23412
23413 return 1;
23414 }
23415 }
23416
c19d1205
ZW
23417 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23418 {
23419 /* These options are expected to have an argument. */
23420 if (c == lopt->option[0]
23421 && arg != NULL
23422 && strncmp (arg, lopt->option + 1,
23423 strlen (lopt->option + 1)) == 0)
23424 {
c19d1205 23425 /* If the option is deprecated, tell the user. */
278df34e 23426 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23427 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23428 _(lopt->deprecated));
b99bd4ef 23429
c19d1205
ZW
23430 /* Call the sup-option parser. */
23431 return lopt->func (arg + strlen (lopt->option) - 1);
23432 }
23433 }
a737bd4d 23434
c19d1205
ZW
23435 return 0;
23436 }
a394c00f 23437
c19d1205
ZW
23438 return 1;
23439}
a394c00f 23440
c19d1205
ZW
23441void
23442md_show_usage (FILE * fp)
a394c00f 23443{
c19d1205
ZW
23444 struct arm_option_table *opt;
23445 struct arm_long_option_table *lopt;
a394c00f 23446
c19d1205 23447 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23448
c19d1205
ZW
23449 for (opt = arm_opts; opt->option != NULL; opt++)
23450 if (opt->help != NULL)
23451 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23452
c19d1205
ZW
23453 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23454 if (lopt->help != NULL)
23455 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23456
c19d1205
ZW
23457#ifdef OPTION_EB
23458 fprintf (fp, _("\
23459 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23460#endif
23461
c19d1205
ZW
23462#ifdef OPTION_EL
23463 fprintf (fp, _("\
23464 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23465#endif
845b51d6
PB
23466
23467 fprintf (fp, _("\
23468 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23469}
ee065d83
PB
23470
23471
23472#ifdef OBJ_ELF
62b3e311
PB
23473typedef struct
23474{
23475 int val;
23476 arm_feature_set flags;
23477} cpu_arch_ver_table;
23478
23479/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23480 least features first. */
23481static const cpu_arch_ver_table cpu_arch_ver[] =
23482{
23483 {1, ARM_ARCH_V4},
23484 {2, ARM_ARCH_V4T},
23485 {3, ARM_ARCH_V5},
ee3c0378 23486 {3, ARM_ARCH_V5T},
62b3e311
PB
23487 {4, ARM_ARCH_V5TE},
23488 {5, ARM_ARCH_V5TEJ},
23489 {6, ARM_ARCH_V6},
7e806470 23490 {9, ARM_ARCH_V6K},
f4c65163 23491 {7, ARM_ARCH_V6Z},
91e22acd 23492 {11, ARM_ARCH_V6M},
b2a5fbdc 23493 {12, ARM_ARCH_V6SM},
7e806470 23494 {8, ARM_ARCH_V6T2},
62b3e311
PB
23495 {10, ARM_ARCH_V7A},
23496 {10, ARM_ARCH_V7R},
23497 {10, ARM_ARCH_V7M},
23498 {0, ARM_ARCH_NONE}
23499};
23500
ee3c0378
AS
23501/* Set an attribute if it has not already been set by the user. */
23502static void
23503aeabi_set_attribute_int (int tag, int value)
23504{
23505 if (tag < 1
23506 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23507 || !attributes_set_explicitly[tag])
23508 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23509}
23510
23511static void
23512aeabi_set_attribute_string (int tag, const char *value)
23513{
23514 if (tag < 1
23515 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23516 || !attributes_set_explicitly[tag])
23517 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23518}
23519
ee065d83
PB
23520/* Set the public EABI object attributes. */
23521static void
23522aeabi_set_public_attributes (void)
23523{
23524 int arch;
90ec0d68 23525 int virt_sec = 0;
e74cfd16 23526 arm_feature_set flags;
62b3e311
PB
23527 arm_feature_set tmp;
23528 const cpu_arch_ver_table *p;
ee065d83
PB
23529
23530 /* Choose the architecture based on the capabilities of the requested cpu
23531 (if any) and/or the instructions actually used. */
e74cfd16
PB
23532 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23533 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23534 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23535 /*Allow the user to override the reported architecture. */
23536 if (object_arch)
23537 {
23538 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23539 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23540 }
23541
251665fc
MGD
23542 /* We need to make sure that the attributes do not identify us as v6S-M
23543 when the only v6S-M feature in use is the Operating System Extensions. */
23544 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23545 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23546 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23547
62b3e311
PB
23548 tmp = flags;
23549 arch = 0;
23550 for (p = cpu_arch_ver; p->val; p++)
23551 {
23552 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23553 {
23554 arch = p->val;
23555 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23556 }
23557 }
ee065d83 23558
9e3c6df6
PB
23559 /* The table lookup above finds the last architecture to contribute
23560 a new feature. Unfortunately, Tag13 is a subset of the union of
23561 v6T2 and v7-M, so it is never seen as contributing a new feature.
23562 We can not search for the last entry which is entirely used,
23563 because if no CPU is specified we build up only those flags
23564 actually used. Perhaps we should separate out the specified
23565 and implicit cases. Avoid taking this path for -march=all by
23566 checking for contradictory v7-A / v7-M features. */
23567 if (arch == 10
23568 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23569 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23570 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23571 arch = 13;
23572
ee065d83
PB
23573 /* Tag_CPU_name. */
23574 if (selected_cpu_name[0])
23575 {
91d6fa6a 23576 char *q;
ee065d83 23577
91d6fa6a
NC
23578 q = selected_cpu_name;
23579 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23580 {
23581 int i;
5f4273c7 23582
91d6fa6a
NC
23583 q += 4;
23584 for (i = 0; q[i]; i++)
23585 q[i] = TOUPPER (q[i]);
ee065d83 23586 }
91d6fa6a 23587 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23588 }
62f3b8c8 23589
ee065d83 23590 /* Tag_CPU_arch. */
ee3c0378 23591 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23592
62b3e311
PB
23593 /* Tag_CPU_arch_profile. */
23594 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23595 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23596 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23597 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23598 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23599 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23600
ee065d83 23601 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23602 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23603 || arch == 0)
23604 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23605
ee065d83 23606 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23607 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23608 || arch == 0)
23609 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23610 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23611
ee065d83 23612 /* Tag_VFP_arch. */
62f3b8c8
PB
23613 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23614 aeabi_set_attribute_int (Tag_VFP_arch,
23615 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23616 ? 5 : 6);
23617 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23618 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23619 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23620 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23621 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23622 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23623 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23624 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23625 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23626
4547cb56
NC
23627 /* Tag_ABI_HardFP_use. */
23628 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23629 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23630 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23631
ee065d83 23632 /* Tag_WMMX_arch. */
ee3c0378
AS
23633 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23634 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23635 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23636 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23637
ee3c0378 23638 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23639 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23640 aeabi_set_attribute_int
23641 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23642 ? 2 : 1));
23643
ee3c0378 23644 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23645 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23646 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23647
23648 /* Tag_DIV_use. */
eea54501
MGD
23649 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23650 aeabi_set_attribute_int (Tag_DIV_use, 2);
23651 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23652 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23653 else
23654 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23655
23656 /* Tag_MP_extension_use. */
23657 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23658 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23659
23660 /* Tag Virtualization_use. */
23661 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23662 virt_sec |= 1;
23663 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23664 virt_sec |= 2;
23665 if (virt_sec != 0)
23666 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23667}
23668
104d59d1 23669/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23670void
23671arm_md_end (void)
23672{
ee065d83
PB
23673 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23674 return;
23675
23676 aeabi_set_public_attributes ();
ee065d83 23677}
8463be01 23678#endif /* OBJ_ELF */
ee065d83
PB
23679
23680
23681/* Parse a .cpu directive. */
23682
23683static void
23684s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23685{
e74cfd16 23686 const struct arm_cpu_option_table *opt;
ee065d83
PB
23687 char *name;
23688 char saved_char;
23689
23690 name = input_line_pointer;
5f4273c7 23691 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23692 input_line_pointer++;
23693 saved_char = *input_line_pointer;
23694 *input_line_pointer = 0;
23695
23696 /* Skip the first "all" entry. */
23697 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23698 if (streq (opt->name, name))
23699 {
e74cfd16
PB
23700 mcpu_cpu_opt = &opt->value;
23701 selected_cpu = opt->value;
ee065d83 23702 if (opt->canonical_name)
5f4273c7 23703 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23704 else
23705 {
23706 int i;
23707 for (i = 0; opt->name[i]; i++)
23708 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23709 selected_cpu_name[i] = 0;
23710 }
e74cfd16 23711 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23712 *input_line_pointer = saved_char;
23713 demand_empty_rest_of_line ();
23714 return;
23715 }
23716 as_bad (_("unknown cpu `%s'"), name);
23717 *input_line_pointer = saved_char;
23718 ignore_rest_of_line ();
23719}
23720
23721
23722/* Parse a .arch directive. */
23723
23724static void
23725s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23726{
e74cfd16 23727 const struct arm_arch_option_table *opt;
ee065d83
PB
23728 char saved_char;
23729 char *name;
23730
23731 name = input_line_pointer;
5f4273c7 23732 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23733 input_line_pointer++;
23734 saved_char = *input_line_pointer;
23735 *input_line_pointer = 0;
23736
23737 /* Skip the first "all" entry. */
23738 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23739 if (streq (opt->name, name))
23740 {
e74cfd16
PB
23741 mcpu_cpu_opt = &opt->value;
23742 selected_cpu = opt->value;
5f4273c7 23743 strcpy (selected_cpu_name, opt->name);
e74cfd16 23744 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23745 *input_line_pointer = saved_char;
23746 demand_empty_rest_of_line ();
23747 return;
23748 }
23749
23750 as_bad (_("unknown architecture `%s'\n"), name);
23751 *input_line_pointer = saved_char;
23752 ignore_rest_of_line ();
23753}
23754
23755
7a1d4c38
PB
23756/* Parse a .object_arch directive. */
23757
23758static void
23759s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23760{
23761 const struct arm_arch_option_table *opt;
23762 char saved_char;
23763 char *name;
23764
23765 name = input_line_pointer;
5f4273c7 23766 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23767 input_line_pointer++;
23768 saved_char = *input_line_pointer;
23769 *input_line_pointer = 0;
23770
23771 /* Skip the first "all" entry. */
23772 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23773 if (streq (opt->name, name))
23774 {
23775 object_arch = &opt->value;
23776 *input_line_pointer = saved_char;
23777 demand_empty_rest_of_line ();
23778 return;
23779 }
23780
23781 as_bad (_("unknown architecture `%s'\n"), name);
23782 *input_line_pointer = saved_char;
23783 ignore_rest_of_line ();
23784}
23785
69133863
MGD
23786/* Parse a .arch_extension directive. */
23787
23788static void
23789s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23790{
23791 const struct arm_option_extension_value_table *opt;
23792 char saved_char;
23793 char *name;
23794 int adding_value = 1;
23795
23796 name = input_line_pointer;
23797 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23798 input_line_pointer++;
23799 saved_char = *input_line_pointer;
23800 *input_line_pointer = 0;
23801
23802 if (strlen (name) >= 2
23803 && strncmp (name, "no", 2) == 0)
23804 {
23805 adding_value = 0;
23806 name += 2;
23807 }
23808
23809 for (opt = arm_extensions; opt->name != NULL; opt++)
23810 if (streq (opt->name, name))
23811 {
23812 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23813 {
23814 as_bad (_("architectural extension `%s' is not allowed for the "
23815 "current base architecture"), name);
23816 break;
23817 }
23818
23819 if (adding_value)
23820 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23821 else
23822 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23823
23824 mcpu_cpu_opt = &selected_cpu;
23825 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23826 *input_line_pointer = saved_char;
23827 demand_empty_rest_of_line ();
23828 return;
23829 }
23830
23831 if (opt->name == NULL)
23832 as_bad (_("unknown architecture `%s'\n"), name);
23833
23834 *input_line_pointer = saved_char;
23835 ignore_rest_of_line ();
23836}
23837
ee065d83
PB
23838/* Parse a .fpu directive. */
23839
23840static void
23841s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23842{
69133863 23843 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23844 char saved_char;
23845 char *name;
23846
23847 name = input_line_pointer;
5f4273c7 23848 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23849 input_line_pointer++;
23850 saved_char = *input_line_pointer;
23851 *input_line_pointer = 0;
5f4273c7 23852
ee065d83
PB
23853 for (opt = arm_fpus; opt->name != NULL; opt++)
23854 if (streq (opt->name, name))
23855 {
e74cfd16
PB
23856 mfpu_opt = &opt->value;
23857 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23858 *input_line_pointer = saved_char;
23859 demand_empty_rest_of_line ();
23860 return;
23861 }
23862
23863 as_bad (_("unknown floating point format `%s'\n"), name);
23864 *input_line_pointer = saved_char;
23865 ignore_rest_of_line ();
23866}
ee065d83 23867
794ba86a 23868/* Copy symbol information. */
f31fef98 23869
794ba86a
DJ
23870void
23871arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23872{
23873 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23874}
e04befd0 23875
f31fef98 23876#ifdef OBJ_ELF
e04befd0
AS
23877/* Given a symbolic attribute NAME, return the proper integer value.
23878 Returns -1 if the attribute is not known. */
f31fef98 23879
e04befd0
AS
23880int
23881arm_convert_symbolic_attribute (const char *name)
23882{
f31fef98
NC
23883 static const struct
23884 {
23885 const char * name;
23886 const int tag;
23887 }
23888 attribute_table[] =
23889 {
23890 /* When you modify this table you should
23891 also modify the list in doc/c-arm.texi. */
e04befd0 23892#define T(tag) {#tag, tag}
f31fef98
NC
23893 T (Tag_CPU_raw_name),
23894 T (Tag_CPU_name),
23895 T (Tag_CPU_arch),
23896 T (Tag_CPU_arch_profile),
23897 T (Tag_ARM_ISA_use),
23898 T (Tag_THUMB_ISA_use),
75375b3e 23899 T (Tag_FP_arch),
f31fef98
NC
23900 T (Tag_VFP_arch),
23901 T (Tag_WMMX_arch),
23902 T (Tag_Advanced_SIMD_arch),
23903 T (Tag_PCS_config),
23904 T (Tag_ABI_PCS_R9_use),
23905 T (Tag_ABI_PCS_RW_data),
23906 T (Tag_ABI_PCS_RO_data),
23907 T (Tag_ABI_PCS_GOT_use),
23908 T (Tag_ABI_PCS_wchar_t),
23909 T (Tag_ABI_FP_rounding),
23910 T (Tag_ABI_FP_denormal),
23911 T (Tag_ABI_FP_exceptions),
23912 T (Tag_ABI_FP_user_exceptions),
23913 T (Tag_ABI_FP_number_model),
75375b3e 23914 T (Tag_ABI_align_needed),
f31fef98 23915 T (Tag_ABI_align8_needed),
75375b3e 23916 T (Tag_ABI_align_preserved),
f31fef98
NC
23917 T (Tag_ABI_align8_preserved),
23918 T (Tag_ABI_enum_size),
23919 T (Tag_ABI_HardFP_use),
23920 T (Tag_ABI_VFP_args),
23921 T (Tag_ABI_WMMX_args),
23922 T (Tag_ABI_optimization_goals),
23923 T (Tag_ABI_FP_optimization_goals),
23924 T (Tag_compatibility),
23925 T (Tag_CPU_unaligned_access),
75375b3e 23926 T (Tag_FP_HP_extension),
f31fef98
NC
23927 T (Tag_VFP_HP_extension),
23928 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23929 T (Tag_MPextension_use),
23930 T (Tag_DIV_use),
f31fef98
NC
23931 T (Tag_nodefaults),
23932 T (Tag_also_compatible_with),
23933 T (Tag_conformance),
23934 T (Tag_T2EE_use),
23935 T (Tag_Virtualization_use),
cd21e546 23936 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23937#undef T
f31fef98 23938 };
e04befd0
AS
23939 unsigned int i;
23940
23941 if (name == NULL)
23942 return -1;
23943
f31fef98 23944 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23945 if (streq (name, attribute_table[i].name))
e04befd0
AS
23946 return attribute_table[i].tag;
23947
23948 return -1;
23949}
267bf995
RR
23950
23951
23952/* Apply sym value for relocations only in the case that
23953 they are for local symbols and you have the respective
23954 architectural feature for blx and simple switches. */
23955int
23956arm_apply_sym_value (struct fix * fixP)
23957{
23958 if (fixP->fx_addsy
23959 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 23960 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
23961 {
23962 switch (fixP->fx_r_type)
23963 {
23964 case BFD_RELOC_ARM_PCREL_BLX:
23965 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23966 if (ARM_IS_FUNC (fixP->fx_addsy))
23967 return 1;
23968 break;
23969
23970 case BFD_RELOC_ARM_PCREL_CALL:
23971 case BFD_RELOC_THUMB_PCREL_BLX:
23972 if (THUMB_IS_FUNC (fixP->fx_addsy))
23973 return 1;
23974 break;
23975
23976 default:
23977 break;
23978 }
23979
23980 }
23981 return 0;
23982}
f31fef98 23983#endif /* OBJ_ELF */