]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
2.41 Release sources
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
d87bef3a 1@c Copyright (C) 1991-2023 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
a9660a6f 125@code{znver2},
646cc3e0 126@code{znver3},
b0e8fa7f 127@code{znver4},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
d871f3f4 141@code{cmov},
d871f3f4 142@code{fxsr},
6305a203
L
143@code{mmx},
144@code{sse},
145@code{sse2},
146@code{sse3},
af5c13b0 147@code{sse4a},
6305a203
L
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
c0f3af97 152@code{avx},
6c30d220 153@code{avx2},
c3bb24f5 154@code{lahf_sahf},
cafa5ef7 155@code{monitor},
e2e1fcde
L
156@code{adx},
157@code{rdseed},
158@code{prfchw},
5c111e37 159@code{smap},
7e8b059b 160@code{mpx},
a0046408 161@code{sha},
8bc52696 162@code{rdpid},
6b40c462 163@code{ptwrite},
603555e5 164@code{cet},
48521003 165@code{gfni},
8dcf1fad 166@code{vaes},
ff1982d5 167@code{vpclmulqdq},
1dfc6506
L
168@code{prefetchwt1},
169@code{clflushopt},
170@code{se1},
c5e7287a 171@code{clwb},
c0a30a9f
L
172@code{movdiri},
173@code{movdir64b},
5d79adc4 174@code{enqcmd},
4b27d27c 175@code{serialize},
bb651e8b 176@code{tsxldtrk},
c4694f17 177@code{kl},
c4694f17 178@code{widekl},
c1fa250a 179@code{hreset},
43234a1e
L
180@code{avx512f},
181@code{avx512cd},
182@code{avx512er},
183@code{avx512pf},
1dfc6506
L
184@code{avx512vl},
185@code{avx512bw},
186@code{avx512dq},
2cc1b5aa 187@code{avx512ifma},
14f195c9 188@code{avx512vbmi},
920d2ddc 189@code{avx512_4fmaps},
47acf0bd 190@code{avx512_4vnniw},
620214f7 191@code{avx512_vpopcntdq},
53467f57 192@code{avx512_vbmi2},
8cfcb765 193@code{avx512_vnni},
ee6872be 194@code{avx512_bitalg},
708a2fff 195@code{avx512_vp2intersect},
81d54bb7 196@code{tdx},
d6aab7a1 197@code{avx512_bf16},
58bf9b6a 198@code{avx_vnni},
0cc78721 199@code{avx512_fp16},
ef07be45 200@code{prefetchi},
4321af3e 201@code{avx_ifma},
23ae61ad 202@code{avx_vnni_int8},
a93e3234 203@code{cmpccxadd},
941f0833 204@code{wrmsrns},
2188d6ea 205@code{msrlist},
01d8ce74 206@code{avx_ne_convert},
b06311ad 207@code{rao_int},
c88ed92f
ZJ
208@code{fred},
209@code{lkgs},
260cd341 210@code{amx_int8},
260cd341 211@code{amx_bf16},
68830fba 212@code{amx_fp16},
d100d8c1 213@code{amx_complex},
260cd341 214@code{amx_tile},
6305a203 215@code{vmx},
8729a6f6 216@code{vmfunc},
6305a203 217@code{smx},
f03fe4c1 218@code{xsave},
c7b8aa3a 219@code{xsaveopt},
1dfc6506
L
220@code{xsavec},
221@code{xsaves},
c0f3af97 222@code{aes},
594ab6a3 223@code{pclmul},
c7b8aa3a
L
224@code{fsgsbase},
225@code{rdrnd},
226@code{f16c},
6c30d220 227@code{bmi2},
c0f3af97 228@code{fma},
f1f8f695
L
229@code{movbe},
230@code{ept},
6c30d220 231@code{lzcnt},
272a84b1 232@code{popcnt},
42164a71
L
233@code{hle},
234@code{rtm},
760ab3d0 235@code{tsx},
6c30d220 236@code{invpcid},
bd5295b2 237@code{clflush},
9916071f 238@code{mwaitx},
029f3522 239@code{clzero},
3233d7d0 240@code{wbnoinvd},
be3a8dca 241@code{pconfig},
de89d0a3 242@code{waitpkg},
f64c42a9 243@code{uintr},
c48935d7 244@code{cldemote},
142861df
JB
245@code{rdpru},
246@code{mcommit},
a847e322 247@code{sev_es},
f88c9eb0 248@code{lwp},
5dd85c99
SP
249@code{fma4},
250@code{xop},
60aa667e 251@code{cx16},
bd5295b2 252@code{syscall},
1b7f3fb0 253@code{rdtscp},
6305a203
L
254@code{3dnow},
255@code{3dnowa},
256@code{sse4a},
257@code{sse5},
646cc3e0
GG
258@code{snp},
259@code{invlpgb},
260@code{tlbsync},
272a84b1 261@code{svme} and
6305a203 262@code{padlock}.
32e876a8
JB
263Note that these extension mnemonics can be prefixed with @code{no} to revoke
264the respective (and any dependent) functionality.
6305a203
L
265
266When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
267@code{.arch} directive will take precedent.
268
269@cindex @samp{-mtune=} option, i386
270@cindex @samp{-mtune=} option, x86-64
271@item -mtune=@var{CPU}
272This option specifies a processor to optimize for. When used in
273conjunction with the @option{-march} option, only instructions
274of the processor specified by the @option{-march} option will be
275generated.
276
6305a203
L
277Valid @var{CPU} values are identical to the processor list of
278@option{-march=@var{CPU}}.
9103f4f4 279
c0f3af97
L
280@cindex @samp{-msse2avx} option, i386
281@cindex @samp{-msse2avx} option, x86-64
282@item -msse2avx
283This option specifies that the assembler should encode SSE instructions
284with VEX prefix.
285
c8480b58
L
286@cindex @samp{-muse-unaligned-vector-move} option, i386
287@cindex @samp{-muse-unaligned-vector-move} option, x86-64
288@item -muse-unaligned-vector-move
289This option specifies that the assembler should encode aligned vector
290move as unaligned vector move.
291
daf50ae7
L
292@cindex @samp{-msse-check=} option, i386
293@cindex @samp{-msse-check=} option, x86-64
294@item -msse-check=@var{none}
1f9bb1ca
AS
295@itemx -msse-check=@var{warning}
296@itemx -msse-check=@var{error}
9aff4b7a 297These options control if the assembler should check SSE instructions.
daf50ae7
L
298@option{-msse-check=@var{none}} will make the assembler not to check SSE
299instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 300will make the assembler issue a warning for any SSE instruction.
daf50ae7 301@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 302for any SSE instruction.
daf50ae7 303
539f890d
L
304@cindex @samp{-mavxscalar=} option, i386
305@cindex @samp{-mavxscalar=} option, x86-64
306@item -mavxscalar=@var{128}
1f9bb1ca 307@itemx -mavxscalar=@var{256}
2aab8acd 308These options control how the assembler should encode scalar AVX
539f890d
L
309instructions. @option{-mavxscalar=@var{128}} will encode scalar
310AVX instructions with 128bit vector length, which is the default.
311@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
312with 256bit vector length.
313
4970191f
JB
314WARNING: Don't use this for production code - due to CPU errata the
315resulting code may not work on certain models.
316
03751133
L
317@cindex @samp{-mvexwig=} option, i386
318@cindex @samp{-mvexwig=} option, x86-64
319@item -mvexwig=@var{0}
320@itemx -mvexwig=@var{1}
321These options control how the assembler should encode VEX.W-ignored (WIG)
322VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
323instructions with vex.w = 0, which is the default.
324@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
325vex.w = 1.
326
4970191f
JB
327WARNING: Don't use this for production code - due to CPU errata the
328resulting code may not work on certain models.
329
43234a1e
L
330@cindex @samp{-mevexlig=} option, i386
331@cindex @samp{-mevexlig=} option, x86-64
332@item -mevexlig=@var{128}
333@itemx -mevexlig=@var{256}
334@itemx -mevexlig=@var{512}
335These options control how the assembler should encode length-ignored
336(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
337EVEX instructions with 128bit vector length, which is the default.
338@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
339encode LIG EVEX instructions with 256bit and 512bit vector length,
340respectively.
341
342@cindex @samp{-mevexwig=} option, i386
343@cindex @samp{-mevexwig=} option, x86-64
344@item -mevexwig=@var{0}
345@itemx -mevexwig=@var{1}
346These options control how the assembler should encode w-ignored (WIG)
347EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
348EVEX instructions with evex.w = 0, which is the default.
349@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
350evex.w = 1.
351
1efbbeb4
L
352@cindex @samp{-mmnemonic=} option, i386
353@cindex @samp{-mmnemonic=} option, x86-64
354@item -mmnemonic=@var{att}
1f9bb1ca 355@itemx -mmnemonic=@var{intel}
34bca508 356This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
357The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
358take precedent.
359
360@cindex @samp{-msyntax=} option, i386
361@cindex @samp{-msyntax=} option, x86-64
362@item -msyntax=@var{att}
1f9bb1ca 363@itemx -msyntax=@var{intel}
34bca508 364This option specifies instruction syntax when processing instructions.
1efbbeb4
L
365The @code{.att_syntax} and @code{.intel_syntax} directives will
366take precedent.
367
368@cindex @samp{-mnaked-reg} option, i386
369@cindex @samp{-mnaked-reg} option, x86-64
370@item -mnaked-reg
33eaf5de 371This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 372The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 373
7e8b059b
L
374@cindex @samp{-madd-bnd-prefix} option, i386
375@cindex @samp{-madd-bnd-prefix} option, x86-64
376@item -madd-bnd-prefix
377This option forces the assembler to add BND prefix to all branches, even
378if such prefix was not explicitly specified in the source code.
379
8dcea932
L
380@cindex @samp{-mshared} option, i386
381@cindex @samp{-mshared} option, x86-64
382@item -mno-shared
383On ELF target, the assembler normally optimizes out non-PLT relocations
384against defined non-weak global branch targets with default visibility.
385The @samp{-mshared} option tells the assembler to generate code which
386may go into a shared library where all non-weak global branch targets
387with default visibility can be preempted. The resulting code is
388slightly bigger. This option only affects the handling of branch
389instructions.
390
251dae91 391@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
392@cindex @samp{-mbig-obj} option, x86-64
393@item -mbig-obj
251dae91 394On PE/COFF target this option forces the use of big object file
167ad85b
TG
395format, which allows more than 32768 sections.
396
d022bddd
IT
397@cindex @samp{-momit-lock-prefix=} option, i386
398@cindex @samp{-momit-lock-prefix=} option, x86-64
399@item -momit-lock-prefix=@var{no}
400@itemx -momit-lock-prefix=@var{yes}
401These options control how the assembler should encode lock prefix.
402This option is intended as a workaround for processors, that fail on
403lock prefix. This option can only be safely used with single-core,
404single-thread computers
405@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
406@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
407which is the default.
408
e4e00185
AS
409@cindex @samp{-mfence-as-lock-add=} option, i386
410@cindex @samp{-mfence-as-lock-add=} option, x86-64
411@item -mfence-as-lock-add=@var{no}
412@itemx -mfence-as-lock-add=@var{yes}
413These options control how the assembler should encode lfence, mfence and
414sfence.
415@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
416sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
417@samp{lock addl $0x0, (%esp)} in 32-bit mode.
418@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
419sfence as usual, which is the default.
420
0cb4071e
L
421@cindex @samp{-mrelax-relocations=} option, i386
422@cindex @samp{-mrelax-relocations=} option, x86-64
423@item -mrelax-relocations=@var{no}
424@itemx -mrelax-relocations=@var{yes}
425These options control whether the assembler should generate relax
426relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
427R_X86_64_REX_GOTPCRELX, in 64-bit mode.
428@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
429@option{-mrelax-relocations=@var{no}} will not generate relax
430relocations. The default can be controlled by a configure option
431@option{--enable-x86-relax-relocations}.
432
e379e5f3
L
433@cindex @samp{-malign-branch-boundary=} option, i386
434@cindex @samp{-malign-branch-boundary=} option, x86-64
435@item -malign-branch-boundary=@var{NUM}
436This option controls how the assembler should align branches with segment
437prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
438no less than 16. Branches will be aligned within @var{NUM} byte
439boundary. @option{-malign-branch-boundary=0}, which is the default,
440doesn't align branches.
441
442@cindex @samp{-malign-branch=} option, i386
443@cindex @samp{-malign-branch=} option, x86-64
444@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
445This option specifies types of branches to align. @var{TYPE} is
446combination of @samp{jcc}, which aligns conditional jumps,
447@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
448which aligns unconditional jumps, @samp{call} which aligns calls,
449@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
450jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
451
452@cindex @samp{-malign-branch-prefix-size=} option, i386
453@cindex @samp{-malign-branch-prefix-size=} option, x86-64
454@item -malign-branch-prefix-size=@var{NUM}
455This option specifies the maximum number of prefixes on an instruction
456to align branches. @var{NUM} should be between 0 and 5. The default
457@var{NUM} is 5.
458
76cf450b
L
459@cindex @samp{-mbranches-within-32B-boundaries} option, i386
460@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
461@item -mbranches-within-32B-boundaries
462This option aligns conditional jumps, fused conditional jumps and
463unconditional jumps within 32 byte boundary with up to 5 segment prefixes
464on an instruction. It is equivalent to
465@option{-malign-branch-boundary=32}
466@option{-malign-branch=jcc+fused+jmp}
467@option{-malign-branch-prefix-size=5}.
468The default doesn't align branches.
469
ae531041
L
470@cindex @samp{-mlfence-after-load=} option, i386
471@cindex @samp{-mlfence-after-load=} option, x86-64
472@item -mlfence-after-load=@var{no}
473@itemx -mlfence-after-load=@var{yes}
474These options control whether the assembler should generate lfence
475after load instructions. @option{-mlfence-after-load=@var{yes}} will
476generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
477lfence, which is the default.
478
479@cindex @samp{-mlfence-before-indirect-branch=} option, i386
480@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
481@item -mlfence-before-indirect-branch=@var{none}
482@item -mlfence-before-indirect-branch=@var{all}
483@item -mlfence-before-indirect-branch=@var{register}
484@itemx -mlfence-before-indirect-branch=@var{memory}
485These options control whether the assembler should generate lfence
3071b197 486before indirect near branch instructions.
ae531041 487@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 488before indirect near branch via register and issue a warning before
ae531041 489indirect near branch via memory.
a09f656b 490It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
f9a6a8f0 491there's no explicit @option{-mlfence-before-ret=}.
ae531041 492@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 493lfence before indirect near branch via register.
ae531041
L
494@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
495warning before indirect near branch via memory.
496@option{-mlfence-before-indirect-branch=@var{none}} will not generate
497lfence nor issue warning, which is the default. Note that lfence won't
498be generated before indirect near branch via register with
499@option{-mlfence-after-load=@var{yes}} since lfence will be generated
500after loading branch target register.
501
502@cindex @samp{-mlfence-before-ret=} option, i386
503@cindex @samp{-mlfence-before-ret=} option, x86-64
504@item -mlfence-before-ret=@var{none}
a09f656b 505@item -mlfence-before-ret=@var{shl}
ae531041 506@item -mlfence-before-ret=@var{or}
a09f656b 507@item -mlfence-before-ret=@var{yes}
ae531041
L
508@itemx -mlfence-before-ret=@var{not}
509These options control whether the assembler should generate lfence
510before ret. @option{-mlfence-before-ret=@var{or}} will generate
511generate or instruction with lfence.
a09f656b 512@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
513with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
514instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
515generate lfence, which is the default.
ae531041 516
b4a3a7b4
L
517@cindex @samp{-mx86-used-note=} option, i386
518@cindex @samp{-mx86-used-note=} option, x86-64
519@item -mx86-used-note=@var{no}
520@itemx -mx86-used-note=@var{yes}
521These options control whether the assembler should generate
522GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
523GNU property notes. The default can be controlled by the
524@option{--enable-x86-used-note} configure option.
525
d3d3c6db
IT
526@cindex @samp{-mevexrcig=} option, i386
527@cindex @samp{-mevexrcig=} option, x86-64
528@item -mevexrcig=@var{rne}
529@itemx -mevexrcig=@var{rd}
530@itemx -mevexrcig=@var{ru}
531@itemx -mevexrcig=@var{rz}
532These options control how the assembler should encode SAE-only
533EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
534of EVEX instruction with 00, which is the default.
535@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
536and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
537with 01, 10 and 11 RC bits, respectively.
538
5db04b09
L
539@cindex @samp{-mamd64} option, x86-64
540@cindex @samp{-mintel64} option, x86-64
541@item -mamd64
542@itemx -mintel64
543This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
544Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
545only and AMD64 ISAs.
5db04b09 546
b6f8c7c4
L
547@cindex @samp{-O0} option, i386
548@cindex @samp{-O0} option, x86-64
549@cindex @samp{-O} option, i386
550@cindex @samp{-O} option, x86-64
551@cindex @samp{-O1} option, i386
552@cindex @samp{-O1} option, x86-64
553@cindex @samp{-O2} option, i386
554@cindex @samp{-O2} option, x86-64
555@cindex @samp{-Os} option, i386
556@cindex @samp{-Os} option, x86-64
557@item -O0 | -O | -O1 | -O2 | -Os
558Optimize instruction encoding with smaller instruction size. @samp{-O}
559and @samp{-O1} encode 64-bit register load instructions with 64-bit
560immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 561immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
562register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
563register clearing instructions with 128-bit VEX vector register
564clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 565register load/store instructions with VEX vector register load/store
a0a1771e
JB
566instructions, and encode 128-bit/256-bit EVEX packed integer logical
567instructions with 128-bit/256-bit VEX packed integer logical.
568
569@samp{-O2} includes @samp{-O1} optimization plus encodes
570256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
571EVEX vector register clearing instructions. In 64-bit mode VEX encoded
572instructions with commutative source operands will also have their
573source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
574instead of the 3-byte one. Certain forms of AND as well as OR with the
575same (register) operand specified twice will also be changed to TEST.
a0a1771e 576
b6f8c7c4
L
577@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
578and 64-bit register tests with immediate as 8-bit register test with
579immediate. @samp{-O0} turns off this optimization.
580
55b62671 581@end table
731caf76 582@c man end
e413e4e9 583
a6c24e68
NC
584@node i386-Directives
585@section x86 specific Directives
586
587@cindex machine directives, x86
588@cindex x86 machine directives
589@table @code
590
591@cindex @code{lcomm} directive, COFF
592@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
593Reserve @var{length} (an absolute expression) bytes for a local common
594denoted by @var{symbol}. The section and value of @var{symbol} are
595those of the new local common. The addresses are allocated in the bss
704209c0
NC
596section, so that at run-time the bytes start off zeroed. Since
597@var{symbol} is not declared global, it is normally not visible to
598@code{@value{LD}}. The optional third parameter, @var{alignment},
599specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
600
601This directive is only available for COFF based x86 targets.
602
102e9361
NC
603@cindex @code{largecomm} directive, ELF
604@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
605This directive behaves in the same way as the @code{comm} directive
606except that the data is placed into the @var{.lbss} section instead of
607the @var{.bss} section @ref{Comm}.
608
609The directive is intended to be used for data which requires a large
610amount of space, and it is only available for ELF based x86_64
611targets.
612
f2f51cd5
NC
613@cindex @code{value} directive
614@item .value @var{expression} [, @var{expression}]
615This directive behaves in the same way as the @code{.short} directive,
616taking a series of comma separated expressions and storing them as
617two-byte wide values into the current section.
618
695a8c34
JB
619@cindex @code{insn} directive
620@item .insn [@var{prefix}[,...]] [@var{encoding}] @var{major-opcode}[@code{+r}|@code{/@var{extension}}] [,@var{operand}[,...]]
621This directive allows composing instructions which @code{@value{AS}}
622may not know about yet, or which it has no way of expressing (which
623can be the case for certain alternative encodings). It assumes certain
624basic structure in how operands are encoded, and it also only
625recognizes - with a few extensions as per below - operands otherwise
626valid for instructions. Therefore there is no guarantee that
627everything can be expressed (e.g. the original Intel Xeon Phi's MVEX
628encodings cannot be expressed).
629
630@itemize @bullet
631@item
632@var{prefix} expresses one or more opcode prefixes in the usual way.
633Legacy encoding prefixes altering meaning (0x66, 0xF2, 0xF3) may be
634specified as high byte of <major-opcode> (perhaps already including an
635encoding space prefix). Note that there can only be one such prefix.
636Segment overrides are better specified in the respective memory
637operand, as long as there is one.
638
639@item
640@var{encoding} is used to specify VEX, XOP, or EVEX encodings. The
641syntax tries to resemble that used in documentation:
642@itemize @bullet
643@item @code{VEX}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{space}}][@code{.@var{w}}]
644@item @code{EVEX}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{space}}][@code{.@var{w}}]
645@item @code{XOP}@var{space}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{w}}]
646@end itemize
647
648Here
649@itemize @bullet
650@item @var{len} can be @code{LIG}, @code{128}, @code{256}, or (EVEX
651only) @code{512} as well as @code{L0} / @code{L1} for VEX / XOP and
652@code{L0}...@code{L3} for EVEX
653@item @var{prefix} can be @code{NP}, @code{66}, @code{F3}, or @code{F2}
654@item @var{space} can be
655@itemize @bullet
656@item @code{0f}, @code{0f38}, @code{0f3a}, or @code{M0}...@code{M31}
657for VEX
658@item @code{08}...@code{1f} for XOP
659@item @code{0f}, @code{0f38}, @code{0f3a}, or @code{M0}...@code{M15}
660for EVEX
661@end itemize
662@item @var{w} can be @code{WIG}, @code{W0}, or @code{W1}
663@end itemize
664
665Defaults:
666@itemize @bullet
667@item Omitted @var{len} means "infer from operand size" if there is at
668least one sized vector operand, or @code{LIG} otherwise. (Obviously
669@var{len} has to be omitted when there's EVEX rounding control
670specified later in the operands.)
671@item Omitted @var{prefix} means @code{NP}.
672@item Omitted @var{space} (VEX/EVEX only) implies encoding space is
673taken from @var{major-opcode}.
674@item Omitted @var{w} means "infer from GPR operand size" in 64-bit
675code if there is at least one GPR(-like) operand, or @code{WIG}
676otherwise.
677@end itemize
678
679@item
680@var{major-opcode} is an absolute expression specifying the instruction
681opcode. Legacy encoding prefixes altering encoding space (0x0f,
6820x0f38, 0x0f3a) have to be specified as high byte(s) here.
683"Degenerate" ModR/M bytes, as present in e.g. certain FPU opcodes or
684sub-spaces like that of major opcode 0x0f01, generally want encoding as
685immediate operand (such opcodes wouldn't normally have non-immediate
686operands); in some cases it may be possible to also encode these as low
687byte of the major opcode, but there are potential ambiguities. Also
688note that after stripping encoding prefixes, the residual has to fit in
689two bytes (16 bits). @code{+r} can be suffixed to the major opcode
690expression to specify register-only encoding forms not using a ModR/M
691byte. @code{/@var{extension}} can alternatively be suffixed to the
692major opcode expression to specify an extension opcode, encoded in bits
6933-5 of the ModR/M byte.
694
695@item
696@var{operand} is an instruction operand expressed the usual way.
697Register operands are primarily used to express register numbers as
698encoded in ModR/M byte and REX/VEX/XOP/EVEX prefixes. In certain
699cases the register type (really: size) is also used to derive other
700encoding attributes, if these aren't specified explicitly. Note that
701there is no consistency checking among operands, so entirely bogus
702mixes of operands are possible. Note further that only operands
703actually encoded in the instruction should be specified. Operands like
704@samp{%cl} in shift/rotate instructions have to be omitted, or else
705they'll be encoded as an ordinary (register) operand. Operand order
706may also not match that of the actual instruction (see below).
707@end itemize
708
709Encoding of operands: While for a memory operand (of which there can be
710only one) it is clear how to encode it in the resulting ModR/M byte,
711register operands are encoded strictly in this order (operand counts do
712not include immediate ones in the enumeration below, and if there was an
713extension opcode specified it counts as a register operand; VEX.vvvv
714is meant to cover XOP and EVEX as well):
715
716@itemize @bullet
717@item VEX.vvvv for 1-register-operand VEX/XOP/EVEX insns,
718@item ModR/M.rm, ModR/M.reg for 2-operand insns,
719@item ModR/M.rm, VEX.vvvv, ModR/M.reg for 3-operand insns, and
720@item Imm@{4,5@}, ModR/M.rm, VEX.vvvv, ModR/M.reg for 4-operand insns,
721@end itemize
722
723obviously with the ModR/M.rm slot skipped when there is a memory
724operand, and obviously with the ModR/M.reg slot skipped when there is
725an extension opcode. For Intel syntax of course the opposite order
726applies. With @code{+r} (and hence no ModR/M) there can only be a
727single register operand for legacy encodings. VEX and alike can have
728two register operands, where the second (first in Intel syntax) would
729go into VEX.vvvv.
730
731Immediate operands (including immediate-like displacements, i.e. when
732not part of ModR/M addressing) are emitted in the order specified,
733regardless of AT&T or Intel syntax. Since it may not be possible to
734infer the size of such immediates, they can be suffixed by
735@code{@{:s@var{n}@}} or @code{@{:u@var{n}@}}, representing signed /
736unsigned immediates of the given number of bits respectively. When
737emitting such operands, the number of bits will be rounded up to the
738smallest suitable of 8, 16, 32, or 64. Immediates wider than 32 bits
739are permitted in 64-bit code only.
740
741For EVEX encoding memory operands with a displacement need to know
742Disp8 scaling size in order to use an 8-bit displacement. For many
743instructions this can be inferred from the types of other operands
744specified. In Intel syntax @samp{DWORD PTR} and alike can be used to
745specify the respective size. In AT&T syntax the memory operands can
746be suffixed by @code{@{:d@var{n}@}} to specify the size (in bytes).
747This can be combined with an embedded broadcast specifier:
748@samp{8(%eax)@{1to8:d8@}}.
749
a6c24e68 750@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
751
752@end table
753
252b5132 754@node i386-Syntax
7c31ae13
NC
755@section i386 Syntactical Considerations
756@menu
757* i386-Variations:: AT&T Syntax versus Intel Syntax
758* i386-Chars:: Special Characters
759@end menu
760
761@node i386-Variations
762@subsection AT&T Syntax versus Intel Syntax
252b5132 763
e413e4e9
AM
764@cindex i386 intel_syntax pseudo op
765@cindex intel_syntax pseudo op, i386
766@cindex i386 att_syntax pseudo op
767@cindex att_syntax pseudo op, i386
252b5132
RH
768@cindex i386 syntax compatibility
769@cindex syntax compatibility, i386
55b62671
AJ
770@cindex x86-64 intel_syntax pseudo op
771@cindex intel_syntax pseudo op, x86-64
772@cindex x86-64 att_syntax pseudo op
773@cindex att_syntax pseudo op, x86-64
774@cindex x86-64 syntax compatibility
775@cindex syntax compatibility, x86-64
e413e4e9
AM
776
777@code{@value{AS}} now supports assembly using Intel assembler syntax.
778@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
779back to the usual AT&T mode for compatibility with the output of
780@code{@value{GCC}}. Either of these directives may have an optional
781argument, @code{prefix}, or @code{noprefix} specifying whether registers
782require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
783different from Intel syntax. We mention these differences because
784almost all 80386 documents use Intel syntax. Notable differences
785between the two syntaxes are:
786
787@cindex immediate operands, i386
788@cindex i386 immediate operands
789@cindex register operands, i386
790@cindex i386 register operands
791@cindex jump/call operands, i386
792@cindex i386 jump/call operands
793@cindex operand delimiters, i386
55b62671
AJ
794
795@cindex immediate operands, x86-64
796@cindex x86-64 immediate operands
797@cindex register operands, x86-64
798@cindex x86-64 register operands
799@cindex jump/call operands, x86-64
800@cindex x86-64 jump/call operands
801@cindex operand delimiters, x86-64
252b5132
RH
802@itemize @bullet
803@item
804AT&T immediate operands are preceded by @samp{$}; Intel immediate
805operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
806AT&T register operands are preceded by @samp{%}; Intel register operands
807are undelimited. AT&T absolute (as opposed to PC relative) jump/call
808operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
809
810@cindex i386 source, destination operands
811@cindex source, destination operands; i386
55b62671
AJ
812@cindex x86-64 source, destination operands
813@cindex source, destination operands; x86-64
252b5132
RH
814@item
815AT&T and Intel syntax use the opposite order for source and destination
816operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
817@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
818previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
819instructions with 2 immediate operands, such as the @samp{enter}
820instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
821
822@cindex mnemonic suffixes, i386
823@cindex sizes operands, i386
824@cindex i386 size suffixes
55b62671
AJ
825@cindex mnemonic suffixes, x86-64
826@cindex sizes operands, x86-64
827@cindex x86-64 size suffixes
252b5132
RH
828@item
829In AT&T syntax the size of memory operands is determined from the last
830character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 831@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
832(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
833of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
834(256-bit vector) and zmm (512-bit vector) memory references, only when there's
835no other way to disambiguate an instruction. Intel syntax accomplishes this by
836prefixing memory operands (@emph{not} the instruction mnemonics) with
837@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
838@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
839syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
840syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
841@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 842
4b06377f
L
843In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
844instruction with the 64-bit displacement or immediate operand.
845
252b5132
RH
846@cindex return instructions, i386
847@cindex i386 jump, call, return
55b62671
AJ
848@cindex return instructions, x86-64
849@cindex x86-64 jump, call, return
252b5132
RH
850@item
851Immediate form long jumps and calls are
852@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
853Intel syntax is
854@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
855instruction
856is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
857@samp{ret far @var{stack-adjust}}.
858
859@cindex sections, i386
860@cindex i386 sections
55b62671
AJ
861@cindex sections, x86-64
862@cindex x86-64 sections
252b5132
RH
863@item
864The AT&T assembler does not provide support for multiple section
865programs. Unix style systems expect all programs to be single sections.
866@end itemize
867
7c31ae13
NC
868@node i386-Chars
869@subsection Special Characters
870
871@cindex line comment character, i386
872@cindex i386 line comment character
873The presence of a @samp{#} appearing anywhere on a line indicates the
874start of a comment that extends to the end of that line.
875
876If a @samp{#} appears as the first character of a line then the whole
877line is treated as a comment, but in this case the line can also be a
878logical line number directive (@pxref{Comments}) or a preprocessor
879control command (@pxref{Preprocessing}).
880
a05a5b64 881If the @option{--divide} command-line option has not been specified
7c31ae13
NC
882then the @samp{/} character appearing anywhere on a line also
883introduces a line comment.
884
885@cindex line separator, i386
886@cindex statement separator, i386
887@cindex i386 line separator
888The @samp{;} character can be used to separate statements on the same
889line.
890
252b5132 891@node i386-Mnemonics
d3b47e2b
L
892@section i386-Mnemonics
893@subsection Instruction Naming
252b5132
RH
894
895@cindex i386 instruction naming
896@cindex instruction naming, i386
55b62671
AJ
897@cindex x86-64 instruction naming
898@cindex instruction naming, x86-64
899
252b5132 900Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
901specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
902and @samp{q} specify byte, word, long and quadruple word operands. If
903no suffix is specified by an instruction then @code{@value{AS}} tries to
904fill in the missing suffix based on the destination register operand
905(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
906to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
907@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
908assembler which assumes that a missing mnemonic suffix implies long
909operand size. (This incompatibility does not affect compiler output
910since compilers always explicitly specify the mnemonic suffix.)
252b5132 911
c006a730
JB
912When there is no sizing suffix and no (suitable) register operands to
913deduce the size of memory operands, with a few exceptions and where long
914operand size is possible in the first place, operand size will default
915to long in 32- and 64-bit modes. Similarly it will default to short in
91616-bit mode. Noteworthy exceptions are
917
918@itemize @bullet
919@item
920Instructions with an implicit on-stack operand as well as branches,
921which default to quad in 64-bit mode.
922
923@item
924Sign- and zero-extending moves, which default to byte size source
925operands.
926
927@item
928Floating point insns with integer operands, which default to short (for
929perhaps historical reasons).
930
931@item
932CRC32 with a 64-bit destination, which defaults to a quad source
933operand.
934
935@end itemize
936
b6169b20
L
937@cindex encoding options, i386
938@cindex encoding options, x86-64
939
86fa6981
L
940Different encoding options can be specified via pseudo prefixes:
941
942@itemize @bullet
943@item
944@samp{@{disp8@}} -- prefer 8-bit displacement.
945
946@item
41eb8e88
L
947@samp{@{disp32@}} -- prefer 32-bit displacement.
948
949@item
950@samp{@{disp16@}} -- prefer 16-bit displacement.
86fa6981
L
951
952@item
953@samp{@{load@}} -- prefer load-form instruction.
954
955@item
956@samp{@{store@}} -- prefer store-form instruction.
957
958@item
42e04b36 959@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
960
961@item
42e04b36 962@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
963
964@item
965@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
966
967@item
968@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
969instructions (x86-64 only). Note that this differs from the @samp{rex}
970prefix which generates REX prefix unconditionally.
b6f8c7c4
L
971
972@item
973@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 974@end itemize
b6169b20 975
4321af3e 976Mnemonics of Intel VNNI/IFMA instructions are encoded with the EVEX prefix
58bf9b6a 977by default. The pseudo @samp{@{vex@}} prefix can be used to encode
4321af3e 978mnemonics of Intel VNNI/IFMA instructions with the VEX prefix.
58bf9b6a 979
252b5132
RH
980@cindex conversion instructions, i386
981@cindex i386 conversion instructions
55b62671
AJ
982@cindex conversion instructions, x86-64
983@cindex x86-64 conversion instructions
252b5132
RH
984The Intel-syntax conversion instructions
985
986@itemize @bullet
987@item
988@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
989
990@item
991@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
992
993@item
994@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
995
996@item
997@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
998
999@item
1000@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
1001(x86-64 only),
1002
1003@item
d5f0cf92 1004@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 1005@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
1006@end itemize
1007
1008@noindent
55b62671
AJ
1009are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
1010@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
1011instructions.
252b5132 1012
0e6724de
L
1013@cindex extension instructions, i386
1014@cindex i386 extension instructions
1015@cindex extension instructions, x86-64
1016@cindex x86-64 extension instructions
1017The Intel-syntax extension instructions
1018
1019@itemize @bullet
1020@item
1021@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
1022
1023@item
1024@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
1025
1026@item
1027@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
1028(x86-64 only).
1029
1030@item
1031@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
1032
1033@item
1034@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
1035(x86-64 only).
1036
1037@item
1038@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
1039(x86-64 only).
1040
1041@item
1042@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
1043
1044@item
1045@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
1046
1047@item
1048@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
1049(x86-64 only).
1050
1051@item
1052@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
1053
1054@item
1055@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
1056(x86-64 only).
1057@end itemize
1058
1059@noindent
1060are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
3f335b75 1061@samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
0e6724de
L
1062@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
1063@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
1064@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
1065
252b5132
RH
1066@cindex jump instructions, i386
1067@cindex call instructions, i386
55b62671
AJ
1068@cindex jump instructions, x86-64
1069@cindex call instructions, x86-64
252b5132
RH
1070Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
1071AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
1072convention.
1073
d3b47e2b 1074@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
1075
1076@cindex i386 mnemonic compatibility
1077@cindex mnemonic compatibility, i386
1078
1079@code{@value{AS}} supports assembly using Intel mnemonic.
1080@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
1081@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
1082syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
1083Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
1084@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
1085@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
1086assembler with different mnemonics from those in Intel IA32 specification.
1087@code{@value{GCC}} generates those instructions with AT&T mnemonic.
1088
bc31405e
L
1089@itemize @bullet
1090@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
1091register. @samp{movsxd} should be used to encode 16-bit or 32-bit
1092destination register with both AT&T and Intel mnemonics.
1093@end itemize
1094
252b5132
RH
1095@node i386-Regs
1096@section Register Naming
1097
1098@cindex i386 registers
1099@cindex registers, i386
55b62671
AJ
1100@cindex x86-64 registers
1101@cindex registers, x86-64
252b5132
RH
1102Register operands are always prefixed with @samp{%}. The 80386 registers
1103consist of
1104
1105@itemize @bullet
1106@item
1107the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
1108@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
1109frame pointer), and @samp{%esp} (the stack pointer).
1110
1111@item
1112the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
1113@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
1114
1115@item
1116the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
1117@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
1118are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
1119@samp{%cx}, and @samp{%dx})
1120
1121@item
1122the 6 section registers @samp{%cs} (code section), @samp{%ds}
1123(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1124and @samp{%gs}.
1125
1126@item
4bde3cdd
UD
1127the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1128@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
1129
1130@item
1131the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1132@samp{%db3}, @samp{%db6}, and @samp{%db7}.
1133
1134@item
1135the 2 test registers @samp{%tr6} and @samp{%tr7}.
1136
1137@item
1138the 8 floating point register stack @samp{%st} or equivalently
1139@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1140@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1141These registers are overloaded by 8 MMX registers @samp{%mm0},
1142@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1143@samp{%mm6} and @samp{%mm7}.
1144
1145@item
4bde3cdd 1146the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1147@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1148@end itemize
1149
1150The AMD x86-64 architecture extends the register set by:
1151
1152@itemize @bullet
1153@item
1154enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1155accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1156@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1157pointer)
1158
1159@item
1160the 8 extended registers @samp{%r8}--@samp{%r15}.
1161
1162@item
4bde3cdd 1163the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1164
1165@item
4bde3cdd 1166the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1167
1168@item
4bde3cdd 1169the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1170
1171@item
1172the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1173
1174@item
1175the 8 debug registers: @samp{%db8}--@samp{%db15}.
1176
1177@item
4bde3cdd
UD
1178the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1179@end itemize
1180
1181With the AVX extensions more registers were made available:
1182
1183@itemize @bullet
1184
1185@item
1186the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1187available in 32-bit mode). The bottom 128 bits are overlaid with the
1188@samp{xmm0}--@samp{xmm15} registers.
1189
1190@end itemize
1191
4bde3cdd
UD
1192The AVX512 extensions added the following registers:
1193
1194@itemize @bullet
1195
1196@item
1197the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1198available in 32-bit mode). The bottom 128 bits are overlaid with the
1199@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1200overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1201
1202@item
1203the 8 mask registers @samp{%k0}--@samp{%k7}.
1204
252b5132
RH
1205@end itemize
1206
1207@node i386-Prefixes
1208@section Instruction Prefixes
1209
1210@cindex i386 instruction prefixes
1211@cindex instruction prefixes, i386
1212@cindex prefixes, i386
1213Instruction prefixes are used to modify the following instruction. They
1214are used to repeat string instructions, to provide section overrides, to
1215perform bus lock operations, and to change operand and address sizes.
1216(Most instructions that normally operate on 32-bit operands will use
121716-bit operands if the instruction has an ``operand size'' prefix.)
1218Instruction prefixes are best written on the same line as the instruction
1219they act upon. For example, the @samp{scas} (scan string) instruction is
1220repeated with:
1221
1222@smallexample
1223 repne scas %es:(%edi),%al
1224@end smallexample
1225
1226You may also place prefixes on the lines immediately preceding the
1227instruction, but this circumvents checks that @code{@value{AS}} does
1228with prefixes, and will not work with all prefixes.
1229
1230Here is a list of instruction prefixes:
1231
1232@cindex section override prefixes, i386
1233@itemize @bullet
1234@item
1235Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1236@samp{fs}, @samp{gs}. These are automatically added by specifying
1237using the @var{section}:@var{memory-operand} form for memory references.
1238
1239@cindex size prefixes, i386
1240@item
1241Operand/Address size prefixes @samp{data16} and @samp{addr16}
1242change 32-bit operands/addresses into 16-bit operands/addresses,
1243while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1244@code{.code16} section) into 32-bit operands/addresses. These prefixes
1245@emph{must} appear on the same line of code as the instruction they
1246modify. For example, in a 16-bit @code{.code16} section, you might
1247write:
1248
1249@smallexample
1250 addr32 jmpl *(%ebx)
1251@end smallexample
1252
1253@cindex bus lock prefixes, i386
1254@cindex inhibiting interrupts, i386
1255@item
1256The bus lock prefix @samp{lock} inhibits interrupts during execution of
1257the instruction it precedes. (This is only valid with certain
1258instructions; see a 80386 manual for details).
1259
1260@cindex coprocessor wait, i386
1261@item
1262The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1263complete the current instruction. This should never be needed for the
126480386/80387 combination.
1265
1266@cindex repeat prefixes, i386
1267@item
1268The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1269to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1270times if the current address size is 16-bits).
55b62671
AJ
1271@cindex REX prefixes, i386
1272@item
1273The @samp{rex} family of prefixes is used by x86-64 to encode
1274extensions to i386 instruction set. The @samp{rex} prefix has four
1275bits --- an operand size overwrite (@code{64}) used to change operand size
1276from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1277register set.
1278
1279You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1280instruction emits @samp{rex} prefix with all the bits set. By omitting
1281the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1282prefixes as well. Normally, there is no need to write the prefixes
1283explicitly, since gas will automatically generate them based on the
1284instruction operands.
252b5132
RH
1285@end itemize
1286
1287@node i386-Memory
1288@section Memory References
1289
1290@cindex i386 memory references
1291@cindex memory references, i386
55b62671
AJ
1292@cindex x86-64 memory references
1293@cindex memory references, x86-64
252b5132
RH
1294An Intel syntax indirect memory reference of the form
1295
1296@smallexample
1297@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1298@end smallexample
1299
1300@noindent
1301is translated into the AT&T syntax
1302
1303@smallexample
1304@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1305@end smallexample
1306
1307@noindent
1308where @var{base} and @var{index} are the optional 32-bit base and
1309index registers, @var{disp} is the optional displacement, and
1310@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1311to calculate the address of the operand. If no @var{scale} is
1312specified, @var{scale} is taken to be 1. @var{section} specifies the
1313optional section register for the memory operand, and may override the
1314default section register (see a 80386 manual for section register
1315defaults). Note that section overrides in AT&T syntax @emph{must}
1316be preceded by a @samp{%}. If you specify a section override which
1317coincides with the default section register, @code{@value{AS}} does @emph{not}
1318output any section register override prefixes to assemble the given
1319instruction. Thus, section overrides can be specified to emphasize which
1320section register is used for a given memory operand.
1321
1322Here are some examples of Intel and AT&T style memory references:
1323
1324@table @asis
1325@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1326@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1327missing, and the default section is used (@samp{%ss} for addressing with
1328@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1329
1330@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1331@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1332@samp{foo}. All other fields are missing. The section register here
1333defaults to @samp{%ds}.
1334
1335@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1336This uses the value pointed to by @samp{foo} as a memory operand.
1337Note that @var{base} and @var{index} are both missing, but there is only
1338@emph{one} @samp{,}. This is a syntactic exception.
1339
1340@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1341This selects the contents of the variable @samp{foo} with section
1342register @var{section} being @samp{%gs}.
1343@end table
1344
1345Absolute (as opposed to PC relative) call and jump operands must be
1346prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1347always chooses PC relative addressing for jump/call labels.
1348
1349Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1350@emph{must} specify its size (byte, word, long, or quadruple) with an
1351instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1352respectively).
1353
1354The x86-64 architecture adds an RIP (instruction pointer relative)
1355addressing. This addressing mode is specified by using @samp{rip} as a
1356base register. Only constant offsets are valid. For example:
1357
1358@table @asis
1359@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1360Points to the address 1234 bytes past the end of the current
1361instruction.
1362
1363@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1364Points to the @code{symbol} in RIP relative way, this is shorter than
1365the default absolute addressing.
1366@end table
1367
1368Other addressing modes remain unchanged in x86-64 architecture, except
1369registers used are 64-bit instead of 32-bit.
252b5132 1370
fddf5b5b 1371@node i386-Jumps
252b5132
RH
1372@section Handling of Jump Instructions
1373
1374@cindex jump optimization, i386
1375@cindex i386 jump optimization
55b62671
AJ
1376@cindex jump optimization, x86-64
1377@cindex x86-64 jump optimization
252b5132
RH
1378Jump instructions are always optimized to use the smallest possible
1379displacements. This is accomplished by using byte (8-bit) displacement
1380jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1381is insufficient a long displacement is used. We do not support
252b5132
RH
1382word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1383instruction with the @samp{data16} instruction prefix), since the 80386
1384insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1385is added. (See also @pxref{i386-Arch})
252b5132
RH
1386
1387Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1388@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1389displacements, so that if you use these instructions (@code{@value{GCC}} does
1390not use them) you may get an error message (and incorrect code). The AT&T
139180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1392to
1393
1394@smallexample
1395 jcxz cx_zero
1396 jmp cx_nonzero
1397cx_zero: jmp foo
1398cx_nonzero:
1399@end smallexample
1400
1401@node i386-Float
1402@section Floating Point
1403
1404@cindex i386 floating point
1405@cindex floating point, i386
55b62671
AJ
1406@cindex x86-64 floating point
1407@cindex floating point, x86-64
252b5132
RH
1408All 80387 floating point types except packed BCD are supported.
1409(BCD support may be added without much difficulty). These data
1410types are 16-, 32-, and 64- bit integers, and single (32-bit),
1411double (64-bit), and extended (80-bit) precision floating point.
1412Each supported type has an instruction mnemonic suffix and a constructor
1413associated with it. Instruction mnemonic suffixes specify the operand's
1414data type. Constructors build these data types into memory.
1415
1416@cindex @code{float} directive, i386
1417@cindex @code{single} directive, i386
1418@cindex @code{double} directive, i386
1419@cindex @code{tfloat} directive, i386
7d19d096 1420@cindex @code{hfloat} directive, i386
de133cf9 1421@cindex @code{bfloat16} directive, i386
55b62671
AJ
1422@cindex @code{float} directive, x86-64
1423@cindex @code{single} directive, x86-64
1424@cindex @code{double} directive, x86-64
1425@cindex @code{tfloat} directive, x86-64
7d19d096 1426@cindex @code{hfloat} directive, x86-64
de133cf9 1427@cindex @code{bfloat16} directive, x86-64
252b5132
RH
1428@itemize @bullet
1429@item
1430Floating point constructors are @samp{.float} or @samp{.single},
de133cf9
JB
1431@samp{.double}, @samp{.tfloat}, @samp{.hfloat}, and @samp{.bfloat16} for 32-,
143264-, 80-, and 16-bit (two flavors) formats respectively. The former three
1433correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}.
1434@samp{t} stands for 80-bit (ten byte) real. The 80387 only supports this
1435format via the @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt}
1436(store 80-bit real and pop stack) instructions.
252b5132
RH
1437
1438@cindex @code{word} directive, i386
1439@cindex @code{long} directive, i386
1440@cindex @code{int} directive, i386
1441@cindex @code{quad} directive, i386
55b62671
AJ
1442@cindex @code{word} directive, x86-64
1443@cindex @code{long} directive, x86-64
1444@cindex @code{int} directive, x86-64
1445@cindex @code{quad} directive, x86-64
252b5132
RH
1446@item
1447Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1448@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
a12f86b9 1449corresponding instruction mnemonic suffixes are @samp{s} (short),
252b5132
RH
1450@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1451the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1452quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1453stack) instructions.
1454@end itemize
1455
1456Register to register operations should not use instruction mnemonic suffixes.
1457@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1458wrote @samp{fst %st, %st(1)}, since all register to register operations
1459use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1460which converts @samp{%st} from 80-bit to 64-bit floating point format,
1461then stores the result in the 4 byte location @samp{mem})
1462
1463@node i386-SIMD
1464@section Intel's MMX and AMD's 3DNow! SIMD Operations
1465
1466@cindex MMX, i386
1467@cindex 3DNow!, i386
1468@cindex SIMD, i386
55b62671
AJ
1469@cindex MMX, x86-64
1470@cindex 3DNow!, x86-64
1471@cindex SIMD, x86-64
252b5132
RH
1472
1473@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1474instructions for integer data), available on Intel's Pentium MMX
1475processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1476Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1477instruction set (SIMD instructions for 32-bit floating point data)
1478available on AMD's K6-2 processor and possibly others in the future.
1479
1480Currently, @code{@value{AS}} does not support Intel's floating point
1481SIMD, Katmai (KNI).
1482
1483The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1484@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
148516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1486floating point values. The MMX registers cannot be used at the same time
1487as the floating point stack.
1488
1489See Intel and AMD documentation, keeping in mind that the operand order in
1490instructions is reversed from the Intel syntax.
1491
f88c9eb0
SP
1492@node i386-LWP
1493@section AMD's Lightweight Profiling Instructions
1494
1495@cindex LWP, i386
1496@cindex LWP, x86-64
1497
1498@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1499instruction set, available on AMD's Family 15h (Orochi) processors.
1500
1501LWP enables applications to collect and manage performance data, and
1502react to performance events. The collection of performance data
1503requires no context switches. LWP runs in the context of a thread and
1504so several counters can be used independently across multiple threads.
1505LWP can be used in both 64-bit and legacy 32-bit modes.
1506
1507For detailed information on the LWP instruction set, see the
1508@cite{AMD Lightweight Profiling Specification} available at
1509@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1510
87973e9f
QN
1511@node i386-BMI
1512@section Bit Manipulation Instructions
1513
1514@cindex BMI, i386
1515@cindex BMI, x86-64
1516
1517@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1518
1519BMI instructions provide several instructions implementing individual
1520bit manipulation operations such as isolation, masking, setting, or
34bca508 1521resetting.
87973e9f
QN
1522
1523@c Need to add a specification citation here when available.
1524
2a2a0f38
QN
1525@node i386-TBM
1526@section AMD's Trailing Bit Manipulation Instructions
1527
1528@cindex TBM, i386
1529@cindex TBM, x86-64
1530
1531@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1532instruction set, available on AMD's BDVER2 processors (Trinity and
1533Viperfish).
1534
1535TBM instructions provide instructions implementing individual bit
1536manipulation operations such as isolating, masking, setting, resetting,
1537complementing, and operations on trailing zeros and ones.
1538
1539@c Need to add a specification citation here when available.
87973e9f 1540
252b5132
RH
1541@node i386-16bit
1542@section Writing 16-bit Code
1543
1544@cindex i386 16-bit code
1545@cindex 16-bit code, i386
1546@cindex real-mode code, i386
eecb386c 1547@cindex @code{code16gcc} directive, i386
252b5132
RH
1548@cindex @code{code16} directive, i386
1549@cindex @code{code32} directive, i386
55b62671
AJ
1550@cindex @code{code64} directive, i386
1551@cindex @code{code64} directive, x86-64
1552While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1553or 64-bit x86-64 code depending on the default configuration,
252b5132 1554it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1555mode code segments. To do this, put a @samp{.code16} or
1556@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1557be run in 16-bit mode. You can switch @code{@value{AS}} to writing
155832-bit code with the @samp{.code32} directive or 64-bit code with the
1559@samp{.code64} directive.
eecb386c
AM
1560
1561@samp{.code16gcc} provides experimental support for generating 16-bit
1562code from gcc, and differs from @samp{.code16} in that @samp{call},
1563@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1564@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1565default to 32-bit size. This is so that the stack pointer is
1566manipulated in the same way over function calls, allowing access to
1567function parameters at the same stack offsets as in 32-bit mode.
1568@samp{.code16gcc} also automatically adds address size prefixes where
1569necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1570
1571The code which @code{@value{AS}} generates in 16-bit mode will not
1572necessarily run on a 16-bit pre-80386 processor. To write code that
1573runs on such a processor, you must refrain from using @emph{any} 32-bit
1574constructs which require @code{@value{AS}} to output address or operand
1575size prefixes.
1576
1577Note that writing 16-bit code instructions by explicitly specifying a
1578prefix or an instruction mnemonic suffix within a 32-bit code section
1579generates different machine instructions than those generated for a
158016-bit code segment. In a 32-bit code section, the following code
1581generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1582value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1583
1584@smallexample
1585 pushw $4
1586@end smallexample
1587
1588The same code in a 16-bit code section would generate the machine
b45619c0 1589opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1590is correct since the processor default operand size is assumed to be 16
1591bits in a 16-bit code section.
1592
e413e4e9
AM
1593@node i386-Arch
1594@section Specifying CPU Architecture
1595
1596@cindex arch directive, i386
1597@cindex i386 arch directive
55b62671
AJ
1598@cindex arch directive, x86-64
1599@cindex x86-64 arch directive
e413e4e9
AM
1600
1601@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1602(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1603directive enables a warning when gas detects an instruction that is not
1604supported on the CPU specified. The choices for @var{cpu_type} are:
1605
1606@multitable @columnfractions .20 .20 .20 .20
f68697e8 1607@item @samp{default} @tab @samp{push} @tab @samp{pop}
e413e4e9
AM
1608@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1609@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1610@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1611@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
c085ab00 1612@item @samp{corei7} @tab @samp{iamcu}
1543849b 1613@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1614@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
646cc3e0 1615@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
b0e8fa7f
TJ
1616@item @samp{znver4} @tab @samp{btver1} @tab @samp{btver2} @tab @samp{generic32}
1617@item @samp{generic64} @tab @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1618@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1619@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1620@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1621@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1622@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1623@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1 1624@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
cafa5ef7 1625@item @samp{.monitor} @tab @samp{.hle} @tab @samp{.rtm} @tab @samp{.tsx}
c3bb24f5 1626@item @samp{.lahf_sahf} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1627@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1628@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1629@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1630@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1631@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1632@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1633@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
0cc78721 1634@item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16}
3ce2ebcf 1635@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @samp{.ibt}
23ae61ad 1636@item @samp{.prefetchi} @tab @samp{.avx_ifma} @tab @samp{.avx_vnni_int8}
2188d6ea 1637@item @samp{.cmpccxadd} @tab @samp{.wrmsrns} @tab @samp{.msrlist}
675b9d61
NC
1638@item @samp{.avx_ne_convert} @tab @samp{.rao_int}
1639@item @samp{.fred} @tab @samp{.lkgs}
c48935d7 1640@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1641@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1642@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
d100d8c1
HJ
1643@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_fp16}
1644@item @samp{.amx_complex} @tab @samp{.amx_tile}
c1fa250a 1645@item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1ceab344 1646@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1647@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1648@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1649@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
646cc3e0
GG
1650@item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1651@item @samp{.tlbsync}
e413e4e9
AM
1652@end multitable
1653
fddf5b5b
AM
1654Apart from the warning, there are only two other effects on
1655@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1656@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1657will automatically use a two byte opcode sequence. The larger three
1658byte opcode sequence is used on the 486 (and when no architecture is
1659specified) because it executes faster on the 486. Note that you can
1660explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1661Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1662@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1663conditional jumps will be promoted when necessary to a two instruction
1664sequence consisting of a conditional jump of the opposite sense around
1665an unconditional jump to the target.
1666
32e876a8
JB
1667Note that the sub-architecture specifiers (starting with a dot) can be prefixed
1668with @code{no} to revoke the respective (and any dependent) functionality.
1669
5c6af06e
JB
1670Following the CPU architecture (but not a sub-architecture, which are those
1671starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1672control automatic promotion of conditional jumps. @samp{jumps} is the
1673default, and enables jump promotion; All external jumps will be of the long
1674variety, and file-local jumps will be promoted as necessary.
1675(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1676byte offset jumps, and warns about file-local conditional jumps that
1677@code{@value{AS}} promotes.
fddf5b5b
AM
1678Unconditional jumps are treated as for @samp{jumps}.
1679
1680For example
1681
1682@smallexample
1683 .arch i8086,nojumps
1684@end smallexample
e413e4e9 1685
bc31405e
L
1686@node i386-ISA
1687@section AMD64 ISA vs. Intel64 ISA
1688
1689There are some discrepancies between AMD64 and Intel64 ISAs.
1690
1691@itemize @bullet
1692@item For @samp{movsxd} with 16-bit destination register, AMD64
1693supports 32-bit source operand and Intel64 supports 16-bit source
1694operand.
5990e377
JB
1695
1696@item For far branches (with explicit memory operand), both ISAs support
169732- and 16-bit operand size. Intel64 additionally supports 64-bit
1698operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1699and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1700syntax.
1701
1702@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1703and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1704while Intel64 additionally supports 64-bit operand sise (80-bit memory
1705operands).
1706
bc31405e
L
1707@end itemize
1708
5c9352f3
AM
1709@node i386-Bugs
1710@section AT&T Syntax bugs
1711
1712The UnixWare assembler, and probably other AT&T derived ix86 Unix
1713assemblers, generate floating point instructions with reversed source
1714and destination registers in certain cases. Unfortunately, gcc and
1715possibly many other programs use this reversed syntax, so we're stuck
1716with it.
1717
1718For example
1719
1720@smallexample
1721 fsub %st,%st(3)
1722@end smallexample
1723@noindent
1724results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1725than the expected @samp{%st(3) - %st}. This happens with all the
1726non-commutative arithmetic floating point operations with two register
1727operands where the source register is @samp{%st} and the destination
1728register is @samp{%st(i)}.
1729
252b5132
RH
1730@node i386-Notes
1731@section Notes
1732
1733@cindex i386 @code{mul}, @code{imul} instructions
1734@cindex @code{mul} instruction, i386
1735@cindex @code{imul} instruction, i386
55b62671
AJ
1736@cindex @code{mul} instruction, x86-64
1737@cindex @code{imul} instruction, x86-64
252b5132 1738There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1739instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1740multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1741for @samp{imul}) can be output only in the one operand form. Thus,
1742@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1743the expanding multiply would clobber the @samp{%edx} register, and this
1744would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
174564-bit product in @samp{%edx:%eax}.
1746
1747We have added a two operand form of @samp{imul} when the first operand
1748is an immediate mode expression and the second operand is a register.
1749This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1750example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1751$69, %eax, %eax}.
1752