]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
update name of several Ada fixed-point type handling functions
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
d2e4a39e 199static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 200
4c4b4cd2
PH
201static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
14f9c5c9 203
108d56a4 204static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
205 struct type *);
206
0d5cff50 207static int find_struct_field (const char *, struct type *, int,
52ce6436 208 struct type **, int *, int *, int *, int *);
4c4b4cd2 209
d12307c1 210static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 211 struct value **, int, const char *,
2a612529 212 struct type *, int);
4c4b4cd2 213
4c4b4cd2
PH
214static int ada_is_direct_array_type (struct type *);
215
72d5681a
PH
216static void ada_language_arch_info (struct gdbarch *,
217 struct language_arch_info *);
714e53ab 218
52ce6436
PH
219static struct value *ada_index_struct_field (int, struct value *, int,
220 struct type *);
221
222static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
223 struct expression *,
224 int *, enum noside);
52ce6436
PH
225
226static void aggregate_assign_from_choices (struct value *, struct value *,
227 struct expression *,
228 int *, LONGEST *, int *,
229 int, LONGEST, LONGEST);
230
231static void aggregate_assign_positional (struct value *, struct value *,
232 struct expression *,
233 int *, LONGEST *, int *, int,
234 LONGEST, LONGEST);
235
236
237static void aggregate_assign_others (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int, LONGEST, LONGEST);
240
241
242static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
243
244
245static struct value *ada_evaluate_subexp (struct type *, struct expression *,
246 int *, enum noside);
247
248static void ada_forward_operator_length (struct expression *, int, int *,
249 int *);
852dff6c
JB
250
251static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
252
253static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
254 (const lookup_name_info &lookup_name);
255
4c4b4cd2
PH
256\f
257
ee01b665
JB
258/* The result of a symbol lookup to be stored in our symbol cache. */
259
260struct cache_entry
261{
262 /* The name used to perform the lookup. */
263 const char *name;
264 /* The namespace used during the lookup. */
fe978cb0 265 domain_enum domain;
ee01b665
JB
266 /* The symbol returned by the lookup, or NULL if no matching symbol
267 was found. */
268 struct symbol *sym;
269 /* The block where the symbol was found, or NULL if no matching
270 symbol was found. */
271 const struct block *block;
272 /* A pointer to the next entry with the same hash. */
273 struct cache_entry *next;
274};
275
276/* The Ada symbol cache, used to store the result of Ada-mode symbol
277 lookups in the course of executing the user's commands.
278
279 The cache is implemented using a simple, fixed-sized hash.
280 The size is fixed on the grounds that there are not likely to be
281 all that many symbols looked up during any given session, regardless
282 of the size of the symbol table. If we decide to go to a resizable
283 table, let's just use the stuff from libiberty instead. */
284
285#define HASH_SIZE 1009
286
287struct ada_symbol_cache
288{
289 /* An obstack used to store the entries in our cache. */
290 struct obstack cache_space;
291
292 /* The root of the hash table used to implement our symbol cache. */
293 struct cache_entry *root[HASH_SIZE];
294};
295
296static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 297
4c4b4cd2 298/* Maximum-sized dynamic type. */
14f9c5c9
AS
299static unsigned int varsize_limit;
300
67cb5b2d 301static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
302#ifdef VMS
303 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
304#else
14f9c5c9 305 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 306#endif
14f9c5c9 307
4c4b4cd2 308/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 309static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 310 = "__gnat_ada_main_program_name";
14f9c5c9 311
4c4b4cd2
PH
312/* Limit on the number of warnings to raise per expression evaluation. */
313static int warning_limit = 2;
314
315/* Number of warning messages issued; reset to 0 by cleanups after
316 expression evaluation. */
317static int warnings_issued = 0;
318
319static const char *known_runtime_file_name_patterns[] = {
320 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
321};
322
323static const char *known_auxiliary_function_name_patterns[] = {
324 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
325};
326
c6044dd1
JB
327/* Maintenance-related settings for this module. */
328
329static struct cmd_list_element *maint_set_ada_cmdlist;
330static struct cmd_list_element *maint_show_ada_cmdlist;
331
c6044dd1
JB
332/* The "maintenance ada set/show ignore-descriptive-type" value. */
333
491144b5 334static bool ada_ignore_descriptive_types_p = false;
c6044dd1 335
e802dbe0
JB
336 /* Inferior-specific data. */
337
338/* Per-inferior data for this module. */
339
340struct ada_inferior_data
341{
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
f37b313d 346 struct type *tsd_type = nullptr;
3eecfa55
JB
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
f37b313d 351 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
352};
353
354/* Our key to this module's inferior data. */
f37b313d 355static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
356
357/* Return our inferior data for the given inferior (INF).
358
359 This function always returns a valid pointer to an allocated
360 ada_inferior_data structure. If INF's inferior data has not
361 been previously set, this functions creates a new one with all
362 fields set to zero, sets INF's inferior to it, and then returns
363 a pointer to that newly allocated ada_inferior_data. */
364
365static struct ada_inferior_data *
366get_ada_inferior_data (struct inferior *inf)
367{
368 struct ada_inferior_data *data;
369
f37b313d 370 data = ada_inferior_data.get (inf);
e802dbe0 371 if (data == NULL)
f37b313d 372 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
373
374 return data;
375}
376
377/* Perform all necessary cleanups regarding our module's inferior data
378 that is required after the inferior INF just exited. */
379
380static void
381ada_inferior_exit (struct inferior *inf)
382{
f37b313d 383 ada_inferior_data.clear (inf);
e802dbe0
JB
384}
385
ee01b665
JB
386
387 /* program-space-specific data. */
388
389/* This module's per-program-space data. */
390struct ada_pspace_data
391{
f37b313d
TT
392 ~ada_pspace_data ()
393 {
394 if (sym_cache != NULL)
395 ada_free_symbol_cache (sym_cache);
396 }
397
ee01b665 398 /* The Ada symbol cache. */
f37b313d 399 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
400};
401
402/* Key to our per-program-space data. */
f37b313d 403static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
404
405/* Return this module's data for the given program space (PSPACE).
406 If not is found, add a zero'ed one now.
407
408 This function always returns a valid object. */
409
410static struct ada_pspace_data *
411get_ada_pspace_data (struct program_space *pspace)
412{
413 struct ada_pspace_data *data;
414
f37b313d 415 data = ada_pspace_data_handle.get (pspace);
ee01b665 416 if (data == NULL)
f37b313d 417 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
418
419 return data;
420}
421
4c4b4cd2
PH
422 /* Utilities */
423
720d1a40 424/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 425 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
426
427 Normally, we really expect a typedef type to only have 1 typedef layer.
428 In other words, we really expect the target type of a typedef type to be
429 a non-typedef type. This is particularly true for Ada units, because
430 the language does not have a typedef vs not-typedef distinction.
431 In that respect, the Ada compiler has been trying to eliminate as many
432 typedef definitions in the debugging information, since they generally
433 do not bring any extra information (we still use typedef under certain
434 circumstances related mostly to the GNAT encoding).
435
436 Unfortunately, we have seen situations where the debugging information
437 generated by the compiler leads to such multiple typedef layers. For
438 instance, consider the following example with stabs:
439
440 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
441 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
442
443 This is an error in the debugging information which causes type
444 pck__float_array___XUP to be defined twice, and the second time,
445 it is defined as a typedef of a typedef.
446
447 This is on the fringe of legality as far as debugging information is
448 concerned, and certainly unexpected. But it is easy to handle these
449 situations correctly, so we can afford to be lenient in this case. */
450
451static struct type *
452ada_typedef_target_type (struct type *type)
453{
78134374 454 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
455 type = TYPE_TARGET_TYPE (type);
456 return type;
457}
458
41d27058
JB
459/* Given DECODED_NAME a string holding a symbol name in its
460 decoded form (ie using the Ada dotted notation), returns
461 its unqualified name. */
462
463static const char *
464ada_unqualified_name (const char *decoded_name)
465{
2b0f535a
JB
466 const char *result;
467
468 /* If the decoded name starts with '<', it means that the encoded
469 name does not follow standard naming conventions, and thus that
470 it is not your typical Ada symbol name. Trying to unqualify it
471 is therefore pointless and possibly erroneous. */
472 if (decoded_name[0] == '<')
473 return decoded_name;
474
475 result = strrchr (decoded_name, '.');
41d27058
JB
476 if (result != NULL)
477 result++; /* Skip the dot... */
478 else
479 result = decoded_name;
480
481 return result;
482}
483
39e7af3e 484/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 485
39e7af3e 486static std::string
41d27058
JB
487add_angle_brackets (const char *str)
488{
39e7af3e 489 return string_printf ("<%s>", str);
41d27058 490}
96d887e8 491
67cb5b2d 492static const char *
4c4b4cd2
PH
493ada_get_gdb_completer_word_break_characters (void)
494{
495 return ada_completer_word_break_characters;
496}
497
e79af960
JB
498/* Print an array element index using the Ada syntax. */
499
500static void
501ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 502 const struct value_print_options *options)
e79af960 503{
79a45b7d 504 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
505 fprintf_filtered (stream, " => ");
506}
507
e2b7af72
JB
508/* la_watch_location_expression for Ada. */
509
de93309a 510static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
511ada_watch_location_expression (struct type *type, CORE_ADDR addr)
512{
513 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
514 std::string name = type_to_string (type);
515 return gdb::unique_xmalloc_ptr<char>
516 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
517}
518
de93309a
SM
519/* Assuming V points to an array of S objects, make sure that it contains at
520 least M objects, updating V and S as necessary. */
521
522#define GROW_VECT(v, s, m) \
523 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
524
f27cf670 525/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 526 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 527 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 528
de93309a 529static void *
f27cf670 530grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 531{
d2e4a39e
AS
532 if (*size < min_size)
533 {
534 *size *= 2;
535 if (*size < min_size)
4c4b4cd2 536 *size = min_size;
f27cf670 537 vect = xrealloc (vect, *size * element_size);
d2e4a39e 538 }
f27cf670 539 return vect;
14f9c5c9
AS
540}
541
542/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 543 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
544
545static int
ebf56fd3 546field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
547{
548 int len = strlen (target);
5b4ee69b 549
d2e4a39e 550 return
4c4b4cd2
PH
551 (strncmp (field_name, target, len) == 0
552 && (field_name[len] == '\0'
61012eef 553 || (startswith (field_name + len, "___")
76a01679
JB
554 && strcmp (field_name + strlen (field_name) - 6,
555 "___XVN") != 0)));
14f9c5c9
AS
556}
557
558
872c8b51
JB
559/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
560 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
561 and return its index. This function also handles fields whose name
562 have ___ suffixes because the compiler sometimes alters their name
563 by adding such a suffix to represent fields with certain constraints.
564 If the field could not be found, return a negative number if
565 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
566
567int
568ada_get_field_index (const struct type *type, const char *field_name,
569 int maybe_missing)
570{
571 int fieldno;
872c8b51
JB
572 struct type *struct_type = check_typedef ((struct type *) type);
573
574 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
575 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
576 return fieldno;
577
578 if (!maybe_missing)
323e0a4a 579 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 580 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
581
582 return -1;
583}
584
585/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
586
587int
d2e4a39e 588ada_name_prefix_len (const char *name)
14f9c5c9
AS
589{
590 if (name == NULL)
591 return 0;
d2e4a39e 592 else
14f9c5c9 593 {
d2e4a39e 594 const char *p = strstr (name, "___");
5b4ee69b 595
14f9c5c9 596 if (p == NULL)
4c4b4cd2 597 return strlen (name);
14f9c5c9 598 else
4c4b4cd2 599 return p - name;
14f9c5c9
AS
600 }
601}
602
4c4b4cd2
PH
603/* Return non-zero if SUFFIX is a suffix of STR.
604 Return zero if STR is null. */
605
14f9c5c9 606static int
d2e4a39e 607is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
608{
609 int len1, len2;
5b4ee69b 610
14f9c5c9
AS
611 if (str == NULL)
612 return 0;
613 len1 = strlen (str);
614 len2 = strlen (suffix);
4c4b4cd2 615 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
616}
617
4c4b4cd2
PH
618/* The contents of value VAL, treated as a value of type TYPE. The
619 result is an lval in memory if VAL is. */
14f9c5c9 620
d2e4a39e 621static struct value *
4c4b4cd2 622coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 623{
61ee279c 624 type = ada_check_typedef (type);
df407dfe 625 if (value_type (val) == type)
4c4b4cd2 626 return val;
d2e4a39e 627 else
14f9c5c9 628 {
4c4b4cd2
PH
629 struct value *result;
630
631 /* Make sure that the object size is not unreasonable before
632 trying to allocate some memory for it. */
c1b5a1a6 633 ada_ensure_varsize_limit (type);
4c4b4cd2 634
41e8491f
JK
635 if (value_lazy (val)
636 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
637 result = allocate_value_lazy (type);
638 else
639 {
640 result = allocate_value (type);
9a0dc9e3 641 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 642 }
74bcbdf3 643 set_value_component_location (result, val);
9bbda503
AC
644 set_value_bitsize (result, value_bitsize (val));
645 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
646 if (VALUE_LVAL (result) == lval_memory)
647 set_value_address (result, value_address (val));
14f9c5c9
AS
648 return result;
649 }
650}
651
fc1a4b47
AC
652static const gdb_byte *
653cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
654{
655 if (valaddr == NULL)
656 return NULL;
657 else
658 return valaddr + offset;
659}
660
661static CORE_ADDR
ebf56fd3 662cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
663{
664 if (address == 0)
665 return 0;
d2e4a39e 666 else
14f9c5c9
AS
667 return address + offset;
668}
669
4c4b4cd2
PH
670/* Issue a warning (as for the definition of warning in utils.c, but
671 with exactly one argument rather than ...), unless the limit on the
672 number of warnings has passed during the evaluation of the current
673 expression. */
a2249542 674
77109804
AC
675/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
676 provided by "complaint". */
a0b31db1 677static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 678
14f9c5c9 679static void
a2249542 680lim_warning (const char *format, ...)
14f9c5c9 681{
a2249542 682 va_list args;
a2249542 683
5b4ee69b 684 va_start (args, format);
4c4b4cd2
PH
685 warnings_issued += 1;
686 if (warnings_issued <= warning_limit)
a2249542
MK
687 vwarning (format, args);
688
689 va_end (args);
4c4b4cd2
PH
690}
691
714e53ab
PH
692/* Issue an error if the size of an object of type T is unreasonable,
693 i.e. if it would be a bad idea to allocate a value of this type in
694 GDB. */
695
c1b5a1a6
JB
696void
697ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
698{
699 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 700 error (_("object size is larger than varsize-limit"));
714e53ab
PH
701}
702
0963b4bd 703/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 704static LONGEST
c3e5cd34 705max_of_size (int size)
4c4b4cd2 706{
76a01679 707 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 708
76a01679 709 return top_bit | (top_bit - 1);
4c4b4cd2
PH
710}
711
0963b4bd 712/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 713static LONGEST
c3e5cd34 714min_of_size (int size)
4c4b4cd2 715{
c3e5cd34 716 return -max_of_size (size) - 1;
4c4b4cd2
PH
717}
718
0963b4bd 719/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 720static ULONGEST
c3e5cd34 721umax_of_size (int size)
4c4b4cd2 722{
76a01679 723 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 724
76a01679 725 return top_bit | (top_bit - 1);
4c4b4cd2
PH
726}
727
0963b4bd 728/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
729static LONGEST
730max_of_type (struct type *t)
4c4b4cd2 731{
c3e5cd34
PH
732 if (TYPE_UNSIGNED (t))
733 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
734 else
735 return max_of_size (TYPE_LENGTH (t));
736}
737
0963b4bd 738/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
739static LONGEST
740min_of_type (struct type *t)
741{
742 if (TYPE_UNSIGNED (t))
743 return 0;
744 else
745 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
746}
747
748/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
749LONGEST
750ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 751{
b249d2c2 752 type = resolve_dynamic_type (type, {}, 0);
78134374 753 switch (type->code ())
4c4b4cd2
PH
754 {
755 case TYPE_CODE_RANGE:
690cc4eb 756 return TYPE_HIGH_BOUND (type);
4c4b4cd2 757 case TYPE_CODE_ENUM:
14e75d8e 758 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
759 case TYPE_CODE_BOOL:
760 return 1;
761 case TYPE_CODE_CHAR:
76a01679 762 case TYPE_CODE_INT:
690cc4eb 763 return max_of_type (type);
4c4b4cd2 764 default:
43bbcdc2 765 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
766 }
767}
768
14e75d8e 769/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
770LONGEST
771ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 772{
b249d2c2 773 type = resolve_dynamic_type (type, {}, 0);
78134374 774 switch (type->code ())
4c4b4cd2
PH
775 {
776 case TYPE_CODE_RANGE:
690cc4eb 777 return TYPE_LOW_BOUND (type);
4c4b4cd2 778 case TYPE_CODE_ENUM:
14e75d8e 779 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
780 case TYPE_CODE_BOOL:
781 return 0;
782 case TYPE_CODE_CHAR:
76a01679 783 case TYPE_CODE_INT:
690cc4eb 784 return min_of_type (type);
4c4b4cd2 785 default:
43bbcdc2 786 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
787 }
788}
789
790/* The identity on non-range types. For range types, the underlying
76a01679 791 non-range scalar type. */
4c4b4cd2
PH
792
793static struct type *
18af8284 794get_base_type (struct type *type)
4c4b4cd2 795{
78134374 796 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 797 {
76a01679
JB
798 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
799 return type;
4c4b4cd2
PH
800 type = TYPE_TARGET_TYPE (type);
801 }
802 return type;
14f9c5c9 803}
41246937
JB
804
805/* Return a decoded version of the given VALUE. This means returning
806 a value whose type is obtained by applying all the GNAT-specific
85102364 807 encodings, making the resulting type a static but standard description
41246937
JB
808 of the initial type. */
809
810struct value *
811ada_get_decoded_value (struct value *value)
812{
813 struct type *type = ada_check_typedef (value_type (value));
814
815 if (ada_is_array_descriptor_type (type)
816 || (ada_is_constrained_packed_array_type (type)
78134374 817 && type->code () != TYPE_CODE_PTR))
41246937 818 {
78134374 819 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
41246937
JB
820 value = ada_coerce_to_simple_array_ptr (value);
821 else
822 value = ada_coerce_to_simple_array (value);
823 }
824 else
825 value = ada_to_fixed_value (value);
826
827 return value;
828}
829
830/* Same as ada_get_decoded_value, but with the given TYPE.
831 Because there is no associated actual value for this type,
832 the resulting type might be a best-effort approximation in
833 the case of dynamic types. */
834
835struct type *
836ada_get_decoded_type (struct type *type)
837{
838 type = to_static_fixed_type (type);
839 if (ada_is_constrained_packed_array_type (type))
840 type = ada_coerce_to_simple_array_type (type);
841 return type;
842}
843
4c4b4cd2 844\f
76a01679 845
4c4b4cd2 846 /* Language Selection */
14f9c5c9
AS
847
848/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 849 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 850
de93309a 851static enum language
ccefe4c4 852ada_update_initial_language (enum language lang)
14f9c5c9 853{
cafb3438 854 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 855 return language_ada;
14f9c5c9
AS
856
857 return lang;
858}
96d887e8
PH
859
860/* If the main procedure is written in Ada, then return its name.
861 The result is good until the next call. Return NULL if the main
862 procedure doesn't appear to be in Ada. */
863
864char *
865ada_main_name (void)
866{
3b7344d5 867 struct bound_minimal_symbol msym;
e83e4e24 868 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 869
96d887e8
PH
870 /* For Ada, the name of the main procedure is stored in a specific
871 string constant, generated by the binder. Look for that symbol,
872 extract its address, and then read that string. If we didn't find
873 that string, then most probably the main procedure is not written
874 in Ada. */
875 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
876
3b7344d5 877 if (msym.minsym != NULL)
96d887e8 878 {
f9bc20b9
JB
879 CORE_ADDR main_program_name_addr;
880 int err_code;
881
77e371c0 882 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 883 if (main_program_name_addr == 0)
323e0a4a 884 error (_("Invalid address for Ada main program name."));
96d887e8 885
f9bc20b9
JB
886 target_read_string (main_program_name_addr, &main_program_name,
887 1024, &err_code);
888
889 if (err_code != 0)
890 return NULL;
e83e4e24 891 return main_program_name.get ();
96d887e8
PH
892 }
893
894 /* The main procedure doesn't seem to be in Ada. */
895 return NULL;
896}
14f9c5c9 897\f
4c4b4cd2 898 /* Symbols */
d2e4a39e 899
4c4b4cd2
PH
900/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
901 of NULLs. */
14f9c5c9 902
d2e4a39e
AS
903const struct ada_opname_map ada_opname_table[] = {
904 {"Oadd", "\"+\"", BINOP_ADD},
905 {"Osubtract", "\"-\"", BINOP_SUB},
906 {"Omultiply", "\"*\"", BINOP_MUL},
907 {"Odivide", "\"/\"", BINOP_DIV},
908 {"Omod", "\"mod\"", BINOP_MOD},
909 {"Orem", "\"rem\"", BINOP_REM},
910 {"Oexpon", "\"**\"", BINOP_EXP},
911 {"Olt", "\"<\"", BINOP_LESS},
912 {"Ole", "\"<=\"", BINOP_LEQ},
913 {"Ogt", "\">\"", BINOP_GTR},
914 {"Oge", "\">=\"", BINOP_GEQ},
915 {"Oeq", "\"=\"", BINOP_EQUAL},
916 {"One", "\"/=\"", BINOP_NOTEQUAL},
917 {"Oand", "\"and\"", BINOP_BITWISE_AND},
918 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
919 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
920 {"Oconcat", "\"&\"", BINOP_CONCAT},
921 {"Oabs", "\"abs\"", UNOP_ABS},
922 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
923 {"Oadd", "\"+\"", UNOP_PLUS},
924 {"Osubtract", "\"-\"", UNOP_NEG},
925 {NULL, NULL}
14f9c5c9
AS
926};
927
b5ec771e
PA
928/* The "encoded" form of DECODED, according to GNAT conventions. The
929 result is valid until the next call to ada_encode. If
930 THROW_ERRORS, throw an error if invalid operator name is found.
931 Otherwise, return NULL in that case. */
4c4b4cd2 932
b5ec771e
PA
933static char *
934ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 935{
4c4b4cd2
PH
936 static char *encoding_buffer = NULL;
937 static size_t encoding_buffer_size = 0;
d2e4a39e 938 const char *p;
14f9c5c9 939 int k;
d2e4a39e 940
4c4b4cd2 941 if (decoded == NULL)
14f9c5c9
AS
942 return NULL;
943
4c4b4cd2
PH
944 GROW_VECT (encoding_buffer, encoding_buffer_size,
945 2 * strlen (decoded) + 10);
14f9c5c9
AS
946
947 k = 0;
4c4b4cd2 948 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 949 {
cdc7bb92 950 if (*p == '.')
4c4b4cd2
PH
951 {
952 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
953 k += 2;
954 }
14f9c5c9 955 else if (*p == '"')
4c4b4cd2
PH
956 {
957 const struct ada_opname_map *mapping;
958
959 for (mapping = ada_opname_table;
1265e4aa 960 mapping->encoded != NULL
61012eef 961 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
962 ;
963 if (mapping->encoded == NULL)
b5ec771e
PA
964 {
965 if (throw_errors)
966 error (_("invalid Ada operator name: %s"), p);
967 else
968 return NULL;
969 }
4c4b4cd2
PH
970 strcpy (encoding_buffer + k, mapping->encoded);
971 k += strlen (mapping->encoded);
972 break;
973 }
d2e4a39e 974 else
4c4b4cd2
PH
975 {
976 encoding_buffer[k] = *p;
977 k += 1;
978 }
14f9c5c9
AS
979 }
980
4c4b4cd2
PH
981 encoding_buffer[k] = '\0';
982 return encoding_buffer;
14f9c5c9
AS
983}
984
b5ec771e
PA
985/* The "encoded" form of DECODED, according to GNAT conventions.
986 The result is valid until the next call to ada_encode. */
987
988char *
989ada_encode (const char *decoded)
990{
991 return ada_encode_1 (decoded, true);
992}
993
14f9c5c9 994/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
995 quotes, unfolded, but with the quotes stripped away. Result good
996 to next call. */
997
de93309a 998static char *
e0802d59 999ada_fold_name (gdb::string_view name)
14f9c5c9 1000{
d2e4a39e 1001 static char *fold_buffer = NULL;
14f9c5c9
AS
1002 static size_t fold_buffer_size = 0;
1003
e0802d59 1004 int len = name.size ();
d2e4a39e 1005 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1006
1007 if (name[0] == '\'')
1008 {
e0802d59 1009 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 1010 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1011 }
1012 else
1013 {
1014 int i;
5b4ee69b 1015
14f9c5c9 1016 for (i = 0; i <= len; i += 1)
4c4b4cd2 1017 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1018 }
1019
1020 return fold_buffer;
1021}
1022
529cad9c
PH
1023/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1024
1025static int
1026is_lower_alphanum (const char c)
1027{
1028 return (isdigit (c) || (isalpha (c) && islower (c)));
1029}
1030
c90092fe
JB
1031/* ENCODED is the linkage name of a symbol and LEN contains its length.
1032 This function saves in LEN the length of that same symbol name but
1033 without either of these suffixes:
29480c32
JB
1034 . .{DIGIT}+
1035 . ${DIGIT}+
1036 . ___{DIGIT}+
1037 . __{DIGIT}+.
c90092fe 1038
29480c32
JB
1039 These are suffixes introduced by the compiler for entities such as
1040 nested subprogram for instance, in order to avoid name clashes.
1041 They do not serve any purpose for the debugger. */
1042
1043static void
1044ada_remove_trailing_digits (const char *encoded, int *len)
1045{
1046 if (*len > 1 && isdigit (encoded[*len - 1]))
1047 {
1048 int i = *len - 2;
5b4ee69b 1049
29480c32
JB
1050 while (i > 0 && isdigit (encoded[i]))
1051 i--;
1052 if (i >= 0 && encoded[i] == '.')
1053 *len = i;
1054 else if (i >= 0 && encoded[i] == '$')
1055 *len = i;
61012eef 1056 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1057 *len = i - 2;
61012eef 1058 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1059 *len = i - 1;
1060 }
1061}
1062
1063/* Remove the suffix introduced by the compiler for protected object
1064 subprograms. */
1065
1066static void
1067ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1068{
1069 /* Remove trailing N. */
1070
1071 /* Protected entry subprograms are broken into two
1072 separate subprograms: The first one is unprotected, and has
1073 a 'N' suffix; the second is the protected version, and has
0963b4bd 1074 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1075 the protection. Since the P subprograms are internally generated,
1076 we leave these names undecoded, giving the user a clue that this
1077 entity is internal. */
1078
1079 if (*len > 1
1080 && encoded[*len - 1] == 'N'
1081 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1082 *len = *len - 1;
1083}
1084
1085/* If ENCODED follows the GNAT entity encoding conventions, then return
1086 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1087 replaced by ENCODED. */
14f9c5c9 1088
f945dedf 1089std::string
4c4b4cd2 1090ada_decode (const char *encoded)
14f9c5c9
AS
1091{
1092 int i, j;
1093 int len0;
d2e4a39e 1094 const char *p;
14f9c5c9 1095 int at_start_name;
f945dedf 1096 std::string decoded;
d2e4a39e 1097
0d81f350
JG
1098 /* With function descriptors on PPC64, the value of a symbol named
1099 ".FN", if it exists, is the entry point of the function "FN". */
1100 if (encoded[0] == '.')
1101 encoded += 1;
1102
29480c32
JB
1103 /* The name of the Ada main procedure starts with "_ada_".
1104 This prefix is not part of the decoded name, so skip this part
1105 if we see this prefix. */
61012eef 1106 if (startswith (encoded, "_ada_"))
4c4b4cd2 1107 encoded += 5;
14f9c5c9 1108
29480c32
JB
1109 /* If the name starts with '_', then it is not a properly encoded
1110 name, so do not attempt to decode it. Similarly, if the name
1111 starts with '<', the name should not be decoded. */
4c4b4cd2 1112 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1113 goto Suppress;
1114
4c4b4cd2 1115 len0 = strlen (encoded);
4c4b4cd2 1116
29480c32
JB
1117 ada_remove_trailing_digits (encoded, &len0);
1118 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1119
4c4b4cd2
PH
1120 /* Remove the ___X.* suffix if present. Do not forget to verify that
1121 the suffix is located before the current "end" of ENCODED. We want
1122 to avoid re-matching parts of ENCODED that have previously been
1123 marked as discarded (by decrementing LEN0). */
1124 p = strstr (encoded, "___");
1125 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1126 {
1127 if (p[3] == 'X')
4c4b4cd2 1128 len0 = p - encoded;
14f9c5c9 1129 else
4c4b4cd2 1130 goto Suppress;
14f9c5c9 1131 }
4c4b4cd2 1132
29480c32
JB
1133 /* Remove any trailing TKB suffix. It tells us that this symbol
1134 is for the body of a task, but that information does not actually
1135 appear in the decoded name. */
1136
61012eef 1137 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1138 len0 -= 3;
76a01679 1139
a10967fa
JB
1140 /* Remove any trailing TB suffix. The TB suffix is slightly different
1141 from the TKB suffix because it is used for non-anonymous task
1142 bodies. */
1143
61012eef 1144 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1145 len0 -= 2;
1146
29480c32
JB
1147 /* Remove trailing "B" suffixes. */
1148 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1149
61012eef 1150 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1151 len0 -= 1;
1152
4c4b4cd2 1153 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1154
f945dedf 1155 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1156
29480c32
JB
1157 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1158
4c4b4cd2 1159 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1160 {
4c4b4cd2
PH
1161 i = len0 - 2;
1162 while ((i >= 0 && isdigit (encoded[i]))
1163 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1164 i -= 1;
1165 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1166 len0 = i - 1;
1167 else if (encoded[i] == '$')
1168 len0 = i;
d2e4a39e 1169 }
14f9c5c9 1170
29480c32
JB
1171 /* The first few characters that are not alphabetic are not part
1172 of any encoding we use, so we can copy them over verbatim. */
1173
4c4b4cd2
PH
1174 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1175 decoded[j] = encoded[i];
14f9c5c9
AS
1176
1177 at_start_name = 1;
1178 while (i < len0)
1179 {
29480c32 1180 /* Is this a symbol function? */
4c4b4cd2
PH
1181 if (at_start_name && encoded[i] == 'O')
1182 {
1183 int k;
5b4ee69b 1184
4c4b4cd2
PH
1185 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1186 {
1187 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1188 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1189 op_len - 1) == 0)
1190 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1191 {
f945dedf 1192 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1193 at_start_name = 0;
1194 i += op_len;
1195 j += strlen (ada_opname_table[k].decoded);
1196 break;
1197 }
1198 }
1199 if (ada_opname_table[k].encoded != NULL)
1200 continue;
1201 }
14f9c5c9
AS
1202 at_start_name = 0;
1203
529cad9c
PH
1204 /* Replace "TK__" with "__", which will eventually be translated
1205 into "." (just below). */
1206
61012eef 1207 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1208 i += 2;
529cad9c 1209
29480c32
JB
1210 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1211 be translated into "." (just below). These are internal names
1212 generated for anonymous blocks inside which our symbol is nested. */
1213
1214 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1215 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1216 && isdigit (encoded [i+4]))
1217 {
1218 int k = i + 5;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++; /* Skip any extra digit. */
1222
1223 /* Double-check that the "__B_{DIGITS}+" sequence we found
1224 is indeed followed by "__". */
1225 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1226 i = k;
1227 }
1228
529cad9c
PH
1229 /* Remove _E{DIGITS}+[sb] */
1230
1231 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1232 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1233 one implements the actual entry code, and has a suffix following
1234 the convention above; the second one implements the barrier and
1235 uses the same convention as above, except that the 'E' is replaced
1236 by a 'B'.
1237
1238 Just as above, we do not decode the name of barrier functions
1239 to give the user a clue that the code he is debugging has been
1240 internally generated. */
1241
1242 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1243 && isdigit (encoded[i+2]))
1244 {
1245 int k = i + 3;
1246
1247 while (k < len0 && isdigit (encoded[k]))
1248 k++;
1249
1250 if (k < len0
1251 && (encoded[k] == 'b' || encoded[k] == 's'))
1252 {
1253 k++;
1254 /* Just as an extra precaution, make sure that if this
1255 suffix is followed by anything else, it is a '_'.
1256 Otherwise, we matched this sequence by accident. */
1257 if (k == len0
1258 || (k < len0 && encoded[k] == '_'))
1259 i = k;
1260 }
1261 }
1262
1263 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1264 the GNAT front-end in protected object subprograms. */
1265
1266 if (i < len0 + 3
1267 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1268 {
1269 /* Backtrack a bit up until we reach either the begining of
1270 the encoded name, or "__". Make sure that we only find
1271 digits or lowercase characters. */
1272 const char *ptr = encoded + i - 1;
1273
1274 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1275 ptr--;
1276 if (ptr < encoded
1277 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1278 i++;
1279 }
1280
4c4b4cd2
PH
1281 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1282 {
29480c32
JB
1283 /* This is a X[bn]* sequence not separated from the previous
1284 part of the name with a non-alpha-numeric character (in other
1285 words, immediately following an alpha-numeric character), then
1286 verify that it is placed at the end of the encoded name. If
1287 not, then the encoding is not valid and we should abort the
1288 decoding. Otherwise, just skip it, it is used in body-nested
1289 package names. */
4c4b4cd2
PH
1290 do
1291 i += 1;
1292 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1293 if (i < len0)
1294 goto Suppress;
1295 }
cdc7bb92 1296 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1297 {
29480c32 1298 /* Replace '__' by '.'. */
4c4b4cd2
PH
1299 decoded[j] = '.';
1300 at_start_name = 1;
1301 i += 2;
1302 j += 1;
1303 }
14f9c5c9 1304 else
4c4b4cd2 1305 {
29480c32
JB
1306 /* It's a character part of the decoded name, so just copy it
1307 over. */
4c4b4cd2
PH
1308 decoded[j] = encoded[i];
1309 i += 1;
1310 j += 1;
1311 }
14f9c5c9 1312 }
f945dedf 1313 decoded.resize (j);
14f9c5c9 1314
29480c32
JB
1315 /* Decoded names should never contain any uppercase character.
1316 Double-check this, and abort the decoding if we find one. */
1317
f945dedf 1318 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1319 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1320 goto Suppress;
1321
f945dedf 1322 return decoded;
14f9c5c9
AS
1323
1324Suppress:
4c4b4cd2 1325 if (encoded[0] == '<')
f945dedf 1326 decoded = encoded;
14f9c5c9 1327 else
f945dedf 1328 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1329 return decoded;
1330
1331}
1332
1333/* Table for keeping permanent unique copies of decoded names. Once
1334 allocated, names in this table are never released. While this is a
1335 storage leak, it should not be significant unless there are massive
1336 changes in the set of decoded names in successive versions of a
1337 symbol table loaded during a single session. */
1338static struct htab *decoded_names_store;
1339
1340/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1341 in the language-specific part of GSYMBOL, if it has not been
1342 previously computed. Tries to save the decoded name in the same
1343 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1344 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1345 GSYMBOL).
4c4b4cd2
PH
1346 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1347 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1348 when a decoded name is cached in it. */
4c4b4cd2 1349
45e6c716 1350const char *
f85f34ed 1351ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1352{
f85f34ed
TT
1353 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1354 const char **resultp =
615b3f62 1355 &gsymbol->language_specific.demangled_name;
5b4ee69b 1356
f85f34ed 1357 if (!gsymbol->ada_mangled)
4c4b4cd2 1358 {
4d4eaa30 1359 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1360 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1361
f85f34ed 1362 gsymbol->ada_mangled = 1;
5b4ee69b 1363
f85f34ed 1364 if (obstack != NULL)
f945dedf 1365 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1366 else
76a01679 1367 {
f85f34ed
TT
1368 /* Sometimes, we can't find a corresponding objfile, in
1369 which case, we put the result on the heap. Since we only
1370 decode when needed, we hope this usually does not cause a
1371 significant memory leak (FIXME). */
1372
76a01679 1373 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1374 decoded.c_str (), INSERT);
5b4ee69b 1375
76a01679 1376 if (*slot == NULL)
f945dedf 1377 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1378 *resultp = *slot;
1379 }
4c4b4cd2 1380 }
14f9c5c9 1381
4c4b4cd2
PH
1382 return *resultp;
1383}
76a01679 1384
2c0b251b 1385static char *
76a01679 1386ada_la_decode (const char *encoded, int options)
4c4b4cd2 1387{
f945dedf 1388 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1389}
1390
8b302db8
TT
1391/* Implement la_sniff_from_mangled_name for Ada. */
1392
1393static int
1394ada_sniff_from_mangled_name (const char *mangled, char **out)
1395{
f945dedf 1396 std::string demangled = ada_decode (mangled);
8b302db8
TT
1397
1398 *out = NULL;
1399
f945dedf 1400 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1401 {
1402 /* Set the gsymbol language to Ada, but still return 0.
1403 Two reasons for that:
1404
1405 1. For Ada, we prefer computing the symbol's decoded name
1406 on the fly rather than pre-compute it, in order to save
1407 memory (Ada projects are typically very large).
1408
1409 2. There are some areas in the definition of the GNAT
1410 encoding where, with a bit of bad luck, we might be able
1411 to decode a non-Ada symbol, generating an incorrect
1412 demangled name (Eg: names ending with "TB" for instance
1413 are identified as task bodies and so stripped from
1414 the decoded name returned).
1415
1416 Returning 1, here, but not setting *DEMANGLED, helps us get a
1417 little bit of the best of both worlds. Because we're last,
1418 we should not affect any of the other languages that were
1419 able to demangle the symbol before us; we get to correctly
1420 tag Ada symbols as such; and even if we incorrectly tagged a
1421 non-Ada symbol, which should be rare, any routing through the
1422 Ada language should be transparent (Ada tries to behave much
1423 like C/C++ with non-Ada symbols). */
1424 return 1;
1425 }
1426
1427 return 0;
1428}
1429
14f9c5c9 1430\f
d2e4a39e 1431
4c4b4cd2 1432 /* Arrays */
14f9c5c9 1433
28c85d6c
JB
1434/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1435 generated by the GNAT compiler to describe the index type used
1436 for each dimension of an array, check whether it follows the latest
1437 known encoding. If not, fix it up to conform to the latest encoding.
1438 Otherwise, do nothing. This function also does nothing if
1439 INDEX_DESC_TYPE is NULL.
1440
85102364 1441 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1442 Initially, the information would be provided through the name of each
1443 field of the structure type only, while the type of these fields was
1444 described as unspecified and irrelevant. The debugger was then expected
1445 to perform a global type lookup using the name of that field in order
1446 to get access to the full index type description. Because these global
1447 lookups can be very expensive, the encoding was later enhanced to make
1448 the global lookup unnecessary by defining the field type as being
1449 the full index type description.
1450
1451 The purpose of this routine is to allow us to support older versions
1452 of the compiler by detecting the use of the older encoding, and by
1453 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1454 we essentially replace each field's meaningless type by the associated
1455 index subtype). */
1456
1457void
1458ada_fixup_array_indexes_type (struct type *index_desc_type)
1459{
1460 int i;
1461
1462 if (index_desc_type == NULL)
1463 return;
1464 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1465
1466 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1467 to check one field only, no need to check them all). If not, return
1468 now.
1469
1470 If our INDEX_DESC_TYPE was generated using the older encoding,
1471 the field type should be a meaningless integer type whose name
1472 is not equal to the field name. */
1473 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1474 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1475 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1476 return;
1477
1478 /* Fixup each field of INDEX_DESC_TYPE. */
1479 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1480 {
0d5cff50 1481 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1482 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1483
1484 if (raw_type)
1485 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1486 }
1487}
1488
4c4b4cd2 1489/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1490
a121b7c1 1491static const char *bound_name[] = {
d2e4a39e 1492 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1493 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1494};
1495
1496/* Maximum number of array dimensions we are prepared to handle. */
1497
4c4b4cd2 1498#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1499
14f9c5c9 1500
4c4b4cd2
PH
1501/* The desc_* routines return primitive portions of array descriptors
1502 (fat pointers). */
14f9c5c9
AS
1503
1504/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1505 level of indirection, if needed. */
1506
d2e4a39e
AS
1507static struct type *
1508desc_base_type (struct type *type)
14f9c5c9
AS
1509{
1510 if (type == NULL)
1511 return NULL;
61ee279c 1512 type = ada_check_typedef (type);
78134374 1513 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1514 type = ada_typedef_target_type (type);
1515
1265e4aa 1516 if (type != NULL
78134374
SM
1517 && (type->code () == TYPE_CODE_PTR
1518 || type->code () == TYPE_CODE_REF))
61ee279c 1519 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1520 else
1521 return type;
1522}
1523
4c4b4cd2
PH
1524/* True iff TYPE indicates a "thin" array pointer type. */
1525
14f9c5c9 1526static int
d2e4a39e 1527is_thin_pntr (struct type *type)
14f9c5c9 1528{
d2e4a39e 1529 return
14f9c5c9
AS
1530 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1531 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1532}
1533
4c4b4cd2
PH
1534/* The descriptor type for thin pointer type TYPE. */
1535
d2e4a39e
AS
1536static struct type *
1537thin_descriptor_type (struct type *type)
14f9c5c9 1538{
d2e4a39e 1539 struct type *base_type = desc_base_type (type);
5b4ee69b 1540
14f9c5c9
AS
1541 if (base_type == NULL)
1542 return NULL;
1543 if (is_suffix (ada_type_name (base_type), "___XVE"))
1544 return base_type;
d2e4a39e 1545 else
14f9c5c9 1546 {
d2e4a39e 1547 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1548
14f9c5c9 1549 if (alt_type == NULL)
4c4b4cd2 1550 return base_type;
14f9c5c9 1551 else
4c4b4cd2 1552 return alt_type;
14f9c5c9
AS
1553 }
1554}
1555
4c4b4cd2
PH
1556/* A pointer to the array data for thin-pointer value VAL. */
1557
d2e4a39e
AS
1558static struct value *
1559thin_data_pntr (struct value *val)
14f9c5c9 1560{
828292f2 1561 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1562 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1563
556bdfd4
UW
1564 data_type = lookup_pointer_type (data_type);
1565
78134374 1566 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1567 return value_cast (data_type, value_copy (val));
d2e4a39e 1568 else
42ae5230 1569 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1570}
1571
4c4b4cd2
PH
1572/* True iff TYPE indicates a "thick" array pointer type. */
1573
14f9c5c9 1574static int
d2e4a39e 1575is_thick_pntr (struct type *type)
14f9c5c9
AS
1576{
1577 type = desc_base_type (type);
78134374 1578 return (type != NULL && type->code () == TYPE_CODE_STRUCT
4c4b4cd2 1579 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1580}
1581
4c4b4cd2
PH
1582/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1584
d2e4a39e
AS
1585static struct type *
1586desc_bounds_type (struct type *type)
14f9c5c9 1587{
d2e4a39e 1588 struct type *r;
14f9c5c9
AS
1589
1590 type = desc_base_type (type);
1591
1592 if (type == NULL)
1593 return NULL;
1594 else if (is_thin_pntr (type))
1595 {
1596 type = thin_descriptor_type (type);
1597 if (type == NULL)
4c4b4cd2 1598 return NULL;
14f9c5c9
AS
1599 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1600 if (r != NULL)
61ee279c 1601 return ada_check_typedef (r);
14f9c5c9 1602 }
78134374 1603 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1604 {
1605 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1606 if (r != NULL)
61ee279c 1607 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1608 }
1609 return NULL;
1610}
1611
1612/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1613 one, a pointer to its bounds data. Otherwise NULL. */
1614
d2e4a39e
AS
1615static struct value *
1616desc_bounds (struct value *arr)
14f9c5c9 1617{
df407dfe 1618 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1619
d2e4a39e 1620 if (is_thin_pntr (type))
14f9c5c9 1621 {
d2e4a39e 1622 struct type *bounds_type =
4c4b4cd2 1623 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1624 LONGEST addr;
1625
4cdfadb1 1626 if (bounds_type == NULL)
323e0a4a 1627 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1628
1629 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1630 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1631 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1632 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 1633 addr = value_as_long (arr);
d2e4a39e 1634 else
42ae5230 1635 addr = value_address (arr);
14f9c5c9 1636
d2e4a39e 1637 return
4c4b4cd2
PH
1638 value_from_longest (lookup_pointer_type (bounds_type),
1639 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1640 }
1641
1642 else if (is_thick_pntr (type))
05e522ef
JB
1643 {
1644 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1645 _("Bad GNAT array descriptor"));
1646 struct type *p_bounds_type = value_type (p_bounds);
1647
1648 if (p_bounds_type
78134374 1649 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1650 {
1651 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1652
1653 if (TYPE_STUB (target_type))
1654 p_bounds = value_cast (lookup_pointer_type
1655 (ada_check_typedef (target_type)),
1656 p_bounds);
1657 }
1658 else
1659 error (_("Bad GNAT array descriptor"));
1660
1661 return p_bounds;
1662 }
14f9c5c9
AS
1663 else
1664 return NULL;
1665}
1666
4c4b4cd2
PH
1667/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the bounds data. */
1669
14f9c5c9 1670static int
d2e4a39e 1671fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1672{
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1674}
1675
1676/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1677 size of the field containing the address of the bounds data. */
1678
14f9c5c9 1679static int
d2e4a39e 1680fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1681{
1682 type = desc_base_type (type);
1683
d2e4a39e 1684 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1685 return TYPE_FIELD_BITSIZE (type, 1);
1686 else
61ee279c 1687 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1688}
1689
4c4b4cd2 1690/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1691 pointer to one, the type of its array data (a array-with-no-bounds type);
1692 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1693 data. */
4c4b4cd2 1694
d2e4a39e 1695static struct type *
556bdfd4 1696desc_data_target_type (struct type *type)
14f9c5c9
AS
1697{
1698 type = desc_base_type (type);
1699
4c4b4cd2 1700 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1701 if (is_thin_pntr (type))
556bdfd4 1702 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1703 else if (is_thick_pntr (type))
556bdfd4
UW
1704 {
1705 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1706
1707 if (data_type
78134374 1708 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1709 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1710 }
1711
1712 return NULL;
14f9c5c9
AS
1713}
1714
1715/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1716 its array data. */
4c4b4cd2 1717
d2e4a39e
AS
1718static struct value *
1719desc_data (struct value *arr)
14f9c5c9 1720{
df407dfe 1721 struct type *type = value_type (arr);
5b4ee69b 1722
14f9c5c9
AS
1723 if (is_thin_pntr (type))
1724 return thin_data_pntr (arr);
1725 else if (is_thick_pntr (type))
d2e4a39e 1726 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1727 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1728 else
1729 return NULL;
1730}
1731
1732
1733/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1734 position of the field containing the address of the data. */
1735
14f9c5c9 1736static int
d2e4a39e 1737fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1738{
1739 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1740}
1741
1742/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1743 size of the field containing the address of the data. */
1744
14f9c5c9 1745static int
d2e4a39e 1746fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
1750 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1751 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1752 else
14f9c5c9
AS
1753 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1754}
1755
4c4b4cd2 1756/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1757 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1758 bound, if WHICH is 1. The first bound is I=1. */
1759
d2e4a39e
AS
1760static struct value *
1761desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1762{
d2e4a39e 1763 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1764 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1765}
1766
1767/* If BOUNDS is an array-bounds structure type, return the bit position
1768 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1769 bound, if WHICH is 1. The first bound is I=1. */
1770
14f9c5c9 1771static int
d2e4a39e 1772desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1773{
d2e4a39e 1774 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1775}
1776
1777/* If BOUNDS is an array-bounds structure type, return the bit field size
1778 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1779 bound, if WHICH is 1. The first bound is I=1. */
1780
76a01679 1781static int
d2e4a39e 1782desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1783{
1784 type = desc_base_type (type);
1785
d2e4a39e
AS
1786 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1787 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1788 else
1789 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1790}
1791
1792/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1793 Ith bound (numbering from 1). Otherwise, NULL. */
1794
d2e4a39e
AS
1795static struct type *
1796desc_index_type (struct type *type, int i)
14f9c5c9
AS
1797{
1798 type = desc_base_type (type);
1799
78134374 1800 if (type->code () == TYPE_CODE_STRUCT)
d2e4a39e
AS
1801 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1802 else
14f9c5c9
AS
1803 return NULL;
1804}
1805
4c4b4cd2
PH
1806/* The number of index positions in the array-bounds type TYPE.
1807 Return 0 if TYPE is NULL. */
1808
14f9c5c9 1809static int
d2e4a39e 1810desc_arity (struct type *type)
14f9c5c9
AS
1811{
1812 type = desc_base_type (type);
1813
1814 if (type != NULL)
1815 return TYPE_NFIELDS (type) / 2;
1816 return 0;
1817}
1818
4c4b4cd2
PH
1819/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1820 an array descriptor type (representing an unconstrained array
1821 type). */
1822
76a01679
JB
1823static int
1824ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1825{
1826 if (type == NULL)
1827 return 0;
61ee279c 1828 type = ada_check_typedef (type);
78134374 1829 return (type->code () == TYPE_CODE_ARRAY
76a01679 1830 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1831}
1832
52ce6436 1833/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1834 * to one. */
52ce6436 1835
2c0b251b 1836static int
52ce6436
PH
1837ada_is_array_type (struct type *type)
1838{
78134374
SM
1839 while (type != NULL
1840 && (type->code () == TYPE_CODE_PTR
1841 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1842 type = TYPE_TARGET_TYPE (type);
1843 return ada_is_direct_array_type (type);
1844}
1845
4c4b4cd2 1846/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1847
14f9c5c9 1848int
4c4b4cd2 1849ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1850{
1851 if (type == NULL)
1852 return 0;
61ee279c 1853 type = ada_check_typedef (type);
78134374
SM
1854 return (type->code () == TYPE_CODE_ARRAY
1855 || (type->code () == TYPE_CODE_PTR
1856 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1857 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1858}
1859
4c4b4cd2
PH
1860/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1861
14f9c5c9 1862int
4c4b4cd2 1863ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1864{
556bdfd4 1865 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1866
1867 if (type == NULL)
1868 return 0;
61ee279c 1869 type = ada_check_typedef (type);
556bdfd4 1870 return (data_type != NULL
78134374 1871 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1872 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1873}
1874
1875/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1876 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1877 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1878 is still needed. */
1879
14f9c5c9 1880int
ebf56fd3 1881ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1882{
d2e4a39e 1883 return
14f9c5c9 1884 type != NULL
78134374 1885 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1886 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1887 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1888 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1889}
1890
1891
4c4b4cd2 1892/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1893 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1894 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1895 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1896 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1897 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1898 a descriptor. */
de93309a
SM
1899
1900static struct type *
d2e4a39e 1901ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1902{
ad82864c
JB
1903 if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1905
df407dfe
AC
1906 if (!ada_is_array_descriptor_type (value_type (arr)))
1907 return value_type (arr);
d2e4a39e
AS
1908
1909 if (!bounds)
ad82864c
JB
1910 {
1911 struct type *array_type =
1912 ada_check_typedef (desc_data_target_type (value_type (arr)));
1913
1914 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1915 TYPE_FIELD_BITSIZE (array_type, 0) =
1916 decode_packed_array_bitsize (value_type (arr));
1917
1918 return array_type;
1919 }
14f9c5c9
AS
1920 else
1921 {
d2e4a39e 1922 struct type *elt_type;
14f9c5c9 1923 int arity;
d2e4a39e 1924 struct value *descriptor;
14f9c5c9 1925
df407dfe
AC
1926 elt_type = ada_array_element_type (value_type (arr), -1);
1927 arity = ada_array_arity (value_type (arr));
14f9c5c9 1928
d2e4a39e 1929 if (elt_type == NULL || arity == 0)
df407dfe 1930 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1931
1932 descriptor = desc_bounds (arr);
d2e4a39e 1933 if (value_as_long (descriptor) == 0)
4c4b4cd2 1934 return NULL;
d2e4a39e 1935 while (arity > 0)
4c4b4cd2 1936 {
e9bb382b
UW
1937 struct type *range_type = alloc_type_copy (value_type (arr));
1938 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1939 struct value *low = desc_one_bound (descriptor, arity, 0);
1940 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1941
5b4ee69b 1942 arity -= 1;
0c9c3474
SA
1943 create_static_range_type (range_type, value_type (low),
1944 longest_to_int (value_as_long (low)),
1945 longest_to_int (value_as_long (high)));
4c4b4cd2 1946 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1947
1948 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1949 {
1950 /* We need to store the element packed bitsize, as well as
1951 recompute the array size, because it was previously
1952 computed based on the unpacked element size. */
1953 LONGEST lo = value_as_long (low);
1954 LONGEST hi = value_as_long (high);
1955
1956 TYPE_FIELD_BITSIZE (elt_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958 /* If the array has no element, then the size is already
1959 zero, and does not need to be recomputed. */
1960 if (lo < hi)
1961 {
1962 int array_bitsize =
1963 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1964
1965 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1966 }
1967 }
4c4b4cd2 1968 }
14f9c5c9
AS
1969
1970 return lookup_pointer_type (elt_type);
1971 }
1972}
1973
1974/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1975 Otherwise, returns either a standard GDB array with bounds set
1976 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1977 GDB array. Returns NULL if ARR is a null fat pointer. */
1978
d2e4a39e
AS
1979struct value *
1980ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1981{
df407dfe 1982 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1983 {
d2e4a39e 1984 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1985
14f9c5c9 1986 if (arrType == NULL)
4c4b4cd2 1987 return NULL;
14f9c5c9
AS
1988 return value_cast (arrType, value_copy (desc_data (arr)));
1989 }
ad82864c
JB
1990 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1991 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1992 else
1993 return arr;
1994}
1995
1996/* If ARR does not represent an array, returns ARR unchanged.
1997 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1998 be ARR itself if it already is in the proper form). */
1999
720d1a40 2000struct value *
d2e4a39e 2001ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2002{
df407dfe 2003 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2004 {
d2e4a39e 2005 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2006
14f9c5c9 2007 if (arrVal == NULL)
323e0a4a 2008 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2009 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2010 return value_ind (arrVal);
2011 }
ad82864c
JB
2012 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2013 return decode_constrained_packed_array (arr);
d2e4a39e 2014 else
14f9c5c9
AS
2015 return arr;
2016}
2017
2018/* If TYPE represents a GNAT array type, return it translated to an
2019 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2020 packing). For other types, is the identity. */
2021
d2e4a39e
AS
2022struct type *
2023ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2024{
ad82864c
JB
2025 if (ada_is_constrained_packed_array_type (type))
2026 return decode_constrained_packed_array_type (type);
17280b9f
UW
2027
2028 if (ada_is_array_descriptor_type (type))
556bdfd4 2029 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2030
2031 return type;
14f9c5c9
AS
2032}
2033
4c4b4cd2
PH
2034/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2035
ad82864c
JB
2036static int
2037ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2038{
2039 if (type == NULL)
2040 return 0;
4c4b4cd2 2041 type = desc_base_type (type);
61ee279c 2042 type = ada_check_typedef (type);
d2e4a39e 2043 return
14f9c5c9
AS
2044 ada_type_name (type) != NULL
2045 && strstr (ada_type_name (type), "___XP") != NULL;
2046}
2047
ad82864c
JB
2048/* Non-zero iff TYPE represents a standard GNAT constrained
2049 packed-array type. */
2050
2051int
2052ada_is_constrained_packed_array_type (struct type *type)
2053{
2054 return ada_is_packed_array_type (type)
2055 && !ada_is_array_descriptor_type (type);
2056}
2057
2058/* Non-zero iff TYPE represents an array descriptor for a
2059 unconstrained packed-array type. */
2060
2061static int
2062ada_is_unconstrained_packed_array_type (struct type *type)
2063{
2064 return ada_is_packed_array_type (type)
2065 && ada_is_array_descriptor_type (type);
2066}
2067
2068/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2069 return the size of its elements in bits. */
2070
2071static long
2072decode_packed_array_bitsize (struct type *type)
2073{
0d5cff50
DE
2074 const char *raw_name;
2075 const char *tail;
ad82864c
JB
2076 long bits;
2077
720d1a40
JB
2078 /* Access to arrays implemented as fat pointers are encoded as a typedef
2079 of the fat pointer type. We need the name of the fat pointer type
2080 to do the decoding, so strip the typedef layer. */
78134374 2081 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2082 type = ada_typedef_target_type (type);
2083
2084 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2085 if (!raw_name)
2086 raw_name = ada_type_name (desc_base_type (type));
2087
2088 if (!raw_name)
2089 return 0;
2090
2091 tail = strstr (raw_name, "___XP");
720d1a40 2092 gdb_assert (tail != NULL);
ad82864c
JB
2093
2094 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2095 {
2096 lim_warning
2097 (_("could not understand bit size information on packed array"));
2098 return 0;
2099 }
2100
2101 return bits;
2102}
2103
14f9c5c9
AS
2104/* Given that TYPE is a standard GDB array type with all bounds filled
2105 in, and that the element size of its ultimate scalar constituents
2106 (that is, either its elements, or, if it is an array of arrays, its
2107 elements' elements, etc.) is *ELT_BITS, return an identical type,
2108 but with the bit sizes of its elements (and those of any
2109 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2110 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2111 in bits.
2112
2113 Note that, for arrays whose index type has an XA encoding where
2114 a bound references a record discriminant, getting that discriminant,
2115 and therefore the actual value of that bound, is not possible
2116 because none of the given parameters gives us access to the record.
2117 This function assumes that it is OK in the context where it is being
2118 used to return an array whose bounds are still dynamic and where
2119 the length is arbitrary. */
4c4b4cd2 2120
d2e4a39e 2121static struct type *
ad82864c 2122constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2123{
d2e4a39e
AS
2124 struct type *new_elt_type;
2125 struct type *new_type;
99b1c762
JB
2126 struct type *index_type_desc;
2127 struct type *index_type;
14f9c5c9
AS
2128 LONGEST low_bound, high_bound;
2129
61ee279c 2130 type = ada_check_typedef (type);
78134374 2131 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2132 return type;
2133
99b1c762
JB
2134 index_type_desc = ada_find_parallel_type (type, "___XA");
2135 if (index_type_desc)
2136 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2137 NULL);
2138 else
2139 index_type = TYPE_INDEX_TYPE (type);
2140
e9bb382b 2141 new_type = alloc_type_copy (type);
ad82864c
JB
2142 new_elt_type =
2143 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2144 elt_bits);
99b1c762 2145 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2146 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2147 TYPE_NAME (new_type) = ada_type_name (type);
2148
78134374 2149 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2150 && is_dynamic_type (check_typedef (index_type)))
2151 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2152 low_bound = high_bound = 0;
2153 if (high_bound < low_bound)
2154 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2155 else
14f9c5c9
AS
2156 {
2157 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2158 TYPE_LENGTH (new_type) =
4c4b4cd2 2159 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2160 }
2161
876cecd0 2162 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2163 return new_type;
2164}
2165
ad82864c
JB
2166/* The array type encoded by TYPE, where
2167 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2168
d2e4a39e 2169static struct type *
ad82864c 2170decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2171{
0d5cff50 2172 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2173 char *name;
0d5cff50 2174 const char *tail;
d2e4a39e 2175 struct type *shadow_type;
14f9c5c9 2176 long bits;
14f9c5c9 2177
727e3d2e
JB
2178 if (!raw_name)
2179 raw_name = ada_type_name (desc_base_type (type));
2180
2181 if (!raw_name)
2182 return NULL;
2183
2184 name = (char *) alloca (strlen (raw_name) + 1);
2185 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2186 type = desc_base_type (type);
2187
14f9c5c9
AS
2188 memcpy (name, raw_name, tail - raw_name);
2189 name[tail - raw_name] = '\000';
2190
b4ba55a1
JB
2191 shadow_type = ada_find_parallel_type_with_name (type, name);
2192
2193 if (shadow_type == NULL)
14f9c5c9 2194 {
323e0a4a 2195 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2196 return NULL;
2197 }
f168693b 2198 shadow_type = check_typedef (shadow_type);
14f9c5c9 2199
78134374 2200 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2201 {
0963b4bd
MS
2202 lim_warning (_("could not understand bounds "
2203 "information on packed array"));
14f9c5c9
AS
2204 return NULL;
2205 }
d2e4a39e 2206
ad82864c
JB
2207 bits = decode_packed_array_bitsize (type);
2208 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2209}
2210
ad82864c
JB
2211/* Given that ARR is a struct value *indicating a GNAT constrained packed
2212 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2213 standard GDB array type except that the BITSIZEs of the array
2214 target types are set to the number of bits in each element, and the
4c4b4cd2 2215 type length is set appropriately. */
14f9c5c9 2216
d2e4a39e 2217static struct value *
ad82864c 2218decode_constrained_packed_array (struct value *arr)
14f9c5c9 2219{
4c4b4cd2 2220 struct type *type;
14f9c5c9 2221
11aa919a
PMR
2222 /* If our value is a pointer, then dereference it. Likewise if
2223 the value is a reference. Make sure that this operation does not
2224 cause the target type to be fixed, as this would indirectly cause
2225 this array to be decoded. The rest of the routine assumes that
2226 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2227 and "value_ind" routines to perform the dereferencing, as opposed
2228 to using "ada_coerce_ref" or "ada_value_ind". */
2229 arr = coerce_ref (arr);
78134374 2230 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2231 arr = value_ind (arr);
4c4b4cd2 2232
ad82864c 2233 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2234 if (type == NULL)
2235 {
323e0a4a 2236 error (_("can't unpack array"));
14f9c5c9
AS
2237 return NULL;
2238 }
61ee279c 2239
d5a22e77 2240 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2241 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2242 {
2243 /* This is a (right-justified) modular type representing a packed
2244 array with no wrapper. In order to interpret the value through
2245 the (left-justified) packed array type we just built, we must
2246 first left-justify it. */
2247 int bit_size, bit_pos;
2248 ULONGEST mod;
2249
df407dfe 2250 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2251 bit_size = 0;
2252 while (mod > 0)
2253 {
2254 bit_size += 1;
2255 mod >>= 1;
2256 }
df407dfe 2257 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2258 arr = ada_value_primitive_packed_val (arr, NULL,
2259 bit_pos / HOST_CHAR_BIT,
2260 bit_pos % HOST_CHAR_BIT,
2261 bit_size,
2262 type);
2263 }
2264
4c4b4cd2 2265 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2266}
2267
2268
2269/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2270 given in IND. ARR must be a simple array. */
14f9c5c9 2271
d2e4a39e
AS
2272static struct value *
2273value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2274{
2275 int i;
2276 int bits, elt_off, bit_off;
2277 long elt_total_bit_offset;
d2e4a39e
AS
2278 struct type *elt_type;
2279 struct value *v;
14f9c5c9
AS
2280
2281 bits = 0;
2282 elt_total_bit_offset = 0;
df407dfe 2283 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2284 for (i = 0; i < arity; i += 1)
14f9c5c9 2285 {
78134374 2286 if (elt_type->code () != TYPE_CODE_ARRAY
4c4b4cd2
PH
2287 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2288 error
0963b4bd
MS
2289 (_("attempt to do packed indexing of "
2290 "something other than a packed array"));
14f9c5c9 2291 else
4c4b4cd2
PH
2292 {
2293 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2294 LONGEST lowerbound, upperbound;
2295 LONGEST idx;
2296
2297 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2298 {
323e0a4a 2299 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2300 lowerbound = upperbound = 0;
2301 }
2302
3cb382c9 2303 idx = pos_atr (ind[i]);
4c4b4cd2 2304 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2305 lim_warning (_("packed array index %ld out of bounds"),
2306 (long) idx);
4c4b4cd2
PH
2307 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2308 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2309 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2310 }
14f9c5c9
AS
2311 }
2312 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2313 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2314
2315 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2316 bits, elt_type);
14f9c5c9
AS
2317 return v;
2318}
2319
4c4b4cd2 2320/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2321
2322static int
d2e4a39e 2323has_negatives (struct type *type)
14f9c5c9 2324{
78134374 2325 switch (type->code ())
d2e4a39e
AS
2326 {
2327 default:
2328 return 0;
2329 case TYPE_CODE_INT:
2330 return !TYPE_UNSIGNED (type);
2331 case TYPE_CODE_RANGE:
4e962e74 2332 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2333 }
14f9c5c9 2334}
d2e4a39e 2335
f93fca70 2336/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2337 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2338 the unpacked buffer.
14f9c5c9 2339
5b639dea
JB
2340 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2341 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2342
f93fca70
JB
2343 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2344 zero otherwise.
14f9c5c9 2345
f93fca70 2346 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2347
f93fca70
JB
2348 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2349
2350static void
2351ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2352 gdb_byte *unpacked, int unpacked_len,
2353 int is_big_endian, int is_signed_type,
2354 int is_scalar)
2355{
a1c95e6b
JB
2356 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2357 int src_idx; /* Index into the source area */
2358 int src_bytes_left; /* Number of source bytes left to process. */
2359 int srcBitsLeft; /* Number of source bits left to move */
2360 int unusedLS; /* Number of bits in next significant
2361 byte of source that are unused */
2362
a1c95e6b
JB
2363 int unpacked_idx; /* Index into the unpacked buffer */
2364 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2365
4c4b4cd2 2366 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2367 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2368 unsigned char sign;
a1c95e6b 2369
4c4b4cd2
PH
2370 /* Transmit bytes from least to most significant; delta is the direction
2371 the indices move. */
f93fca70 2372 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2373
5b639dea
JB
2374 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2375 bits from SRC. .*/
2376 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2377 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2378 bit_size, unpacked_len);
2379
14f9c5c9 2380 srcBitsLeft = bit_size;
086ca51f 2381 src_bytes_left = src_len;
f93fca70 2382 unpacked_bytes_left = unpacked_len;
14f9c5c9 2383 sign = 0;
f93fca70
JB
2384
2385 if (is_big_endian)
14f9c5c9 2386 {
086ca51f 2387 src_idx = src_len - 1;
f93fca70
JB
2388 if (is_signed_type
2389 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2390 sign = ~0;
d2e4a39e
AS
2391
2392 unusedLS =
4c4b4cd2
PH
2393 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2394 % HOST_CHAR_BIT;
14f9c5c9 2395
f93fca70
JB
2396 if (is_scalar)
2397 {
2398 accumSize = 0;
2399 unpacked_idx = unpacked_len - 1;
2400 }
2401 else
2402 {
4c4b4cd2
PH
2403 /* Non-scalar values must be aligned at a byte boundary... */
2404 accumSize =
2405 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2406 /* ... And are placed at the beginning (most-significant) bytes
2407 of the target. */
086ca51f
JB
2408 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2409 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2410 }
14f9c5c9 2411 }
d2e4a39e 2412 else
14f9c5c9
AS
2413 {
2414 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2415
086ca51f 2416 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2417 unusedLS = bit_offset;
2418 accumSize = 0;
2419
f93fca70 2420 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2421 sign = ~0;
14f9c5c9 2422 }
d2e4a39e 2423
14f9c5c9 2424 accum = 0;
086ca51f 2425 while (src_bytes_left > 0)
14f9c5c9
AS
2426 {
2427 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2428 part of the value. */
d2e4a39e 2429 unsigned int unusedMSMask =
4c4b4cd2
PH
2430 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2431 1;
2432 /* Sign-extend bits for this byte. */
14f9c5c9 2433 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2434
d2e4a39e 2435 accum |=
086ca51f 2436 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2437 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2438 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2439 {
db297a65 2440 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2441 accumSize -= HOST_CHAR_BIT;
2442 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2443 unpacked_bytes_left -= 1;
2444 unpacked_idx += delta;
4c4b4cd2 2445 }
14f9c5c9
AS
2446 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2447 unusedLS = 0;
086ca51f
JB
2448 src_bytes_left -= 1;
2449 src_idx += delta;
14f9c5c9 2450 }
086ca51f 2451 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2452 {
2453 accum |= sign << accumSize;
db297a65 2454 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2455 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2456 if (accumSize < 0)
2457 accumSize = 0;
14f9c5c9 2458 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2459 unpacked_bytes_left -= 1;
2460 unpacked_idx += delta;
14f9c5c9 2461 }
f93fca70
JB
2462}
2463
2464/* Create a new value of type TYPE from the contents of OBJ starting
2465 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2466 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2467 assigning through the result will set the field fetched from.
2468 VALADDR is ignored unless OBJ is NULL, in which case,
2469 VALADDR+OFFSET must address the start of storage containing the
2470 packed value. The value returned in this case is never an lval.
2471 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2472
2473struct value *
2474ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2475 long offset, int bit_offset, int bit_size,
2476 struct type *type)
2477{
2478 struct value *v;
bfb1c796 2479 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2480 gdb_byte *unpacked;
220475ed 2481 const int is_scalar = is_scalar_type (type);
d5a22e77 2482 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2483 gdb::byte_vector staging;
f93fca70
JB
2484
2485 type = ada_check_typedef (type);
2486
d0a9e810 2487 if (obj == NULL)
bfb1c796 2488 src = valaddr + offset;
d0a9e810 2489 else
bfb1c796 2490 src = value_contents (obj) + offset;
d0a9e810
JB
2491
2492 if (is_dynamic_type (type))
2493 {
2494 /* The length of TYPE might by dynamic, so we need to resolve
2495 TYPE in order to know its actual size, which we then use
2496 to create the contents buffer of the value we return.
2497 The difficulty is that the data containing our object is
2498 packed, and therefore maybe not at a byte boundary. So, what
2499 we do, is unpack the data into a byte-aligned buffer, and then
2500 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2501 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2502 staging.resize (staging_len);
d0a9e810
JB
2503
2504 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2505 staging.data (), staging.size (),
d0a9e810
JB
2506 is_big_endian, has_negatives (type),
2507 is_scalar);
b249d2c2 2508 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2509 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2510 {
2511 /* This happens when the length of the object is dynamic,
2512 and is actually smaller than the space reserved for it.
2513 For instance, in an array of variant records, the bit_size
2514 we're given is the array stride, which is constant and
2515 normally equal to the maximum size of its element.
2516 But, in reality, each element only actually spans a portion
2517 of that stride. */
2518 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2519 }
d0a9e810
JB
2520 }
2521
f93fca70
JB
2522 if (obj == NULL)
2523 {
2524 v = allocate_value (type);
bfb1c796 2525 src = valaddr + offset;
f93fca70
JB
2526 }
2527 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2528 {
0cafa88c 2529 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2530 gdb_byte *buf;
0cafa88c 2531
f93fca70 2532 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2533 buf = (gdb_byte *) alloca (src_len);
2534 read_memory (value_address (v), buf, src_len);
2535 src = buf;
f93fca70
JB
2536 }
2537 else
2538 {
2539 v = allocate_value (type);
bfb1c796 2540 src = value_contents (obj) + offset;
f93fca70
JB
2541 }
2542
2543 if (obj != NULL)
2544 {
2545 long new_offset = offset;
2546
2547 set_value_component_location (v, obj);
2548 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2549 set_value_bitsize (v, bit_size);
2550 if (value_bitpos (v) >= HOST_CHAR_BIT)
2551 {
2552 ++new_offset;
2553 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2554 }
2555 set_value_offset (v, new_offset);
2556
2557 /* Also set the parent value. This is needed when trying to
2558 assign a new value (in inferior memory). */
2559 set_value_parent (v, obj);
2560 }
2561 else
2562 set_value_bitsize (v, bit_size);
bfb1c796 2563 unpacked = value_contents_writeable (v);
f93fca70
JB
2564
2565 if (bit_size == 0)
2566 {
2567 memset (unpacked, 0, TYPE_LENGTH (type));
2568 return v;
2569 }
2570
d5722aa2 2571 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2572 {
d0a9e810
JB
2573 /* Small short-cut: If we've unpacked the data into a buffer
2574 of the same size as TYPE's length, then we can reuse that,
2575 instead of doing the unpacking again. */
d5722aa2 2576 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2577 }
d0a9e810
JB
2578 else
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 unpacked, TYPE_LENGTH (type),
2581 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2582
14f9c5c9
AS
2583 return v;
2584}
d2e4a39e 2585
14f9c5c9
AS
2586/* Store the contents of FROMVAL into the location of TOVAL.
2587 Return a new value with the location of TOVAL and contents of
2588 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2589 floating-point or non-scalar types. */
14f9c5c9 2590
d2e4a39e
AS
2591static struct value *
2592ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2593{
df407dfe
AC
2594 struct type *type = value_type (toval);
2595 int bits = value_bitsize (toval);
14f9c5c9 2596
52ce6436
PH
2597 toval = ada_coerce_ref (toval);
2598 fromval = ada_coerce_ref (fromval);
2599
2600 if (ada_is_direct_array_type (value_type (toval)))
2601 toval = ada_coerce_to_simple_array (toval);
2602 if (ada_is_direct_array_type (value_type (fromval)))
2603 fromval = ada_coerce_to_simple_array (fromval);
2604
88e3b34b 2605 if (!deprecated_value_modifiable (toval))
323e0a4a 2606 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2607
d2e4a39e 2608 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2609 && bits > 0
78134374
SM
2610 && (type->code () == TYPE_CODE_FLT
2611 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2612 {
df407dfe
AC
2613 int len = (value_bitpos (toval)
2614 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2615 int from_size;
224c3ddb 2616 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2617 struct value *val;
42ae5230 2618 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2619
78134374 2620 if (type->code () == TYPE_CODE_FLT)
4c4b4cd2 2621 fromval = value_cast (type, fromval);
14f9c5c9 2622
52ce6436 2623 read_memory (to_addr, buffer, len);
aced2898
PH
2624 from_size = value_bitsize (fromval);
2625 if (from_size == 0)
2626 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2627
d5a22e77 2628 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2629 ULONGEST from_offset = 0;
2630 if (is_big_endian && is_scalar_type (value_type (fromval)))
2631 from_offset = from_size - bits;
2632 copy_bitwise (buffer, value_bitpos (toval),
2633 value_contents (fromval), from_offset,
2634 bits, is_big_endian);
972daa01 2635 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2636
14f9c5c9 2637 val = value_copy (toval);
0fd88904 2638 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2639 TYPE_LENGTH (type));
04624583 2640 deprecated_set_value_type (val, type);
d2e4a39e 2641
14f9c5c9
AS
2642 return val;
2643 }
2644
2645 return value_assign (toval, fromval);
2646}
2647
2648
7c512744
JB
2649/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2650 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2651 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2652 COMPONENT, and not the inferior's memory. The current contents
2653 of COMPONENT are ignored.
2654
2655 Although not part of the initial design, this function also works
2656 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2657 had a null address, and COMPONENT had an address which is equal to
2658 its offset inside CONTAINER. */
2659
52ce6436
PH
2660static void
2661value_assign_to_component (struct value *container, struct value *component,
2662 struct value *val)
2663{
2664 LONGEST offset_in_container =
42ae5230 2665 (LONGEST) (value_address (component) - value_address (container));
7c512744 2666 int bit_offset_in_container =
52ce6436
PH
2667 value_bitpos (component) - value_bitpos (container);
2668 int bits;
7c512744 2669
52ce6436
PH
2670 val = value_cast (value_type (component), val);
2671
2672 if (value_bitsize (component) == 0)
2673 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2674 else
2675 bits = value_bitsize (component);
2676
d5a22e77 2677 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2678 {
2679 int src_offset;
2680
2681 if (is_scalar_type (check_typedef (value_type (component))))
2682 src_offset
2683 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2684 else
2685 src_offset = 0;
a99bc3d2
JB
2686 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
2688 value_contents (val), src_offset, bits, 1);
2a62dfa9 2689 }
52ce6436 2690 else
a99bc3d2
JB
2691 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2692 value_bitpos (container) + bit_offset_in_container,
2693 value_contents (val), 0, bits, 0);
7c512744
JB
2694}
2695
736ade86
XR
2696/* Determine if TYPE is an access to an unconstrained array. */
2697
d91e9ea8 2698bool
736ade86
XR
2699ada_is_access_to_unconstrained_array (struct type *type)
2700{
78134374 2701 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2702 && is_thick_pntr (ada_typedef_target_type (type)));
2703}
2704
4c4b4cd2
PH
2705/* The value of the element of array ARR at the ARITY indices given in IND.
2706 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2707 thereto. */
2708
d2e4a39e
AS
2709struct value *
2710ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2711{
2712 int k;
d2e4a39e
AS
2713 struct value *elt;
2714 struct type *elt_type;
14f9c5c9
AS
2715
2716 elt = ada_coerce_to_simple_array (arr);
2717
df407dfe 2718 elt_type = ada_check_typedef (value_type (elt));
78134374 2719 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2720 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2721 return value_subscript_packed (elt, arity, ind);
2722
2723 for (k = 0; k < arity; k += 1)
2724 {
b9c50e9a
XR
2725 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2726
78134374 2727 if (elt_type->code () != TYPE_CODE_ARRAY)
323e0a4a 2728 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2729
2497b498 2730 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2731
2732 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2733 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2734 {
2735 /* The element is a typedef to an unconstrained array,
2736 except that the value_subscript call stripped the
2737 typedef layer. The typedef layer is GNAT's way to
2738 specify that the element is, at the source level, an
2739 access to the unconstrained array, rather than the
2740 unconstrained array. So, we need to restore that
2741 typedef layer, which we can do by forcing the element's
2742 type back to its original type. Otherwise, the returned
2743 value is going to be printed as the array, rather
2744 than as an access. Another symptom of the same issue
2745 would be that an expression trying to dereference the
2746 element would also be improperly rejected. */
2747 deprecated_set_value_type (elt, saved_elt_type);
2748 }
2749
2750 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2751 }
b9c50e9a 2752
14f9c5c9
AS
2753 return elt;
2754}
2755
deede10c
JB
2756/* Assuming ARR is a pointer to a GDB array, the value of the element
2757 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2758 Does not read the entire array into memory.
2759
2760 Note: Unlike what one would expect, this function is used instead of
2761 ada_value_subscript for basically all non-packed array types. The reason
2762 for this is that a side effect of doing our own pointer arithmetics instead
2763 of relying on value_subscript is that there is no implicit typedef peeling.
2764 This is important for arrays of array accesses, where it allows us to
2765 preserve the fact that the array's element is an array access, where the
2766 access part os encoded in a typedef layer. */
14f9c5c9 2767
2c0b251b 2768static struct value *
deede10c 2769ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2770{
2771 int k;
919e6dbe 2772 struct value *array_ind = ada_value_ind (arr);
deede10c 2773 struct type *type
919e6dbe
PMR
2774 = check_typedef (value_enclosing_type (array_ind));
2775
78134374 2776 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2777 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2778 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2779
2780 for (k = 0; k < arity; k += 1)
2781 {
2782 LONGEST lwb, upb;
aa715135 2783 struct value *lwb_value;
14f9c5c9 2784
78134374 2785 if (type->code () != TYPE_CODE_ARRAY)
323e0a4a 2786 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2787 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2788 value_copy (arr));
14f9c5c9 2789 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
78134374 2790 lwb_value = value_from_longest (value_type (ind[k]), lwb);
aa715135 2791 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2792 type = TYPE_TARGET_TYPE (type);
2793 }
2794
2795 return value_ind (arr);
2796}
2797
0b5d8877 2798/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2799 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2800 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2801 this array is LOW, as per Ada rules. */
0b5d8877 2802static struct value *
f5938064
JG
2803ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2804 int low, int high)
0b5d8877 2805{
b0dd7688 2806 struct type *type0 = ada_check_typedef (type);
aa715135 2807 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2808 struct type *index_type
aa715135 2809 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2810 struct type *slice_type = create_array_type_with_stride
2811 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2812 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2813 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2814 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2815 LONGEST base_low_pos, low_pos;
2816 CORE_ADDR base;
2817
2818 if (!discrete_position (base_index_type, low, &low_pos)
2819 || !discrete_position (base_index_type, base_low, &base_low_pos))
2820 {
2821 warning (_("unable to get positions in slice, use bounds instead"));
2822 low_pos = low;
2823 base_low_pos = base_low;
2824 }
5b4ee69b 2825
aa715135
JG
2826 base = value_as_address (array_ptr)
2827 + ((low_pos - base_low_pos)
2828 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2829 return value_at_lazy (slice_type, base);
0b5d8877
PH
2830}
2831
2832
2833static struct value *
2834ada_value_slice (struct value *array, int low, int high)
2835{
b0dd7688 2836 struct type *type = ada_check_typedef (value_type (array));
aa715135 2837 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2838 struct type *index_type
2839 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2840 struct type *slice_type = create_array_type_with_stride
2841 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2842 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2843 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2844 LONGEST low_pos, high_pos;
5b4ee69b 2845
aa715135
JG
2846 if (!discrete_position (base_index_type, low, &low_pos)
2847 || !discrete_position (base_index_type, high, &high_pos))
2848 {
2849 warning (_("unable to get positions in slice, use bounds instead"));
2850 low_pos = low;
2851 high_pos = high;
2852 }
2853
2854 return value_cast (slice_type,
2855 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2856}
2857
14f9c5c9
AS
2858/* If type is a record type in the form of a standard GNAT array
2859 descriptor, returns the number of dimensions for type. If arr is a
2860 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2861 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2862
2863int
d2e4a39e 2864ada_array_arity (struct type *type)
14f9c5c9
AS
2865{
2866 int arity;
2867
2868 if (type == NULL)
2869 return 0;
2870
2871 type = desc_base_type (type);
2872
2873 arity = 0;
78134374 2874 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2875 return desc_arity (desc_bounds_type (type));
d2e4a39e 2876 else
78134374 2877 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2878 {
4c4b4cd2 2879 arity += 1;
61ee279c 2880 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2881 }
d2e4a39e 2882
14f9c5c9
AS
2883 return arity;
2884}
2885
2886/* If TYPE is a record type in the form of a standard GNAT array
2887 descriptor or a simple array type, returns the element type for
2888 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2889 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2890
d2e4a39e
AS
2891struct type *
2892ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2893{
2894 type = desc_base_type (type);
2895
78134374 2896 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2897 {
2898 int k;
d2e4a39e 2899 struct type *p_array_type;
14f9c5c9 2900
556bdfd4 2901 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2902
2903 k = ada_array_arity (type);
2904 if (k == 0)
4c4b4cd2 2905 return NULL;
d2e4a39e 2906
4c4b4cd2 2907 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2908 if (nindices >= 0 && k > nindices)
4c4b4cd2 2909 k = nindices;
d2e4a39e 2910 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2911 {
61ee279c 2912 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2913 k -= 1;
2914 }
14f9c5c9
AS
2915 return p_array_type;
2916 }
78134374 2917 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2918 {
78134374 2919 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2920 {
2921 type = TYPE_TARGET_TYPE (type);
2922 nindices -= 1;
2923 }
14f9c5c9
AS
2924 return type;
2925 }
2926
2927 return NULL;
2928}
2929
4c4b4cd2 2930/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2931 Does not examine memory. Throws an error if N is invalid or TYPE
2932 is not an array type. NAME is the name of the Ada attribute being
2933 evaluated ('range, 'first, 'last, or 'length); it is used in building
2934 the error message. */
14f9c5c9 2935
1eea4ebd
UW
2936static struct type *
2937ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2938{
4c4b4cd2
PH
2939 struct type *result_type;
2940
14f9c5c9
AS
2941 type = desc_base_type (type);
2942
1eea4ebd
UW
2943 if (n < 0 || n > ada_array_arity (type))
2944 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2945
4c4b4cd2 2946 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2947 {
2948 int i;
2949
2950 for (i = 1; i < n; i += 1)
4c4b4cd2 2951 type = TYPE_TARGET_TYPE (type);
262452ec 2952 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2953 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2954 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2955 perhaps stabsread.c would make more sense. */
78134374 2956 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
1eea4ebd 2957 result_type = NULL;
14f9c5c9 2958 }
d2e4a39e 2959 else
1eea4ebd
UW
2960 {
2961 result_type = desc_index_type (desc_bounds_type (type), n);
2962 if (result_type == NULL)
2963 error (_("attempt to take bound of something that is not an array"));
2964 }
2965
2966 return result_type;
14f9c5c9
AS
2967}
2968
2969/* Given that arr is an array type, returns the lower bound of the
2970 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2971 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2972 array-descriptor type. It works for other arrays with bounds supplied
2973 by run-time quantities other than discriminants. */
14f9c5c9 2974
abb68b3e 2975static LONGEST
fb5e3d5c 2976ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2977{
8a48ac95 2978 struct type *type, *index_type_desc, *index_type;
1ce677a4 2979 int i;
262452ec
JK
2980
2981 gdb_assert (which == 0 || which == 1);
14f9c5c9 2982
ad82864c
JB
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2985
4c4b4cd2 2986 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2987 return (LONGEST) - which;
14f9c5c9 2988
78134374 2989 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2990 type = TYPE_TARGET_TYPE (arr_type);
2991 else
2992 type = arr_type;
2993
bafffb51
JB
2994 if (TYPE_FIXED_INSTANCE (type))
2995 {
2996 /* The array has already been fixed, so we do not need to
2997 check the parallel ___XA type again. That encoding has
2998 already been applied, so ignore it now. */
2999 index_type_desc = NULL;
3000 }
3001 else
3002 {
3003 index_type_desc = ada_find_parallel_type (type, "___XA");
3004 ada_fixup_array_indexes_type (index_type_desc);
3005 }
3006
262452ec 3007 if (index_type_desc != NULL)
28c85d6c
JB
3008 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3009 NULL);
262452ec 3010 else
8a48ac95
JB
3011 {
3012 struct type *elt_type = check_typedef (type);
3013
3014 for (i = 1; i < n; i++)
3015 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3016
3017 index_type = TYPE_INDEX_TYPE (elt_type);
3018 }
262452ec 3019
43bbcdc2
PH
3020 return
3021 (LONGEST) (which == 0
3022 ? ada_discrete_type_low_bound (index_type)
3023 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3024}
3025
3026/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3027 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3028 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3029 supplied by run-time quantities other than discriminants. */
14f9c5c9 3030
1eea4ebd 3031static LONGEST
4dc81987 3032ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3033{
eb479039
JB
3034 struct type *arr_type;
3035
78134374 3036 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3037 arr = value_ind (arr);
3038 arr_type = value_enclosing_type (arr);
14f9c5c9 3039
ad82864c
JB
3040 if (ada_is_constrained_packed_array_type (arr_type))
3041 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3042 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3043 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3044 else
1eea4ebd 3045 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3046}
3047
3048/* Given that arr is an array value, returns the length of the
3049 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3050 supplied by run-time quantities other than discriminants.
3051 Does not work for arrays indexed by enumeration types with representation
3052 clauses at the moment. */
14f9c5c9 3053
1eea4ebd 3054static LONGEST
d2e4a39e 3055ada_array_length (struct value *arr, int n)
14f9c5c9 3056{
aa715135
JG
3057 struct type *arr_type, *index_type;
3058 int low, high;
eb479039 3059
78134374 3060 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3061 arr = value_ind (arr);
3062 arr_type = value_enclosing_type (arr);
14f9c5c9 3063
ad82864c
JB
3064 if (ada_is_constrained_packed_array_type (arr_type))
3065 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3066
4c4b4cd2 3067 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3068 {
3069 low = ada_array_bound_from_type (arr_type, n, 0);
3070 high = ada_array_bound_from_type (arr_type, n, 1);
3071 }
14f9c5c9 3072 else
aa715135
JG
3073 {
3074 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3075 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3076 }
3077
f168693b 3078 arr_type = check_typedef (arr_type);
7150d33c 3079 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3080 if (index_type != NULL)
3081 {
3082 struct type *base_type;
78134374 3083 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3084 base_type = TYPE_TARGET_TYPE (index_type);
3085 else
3086 base_type = index_type;
3087
3088 low = pos_atr (value_from_longest (base_type, low));
3089 high = pos_atr (value_from_longest (base_type, high));
3090 }
3091 return high - low + 1;
4c4b4cd2
PH
3092}
3093
bff8c71f
TT
3094/* An array whose type is that of ARR_TYPE (an array type), with
3095 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3096 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3097
3098static struct value *
bff8c71f 3099empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3100{
b0dd7688 3101 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3102 struct type *index_type
3103 = create_static_range_type
bff8c71f
TT
3104 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3105 high < low ? low - 1 : high);
b0dd7688 3106 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3107
0b5d8877 3108 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3109}
14f9c5c9 3110\f
d2e4a39e 3111
4c4b4cd2 3112 /* Name resolution */
14f9c5c9 3113
4c4b4cd2
PH
3114/* The "decoded" name for the user-definable Ada operator corresponding
3115 to OP. */
14f9c5c9 3116
d2e4a39e 3117static const char *
4c4b4cd2 3118ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3119{
3120 int i;
3121
4c4b4cd2 3122 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3123 {
3124 if (ada_opname_table[i].op == op)
4c4b4cd2 3125 return ada_opname_table[i].decoded;
14f9c5c9 3126 }
323e0a4a 3127 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3128}
3129
de93309a
SM
3130/* Returns true (non-zero) iff decoded name N0 should appear before N1
3131 in a listing of choices during disambiguation (see sort_choices, below).
3132 The idea is that overloadings of a subprogram name from the
3133 same package should sort in their source order. We settle for ordering
3134 such symbols by their trailing number (__N or $N). */
14f9c5c9 3135
de93309a
SM
3136static int
3137encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3138{
de93309a
SM
3139 if (N1 == NULL)
3140 return 0;
3141 else if (N0 == NULL)
3142 return 1;
3143 else
3144 {
3145 int k0, k1;
30b15541 3146
de93309a
SM
3147 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3148 ;
3149 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3150 ;
3151 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3152 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3153 {
3154 int n0, n1;
30b15541 3155
de93309a
SM
3156 n0 = k0;
3157 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3158 n0 -= 1;
3159 n1 = k1;
3160 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3161 n1 -= 1;
3162 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3163 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3164 }
3165 return (strcmp (N0, N1) < 0);
3166 }
14f9c5c9
AS
3167}
3168
de93309a
SM
3169/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3170 encoded names. */
14f9c5c9 3171
de93309a
SM
3172static void
3173sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3174{
14f9c5c9 3175 int i;
14f9c5c9 3176
de93309a 3177 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3178 {
de93309a
SM
3179 struct block_symbol sym = syms[i];
3180 int j;
3181
3182 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3183 {
987012b8
CB
3184 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3185 sym.symbol->linkage_name ()))
de93309a
SM
3186 break;
3187 syms[j + 1] = syms[j];
4c4b4cd2 3188 }
de93309a
SM
3189 syms[j + 1] = sym;
3190 }
3191}
14f9c5c9 3192
de93309a
SM
3193/* Whether GDB should display formals and return types for functions in the
3194 overloads selection menu. */
3195static bool print_signatures = true;
4c4b4cd2 3196
de93309a
SM
3197/* Print the signature for SYM on STREAM according to the FLAGS options. For
3198 all but functions, the signature is just the name of the symbol. For
3199 functions, this is the name of the function, the list of types for formals
3200 and the return type (if any). */
4c4b4cd2 3201
de93309a
SM
3202static void
3203ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3204 const struct type_print_options *flags)
3205{
3206 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3207
987012b8 3208 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3209 if (!print_signatures
3210 || type == NULL
78134374 3211 || type->code () != TYPE_CODE_FUNC)
de93309a 3212 return;
4c4b4cd2 3213
de93309a
SM
3214 if (TYPE_NFIELDS (type) > 0)
3215 {
3216 int i;
14f9c5c9 3217
de93309a
SM
3218 fprintf_filtered (stream, " (");
3219 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3220 {
3221 if (i > 0)
3222 fprintf_filtered (stream, "; ");
3223 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3224 flags);
3225 }
3226 fprintf_filtered (stream, ")");
3227 }
3228 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3229 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3230 {
3231 fprintf_filtered (stream, " return ");
3232 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3233 }
3234}
14f9c5c9 3235
de93309a
SM
3236/* Read and validate a set of numeric choices from the user in the
3237 range 0 .. N_CHOICES-1. Place the results in increasing
3238 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3239
de93309a
SM
3240 The user types choices as a sequence of numbers on one line
3241 separated by blanks, encoding them as follows:
14f9c5c9 3242
de93309a
SM
3243 + A choice of 0 means to cancel the selection, throwing an error.
3244 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3245 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3246
de93309a 3247 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3248
de93309a
SM
3249 ANNOTATION_SUFFIX, if present, is used to annotate the input
3250 prompts (for use with the -f switch). */
14f9c5c9 3251
de93309a
SM
3252static int
3253get_selections (int *choices, int n_choices, int max_results,
3254 int is_all_choice, const char *annotation_suffix)
3255{
992a7040 3256 const char *args;
de93309a
SM
3257 const char *prompt;
3258 int n_chosen;
3259 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3260
de93309a
SM
3261 prompt = getenv ("PS2");
3262 if (prompt == NULL)
3263 prompt = "> ";
4c4b4cd2 3264
de93309a 3265 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3266
de93309a
SM
3267 if (args == NULL)
3268 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3269
de93309a 3270 n_chosen = 0;
4c4b4cd2 3271
de93309a
SM
3272 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3273 order, as given in args. Choices are validated. */
3274 while (1)
14f9c5c9 3275 {
de93309a
SM
3276 char *args2;
3277 int choice, j;
76a01679 3278
de93309a
SM
3279 args = skip_spaces (args);
3280 if (*args == '\0' && n_chosen == 0)
3281 error_no_arg (_("one or more choice numbers"));
3282 else if (*args == '\0')
3283 break;
76a01679 3284
de93309a
SM
3285 choice = strtol (args, &args2, 10);
3286 if (args == args2 || choice < 0
3287 || choice > n_choices + first_choice - 1)
3288 error (_("Argument must be choice number"));
3289 args = args2;
76a01679 3290
de93309a
SM
3291 if (choice == 0)
3292 error (_("cancelled"));
76a01679 3293
de93309a
SM
3294 if (choice < first_choice)
3295 {
3296 n_chosen = n_choices;
3297 for (j = 0; j < n_choices; j += 1)
3298 choices[j] = j;
3299 break;
76a01679 3300 }
de93309a 3301 choice -= first_choice;
76a01679 3302
de93309a 3303 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3304 {
76a01679 3305 }
4c4b4cd2 3306
de93309a 3307 if (j < 0 || choice != choices[j])
4c4b4cd2 3308 {
de93309a 3309 int k;
4c4b4cd2 3310
de93309a
SM
3311 for (k = n_chosen - 1; k > j; k -= 1)
3312 choices[k + 1] = choices[k];
3313 choices[j + 1] = choice;
3314 n_chosen += 1;
4c4b4cd2 3315 }
14f9c5c9
AS
3316 }
3317
de93309a
SM
3318 if (n_chosen > max_results)
3319 error (_("Select no more than %d of the above"), max_results);
3320
3321 return n_chosen;
14f9c5c9
AS
3322}
3323
de93309a
SM
3324/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3325 by asking the user (if necessary), returning the number selected,
3326 and setting the first elements of SYMS items. Error if no symbols
3327 selected. */
3328
3329/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3330 to be re-integrated one of these days. */
14f9c5c9
AS
3331
3332static int
de93309a 3333user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3334{
de93309a
SM
3335 int i;
3336 int *chosen = XALLOCAVEC (int , nsyms);
3337 int n_chosen;
3338 int first_choice = (max_results == 1) ? 1 : 2;
3339 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3340
de93309a
SM
3341 if (max_results < 1)
3342 error (_("Request to select 0 symbols!"));
3343 if (nsyms <= 1)
3344 return nsyms;
14f9c5c9 3345
de93309a
SM
3346 if (select_mode == multiple_symbols_cancel)
3347 error (_("\
3348canceled because the command is ambiguous\n\
3349See set/show multiple-symbol."));
14f9c5c9 3350
de93309a
SM
3351 /* If select_mode is "all", then return all possible symbols.
3352 Only do that if more than one symbol can be selected, of course.
3353 Otherwise, display the menu as usual. */
3354 if (select_mode == multiple_symbols_all && max_results > 1)
3355 return nsyms;
14f9c5c9 3356
de93309a
SM
3357 printf_filtered (_("[0] cancel\n"));
3358 if (max_results > 1)
3359 printf_filtered (_("[1] all\n"));
14f9c5c9 3360
de93309a 3361 sort_choices (syms, nsyms);
14f9c5c9 3362
de93309a
SM
3363 for (i = 0; i < nsyms; i += 1)
3364 {
3365 if (syms[i].symbol == NULL)
3366 continue;
14f9c5c9 3367
de93309a
SM
3368 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3369 {
3370 struct symtab_and_line sal =
3371 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3372
de93309a
SM
3373 printf_filtered ("[%d] ", i + first_choice);
3374 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3375 &type_print_raw_options);
3376 if (sal.symtab == NULL)
3377 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3378 metadata_style.style ().ptr (), nullptr, sal.line);
3379 else
3380 printf_filtered
3381 (_(" at %ps:%d\n"),
3382 styled_string (file_name_style.style (),
3383 symtab_to_filename_for_display (sal.symtab)),
3384 sal.line);
3385 continue;
3386 }
76a01679
JB
3387 else
3388 {
de93309a
SM
3389 int is_enumeral =
3390 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3391 && SYMBOL_TYPE (syms[i].symbol) != NULL
78134374 3392 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3393 struct symtab *symtab = NULL;
4c4b4cd2 3394
de93309a
SM
3395 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3396 symtab = symbol_symtab (syms[i].symbol);
3397
3398 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3399 {
3400 printf_filtered ("[%d] ", i + first_choice);
3401 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3402 &type_print_raw_options);
3403 printf_filtered (_(" at %s:%d\n"),
3404 symtab_to_filename_for_display (symtab),
3405 SYMBOL_LINE (syms[i].symbol));
3406 }
3407 else if (is_enumeral
3408 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3409 {
3410 printf_filtered (("[%d] "), i + first_choice);
3411 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3412 gdb_stdout, -1, 0, &type_print_raw_options);
3413 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3414 syms[i].symbol->print_name ());
de93309a
SM
3415 }
3416 else
3417 {
3418 printf_filtered ("[%d] ", i + first_choice);
3419 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3420 &type_print_raw_options);
3421
3422 if (symtab != NULL)
3423 printf_filtered (is_enumeral
3424 ? _(" in %s (enumeral)\n")
3425 : _(" at %s:?\n"),
3426 symtab_to_filename_for_display (symtab));
3427 else
3428 printf_filtered (is_enumeral
3429 ? _(" (enumeral)\n")
3430 : _(" at ?\n"));
3431 }
76a01679 3432 }
14f9c5c9 3433 }
14f9c5c9 3434
de93309a
SM
3435 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3436 "overload-choice");
14f9c5c9 3437
de93309a
SM
3438 for (i = 0; i < n_chosen; i += 1)
3439 syms[i] = syms[chosen[i]];
14f9c5c9 3440
de93309a
SM
3441 return n_chosen;
3442}
14f9c5c9 3443
de93309a
SM
3444/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3445 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3446 undefined namespace) and converts operators that are
3447 user-defined into appropriate function calls. If CONTEXT_TYPE is
3448 non-null, it provides a preferred result type [at the moment, only
3449 type void has any effect---causing procedures to be preferred over
3450 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3451 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3452
de93309a
SM
3453static void
3454resolve (expression_up *expp, int void_context_p, int parse_completion,
3455 innermost_block_tracker *tracker)
3456{
3457 struct type *context_type = NULL;
3458 int pc = 0;
14f9c5c9 3459
de93309a
SM
3460 if (void_context_p)
3461 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3462
de93309a
SM
3463 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3464}
4c4b4cd2 3465
de93309a
SM
3466/* Resolve the operator of the subexpression beginning at
3467 position *POS of *EXPP. "Resolving" consists of replacing
3468 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3469 with their resolutions, replacing built-in operators with
3470 function calls to user-defined operators, where appropriate, and,
3471 when DEPROCEDURE_P is non-zero, converting function-valued variables
3472 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3473 are as in ada_resolve, above. */
14f9c5c9 3474
de93309a
SM
3475static struct value *
3476resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3477 struct type *context_type, int parse_completion,
3478 innermost_block_tracker *tracker)
14f9c5c9 3479{
de93309a
SM
3480 int pc = *pos;
3481 int i;
3482 struct expression *exp; /* Convenience: == *expp. */
3483 enum exp_opcode op = (*expp)->elts[pc].opcode;
3484 struct value **argvec; /* Vector of operand types (alloca'ed). */
3485 int nargs; /* Number of operands. */
3486 int oplen;
14f9c5c9 3487
de93309a
SM
3488 argvec = NULL;
3489 nargs = 0;
3490 exp = expp->get ();
4c4b4cd2 3491
de93309a
SM
3492 /* Pass one: resolve operands, saving their types and updating *pos,
3493 if needed. */
3494 switch (op)
3495 {
3496 case OP_FUNCALL:
3497 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3498 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3499 *pos += 7;
3500 else
3501 {
3502 *pos += 3;
3503 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3504 }
de93309a
SM
3505 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3506 break;
14f9c5c9 3507
de93309a
SM
3508 case UNOP_ADDR:
3509 *pos += 1;
3510 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3511 break;
3512
3513 case UNOP_QUAL:
3514 *pos += 3;
3515 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3516 parse_completion, tracker);
3517 break;
3518
3519 case OP_ATR_MODULUS:
3520 case OP_ATR_SIZE:
3521 case OP_ATR_TAG:
3522 case OP_ATR_FIRST:
3523 case OP_ATR_LAST:
3524 case OP_ATR_LENGTH:
3525 case OP_ATR_POS:
3526 case OP_ATR_VAL:
3527 case OP_ATR_MIN:
3528 case OP_ATR_MAX:
3529 case TERNOP_IN_RANGE:
3530 case BINOP_IN_BOUNDS:
3531 case UNOP_IN_RANGE:
3532 case OP_AGGREGATE:
3533 case OP_OTHERS:
3534 case OP_CHOICES:
3535 case OP_POSITIONAL:
3536 case OP_DISCRETE_RANGE:
3537 case OP_NAME:
3538 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3539 *pos += oplen;
3540 break;
3541
3542 case BINOP_ASSIGN:
3543 {
3544 struct value *arg1;
3545
3546 *pos += 1;
3547 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3548 if (arg1 == NULL)
3549 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3550 else
3551 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3552 tracker);
3553 break;
3554 }
3555
3556 case UNOP_CAST:
3557 *pos += 3;
3558 nargs = 1;
3559 break;
3560
3561 case BINOP_ADD:
3562 case BINOP_SUB:
3563 case BINOP_MUL:
3564 case BINOP_DIV:
3565 case BINOP_REM:
3566 case BINOP_MOD:
3567 case BINOP_EXP:
3568 case BINOP_CONCAT:
3569 case BINOP_LOGICAL_AND:
3570 case BINOP_LOGICAL_OR:
3571 case BINOP_BITWISE_AND:
3572 case BINOP_BITWISE_IOR:
3573 case BINOP_BITWISE_XOR:
3574
3575 case BINOP_EQUAL:
3576 case BINOP_NOTEQUAL:
3577 case BINOP_LESS:
3578 case BINOP_GTR:
3579 case BINOP_LEQ:
3580 case BINOP_GEQ:
3581
3582 case BINOP_REPEAT:
3583 case BINOP_SUBSCRIPT:
3584 case BINOP_COMMA:
3585 *pos += 1;
3586 nargs = 2;
3587 break;
3588
3589 case UNOP_NEG:
3590 case UNOP_PLUS:
3591 case UNOP_LOGICAL_NOT:
3592 case UNOP_ABS:
3593 case UNOP_IND:
3594 *pos += 1;
3595 nargs = 1;
3596 break;
3597
3598 case OP_LONG:
3599 case OP_FLOAT:
3600 case OP_VAR_VALUE:
3601 case OP_VAR_MSYM_VALUE:
3602 *pos += 4;
3603 break;
3604
3605 case OP_TYPE:
3606 case OP_BOOL:
3607 case OP_LAST:
3608 case OP_INTERNALVAR:
3609 *pos += 3;
3610 break;
3611
3612 case UNOP_MEMVAL:
3613 *pos += 3;
3614 nargs = 1;
3615 break;
3616
3617 case OP_REGISTER:
3618 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3619 break;
3620
3621 case STRUCTOP_STRUCT:
3622 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3623 nargs = 1;
3624 break;
3625
3626 case TERNOP_SLICE:
3627 *pos += 1;
3628 nargs = 3;
3629 break;
3630
3631 case OP_STRING:
3632 break;
3633
3634 default:
3635 error (_("Unexpected operator during name resolution"));
14f9c5c9 3636 }
14f9c5c9 3637
de93309a
SM
3638 argvec = XALLOCAVEC (struct value *, nargs + 1);
3639 for (i = 0; i < nargs; i += 1)
3640 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3641 tracker);
3642 argvec[i] = NULL;
3643 exp = expp->get ();
4c4b4cd2 3644
de93309a
SM
3645 /* Pass two: perform any resolution on principal operator. */
3646 switch (op)
14f9c5c9 3647 {
de93309a
SM
3648 default:
3649 break;
5b4ee69b 3650
de93309a
SM
3651 case OP_VAR_VALUE:
3652 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3653 {
de93309a
SM
3654 std::vector<struct block_symbol> candidates;
3655 int n_candidates;
5b4ee69b 3656
de93309a 3657 n_candidates =
987012b8 3658 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3659 exp->elts[pc + 1].block, VAR_DOMAIN,
3660 &candidates);
d2e4a39e 3661
de93309a
SM
3662 if (n_candidates > 1)
3663 {
3664 /* Types tend to get re-introduced locally, so if there
3665 are any local symbols that are not types, first filter
3666 out all types. */
3667 int j;
3668 for (j = 0; j < n_candidates; j += 1)
3669 switch (SYMBOL_CLASS (candidates[j].symbol))
3670 {
3671 case LOC_REGISTER:
3672 case LOC_ARG:
3673 case LOC_REF_ARG:
3674 case LOC_REGPARM_ADDR:
3675 case LOC_LOCAL:
3676 case LOC_COMPUTED:
3677 goto FoundNonType;
3678 default:
3679 break;
3680 }
3681 FoundNonType:
3682 if (j < n_candidates)
3683 {
3684 j = 0;
3685 while (j < n_candidates)
3686 {
3687 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3688 {
3689 candidates[j] = candidates[n_candidates - 1];
3690 n_candidates -= 1;
3691 }
3692 else
3693 j += 1;
3694 }
3695 }
3696 }
4c4b4cd2 3697
de93309a
SM
3698 if (n_candidates == 0)
3699 error (_("No definition found for %s"),
987012b8 3700 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3701 else if (n_candidates == 1)
3702 i = 0;
3703 else if (deprocedure_p
3704 && !is_nonfunction (candidates.data (), n_candidates))
3705 {
3706 i = ada_resolve_function
3707 (candidates.data (), n_candidates, NULL, 0,
987012b8 3708 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3709 context_type, parse_completion);
3710 if (i < 0)
3711 error (_("Could not find a match for %s"),
987012b8 3712 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3713 }
3714 else
3715 {
3716 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3717 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3718 user_select_syms (candidates.data (), n_candidates, 1);
3719 i = 0;
3720 }
5b4ee69b 3721
de93309a
SM
3722 exp->elts[pc + 1].block = candidates[i].block;
3723 exp->elts[pc + 2].symbol = candidates[i].symbol;
3724 tracker->update (candidates[i]);
3725 }
14f9c5c9 3726
de93309a 3727 if (deprocedure_p
78134374 3728 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
de93309a 3729 == TYPE_CODE_FUNC))
4c4b4cd2 3730 {
de93309a
SM
3731 replace_operator_with_call (expp, pc, 0, 4,
3732 exp->elts[pc + 2].symbol,
3733 exp->elts[pc + 1].block);
3734 exp = expp->get ();
4c4b4cd2 3735 }
de93309a
SM
3736 break;
3737
3738 case OP_FUNCALL:
3739 {
3740 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3741 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3742 {
3743 std::vector<struct block_symbol> candidates;
3744 int n_candidates;
3745
3746 n_candidates =
987012b8 3747 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3748 exp->elts[pc + 4].block, VAR_DOMAIN,
3749 &candidates);
14f9c5c9 3750
de93309a
SM
3751 if (n_candidates == 1)
3752 i = 0;
3753 else
3754 {
3755 i = ada_resolve_function
3756 (candidates.data (), n_candidates,
3757 argvec, nargs,
987012b8 3758 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3759 context_type, parse_completion);
3760 if (i < 0)
3761 error (_("Could not find a match for %s"),
987012b8 3762 exp->elts[pc + 5].symbol->print_name ());
de93309a 3763 }
d72413e6 3764
de93309a
SM
3765 exp->elts[pc + 4].block = candidates[i].block;
3766 exp->elts[pc + 5].symbol = candidates[i].symbol;
3767 tracker->update (candidates[i]);
3768 }
3769 }
3770 break;
3771 case BINOP_ADD:
3772 case BINOP_SUB:
3773 case BINOP_MUL:
3774 case BINOP_DIV:
3775 case BINOP_REM:
3776 case BINOP_MOD:
3777 case BINOP_CONCAT:
3778 case BINOP_BITWISE_AND:
3779 case BINOP_BITWISE_IOR:
3780 case BINOP_BITWISE_XOR:
3781 case BINOP_EQUAL:
3782 case BINOP_NOTEQUAL:
3783 case BINOP_LESS:
3784 case BINOP_GTR:
3785 case BINOP_LEQ:
3786 case BINOP_GEQ:
3787 case BINOP_EXP:
3788 case UNOP_NEG:
3789 case UNOP_PLUS:
3790 case UNOP_LOGICAL_NOT:
3791 case UNOP_ABS:
3792 if (possible_user_operator_p (op, argvec))
3793 {
3794 std::vector<struct block_symbol> candidates;
3795 int n_candidates;
d72413e6 3796
de93309a
SM
3797 n_candidates =
3798 ada_lookup_symbol_list (ada_decoded_op_name (op),
3799 NULL, VAR_DOMAIN,
3800 &candidates);
d72413e6 3801
de93309a
SM
3802 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3803 nargs, ada_decoded_op_name (op), NULL,
3804 parse_completion);
3805 if (i < 0)
3806 break;
d72413e6 3807
de93309a
SM
3808 replace_operator_with_call (expp, pc, nargs, 1,
3809 candidates[i].symbol,
3810 candidates[i].block);
3811 exp = expp->get ();
3812 }
3813 break;
d72413e6 3814
de93309a
SM
3815 case OP_TYPE:
3816 case OP_REGISTER:
3817 return NULL;
d72413e6 3818 }
d72413e6 3819
de93309a
SM
3820 *pos = pc;
3821 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3822 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3823 exp->elts[pc + 1].objfile,
3824 exp->elts[pc + 2].msymbol);
3825 else
3826 return evaluate_subexp_type (exp, pos);
3827}
14f9c5c9 3828
de93309a
SM
3829/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3830 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3831 a non-pointer. */
3832/* The term "match" here is rather loose. The match is heuristic and
3833 liberal. */
14f9c5c9 3834
de93309a
SM
3835static int
3836ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3837{
de93309a
SM
3838 ftype = ada_check_typedef (ftype);
3839 atype = ada_check_typedef (atype);
14f9c5c9 3840
78134374 3841 if (ftype->code () == TYPE_CODE_REF)
de93309a 3842 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3843 if (atype->code () == TYPE_CODE_REF)
de93309a 3844 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3845
78134374 3846 switch (ftype->code ())
14f9c5c9 3847 {
de93309a 3848 default:
78134374 3849 return ftype->code () == atype->code ();
de93309a 3850 case TYPE_CODE_PTR:
78134374 3851 if (atype->code () == TYPE_CODE_PTR)
de93309a
SM
3852 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3853 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3854 else
de93309a
SM
3855 return (may_deref
3856 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3857 case TYPE_CODE_INT:
3858 case TYPE_CODE_ENUM:
3859 case TYPE_CODE_RANGE:
78134374 3860 switch (atype->code ())
4c4b4cd2 3861 {
de93309a
SM
3862 case TYPE_CODE_INT:
3863 case TYPE_CODE_ENUM:
3864 case TYPE_CODE_RANGE:
3865 return 1;
3866 default:
3867 return 0;
4c4b4cd2 3868 }
d2e4a39e 3869
de93309a 3870 case TYPE_CODE_ARRAY:
78134374 3871 return (atype->code () == TYPE_CODE_ARRAY
de93309a 3872 || ada_is_array_descriptor_type (atype));
14f9c5c9 3873
de93309a
SM
3874 case TYPE_CODE_STRUCT:
3875 if (ada_is_array_descriptor_type (ftype))
78134374 3876 return (atype->code () == TYPE_CODE_ARRAY
de93309a
SM
3877 || ada_is_array_descriptor_type (atype));
3878 else
78134374 3879 return (atype->code () == TYPE_CODE_STRUCT
de93309a 3880 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3881
de93309a
SM
3882 case TYPE_CODE_UNION:
3883 case TYPE_CODE_FLT:
78134374 3884 return (atype->code () == ftype->code ());
de93309a 3885 }
14f9c5c9
AS
3886}
3887
de93309a
SM
3888/* Return non-zero if the formals of FUNC "sufficiently match" the
3889 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3890 may also be an enumeral, in which case it is treated as a 0-
3891 argument function. */
14f9c5c9 3892
de93309a
SM
3893static int
3894ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3895{
3896 int i;
3897 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3898
de93309a 3899 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3900 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3901 return (n_actuals == 0);
78134374 3902 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3903 return 0;
14f9c5c9 3904
de93309a
SM
3905 if (TYPE_NFIELDS (func_type) != n_actuals)
3906 return 0;
14f9c5c9 3907
de93309a
SM
3908 for (i = 0; i < n_actuals; i += 1)
3909 {
3910 if (actuals[i] == NULL)
3911 return 0;
3912 else
3913 {
3914 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3915 i));
3916 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3917
de93309a
SM
3918 if (!ada_type_match (ftype, atype, 1))
3919 return 0;
3920 }
3921 }
3922 return 1;
3923}
d2e4a39e 3924
de93309a
SM
3925/* False iff function type FUNC_TYPE definitely does not produce a value
3926 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3927 FUNC_TYPE is not a valid function type with a non-null return type
3928 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3929
de93309a
SM
3930static int
3931return_match (struct type *func_type, struct type *context_type)
3932{
3933 struct type *return_type;
d2e4a39e 3934
de93309a
SM
3935 if (func_type == NULL)
3936 return 1;
14f9c5c9 3937
78134374 3938 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3939 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3940 else
3941 return_type = get_base_type (func_type);
3942 if (return_type == NULL)
3943 return 1;
76a01679 3944
de93309a 3945 context_type = get_base_type (context_type);
14f9c5c9 3946
78134374 3947 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3948 return context_type == NULL || return_type == context_type;
3949 else if (context_type == NULL)
78134374 3950 return return_type->code () != TYPE_CODE_VOID;
de93309a 3951 else
78134374 3952 return return_type->code () == context_type->code ();
de93309a 3953}
14f9c5c9 3954
14f9c5c9 3955
de93309a
SM
3956/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3957 function (if any) that matches the types of the NARGS arguments in
3958 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3959 that returns that type, then eliminate matches that don't. If
3960 CONTEXT_TYPE is void and there is at least one match that does not
3961 return void, eliminate all matches that do.
14f9c5c9 3962
de93309a
SM
3963 Asks the user if there is more than one match remaining. Returns -1
3964 if there is no such symbol or none is selected. NAME is used
3965 solely for messages. May re-arrange and modify SYMS in
3966 the process; the index returned is for the modified vector. */
14f9c5c9 3967
de93309a
SM
3968static int
3969ada_resolve_function (struct block_symbol syms[],
3970 int nsyms, struct value **args, int nargs,
3971 const char *name, struct type *context_type,
3972 int parse_completion)
3973{
3974 int fallback;
3975 int k;
3976 int m; /* Number of hits */
14f9c5c9 3977
de93309a
SM
3978 m = 0;
3979 /* In the first pass of the loop, we only accept functions matching
3980 context_type. If none are found, we add a second pass of the loop
3981 where every function is accepted. */
3982 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3983 {
3984 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3985 {
de93309a 3986 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3987
de93309a
SM
3988 if (ada_args_match (syms[k].symbol, args, nargs)
3989 && (fallback || return_match (type, context_type)))
3990 {
3991 syms[m] = syms[k];
3992 m += 1;
3993 }
4c4b4cd2 3994 }
14f9c5c9
AS
3995 }
3996
de93309a
SM
3997 /* If we got multiple matches, ask the user which one to use. Don't do this
3998 interactive thing during completion, though, as the purpose of the
3999 completion is providing a list of all possible matches. Prompting the
4000 user to filter it down would be completely unexpected in this case. */
4001 if (m == 0)
4002 return -1;
4003 else if (m > 1 && !parse_completion)
4004 {
4005 printf_filtered (_("Multiple matches for %s\n"), name);
4006 user_select_syms (syms, m, 1);
4007 return 0;
4008 }
4009 return 0;
14f9c5c9
AS
4010}
4011
4c4b4cd2
PH
4012/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4013 on the function identified by SYM and BLOCK, and taking NARGS
4014 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4015
4016static void
e9d9f57e 4017replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4018 int oplen, struct symbol *sym,
270140bd 4019 const struct block *block)
14f9c5c9
AS
4020{
4021 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4022 symbol, -oplen for operator being replaced). */
d2e4a39e 4023 struct expression *newexp = (struct expression *)
8c1a34e7 4024 xzalloc (sizeof (struct expression)
4c4b4cd2 4025 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4026 struct expression *exp = expp->get ();
14f9c5c9
AS
4027
4028 newexp->nelts = exp->nelts + 7 - oplen;
4029 newexp->language_defn = exp->language_defn;
3489610d 4030 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4031 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4032 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4033 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4034
4035 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4036 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4037
4038 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4039 newexp->elts[pc + 4].block = block;
4040 newexp->elts[pc + 5].symbol = sym;
4041
e9d9f57e 4042 expp->reset (newexp);
d2e4a39e 4043}
14f9c5c9
AS
4044
4045/* Type-class predicates */
4046
4c4b4cd2
PH
4047/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4048 or FLOAT). */
14f9c5c9
AS
4049
4050static int
d2e4a39e 4051numeric_type_p (struct type *type)
14f9c5c9
AS
4052{
4053 if (type == NULL)
4054 return 0;
d2e4a39e
AS
4055 else
4056 {
78134374 4057 switch (type->code ())
4c4b4cd2
PH
4058 {
4059 case TYPE_CODE_INT:
4060 case TYPE_CODE_FLT:
4061 return 1;
4062 case TYPE_CODE_RANGE:
4063 return (type == TYPE_TARGET_TYPE (type)
4064 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4065 default:
4066 return 0;
4067 }
d2e4a39e 4068 }
14f9c5c9
AS
4069}
4070
4c4b4cd2 4071/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4072
4073static int
d2e4a39e 4074integer_type_p (struct type *type)
14f9c5c9
AS
4075{
4076 if (type == NULL)
4077 return 0;
d2e4a39e
AS
4078 else
4079 {
78134374 4080 switch (type->code ())
4c4b4cd2
PH
4081 {
4082 case TYPE_CODE_INT:
4083 return 1;
4084 case TYPE_CODE_RANGE:
4085 return (type == TYPE_TARGET_TYPE (type)
4086 || integer_type_p (TYPE_TARGET_TYPE (type)));
4087 default:
4088 return 0;
4089 }
d2e4a39e 4090 }
14f9c5c9
AS
4091}
4092
4c4b4cd2 4093/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4094
4095static int
d2e4a39e 4096scalar_type_p (struct type *type)
14f9c5c9
AS
4097{
4098 if (type == NULL)
4099 return 0;
d2e4a39e
AS
4100 else
4101 {
78134374 4102 switch (type->code ())
4c4b4cd2
PH
4103 {
4104 case TYPE_CODE_INT:
4105 case TYPE_CODE_RANGE:
4106 case TYPE_CODE_ENUM:
4107 case TYPE_CODE_FLT:
4108 return 1;
4109 default:
4110 return 0;
4111 }
d2e4a39e 4112 }
14f9c5c9
AS
4113}
4114
4c4b4cd2 4115/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4116
4117static int
d2e4a39e 4118discrete_type_p (struct type *type)
14f9c5c9
AS
4119{
4120 if (type == NULL)
4121 return 0;
d2e4a39e
AS
4122 else
4123 {
78134374 4124 switch (type->code ())
4c4b4cd2
PH
4125 {
4126 case TYPE_CODE_INT:
4127 case TYPE_CODE_RANGE:
4128 case TYPE_CODE_ENUM:
872f0337 4129 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4130 return 1;
4131 default:
4132 return 0;
4133 }
d2e4a39e 4134 }
14f9c5c9
AS
4135}
4136
4c4b4cd2
PH
4137/* Returns non-zero if OP with operands in the vector ARGS could be
4138 a user-defined function. Errs on the side of pre-defined operators
4139 (i.e., result 0). */
14f9c5c9
AS
4140
4141static int
d2e4a39e 4142possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4143{
76a01679 4144 struct type *type0 =
df407dfe 4145 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4146 struct type *type1 =
df407dfe 4147 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4148
4c4b4cd2
PH
4149 if (type0 == NULL)
4150 return 0;
4151
14f9c5c9
AS
4152 switch (op)
4153 {
4154 default:
4155 return 0;
4156
4157 case BINOP_ADD:
4158 case BINOP_SUB:
4159 case BINOP_MUL:
4160 case BINOP_DIV:
d2e4a39e 4161 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4162
4163 case BINOP_REM:
4164 case BINOP_MOD:
4165 case BINOP_BITWISE_AND:
4166 case BINOP_BITWISE_IOR:
4167 case BINOP_BITWISE_XOR:
d2e4a39e 4168 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4169
4170 case BINOP_EQUAL:
4171 case BINOP_NOTEQUAL:
4172 case BINOP_LESS:
4173 case BINOP_GTR:
4174 case BINOP_LEQ:
4175 case BINOP_GEQ:
d2e4a39e 4176 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4177
4178 case BINOP_CONCAT:
ee90b9ab 4179 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4180
4181 case BINOP_EXP:
d2e4a39e 4182 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4183
4184 case UNOP_NEG:
4185 case UNOP_PLUS:
4186 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4187 case UNOP_ABS:
4188 return (!numeric_type_p (type0));
14f9c5c9
AS
4189
4190 }
4191}
4192\f
4c4b4cd2 4193 /* Renaming */
14f9c5c9 4194
aeb5907d
JB
4195/* NOTES:
4196
4197 1. In the following, we assume that a renaming type's name may
4198 have an ___XD suffix. It would be nice if this went away at some
4199 point.
4200 2. We handle both the (old) purely type-based representation of
4201 renamings and the (new) variable-based encoding. At some point,
4202 it is devoutly to be hoped that the former goes away
4203 (FIXME: hilfinger-2007-07-09).
4204 3. Subprogram renamings are not implemented, although the XRS
4205 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4206
4207/* If SYM encodes a renaming,
4208
4209 <renaming> renames <renamed entity>,
4210
4211 sets *LEN to the length of the renamed entity's name,
4212 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4213 the string describing the subcomponent selected from the renamed
0963b4bd 4214 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4215 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4216 are undefined). Otherwise, returns a value indicating the category
4217 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4218 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4219 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4220 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4221 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4222 may be NULL, in which case they are not assigned.
4223
4224 [Currently, however, GCC does not generate subprogram renamings.] */
4225
4226enum ada_renaming_category
4227ada_parse_renaming (struct symbol *sym,
4228 const char **renamed_entity, int *len,
4229 const char **renaming_expr)
4230{
4231 enum ada_renaming_category kind;
4232 const char *info;
4233 const char *suffix;
4234
4235 if (sym == NULL)
4236 return ADA_NOT_RENAMING;
4237 switch (SYMBOL_CLASS (sym))
14f9c5c9 4238 {
aeb5907d
JB
4239 default:
4240 return ADA_NOT_RENAMING;
aeb5907d
JB
4241 case LOC_LOCAL:
4242 case LOC_STATIC:
4243 case LOC_COMPUTED:
4244 case LOC_OPTIMIZED_OUT:
987012b8 4245 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4246 if (info == NULL)
4247 return ADA_NOT_RENAMING;
4248 switch (info[5])
4249 {
4250 case '_':
4251 kind = ADA_OBJECT_RENAMING;
4252 info += 6;
4253 break;
4254 case 'E':
4255 kind = ADA_EXCEPTION_RENAMING;
4256 info += 7;
4257 break;
4258 case 'P':
4259 kind = ADA_PACKAGE_RENAMING;
4260 info += 7;
4261 break;
4262 case 'S':
4263 kind = ADA_SUBPROGRAM_RENAMING;
4264 info += 7;
4265 break;
4266 default:
4267 return ADA_NOT_RENAMING;
4268 }
14f9c5c9 4269 }
4c4b4cd2 4270
de93309a
SM
4271 if (renamed_entity != NULL)
4272 *renamed_entity = info;
4273 suffix = strstr (info, "___XE");
4274 if (suffix == NULL || suffix == info)
4275 return ADA_NOT_RENAMING;
4276 if (len != NULL)
4277 *len = strlen (info) - strlen (suffix);
4278 suffix += 5;
4279 if (renaming_expr != NULL)
4280 *renaming_expr = suffix;
4281 return kind;
4282}
4283
4284/* Compute the value of the given RENAMING_SYM, which is expected to
4285 be a symbol encoding a renaming expression. BLOCK is the block
4286 used to evaluate the renaming. */
4287
4288static struct value *
4289ada_read_renaming_var_value (struct symbol *renaming_sym,
4290 const struct block *block)
4291{
4292 const char *sym_name;
4293
987012b8 4294 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4295 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4296 return evaluate_expression (expr.get ());
4297}
4298\f
4299
4300 /* Evaluation: Function Calls */
4301
4302/* Return an lvalue containing the value VAL. This is the identity on
4303 lvalues, and otherwise has the side-effect of allocating memory
4304 in the inferior where a copy of the value contents is copied. */
4305
4306static struct value *
4307ensure_lval (struct value *val)
4308{
4309 if (VALUE_LVAL (val) == not_lval
4310 || VALUE_LVAL (val) == lval_internalvar)
4311 {
4312 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4313 const CORE_ADDR addr =
4314 value_as_long (value_allocate_space_in_inferior (len));
4315
4316 VALUE_LVAL (val) = lval_memory;
4317 set_value_address (val, addr);
4318 write_memory (addr, value_contents (val), len);
4319 }
4320
4321 return val;
4322}
4323
4324/* Given ARG, a value of type (pointer or reference to a)*
4325 structure/union, extract the component named NAME from the ultimate
4326 target structure/union and return it as a value with its
4327 appropriate type.
4328
4329 The routine searches for NAME among all members of the structure itself
4330 and (recursively) among all members of any wrapper members
4331 (e.g., '_parent').
4332
4333 If NO_ERR, then simply return NULL in case of error, rather than
4334 calling error. */
4335
4336static struct value *
4337ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4338{
4339 struct type *t, *t1;
4340 struct value *v;
4341 int check_tag;
4342
4343 v = NULL;
4344 t1 = t = ada_check_typedef (value_type (arg));
78134374 4345 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4346 {
4347 t1 = TYPE_TARGET_TYPE (t);
4348 if (t1 == NULL)
4349 goto BadValue;
4350 t1 = ada_check_typedef (t1);
78134374 4351 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4352 {
4353 arg = coerce_ref (arg);
4354 t = t1;
4355 }
4356 }
4357
78134374 4358 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4359 {
4360 t1 = TYPE_TARGET_TYPE (t);
4361 if (t1 == NULL)
4362 goto BadValue;
4363 t1 = ada_check_typedef (t1);
78134374 4364 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4365 {
4366 arg = value_ind (arg);
4367 t = t1;
4368 }
4369 else
4370 break;
4371 }
aeb5907d 4372
78134374 4373 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4374 goto BadValue;
52ce6436 4375
de93309a
SM
4376 if (t1 == t)
4377 v = ada_search_struct_field (name, arg, 0, t);
4378 else
4379 {
4380 int bit_offset, bit_size, byte_offset;
4381 struct type *field_type;
4382 CORE_ADDR address;
a5ee536b 4383
78134374 4384 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4385 address = value_address (ada_value_ind (arg));
4386 else
4387 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4388
de93309a
SM
4389 /* Check to see if this is a tagged type. We also need to handle
4390 the case where the type is a reference to a tagged type, but
4391 we have to be careful to exclude pointers to tagged types.
4392 The latter should be shown as usual (as a pointer), whereas
4393 a reference should mostly be transparent to the user. */
14f9c5c9 4394
de93309a 4395 if (ada_is_tagged_type (t1, 0)
78134374 4396 || (t1->code () == TYPE_CODE_REF
de93309a
SM
4397 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4398 {
4399 /* We first try to find the searched field in the current type.
4400 If not found then let's look in the fixed type. */
14f9c5c9 4401
de93309a
SM
4402 if (!find_struct_field (name, t1, 0,
4403 &field_type, &byte_offset, &bit_offset,
4404 &bit_size, NULL))
4405 check_tag = 1;
4406 else
4407 check_tag = 0;
4408 }
4409 else
4410 check_tag = 0;
c3e5cd34 4411
de93309a
SM
4412 /* Convert to fixed type in all cases, so that we have proper
4413 offsets to each field in unconstrained record types. */
4414 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4415 address, NULL, check_tag);
4416
4417 if (find_struct_field (name, t1, 0,
4418 &field_type, &byte_offset, &bit_offset,
4419 &bit_size, NULL))
4420 {
4421 if (bit_size != 0)
4422 {
78134374 4423 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4424 arg = ada_coerce_ref (arg);
4425 else
4426 arg = ada_value_ind (arg);
4427 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4428 bit_offset, bit_size,
4429 field_type);
4430 }
4431 else
4432 v = value_at_lazy (field_type, address + byte_offset);
4433 }
c3e5cd34 4434 }
14f9c5c9 4435
de93309a
SM
4436 if (v != NULL || no_err)
4437 return v;
4438 else
4439 error (_("There is no member named %s."), name);
4440
4441 BadValue:
4442 if (no_err)
4443 return NULL;
4444 else
4445 error (_("Attempt to extract a component of "
4446 "a value that is not a record."));
14f9c5c9
AS
4447}
4448
4449/* Return the value ACTUAL, converted to be an appropriate value for a
4450 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4451 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4452 values not residing in memory, updating it as needed. */
14f9c5c9 4453
a93c0eb6 4454struct value *
40bc484c 4455ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4456{
df407dfe 4457 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4458 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4459 struct type *formal_target =
78134374 4460 formal_type->code () == TYPE_CODE_PTR
61ee279c 4461 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4462 struct type *actual_target =
78134374 4463 actual_type->code () == TYPE_CODE_PTR
61ee279c 4464 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4465
4c4b4cd2 4466 if (ada_is_array_descriptor_type (formal_target)
78134374 4467 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4468 return make_array_descriptor (formal_type, actual);
78134374
SM
4469 else if (formal_type->code () == TYPE_CODE_PTR
4470 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4471 {
a84a8a0d 4472 struct value *result;
5b4ee69b 4473
78134374 4474 if (formal_target->code () == TYPE_CODE_ARRAY
4c4b4cd2 4475 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4476 result = desc_data (actual);
78134374 4477 else if (formal_type->code () != TYPE_CODE_PTR)
4c4b4cd2
PH
4478 {
4479 if (VALUE_LVAL (actual) != lval_memory)
4480 {
4481 struct value *val;
5b4ee69b 4482
df407dfe 4483 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4484 val = allocate_value (actual_type);
990a07ab 4485 memcpy ((char *) value_contents_raw (val),
0fd88904 4486 (char *) value_contents (actual),
4c4b4cd2 4487 TYPE_LENGTH (actual_type));
40bc484c 4488 actual = ensure_lval (val);
4c4b4cd2 4489 }
a84a8a0d 4490 result = value_addr (actual);
4c4b4cd2 4491 }
a84a8a0d
JB
4492 else
4493 return actual;
b1af9e97 4494 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4495 }
78134374 4496 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4497 return ada_value_ind (actual);
8344af1e
JB
4498 else if (ada_is_aligner_type (formal_type))
4499 {
4500 /* We need to turn this parameter into an aligner type
4501 as well. */
4502 struct value *aligner = allocate_value (formal_type);
4503 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4504
4505 value_assign_to_component (aligner, component, actual);
4506 return aligner;
4507 }
14f9c5c9
AS
4508
4509 return actual;
4510}
4511
438c98a1
JB
4512/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4513 type TYPE. This is usually an inefficient no-op except on some targets
4514 (such as AVR) where the representation of a pointer and an address
4515 differs. */
4516
4517static CORE_ADDR
4518value_pointer (struct value *value, struct type *type)
4519{
4520 struct gdbarch *gdbarch = get_type_arch (type);
4521 unsigned len = TYPE_LENGTH (type);
224c3ddb 4522 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4523 CORE_ADDR addr;
4524
4525 addr = value_address (value);
4526 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4527 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4528 return addr;
4529}
4530
14f9c5c9 4531
4c4b4cd2
PH
4532/* Push a descriptor of type TYPE for array value ARR on the stack at
4533 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4534 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4535 to-descriptor type rather than a descriptor type), a struct value *
4536 representing a pointer to this descriptor. */
14f9c5c9 4537
d2e4a39e 4538static struct value *
40bc484c 4539make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4540{
d2e4a39e
AS
4541 struct type *bounds_type = desc_bounds_type (type);
4542 struct type *desc_type = desc_base_type (type);
4543 struct value *descriptor = allocate_value (desc_type);
4544 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4545 int i;
d2e4a39e 4546
0963b4bd
MS
4547 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4548 i > 0; i -= 1)
14f9c5c9 4549 {
19f220c3
JK
4550 modify_field (value_type (bounds), value_contents_writeable (bounds),
4551 ada_array_bound (arr, i, 0),
4552 desc_bound_bitpos (bounds_type, i, 0),
4553 desc_bound_bitsize (bounds_type, i, 0));
4554 modify_field (value_type (bounds), value_contents_writeable (bounds),
4555 ada_array_bound (arr, i, 1),
4556 desc_bound_bitpos (bounds_type, i, 1),
4557 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4558 }
d2e4a39e 4559
40bc484c 4560 bounds = ensure_lval (bounds);
d2e4a39e 4561
19f220c3
JK
4562 modify_field (value_type (descriptor),
4563 value_contents_writeable (descriptor),
4564 value_pointer (ensure_lval (arr),
4565 TYPE_FIELD_TYPE (desc_type, 0)),
4566 fat_pntr_data_bitpos (desc_type),
4567 fat_pntr_data_bitsize (desc_type));
4568
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (bounds,
4572 TYPE_FIELD_TYPE (desc_type, 1)),
4573 fat_pntr_bounds_bitpos (desc_type),
4574 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4575
40bc484c 4576 descriptor = ensure_lval (descriptor);
14f9c5c9 4577
78134374 4578 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4579 return value_addr (descriptor);
4580 else
4581 return descriptor;
4582}
14f9c5c9 4583\f
3d9434b5
JB
4584 /* Symbol Cache Module */
4585
3d9434b5 4586/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4587 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4588 on the type of entity being printed, the cache can make it as much
4589 as an order of magnitude faster than without it.
4590
4591 The descriptive type DWARF extension has significantly reduced
4592 the need for this cache, at least when DWARF is being used. However,
4593 even in this case, some expensive name-based symbol searches are still
4594 sometimes necessary - to find an XVZ variable, mostly. */
4595
ee01b665 4596/* Initialize the contents of SYM_CACHE. */
3d9434b5 4597
ee01b665
JB
4598static void
4599ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4600{
4601 obstack_init (&sym_cache->cache_space);
4602 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4603}
3d9434b5 4604
ee01b665
JB
4605/* Free the memory used by SYM_CACHE. */
4606
4607static void
4608ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4609{
ee01b665
JB
4610 obstack_free (&sym_cache->cache_space, NULL);
4611 xfree (sym_cache);
4612}
3d9434b5 4613
ee01b665
JB
4614/* Return the symbol cache associated to the given program space PSPACE.
4615 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4616
ee01b665
JB
4617static struct ada_symbol_cache *
4618ada_get_symbol_cache (struct program_space *pspace)
4619{
4620 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4621
66c168ae 4622 if (pspace_data->sym_cache == NULL)
ee01b665 4623 {
66c168ae
JB
4624 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4625 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4626 }
4627
66c168ae 4628 return pspace_data->sym_cache;
ee01b665 4629}
3d9434b5
JB
4630
4631/* Clear all entries from the symbol cache. */
4632
4633static void
4634ada_clear_symbol_cache (void)
4635{
ee01b665
JB
4636 struct ada_symbol_cache *sym_cache
4637 = ada_get_symbol_cache (current_program_space);
4638
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4641}
4642
fe978cb0 4643/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4644 Return it if found, or NULL otherwise. */
4645
4646static struct cache_entry **
fe978cb0 4647find_entry (const char *name, domain_enum domain)
3d9434b5 4648{
ee01b665
JB
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4651 int h = msymbol_hash (name) % HASH_SIZE;
4652 struct cache_entry **e;
4653
ee01b665 4654 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4655 {
fe978cb0 4656 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4657 return e;
4658 }
4659 return NULL;
4660}
4661
fe978cb0 4662/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4663 Return 1 if found, 0 otherwise.
4664
4665 If an entry was found and SYM is not NULL, set *SYM to the entry's
4666 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4667
96d887e8 4668static int
fe978cb0 4669lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4670 struct symbol **sym, const struct block **block)
96d887e8 4671{
fe978cb0 4672 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4673
4674 if (e == NULL)
4675 return 0;
4676 if (sym != NULL)
4677 *sym = (*e)->sym;
4678 if (block != NULL)
4679 *block = (*e)->block;
4680 return 1;
96d887e8
PH
4681}
4682
3d9434b5 4683/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4684 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4685
96d887e8 4686static void
fe978cb0 4687cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4688 const struct block *block)
96d887e8 4689{
ee01b665
JB
4690 struct ada_symbol_cache *sym_cache
4691 = ada_get_symbol_cache (current_program_space);
3d9434b5 4692 int h;
3d9434b5
JB
4693 struct cache_entry *e;
4694
1994afbf
DE
4695 /* Symbols for builtin types don't have a block.
4696 For now don't cache such symbols. */
4697 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4698 return;
4699
3d9434b5
JB
4700 /* If the symbol is a local symbol, then do not cache it, as a search
4701 for that symbol depends on the context. To determine whether
4702 the symbol is local or not, we check the block where we found it
4703 against the global and static blocks of its associated symtab. */
4704 if (sym
08be3fe3 4705 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4706 GLOBAL_BLOCK) != block
08be3fe3 4707 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4708 STATIC_BLOCK) != block)
3d9434b5
JB
4709 return;
4710
4711 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4712 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4713 e->next = sym_cache->root[h];
4714 sym_cache->root[h] = e;
2ef5453b 4715 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4716 e->sym = sym;
fe978cb0 4717 e->domain = domain;
3d9434b5 4718 e->block = block;
96d887e8 4719}
4c4b4cd2
PH
4720\f
4721 /* Symbol Lookup */
4722
b5ec771e
PA
4723/* Return the symbol name match type that should be used used when
4724 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4725
4726 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4727 for Ada lookups. */
c0431670 4728
b5ec771e
PA
4729static symbol_name_match_type
4730name_match_type_from_name (const char *lookup_name)
c0431670 4731{
b5ec771e
PA
4732 return (strstr (lookup_name, "__") == NULL
4733 ? symbol_name_match_type::WILD
4734 : symbol_name_match_type::FULL);
c0431670
JB
4735}
4736
4c4b4cd2
PH
4737/* Return the result of a standard (literal, C-like) lookup of NAME in
4738 given DOMAIN, visible from lexical block BLOCK. */
4739
4740static struct symbol *
4741standard_lookup (const char *name, const struct block *block,
4742 domain_enum domain)
4743{
acbd605d 4744 /* Initialize it just to avoid a GCC false warning. */
6640a367 4745 struct block_symbol sym = {};
4c4b4cd2 4746
d12307c1
PMR
4747 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4748 return sym.symbol;
a2cd4f14 4749 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4750 cache_symbol (name, domain, sym.symbol, sym.block);
4751 return sym.symbol;
4c4b4cd2
PH
4752}
4753
4754
4755/* Non-zero iff there is at least one non-function/non-enumeral symbol
4756 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4757 since they contend in overloading in the same way. */
4758static int
d12307c1 4759is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4760{
4761 int i;
4762
4763 for (i = 0; i < n; i += 1)
78134374
SM
4764 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4765 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
d12307c1 4766 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4767 return 1;
4768
4769 return 0;
4770}
4771
4772/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4773 struct types. Otherwise, they may not. */
14f9c5c9
AS
4774
4775static int
d2e4a39e 4776equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4777{
d2e4a39e 4778 if (type0 == type1)
14f9c5c9 4779 return 1;
d2e4a39e 4780 if (type0 == NULL || type1 == NULL
78134374 4781 || type0->code () != type1->code ())
14f9c5c9 4782 return 0;
78134374
SM
4783 if ((type0->code () == TYPE_CODE_STRUCT
4784 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4785 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4786 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4787 return 1;
d2e4a39e 4788
14f9c5c9
AS
4789 return 0;
4790}
4791
4792/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4793 no more defined than that of SYM1. */
14f9c5c9
AS
4794
4795static int
d2e4a39e 4796lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4797{
4798 if (sym0 == sym1)
4799 return 1;
176620f1 4800 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4801 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4802 return 0;
4803
d2e4a39e 4804 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4805 {
4806 case LOC_UNDEF:
4807 return 1;
4808 case LOC_TYPEDEF:
4809 {
4c4b4cd2
PH
4810 struct type *type0 = SYMBOL_TYPE (sym0);
4811 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4812 const char *name0 = sym0->linkage_name ();
4813 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4814 int len0 = strlen (name0);
5b4ee69b 4815
4c4b4cd2 4816 return
78134374 4817 type0->code () == type1->code ()
4c4b4cd2
PH
4818 && (equiv_types (type0, type1)
4819 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4820 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4821 }
4822 case LOC_CONST:
4823 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4824 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4825
4826 case LOC_STATIC:
4827 {
987012b8
CB
4828 const char *name0 = sym0->linkage_name ();
4829 const char *name1 = sym1->linkage_name ();
4b610737
TT
4830 return (strcmp (name0, name1) == 0
4831 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4832 }
4833
d2e4a39e
AS
4834 default:
4835 return 0;
14f9c5c9
AS
4836 }
4837}
4838
d12307c1 4839/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4840 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4841
4842static void
76a01679
JB
4843add_defn_to_vec (struct obstack *obstackp,
4844 struct symbol *sym,
f0c5f9b2 4845 const struct block *block)
14f9c5c9
AS
4846{
4847 int i;
d12307c1 4848 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4849
529cad9c
PH
4850 /* Do not try to complete stub types, as the debugger is probably
4851 already scanning all symbols matching a certain name at the
4852 time when this function is called. Trying to replace the stub
4853 type by its associated full type will cause us to restart a scan
4854 which may lead to an infinite recursion. Instead, the client
4855 collecting the matching symbols will end up collecting several
4856 matches, with at least one of them complete. It can then filter
4857 out the stub ones if needed. */
4858
4c4b4cd2
PH
4859 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4860 {
d12307c1 4861 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4862 return;
d12307c1 4863 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4864 {
d12307c1 4865 prevDefns[i].symbol = sym;
4c4b4cd2 4866 prevDefns[i].block = block;
4c4b4cd2 4867 return;
76a01679 4868 }
4c4b4cd2
PH
4869 }
4870
4871 {
d12307c1 4872 struct block_symbol info;
4c4b4cd2 4873
d12307c1 4874 info.symbol = sym;
4c4b4cd2 4875 info.block = block;
d12307c1 4876 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4877 }
4878}
4879
d12307c1
PMR
4880/* Number of block_symbol structures currently collected in current vector in
4881 OBSTACKP. */
4c4b4cd2 4882
76a01679
JB
4883static int
4884num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4885{
d12307c1 4886 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4887}
4888
d12307c1
PMR
4889/* Vector of block_symbol structures currently collected in current vector in
4890 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4891
d12307c1 4892static struct block_symbol *
4c4b4cd2
PH
4893defns_collected (struct obstack *obstackp, int finish)
4894{
4895 if (finish)
224c3ddb 4896 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4897 else
d12307c1 4898 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4899}
4900
7c7b6655
TT
4901/* Return a bound minimal symbol matching NAME according to Ada
4902 decoding rules. Returns an invalid symbol if there is no such
4903 minimal symbol. Names prefixed with "standard__" are handled
4904 specially: "standard__" is first stripped off, and only static and
4905 global symbols are searched. */
4c4b4cd2 4906
7c7b6655 4907struct bound_minimal_symbol
96d887e8 4908ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4909{
7c7b6655 4910 struct bound_minimal_symbol result;
4c4b4cd2 4911
7c7b6655
TT
4912 memset (&result, 0, sizeof (result));
4913
b5ec771e
PA
4914 symbol_name_match_type match_type = name_match_type_from_name (name);
4915 lookup_name_info lookup_name (name, match_type);
4916
4917 symbol_name_matcher_ftype *match_name
4918 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4919
2030c079 4920 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4921 {
7932255d 4922 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4923 {
c9d95fa3 4924 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4925 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4926 {
4927 result.minsym = msymbol;
4928 result.objfile = objfile;
4929 break;
4930 }
4931 }
4932 }
4c4b4cd2 4933
7c7b6655 4934 return result;
96d887e8 4935}
4c4b4cd2 4936
96d887e8
PH
4937/* For all subprograms that statically enclose the subprogram of the
4938 selected frame, add symbols matching identifier NAME in DOMAIN
4939 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4940 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4941 with a wildcard prefix. */
4c4b4cd2 4942
96d887e8
PH
4943static void
4944add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4945 const lookup_name_info &lookup_name,
4946 domain_enum domain)
96d887e8 4947{
96d887e8 4948}
14f9c5c9 4949
96d887e8
PH
4950/* True if TYPE is definitely an artificial type supplied to a symbol
4951 for which no debugging information was given in the symbol file. */
14f9c5c9 4952
96d887e8
PH
4953static int
4954is_nondebugging_type (struct type *type)
4955{
0d5cff50 4956 const char *name = ada_type_name (type);
5b4ee69b 4957
96d887e8
PH
4958 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4959}
4c4b4cd2 4960
8f17729f
JB
4961/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4962 that are deemed "identical" for practical purposes.
4963
4964 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4965 types and that their number of enumerals is identical (in other
4966 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4967
4968static int
4969ada_identical_enum_types_p (struct type *type1, struct type *type2)
4970{
4971 int i;
4972
4973 /* The heuristic we use here is fairly conservative. We consider
4974 that 2 enumerate types are identical if they have the same
4975 number of enumerals and that all enumerals have the same
4976 underlying value and name. */
4977
4978 /* All enums in the type should have an identical underlying value. */
4979 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4980 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4981 return 0;
4982
4983 /* All enumerals should also have the same name (modulo any numerical
4984 suffix). */
4985 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4986 {
0d5cff50
DE
4987 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4988 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4989 int len_1 = strlen (name_1);
4990 int len_2 = strlen (name_2);
4991
4992 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4993 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4994 if (len_1 != len_2
4995 || strncmp (TYPE_FIELD_NAME (type1, i),
4996 TYPE_FIELD_NAME (type2, i),
4997 len_1) != 0)
4998 return 0;
4999 }
5000
5001 return 1;
5002}
5003
5004/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5005 that are deemed "identical" for practical purposes. Sometimes,
5006 enumerals are not strictly identical, but their types are so similar
5007 that they can be considered identical.
5008
5009 For instance, consider the following code:
5010
5011 type Color is (Black, Red, Green, Blue, White);
5012 type RGB_Color is new Color range Red .. Blue;
5013
5014 Type RGB_Color is a subrange of an implicit type which is a copy
5015 of type Color. If we call that implicit type RGB_ColorB ("B" is
5016 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5017 As a result, when an expression references any of the enumeral
5018 by name (Eg. "print green"), the expression is technically
5019 ambiguous and the user should be asked to disambiguate. But
5020 doing so would only hinder the user, since it wouldn't matter
5021 what choice he makes, the outcome would always be the same.
5022 So, for practical purposes, we consider them as the same. */
5023
5024static int
54d343a2 5025symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5026{
5027 int i;
5028
5029 /* Before performing a thorough comparison check of each type,
5030 we perform a series of inexpensive checks. We expect that these
5031 checks will quickly fail in the vast majority of cases, and thus
5032 help prevent the unnecessary use of a more expensive comparison.
5033 Said comparison also expects us to make some of these checks
5034 (see ada_identical_enum_types_p). */
5035
5036 /* Quick check: All symbols should have an enum type. */
54d343a2 5037 for (i = 0; i < syms.size (); i++)
78134374 5038 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
5039 return 0;
5040
5041 /* Quick check: They should all have the same value. */
54d343a2 5042 for (i = 1; i < syms.size (); i++)
d12307c1 5043 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5044 return 0;
5045
5046 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5047 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5048 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5049 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5050 return 0;
5051
5052 /* All the sanity checks passed, so we might have a set of
5053 identical enumeration types. Perform a more complete
5054 comparison of the type of each symbol. */
54d343a2 5055 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5056 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5057 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5058 return 0;
5059
5060 return 1;
5061}
5062
54d343a2 5063/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5064 duplicate other symbols in the list (The only case I know of where
5065 this happens is when object files containing stabs-in-ecoff are
5066 linked with files containing ordinary ecoff debugging symbols (or no
5067 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5068 Returns the number of items in the modified list. */
4c4b4cd2 5069
96d887e8 5070static int
54d343a2 5071remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5072{
5073 int i, j;
4c4b4cd2 5074
8f17729f
JB
5075 /* We should never be called with less than 2 symbols, as there
5076 cannot be any extra symbol in that case. But it's easy to
5077 handle, since we have nothing to do in that case. */
54d343a2
TT
5078 if (syms->size () < 2)
5079 return syms->size ();
8f17729f 5080
96d887e8 5081 i = 0;
54d343a2 5082 while (i < syms->size ())
96d887e8 5083 {
a35ddb44 5084 int remove_p = 0;
339c13b6
JB
5085
5086 /* If two symbols have the same name and one of them is a stub type,
5087 the get rid of the stub. */
5088
54d343a2 5089 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5090 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5091 {
54d343a2 5092 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5093 {
5094 if (j != i
54d343a2 5095 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5096 && (*syms)[j].symbol->linkage_name () != NULL
5097 && strcmp ((*syms)[i].symbol->linkage_name (),
5098 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5099 remove_p = 1;
339c13b6
JB
5100 }
5101 }
5102
5103 /* Two symbols with the same name, same class and same address
5104 should be identical. */
5105
987012b8 5106 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5107 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5108 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5109 {
54d343a2 5110 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5111 {
5112 if (i != j
987012b8
CB
5113 && (*syms)[j].symbol->linkage_name () != NULL
5114 && strcmp ((*syms)[i].symbol->linkage_name (),
5115 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5116 && SYMBOL_CLASS ((*syms)[i].symbol)
5117 == SYMBOL_CLASS ((*syms)[j].symbol)
5118 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5119 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5120 remove_p = 1;
4c4b4cd2 5121 }
4c4b4cd2 5122 }
339c13b6 5123
a35ddb44 5124 if (remove_p)
54d343a2 5125 syms->erase (syms->begin () + i);
339c13b6 5126
96d887e8 5127 i += 1;
14f9c5c9 5128 }
8f17729f
JB
5129
5130 /* If all the remaining symbols are identical enumerals, then
5131 just keep the first one and discard the rest.
5132
5133 Unlike what we did previously, we do not discard any entry
5134 unless they are ALL identical. This is because the symbol
5135 comparison is not a strict comparison, but rather a practical
5136 comparison. If all symbols are considered identical, then
5137 we can just go ahead and use the first one and discard the rest.
5138 But if we cannot reduce the list to a single element, we have
5139 to ask the user to disambiguate anyways. And if we have to
5140 present a multiple-choice menu, it's less confusing if the list
5141 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5142 if (symbols_are_identical_enums (*syms))
5143 syms->resize (1);
8f17729f 5144
54d343a2 5145 return syms->size ();
14f9c5c9
AS
5146}
5147
96d887e8
PH
5148/* Given a type that corresponds to a renaming entity, use the type name
5149 to extract the scope (package name or function name, fully qualified,
5150 and following the GNAT encoding convention) where this renaming has been
49d83361 5151 defined. */
4c4b4cd2 5152
49d83361 5153static std::string
96d887e8 5154xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5155{
96d887e8 5156 /* The renaming types adhere to the following convention:
0963b4bd 5157 <scope>__<rename>___<XR extension>.
96d887e8
PH
5158 So, to extract the scope, we search for the "___XR" extension,
5159 and then backtrack until we find the first "__". */
76a01679 5160
a737d952 5161 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5162 const char *suffix = strstr (name, "___XR");
5163 const char *last;
14f9c5c9 5164
96d887e8
PH
5165 /* Now, backtrack a bit until we find the first "__". Start looking
5166 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5167
96d887e8
PH
5168 for (last = suffix - 3; last > name; last--)
5169 if (last[0] == '_' && last[1] == '_')
5170 break;
76a01679 5171
96d887e8 5172 /* Make a copy of scope and return it. */
49d83361 5173 return std::string (name, last);
4c4b4cd2
PH
5174}
5175
96d887e8 5176/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5177
96d887e8
PH
5178static int
5179is_package_name (const char *name)
4c4b4cd2 5180{
96d887e8
PH
5181 /* Here, We take advantage of the fact that no symbols are generated
5182 for packages, while symbols are generated for each function.
5183 So the condition for NAME represent a package becomes equivalent
5184 to NAME not existing in our list of symbols. There is only one
5185 small complication with library-level functions (see below). */
4c4b4cd2 5186
96d887e8
PH
5187 /* If it is a function that has not been defined at library level,
5188 then we should be able to look it up in the symbols. */
5189 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5190 return 0;
14f9c5c9 5191
96d887e8
PH
5192 /* Library-level function names start with "_ada_". See if function
5193 "_ada_" followed by NAME can be found. */
14f9c5c9 5194
96d887e8 5195 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5196 functions names cannot contain "__" in them. */
96d887e8
PH
5197 if (strstr (name, "__") != NULL)
5198 return 0;
4c4b4cd2 5199
528e1572 5200 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5201
528e1572 5202 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5203}
14f9c5c9 5204
96d887e8 5205/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5206 not visible from FUNCTION_NAME. */
14f9c5c9 5207
96d887e8 5208static int
0d5cff50 5209old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5210{
aeb5907d
JB
5211 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5212 return 0;
5213
49d83361 5214 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5215
96d887e8 5216 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5217 if (is_package_name (scope.c_str ()))
5218 return 0;
14f9c5c9 5219
96d887e8
PH
5220 /* Check that the rename is in the current function scope by checking
5221 that its name starts with SCOPE. */
76a01679 5222
96d887e8
PH
5223 /* If the function name starts with "_ada_", it means that it is
5224 a library-level function. Strip this prefix before doing the
5225 comparison, as the encoding for the renaming does not contain
5226 this prefix. */
61012eef 5227 if (startswith (function_name, "_ada_"))
96d887e8 5228 function_name += 5;
f26caa11 5229
49d83361 5230 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5231}
5232
aeb5907d
JB
5233/* Remove entries from SYMS that corresponds to a renaming entity that
5234 is not visible from the function associated with CURRENT_BLOCK or
5235 that is superfluous due to the presence of more specific renaming
5236 information. Places surviving symbols in the initial entries of
5237 SYMS and returns the number of surviving symbols.
96d887e8
PH
5238
5239 Rationale:
aeb5907d
JB
5240 First, in cases where an object renaming is implemented as a
5241 reference variable, GNAT may produce both the actual reference
5242 variable and the renaming encoding. In this case, we discard the
5243 latter.
5244
5245 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5246 entity. Unfortunately, STABS currently does not support the definition
5247 of types that are local to a given lexical block, so all renamings types
5248 are emitted at library level. As a consequence, if an application
5249 contains two renaming entities using the same name, and a user tries to
5250 print the value of one of these entities, the result of the ada symbol
5251 lookup will also contain the wrong renaming type.
f26caa11 5252
96d887e8
PH
5253 This function partially covers for this limitation by attempting to
5254 remove from the SYMS list renaming symbols that should be visible
5255 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5256 method with the current information available. The implementation
5257 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5258
5259 - When the user tries to print a rename in a function while there
5260 is another rename entity defined in a package: Normally, the
5261 rename in the function has precedence over the rename in the
5262 package, so the latter should be removed from the list. This is
5263 currently not the case.
5264
5265 - This function will incorrectly remove valid renames if
5266 the CURRENT_BLOCK corresponds to a function which symbol name
5267 has been changed by an "Export" pragma. As a consequence,
5268 the user will be unable to print such rename entities. */
4c4b4cd2 5269
14f9c5c9 5270static int
54d343a2
TT
5271remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5272 const struct block *current_block)
4c4b4cd2
PH
5273{
5274 struct symbol *current_function;
0d5cff50 5275 const char *current_function_name;
4c4b4cd2 5276 int i;
aeb5907d
JB
5277 int is_new_style_renaming;
5278
5279 /* If there is both a renaming foo___XR... encoded as a variable and
5280 a simple variable foo in the same block, discard the latter.
0963b4bd 5281 First, zero out such symbols, then compress. */
aeb5907d 5282 is_new_style_renaming = 0;
54d343a2 5283 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5284 {
54d343a2
TT
5285 struct symbol *sym = (*syms)[i].symbol;
5286 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5287 const char *name;
5288 const char *suffix;
5289
5290 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5291 continue;
987012b8 5292 name = sym->linkage_name ();
aeb5907d
JB
5293 suffix = strstr (name, "___XR");
5294
5295 if (suffix != NULL)
5296 {
5297 int name_len = suffix - name;
5298 int j;
5b4ee69b 5299
aeb5907d 5300 is_new_style_renaming = 1;
54d343a2
TT
5301 for (j = 0; j < syms->size (); j += 1)
5302 if (i != j && (*syms)[j].symbol != NULL
987012b8 5303 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5304 name_len) == 0
54d343a2
TT
5305 && block == (*syms)[j].block)
5306 (*syms)[j].symbol = NULL;
aeb5907d
JB
5307 }
5308 }
5309 if (is_new_style_renaming)
5310 {
5311 int j, k;
5312
54d343a2
TT
5313 for (j = k = 0; j < syms->size (); j += 1)
5314 if ((*syms)[j].symbol != NULL)
aeb5907d 5315 {
54d343a2 5316 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5317 k += 1;
5318 }
5319 return k;
5320 }
4c4b4cd2
PH
5321
5322 /* Extract the function name associated to CURRENT_BLOCK.
5323 Abort if unable to do so. */
76a01679 5324
4c4b4cd2 5325 if (current_block == NULL)
54d343a2 5326 return syms->size ();
76a01679 5327
7f0df278 5328 current_function = block_linkage_function (current_block);
4c4b4cd2 5329 if (current_function == NULL)
54d343a2 5330 return syms->size ();
4c4b4cd2 5331
987012b8 5332 current_function_name = current_function->linkage_name ();
4c4b4cd2 5333 if (current_function_name == NULL)
54d343a2 5334 return syms->size ();
4c4b4cd2
PH
5335
5336 /* Check each of the symbols, and remove it from the list if it is
5337 a type corresponding to a renaming that is out of the scope of
5338 the current block. */
5339
5340 i = 0;
54d343a2 5341 while (i < syms->size ())
4c4b4cd2 5342 {
54d343a2 5343 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5344 == ADA_OBJECT_RENAMING
54d343a2
TT
5345 && old_renaming_is_invisible ((*syms)[i].symbol,
5346 current_function_name))
5347 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5348 else
5349 i += 1;
5350 }
5351
54d343a2 5352 return syms->size ();
4c4b4cd2
PH
5353}
5354
339c13b6
JB
5355/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5356 whose name and domain match NAME and DOMAIN respectively.
5357 If no match was found, then extend the search to "enclosing"
5358 routines (in other words, if we're inside a nested function,
5359 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5360 If WILD_MATCH_P is nonzero, perform the naming matching in
5361 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5362
5363 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5364
5365static void
b5ec771e
PA
5366ada_add_local_symbols (struct obstack *obstackp,
5367 const lookup_name_info &lookup_name,
5368 const struct block *block, domain_enum domain)
339c13b6
JB
5369{
5370 int block_depth = 0;
5371
5372 while (block != NULL)
5373 {
5374 block_depth += 1;
b5ec771e 5375 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5376
5377 /* If we found a non-function match, assume that's the one. */
5378 if (is_nonfunction (defns_collected (obstackp, 0),
5379 num_defns_collected (obstackp)))
5380 return;
5381
5382 block = BLOCK_SUPERBLOCK (block);
5383 }
5384
5385 /* If no luck so far, try to find NAME as a local symbol in some lexically
5386 enclosing subprogram. */
5387 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5388 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5389}
5390
ccefe4c4 5391/* An object of this type is used as the user_data argument when
40658b94 5392 calling the map_matching_symbols method. */
ccefe4c4 5393
40658b94 5394struct match_data
ccefe4c4 5395{
40658b94 5396 struct objfile *objfile;
ccefe4c4 5397 struct obstack *obstackp;
40658b94
PH
5398 struct symbol *arg_sym;
5399 int found_sym;
ccefe4c4
TT
5400};
5401
199b4314
TT
5402/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5403 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5404 containing the obstack that collects the symbol list, the file that SYM
5405 must come from, a flag indicating whether a non-argument symbol has
5406 been found in the current block, and the last argument symbol
5407 passed in SYM within the current block (if any). When SYM is null,
5408 marking the end of a block, the argument symbol is added if no
5409 other has been found. */
ccefe4c4 5410
199b4314
TT
5411static bool
5412aux_add_nonlocal_symbols (struct block_symbol *bsym,
5413 struct match_data *data)
ccefe4c4 5414{
199b4314
TT
5415 const struct block *block = bsym->block;
5416 struct symbol *sym = bsym->symbol;
5417
40658b94
PH
5418 if (sym == NULL)
5419 {
5420 if (!data->found_sym && data->arg_sym != NULL)
5421 add_defn_to_vec (data->obstackp,
5422 fixup_symbol_section (data->arg_sym, data->objfile),
5423 block);
5424 data->found_sym = 0;
5425 data->arg_sym = NULL;
5426 }
5427 else
5428 {
5429 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5430 return true;
40658b94
PH
5431 else if (SYMBOL_IS_ARGUMENT (sym))
5432 data->arg_sym = sym;
5433 else
5434 {
5435 data->found_sym = 1;
5436 add_defn_to_vec (data->obstackp,
5437 fixup_symbol_section (sym, data->objfile),
5438 block);
5439 }
5440 }
199b4314 5441 return true;
40658b94
PH
5442}
5443
b5ec771e
PA
5444/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5445 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5446 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5447
5448static int
5449ada_add_block_renamings (struct obstack *obstackp,
5450 const struct block *block,
b5ec771e
PA
5451 const lookup_name_info &lookup_name,
5452 domain_enum domain)
22cee43f
PMR
5453{
5454 struct using_direct *renaming;
5455 int defns_mark = num_defns_collected (obstackp);
5456
b5ec771e
PA
5457 symbol_name_matcher_ftype *name_match
5458 = ada_get_symbol_name_matcher (lookup_name);
5459
22cee43f
PMR
5460 for (renaming = block_using (block);
5461 renaming != NULL;
5462 renaming = renaming->next)
5463 {
5464 const char *r_name;
22cee43f
PMR
5465
5466 /* Avoid infinite recursions: skip this renaming if we are actually
5467 already traversing it.
5468
5469 Currently, symbol lookup in Ada don't use the namespace machinery from
5470 C++/Fortran support: skip namespace imports that use them. */
5471 if (renaming->searched
5472 || (renaming->import_src != NULL
5473 && renaming->import_src[0] != '\0')
5474 || (renaming->import_dest != NULL
5475 && renaming->import_dest[0] != '\0'))
5476 continue;
5477 renaming->searched = 1;
5478
5479 /* TODO: here, we perform another name-based symbol lookup, which can
5480 pull its own multiple overloads. In theory, we should be able to do
5481 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5482 not a simple name. But in order to do this, we would need to enhance
5483 the DWARF reader to associate a symbol to this renaming, instead of a
5484 name. So, for now, we do something simpler: re-use the C++/Fortran
5485 namespace machinery. */
5486 r_name = (renaming->alias != NULL
5487 ? renaming->alias
5488 : renaming->declaration);
b5ec771e
PA
5489 if (name_match (r_name, lookup_name, NULL))
5490 {
5491 lookup_name_info decl_lookup_name (renaming->declaration,
5492 lookup_name.match_type ());
5493 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5494 1, NULL);
5495 }
22cee43f
PMR
5496 renaming->searched = 0;
5497 }
5498 return num_defns_collected (obstackp) != defns_mark;
5499}
5500
db230ce3
JB
5501/* Implements compare_names, but only applying the comparision using
5502 the given CASING. */
5b4ee69b 5503
40658b94 5504static int
db230ce3
JB
5505compare_names_with_case (const char *string1, const char *string2,
5506 enum case_sensitivity casing)
40658b94
PH
5507{
5508 while (*string1 != '\0' && *string2 != '\0')
5509 {
db230ce3
JB
5510 char c1, c2;
5511
40658b94
PH
5512 if (isspace (*string1) || isspace (*string2))
5513 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5514
5515 if (casing == case_sensitive_off)
5516 {
5517 c1 = tolower (*string1);
5518 c2 = tolower (*string2);
5519 }
5520 else
5521 {
5522 c1 = *string1;
5523 c2 = *string2;
5524 }
5525 if (c1 != c2)
40658b94 5526 break;
db230ce3 5527
40658b94
PH
5528 string1 += 1;
5529 string2 += 1;
5530 }
db230ce3 5531
40658b94
PH
5532 switch (*string1)
5533 {
5534 case '(':
5535 return strcmp_iw_ordered (string1, string2);
5536 case '_':
5537 if (*string2 == '\0')
5538 {
052874e8 5539 if (is_name_suffix (string1))
40658b94
PH
5540 return 0;
5541 else
1a1d5513 5542 return 1;
40658b94 5543 }
dbb8534f 5544 /* FALLTHROUGH */
40658b94
PH
5545 default:
5546 if (*string2 == '(')
5547 return strcmp_iw_ordered (string1, string2);
5548 else
db230ce3
JB
5549 {
5550 if (casing == case_sensitive_off)
5551 return tolower (*string1) - tolower (*string2);
5552 else
5553 return *string1 - *string2;
5554 }
40658b94 5555 }
ccefe4c4
TT
5556}
5557
db230ce3
JB
5558/* Compare STRING1 to STRING2, with results as for strcmp.
5559 Compatible with strcmp_iw_ordered in that...
5560
5561 strcmp_iw_ordered (STRING1, STRING2) <= 0
5562
5563 ... implies...
5564
5565 compare_names (STRING1, STRING2) <= 0
5566
5567 (they may differ as to what symbols compare equal). */
5568
5569static int
5570compare_names (const char *string1, const char *string2)
5571{
5572 int result;
5573
5574 /* Similar to what strcmp_iw_ordered does, we need to perform
5575 a case-insensitive comparison first, and only resort to
5576 a second, case-sensitive, comparison if the first one was
5577 not sufficient to differentiate the two strings. */
5578
5579 result = compare_names_with_case (string1, string2, case_sensitive_off);
5580 if (result == 0)
5581 result = compare_names_with_case (string1, string2, case_sensitive_on);
5582
5583 return result;
5584}
5585
b5ec771e
PA
5586/* Convenience function to get at the Ada encoded lookup name for
5587 LOOKUP_NAME, as a C string. */
5588
5589static const char *
5590ada_lookup_name (const lookup_name_info &lookup_name)
5591{
5592 return lookup_name.ada ().lookup_name ().c_str ();
5593}
5594
339c13b6 5595/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5596 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5597 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5598 symbols otherwise. */
339c13b6
JB
5599
5600static void
b5ec771e
PA
5601add_nonlocal_symbols (struct obstack *obstackp,
5602 const lookup_name_info &lookup_name,
5603 domain_enum domain, int global)
339c13b6 5604{
40658b94 5605 struct match_data data;
339c13b6 5606
6475f2fe 5607 memset (&data, 0, sizeof data);
ccefe4c4 5608 data.obstackp = obstackp;
339c13b6 5609
b5ec771e
PA
5610 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5611
199b4314
TT
5612 auto callback = [&] (struct block_symbol *bsym)
5613 {
5614 return aux_add_nonlocal_symbols (bsym, &data);
5615 };
5616
2030c079 5617 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5618 {
5619 data.objfile = objfile;
5620
b054970d
TT
5621 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5622 domain, global, callback,
5623 (is_wild_match
5624 ? NULL : compare_names));
22cee43f 5625
b669c953 5626 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5627 {
5628 const struct block *global_block
5629 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5630
b5ec771e
PA
5631 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5632 domain))
22cee43f
PMR
5633 data.found_sym = 1;
5634 }
40658b94
PH
5635 }
5636
5637 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5638 {
b5ec771e 5639 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5640 std::string bracket_name = std::string ("<_ada_") + name + '>';
5641 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5642
2030c079 5643 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5644 {
40658b94 5645 data.objfile = objfile;
b054970d 5646 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5647 domain, global, callback,
b5ec771e 5648 compare_names);
40658b94
PH
5649 }
5650 }
339c13b6
JB
5651}
5652
b5ec771e
PA
5653/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5654 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5655 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5656
22cee43f
PMR
5657 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5658 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5659 is the one match returned (no other matches in that or
d9680e73 5660 enclosing blocks is returned). If there are any matches in or
22cee43f 5661 surrounding BLOCK, then these alone are returned.
4eeaa230 5662
b5ec771e
PA
5663 Names prefixed with "standard__" are handled specially:
5664 "standard__" is first stripped off (by the lookup_name
5665 constructor), and only static and global symbols are searched.
14f9c5c9 5666
22cee43f
PMR
5667 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5668 to lookup global symbols. */
5669
5670static void
5671ada_add_all_symbols (struct obstack *obstackp,
5672 const struct block *block,
b5ec771e 5673 const lookup_name_info &lookup_name,
22cee43f
PMR
5674 domain_enum domain,
5675 int full_search,
5676 int *made_global_lookup_p)
14f9c5c9
AS
5677{
5678 struct symbol *sym;
14f9c5c9 5679
22cee43f
PMR
5680 if (made_global_lookup_p)
5681 *made_global_lookup_p = 0;
339c13b6
JB
5682
5683 /* Special case: If the user specifies a symbol name inside package
5684 Standard, do a non-wild matching of the symbol name without
5685 the "standard__" prefix. This was primarily introduced in order
5686 to allow the user to specifically access the standard exceptions
5687 using, for instance, Standard.Constraint_Error when Constraint_Error
5688 is ambiguous (due to the user defining its own Constraint_Error
5689 entity inside its program). */
b5ec771e
PA
5690 if (lookup_name.ada ().standard_p ())
5691 block = NULL;
4c4b4cd2 5692
339c13b6 5693 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5694
4eeaa230
DE
5695 if (block != NULL)
5696 {
5697 if (full_search)
b5ec771e 5698 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5699 else
5700 {
5701 /* In the !full_search case we're are being called by
5702 ada_iterate_over_symbols, and we don't want to search
5703 superblocks. */
b5ec771e 5704 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5705 }
22cee43f
PMR
5706 if (num_defns_collected (obstackp) > 0 || !full_search)
5707 return;
4eeaa230 5708 }
d2e4a39e 5709
339c13b6
JB
5710 /* No non-global symbols found. Check our cache to see if we have
5711 already performed this search before. If we have, then return
5712 the same result. */
5713
b5ec771e
PA
5714 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5715 domain, &sym, &block))
4c4b4cd2
PH
5716 {
5717 if (sym != NULL)
b5ec771e 5718 add_defn_to_vec (obstackp, sym, block);
22cee43f 5719 return;
4c4b4cd2 5720 }
14f9c5c9 5721
22cee43f
PMR
5722 if (made_global_lookup_p)
5723 *made_global_lookup_p = 1;
b1eedac9 5724
339c13b6
JB
5725 /* Search symbols from all global blocks. */
5726
b5ec771e 5727 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5728
4c4b4cd2 5729 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5730 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5731
22cee43f 5732 if (num_defns_collected (obstackp) == 0)
b5ec771e 5733 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5734}
5735
b5ec771e
PA
5736/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5737 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5738 matches.
54d343a2
TT
5739 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5740 found and the blocks and symbol tables (if any) in which they were
5741 found.
22cee43f
PMR
5742
5743 When full_search is non-zero, any non-function/non-enumeral
5744 symbol match within the nest of blocks whose innermost member is BLOCK,
5745 is the one match returned (no other matches in that or
5746 enclosing blocks is returned). If there are any matches in or
5747 surrounding BLOCK, then these alone are returned.
5748
5749 Names prefixed with "standard__" are handled specially: "standard__"
5750 is first stripped off, and only static and global symbols are searched. */
5751
5752static int
b5ec771e
PA
5753ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5754 const struct block *block,
22cee43f 5755 domain_enum domain,
54d343a2 5756 std::vector<struct block_symbol> *results,
22cee43f
PMR
5757 int full_search)
5758{
22cee43f
PMR
5759 int syms_from_global_search;
5760 int ndefns;
ec6a20c2 5761 auto_obstack obstack;
22cee43f 5762
ec6a20c2 5763 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5764 domain, full_search, &syms_from_global_search);
14f9c5c9 5765
ec6a20c2
JB
5766 ndefns = num_defns_collected (&obstack);
5767
54d343a2
TT
5768 struct block_symbol *base = defns_collected (&obstack, 1);
5769 for (int i = 0; i < ndefns; ++i)
5770 results->push_back (base[i]);
4c4b4cd2 5771
54d343a2 5772 ndefns = remove_extra_symbols (results);
4c4b4cd2 5773
b1eedac9 5774 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5775 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5776
b1eedac9 5777 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5778 cache_symbol (ada_lookup_name (lookup_name), domain,
5779 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5780
54d343a2 5781 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5782
14f9c5c9
AS
5783 return ndefns;
5784}
5785
b5ec771e 5786/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5787 in global scopes, returning the number of matches, and filling *RESULTS
5788 with (SYM,BLOCK) tuples.
ec6a20c2 5789
4eeaa230
DE
5790 See ada_lookup_symbol_list_worker for further details. */
5791
5792int
b5ec771e 5793ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5794 domain_enum domain,
5795 std::vector<struct block_symbol> *results)
4eeaa230 5796{
b5ec771e
PA
5797 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5798 lookup_name_info lookup_name (name, name_match_type);
5799
5800 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5801}
5802
5803/* Implementation of the la_iterate_over_symbols method. */
5804
6969f124 5805static bool
14bc53a8 5806ada_iterate_over_symbols
b5ec771e
PA
5807 (const struct block *block, const lookup_name_info &name,
5808 domain_enum domain,
14bc53a8 5809 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5810{
5811 int ndefs, i;
54d343a2 5812 std::vector<struct block_symbol> results;
4eeaa230
DE
5813
5814 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5815
4eeaa230
DE
5816 for (i = 0; i < ndefs; ++i)
5817 {
7e41c8db 5818 if (!callback (&results[i]))
6969f124 5819 return false;
4eeaa230 5820 }
6969f124
TT
5821
5822 return true;
4eeaa230
DE
5823}
5824
4e5c77fe
JB
5825/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5826 to 1, but choosing the first symbol found if there are multiple
5827 choices.
5828
5e2336be
JB
5829 The result is stored in *INFO, which must be non-NULL.
5830 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5831
5832void
5833ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5834 domain_enum domain,
d12307c1 5835 struct block_symbol *info)
14f9c5c9 5836{
b5ec771e
PA
5837 /* Since we already have an encoded name, wrap it in '<>' to force a
5838 verbatim match. Otherwise, if the name happens to not look like
5839 an encoded name (because it doesn't include a "__"),
5840 ada_lookup_name_info would re-encode/fold it again, and that
5841 would e.g., incorrectly lowercase object renaming names like
5842 "R28b" -> "r28b". */
5843 std::string verbatim = std::string ("<") + name + '>';
5844
5e2336be 5845 gdb_assert (info != NULL);
65392b3e 5846 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5847}
aeb5907d
JB
5848
5849/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5850 scope and in global scopes, or NULL if none. NAME is folded and
5851 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5852 choosing the first symbol if there are multiple choices. */
4e5c77fe 5853
d12307c1 5854struct block_symbol
aeb5907d 5855ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5856 domain_enum domain)
aeb5907d 5857{
54d343a2 5858 std::vector<struct block_symbol> candidates;
f98fc17b 5859 int n_candidates;
f98fc17b
PA
5860
5861 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5862
5863 if (n_candidates == 0)
54d343a2 5864 return {};
f98fc17b
PA
5865
5866 block_symbol info = candidates[0];
5867 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5868 return info;
4c4b4cd2 5869}
14f9c5c9 5870
d12307c1 5871static struct block_symbol
f606139a
DE
5872ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5873 const char *name,
76a01679 5874 const struct block *block,
21b556f4 5875 const domain_enum domain)
4c4b4cd2 5876{
d12307c1 5877 struct block_symbol sym;
04dccad0 5878
65392b3e 5879 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5880 if (sym.symbol != NULL)
04dccad0
JB
5881 return sym;
5882
5883 /* If we haven't found a match at this point, try the primitive
5884 types. In other languages, this search is performed before
5885 searching for global symbols in order to short-circuit that
5886 global-symbol search if it happens that the name corresponds
5887 to a primitive type. But we cannot do the same in Ada, because
5888 it is perfectly legitimate for a program to declare a type which
5889 has the same name as a standard type. If looking up a type in
5890 that situation, we have traditionally ignored the primitive type
5891 in favor of user-defined types. This is why, unlike most other
5892 languages, we search the primitive types this late and only after
5893 having searched the global symbols without success. */
5894
5895 if (domain == VAR_DOMAIN)
5896 {
5897 struct gdbarch *gdbarch;
5898
5899 if (block == NULL)
5900 gdbarch = target_gdbarch ();
5901 else
5902 gdbarch = block_gdbarch (block);
d12307c1
PMR
5903 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5904 if (sym.symbol != NULL)
04dccad0
JB
5905 return sym;
5906 }
5907
6640a367 5908 return {};
14f9c5c9
AS
5909}
5910
5911
4c4b4cd2
PH
5912/* True iff STR is a possible encoded suffix of a normal Ada name
5913 that is to be ignored for matching purposes. Suffixes of parallel
5914 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5915 are given by any of the regular expressions:
4c4b4cd2 5916
babe1480
JB
5917 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5918 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5919 TKB [subprogram suffix for task bodies]
babe1480 5920 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5921 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5922
5923 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5924 match is performed. This sequence is used to differentiate homonyms,
5925 is an optional part of a valid name suffix. */
4c4b4cd2 5926
14f9c5c9 5927static int
d2e4a39e 5928is_name_suffix (const char *str)
14f9c5c9
AS
5929{
5930 int k;
4c4b4cd2
PH
5931 const char *matching;
5932 const int len = strlen (str);
5933
babe1480
JB
5934 /* Skip optional leading __[0-9]+. */
5935
4c4b4cd2
PH
5936 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5937 {
babe1480
JB
5938 str += 3;
5939 while (isdigit (str[0]))
5940 str += 1;
4c4b4cd2 5941 }
babe1480
JB
5942
5943 /* [.$][0-9]+ */
4c4b4cd2 5944
babe1480 5945 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5946 {
babe1480 5947 matching = str + 1;
4c4b4cd2
PH
5948 while (isdigit (matching[0]))
5949 matching += 1;
5950 if (matching[0] == '\0')
5951 return 1;
5952 }
5953
5954 /* ___[0-9]+ */
babe1480 5955
4c4b4cd2
PH
5956 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5957 {
5958 matching = str + 3;
5959 while (isdigit (matching[0]))
5960 matching += 1;
5961 if (matching[0] == '\0')
5962 return 1;
5963 }
5964
9ac7f98e
JB
5965 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5966
5967 if (strcmp (str, "TKB") == 0)
5968 return 1;
5969
529cad9c
PH
5970#if 0
5971 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5972 with a N at the end. Unfortunately, the compiler uses the same
5973 convention for other internal types it creates. So treating
529cad9c 5974 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5975 some regressions. For instance, consider the case of an enumerated
5976 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5977 name ends with N.
5978 Having a single character like this as a suffix carrying some
0963b4bd 5979 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5980 to be something like "_N" instead. In the meantime, do not do
5981 the following check. */
5982 /* Protected Object Subprograms */
5983 if (len == 1 && str [0] == 'N')
5984 return 1;
5985#endif
5986
5987 /* _E[0-9]+[bs]$ */
5988 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5989 {
5990 matching = str + 3;
5991 while (isdigit (matching[0]))
5992 matching += 1;
5993 if ((matching[0] == 'b' || matching[0] == 's')
5994 && matching [1] == '\0')
5995 return 1;
5996 }
5997
4c4b4cd2
PH
5998 /* ??? We should not modify STR directly, as we are doing below. This
5999 is fine in this case, but may become problematic later if we find
6000 that this alternative did not work, and want to try matching
6001 another one from the begining of STR. Since we modified it, we
6002 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6003 if (str[0] == 'X')
6004 {
6005 str += 1;
d2e4a39e 6006 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6007 {
6008 if (str[0] != 'n' && str[0] != 'b')
6009 return 0;
6010 str += 1;
6011 }
14f9c5c9 6012 }
babe1480 6013
14f9c5c9
AS
6014 if (str[0] == '\000')
6015 return 1;
babe1480 6016
d2e4a39e 6017 if (str[0] == '_')
14f9c5c9
AS
6018 {
6019 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6020 return 0;
d2e4a39e 6021 if (str[2] == '_')
4c4b4cd2 6022 {
61ee279c
PH
6023 if (strcmp (str + 3, "JM") == 0)
6024 return 1;
6025 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6026 the LJM suffix in favor of the JM one. But we will
6027 still accept LJM as a valid suffix for a reasonable
6028 amount of time, just to allow ourselves to debug programs
6029 compiled using an older version of GNAT. */
4c4b4cd2
PH
6030 if (strcmp (str + 3, "LJM") == 0)
6031 return 1;
6032 if (str[3] != 'X')
6033 return 0;
1265e4aa
JB
6034 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6035 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6036 return 1;
6037 if (str[4] == 'R' && str[5] != 'T')
6038 return 1;
6039 return 0;
6040 }
6041 if (!isdigit (str[2]))
6042 return 0;
6043 for (k = 3; str[k] != '\0'; k += 1)
6044 if (!isdigit (str[k]) && str[k] != '_')
6045 return 0;
14f9c5c9
AS
6046 return 1;
6047 }
4c4b4cd2 6048 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6049 {
4c4b4cd2
PH
6050 for (k = 2; str[k] != '\0'; k += 1)
6051 if (!isdigit (str[k]) && str[k] != '_')
6052 return 0;
14f9c5c9
AS
6053 return 1;
6054 }
6055 return 0;
6056}
d2e4a39e 6057
aeb5907d
JB
6058/* Return non-zero if the string starting at NAME and ending before
6059 NAME_END contains no capital letters. */
529cad9c
PH
6060
6061static int
6062is_valid_name_for_wild_match (const char *name0)
6063{
f945dedf 6064 std::string decoded_name = ada_decode (name0);
529cad9c
PH
6065 int i;
6066
5823c3ef
JB
6067 /* If the decoded name starts with an angle bracket, it means that
6068 NAME0 does not follow the GNAT encoding format. It should then
6069 not be allowed as a possible wild match. */
6070 if (decoded_name[0] == '<')
6071 return 0;
6072
529cad9c
PH
6073 for (i=0; decoded_name[i] != '\0'; i++)
6074 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6075 return 0;
6076
6077 return 1;
6078}
6079
73589123
PH
6080/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6081 that could start a simple name. Assumes that *NAMEP points into
6082 the string beginning at NAME0. */
4c4b4cd2 6083
14f9c5c9 6084static int
73589123 6085advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6086{
73589123 6087 const char *name = *namep;
5b4ee69b 6088
5823c3ef 6089 while (1)
14f9c5c9 6090 {
aa27d0b3 6091 int t0, t1;
73589123
PH
6092
6093 t0 = *name;
6094 if (t0 == '_')
6095 {
6096 t1 = name[1];
6097 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6098 {
6099 name += 1;
61012eef 6100 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6101 break;
6102 else
6103 name += 1;
6104 }
aa27d0b3
JB
6105 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6106 || name[2] == target0))
73589123
PH
6107 {
6108 name += 2;
6109 break;
6110 }
6111 else
6112 return 0;
6113 }
6114 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6115 name += 1;
6116 else
5823c3ef 6117 return 0;
73589123
PH
6118 }
6119
6120 *namep = name;
6121 return 1;
6122}
6123
b5ec771e
PA
6124/* Return true iff NAME encodes a name of the form prefix.PATN.
6125 Ignores any informational suffixes of NAME (i.e., for which
6126 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6127 simple name. */
73589123 6128
b5ec771e 6129static bool
73589123
PH
6130wild_match (const char *name, const char *patn)
6131{
22e048c9 6132 const char *p;
73589123
PH
6133 const char *name0 = name;
6134
6135 while (1)
6136 {
6137 const char *match = name;
6138
6139 if (*name == *patn)
6140 {
6141 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6142 if (*p != *name)
6143 break;
6144 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6145 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6146
6147 if (name[-1] == '_')
6148 name -= 1;
6149 }
6150 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6151 return false;
96d887e8 6152 }
96d887e8
PH
6153}
6154
b5ec771e
PA
6155/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6156 any trailing suffixes that encode debugging information or leading
6157 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6158 information that is ignored). */
40658b94 6159
b5ec771e 6160static bool
c4d840bd
PH
6161full_match (const char *sym_name, const char *search_name)
6162{
b5ec771e
PA
6163 size_t search_name_len = strlen (search_name);
6164
6165 if (strncmp (sym_name, search_name, search_name_len) == 0
6166 && is_name_suffix (sym_name + search_name_len))
6167 return true;
6168
6169 if (startswith (sym_name, "_ada_")
6170 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6171 && is_name_suffix (sym_name + search_name_len + 5))
6172 return true;
c4d840bd 6173
b5ec771e
PA
6174 return false;
6175}
c4d840bd 6176
b5ec771e
PA
6177/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6178 *defn_symbols, updating the list of symbols in OBSTACKP (if
6179 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6180
6181static void
6182ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6183 const struct block *block,
6184 const lookup_name_info &lookup_name,
6185 domain_enum domain, struct objfile *objfile)
96d887e8 6186{
8157b174 6187 struct block_iterator iter;
96d887e8
PH
6188 /* A matching argument symbol, if any. */
6189 struct symbol *arg_sym;
6190 /* Set true when we find a matching non-argument symbol. */
6191 int found_sym;
6192 struct symbol *sym;
6193
6194 arg_sym = NULL;
6195 found_sym = 0;
b5ec771e
PA
6196 for (sym = block_iter_match_first (block, lookup_name, &iter);
6197 sym != NULL;
6198 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6199 {
c1b5c1eb 6200 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6201 {
6202 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6203 {
6204 if (SYMBOL_IS_ARGUMENT (sym))
6205 arg_sym = sym;
6206 else
6207 {
6208 found_sym = 1;
6209 add_defn_to_vec (obstackp,
6210 fixup_symbol_section (sym, objfile),
6211 block);
6212 }
6213 }
6214 }
96d887e8
PH
6215 }
6216
22cee43f
PMR
6217 /* Handle renamings. */
6218
b5ec771e 6219 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6220 found_sym = 1;
6221
96d887e8
PH
6222 if (!found_sym && arg_sym != NULL)
6223 {
76a01679
JB
6224 add_defn_to_vec (obstackp,
6225 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6226 block);
96d887e8
PH
6227 }
6228
b5ec771e 6229 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6230 {
6231 arg_sym = NULL;
6232 found_sym = 0;
b5ec771e
PA
6233 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6234 const char *name = ada_lookup_name.c_str ();
6235 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6236
6237 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6238 {
c1b5c1eb 6239 if (symbol_matches_domain (sym->language (),
4186eb54 6240 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6241 {
6242 int cmp;
6243
987012b8 6244 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6245 if (cmp == 0)
6246 {
987012b8 6247 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6248 if (cmp == 0)
987012b8 6249 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6250 name_len);
6251 }
6252
6253 if (cmp == 0
987012b8 6254 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6255 {
2a2d4dc3
AS
6256 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6257 {
6258 if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
6265 block);
6266 }
6267 }
76a01679
JB
6268 }
6269 }
76a01679 6270 }
96d887e8
PH
6271
6272 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6273 They aren't parameters, right? */
6274 if (!found_sym && arg_sym != NULL)
6275 {
6276 add_defn_to_vec (obstackp,
76a01679 6277 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6278 block);
96d887e8
PH
6279 }
6280 }
6281}
6282\f
41d27058
JB
6283
6284 /* Symbol Completion */
6285
b5ec771e 6286/* See symtab.h. */
41d27058 6287
b5ec771e
PA
6288bool
6289ada_lookup_name_info::matches
6290 (const char *sym_name,
6291 symbol_name_match_type match_type,
a207cff2 6292 completion_match_result *comp_match_res) const
41d27058 6293{
b5ec771e
PA
6294 bool match = false;
6295 const char *text = m_encoded_name.c_str ();
6296 size_t text_len = m_encoded_name.size ();
41d27058
JB
6297
6298 /* First, test against the fully qualified name of the symbol. */
6299
6300 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6301 match = true;
41d27058 6302
f945dedf 6303 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6304 if (match && !m_encoded_p)
41d27058
JB
6305 {
6306 /* One needed check before declaring a positive match is to verify
6307 that iff we are doing a verbatim match, the decoded version
6308 of the symbol name starts with '<'. Otherwise, this symbol name
6309 is not a suitable completion. */
41d27058 6310
f945dedf 6311 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6312 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6313 }
6314
b5ec771e 6315 if (match && !m_verbatim_p)
41d27058
JB
6316 {
6317 /* When doing non-verbatim match, another check that needs to
6318 be done is to verify that the potentially matching symbol name
6319 does not include capital letters, because the ada-mode would
6320 not be able to understand these symbol names without the
6321 angle bracket notation. */
6322 const char *tmp;
6323
6324 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6325 if (*tmp != '\0')
b5ec771e 6326 match = false;
41d27058
JB
6327 }
6328
6329 /* Second: Try wild matching... */
6330
b5ec771e 6331 if (!match && m_wild_match_p)
41d27058
JB
6332 {
6333 /* Since we are doing wild matching, this means that TEXT
6334 may represent an unqualified symbol name. We therefore must
6335 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6336 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6337
6338 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6339 match = true;
41d27058
JB
6340 }
6341
b5ec771e 6342 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6343
6344 if (!match)
b5ec771e 6345 return false;
41d27058 6346
a207cff2 6347 if (comp_match_res != NULL)
b5ec771e 6348 {
a207cff2 6349 std::string &match_str = comp_match_res->match.storage ();
41d27058 6350
b5ec771e 6351 if (!m_encoded_p)
a207cff2 6352 match_str = ada_decode (sym_name);
b5ec771e
PA
6353 else
6354 {
6355 if (m_verbatim_p)
6356 match_str = add_angle_brackets (sym_name);
6357 else
6358 match_str = sym_name;
41d27058 6359
b5ec771e 6360 }
a207cff2
PA
6361
6362 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6363 }
6364
b5ec771e 6365 return true;
41d27058
JB
6366}
6367
b5ec771e 6368/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6369 WORD is the entire command on which completion is made. */
41d27058 6370
eb3ff9a5
PA
6371static void
6372ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6373 complete_symbol_mode mode,
b5ec771e
PA
6374 symbol_name_match_type name_match_type,
6375 const char *text, const char *word,
eb3ff9a5 6376 enum type_code code)
41d27058 6377{
41d27058 6378 struct symbol *sym;
3977b71f 6379 const struct block *b, *surrounding_static_block = 0;
8157b174 6380 struct block_iterator iter;
41d27058 6381
2f68a895
TT
6382 gdb_assert (code == TYPE_CODE_UNDEF);
6383
1b026119 6384 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6385
6386 /* First, look at the partial symtab symbols. */
14bc53a8 6387 expand_symtabs_matching (NULL,
b5ec771e
PA
6388 lookup_name,
6389 NULL,
14bc53a8
PA
6390 NULL,
6391 ALL_DOMAIN);
41d27058
JB
6392
6393 /* At this point scan through the misc symbol vectors and add each
6394 symbol you find to the list. Eventually we want to ignore
6395 anything that isn't a text symbol (everything else will be
6396 handled by the psymtab code above). */
6397
2030c079 6398 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6399 {
7932255d 6400 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6401 {
6402 QUIT;
6403
6404 if (completion_skip_symbol (mode, msymbol))
6405 continue;
6406
c1b5c1eb 6407 language symbol_language = msymbol->language ();
5325b9bf
TT
6408
6409 /* Ada minimal symbols won't have their language set to Ada. If
6410 we let completion_list_add_name compare using the
6411 default/C-like matcher, then when completing e.g., symbols in a
6412 package named "pck", we'd match internal Ada symbols like
6413 "pckS", which are invalid in an Ada expression, unless you wrap
6414 them in '<' '>' to request a verbatim match.
6415
6416 Unfortunately, some Ada encoded names successfully demangle as
6417 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6418 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6419 with the wrong language set. Paper over that issue here. */
6420 if (symbol_language == language_auto
6421 || symbol_language == language_cplus)
6422 symbol_language = language_ada;
6423
6424 completion_list_add_name (tracker,
6425 symbol_language,
c9d95fa3 6426 msymbol->linkage_name (),
5325b9bf
TT
6427 lookup_name, text, word);
6428 }
6429 }
41d27058
JB
6430
6431 /* Search upwards from currently selected frame (so that we can
6432 complete on local vars. */
6433
6434 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6435 {
6436 if (!BLOCK_SUPERBLOCK (b))
6437 surrounding_static_block = b; /* For elmin of dups */
6438
6439 ALL_BLOCK_SYMBOLS (b, iter, sym)
6440 {
f9d67a22
PA
6441 if (completion_skip_symbol (mode, sym))
6442 continue;
6443
b5ec771e 6444 completion_list_add_name (tracker,
c1b5c1eb 6445 sym->language (),
987012b8 6446 sym->linkage_name (),
1b026119 6447 lookup_name, text, word);
41d27058
JB
6448 }
6449 }
6450
6451 /* Go through the symtabs and check the externs and statics for
43f3e411 6452 symbols which match. */
41d27058 6453
2030c079 6454 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6455 {
b669c953 6456 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6457 {
6458 QUIT;
6459 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6460 ALL_BLOCK_SYMBOLS (b, iter, sym)
6461 {
6462 if (completion_skip_symbol (mode, sym))
6463 continue;
f9d67a22 6464
d8aeb77f 6465 completion_list_add_name (tracker,
c1b5c1eb 6466 sym->language (),
987012b8 6467 sym->linkage_name (),
d8aeb77f
TT
6468 lookup_name, text, word);
6469 }
6470 }
41d27058 6471 }
41d27058 6472
2030c079 6473 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6474 {
b669c953 6475 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6476 {
6477 QUIT;
6478 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6479 /* Don't do this block twice. */
6480 if (b == surrounding_static_block)
6481 continue;
6482 ALL_BLOCK_SYMBOLS (b, iter, sym)
6483 {
6484 if (completion_skip_symbol (mode, sym))
6485 continue;
f9d67a22 6486
d8aeb77f 6487 completion_list_add_name (tracker,
c1b5c1eb 6488 sym->language (),
987012b8 6489 sym->linkage_name (),
d8aeb77f
TT
6490 lookup_name, text, word);
6491 }
6492 }
41d27058 6493 }
41d27058
JB
6494}
6495
963a6417 6496 /* Field Access */
96d887e8 6497
73fb9985
JB
6498/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6499 for tagged types. */
6500
6501static int
6502ada_is_dispatch_table_ptr_type (struct type *type)
6503{
0d5cff50 6504 const char *name;
73fb9985 6505
78134374 6506 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6507 return 0;
6508
6509 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6510 if (name == NULL)
6511 return 0;
6512
6513 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6514}
6515
ac4a2da4
JG
6516/* Return non-zero if TYPE is an interface tag. */
6517
6518static int
6519ada_is_interface_tag (struct type *type)
6520{
6521 const char *name = TYPE_NAME (type);
6522
6523 if (name == NULL)
6524 return 0;
6525
6526 return (strcmp (name, "ada__tags__interface_tag") == 0);
6527}
6528
963a6417
PH
6529/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6530 to be invisible to users. */
96d887e8 6531
963a6417
PH
6532int
6533ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6534{
963a6417
PH
6535 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6536 return 1;
ffde82bf 6537
73fb9985
JB
6538 /* Check the name of that field. */
6539 {
6540 const char *name = TYPE_FIELD_NAME (type, field_num);
6541
6542 /* Anonymous field names should not be printed.
6543 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6544 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6545 if (name == NULL)
6546 return 1;
6547
ffde82bf
JB
6548 /* Normally, fields whose name start with an underscore ("_")
6549 are fields that have been internally generated by the compiler,
6550 and thus should not be printed. The "_parent" field is special,
6551 however: This is a field internally generated by the compiler
6552 for tagged types, and it contains the components inherited from
6553 the parent type. This field should not be printed as is, but
6554 should not be ignored either. */
61012eef 6555 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6556 return 1;
6557 }
6558
ac4a2da4
JG
6559 /* If this is the dispatch table of a tagged type or an interface tag,
6560 then ignore. */
73fb9985 6561 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6562 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6563 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6564 return 1;
6565
6566 /* Not a special field, so it should not be ignored. */
6567 return 0;
963a6417 6568}
96d887e8 6569
963a6417 6570/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6571 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6572
963a6417
PH
6573int
6574ada_is_tagged_type (struct type *type, int refok)
6575{
988f6b3d 6576 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6577}
96d887e8 6578
963a6417 6579/* True iff TYPE represents the type of X'Tag */
96d887e8 6580
963a6417
PH
6581int
6582ada_is_tag_type (struct type *type)
6583{
460efde1
JB
6584 type = ada_check_typedef (type);
6585
78134374 6586 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6587 return 0;
6588 else
96d887e8 6589 {
963a6417 6590 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6591
963a6417
PH
6592 return (name != NULL
6593 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6594 }
96d887e8
PH
6595}
6596
963a6417 6597/* The type of the tag on VAL. */
76a01679 6598
de93309a 6599static struct type *
963a6417 6600ada_tag_type (struct value *val)
96d887e8 6601{
988f6b3d 6602 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6603}
96d887e8 6604
b50d69b5
JG
6605/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6606 retired at Ada 05). */
6607
6608static int
6609is_ada95_tag (struct value *tag)
6610{
6611 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6612}
6613
963a6417 6614/* The value of the tag on VAL. */
96d887e8 6615
de93309a 6616static struct value *
963a6417
PH
6617ada_value_tag (struct value *val)
6618{
03ee6b2e 6619 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6620}
6621
963a6417
PH
6622/* The value of the tag on the object of type TYPE whose contents are
6623 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6624 ADDRESS. */
96d887e8 6625
963a6417 6626static struct value *
10a2c479 6627value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6628 const gdb_byte *valaddr,
963a6417 6629 CORE_ADDR address)
96d887e8 6630{
b5385fc0 6631 int tag_byte_offset;
963a6417 6632 struct type *tag_type;
5b4ee69b 6633
963a6417 6634 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6635 NULL, NULL, NULL))
96d887e8 6636 {
fc1a4b47 6637 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6638 ? NULL
6639 : valaddr + tag_byte_offset);
963a6417 6640 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6641
963a6417 6642 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6643 }
963a6417
PH
6644 return NULL;
6645}
96d887e8 6646
963a6417
PH
6647static struct type *
6648type_from_tag (struct value *tag)
6649{
6650 const char *type_name = ada_tag_name (tag);
5b4ee69b 6651
963a6417
PH
6652 if (type_name != NULL)
6653 return ada_find_any_type (ada_encode (type_name));
6654 return NULL;
6655}
96d887e8 6656
b50d69b5
JG
6657/* Given a value OBJ of a tagged type, return a value of this
6658 type at the base address of the object. The base address, as
6659 defined in Ada.Tags, it is the address of the primary tag of
6660 the object, and therefore where the field values of its full
6661 view can be fetched. */
6662
6663struct value *
6664ada_tag_value_at_base_address (struct value *obj)
6665{
b50d69b5
JG
6666 struct value *val;
6667 LONGEST offset_to_top = 0;
6668 struct type *ptr_type, *obj_type;
6669 struct value *tag;
6670 CORE_ADDR base_address;
6671
6672 obj_type = value_type (obj);
6673
6674 /* It is the responsability of the caller to deref pointers. */
6675
78134374 6676 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6677 return obj;
6678
6679 tag = ada_value_tag (obj);
6680 if (!tag)
6681 return obj;
6682
6683 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6684
6685 if (is_ada95_tag (tag))
6686 return obj;
6687
08f49010
XR
6688 ptr_type = language_lookup_primitive_type
6689 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6690 ptr_type = lookup_pointer_type (ptr_type);
6691 val = value_cast (ptr_type, tag);
6692 if (!val)
6693 return obj;
6694
6695 /* It is perfectly possible that an exception be raised while
6696 trying to determine the base address, just like for the tag;
6697 see ada_tag_name for more details. We do not print the error
6698 message for the same reason. */
6699
a70b8144 6700 try
b50d69b5
JG
6701 {
6702 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6703 }
6704
230d2906 6705 catch (const gdb_exception_error &e)
492d29ea
PA
6706 {
6707 return obj;
6708 }
b50d69b5
JG
6709
6710 /* If offset is null, nothing to do. */
6711
6712 if (offset_to_top == 0)
6713 return obj;
6714
6715 /* -1 is a special case in Ada.Tags; however, what should be done
6716 is not quite clear from the documentation. So do nothing for
6717 now. */
6718
6719 if (offset_to_top == -1)
6720 return obj;
6721
08f49010
XR
6722 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6723 from the base address. This was however incompatible with
6724 C++ dispatch table: C++ uses a *negative* value to *add*
6725 to the base address. Ada's convention has therefore been
6726 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6727 use the same convention. Here, we support both cases by
6728 checking the sign of OFFSET_TO_TOP. */
6729
6730 if (offset_to_top > 0)
6731 offset_to_top = -offset_to_top;
6732
6733 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6734 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6735
6736 /* Make sure that we have a proper tag at the new address.
6737 Otherwise, offset_to_top is bogus (which can happen when
6738 the object is not initialized yet). */
6739
6740 if (!tag)
6741 return obj;
6742
6743 obj_type = type_from_tag (tag);
6744
6745 if (!obj_type)
6746 return obj;
6747
6748 return value_from_contents_and_address (obj_type, NULL, base_address);
6749}
6750
1b611343
JB
6751/* Return the "ada__tags__type_specific_data" type. */
6752
6753static struct type *
6754ada_get_tsd_type (struct inferior *inf)
963a6417 6755{
1b611343 6756 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6757
1b611343
JB
6758 if (data->tsd_type == 0)
6759 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6760 return data->tsd_type;
6761}
529cad9c 6762
1b611343
JB
6763/* Return the TSD (type-specific data) associated to the given TAG.
6764 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6765
1b611343 6766 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6767
1b611343
JB
6768static struct value *
6769ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6770{
4c4b4cd2 6771 struct value *val;
1b611343 6772 struct type *type;
5b4ee69b 6773
1b611343
JB
6774 /* First option: The TSD is simply stored as a field of our TAG.
6775 Only older versions of GNAT would use this format, but we have
6776 to test it first, because there are no visible markers for
6777 the current approach except the absence of that field. */
529cad9c 6778
1b611343
JB
6779 val = ada_value_struct_elt (tag, "tsd", 1);
6780 if (val)
6781 return val;
e802dbe0 6782
1b611343
JB
6783 /* Try the second representation for the dispatch table (in which
6784 there is no explicit 'tsd' field in the referent of the tag pointer,
6785 and instead the tsd pointer is stored just before the dispatch
6786 table. */
e802dbe0 6787
1b611343
JB
6788 type = ada_get_tsd_type (current_inferior());
6789 if (type == NULL)
6790 return NULL;
6791 type = lookup_pointer_type (lookup_pointer_type (type));
6792 val = value_cast (type, tag);
6793 if (val == NULL)
6794 return NULL;
6795 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6796}
6797
1b611343
JB
6798/* Given the TSD of a tag (type-specific data), return a string
6799 containing the name of the associated type.
6800
6801 The returned value is good until the next call. May return NULL
6802 if we are unable to determine the tag name. */
6803
6804static char *
6805ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6806{
529cad9c
PH
6807 static char name[1024];
6808 char *p;
1b611343 6809 struct value *val;
529cad9c 6810
1b611343 6811 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6812 if (val == NULL)
1b611343 6813 return NULL;
4c4b4cd2
PH
6814 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6815 for (p = name; *p != '\0'; p += 1)
6816 if (isalpha (*p))
6817 *p = tolower (*p);
1b611343 6818 return name;
4c4b4cd2
PH
6819}
6820
6821/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6822 a C string.
6823
6824 Return NULL if the TAG is not an Ada tag, or if we were unable to
6825 determine the name of that tag. The result is good until the next
6826 call. */
4c4b4cd2
PH
6827
6828const char *
6829ada_tag_name (struct value *tag)
6830{
1b611343 6831 char *name = NULL;
5b4ee69b 6832
df407dfe 6833 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6834 return NULL;
1b611343
JB
6835
6836 /* It is perfectly possible that an exception be raised while trying
6837 to determine the TAG's name, even under normal circumstances:
6838 The associated variable may be uninitialized or corrupted, for
6839 instance. We do not let any exception propagate past this point.
6840 instead we return NULL.
6841
6842 We also do not print the error message either (which often is very
6843 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6844 the caller print a more meaningful message if necessary. */
a70b8144 6845 try
1b611343
JB
6846 {
6847 struct value *tsd = ada_get_tsd_from_tag (tag);
6848
6849 if (tsd != NULL)
6850 name = ada_tag_name_from_tsd (tsd);
6851 }
230d2906 6852 catch (const gdb_exception_error &e)
492d29ea
PA
6853 {
6854 }
1b611343
JB
6855
6856 return name;
4c4b4cd2
PH
6857}
6858
6859/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6860
d2e4a39e 6861struct type *
ebf56fd3 6862ada_parent_type (struct type *type)
14f9c5c9
AS
6863{
6864 int i;
6865
61ee279c 6866 type = ada_check_typedef (type);
14f9c5c9 6867
78134374 6868 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6869 return NULL;
6870
6871 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6872 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6873 {
6874 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6875
6876 /* If the _parent field is a pointer, then dereference it. */
78134374 6877 if (parent_type->code () == TYPE_CODE_PTR)
0c1f74cf
JB
6878 parent_type = TYPE_TARGET_TYPE (parent_type);
6879 /* If there is a parallel XVS type, get the actual base type. */
6880 parent_type = ada_get_base_type (parent_type);
6881
6882 return ada_check_typedef (parent_type);
6883 }
14f9c5c9
AS
6884
6885 return NULL;
6886}
6887
4c4b4cd2
PH
6888/* True iff field number FIELD_NUM of structure type TYPE contains the
6889 parent-type (inherited) fields of a derived type. Assumes TYPE is
6890 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6891
6892int
ebf56fd3 6893ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6894{
61ee279c 6895 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6896
4c4b4cd2 6897 return (name != NULL
61012eef
GB
6898 && (startswith (name, "PARENT")
6899 || startswith (name, "_parent")));
14f9c5c9
AS
6900}
6901
4c4b4cd2 6902/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6903 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6904 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6905 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6906 structures. */
14f9c5c9
AS
6907
6908int
ebf56fd3 6909ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6910{
d2e4a39e 6911 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6912
dddc0e16
JB
6913 if (name != NULL && strcmp (name, "RETVAL") == 0)
6914 {
6915 /* This happens in functions with "out" or "in out" parameters
6916 which are passed by copy. For such functions, GNAT describes
6917 the function's return type as being a struct where the return
6918 value is in a field called RETVAL, and where the other "out"
6919 or "in out" parameters are fields of that struct. This is not
6920 a wrapper. */
6921 return 0;
6922 }
6923
d2e4a39e 6924 return (name != NULL
61012eef 6925 && (startswith (name, "PARENT")
4c4b4cd2 6926 || strcmp (name, "REP") == 0
61012eef 6927 || startswith (name, "_parent")
4c4b4cd2 6928 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6929}
6930
4c4b4cd2
PH
6931/* True iff field number FIELD_NUM of structure or union type TYPE
6932 is a variant wrapper. Assumes TYPE is a structure type with at least
6933 FIELD_NUM+1 fields. */
14f9c5c9
AS
6934
6935int
ebf56fd3 6936ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6937{
8ecb59f8
TT
6938 /* Only Ada types are eligible. */
6939 if (!ADA_TYPE_P (type))
6940 return 0;
6941
d2e4a39e 6942 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6943
78134374
SM
6944 return (field_type->code () == TYPE_CODE_UNION
6945 || (is_dynamic_field (type, field_num)
6946 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6947 == TYPE_CODE_UNION)));
14f9c5c9
AS
6948}
6949
6950/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6951 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6952 returns the type of the controlling discriminant for the variant.
6953 May return NULL if the type could not be found. */
14f9c5c9 6954
d2e4a39e 6955struct type *
ebf56fd3 6956ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6957{
a121b7c1 6958 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6959
988f6b3d 6960 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6961}
6962
4c4b4cd2 6963/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6964 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6965 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6966
de93309a 6967static int
ebf56fd3 6968ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6969{
d2e4a39e 6970 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6971
14f9c5c9
AS
6972 return (name != NULL && name[0] == 'O');
6973}
6974
6975/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6976 returns the name of the discriminant controlling the variant.
6977 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6978
a121b7c1 6979const char *
ebf56fd3 6980ada_variant_discrim_name (struct type *type0)
14f9c5c9 6981{
d2e4a39e 6982 static char *result = NULL;
14f9c5c9 6983 static size_t result_len = 0;
d2e4a39e
AS
6984 struct type *type;
6985 const char *name;
6986 const char *discrim_end;
6987 const char *discrim_start;
14f9c5c9 6988
78134374 6989 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6990 type = TYPE_TARGET_TYPE (type0);
6991 else
6992 type = type0;
6993
6994 name = ada_type_name (type);
6995
6996 if (name == NULL || name[0] == '\000')
6997 return "";
6998
6999 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7000 discrim_end -= 1)
7001 {
61012eef 7002 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7003 break;
14f9c5c9
AS
7004 }
7005 if (discrim_end == name)
7006 return "";
7007
d2e4a39e 7008 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7009 discrim_start -= 1)
7010 {
d2e4a39e 7011 if (discrim_start == name + 1)
4c4b4cd2 7012 return "";
76a01679 7013 if ((discrim_start > name + 3
61012eef 7014 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7015 || discrim_start[-1] == '.')
7016 break;
14f9c5c9
AS
7017 }
7018
7019 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7020 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7021 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7022 return result;
7023}
7024
4c4b4cd2
PH
7025/* Scan STR for a subtype-encoded number, beginning at position K.
7026 Put the position of the character just past the number scanned in
7027 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7028 Return 1 if there was a valid number at the given position, and 0
7029 otherwise. A "subtype-encoded" number consists of the absolute value
7030 in decimal, followed by the letter 'm' to indicate a negative number.
7031 Assumes 0m does not occur. */
14f9c5c9
AS
7032
7033int
d2e4a39e 7034ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7035{
7036 ULONGEST RU;
7037
d2e4a39e 7038 if (!isdigit (str[k]))
14f9c5c9
AS
7039 return 0;
7040
4c4b4cd2 7041 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7042 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7043 LONGEST. */
14f9c5c9
AS
7044 RU = 0;
7045 while (isdigit (str[k]))
7046 {
d2e4a39e 7047 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7048 k += 1;
7049 }
7050
d2e4a39e 7051 if (str[k] == 'm')
14f9c5c9
AS
7052 {
7053 if (R != NULL)
4c4b4cd2 7054 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7055 k += 1;
7056 }
7057 else if (R != NULL)
7058 *R = (LONGEST) RU;
7059
4c4b4cd2 7060 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7061 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7062 number representable as a LONGEST (although either would probably work
7063 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7064 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7065
7066 if (new_k != NULL)
7067 *new_k = k;
7068 return 1;
7069}
7070
4c4b4cd2
PH
7071/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7072 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7073 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7074
de93309a 7075static int
ebf56fd3 7076ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7077{
d2e4a39e 7078 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7079 int p;
7080
7081 p = 0;
7082 while (1)
7083 {
d2e4a39e 7084 switch (name[p])
4c4b4cd2
PH
7085 {
7086 case '\0':
7087 return 0;
7088 case 'S':
7089 {
7090 LONGEST W;
5b4ee69b 7091
4c4b4cd2
PH
7092 if (!ada_scan_number (name, p + 1, &W, &p))
7093 return 0;
7094 if (val == W)
7095 return 1;
7096 break;
7097 }
7098 case 'R':
7099 {
7100 LONGEST L, U;
5b4ee69b 7101
4c4b4cd2
PH
7102 if (!ada_scan_number (name, p + 1, &L, &p)
7103 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7104 return 0;
7105 if (val >= L && val <= U)
7106 return 1;
7107 break;
7108 }
7109 case 'O':
7110 return 1;
7111 default:
7112 return 0;
7113 }
7114 }
7115}
7116
0963b4bd 7117/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7118
7119/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7120 ARG_TYPE, extract and return the value of one of its (non-static)
7121 fields. FIELDNO says which field. Differs from value_primitive_field
7122 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7123
5eb68a39 7124struct value *
d2e4a39e 7125ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7126 struct type *arg_type)
14f9c5c9 7127{
14f9c5c9
AS
7128 struct type *type;
7129
61ee279c 7130 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7131 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7132
4504bbde
TT
7133 /* Handle packed fields. It might be that the field is not packed
7134 relative to its containing structure, but the structure itself is
7135 packed; in this case we must take the bit-field path. */
7136 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7137 {
7138 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7139 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7140
0fd88904 7141 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7142 offset + bit_pos / 8,
7143 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7144 }
7145 else
7146 return value_primitive_field (arg1, offset, fieldno, arg_type);
7147}
7148
52ce6436
PH
7149/* Find field with name NAME in object of type TYPE. If found,
7150 set the following for each argument that is non-null:
7151 - *FIELD_TYPE_P to the field's type;
7152 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7153 an object of that type;
7154 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7155 - *BIT_SIZE_P to its size in bits if the field is packed, and
7156 0 otherwise;
7157 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7158 fields up to but not including the desired field, or by the total
7159 number of fields if not found. A NULL value of NAME never
7160 matches; the function just counts visible fields in this case.
7161
828d5846
XR
7162 Notice that we need to handle when a tagged record hierarchy
7163 has some components with the same name, like in this scenario:
7164
7165 type Top_T is tagged record
7166 N : Integer := 1;
7167 U : Integer := 974;
7168 A : Integer := 48;
7169 end record;
7170
7171 type Middle_T is new Top.Top_T with record
7172 N : Character := 'a';
7173 C : Integer := 3;
7174 end record;
7175
7176 type Bottom_T is new Middle.Middle_T with record
7177 N : Float := 4.0;
7178 C : Character := '5';
7179 X : Integer := 6;
7180 A : Character := 'J';
7181 end record;
7182
7183 Let's say we now have a variable declared and initialized as follow:
7184
7185 TC : Top_A := new Bottom_T;
7186
7187 And then we use this variable to call this function
7188
7189 procedure Assign (Obj: in out Top_T; TV : Integer);
7190
7191 as follow:
7192
7193 Assign (Top_T (B), 12);
7194
7195 Now, we're in the debugger, and we're inside that procedure
7196 then and we want to print the value of obj.c:
7197
7198 Usually, the tagged record or one of the parent type owns the
7199 component to print and there's no issue but in this particular
7200 case, what does it mean to ask for Obj.C? Since the actual
7201 type for object is type Bottom_T, it could mean two things: type
7202 component C from the Middle_T view, but also component C from
7203 Bottom_T. So in that "undefined" case, when the component is
7204 not found in the non-resolved type (which includes all the
7205 components of the parent type), then resolve it and see if we
7206 get better luck once expanded.
7207
7208 In the case of homonyms in the derived tagged type, we don't
7209 guaranty anything, and pick the one that's easiest for us
7210 to program.
7211
0963b4bd 7212 Returns 1 if found, 0 otherwise. */
52ce6436 7213
4c4b4cd2 7214static int
0d5cff50 7215find_struct_field (const char *name, struct type *type, int offset,
76a01679 7216 struct type **field_type_p,
52ce6436
PH
7217 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7218 int *index_p)
4c4b4cd2
PH
7219{
7220 int i;
828d5846 7221 int parent_offset = -1;
4c4b4cd2 7222
61ee279c 7223 type = ada_check_typedef (type);
76a01679 7224
52ce6436
PH
7225 if (field_type_p != NULL)
7226 *field_type_p = NULL;
7227 if (byte_offset_p != NULL)
d5d6fca5 7228 *byte_offset_p = 0;
52ce6436
PH
7229 if (bit_offset_p != NULL)
7230 *bit_offset_p = 0;
7231 if (bit_size_p != NULL)
7232 *bit_size_p = 0;
7233
7234 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7235 {
7236 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7237 int fld_offset = offset + bit_pos / 8;
0d5cff50 7238 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7239
4c4b4cd2
PH
7240 if (t_field_name == NULL)
7241 continue;
7242
828d5846
XR
7243 else if (ada_is_parent_field (type, i))
7244 {
7245 /* This is a field pointing us to the parent type of a tagged
7246 type. As hinted in this function's documentation, we give
7247 preference to fields in the current record first, so what
7248 we do here is just record the index of this field before
7249 we skip it. If it turns out we couldn't find our field
7250 in the current record, then we'll get back to it and search
7251 inside it whether the field might exist in the parent. */
7252
7253 parent_offset = i;
7254 continue;
7255 }
7256
52ce6436 7257 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7258 {
7259 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7260
52ce6436
PH
7261 if (field_type_p != NULL)
7262 *field_type_p = TYPE_FIELD_TYPE (type, i);
7263 if (byte_offset_p != NULL)
7264 *byte_offset_p = fld_offset;
7265 if (bit_offset_p != NULL)
7266 *bit_offset_p = bit_pos % 8;
7267 if (bit_size_p != NULL)
7268 *bit_size_p = bit_size;
76a01679
JB
7269 return 1;
7270 }
4c4b4cd2
PH
7271 else if (ada_is_wrapper_field (type, i))
7272 {
52ce6436
PH
7273 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7274 field_type_p, byte_offset_p, bit_offset_p,
7275 bit_size_p, index_p))
76a01679
JB
7276 return 1;
7277 }
4c4b4cd2
PH
7278 else if (ada_is_variant_part (type, i))
7279 {
52ce6436
PH
7280 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7281 fixed type?? */
4c4b4cd2 7282 int j;
52ce6436
PH
7283 struct type *field_type
7284 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7285
52ce6436 7286 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7287 {
76a01679
JB
7288 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7289 fld_offset
7290 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7291 field_type_p, byte_offset_p,
52ce6436 7292 bit_offset_p, bit_size_p, index_p))
76a01679 7293 return 1;
4c4b4cd2
PH
7294 }
7295 }
52ce6436
PH
7296 else if (index_p != NULL)
7297 *index_p += 1;
4c4b4cd2 7298 }
828d5846
XR
7299
7300 /* Field not found so far. If this is a tagged type which
7301 has a parent, try finding that field in the parent now. */
7302
7303 if (parent_offset != -1)
7304 {
7305 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7306 int fld_offset = offset + bit_pos / 8;
7307
7308 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7309 fld_offset, field_type_p, byte_offset_p,
7310 bit_offset_p, bit_size_p, index_p))
7311 return 1;
7312 }
7313
4c4b4cd2
PH
7314 return 0;
7315}
7316
0963b4bd 7317/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7318
52ce6436
PH
7319static int
7320num_visible_fields (struct type *type)
7321{
7322 int n;
5b4ee69b 7323
52ce6436
PH
7324 n = 0;
7325 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7326 return n;
7327}
14f9c5c9 7328
4c4b4cd2 7329/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7330 and search in it assuming it has (class) type TYPE.
7331 If found, return value, else return NULL.
7332
828d5846
XR
7333 Searches recursively through wrapper fields (e.g., '_parent').
7334
7335 In the case of homonyms in the tagged types, please refer to the
7336 long explanation in find_struct_field's function documentation. */
14f9c5c9 7337
4c4b4cd2 7338static struct value *
108d56a4 7339ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7340 struct type *type)
14f9c5c9
AS
7341{
7342 int i;
828d5846 7343 int parent_offset = -1;
14f9c5c9 7344
5b4ee69b 7345 type = ada_check_typedef (type);
52ce6436 7346 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7347 {
0d5cff50 7348 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7349
7350 if (t_field_name == NULL)
4c4b4cd2 7351 continue;
14f9c5c9 7352
828d5846
XR
7353 else if (ada_is_parent_field (type, i))
7354 {
7355 /* This is a field pointing us to the parent type of a tagged
7356 type. As hinted in this function's documentation, we give
7357 preference to fields in the current record first, so what
7358 we do here is just record the index of this field before
7359 we skip it. If it turns out we couldn't find our field
7360 in the current record, then we'll get back to it and search
7361 inside it whether the field might exist in the parent. */
7362
7363 parent_offset = i;
7364 continue;
7365 }
7366
14f9c5c9 7367 else if (field_name_match (t_field_name, name))
4c4b4cd2 7368 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7369
7370 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7371 {
0963b4bd 7372 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7373 ada_search_struct_field (name, arg,
7374 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7375 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7376
4c4b4cd2
PH
7377 if (v != NULL)
7378 return v;
7379 }
14f9c5c9
AS
7380
7381 else if (ada_is_variant_part (type, i))
4c4b4cd2 7382 {
0963b4bd 7383 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7384 int j;
5b4ee69b
MS
7385 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7386 i));
4c4b4cd2
PH
7387 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7388
52ce6436 7389 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7390 {
0963b4bd
MS
7391 struct value *v = ada_search_struct_field /* Force line
7392 break. */
06d5cf63
JB
7393 (name, arg,
7394 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7395 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7396
4c4b4cd2
PH
7397 if (v != NULL)
7398 return v;
7399 }
7400 }
14f9c5c9 7401 }
828d5846
XR
7402
7403 /* Field not found so far. If this is a tagged type which
7404 has a parent, try finding that field in the parent now. */
7405
7406 if (parent_offset != -1)
7407 {
7408 struct value *v = ada_search_struct_field (
7409 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7410 TYPE_FIELD_TYPE (type, parent_offset));
7411
7412 if (v != NULL)
7413 return v;
7414 }
7415
14f9c5c9
AS
7416 return NULL;
7417}
d2e4a39e 7418
52ce6436
PH
7419static struct value *ada_index_struct_field_1 (int *, struct value *,
7420 int, struct type *);
7421
7422
7423/* Return field #INDEX in ARG, where the index is that returned by
7424 * find_struct_field through its INDEX_P argument. Adjust the address
7425 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7426 * If found, return value, else return NULL. */
52ce6436
PH
7427
7428static struct value *
7429ada_index_struct_field (int index, struct value *arg, int offset,
7430 struct type *type)
7431{
7432 return ada_index_struct_field_1 (&index, arg, offset, type);
7433}
7434
7435
7436/* Auxiliary function for ada_index_struct_field. Like
7437 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7438 * *INDEX_P. */
52ce6436
PH
7439
7440static struct value *
7441ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7442 struct type *type)
7443{
7444 int i;
7445 type = ada_check_typedef (type);
7446
7447 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7448 {
7449 if (TYPE_FIELD_NAME (type, i) == NULL)
7450 continue;
7451 else if (ada_is_wrapper_field (type, i))
7452 {
0963b4bd 7453 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7454 ada_index_struct_field_1 (index_p, arg,
7455 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7456 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7457
52ce6436
PH
7458 if (v != NULL)
7459 return v;
7460 }
7461
7462 else if (ada_is_variant_part (type, i))
7463 {
7464 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7465 find_struct_field. */
52ce6436
PH
7466 error (_("Cannot assign this kind of variant record"));
7467 }
7468 else if (*index_p == 0)
7469 return ada_value_primitive_field (arg, offset, i, type);
7470 else
7471 *index_p -= 1;
7472 }
7473 return NULL;
7474}
7475
3b4de39c 7476/* Return a string representation of type TYPE. */
99bbb428 7477
3b4de39c 7478static std::string
99bbb428
PA
7479type_as_string (struct type *type)
7480{
d7e74731 7481 string_file tmp_stream;
99bbb428 7482
d7e74731 7483 type_print (type, "", &tmp_stream, -1);
99bbb428 7484
d7e74731 7485 return std::move (tmp_stream.string ());
99bbb428
PA
7486}
7487
14f9c5c9 7488/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7489 If DISPP is non-null, add its byte displacement from the beginning of a
7490 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7491 work for packed fields).
7492
7493 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7494 followed by "___".
14f9c5c9 7495
0963b4bd 7496 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7497 be a (pointer or reference)+ to a struct or union, and the
7498 ultimate target type will be searched.
14f9c5c9
AS
7499
7500 Looks recursively into variant clauses and parent types.
7501
828d5846
XR
7502 In the case of homonyms in the tagged types, please refer to the
7503 long explanation in find_struct_field's function documentation.
7504
4c4b4cd2
PH
7505 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7506 TYPE is not a type of the right kind. */
14f9c5c9 7507
4c4b4cd2 7508static struct type *
a121b7c1 7509ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7510 int noerr)
14f9c5c9
AS
7511{
7512 int i;
828d5846 7513 int parent_offset = -1;
14f9c5c9
AS
7514
7515 if (name == NULL)
7516 goto BadName;
7517
76a01679 7518 if (refok && type != NULL)
4c4b4cd2
PH
7519 while (1)
7520 {
61ee279c 7521 type = ada_check_typedef (type);
78134374 7522 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
76a01679
JB
7523 break;
7524 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7525 }
14f9c5c9 7526
76a01679 7527 if (type == NULL
78134374
SM
7528 || (type->code () != TYPE_CODE_STRUCT
7529 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7530 {
4c4b4cd2 7531 if (noerr)
76a01679 7532 return NULL;
99bbb428 7533
3b4de39c
PA
7534 error (_("Type %s is not a structure or union type"),
7535 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7536 }
7537
7538 type = to_static_fixed_type (type);
7539
7540 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7541 {
0d5cff50 7542 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7543 struct type *t;
d2e4a39e 7544
14f9c5c9 7545 if (t_field_name == NULL)
4c4b4cd2 7546 continue;
14f9c5c9 7547
828d5846
XR
7548 else if (ada_is_parent_field (type, i))
7549 {
7550 /* This is a field pointing us to the parent type of a tagged
7551 type. As hinted in this function's documentation, we give
7552 preference to fields in the current record first, so what
7553 we do here is just record the index of this field before
7554 we skip it. If it turns out we couldn't find our field
7555 in the current record, then we'll get back to it and search
7556 inside it whether the field might exist in the parent. */
7557
7558 parent_offset = i;
7559 continue;
7560 }
7561
14f9c5c9 7562 else if (field_name_match (t_field_name, name))
988f6b3d 7563 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7564
7565 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7566 {
4c4b4cd2 7567 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7568 0, 1);
4c4b4cd2 7569 if (t != NULL)
988f6b3d 7570 return t;
4c4b4cd2 7571 }
14f9c5c9
AS
7572
7573 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7574 {
7575 int j;
5b4ee69b
MS
7576 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7577 i));
4c4b4cd2
PH
7578
7579 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7580 {
b1f33ddd
JB
7581 /* FIXME pnh 2008/01/26: We check for a field that is
7582 NOT wrapped in a struct, since the compiler sometimes
7583 generates these for unchecked variant types. Revisit
0963b4bd 7584 if the compiler changes this practice. */
0d5cff50 7585 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7586
b1f33ddd
JB
7587 if (v_field_name != NULL
7588 && field_name_match (v_field_name, name))
460efde1 7589 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7590 else
0963b4bd
MS
7591 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7592 j),
988f6b3d 7593 name, 0, 1);
b1f33ddd 7594
4c4b4cd2 7595 if (t != NULL)
988f6b3d 7596 return t;
4c4b4cd2
PH
7597 }
7598 }
14f9c5c9
AS
7599
7600 }
7601
828d5846
XR
7602 /* Field not found so far. If this is a tagged type which
7603 has a parent, try finding that field in the parent now. */
7604
7605 if (parent_offset != -1)
7606 {
7607 struct type *t;
7608
7609 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7610 name, 0, 1);
7611 if (t != NULL)
7612 return t;
7613 }
7614
14f9c5c9 7615BadName:
d2e4a39e 7616 if (!noerr)
14f9c5c9 7617 {
2b2798cc 7618 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7619
7620 error (_("Type %s has no component named %s"),
3b4de39c 7621 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7622 }
7623
7624 return NULL;
7625}
7626
b1f33ddd
JB
7627/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7628 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7629 represents an unchecked union (that is, the variant part of a
0963b4bd 7630 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7631
7632static int
7633is_unchecked_variant (struct type *var_type, struct type *outer_type)
7634{
a121b7c1 7635 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7636
988f6b3d 7637 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7638}
7639
7640
14f9c5c9 7641/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7642 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7643 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7644
d2e4a39e 7645int
d8af9068 7646ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7647{
7648 int others_clause;
7649 int i;
a121b7c1 7650 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7651 struct value *discrim;
14f9c5c9
AS
7652 LONGEST discrim_val;
7653
012370f6
TT
7654 /* Using plain value_from_contents_and_address here causes problems
7655 because we will end up trying to resolve a type that is currently
7656 being constructed. */
0c281816
JB
7657 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7658 if (discrim == NULL)
14f9c5c9 7659 return -1;
0c281816 7660 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7661
7662 others_clause = -1;
7663 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7664 {
7665 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7666 others_clause = i;
14f9c5c9 7667 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7668 return i;
14f9c5c9
AS
7669 }
7670
7671 return others_clause;
7672}
d2e4a39e 7673\f
14f9c5c9
AS
7674
7675
4c4b4cd2 7676 /* Dynamic-Sized Records */
14f9c5c9
AS
7677
7678/* Strategy: The type ostensibly attached to a value with dynamic size
7679 (i.e., a size that is not statically recorded in the debugging
7680 data) does not accurately reflect the size or layout of the value.
7681 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7682 conventional types that are constructed on the fly. */
14f9c5c9
AS
7683
7684/* There is a subtle and tricky problem here. In general, we cannot
7685 determine the size of dynamic records without its data. However,
7686 the 'struct value' data structure, which GDB uses to represent
7687 quantities in the inferior process (the target), requires the size
7688 of the type at the time of its allocation in order to reserve space
7689 for GDB's internal copy of the data. That's why the
7690 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7691 rather than struct value*s.
14f9c5c9
AS
7692
7693 However, GDB's internal history variables ($1, $2, etc.) are
7694 struct value*s containing internal copies of the data that are not, in
7695 general, the same as the data at their corresponding addresses in
7696 the target. Fortunately, the types we give to these values are all
7697 conventional, fixed-size types (as per the strategy described
7698 above), so that we don't usually have to perform the
7699 'to_fixed_xxx_type' conversions to look at their values.
7700 Unfortunately, there is one exception: if one of the internal
7701 history variables is an array whose elements are unconstrained
7702 records, then we will need to create distinct fixed types for each
7703 element selected. */
7704
7705/* The upshot of all of this is that many routines take a (type, host
7706 address, target address) triple as arguments to represent a value.
7707 The host address, if non-null, is supposed to contain an internal
7708 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7709 target at the target address. */
14f9c5c9
AS
7710
7711/* Assuming that VAL0 represents a pointer value, the result of
7712 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7713 dynamic-sized types. */
14f9c5c9 7714
d2e4a39e
AS
7715struct value *
7716ada_value_ind (struct value *val0)
14f9c5c9 7717{
c48db5ca 7718 struct value *val = value_ind (val0);
5b4ee69b 7719
b50d69b5
JG
7720 if (ada_is_tagged_type (value_type (val), 0))
7721 val = ada_tag_value_at_base_address (val);
7722
4c4b4cd2 7723 return ada_to_fixed_value (val);
14f9c5c9
AS
7724}
7725
7726/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7727 qualifiers on VAL0. */
7728
d2e4a39e
AS
7729static struct value *
7730ada_coerce_ref (struct value *val0)
7731{
78134374 7732 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7733 {
7734 struct value *val = val0;
5b4ee69b 7735
994b9211 7736 val = coerce_ref (val);
b50d69b5
JG
7737
7738 if (ada_is_tagged_type (value_type (val), 0))
7739 val = ada_tag_value_at_base_address (val);
7740
4c4b4cd2 7741 return ada_to_fixed_value (val);
d2e4a39e
AS
7742 }
7743 else
14f9c5c9
AS
7744 return val0;
7745}
7746
4c4b4cd2 7747/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7748
7749static unsigned int
ebf56fd3 7750field_alignment (struct type *type, int f)
14f9c5c9 7751{
d2e4a39e 7752 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7753 int len;
14f9c5c9
AS
7754 int align_offset;
7755
64a1bf19
JB
7756 /* The field name should never be null, unless the debugging information
7757 is somehow malformed. In this case, we assume the field does not
7758 require any alignment. */
7759 if (name == NULL)
7760 return 1;
7761
7762 len = strlen (name);
7763
4c4b4cd2
PH
7764 if (!isdigit (name[len - 1]))
7765 return 1;
14f9c5c9 7766
d2e4a39e 7767 if (isdigit (name[len - 2]))
14f9c5c9
AS
7768 align_offset = len - 2;
7769 else
7770 align_offset = len - 1;
7771
61012eef 7772 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7773 return TARGET_CHAR_BIT;
7774
4c4b4cd2
PH
7775 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7776}
7777
852dff6c 7778/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7779
852dff6c
JB
7780static struct symbol *
7781ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7782{
7783 struct symbol *sym;
7784
7785 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7786 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7787 return sym;
7788
4186eb54
KS
7789 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7790 return sym;
14f9c5c9
AS
7791}
7792
dddfab26
UW
7793/* Find a type named NAME. Ignores ambiguity. This routine will look
7794 solely for types defined by debug info, it will not search the GDB
7795 primitive types. */
4c4b4cd2 7796
852dff6c 7797static struct type *
ebf56fd3 7798ada_find_any_type (const char *name)
14f9c5c9 7799{
852dff6c 7800 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7801
14f9c5c9 7802 if (sym != NULL)
dddfab26 7803 return SYMBOL_TYPE (sym);
14f9c5c9 7804
dddfab26 7805 return NULL;
14f9c5c9
AS
7806}
7807
739593e0
JB
7808/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7809 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7810 symbol, in which case it is returned. Otherwise, this looks for
7811 symbols whose name is that of NAME_SYM suffixed with "___XR".
7812 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7813
c0e70c62
TT
7814static bool
7815ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7816{
987012b8 7817 const char *name = name_sym->linkage_name ();
c0e70c62 7818 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7819}
7820
14f9c5c9 7821/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7822 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7823 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7824 otherwise return 0. */
7825
14f9c5c9 7826int
d2e4a39e 7827ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7828{
7829 if (type1 == NULL)
7830 return 1;
7831 else if (type0 == NULL)
7832 return 0;
78134374 7833 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7834 return 1;
78134374 7835 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7836 return 0;
4c4b4cd2
PH
7837 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7838 return 1;
ad82864c 7839 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7840 return 1;
4c4b4cd2
PH
7841 else if (ada_is_array_descriptor_type (type0)
7842 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7843 return 1;
aeb5907d
JB
7844 else
7845 {
a737d952
TT
7846 const char *type0_name = TYPE_NAME (type0);
7847 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7848
7849 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7850 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7851 return 1;
7852 }
14f9c5c9
AS
7853 return 0;
7854}
7855
e86ca25f
TT
7856/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7857 null. */
4c4b4cd2 7858
0d5cff50 7859const char *
d2e4a39e 7860ada_type_name (struct type *type)
14f9c5c9 7861{
d2e4a39e 7862 if (type == NULL)
14f9c5c9 7863 return NULL;
e86ca25f 7864 return TYPE_NAME (type);
14f9c5c9
AS
7865}
7866
b4ba55a1
JB
7867/* Search the list of "descriptive" types associated to TYPE for a type
7868 whose name is NAME. */
7869
7870static struct type *
7871find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7872{
931e5bc3 7873 struct type *result, *tmp;
b4ba55a1 7874
c6044dd1
JB
7875 if (ada_ignore_descriptive_types_p)
7876 return NULL;
7877
b4ba55a1
JB
7878 /* If there no descriptive-type info, then there is no parallel type
7879 to be found. */
7880 if (!HAVE_GNAT_AUX_INFO (type))
7881 return NULL;
7882
7883 result = TYPE_DESCRIPTIVE_TYPE (type);
7884 while (result != NULL)
7885 {
0d5cff50 7886 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7887
7888 if (result_name == NULL)
7889 {
7890 warning (_("unexpected null name on descriptive type"));
7891 return NULL;
7892 }
7893
7894 /* If the names match, stop. */
7895 if (strcmp (result_name, name) == 0)
7896 break;
7897
7898 /* Otherwise, look at the next item on the list, if any. */
7899 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7900 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7901 else
7902 tmp = NULL;
7903
7904 /* If not found either, try after having resolved the typedef. */
7905 if (tmp != NULL)
7906 result = tmp;
b4ba55a1 7907 else
931e5bc3 7908 {
f168693b 7909 result = check_typedef (result);
931e5bc3
JG
7910 if (HAVE_GNAT_AUX_INFO (result))
7911 result = TYPE_DESCRIPTIVE_TYPE (result);
7912 else
7913 result = NULL;
7914 }
b4ba55a1
JB
7915 }
7916
7917 /* If we didn't find a match, see whether this is a packed array. With
7918 older compilers, the descriptive type information is either absent or
7919 irrelevant when it comes to packed arrays so the above lookup fails.
7920 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7921 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7922 return ada_find_any_type (name);
7923
7924 return result;
7925}
7926
7927/* Find a parallel type to TYPE with the specified NAME, using the
7928 descriptive type taken from the debugging information, if available,
7929 and otherwise using the (slower) name-based method. */
7930
7931static struct type *
7932ada_find_parallel_type_with_name (struct type *type, const char *name)
7933{
7934 struct type *result = NULL;
7935
7936 if (HAVE_GNAT_AUX_INFO (type))
7937 result = find_parallel_type_by_descriptive_type (type, name);
7938 else
7939 result = ada_find_any_type (name);
7940
7941 return result;
7942}
7943
7944/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7945 SUFFIX to the name of TYPE. */
14f9c5c9 7946
d2e4a39e 7947struct type *
ebf56fd3 7948ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7949{
0d5cff50 7950 char *name;
fe978cb0 7951 const char *type_name = ada_type_name (type);
14f9c5c9 7952 int len;
d2e4a39e 7953
fe978cb0 7954 if (type_name == NULL)
14f9c5c9
AS
7955 return NULL;
7956
fe978cb0 7957 len = strlen (type_name);
14f9c5c9 7958
b4ba55a1 7959 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7960
fe978cb0 7961 strcpy (name, type_name);
14f9c5c9
AS
7962 strcpy (name + len, suffix);
7963
b4ba55a1 7964 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7965}
7966
14f9c5c9 7967/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7968 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7969
d2e4a39e
AS
7970static struct type *
7971dynamic_template_type (struct type *type)
14f9c5c9 7972{
61ee279c 7973 type = ada_check_typedef (type);
14f9c5c9 7974
78134374 7975 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7976 || ada_type_name (type) == NULL)
14f9c5c9 7977 return NULL;
d2e4a39e 7978 else
14f9c5c9
AS
7979 {
7980 int len = strlen (ada_type_name (type));
5b4ee69b 7981
4c4b4cd2
PH
7982 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7983 return type;
14f9c5c9 7984 else
4c4b4cd2 7985 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7986 }
7987}
7988
7989/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7990 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7991
d2e4a39e
AS
7992static int
7993is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7994{
7995 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7996
d2e4a39e 7997 return name != NULL
78134374 7998 && TYPE_FIELD_TYPE (templ_type, field_num)->code () == TYPE_CODE_PTR
14f9c5c9
AS
7999 && strstr (name, "___XVL") != NULL;
8000}
8001
4c4b4cd2
PH
8002/* The index of the variant field of TYPE, or -1 if TYPE does not
8003 represent a variant record type. */
14f9c5c9 8004
d2e4a39e 8005static int
4c4b4cd2 8006variant_field_index (struct type *type)
14f9c5c9
AS
8007{
8008 int f;
8009
78134374 8010 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
8011 return -1;
8012
8013 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8014 {
8015 if (ada_is_variant_part (type, f))
8016 return f;
8017 }
8018 return -1;
14f9c5c9
AS
8019}
8020
4c4b4cd2
PH
8021/* A record type with no fields. */
8022
d2e4a39e 8023static struct type *
fe978cb0 8024empty_record (struct type *templ)
14f9c5c9 8025{
fe978cb0 8026 struct type *type = alloc_type_copy (templ);
5b4ee69b 8027
67607e24 8028 type->set_code (TYPE_CODE_STRUCT);
14f9c5c9
AS
8029 TYPE_NFIELDS (type) = 0;
8030 TYPE_FIELDS (type) = NULL;
8ecb59f8 8031 INIT_NONE_SPECIFIC (type);
14f9c5c9 8032 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8033 TYPE_LENGTH (type) = 0;
8034 return type;
8035}
8036
8037/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8038 the value of type TYPE at VALADDR or ADDRESS (see comments at
8039 the beginning of this section) VAL according to GNAT conventions.
8040 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8041 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8042 an outer-level type (i.e., as opposed to a branch of a variant.) A
8043 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8044 of the variant.
14f9c5c9 8045
4c4b4cd2
PH
8046 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8047 length are not statically known are discarded. As a consequence,
8048 VALADDR, ADDRESS and DVAL0 are ignored.
8049
8050 NOTE: Limitations: For now, we assume that dynamic fields and
8051 variants occupy whole numbers of bytes. However, they need not be
8052 byte-aligned. */
8053
8054struct type *
10a2c479 8055ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8056 const gdb_byte *valaddr,
4c4b4cd2
PH
8057 CORE_ADDR address, struct value *dval0,
8058 int keep_dynamic_fields)
14f9c5c9 8059{
d2e4a39e
AS
8060 struct value *mark = value_mark ();
8061 struct value *dval;
8062 struct type *rtype;
14f9c5c9 8063 int nfields, bit_len;
4c4b4cd2 8064 int variant_field;
14f9c5c9 8065 long off;
d94e4f4f 8066 int fld_bit_len;
14f9c5c9
AS
8067 int f;
8068
4c4b4cd2
PH
8069 /* Compute the number of fields in this record type that are going
8070 to be processed: unless keep_dynamic_fields, this includes only
8071 fields whose position and length are static will be processed. */
8072 if (keep_dynamic_fields)
8073 nfields = TYPE_NFIELDS (type);
8074 else
8075 {
8076 nfields = 0;
76a01679 8077 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8078 && !ada_is_variant_part (type, nfields)
8079 && !is_dynamic_field (type, nfields))
8080 nfields++;
8081 }
8082
e9bb382b 8083 rtype = alloc_type_copy (type);
67607e24 8084 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8085 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8086 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8087 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8088 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8089 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8090 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8091 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8092
d2e4a39e
AS
8093 off = 0;
8094 bit_len = 0;
4c4b4cd2
PH
8095 variant_field = -1;
8096
14f9c5c9
AS
8097 for (f = 0; f < nfields; f += 1)
8098 {
a89febbd 8099 off = align_up (off, field_alignment (type, f))
6c038f32 8100 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8101 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8102 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8103
d2e4a39e 8104 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8105 {
8106 variant_field = f;
d94e4f4f 8107 fld_bit_len = 0;
4c4b4cd2 8108 }
14f9c5c9 8109 else if (is_dynamic_field (type, f))
4c4b4cd2 8110 {
284614f0
JB
8111 const gdb_byte *field_valaddr = valaddr;
8112 CORE_ADDR field_address = address;
8113 struct type *field_type =
8114 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8115
4c4b4cd2 8116 if (dval0 == NULL)
b5304971
JG
8117 {
8118 /* rtype's length is computed based on the run-time
8119 value of discriminants. If the discriminants are not
8120 initialized, the type size may be completely bogus and
0963b4bd 8121 GDB may fail to allocate a value for it. So check the
b5304971 8122 size first before creating the value. */
c1b5a1a6 8123 ada_ensure_varsize_limit (rtype);
012370f6
TT
8124 /* Using plain value_from_contents_and_address here
8125 causes problems because we will end up trying to
8126 resolve a type that is currently being
8127 constructed. */
8128 dval = value_from_contents_and_address_unresolved (rtype,
8129 valaddr,
8130 address);
9f1f738a 8131 rtype = value_type (dval);
b5304971 8132 }
4c4b4cd2
PH
8133 else
8134 dval = dval0;
8135
284614f0
JB
8136 /* If the type referenced by this field is an aligner type, we need
8137 to unwrap that aligner type, because its size might not be set.
8138 Keeping the aligner type would cause us to compute the wrong
8139 size for this field, impacting the offset of the all the fields
8140 that follow this one. */
8141 if (ada_is_aligner_type (field_type))
8142 {
8143 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8144
8145 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8146 field_address = cond_offset_target (field_address, field_offset);
8147 field_type = ada_aligned_type (field_type);
8148 }
8149
8150 field_valaddr = cond_offset_host (field_valaddr,
8151 off / TARGET_CHAR_BIT);
8152 field_address = cond_offset_target (field_address,
8153 off / TARGET_CHAR_BIT);
8154
8155 /* Get the fixed type of the field. Note that, in this case,
8156 we do not want to get the real type out of the tag: if
8157 the current field is the parent part of a tagged record,
8158 we will get the tag of the object. Clearly wrong: the real
8159 type of the parent is not the real type of the child. We
8160 would end up in an infinite loop. */
8161 field_type = ada_get_base_type (field_type);
8162 field_type = ada_to_fixed_type (field_type, field_valaddr,
8163 field_address, dval, 0);
27f2a97b
JB
8164 /* If the field size is already larger than the maximum
8165 object size, then the record itself will necessarily
8166 be larger than the maximum object size. We need to make
8167 this check now, because the size might be so ridiculously
8168 large (due to an uninitialized variable in the inferior)
8169 that it would cause an overflow when adding it to the
8170 record size. */
c1b5a1a6 8171 ada_ensure_varsize_limit (field_type);
284614f0
JB
8172
8173 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8174 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8175 /* The multiplication can potentially overflow. But because
8176 the field length has been size-checked just above, and
8177 assuming that the maximum size is a reasonable value,
8178 an overflow should not happen in practice. So rather than
8179 adding overflow recovery code to this already complex code,
8180 we just assume that it's not going to happen. */
d94e4f4f 8181 fld_bit_len =
4c4b4cd2
PH
8182 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8183 }
14f9c5c9 8184 else
4c4b4cd2 8185 {
5ded5331
JB
8186 /* Note: If this field's type is a typedef, it is important
8187 to preserve the typedef layer.
8188
8189 Otherwise, we might be transforming a typedef to a fat
8190 pointer (encoding a pointer to an unconstrained array),
8191 into a basic fat pointer (encoding an unconstrained
8192 array). As both types are implemented using the same
8193 structure, the typedef is the only clue which allows us
8194 to distinguish between the two options. Stripping it
8195 would prevent us from printing this field appropriately. */
8196 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8197 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8198 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8199 fld_bit_len =
4c4b4cd2
PH
8200 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8201 else
5ded5331
JB
8202 {
8203 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8204
8205 /* We need to be careful of typedefs when computing
8206 the length of our field. If this is a typedef,
8207 get the length of the target type, not the length
8208 of the typedef. */
78134374 8209 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
8210 field_type = ada_typedef_target_type (field_type);
8211
8212 fld_bit_len =
8213 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8214 }
4c4b4cd2 8215 }
14f9c5c9 8216 if (off + fld_bit_len > bit_len)
4c4b4cd2 8217 bit_len = off + fld_bit_len;
d94e4f4f 8218 off += fld_bit_len;
4c4b4cd2 8219 TYPE_LENGTH (rtype) =
a89febbd 8220 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8221 }
4c4b4cd2
PH
8222
8223 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8224 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8225 the record. This can happen in the presence of representation
8226 clauses. */
8227 if (variant_field >= 0)
8228 {
8229 struct type *branch_type;
8230
8231 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8232
8233 if (dval0 == NULL)
9f1f738a 8234 {
012370f6
TT
8235 /* Using plain value_from_contents_and_address here causes
8236 problems because we will end up trying to resolve a type
8237 that is currently being constructed. */
8238 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8239 address);
9f1f738a
SA
8240 rtype = value_type (dval);
8241 }
4c4b4cd2
PH
8242 else
8243 dval = dval0;
8244
8245 branch_type =
8246 to_fixed_variant_branch_type
8247 (TYPE_FIELD_TYPE (type, variant_field),
8248 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8249 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8250 if (branch_type == NULL)
8251 {
8252 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8253 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8254 TYPE_NFIELDS (rtype) -= 1;
8255 }
8256 else
8257 {
8258 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8259 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8260 fld_bit_len =
8261 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8262 TARGET_CHAR_BIT;
8263 if (off + fld_bit_len > bit_len)
8264 bit_len = off + fld_bit_len;
8265 TYPE_LENGTH (rtype) =
a89febbd 8266 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
4c4b4cd2
PH
8267 }
8268 }
8269
714e53ab
PH
8270 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8271 should contain the alignment of that record, which should be a strictly
8272 positive value. If null or negative, then something is wrong, most
8273 probably in the debug info. In that case, we don't round up the size
0963b4bd 8274 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8275 the current RTYPE length might be good enough for our purposes. */
8276 if (TYPE_LENGTH (type) <= 0)
8277 {
323e0a4a 8278 if (TYPE_NAME (rtype))
cc1defb1
KS
8279 warning (_("Invalid type size for `%s' detected: %s."),
8280 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8281 else
cc1defb1
KS
8282 warning (_("Invalid type size for <unnamed> detected: %s."),
8283 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8284 }
8285 else
8286 {
a89febbd
TT
8287 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8288 TYPE_LENGTH (type));
714e53ab 8289 }
14f9c5c9
AS
8290
8291 value_free_to_mark (mark);
d2e4a39e 8292 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8293 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8294 return rtype;
8295}
8296
4c4b4cd2
PH
8297/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8298 of 1. */
14f9c5c9 8299
d2e4a39e 8300static struct type *
fc1a4b47 8301template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8302 CORE_ADDR address, struct value *dval0)
8303{
8304 return ada_template_to_fixed_record_type_1 (type, valaddr,
8305 address, dval0, 1);
8306}
8307
8308/* An ordinary record type in which ___XVL-convention fields and
8309 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8310 static approximations, containing all possible fields. Uses
8311 no runtime values. Useless for use in values, but that's OK,
8312 since the results are used only for type determinations. Works on both
8313 structs and unions. Representation note: to save space, we memorize
8314 the result of this function in the TYPE_TARGET_TYPE of the
8315 template type. */
8316
8317static struct type *
8318template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8319{
8320 struct type *type;
8321 int nfields;
8322 int f;
8323
9e195661
PMR
8324 /* No need no do anything if the input type is already fixed. */
8325 if (TYPE_FIXED_INSTANCE (type0))
8326 return type0;
8327
8328 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8329 if (TYPE_TARGET_TYPE (type0) != NULL)
8330 return TYPE_TARGET_TYPE (type0);
8331
9e195661 8332 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8333 type = type0;
9e195661
PMR
8334 nfields = TYPE_NFIELDS (type0);
8335
8336 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8337 recompute all over next time. */
8338 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8339
8340 for (f = 0; f < nfields; f += 1)
8341 {
460efde1 8342 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8343 struct type *new_type;
14f9c5c9 8344
4c4b4cd2 8345 if (is_dynamic_field (type0, f))
460efde1
JB
8346 {
8347 field_type = ada_check_typedef (field_type);
8348 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8349 }
14f9c5c9 8350 else
f192137b 8351 new_type = static_unwrap_type (field_type);
9e195661
PMR
8352
8353 if (new_type != field_type)
8354 {
8355 /* Clone TYPE0 only the first time we get a new field type. */
8356 if (type == type0)
8357 {
8358 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8359 type->set_code (type0->code ());
8ecb59f8 8360 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8361 TYPE_NFIELDS (type) = nfields;
8362 TYPE_FIELDS (type) = (struct field *)
8363 TYPE_ALLOC (type, nfields * sizeof (struct field));
8364 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8365 sizeof (struct field) * nfields);
8366 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8367 TYPE_FIXED_INSTANCE (type) = 1;
8368 TYPE_LENGTH (type) = 0;
8369 }
8370 TYPE_FIELD_TYPE (type, f) = new_type;
8371 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8372 }
14f9c5c9 8373 }
9e195661 8374
14f9c5c9
AS
8375 return type;
8376}
8377
4c4b4cd2 8378/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8379 whose address in memory is ADDRESS, returns a revision of TYPE,
8380 which should be a non-dynamic-sized record, in which the variant
8381 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8382 for discriminant values in DVAL0, which can be NULL if the record
8383 contains the necessary discriminant values. */
8384
d2e4a39e 8385static struct type *
fc1a4b47 8386to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8387 CORE_ADDR address, struct value *dval0)
14f9c5c9 8388{
d2e4a39e 8389 struct value *mark = value_mark ();
4c4b4cd2 8390 struct value *dval;
d2e4a39e 8391 struct type *rtype;
14f9c5c9
AS
8392 struct type *branch_type;
8393 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8394 int variant_field = variant_field_index (type);
14f9c5c9 8395
4c4b4cd2 8396 if (variant_field == -1)
14f9c5c9
AS
8397 return type;
8398
4c4b4cd2 8399 if (dval0 == NULL)
9f1f738a
SA
8400 {
8401 dval = value_from_contents_and_address (type, valaddr, address);
8402 type = value_type (dval);
8403 }
4c4b4cd2
PH
8404 else
8405 dval = dval0;
8406
e9bb382b 8407 rtype = alloc_type_copy (type);
67607e24 8408 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8409 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8410 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8411 TYPE_FIELDS (rtype) =
8412 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8413 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8414 sizeof (struct field) * nfields);
14f9c5c9 8415 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8416 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8417 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8418
4c4b4cd2
PH
8419 branch_type = to_fixed_variant_branch_type
8420 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8421 cond_offset_host (valaddr,
4c4b4cd2
PH
8422 TYPE_FIELD_BITPOS (type, variant_field)
8423 / TARGET_CHAR_BIT),
d2e4a39e 8424 cond_offset_target (address,
4c4b4cd2
PH
8425 TYPE_FIELD_BITPOS (type, variant_field)
8426 / TARGET_CHAR_BIT), dval);
d2e4a39e 8427 if (branch_type == NULL)
14f9c5c9 8428 {
4c4b4cd2 8429 int f;
5b4ee69b 8430
4c4b4cd2
PH
8431 for (f = variant_field + 1; f < nfields; f += 1)
8432 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8433 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8434 }
8435 else
8436 {
4c4b4cd2
PH
8437 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8438 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8439 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8440 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8441 }
4c4b4cd2 8442 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8443
4c4b4cd2 8444 value_free_to_mark (mark);
14f9c5c9
AS
8445 return rtype;
8446}
8447
8448/* An ordinary record type (with fixed-length fields) that describes
8449 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8450 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8451 should be in DVAL, a record value; it may be NULL if the object
8452 at ADDR itself contains any necessary discriminant values.
8453 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8454 values from the record are needed. Except in the case that DVAL,
8455 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8456 unchecked) is replaced by a particular branch of the variant.
8457
8458 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8459 is questionable and may be removed. It can arise during the
8460 processing of an unconstrained-array-of-record type where all the
8461 variant branches have exactly the same size. This is because in
8462 such cases, the compiler does not bother to use the XVS convention
8463 when encoding the record. I am currently dubious of this
8464 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8465
d2e4a39e 8466static struct type *
fc1a4b47 8467to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8468 CORE_ADDR address, struct value *dval)
14f9c5c9 8469{
d2e4a39e 8470 struct type *templ_type;
14f9c5c9 8471
876cecd0 8472 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8473 return type0;
8474
d2e4a39e 8475 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8476
8477 if (templ_type != NULL)
8478 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8479 else if (variant_field_index (type0) >= 0)
8480 {
8481 if (dval == NULL && valaddr == NULL && address == 0)
8482 return type0;
8483 return to_record_with_fixed_variant_part (type0, valaddr, address,
8484 dval);
8485 }
14f9c5c9
AS
8486 else
8487 {
876cecd0 8488 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8489 return type0;
8490 }
8491
8492}
8493
8494/* An ordinary record type (with fixed-length fields) that describes
8495 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8496 union type. Any necessary discriminants' values should be in DVAL,
8497 a record value. That is, this routine selects the appropriate
8498 branch of the union at ADDR according to the discriminant value
b1f33ddd 8499 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8500 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8501
d2e4a39e 8502static struct type *
fc1a4b47 8503to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8504 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8505{
8506 int which;
d2e4a39e
AS
8507 struct type *templ_type;
8508 struct type *var_type;
14f9c5c9 8509
78134374 8510 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8511 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8512 else
14f9c5c9
AS
8513 var_type = var_type0;
8514
8515 templ_type = ada_find_parallel_type (var_type, "___XVU");
8516
8517 if (templ_type != NULL)
8518 var_type = templ_type;
8519
b1f33ddd
JB
8520 if (is_unchecked_variant (var_type, value_type (dval)))
8521 return var_type0;
d8af9068 8522 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8523
8524 if (which < 0)
e9bb382b 8525 return empty_record (var_type);
14f9c5c9 8526 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8527 return to_fixed_record_type
d2e4a39e
AS
8528 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8529 valaddr, address, dval);
4c4b4cd2 8530 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8531 return
8532 to_fixed_record_type
8533 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8534 else
8535 return TYPE_FIELD_TYPE (var_type, which);
8536}
8537
8908fca5
JB
8538/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8539 ENCODING_TYPE, a type following the GNAT conventions for discrete
8540 type encodings, only carries redundant information. */
8541
8542static int
8543ada_is_redundant_range_encoding (struct type *range_type,
8544 struct type *encoding_type)
8545{
108d56a4 8546 const char *bounds_str;
8908fca5
JB
8547 int n;
8548 LONGEST lo, hi;
8549
78134374 8550 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8551
78134374
SM
8552 if (get_base_type (range_type)->code ()
8553 != get_base_type (encoding_type)->code ())
005e2509
JB
8554 {
8555 /* The compiler probably used a simple base type to describe
8556 the range type instead of the range's actual base type,
8557 expecting us to get the real base type from the encoding
8558 anyway. In this situation, the encoding cannot be ignored
8559 as redundant. */
8560 return 0;
8561 }
8562
8908fca5
JB
8563 if (is_dynamic_type (range_type))
8564 return 0;
8565
8566 if (TYPE_NAME (encoding_type) == NULL)
8567 return 0;
8568
8569 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8570 if (bounds_str == NULL)
8571 return 0;
8572
8573 n = 8; /* Skip "___XDLU_". */
8574 if (!ada_scan_number (bounds_str, n, &lo, &n))
8575 return 0;
8576 if (TYPE_LOW_BOUND (range_type) != lo)
8577 return 0;
8578
8579 n += 2; /* Skip the "__" separator between the two bounds. */
8580 if (!ada_scan_number (bounds_str, n, &hi, &n))
8581 return 0;
8582 if (TYPE_HIGH_BOUND (range_type) != hi)
8583 return 0;
8584
8585 return 1;
8586}
8587
8588/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8589 a type following the GNAT encoding for describing array type
8590 indices, only carries redundant information. */
8591
8592static int
8593ada_is_redundant_index_type_desc (struct type *array_type,
8594 struct type *desc_type)
8595{
8596 struct type *this_layer = check_typedef (array_type);
8597 int i;
8598
8599 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8600 {
8601 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8602 TYPE_FIELD_TYPE (desc_type, i)))
8603 return 0;
8604 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8605 }
8606
8607 return 1;
8608}
8609
14f9c5c9
AS
8610/* Assuming that TYPE0 is an array type describing the type of a value
8611 at ADDR, and that DVAL describes a record containing any
8612 discriminants used in TYPE0, returns a type for the value that
8613 contains no dynamic components (that is, no components whose sizes
8614 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8615 true, gives an error message if the resulting type's size is over
4c4b4cd2 8616 varsize_limit. */
14f9c5c9 8617
d2e4a39e
AS
8618static struct type *
8619to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8620 int ignore_too_big)
14f9c5c9 8621{
d2e4a39e
AS
8622 struct type *index_type_desc;
8623 struct type *result;
ad82864c 8624 int constrained_packed_array_p;
931e5bc3 8625 static const char *xa_suffix = "___XA";
14f9c5c9 8626
b0dd7688 8627 type0 = ada_check_typedef (type0);
284614f0 8628 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8629 return type0;
14f9c5c9 8630
ad82864c
JB
8631 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8632 if (constrained_packed_array_p)
8633 type0 = decode_constrained_packed_array_type (type0);
284614f0 8634
931e5bc3
JG
8635 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8636
8637 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8638 encoding suffixed with 'P' may still be generated. If so,
8639 it should be used to find the XA type. */
8640
8641 if (index_type_desc == NULL)
8642 {
1da0522e 8643 const char *type_name = ada_type_name (type0);
931e5bc3 8644
1da0522e 8645 if (type_name != NULL)
931e5bc3 8646 {
1da0522e 8647 const int len = strlen (type_name);
931e5bc3
JG
8648 char *name = (char *) alloca (len + strlen (xa_suffix));
8649
1da0522e 8650 if (type_name[len - 1] == 'P')
931e5bc3 8651 {
1da0522e 8652 strcpy (name, type_name);
931e5bc3
JG
8653 strcpy (name + len - 1, xa_suffix);
8654 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8655 }
8656 }
8657 }
8658
28c85d6c 8659 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8660 if (index_type_desc != NULL
8661 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8662 {
8663 /* Ignore this ___XA parallel type, as it does not bring any
8664 useful information. This allows us to avoid creating fixed
8665 versions of the array's index types, which would be identical
8666 to the original ones. This, in turn, can also help avoid
8667 the creation of fixed versions of the array itself. */
8668 index_type_desc = NULL;
8669 }
8670
14f9c5c9
AS
8671 if (index_type_desc == NULL)
8672 {
61ee279c 8673 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8674
14f9c5c9 8675 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8676 depend on the contents of the array in properly constructed
8677 debugging data. */
529cad9c
PH
8678 /* Create a fixed version of the array element type.
8679 We're not providing the address of an element here,
e1d5a0d2 8680 and thus the actual object value cannot be inspected to do
529cad9c
PH
8681 the conversion. This should not be a problem, since arrays of
8682 unconstrained objects are not allowed. In particular, all
8683 the elements of an array of a tagged type should all be of
8684 the same type specified in the debugging info. No need to
8685 consult the object tag. */
1ed6ede0 8686 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8687
284614f0
JB
8688 /* Make sure we always create a new array type when dealing with
8689 packed array types, since we're going to fix-up the array
8690 type length and element bitsize a little further down. */
ad82864c 8691 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8692 result = type0;
14f9c5c9 8693 else
e9bb382b 8694 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8695 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8696 }
8697 else
8698 {
8699 int i;
8700 struct type *elt_type0;
8701
8702 elt_type0 = type0;
8703 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8704 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8705
8706 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8707 depend on the contents of the array in properly constructed
8708 debugging data. */
529cad9c
PH
8709 /* Create a fixed version of the array element type.
8710 We're not providing the address of an element here,
e1d5a0d2 8711 and thus the actual object value cannot be inspected to do
529cad9c
PH
8712 the conversion. This should not be a problem, since arrays of
8713 unconstrained objects are not allowed. In particular, all
8714 the elements of an array of a tagged type should all be of
8715 the same type specified in the debugging info. No need to
8716 consult the object tag. */
1ed6ede0
JB
8717 result =
8718 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8719
8720 elt_type0 = type0;
14f9c5c9 8721 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8722 {
8723 struct type *range_type =
28c85d6c 8724 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8725
e9bb382b 8726 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8727 result, range_type);
1ce677a4 8728 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8729 }
d2e4a39e 8730 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8731 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8732 }
8733
2e6fda7d
JB
8734 /* We want to preserve the type name. This can be useful when
8735 trying to get the type name of a value that has already been
8736 printed (for instance, if the user did "print VAR; whatis $". */
8737 TYPE_NAME (result) = TYPE_NAME (type0);
8738
ad82864c 8739 if (constrained_packed_array_p)
284614f0
JB
8740 {
8741 /* So far, the resulting type has been created as if the original
8742 type was a regular (non-packed) array type. As a result, the
8743 bitsize of the array elements needs to be set again, and the array
8744 length needs to be recomputed based on that bitsize. */
8745 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8746 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8747
8748 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8749 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8750 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8751 TYPE_LENGTH (result)++;
8752 }
8753
876cecd0 8754 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8755 return result;
d2e4a39e 8756}
14f9c5c9
AS
8757
8758
8759/* A standard type (containing no dynamically sized components)
8760 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8761 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8762 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8763 ADDRESS or in VALADDR contains these discriminants.
8764
1ed6ede0
JB
8765 If CHECK_TAG is not null, in the case of tagged types, this function
8766 attempts to locate the object's tag and use it to compute the actual
8767 type. However, when ADDRESS is null, we cannot use it to determine the
8768 location of the tag, and therefore compute the tagged type's actual type.
8769 So we return the tagged type without consulting the tag. */
529cad9c 8770
f192137b
JB
8771static struct type *
8772ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8773 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8774{
61ee279c 8775 type = ada_check_typedef (type);
8ecb59f8
TT
8776
8777 /* Only un-fixed types need to be handled here. */
8778 if (!HAVE_GNAT_AUX_INFO (type))
8779 return type;
8780
78134374 8781 switch (type->code ())
d2e4a39e
AS
8782 {
8783 default:
14f9c5c9 8784 return type;
d2e4a39e 8785 case TYPE_CODE_STRUCT:
4c4b4cd2 8786 {
76a01679 8787 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8788 struct type *fixed_record_type =
8789 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8790
529cad9c
PH
8791 /* If STATIC_TYPE is a tagged type and we know the object's address,
8792 then we can determine its tag, and compute the object's actual
0963b4bd 8793 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8794 type (the parent part of the record may have dynamic fields
8795 and the way the location of _tag is expressed may depend on
8796 them). */
529cad9c 8797
1ed6ede0 8798 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8799 {
b50d69b5
JG
8800 struct value *tag =
8801 value_tag_from_contents_and_address
8802 (fixed_record_type,
8803 valaddr,
8804 address);
8805 struct type *real_type = type_from_tag (tag);
8806 struct value *obj =
8807 value_from_contents_and_address (fixed_record_type,
8808 valaddr,
8809 address);
9f1f738a 8810 fixed_record_type = value_type (obj);
76a01679 8811 if (real_type != NULL)
b50d69b5
JG
8812 return to_fixed_record_type
8813 (real_type, NULL,
8814 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8815 }
4af88198
JB
8816
8817 /* Check to see if there is a parallel ___XVZ variable.
8818 If there is, then it provides the actual size of our type. */
8819 else if (ada_type_name (fixed_record_type) != NULL)
8820 {
0d5cff50 8821 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8822 char *xvz_name
8823 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8824 bool xvz_found = false;
4af88198
JB
8825 LONGEST size;
8826
88c15c34 8827 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8828 try
eccab96d
JB
8829 {
8830 xvz_found = get_int_var_value (xvz_name, size);
8831 }
230d2906 8832 catch (const gdb_exception_error &except)
eccab96d
JB
8833 {
8834 /* We found the variable, but somehow failed to read
8835 its value. Rethrow the same error, but with a little
8836 bit more information, to help the user understand
8837 what went wrong (Eg: the variable might have been
8838 optimized out). */
8839 throw_error (except.error,
8840 _("unable to read value of %s (%s)"),
3d6e9d23 8841 xvz_name, except.what ());
eccab96d 8842 }
eccab96d
JB
8843
8844 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8845 {
8846 fixed_record_type = copy_type (fixed_record_type);
8847 TYPE_LENGTH (fixed_record_type) = size;
8848
8849 /* The FIXED_RECORD_TYPE may have be a stub. We have
8850 observed this when the debugging info is STABS, and
8851 apparently it is something that is hard to fix.
8852
8853 In practice, we don't need the actual type definition
8854 at all, because the presence of the XVZ variable allows us
8855 to assume that there must be a XVS type as well, which we
8856 should be able to use later, when we need the actual type
8857 definition.
8858
8859 In the meantime, pretend that the "fixed" type we are
8860 returning is NOT a stub, because this can cause trouble
8861 when using this type to create new types targeting it.
8862 Indeed, the associated creation routines often check
8863 whether the target type is a stub and will try to replace
0963b4bd 8864 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8865 might cause the new type to have the wrong size too.
8866 Consider the case of an array, for instance, where the size
8867 of the array is computed from the number of elements in
8868 our array multiplied by the size of its element. */
8869 TYPE_STUB (fixed_record_type) = 0;
8870 }
8871 }
1ed6ede0 8872 return fixed_record_type;
4c4b4cd2 8873 }
d2e4a39e 8874 case TYPE_CODE_ARRAY:
4c4b4cd2 8875 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8876 case TYPE_CODE_UNION:
8877 if (dval == NULL)
4c4b4cd2 8878 return type;
d2e4a39e 8879 else
4c4b4cd2 8880 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8881 }
14f9c5c9
AS
8882}
8883
f192137b
JB
8884/* The same as ada_to_fixed_type_1, except that it preserves the type
8885 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8886
8887 The typedef layer needs be preserved in order to differentiate between
8888 arrays and array pointers when both types are implemented using the same
8889 fat pointer. In the array pointer case, the pointer is encoded as
8890 a typedef of the pointer type. For instance, considering:
8891
8892 type String_Access is access String;
8893 S1 : String_Access := null;
8894
8895 To the debugger, S1 is defined as a typedef of type String. But
8896 to the user, it is a pointer. So if the user tries to print S1,
8897 we should not dereference the array, but print the array address
8898 instead.
8899
8900 If we didn't preserve the typedef layer, we would lose the fact that
8901 the type is to be presented as a pointer (needs de-reference before
8902 being printed). And we would also use the source-level type name. */
f192137b
JB
8903
8904struct type *
8905ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8906 CORE_ADDR address, struct value *dval, int check_tag)
8907
8908{
8909 struct type *fixed_type =
8910 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8911
96dbd2c1
JB
8912 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8913 then preserve the typedef layer.
8914
8915 Implementation note: We can only check the main-type portion of
8916 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8917 from TYPE now returns a type that has the same instance flags
8918 as TYPE. For instance, if TYPE is a "typedef const", and its
8919 target type is a "struct", then the typedef elimination will return
8920 a "const" version of the target type. See check_typedef for more
8921 details about how the typedef layer elimination is done.
8922
8923 brobecker/2010-11-19: It seems to me that the only case where it is
8924 useful to preserve the typedef layer is when dealing with fat pointers.
8925 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8926 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8927 because we call check_typedef/ada_check_typedef pretty much everywhere.
8928 */
78134374 8929 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8930 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8931 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8932 return type;
8933
8934 return fixed_type;
8935}
8936
14f9c5c9 8937/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8938 TYPE0, but based on no runtime data. */
14f9c5c9 8939
d2e4a39e
AS
8940static struct type *
8941to_static_fixed_type (struct type *type0)
14f9c5c9 8942{
d2e4a39e 8943 struct type *type;
14f9c5c9
AS
8944
8945 if (type0 == NULL)
8946 return NULL;
8947
876cecd0 8948 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8949 return type0;
8950
61ee279c 8951 type0 = ada_check_typedef (type0);
d2e4a39e 8952
78134374 8953 switch (type0->code ())
14f9c5c9
AS
8954 {
8955 default:
8956 return type0;
8957 case TYPE_CODE_STRUCT:
8958 type = dynamic_template_type (type0);
d2e4a39e 8959 if (type != NULL)
4c4b4cd2
PH
8960 return template_to_static_fixed_type (type);
8961 else
8962 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8963 case TYPE_CODE_UNION:
8964 type = ada_find_parallel_type (type0, "___XVU");
8965 if (type != NULL)
4c4b4cd2
PH
8966 return template_to_static_fixed_type (type);
8967 else
8968 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8969 }
8970}
8971
4c4b4cd2
PH
8972/* A static approximation of TYPE with all type wrappers removed. */
8973
d2e4a39e
AS
8974static struct type *
8975static_unwrap_type (struct type *type)
14f9c5c9
AS
8976{
8977 if (ada_is_aligner_type (type))
8978 {
61ee279c 8979 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8980 if (ada_type_name (type1) == NULL)
4c4b4cd2 8981 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8982
8983 return static_unwrap_type (type1);
8984 }
d2e4a39e 8985 else
14f9c5c9 8986 {
d2e4a39e 8987 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8988
d2e4a39e 8989 if (raw_real_type == type)
4c4b4cd2 8990 return type;
14f9c5c9 8991 else
4c4b4cd2 8992 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8993 }
8994}
8995
8996/* In some cases, incomplete and private types require
4c4b4cd2 8997 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8998 type Foo;
8999 type FooP is access Foo;
9000 V: FooP;
9001 type Foo is array ...;
4c4b4cd2 9002 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9003 cross-references to such types, we instead substitute for FooP a
9004 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9005 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9006
9007/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9008 exists, otherwise TYPE. */
9009
d2e4a39e 9010struct type *
61ee279c 9011ada_check_typedef (struct type *type)
14f9c5c9 9012{
727e3d2e
JB
9013 if (type == NULL)
9014 return NULL;
9015
736ade86
XR
9016 /* If our type is an access to an unconstrained array, which is encoded
9017 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9018 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9019 what allows us to distinguish between fat pointers that represent
9020 array types, and fat pointers that represent array access types
9021 (in both cases, the compiler implements them as fat pointers). */
736ade86 9022 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9023 return type;
9024
f168693b 9025 type = check_typedef (type);
78134374 9026 if (type == NULL || type->code () != TYPE_CODE_ENUM
529cad9c 9027 || !TYPE_STUB (type)
e86ca25f 9028 || TYPE_NAME (type) == NULL)
14f9c5c9 9029 return type;
d2e4a39e 9030 else
14f9c5c9 9031 {
e86ca25f 9032 const char *name = TYPE_NAME (type);
d2e4a39e 9033 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9034
05e522ef
JB
9035 if (type1 == NULL)
9036 return type;
9037
9038 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9039 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9040 types, only for the typedef-to-array types). If that's the case,
9041 strip the typedef layer. */
78134374 9042 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
9043 type1 = ada_check_typedef (type1);
9044
9045 return type1;
14f9c5c9
AS
9046 }
9047}
9048
9049/* A value representing the data at VALADDR/ADDRESS as described by
9050 type TYPE0, but with a standard (static-sized) type that correctly
9051 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9052 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9053 creation of struct values]. */
14f9c5c9 9054
4c4b4cd2
PH
9055static struct value *
9056ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9057 struct value *val0)
14f9c5c9 9058{
1ed6ede0 9059 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9060
14f9c5c9
AS
9061 if (type == type0 && val0 != NULL)
9062 return val0;
cc0e770c
JB
9063
9064 if (VALUE_LVAL (val0) != lval_memory)
9065 {
9066 /* Our value does not live in memory; it could be a convenience
9067 variable, for instance. Create a not_lval value using val0's
9068 contents. */
9069 return value_from_contents (type, value_contents (val0));
9070 }
9071
9072 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9073}
9074
9075/* A value representing VAL, but with a standard (static-sized) type
9076 that correctly describes it. Does not necessarily create a new
9077 value. */
9078
0c3acc09 9079struct value *
4c4b4cd2
PH
9080ada_to_fixed_value (struct value *val)
9081{
c48db5ca 9082 val = unwrap_value (val);
d8ce9127 9083 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9084 return val;
14f9c5c9 9085}
d2e4a39e 9086\f
14f9c5c9 9087
14f9c5c9
AS
9088/* Attributes */
9089
4c4b4cd2
PH
9090/* Table mapping attribute numbers to names.
9091 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9092
d2e4a39e 9093static const char *attribute_names[] = {
14f9c5c9
AS
9094 "<?>",
9095
d2e4a39e 9096 "first",
14f9c5c9
AS
9097 "last",
9098 "length",
9099 "image",
14f9c5c9
AS
9100 "max",
9101 "min",
4c4b4cd2
PH
9102 "modulus",
9103 "pos",
9104 "size",
9105 "tag",
14f9c5c9 9106 "val",
14f9c5c9
AS
9107 0
9108};
9109
de93309a 9110static const char *
4c4b4cd2 9111ada_attribute_name (enum exp_opcode n)
14f9c5c9 9112{
4c4b4cd2
PH
9113 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9114 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9115 else
9116 return attribute_names[0];
9117}
9118
4c4b4cd2 9119/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9120
4c4b4cd2
PH
9121static LONGEST
9122pos_atr (struct value *arg)
14f9c5c9 9123{
24209737
PH
9124 struct value *val = coerce_ref (arg);
9125 struct type *type = value_type (val);
aa715135 9126 LONGEST result;
14f9c5c9 9127
d2e4a39e 9128 if (!discrete_type_p (type))
323e0a4a 9129 error (_("'POS only defined on discrete types"));
14f9c5c9 9130
aa715135
JG
9131 if (!discrete_position (type, value_as_long (val), &result))
9132 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9133
aa715135 9134 return result;
4c4b4cd2
PH
9135}
9136
9137static struct value *
3cb382c9 9138value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9139{
3cb382c9 9140 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9141}
9142
4c4b4cd2 9143/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9144
d2e4a39e
AS
9145static struct value *
9146value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9147{
d2e4a39e 9148 if (!discrete_type_p (type))
323e0a4a 9149 error (_("'VAL only defined on discrete types"));
df407dfe 9150 if (!integer_type_p (value_type (arg)))
323e0a4a 9151 error (_("'VAL requires integral argument"));
14f9c5c9 9152
78134374 9153 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9
AS
9154 {
9155 long pos = value_as_long (arg);
5b4ee69b 9156
14f9c5c9 9157 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9158 error (_("argument to 'VAL out of range"));
14e75d8e 9159 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9160 }
9161 else
9162 return value_from_longest (type, value_as_long (arg));
9163}
14f9c5c9 9164\f
d2e4a39e 9165
4c4b4cd2 9166 /* Evaluation */
14f9c5c9 9167
4c4b4cd2
PH
9168/* True if TYPE appears to be an Ada character type.
9169 [At the moment, this is true only for Character and Wide_Character;
9170 It is a heuristic test that could stand improvement]. */
14f9c5c9 9171
fc913e53 9172bool
d2e4a39e 9173ada_is_character_type (struct type *type)
14f9c5c9 9174{
7b9f71f2
JB
9175 const char *name;
9176
9177 /* If the type code says it's a character, then assume it really is,
9178 and don't check any further. */
78134374 9179 if (type->code () == TYPE_CODE_CHAR)
fc913e53 9180 return true;
7b9f71f2
JB
9181
9182 /* Otherwise, assume it's a character type iff it is a discrete type
9183 with a known character type name. */
9184 name = ada_type_name (type);
9185 return (name != NULL
78134374
SM
9186 && (type->code () == TYPE_CODE_INT
9187 || type->code () == TYPE_CODE_RANGE)
7b9f71f2
JB
9188 && (strcmp (name, "character") == 0
9189 || strcmp (name, "wide_character") == 0
5a517ebd 9190 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9191 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9192}
9193
4c4b4cd2 9194/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9195
fc913e53 9196bool
ebf56fd3 9197ada_is_string_type (struct type *type)
14f9c5c9 9198{
61ee279c 9199 type = ada_check_typedef (type);
d2e4a39e 9200 if (type != NULL
78134374 9201 && type->code () != TYPE_CODE_PTR
76a01679
JB
9202 && (ada_is_simple_array_type (type)
9203 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9204 && ada_array_arity (type) == 1)
9205 {
9206 struct type *elttype = ada_array_element_type (type, 1);
9207
9208 return ada_is_character_type (elttype);
9209 }
d2e4a39e 9210 else
fc913e53 9211 return false;
14f9c5c9
AS
9212}
9213
5bf03f13
JB
9214/* The compiler sometimes provides a parallel XVS type for a given
9215 PAD type. Normally, it is safe to follow the PAD type directly,
9216 but older versions of the compiler have a bug that causes the offset
9217 of its "F" field to be wrong. Following that field in that case
9218 would lead to incorrect results, but this can be worked around
9219 by ignoring the PAD type and using the associated XVS type instead.
9220
9221 Set to True if the debugger should trust the contents of PAD types.
9222 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9223static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9224
9225/* True if TYPE is a struct type introduced by the compiler to force the
9226 alignment of a value. Such types have a single field with a
4c4b4cd2 9227 distinctive name. */
14f9c5c9
AS
9228
9229int
ebf56fd3 9230ada_is_aligner_type (struct type *type)
14f9c5c9 9231{
61ee279c 9232 type = ada_check_typedef (type);
714e53ab 9233
5bf03f13 9234 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9235 return 0;
9236
78134374 9237 return (type->code () == TYPE_CODE_STRUCT
4c4b4cd2
PH
9238 && TYPE_NFIELDS (type) == 1
9239 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9240}
9241
9242/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9243 the parallel type. */
14f9c5c9 9244
d2e4a39e
AS
9245struct type *
9246ada_get_base_type (struct type *raw_type)
14f9c5c9 9247{
d2e4a39e
AS
9248 struct type *real_type_namer;
9249 struct type *raw_real_type;
14f9c5c9 9250
78134374 9251 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9252 return raw_type;
9253
284614f0
JB
9254 if (ada_is_aligner_type (raw_type))
9255 /* The encoding specifies that we should always use the aligner type.
9256 So, even if this aligner type has an associated XVS type, we should
9257 simply ignore it.
9258
9259 According to the compiler gurus, an XVS type parallel to an aligner
9260 type may exist because of a stabs limitation. In stabs, aligner
9261 types are empty because the field has a variable-sized type, and
9262 thus cannot actually be used as an aligner type. As a result,
9263 we need the associated parallel XVS type to decode the type.
9264 Since the policy in the compiler is to not change the internal
9265 representation based on the debugging info format, we sometimes
9266 end up having a redundant XVS type parallel to the aligner type. */
9267 return raw_type;
9268
14f9c5c9 9269 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9270 if (real_type_namer == NULL
78134374 9271 || real_type_namer->code () != TYPE_CODE_STRUCT
14f9c5c9
AS
9272 || TYPE_NFIELDS (real_type_namer) != 1)
9273 return raw_type;
9274
78134374 9275 if (TYPE_FIELD_TYPE (real_type_namer, 0)->code () != TYPE_CODE_REF)
f80d3ff2
JB
9276 {
9277 /* This is an older encoding form where the base type needs to be
85102364 9278 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9279 more efficient. */
9280 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9281 if (raw_real_type == NULL)
9282 return raw_type;
9283 else
9284 return raw_real_type;
9285 }
9286
9287 /* The field in our XVS type is a reference to the base type. */
9288 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9289}
14f9c5c9 9290
4c4b4cd2 9291/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9292
d2e4a39e
AS
9293struct type *
9294ada_aligned_type (struct type *type)
14f9c5c9
AS
9295{
9296 if (ada_is_aligner_type (type))
9297 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9298 else
9299 return ada_get_base_type (type);
9300}
9301
9302
9303/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9304 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9305
fc1a4b47
AC
9306const gdb_byte *
9307ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9308{
d2e4a39e 9309 if (ada_is_aligner_type (type))
14f9c5c9 9310 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9311 valaddr +
9312 TYPE_FIELD_BITPOS (type,
9313 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9314 else
9315 return valaddr;
9316}
9317
4c4b4cd2
PH
9318
9319
14f9c5c9 9320/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9321 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9322const char *
9323ada_enum_name (const char *name)
14f9c5c9 9324{
4c4b4cd2
PH
9325 static char *result;
9326 static size_t result_len = 0;
e6a959d6 9327 const char *tmp;
14f9c5c9 9328
4c4b4cd2
PH
9329 /* First, unqualify the enumeration name:
9330 1. Search for the last '.' character. If we find one, then skip
177b42fe 9331 all the preceding characters, the unqualified name starts
76a01679 9332 right after that dot.
4c4b4cd2 9333 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9334 translates dots into "__". Search forward for double underscores,
9335 but stop searching when we hit an overloading suffix, which is
9336 of the form "__" followed by digits. */
4c4b4cd2 9337
c3e5cd34
PH
9338 tmp = strrchr (name, '.');
9339 if (tmp != NULL)
4c4b4cd2
PH
9340 name = tmp + 1;
9341 else
14f9c5c9 9342 {
4c4b4cd2
PH
9343 while ((tmp = strstr (name, "__")) != NULL)
9344 {
9345 if (isdigit (tmp[2]))
9346 break;
9347 else
9348 name = tmp + 2;
9349 }
14f9c5c9
AS
9350 }
9351
9352 if (name[0] == 'Q')
9353 {
14f9c5c9 9354 int v;
5b4ee69b 9355
14f9c5c9 9356 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9357 {
9358 if (sscanf (name + 2, "%x", &v) != 1)
9359 return name;
9360 }
272560b5
TT
9361 else if (((name[1] >= '0' && name[1] <= '9')
9362 || (name[1] >= 'a' && name[1] <= 'z'))
9363 && name[2] == '\0')
9364 {
9365 GROW_VECT (result, result_len, 4);
9366 xsnprintf (result, result_len, "'%c'", name[1]);
9367 return result;
9368 }
14f9c5c9 9369 else
4c4b4cd2 9370 return name;
14f9c5c9 9371
4c4b4cd2 9372 GROW_VECT (result, result_len, 16);
14f9c5c9 9373 if (isascii (v) && isprint (v))
88c15c34 9374 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9375 else if (name[1] == 'U')
88c15c34 9376 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9377 else
88c15c34 9378 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9379
9380 return result;
9381 }
d2e4a39e 9382 else
4c4b4cd2 9383 {
c3e5cd34
PH
9384 tmp = strstr (name, "__");
9385 if (tmp == NULL)
9386 tmp = strstr (name, "$");
9387 if (tmp != NULL)
4c4b4cd2
PH
9388 {
9389 GROW_VECT (result, result_len, tmp - name + 1);
9390 strncpy (result, name, tmp - name);
9391 result[tmp - name] = '\0';
9392 return result;
9393 }
9394
9395 return name;
9396 }
14f9c5c9
AS
9397}
9398
14f9c5c9
AS
9399/* Evaluate the subexpression of EXP starting at *POS as for
9400 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9401 expression. */
14f9c5c9 9402
d2e4a39e
AS
9403static struct value *
9404evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9405{
4b27a620 9406 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9407}
9408
9409/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9410 value it wraps. */
14f9c5c9 9411
d2e4a39e
AS
9412static struct value *
9413unwrap_value (struct value *val)
14f9c5c9 9414{
df407dfe 9415 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9416
14f9c5c9
AS
9417 if (ada_is_aligner_type (type))
9418 {
de4d072f 9419 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9420 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9421
14f9c5c9 9422 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9423 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9424
9425 return unwrap_value (v);
9426 }
d2e4a39e 9427 else
14f9c5c9 9428 {
d2e4a39e 9429 struct type *raw_real_type =
61ee279c 9430 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9431
5bf03f13
JB
9432 /* If there is no parallel XVS or XVE type, then the value is
9433 already unwrapped. Return it without further modification. */
9434 if ((type == raw_real_type)
9435 && ada_find_parallel_type (type, "___XVE") == NULL)
9436 return val;
14f9c5c9 9437
d2e4a39e 9438 return
4c4b4cd2
PH
9439 coerce_unspec_val_to_type
9440 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9441 value_address (val),
1ed6ede0 9442 NULL, 1));
14f9c5c9
AS
9443 }
9444}
d2e4a39e
AS
9445
9446static struct value *
50eff16b 9447cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9448{
50eff16b
UW
9449 struct value *scale = ada_scaling_factor (value_type (arg));
9450 arg = value_cast (value_type (scale), arg);
14f9c5c9 9451
50eff16b
UW
9452 arg = value_binop (arg, scale, BINOP_MUL);
9453 return value_cast (type, arg);
14f9c5c9
AS
9454}
9455
d2e4a39e 9456static struct value *
50eff16b 9457cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9458{
50eff16b
UW
9459 if (type == value_type (arg))
9460 return arg;
5b4ee69b 9461
50eff16b 9462 struct value *scale = ada_scaling_factor (type);
b2188a06 9463 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
50eff16b
UW
9464 arg = cast_from_fixed (value_type (scale), arg);
9465 else
9466 arg = value_cast (value_type (scale), arg);
9467
9468 arg = value_binop (arg, scale, BINOP_DIV);
9469 return value_cast (type, arg);
14f9c5c9
AS
9470}
9471
d99dcf51
JB
9472/* Given two array types T1 and T2, return nonzero iff both arrays
9473 contain the same number of elements. */
9474
9475static int
9476ada_same_array_size_p (struct type *t1, struct type *t2)
9477{
9478 LONGEST lo1, hi1, lo2, hi2;
9479
9480 /* Get the array bounds in order to verify that the size of
9481 the two arrays match. */
9482 if (!get_array_bounds (t1, &lo1, &hi1)
9483 || !get_array_bounds (t2, &lo2, &hi2))
9484 error (_("unable to determine array bounds"));
9485
9486 /* To make things easier for size comparison, normalize a bit
9487 the case of empty arrays by making sure that the difference
9488 between upper bound and lower bound is always -1. */
9489 if (lo1 > hi1)
9490 hi1 = lo1 - 1;
9491 if (lo2 > hi2)
9492 hi2 = lo2 - 1;
9493
9494 return (hi1 - lo1 == hi2 - lo2);
9495}
9496
9497/* Assuming that VAL is an array of integrals, and TYPE represents
9498 an array with the same number of elements, but with wider integral
9499 elements, return an array "casted" to TYPE. In practice, this
9500 means that the returned array is built by casting each element
9501 of the original array into TYPE's (wider) element type. */
9502
9503static struct value *
9504ada_promote_array_of_integrals (struct type *type, struct value *val)
9505{
9506 struct type *elt_type = TYPE_TARGET_TYPE (type);
9507 LONGEST lo, hi;
9508 struct value *res;
9509 LONGEST i;
9510
9511 /* Verify that both val and type are arrays of scalars, and
9512 that the size of val's elements is smaller than the size
9513 of type's element. */
78134374 9514 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9515 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9516 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9517 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9518 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9519 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9520
9521 if (!get_array_bounds (type, &lo, &hi))
9522 error (_("unable to determine array bounds"));
9523
9524 res = allocate_value (type);
9525
9526 /* Promote each array element. */
9527 for (i = 0; i < hi - lo + 1; i++)
9528 {
9529 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9530
9531 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9532 value_contents_all (elt), TYPE_LENGTH (elt_type));
9533 }
9534
9535 return res;
9536}
9537
4c4b4cd2
PH
9538/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9539 return the converted value. */
9540
d2e4a39e
AS
9541static struct value *
9542coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9543{
df407dfe 9544 struct type *type2 = value_type (val);
5b4ee69b 9545
14f9c5c9
AS
9546 if (type == type2)
9547 return val;
9548
61ee279c
PH
9549 type2 = ada_check_typedef (type2);
9550 type = ada_check_typedef (type);
14f9c5c9 9551
78134374
SM
9552 if (type2->code () == TYPE_CODE_PTR
9553 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9554 {
9555 val = ada_value_ind (val);
df407dfe 9556 type2 = value_type (val);
14f9c5c9
AS
9557 }
9558
78134374
SM
9559 if (type2->code () == TYPE_CODE_ARRAY
9560 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9561 {
d99dcf51
JB
9562 if (!ada_same_array_size_p (type, type2))
9563 error (_("cannot assign arrays of different length"));
9564
9565 if (is_integral_type (TYPE_TARGET_TYPE (type))
9566 && is_integral_type (TYPE_TARGET_TYPE (type2))
9567 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9568 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9569 {
9570 /* Allow implicit promotion of the array elements to
9571 a wider type. */
9572 return ada_promote_array_of_integrals (type, val);
9573 }
9574
9575 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9576 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9577 error (_("Incompatible types in assignment"));
04624583 9578 deprecated_set_value_type (val, type);
14f9c5c9 9579 }
d2e4a39e 9580 return val;
14f9c5c9
AS
9581}
9582
4c4b4cd2
PH
9583static struct value *
9584ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9585{
9586 struct value *val;
9587 struct type *type1, *type2;
9588 LONGEST v, v1, v2;
9589
994b9211
AC
9590 arg1 = coerce_ref (arg1);
9591 arg2 = coerce_ref (arg2);
18af8284
JB
9592 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9593 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9594
78134374
SM
9595 if (type1->code () != TYPE_CODE_INT
9596 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9597 return value_binop (arg1, arg2, op);
9598
76a01679 9599 switch (op)
4c4b4cd2
PH
9600 {
9601 case BINOP_MOD:
9602 case BINOP_DIV:
9603 case BINOP_REM:
9604 break;
9605 default:
9606 return value_binop (arg1, arg2, op);
9607 }
9608
9609 v2 = value_as_long (arg2);
9610 if (v2 == 0)
323e0a4a 9611 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9612
9613 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9614 return value_binop (arg1, arg2, op);
9615
9616 v1 = value_as_long (arg1);
9617 switch (op)
9618 {
9619 case BINOP_DIV:
9620 v = v1 / v2;
76a01679
JB
9621 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9622 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9623 break;
9624 case BINOP_REM:
9625 v = v1 % v2;
76a01679
JB
9626 if (v * v1 < 0)
9627 v -= v2;
4c4b4cd2
PH
9628 break;
9629 default:
9630 /* Should not reach this point. */
9631 v = 0;
9632 }
9633
9634 val = allocate_value (type1);
990a07ab 9635 store_unsigned_integer (value_contents_raw (val),
e17a4113 9636 TYPE_LENGTH (value_type (val)),
34877895 9637 type_byte_order (type1), v);
4c4b4cd2
PH
9638 return val;
9639}
9640
9641static int
9642ada_value_equal (struct value *arg1, struct value *arg2)
9643{
df407dfe
AC
9644 if (ada_is_direct_array_type (value_type (arg1))
9645 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9646 {
79e8fcaa
JB
9647 struct type *arg1_type, *arg2_type;
9648
f58b38bf
JB
9649 /* Automatically dereference any array reference before
9650 we attempt to perform the comparison. */
9651 arg1 = ada_coerce_ref (arg1);
9652 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9653
4c4b4cd2
PH
9654 arg1 = ada_coerce_to_simple_array (arg1);
9655 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9656
9657 arg1_type = ada_check_typedef (value_type (arg1));
9658 arg2_type = ada_check_typedef (value_type (arg2));
9659
78134374
SM
9660 if (arg1_type->code () != TYPE_CODE_ARRAY
9661 || arg2_type->code () != TYPE_CODE_ARRAY)
323e0a4a 9662 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9663 /* FIXME: The following works only for types whose
76a01679
JB
9664 representations use all bits (no padding or undefined bits)
9665 and do not have user-defined equality. */
79e8fcaa
JB
9666 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9667 && memcmp (value_contents (arg1), value_contents (arg2),
9668 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9669 }
9670 return value_equal (arg1, arg2);
9671}
9672
52ce6436
PH
9673/* Total number of component associations in the aggregate starting at
9674 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9675 OP_AGGREGATE. */
52ce6436
PH
9676
9677static int
9678num_component_specs (struct expression *exp, int pc)
9679{
9680 int n, m, i;
5b4ee69b 9681
52ce6436
PH
9682 m = exp->elts[pc + 1].longconst;
9683 pc += 3;
9684 n = 0;
9685 for (i = 0; i < m; i += 1)
9686 {
9687 switch (exp->elts[pc].opcode)
9688 {
9689 default:
9690 n += 1;
9691 break;
9692 case OP_CHOICES:
9693 n += exp->elts[pc + 1].longconst;
9694 break;
9695 }
9696 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9697 }
9698 return n;
9699}
9700
9701/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9702 component of LHS (a simple array or a record), updating *POS past
9703 the expression, assuming that LHS is contained in CONTAINER. Does
9704 not modify the inferior's memory, nor does it modify LHS (unless
9705 LHS == CONTAINER). */
9706
9707static void
9708assign_component (struct value *container, struct value *lhs, LONGEST index,
9709 struct expression *exp, int *pos)
9710{
9711 struct value *mark = value_mark ();
9712 struct value *elt;
0e2da9f0 9713 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9714
78134374 9715 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9716 {
22601c15
UW
9717 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9718 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9719
52ce6436
PH
9720 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9721 }
9722 else
9723 {
9724 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9725 elt = ada_to_fixed_value (elt);
52ce6436
PH
9726 }
9727
9728 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9729 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9730 else
9731 value_assign_to_component (container, elt,
9732 ada_evaluate_subexp (NULL, exp, pos,
9733 EVAL_NORMAL));
9734
9735 value_free_to_mark (mark);
9736}
9737
9738/* Assuming that LHS represents an lvalue having a record or array
9739 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9740 of that aggregate's value to LHS, advancing *POS past the
9741 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9742 lvalue containing LHS (possibly LHS itself). Does not modify
9743 the inferior's memory, nor does it modify the contents of
0963b4bd 9744 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9745
9746static struct value *
9747assign_aggregate (struct value *container,
9748 struct value *lhs, struct expression *exp,
9749 int *pos, enum noside noside)
9750{
9751 struct type *lhs_type;
9752 int n = exp->elts[*pos+1].longconst;
9753 LONGEST low_index, high_index;
9754 int num_specs;
9755 LONGEST *indices;
9756 int max_indices, num_indices;
52ce6436 9757 int i;
52ce6436
PH
9758
9759 *pos += 3;
9760 if (noside != EVAL_NORMAL)
9761 {
52ce6436
PH
9762 for (i = 0; i < n; i += 1)
9763 ada_evaluate_subexp (NULL, exp, pos, noside);
9764 return container;
9765 }
9766
9767 container = ada_coerce_ref (container);
9768 if (ada_is_direct_array_type (value_type (container)))
9769 container = ada_coerce_to_simple_array (container);
9770 lhs = ada_coerce_ref (lhs);
9771 if (!deprecated_value_modifiable (lhs))
9772 error (_("Left operand of assignment is not a modifiable lvalue."));
9773
0e2da9f0 9774 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9775 if (ada_is_direct_array_type (lhs_type))
9776 {
9777 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9778 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9779 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9780 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436 9781 }
78134374 9782 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9783 {
9784 low_index = 0;
9785 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9786 }
9787 else
9788 error (_("Left-hand side must be array or record."));
9789
9790 num_specs = num_component_specs (exp, *pos - 3);
9791 max_indices = 4 * num_specs + 4;
8d749320 9792 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9793 indices[0] = indices[1] = low_index - 1;
9794 indices[2] = indices[3] = high_index + 1;
9795 num_indices = 4;
9796
9797 for (i = 0; i < n; i += 1)
9798 {
9799 switch (exp->elts[*pos].opcode)
9800 {
1fbf5ada
JB
9801 case OP_CHOICES:
9802 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9803 &num_indices, max_indices,
9804 low_index, high_index);
9805 break;
9806 case OP_POSITIONAL:
9807 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9808 &num_indices, max_indices,
9809 low_index, high_index);
1fbf5ada
JB
9810 break;
9811 case OP_OTHERS:
9812 if (i != n-1)
9813 error (_("Misplaced 'others' clause"));
9814 aggregate_assign_others (container, lhs, exp, pos, indices,
9815 num_indices, low_index, high_index);
9816 break;
9817 default:
9818 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9819 }
9820 }
9821
9822 return container;
9823}
9824
9825/* Assign into the component of LHS indexed by the OP_POSITIONAL
9826 construct at *POS, updating *POS past the construct, given that
9827 the positions are relative to lower bound LOW, where HIGH is the
9828 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9829 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9830 assign_aggregate. */
52ce6436
PH
9831static void
9832aggregate_assign_positional (struct value *container,
9833 struct value *lhs, struct expression *exp,
9834 int *pos, LONGEST *indices, int *num_indices,
9835 int max_indices, LONGEST low, LONGEST high)
9836{
9837 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9838
9839 if (ind - 1 == high)
e1d5a0d2 9840 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9841 if (ind <= high)
9842 {
9843 add_component_interval (ind, ind, indices, num_indices, max_indices);
9844 *pos += 3;
9845 assign_component (container, lhs, ind, exp, pos);
9846 }
9847 else
9848 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9849}
9850
9851/* Assign into the components of LHS indexed by the OP_CHOICES
9852 construct at *POS, updating *POS past the construct, given that
9853 the allowable indices are LOW..HIGH. Record the indices assigned
9854 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9855 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9856static void
9857aggregate_assign_from_choices (struct value *container,
9858 struct value *lhs, struct expression *exp,
9859 int *pos, LONGEST *indices, int *num_indices,
9860 int max_indices, LONGEST low, LONGEST high)
9861{
9862 int j;
9863 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9864 int choice_pos, expr_pc;
9865 int is_array = ada_is_direct_array_type (value_type (lhs));
9866
9867 choice_pos = *pos += 3;
9868
9869 for (j = 0; j < n_choices; j += 1)
9870 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9871 expr_pc = *pos;
9872 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9873
9874 for (j = 0; j < n_choices; j += 1)
9875 {
9876 LONGEST lower, upper;
9877 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9878
52ce6436
PH
9879 if (op == OP_DISCRETE_RANGE)
9880 {
9881 choice_pos += 1;
9882 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9883 EVAL_NORMAL));
9884 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9885 EVAL_NORMAL));
9886 }
9887 else if (is_array)
9888 {
9889 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9890 EVAL_NORMAL));
9891 upper = lower;
9892 }
9893 else
9894 {
9895 int ind;
0d5cff50 9896 const char *name;
5b4ee69b 9897
52ce6436
PH
9898 switch (op)
9899 {
9900 case OP_NAME:
9901 name = &exp->elts[choice_pos + 2].string;
9902 break;
9903 case OP_VAR_VALUE:
987012b8 9904 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9905 break;
9906 default:
9907 error (_("Invalid record component association."));
9908 }
9909 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9910 ind = 0;
9911 if (! find_struct_field (name, value_type (lhs), 0,
9912 NULL, NULL, NULL, NULL, &ind))
9913 error (_("Unknown component name: %s."), name);
9914 lower = upper = ind;
9915 }
9916
9917 if (lower <= upper && (lower < low || upper > high))
9918 error (_("Index in component association out of bounds."));
9919
9920 add_component_interval (lower, upper, indices, num_indices,
9921 max_indices);
9922 while (lower <= upper)
9923 {
9924 int pos1;
5b4ee69b 9925
52ce6436
PH
9926 pos1 = expr_pc;
9927 assign_component (container, lhs, lower, exp, &pos1);
9928 lower += 1;
9929 }
9930 }
9931}
9932
9933/* Assign the value of the expression in the OP_OTHERS construct in
9934 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9935 have not been previously assigned. The index intervals already assigned
9936 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9937 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9938static void
9939aggregate_assign_others (struct value *container,
9940 struct value *lhs, struct expression *exp,
9941 int *pos, LONGEST *indices, int num_indices,
9942 LONGEST low, LONGEST high)
9943{
9944 int i;
5ce64950 9945 int expr_pc = *pos + 1;
52ce6436
PH
9946
9947 for (i = 0; i < num_indices - 2; i += 2)
9948 {
9949 LONGEST ind;
5b4ee69b 9950
52ce6436
PH
9951 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9952 {
5ce64950 9953 int localpos;
5b4ee69b 9954
5ce64950
MS
9955 localpos = expr_pc;
9956 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9957 }
9958 }
9959 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9960}
9961
9962/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9963 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9964 modifying *SIZE as needed. It is an error if *SIZE exceeds
9965 MAX_SIZE. The resulting intervals do not overlap. */
9966static void
9967add_component_interval (LONGEST low, LONGEST high,
9968 LONGEST* indices, int *size, int max_size)
9969{
9970 int i, j;
5b4ee69b 9971
52ce6436
PH
9972 for (i = 0; i < *size; i += 2) {
9973 if (high >= indices[i] && low <= indices[i + 1])
9974 {
9975 int kh;
5b4ee69b 9976
52ce6436
PH
9977 for (kh = i + 2; kh < *size; kh += 2)
9978 if (high < indices[kh])
9979 break;
9980 if (low < indices[i])
9981 indices[i] = low;
9982 indices[i + 1] = indices[kh - 1];
9983 if (high > indices[i + 1])
9984 indices[i + 1] = high;
9985 memcpy (indices + i + 2, indices + kh, *size - kh);
9986 *size -= kh - i - 2;
9987 return;
9988 }
9989 else if (high < indices[i])
9990 break;
9991 }
9992
9993 if (*size == max_size)
9994 error (_("Internal error: miscounted aggregate components."));
9995 *size += 2;
9996 for (j = *size-1; j >= i+2; j -= 1)
9997 indices[j] = indices[j - 2];
9998 indices[i] = low;
9999 indices[i + 1] = high;
10000}
10001
6e48bd2c
JB
10002/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10003 is different. */
10004
10005static struct value *
b7e22850 10006ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10007{
10008 if (type == ada_check_typedef (value_type (arg2)))
10009 return arg2;
10010
b2188a06 10011 if (ada_is_gnat_encoded_fixed_point_type (type))
95f39a5b 10012 return cast_to_fixed (type, arg2);
6e48bd2c 10013
b2188a06 10014 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10015 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10016
10017 return value_cast (type, arg2);
10018}
10019
284614f0
JB
10020/* Evaluating Ada expressions, and printing their result.
10021 ------------------------------------------------------
10022
21649b50
JB
10023 1. Introduction:
10024 ----------------
10025
284614f0
JB
10026 We usually evaluate an Ada expression in order to print its value.
10027 We also evaluate an expression in order to print its type, which
10028 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10029 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10030 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10031 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10032 similar.
10033
10034 Evaluating expressions is a little more complicated for Ada entities
10035 than it is for entities in languages such as C. The main reason for
10036 this is that Ada provides types whose definition might be dynamic.
10037 One example of such types is variant records. Or another example
10038 would be an array whose bounds can only be known at run time.
10039
10040 The following description is a general guide as to what should be
10041 done (and what should NOT be done) in order to evaluate an expression
10042 involving such types, and when. This does not cover how the semantic
10043 information is encoded by GNAT as this is covered separatly. For the
10044 document used as the reference for the GNAT encoding, see exp_dbug.ads
10045 in the GNAT sources.
10046
10047 Ideally, we should embed each part of this description next to its
10048 associated code. Unfortunately, the amount of code is so vast right
10049 now that it's hard to see whether the code handling a particular
10050 situation might be duplicated or not. One day, when the code is
10051 cleaned up, this guide might become redundant with the comments
10052 inserted in the code, and we might want to remove it.
10053
21649b50
JB
10054 2. ``Fixing'' an Entity, the Simple Case:
10055 -----------------------------------------
10056
284614f0
JB
10057 When evaluating Ada expressions, the tricky issue is that they may
10058 reference entities whose type contents and size are not statically
10059 known. Consider for instance a variant record:
10060
10061 type Rec (Empty : Boolean := True) is record
10062 case Empty is
10063 when True => null;
10064 when False => Value : Integer;
10065 end case;
10066 end record;
10067 Yes : Rec := (Empty => False, Value => 1);
10068 No : Rec := (empty => True);
10069
10070 The size and contents of that record depends on the value of the
10071 descriminant (Rec.Empty). At this point, neither the debugging
10072 information nor the associated type structure in GDB are able to
10073 express such dynamic types. So what the debugger does is to create
10074 "fixed" versions of the type that applies to the specific object.
30baf67b 10075 We also informally refer to this operation as "fixing" an object,
284614f0
JB
10076 which means creating its associated fixed type.
10077
10078 Example: when printing the value of variable "Yes" above, its fixed
10079 type would look like this:
10080
10081 type Rec is record
10082 Empty : Boolean;
10083 Value : Integer;
10084 end record;
10085
10086 On the other hand, if we printed the value of "No", its fixed type
10087 would become:
10088
10089 type Rec is record
10090 Empty : Boolean;
10091 end record;
10092
10093 Things become a little more complicated when trying to fix an entity
10094 with a dynamic type that directly contains another dynamic type,
10095 such as an array of variant records, for instance. There are
10096 two possible cases: Arrays, and records.
10097
21649b50
JB
10098 3. ``Fixing'' Arrays:
10099 ---------------------
10100
10101 The type structure in GDB describes an array in terms of its bounds,
10102 and the type of its elements. By design, all elements in the array
10103 have the same type and we cannot represent an array of variant elements
10104 using the current type structure in GDB. When fixing an array,
10105 we cannot fix the array element, as we would potentially need one
10106 fixed type per element of the array. As a result, the best we can do
10107 when fixing an array is to produce an array whose bounds and size
10108 are correct (allowing us to read it from memory), but without having
10109 touched its element type. Fixing each element will be done later,
10110 when (if) necessary.
10111
10112 Arrays are a little simpler to handle than records, because the same
10113 amount of memory is allocated for each element of the array, even if
1b536f04 10114 the amount of space actually used by each element differs from element
21649b50 10115 to element. Consider for instance the following array of type Rec:
284614f0
JB
10116
10117 type Rec_Array is array (1 .. 2) of Rec;
10118
1b536f04
JB
10119 The actual amount of memory occupied by each element might be different
10120 from element to element, depending on the value of their discriminant.
21649b50 10121 But the amount of space reserved for each element in the array remains
1b536f04 10122 fixed regardless. So we simply need to compute that size using
21649b50
JB
10123 the debugging information available, from which we can then determine
10124 the array size (we multiply the number of elements of the array by
10125 the size of each element).
10126
10127 The simplest case is when we have an array of a constrained element
10128 type. For instance, consider the following type declarations:
10129
10130 type Bounded_String (Max_Size : Integer) is
10131 Length : Integer;
10132 Buffer : String (1 .. Max_Size);
10133 end record;
10134 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10135
10136 In this case, the compiler describes the array as an array of
10137 variable-size elements (identified by its XVS suffix) for which
10138 the size can be read in the parallel XVZ variable.
10139
10140 In the case of an array of an unconstrained element type, the compiler
10141 wraps the array element inside a private PAD type. This type should not
10142 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10143 that we also use the adjective "aligner" in our code to designate
10144 these wrapper types.
10145
1b536f04 10146 In some cases, the size allocated for each element is statically
21649b50
JB
10147 known. In that case, the PAD type already has the correct size,
10148 and the array element should remain unfixed.
10149
10150 But there are cases when this size is not statically known.
10151 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10152
10153 type Dynamic is array (1 .. Five) of Integer;
10154 type Wrapper (Has_Length : Boolean := False) is record
10155 Data : Dynamic;
10156 case Has_Length is
10157 when True => Length : Integer;
10158 when False => null;
10159 end case;
10160 end record;
10161 type Wrapper_Array is array (1 .. 2) of Wrapper;
10162
10163 Hello : Wrapper_Array := (others => (Has_Length => True,
10164 Data => (others => 17),
10165 Length => 1));
10166
10167
10168 The debugging info would describe variable Hello as being an
10169 array of a PAD type. The size of that PAD type is not statically
10170 known, but can be determined using a parallel XVZ variable.
10171 In that case, a copy of the PAD type with the correct size should
10172 be used for the fixed array.
10173
21649b50
JB
10174 3. ``Fixing'' record type objects:
10175 ----------------------------------
10176
10177 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10178 record types. In this case, in order to compute the associated
10179 fixed type, we need to determine the size and offset of each of
10180 its components. This, in turn, requires us to compute the fixed
10181 type of each of these components.
10182
10183 Consider for instance the example:
10184
10185 type Bounded_String (Max_Size : Natural) is record
10186 Str : String (1 .. Max_Size);
10187 Length : Natural;
10188 end record;
10189 My_String : Bounded_String (Max_Size => 10);
10190
10191 In that case, the position of field "Length" depends on the size
10192 of field Str, which itself depends on the value of the Max_Size
21649b50 10193 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10194 we need to fix the type of field Str. Therefore, fixing a variant
10195 record requires us to fix each of its components.
10196
10197 However, if a component does not have a dynamic size, the component
10198 should not be fixed. In particular, fields that use a PAD type
10199 should not fixed. Here is an example where this might happen
10200 (assuming type Rec above):
10201
10202 type Container (Big : Boolean) is record
10203 First : Rec;
10204 After : Integer;
10205 case Big is
10206 when True => Another : Integer;
10207 when False => null;
10208 end case;
10209 end record;
10210 My_Container : Container := (Big => False,
10211 First => (Empty => True),
10212 After => 42);
10213
10214 In that example, the compiler creates a PAD type for component First,
10215 whose size is constant, and then positions the component After just
10216 right after it. The offset of component After is therefore constant
10217 in this case.
10218
10219 The debugger computes the position of each field based on an algorithm
10220 that uses, among other things, the actual position and size of the field
21649b50
JB
10221 preceding it. Let's now imagine that the user is trying to print
10222 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10223 end up computing the offset of field After based on the size of the
10224 fixed version of field First. And since in our example First has
10225 only one actual field, the size of the fixed type is actually smaller
10226 than the amount of space allocated to that field, and thus we would
10227 compute the wrong offset of field After.
10228
21649b50
JB
10229 To make things more complicated, we need to watch out for dynamic
10230 components of variant records (identified by the ___XVL suffix in
10231 the component name). Even if the target type is a PAD type, the size
10232 of that type might not be statically known. So the PAD type needs
10233 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10234 we might end up with the wrong size for our component. This can be
10235 observed with the following type declarations:
284614f0
JB
10236
10237 type Octal is new Integer range 0 .. 7;
10238 type Octal_Array is array (Positive range <>) of Octal;
10239 pragma Pack (Octal_Array);
10240
10241 type Octal_Buffer (Size : Positive) is record
10242 Buffer : Octal_Array (1 .. Size);
10243 Length : Integer;
10244 end record;
10245
10246 In that case, Buffer is a PAD type whose size is unset and needs
10247 to be computed by fixing the unwrapped type.
10248
21649b50
JB
10249 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10250 ----------------------------------------------------------
10251
10252 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10253 thus far, be actually fixed?
10254
10255 The answer is: Only when referencing that element. For instance
10256 when selecting one component of a record, this specific component
10257 should be fixed at that point in time. Or when printing the value
10258 of a record, each component should be fixed before its value gets
10259 printed. Similarly for arrays, the element of the array should be
10260 fixed when printing each element of the array, or when extracting
10261 one element out of that array. On the other hand, fixing should
10262 not be performed on the elements when taking a slice of an array!
10263
31432a67 10264 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10265 size of each field is that we end up also miscomputing the size
10266 of the containing type. This can have adverse results when computing
10267 the value of an entity. GDB fetches the value of an entity based
10268 on the size of its type, and thus a wrong size causes GDB to fetch
10269 the wrong amount of memory. In the case where the computed size is
10270 too small, GDB fetches too little data to print the value of our
31432a67 10271 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10272 past the buffer containing the data =:-o. */
10273
ced9779b
JB
10274/* Evaluate a subexpression of EXP, at index *POS, and return a value
10275 for that subexpression cast to TO_TYPE. Advance *POS over the
10276 subexpression. */
10277
10278static value *
10279ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10280 enum noside noside, struct type *to_type)
10281{
10282 int pc = *pos;
10283
10284 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10285 || exp->elts[pc].opcode == OP_VAR_VALUE)
10286 {
10287 (*pos) += 4;
10288
10289 value *val;
10290 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10291 {
10292 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10293 return value_zero (to_type, not_lval);
10294
10295 val = evaluate_var_msym_value (noside,
10296 exp->elts[pc + 1].objfile,
10297 exp->elts[pc + 2].msymbol);
10298 }
10299 else
10300 val = evaluate_var_value (noside,
10301 exp->elts[pc + 1].block,
10302 exp->elts[pc + 2].symbol);
10303
10304 if (noside == EVAL_SKIP)
10305 return eval_skip_value (exp);
10306
10307 val = ada_value_cast (to_type, val);
10308
10309 /* Follow the Ada language semantics that do not allow taking
10310 an address of the result of a cast (view conversion in Ada). */
10311 if (VALUE_LVAL (val) == lval_memory)
10312 {
10313 if (value_lazy (val))
10314 value_fetch_lazy (val);
10315 VALUE_LVAL (val) = not_lval;
10316 }
10317 return val;
10318 }
10319
10320 value *val = evaluate_subexp (to_type, exp, pos, noside);
10321 if (noside == EVAL_SKIP)
10322 return eval_skip_value (exp);
10323 return ada_value_cast (to_type, val);
10324}
10325
284614f0
JB
10326/* Implement the evaluate_exp routine in the exp_descriptor structure
10327 for the Ada language. */
10328
52ce6436 10329static struct value *
ebf56fd3 10330ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10331 int *pos, enum noside noside)
14f9c5c9
AS
10332{
10333 enum exp_opcode op;
b5385fc0 10334 int tem;
14f9c5c9 10335 int pc;
5ec18f2b 10336 int preeval_pos;
14f9c5c9
AS
10337 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10338 struct type *type;
52ce6436 10339 int nargs, oplen;
d2e4a39e 10340 struct value **argvec;
14f9c5c9 10341
d2e4a39e
AS
10342 pc = *pos;
10343 *pos += 1;
14f9c5c9
AS
10344 op = exp->elts[pc].opcode;
10345
d2e4a39e 10346 switch (op)
14f9c5c9
AS
10347 {
10348 default:
10349 *pos -= 1;
6e48bd2c 10350 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10351
10352 if (noside == EVAL_NORMAL)
10353 arg1 = unwrap_value (arg1);
6e48bd2c 10354
edd079d9 10355 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10356 then we need to perform the conversion manually, because
10357 evaluate_subexp_standard doesn't do it. This conversion is
10358 necessary in Ada because the different kinds of float/fixed
10359 types in Ada have different representations.
10360
10361 Similarly, we need to perform the conversion from OP_LONG
10362 ourselves. */
edd079d9 10363 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10364 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10365
10366 return arg1;
4c4b4cd2
PH
10367
10368 case OP_STRING:
10369 {
76a01679 10370 struct value *result;
5b4ee69b 10371
76a01679
JB
10372 *pos -= 1;
10373 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10374 /* The result type will have code OP_STRING, bashed there from
10375 OP_ARRAY. Bash it back. */
78134374 10376 if (value_type (result)->code () == TYPE_CODE_STRING)
67607e24 10377 value_type (result)->set_code (TYPE_CODE_ARRAY);
76a01679 10378 return result;
4c4b4cd2 10379 }
14f9c5c9
AS
10380
10381 case UNOP_CAST:
10382 (*pos) += 2;
10383 type = exp->elts[pc + 1].type;
ced9779b 10384 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10385
4c4b4cd2
PH
10386 case UNOP_QUAL:
10387 (*pos) += 2;
10388 type = exp->elts[pc + 1].type;
10389 return ada_evaluate_subexp (type, exp, pos, noside);
10390
14f9c5c9
AS
10391 case BINOP_ASSIGN:
10392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10393 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10394 {
10395 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10396 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10397 return arg1;
10398 return ada_value_assign (arg1, arg1);
10399 }
003f3813
JB
10400 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10401 except if the lhs of our assignment is a convenience variable.
10402 In the case of assigning to a convenience variable, the lhs
10403 should be exactly the result of the evaluation of the rhs. */
10404 type = value_type (arg1);
10405 if (VALUE_LVAL (arg1) == lval_internalvar)
10406 type = NULL;
10407 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10408 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10409 return arg1;
f411722c
TT
10410 if (VALUE_LVAL (arg1) == lval_internalvar)
10411 {
10412 /* Nothing. */
10413 }
b2188a06 10414 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10415 arg2 = cast_to_fixed (value_type (arg1), arg2);
b2188a06 10416 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
76a01679 10417 error
323e0a4a 10418 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10419 else
df407dfe 10420 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10421 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10422
10423 case BINOP_ADD:
10424 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10425 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10426 if (noside == EVAL_SKIP)
4c4b4cd2 10427 goto nosideret;
78134374 10428 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10429 return (value_from_longest
10430 (value_type (arg1),
10431 value_as_long (arg1) + value_as_long (arg2)));
78134374 10432 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10433 return (value_from_longest
10434 (value_type (arg2),
10435 value_as_long (arg1) + value_as_long (arg2)));
b2188a06
JB
10436 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10437 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10438 && value_type (arg1) != value_type (arg2))
323e0a4a 10439 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10440 /* Do the addition, and cast the result to the type of the first
10441 argument. We cannot cast the result to a reference type, so if
10442 ARG1 is a reference type, find its underlying type. */
10443 type = value_type (arg1);
78134374 10444 while (type->code () == TYPE_CODE_REF)
b7789565 10445 type = TYPE_TARGET_TYPE (type);
f44316fa 10446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10447 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10448
10449 case BINOP_SUB:
10450 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10451 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10452 if (noside == EVAL_SKIP)
4c4b4cd2 10453 goto nosideret;
78134374 10454 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10455 return (value_from_longest
10456 (value_type (arg1),
10457 value_as_long (arg1) - value_as_long (arg2)));
78134374 10458 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10459 return (value_from_longest
10460 (value_type (arg2),
10461 value_as_long (arg1) - value_as_long (arg2)));
b2188a06
JB
10462 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10463 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10464 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10465 error (_("Operands of fixed-point subtraction "
10466 "must have the same type"));
b7789565
JB
10467 /* Do the substraction, and cast the result to the type of the first
10468 argument. We cannot cast the result to a reference type, so if
10469 ARG1 is a reference type, find its underlying type. */
10470 type = value_type (arg1);
78134374 10471 while (type->code () == TYPE_CODE_REF)
b7789565 10472 type = TYPE_TARGET_TYPE (type);
f44316fa 10473 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10474 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10475
10476 case BINOP_MUL:
10477 case BINOP_DIV:
e1578042
JB
10478 case BINOP_REM:
10479 case BINOP_MOD:
14f9c5c9
AS
10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482 if (noside == EVAL_SKIP)
4c4b4cd2 10483 goto nosideret;
e1578042 10484 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10485 {
10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10487 return value_zero (value_type (arg1), not_lval);
10488 }
14f9c5c9 10489 else
4c4b4cd2 10490 {
a53b7a21 10491 type = builtin_type (exp->gdbarch)->builtin_double;
b2188a06 10492 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
a53b7a21 10493 arg1 = cast_from_fixed (type, arg1);
b2188a06 10494 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10495 arg2 = cast_from_fixed (type, arg2);
f44316fa 10496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10497 return ada_value_binop (arg1, arg2, op);
10498 }
10499
4c4b4cd2
PH
10500 case BINOP_EQUAL:
10501 case BINOP_NOTEQUAL:
14f9c5c9 10502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10503 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10504 if (noside == EVAL_SKIP)
76a01679 10505 goto nosideret;
4c4b4cd2 10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10507 tem = 0;
4c4b4cd2 10508 else
f44316fa
UW
10509 {
10510 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10511 tem = ada_value_equal (arg1, arg2);
10512 }
4c4b4cd2 10513 if (op == BINOP_NOTEQUAL)
76a01679 10514 tem = !tem;
fbb06eb1
UW
10515 type = language_bool_type (exp->language_defn, exp->gdbarch);
10516 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10517
10518 case UNOP_NEG:
10519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10520 if (noside == EVAL_SKIP)
10521 goto nosideret;
b2188a06 10522 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10523 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10524 else
f44316fa
UW
10525 {
10526 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10527 return value_neg (arg1);
10528 }
4c4b4cd2 10529
2330c6c6
JB
10530 case BINOP_LOGICAL_AND:
10531 case BINOP_LOGICAL_OR:
10532 case UNOP_LOGICAL_NOT:
000d5124
JB
10533 {
10534 struct value *val;
10535
10536 *pos -= 1;
10537 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10538 type = language_bool_type (exp->language_defn, exp->gdbarch);
10539 return value_cast (type, val);
000d5124 10540 }
2330c6c6
JB
10541
10542 case BINOP_BITWISE_AND:
10543 case BINOP_BITWISE_IOR:
10544 case BINOP_BITWISE_XOR:
000d5124
JB
10545 {
10546 struct value *val;
10547
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10549 *pos = pc;
10550 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10551
10552 return value_cast (value_type (arg1), val);
10553 }
2330c6c6 10554
14f9c5c9
AS
10555 case OP_VAR_VALUE:
10556 *pos -= 1;
6799def4 10557
14f9c5c9 10558 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10559 {
10560 *pos += 4;
10561 goto nosideret;
10562 }
da5c522f
JB
10563
10564 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10565 /* Only encountered when an unresolved symbol occurs in a
10566 context other than a function call, in which case, it is
52ce6436 10567 invalid. */
323e0a4a 10568 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10569 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10570
10571 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10572 {
0c1f74cf 10573 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10574 /* Check to see if this is a tagged type. We also need to handle
10575 the case where the type is a reference to a tagged type, but
10576 we have to be careful to exclude pointers to tagged types.
10577 The latter should be shown as usual (as a pointer), whereas
10578 a reference should mostly be transparent to the user. */
10579 if (ada_is_tagged_type (type, 0)
78134374 10580 || (type->code () == TYPE_CODE_REF
31dbc1c5 10581 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10582 {
10583 /* Tagged types are a little special in the fact that the real
10584 type is dynamic and can only be determined by inspecting the
10585 object's tag. This means that we need to get the object's
10586 value first (EVAL_NORMAL) and then extract the actual object
10587 type from its tag.
10588
10589 Note that we cannot skip the final step where we extract
10590 the object type from its tag, because the EVAL_NORMAL phase
10591 results in dynamic components being resolved into fixed ones.
10592 This can cause problems when trying to print the type
10593 description of tagged types whose parent has a dynamic size:
10594 We use the type name of the "_parent" component in order
10595 to print the name of the ancestor type in the type description.
10596 If that component had a dynamic size, the resolution into
10597 a fixed type would result in the loss of that type name,
10598 thus preventing us from printing the name of the ancestor
10599 type in the type description. */
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10601
78134374 10602 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10603 {
10604 struct type *actual_type;
10605
10606 actual_type = type_from_tag (ada_value_tag (arg1));
10607 if (actual_type == NULL)
10608 /* If, for some reason, we were unable to determine
10609 the actual type from the tag, then use the static
10610 approximation that we just computed as a fallback.
10611 This can happen if the debugging information is
10612 incomplete, for instance. */
10613 actual_type = type;
10614 return value_zero (actual_type, not_lval);
10615 }
10616 else
10617 {
10618 /* In the case of a ref, ada_coerce_ref takes care
10619 of determining the actual type. But the evaluation
10620 should return a ref as it should be valid to ask
10621 for its address; so rebuild a ref after coerce. */
10622 arg1 = ada_coerce_ref (arg1);
a65cfae5 10623 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10624 }
10625 }
0c1f74cf 10626
84754697
JB
10627 /* Records and unions for which GNAT encodings have been
10628 generated need to be statically fixed as well.
10629 Otherwise, non-static fixing produces a type where
10630 all dynamic properties are removed, which prevents "ptype"
10631 from being able to completely describe the type.
10632 For instance, a case statement in a variant record would be
10633 replaced by the relevant components based on the actual
10634 value of the discriminants. */
78134374 10635 if ((type->code () == TYPE_CODE_STRUCT
84754697 10636 && dynamic_template_type (type) != NULL)
78134374 10637 || (type->code () == TYPE_CODE_UNION
84754697
JB
10638 && ada_find_parallel_type (type, "___XVU") != NULL))
10639 {
10640 *pos += 4;
10641 return value_zero (to_static_fixed_type (type), not_lval);
10642 }
4c4b4cd2 10643 }
da5c522f
JB
10644
10645 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10646 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10647
10648 case OP_FUNCALL:
10649 (*pos) += 2;
10650
10651 /* Allocate arg vector, including space for the function to be
10652 called in argvec[0] and a terminating NULL. */
10653 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10654 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10655
10656 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10657 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10658 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10659 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10660 else
10661 {
10662 for (tem = 0; tem <= nargs; tem += 1)
10663 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10664 argvec[tem] = 0;
10665
10666 if (noside == EVAL_SKIP)
10667 goto nosideret;
10668 }
10669
ad82864c
JB
10670 if (ada_is_constrained_packed_array_type
10671 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10672 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10673 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
284614f0
JB
10674 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10675 /* This is a packed array that has already been fixed, and
10676 therefore already coerced to a simple array. Nothing further
10677 to do. */
10678 ;
78134374 10679 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10680 {
10681 /* Make sure we dereference references so that all the code below
10682 feels like it's really handling the referenced value. Wrapping
10683 types (for alignment) may be there, so make sure we strip them as
10684 well. */
10685 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10686 }
78134374 10687 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10688 && VALUE_LVAL (argvec[0]) == lval_memory)
10689 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10690
df407dfe 10691 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10692
10693 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10694 them. So, if this is an array typedef (encoding use for array
10695 access types encoded as fat pointers), strip it now. */
78134374 10696 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10697 type = ada_typedef_target_type (type);
10698
78134374 10699 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 10700 {
78134374 10701 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
4c4b4cd2
PH
10702 {
10703 case TYPE_CODE_FUNC:
61ee279c 10704 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10705 break;
10706 case TYPE_CODE_ARRAY:
10707 break;
10708 case TYPE_CODE_STRUCT:
10709 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10710 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10711 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10712 break;
10713 default:
323e0a4a 10714 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10715 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10716 break;
10717 }
10718 }
10719
78134374 10720 switch (type->code ())
4c4b4cd2
PH
10721 {
10722 case TYPE_CODE_FUNC:
10723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10724 {
7022349d
PA
10725 if (TYPE_TARGET_TYPE (type) == NULL)
10726 error_call_unknown_return_type (NULL);
10727 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10728 }
e71585ff
PA
10729 return call_function_by_hand (argvec[0], NULL,
10730 gdb::make_array_view (argvec + 1,
10731 nargs));
c8ea1972
PH
10732 case TYPE_CODE_INTERNAL_FUNCTION:
10733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10734 /* We don't know anything about what the internal
10735 function might return, but we have to return
10736 something. */
10737 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10738 not_lval);
10739 else
10740 return call_internal_function (exp->gdbarch, exp->language_defn,
10741 argvec[0], nargs, argvec + 1);
10742
4c4b4cd2
PH
10743 case TYPE_CODE_STRUCT:
10744 {
10745 int arity;
10746
4c4b4cd2
PH
10747 arity = ada_array_arity (type);
10748 type = ada_array_element_type (type, nargs);
10749 if (type == NULL)
323e0a4a 10750 error (_("cannot subscript or call a record"));
4c4b4cd2 10751 if (arity != nargs)
323e0a4a 10752 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10754 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10755 return
10756 unwrap_value (ada_value_subscript
10757 (argvec[0], nargs, argvec + 1));
10758 }
10759 case TYPE_CODE_ARRAY:
10760 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10761 {
10762 type = ada_array_element_type (type, nargs);
10763 if (type == NULL)
323e0a4a 10764 error (_("element type of array unknown"));
4c4b4cd2 10765 else
0a07e705 10766 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10767 }
10768 return
10769 unwrap_value (ada_value_subscript
10770 (ada_coerce_to_simple_array (argvec[0]),
10771 nargs, argvec + 1));
10772 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10773 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10774 {
deede10c 10775 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10776 type = ada_array_element_type (type, nargs);
10777 if (type == NULL)
323e0a4a 10778 error (_("element type of array unknown"));
4c4b4cd2 10779 else
0a07e705 10780 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10781 }
10782 return
deede10c
JB
10783 unwrap_value (ada_value_ptr_subscript (argvec[0],
10784 nargs, argvec + 1));
4c4b4cd2
PH
10785
10786 default:
e1d5a0d2
PH
10787 error (_("Attempt to index or call something other than an "
10788 "array or function"));
4c4b4cd2
PH
10789 }
10790
10791 case TERNOP_SLICE:
10792 {
10793 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10794 struct value *low_bound_val =
10795 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10796 struct value *high_bound_val =
10797 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10798 LONGEST low_bound;
10799 LONGEST high_bound;
5b4ee69b 10800
994b9211
AC
10801 low_bound_val = coerce_ref (low_bound_val);
10802 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10803 low_bound = value_as_long (low_bound_val);
10804 high_bound = value_as_long (high_bound_val);
963a6417 10805
4c4b4cd2
PH
10806 if (noside == EVAL_SKIP)
10807 goto nosideret;
10808
4c4b4cd2
PH
10809 /* If this is a reference to an aligner type, then remove all
10810 the aligners. */
78134374 10811 if (value_type (array)->code () == TYPE_CODE_REF
df407dfe
AC
10812 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10813 TYPE_TARGET_TYPE (value_type (array)) =
10814 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10815
ad82864c 10816 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10817 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10818
10819 /* If this is a reference to an array or an array lvalue,
10820 convert to a pointer. */
78134374
SM
10821 if (value_type (array)->code () == TYPE_CODE_REF
10822 || (value_type (array)->code () == TYPE_CODE_ARRAY
4c4b4cd2
PH
10823 && VALUE_LVAL (array) == lval_memory))
10824 array = value_addr (array);
10825
1265e4aa 10826 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10827 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10828 (value_type (array))))
bff8c71f
TT
10829 return empty_array (ada_type_of_array (array, 0), low_bound,
10830 high_bound);
4c4b4cd2
PH
10831
10832 array = ada_coerce_to_simple_array_ptr (array);
10833
714e53ab
PH
10834 /* If we have more than one level of pointer indirection,
10835 dereference the value until we get only one level. */
78134374
SM
10836 while (value_type (array)->code () == TYPE_CODE_PTR
10837 && (TYPE_TARGET_TYPE (value_type (array))->code ()
714e53ab
PH
10838 == TYPE_CODE_PTR))
10839 array = value_ind (array);
10840
10841 /* Make sure we really do have an array type before going further,
10842 to avoid a SEGV when trying to get the index type or the target
10843 type later down the road if the debug info generated by
10844 the compiler is incorrect or incomplete. */
df407dfe 10845 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10846 error (_("cannot take slice of non-array"));
714e53ab 10847
78134374 10848 if (ada_check_typedef (value_type (array))->code ()
828292f2 10849 == TYPE_CODE_PTR)
4c4b4cd2 10850 {
828292f2
JB
10851 struct type *type0 = ada_check_typedef (value_type (array));
10852
0b5d8877 10853 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10854 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10855 else
10856 {
10857 struct type *arr_type0 =
828292f2 10858 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10859
f5938064
JG
10860 return ada_value_slice_from_ptr (array, arr_type0,
10861 longest_to_int (low_bound),
10862 longest_to_int (high_bound));
4c4b4cd2
PH
10863 }
10864 }
10865 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10866 return array;
10867 else if (high_bound < low_bound)
bff8c71f 10868 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10869 else
529cad9c
PH
10870 return ada_value_slice (array, longest_to_int (low_bound),
10871 longest_to_int (high_bound));
4c4b4cd2 10872 }
14f9c5c9 10873
4c4b4cd2
PH
10874 case UNOP_IN_RANGE:
10875 (*pos) += 2;
10876 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10877 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10878
14f9c5c9 10879 if (noside == EVAL_SKIP)
4c4b4cd2 10880 goto nosideret;
14f9c5c9 10881
78134374 10882 switch (type->code ())
4c4b4cd2
PH
10883 {
10884 default:
e1d5a0d2
PH
10885 lim_warning (_("Membership test incompletely implemented; "
10886 "always returns true"));
fbb06eb1
UW
10887 type = language_bool_type (exp->language_defn, exp->gdbarch);
10888 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10889
10890 case TYPE_CODE_RANGE:
030b4912
UW
10891 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10892 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10893 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10894 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10895 type = language_bool_type (exp->language_defn, exp->gdbarch);
10896 return
10897 value_from_longest (type,
4c4b4cd2
PH
10898 (value_less (arg1, arg3)
10899 || value_equal (arg1, arg3))
10900 && (value_less (arg2, arg1)
10901 || value_equal (arg2, arg1)));
10902 }
10903
10904 case BINOP_IN_BOUNDS:
14f9c5c9 10905 (*pos) += 2;
4c4b4cd2
PH
10906 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10907 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10908
4c4b4cd2
PH
10909 if (noside == EVAL_SKIP)
10910 goto nosideret;
14f9c5c9 10911
4c4b4cd2 10912 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10913 {
10914 type = language_bool_type (exp->language_defn, exp->gdbarch);
10915 return value_zero (type, not_lval);
10916 }
14f9c5c9 10917
4c4b4cd2 10918 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10919
1eea4ebd
UW
10920 type = ada_index_type (value_type (arg2), tem, "range");
10921 if (!type)
10922 type = value_type (arg1);
14f9c5c9 10923
1eea4ebd
UW
10924 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10925 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10926
f44316fa
UW
10927 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10928 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10929 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10930 return
fbb06eb1 10931 value_from_longest (type,
4c4b4cd2
PH
10932 (value_less (arg1, arg3)
10933 || value_equal (arg1, arg3))
10934 && (value_less (arg2, arg1)
10935 || value_equal (arg2, arg1)));
10936
10937 case TERNOP_IN_RANGE:
10938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10939 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10940 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10941
10942 if (noside == EVAL_SKIP)
10943 goto nosideret;
10944
f44316fa
UW
10945 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10947 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10948 return
fbb06eb1 10949 value_from_longest (type,
4c4b4cd2
PH
10950 (value_less (arg1, arg3)
10951 || value_equal (arg1, arg3))
10952 && (value_less (arg2, arg1)
10953 || value_equal (arg2, arg1)));
10954
10955 case OP_ATR_FIRST:
10956 case OP_ATR_LAST:
10957 case OP_ATR_LENGTH:
10958 {
76a01679 10959 struct type *type_arg;
5b4ee69b 10960
76a01679
JB
10961 if (exp->elts[*pos].opcode == OP_TYPE)
10962 {
10963 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10964 arg1 = NULL;
5bc23cb3 10965 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10966 }
10967 else
10968 {
10969 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10970 type_arg = NULL;
10971 }
10972
10973 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10974 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10975 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10976 *pos += 4;
10977
10978 if (noside == EVAL_SKIP)
10979 goto nosideret;
680e1bee
TT
10980 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10981 {
10982 if (type_arg == NULL)
10983 type_arg = value_type (arg1);
76a01679 10984
680e1bee
TT
10985 if (ada_is_constrained_packed_array_type (type_arg))
10986 type_arg = decode_constrained_packed_array_type (type_arg);
10987
10988 if (!discrete_type_p (type_arg))
10989 {
10990 switch (op)
10991 {
10992 default: /* Should never happen. */
10993 error (_("unexpected attribute encountered"));
10994 case OP_ATR_FIRST:
10995 case OP_ATR_LAST:
10996 type_arg = ada_index_type (type_arg, tem,
10997 ada_attribute_name (op));
10998 break;
10999 case OP_ATR_LENGTH:
11000 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11001 break;
11002 }
11003 }
11004
11005 return value_zero (type_arg, not_lval);
11006 }
11007 else if (type_arg == NULL)
76a01679
JB
11008 {
11009 arg1 = ada_coerce_ref (arg1);
11010
ad82864c 11011 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11012 arg1 = ada_coerce_to_simple_array (arg1);
11013
aa4fb036 11014 if (op == OP_ATR_LENGTH)
1eea4ebd 11015 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11016 else
11017 {
11018 type = ada_index_type (value_type (arg1), tem,
11019 ada_attribute_name (op));
11020 if (type == NULL)
11021 type = builtin_type (exp->gdbarch)->builtin_int;
11022 }
76a01679 11023
76a01679
JB
11024 switch (op)
11025 {
11026 default: /* Should never happen. */
323e0a4a 11027 error (_("unexpected attribute encountered"));
76a01679 11028 case OP_ATR_FIRST:
1eea4ebd
UW
11029 return value_from_longest
11030 (type, ada_array_bound (arg1, tem, 0));
76a01679 11031 case OP_ATR_LAST:
1eea4ebd
UW
11032 return value_from_longest
11033 (type, ada_array_bound (arg1, tem, 1));
76a01679 11034 case OP_ATR_LENGTH:
1eea4ebd
UW
11035 return value_from_longest
11036 (type, ada_array_length (arg1, tem));
76a01679
JB
11037 }
11038 }
11039 else if (discrete_type_p (type_arg))
11040 {
11041 struct type *range_type;
0d5cff50 11042 const char *name = ada_type_name (type_arg);
5b4ee69b 11043
76a01679 11044 range_type = NULL;
78134374 11045 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
28c85d6c 11046 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11047 if (range_type == NULL)
11048 range_type = type_arg;
11049 switch (op)
11050 {
11051 default:
323e0a4a 11052 error (_("unexpected attribute encountered"));
76a01679 11053 case OP_ATR_FIRST:
690cc4eb 11054 return value_from_longest
43bbcdc2 11055 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11056 case OP_ATR_LAST:
690cc4eb 11057 return value_from_longest
43bbcdc2 11058 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11059 case OP_ATR_LENGTH:
323e0a4a 11060 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11061 }
11062 }
78134374 11063 else if (type_arg->code () == TYPE_CODE_FLT)
323e0a4a 11064 error (_("unimplemented type attribute"));
76a01679
JB
11065 else
11066 {
11067 LONGEST low, high;
11068
ad82864c
JB
11069 if (ada_is_constrained_packed_array_type (type_arg))
11070 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11071
aa4fb036 11072 if (op == OP_ATR_LENGTH)
1eea4ebd 11073 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11074 else
11075 {
11076 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11077 if (type == NULL)
11078 type = builtin_type (exp->gdbarch)->builtin_int;
11079 }
1eea4ebd 11080
76a01679
JB
11081 switch (op)
11082 {
11083 default:
323e0a4a 11084 error (_("unexpected attribute encountered"));
76a01679 11085 case OP_ATR_FIRST:
1eea4ebd 11086 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11087 return value_from_longest (type, low);
11088 case OP_ATR_LAST:
1eea4ebd 11089 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11090 return value_from_longest (type, high);
11091 case OP_ATR_LENGTH:
1eea4ebd
UW
11092 low = ada_array_bound_from_type (type_arg, tem, 0);
11093 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11094 return value_from_longest (type, high - low + 1);
11095 }
11096 }
14f9c5c9
AS
11097 }
11098
4c4b4cd2
PH
11099 case OP_ATR_TAG:
11100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11101 if (noside == EVAL_SKIP)
76a01679 11102 goto nosideret;
4c4b4cd2
PH
11103
11104 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11105 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11106
11107 return ada_value_tag (arg1);
11108
11109 case OP_ATR_MIN:
11110 case OP_ATR_MAX:
11111 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11113 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 if (noside == EVAL_SKIP)
76a01679 11115 goto nosideret;
d2e4a39e 11116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11117 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11118 else
f44316fa
UW
11119 {
11120 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11121 return value_binop (arg1, arg2,
11122 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11123 }
14f9c5c9 11124
4c4b4cd2
PH
11125 case OP_ATR_MODULUS:
11126 {
31dedfee 11127 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11128
5b4ee69b 11129 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11130 if (noside == EVAL_SKIP)
11131 goto nosideret;
4c4b4cd2 11132
76a01679 11133 if (!ada_is_modular_type (type_arg))
323e0a4a 11134 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11135
76a01679
JB
11136 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11137 ada_modulus (type_arg));
4c4b4cd2
PH
11138 }
11139
11140
11141 case OP_ATR_POS:
11142 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11143 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11144 if (noside == EVAL_SKIP)
76a01679 11145 goto nosideret;
3cb382c9
UW
11146 type = builtin_type (exp->gdbarch)->builtin_int;
11147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11148 return value_zero (type, not_lval);
14f9c5c9 11149 else
3cb382c9 11150 return value_pos_atr (type, arg1);
14f9c5c9 11151
4c4b4cd2
PH
11152 case OP_ATR_SIZE:
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11154 type = value_type (arg1);
11155
11156 /* If the argument is a reference, then dereference its type, since
11157 the user is really asking for the size of the actual object,
11158 not the size of the pointer. */
78134374 11159 if (type->code () == TYPE_CODE_REF)
8c1c099f
JB
11160 type = TYPE_TARGET_TYPE (type);
11161
4c4b4cd2 11162 if (noside == EVAL_SKIP)
76a01679 11163 goto nosideret;
4c4b4cd2 11164 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11165 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11166 else
22601c15 11167 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11168 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11169
11170 case OP_ATR_VAL:
11171 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11173 type = exp->elts[pc + 2].type;
14f9c5c9 11174 if (noside == EVAL_SKIP)
76a01679 11175 goto nosideret;
4c4b4cd2 11176 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11177 return value_zero (type, not_lval);
4c4b4cd2 11178 else
76a01679 11179 return value_val_atr (type, arg1);
4c4b4cd2
PH
11180
11181 case BINOP_EXP:
11182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 if (noside == EVAL_SKIP)
11185 goto nosideret;
11186 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11187 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11188 else
f44316fa
UW
11189 {
11190 /* For integer exponentiation operations,
11191 only promote the first argument. */
11192 if (is_integral_type (value_type (arg2)))
11193 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11194 else
11195 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11196
11197 return value_binop (arg1, arg2, op);
11198 }
4c4b4cd2
PH
11199
11200 case UNOP_PLUS:
11201 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204 else
11205 return arg1;
11206
11207 case UNOP_ABS:
11208 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11209 if (noside == EVAL_SKIP)
11210 goto nosideret;
f44316fa 11211 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11212 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11213 return value_neg (arg1);
14f9c5c9 11214 else
4c4b4cd2 11215 return arg1;
14f9c5c9
AS
11216
11217 case UNOP_IND:
5ec18f2b 11218 preeval_pos = *pos;
6b0d7253 11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11220 if (noside == EVAL_SKIP)
4c4b4cd2 11221 goto nosideret;
df407dfe 11222 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11224 {
11225 if (ada_is_array_descriptor_type (type))
11226 /* GDB allows dereferencing GNAT array descriptors. */
11227 {
11228 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11229
4c4b4cd2 11230 if (arrType == NULL)
323e0a4a 11231 error (_("Attempt to dereference null array pointer."));
00a4c844 11232 return value_at_lazy (arrType, 0);
4c4b4cd2 11233 }
78134374
SM
11234 else if (type->code () == TYPE_CODE_PTR
11235 || type->code () == TYPE_CODE_REF
4c4b4cd2 11236 /* In C you can dereference an array to get the 1st elt. */
78134374 11237 || type->code () == TYPE_CODE_ARRAY)
714e53ab 11238 {
5ec18f2b
JG
11239 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11240 only be determined by inspecting the object's tag.
11241 This means that we need to evaluate completely the
11242 expression in order to get its type. */
11243
78134374
SM
11244 if ((type->code () == TYPE_CODE_REF
11245 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11246 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11247 {
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11249 EVAL_NORMAL);
11250 type = value_type (ada_value_ind (arg1));
11251 }
11252 else
11253 {
11254 type = to_static_fixed_type
11255 (ada_aligned_type
11256 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11257 }
c1b5a1a6 11258 ada_ensure_varsize_limit (type);
714e53ab
PH
11259 return value_zero (type, lval_memory);
11260 }
78134374 11261 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11262 {
11263 /* GDB allows dereferencing an int. */
11264 if (expect_type == NULL)
11265 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11266 lval_memory);
11267 else
11268 {
11269 expect_type =
11270 to_static_fixed_type (ada_aligned_type (expect_type));
11271 return value_zero (expect_type, lval_memory);
11272 }
11273 }
4c4b4cd2 11274 else
323e0a4a 11275 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11276 }
0963b4bd 11277 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11278 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11279
78134374 11280 if (type->code () == TYPE_CODE_INT)
96967637
JB
11281 /* GDB allows dereferencing an int. If we were given
11282 the expect_type, then use that as the target type.
11283 Otherwise, assume that the target type is an int. */
11284 {
11285 if (expect_type != NULL)
11286 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11287 arg1));
11288 else
11289 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11290 (CORE_ADDR) value_as_address (arg1));
11291 }
6b0d7253 11292
4c4b4cd2
PH
11293 if (ada_is_array_descriptor_type (type))
11294 /* GDB allows dereferencing GNAT array descriptors. */
11295 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11296 else
4c4b4cd2 11297 return ada_value_ind (arg1);
14f9c5c9
AS
11298
11299 case STRUCTOP_STRUCT:
11300 tem = longest_to_int (exp->elts[pc + 1].longconst);
11301 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11302 preeval_pos = *pos;
14f9c5c9
AS
11303 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11304 if (noside == EVAL_SKIP)
4c4b4cd2 11305 goto nosideret;
14f9c5c9 11306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11307 {
df407dfe 11308 struct type *type1 = value_type (arg1);
5b4ee69b 11309
76a01679
JB
11310 if (ada_is_tagged_type (type1, 1))
11311 {
11312 type = ada_lookup_struct_elt_type (type1,
11313 &exp->elts[pc + 2].string,
988f6b3d 11314 1, 1);
5ec18f2b
JG
11315
11316 /* If the field is not found, check if it exists in the
11317 extension of this object's type. This means that we
11318 need to evaluate completely the expression. */
11319
76a01679 11320 if (type == NULL)
5ec18f2b
JG
11321 {
11322 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11323 EVAL_NORMAL);
11324 arg1 = ada_value_struct_elt (arg1,
11325 &exp->elts[pc + 2].string,
11326 0);
11327 arg1 = unwrap_value (arg1);
11328 type = value_type (ada_to_fixed_value (arg1));
11329 }
76a01679
JB
11330 }
11331 else
11332 type =
11333 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11334 0);
76a01679
JB
11335
11336 return value_zero (ada_aligned_type (type), lval_memory);
11337 }
14f9c5c9 11338 else
a579cd9a
MW
11339 {
11340 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11341 arg1 = unwrap_value (arg1);
11342 return ada_to_fixed_value (arg1);
11343 }
284614f0 11344
14f9c5c9 11345 case OP_TYPE:
4c4b4cd2
PH
11346 /* The value is not supposed to be used. This is here to make it
11347 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11348 (*pos) += 2;
11349 if (noside == EVAL_SKIP)
4c4b4cd2 11350 goto nosideret;
14f9c5c9 11351 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11352 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11353 else
323e0a4a 11354 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11355
11356 case OP_AGGREGATE:
11357 case OP_CHOICES:
11358 case OP_OTHERS:
11359 case OP_DISCRETE_RANGE:
11360 case OP_POSITIONAL:
11361 case OP_NAME:
11362 if (noside == EVAL_NORMAL)
11363 switch (op)
11364 {
11365 case OP_NAME:
11366 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11367 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11368 case OP_AGGREGATE:
11369 error (_("Aggregates only allowed on the right of an assignment"));
11370 default:
0963b4bd
MS
11371 internal_error (__FILE__, __LINE__,
11372 _("aggregate apparently mangled"));
52ce6436
PH
11373 }
11374
11375 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11376 *pos += oplen - 1;
11377 for (tem = 0; tem < nargs; tem += 1)
11378 ada_evaluate_subexp (NULL, exp, pos, noside);
11379 goto nosideret;
14f9c5c9
AS
11380 }
11381
11382nosideret:
ced9779b 11383 return eval_skip_value (exp);
14f9c5c9 11384}
14f9c5c9 11385\f
d2e4a39e 11386
4c4b4cd2 11387 /* Fixed point */
14f9c5c9
AS
11388
11389/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11390 type name that encodes the 'small and 'delta information.
4c4b4cd2 11391 Otherwise, return NULL. */
14f9c5c9 11392
d2e4a39e 11393static const char *
b2188a06 11394gnat_encoded_fixed_type_info (struct type *type)
14f9c5c9 11395{
d2e4a39e 11396 const char *name = ada_type_name (type);
78134374 11397 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11398
d2e4a39e
AS
11399 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11400 {
14f9c5c9 11401 const char *tail = strstr (name, "___XF_");
5b4ee69b 11402
14f9c5c9 11403 if (tail == NULL)
4c4b4cd2 11404 return NULL;
d2e4a39e 11405 else
4c4b4cd2 11406 return tail + 5;
14f9c5c9
AS
11407 }
11408 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
b2188a06 11409 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11410 else
11411 return NULL;
11412}
11413
4c4b4cd2 11414/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11415
11416int
b2188a06 11417ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11418{
b2188a06 11419 return gnat_encoded_fixed_type_info (type) != NULL;
14f9c5c9
AS
11420}
11421
4c4b4cd2
PH
11422/* Return non-zero iff TYPE represents a System.Address type. */
11423
11424int
11425ada_is_system_address_type (struct type *type)
11426{
11427 return (TYPE_NAME (type)
11428 && strcmp (TYPE_NAME (type), "system__address") == 0);
11429}
11430
14f9c5c9 11431/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11432 type, return the target floating-point type to be used to represent
11433 of this type during internal computation. */
11434
11435static struct type *
11436ada_scaling_type (struct type *type)
11437{
11438 return builtin_type (get_type_arch (type))->builtin_long_double;
11439}
11440
11441/* Assuming that TYPE is the representation of an Ada fixed-point
11442 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11443 delta cannot be determined. */
14f9c5c9 11444
50eff16b 11445struct value *
b2188a06 11446gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11447{
b2188a06 11448 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11449 struct type *scale_type = ada_scaling_type (type);
11450
11451 long long num, den;
11452
11453 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11454 return nullptr;
d2e4a39e 11455 else
50eff16b
UW
11456 return value_binop (value_from_longest (scale_type, num),
11457 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11458}
11459
b2188a06
JB
11460/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11461 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11462
50eff16b
UW
11463struct value *
11464ada_scaling_factor (struct type *type)
14f9c5c9 11465{
b2188a06 11466 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11467 struct type *scale_type = ada_scaling_type (type);
11468
11469 long long num0, den0, num1, den1;
14f9c5c9 11470 int n;
d2e4a39e 11471
50eff16b 11472 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11473 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11474
11475 if (n < 2)
50eff16b 11476 return value_from_longest (scale_type, 1);
14f9c5c9 11477 else if (n == 4)
50eff16b
UW
11478 return value_binop (value_from_longest (scale_type, num1),
11479 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11480 else
50eff16b
UW
11481 return value_binop (value_from_longest (scale_type, num0),
11482 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11483}
11484
14f9c5c9 11485\f
d2e4a39e 11486
4c4b4cd2 11487 /* Range types */
14f9c5c9
AS
11488
11489/* Scan STR beginning at position K for a discriminant name, and
11490 return the value of that discriminant field of DVAL in *PX. If
11491 PNEW_K is not null, put the position of the character beyond the
11492 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11493 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11494
11495static int
108d56a4 11496scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11497 int *pnew_k)
14f9c5c9
AS
11498{
11499 static char *bound_buffer = NULL;
11500 static size_t bound_buffer_len = 0;
5da1a4d3 11501 const char *pstart, *pend, *bound;
d2e4a39e 11502 struct value *bound_val;
14f9c5c9
AS
11503
11504 if (dval == NULL || str == NULL || str[k] == '\0')
11505 return 0;
11506
5da1a4d3
SM
11507 pstart = str + k;
11508 pend = strstr (pstart, "__");
14f9c5c9
AS
11509 if (pend == NULL)
11510 {
5da1a4d3 11511 bound = pstart;
14f9c5c9
AS
11512 k += strlen (bound);
11513 }
d2e4a39e 11514 else
14f9c5c9 11515 {
5da1a4d3
SM
11516 int len = pend - pstart;
11517
11518 /* Strip __ and beyond. */
11519 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11520 strncpy (bound_buffer, pstart, len);
11521 bound_buffer[len] = '\0';
11522
14f9c5c9 11523 bound = bound_buffer;
d2e4a39e 11524 k = pend - str;
14f9c5c9 11525 }
d2e4a39e 11526
df407dfe 11527 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11528 if (bound_val == NULL)
11529 return 0;
11530
11531 *px = value_as_long (bound_val);
11532 if (pnew_k != NULL)
11533 *pnew_k = k;
11534 return 1;
11535}
11536
11537/* Value of variable named NAME in the current environment. If
11538 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11539 otherwise causes an error with message ERR_MSG. */
11540
d2e4a39e 11541static struct value *
edb0c9cb 11542get_var_value (const char *name, const char *err_msg)
14f9c5c9 11543{
b5ec771e 11544 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11545
54d343a2 11546 std::vector<struct block_symbol> syms;
b5ec771e
PA
11547 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11548 get_selected_block (0),
11549 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11550
11551 if (nsyms != 1)
11552 {
11553 if (err_msg == NULL)
4c4b4cd2 11554 return 0;
14f9c5c9 11555 else
8a3fe4f8 11556 error (("%s"), err_msg);
14f9c5c9
AS
11557 }
11558
54d343a2 11559 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11560}
d2e4a39e 11561
edb0c9cb
PA
11562/* Value of integer variable named NAME in the current environment.
11563 If no such variable is found, returns false. Otherwise, sets VALUE
11564 to the variable's value and returns true. */
4c4b4cd2 11565
edb0c9cb
PA
11566bool
11567get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11568{
4c4b4cd2 11569 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11570
14f9c5c9 11571 if (var_val == 0)
edb0c9cb
PA
11572 return false;
11573
11574 value = value_as_long (var_val);
11575 return true;
14f9c5c9 11576}
d2e4a39e 11577
14f9c5c9
AS
11578
11579/* Return a range type whose base type is that of the range type named
11580 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11581 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11582 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11583 corresponding range type from debug information; fall back to using it
11584 if symbol lookup fails. If a new type must be created, allocate it
11585 like ORIG_TYPE was. The bounds information, in general, is encoded
11586 in NAME, the base type given in the named range type. */
14f9c5c9 11587
d2e4a39e 11588static struct type *
28c85d6c 11589to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11590{
0d5cff50 11591 const char *name;
14f9c5c9 11592 struct type *base_type;
108d56a4 11593 const char *subtype_info;
14f9c5c9 11594
28c85d6c
JB
11595 gdb_assert (raw_type != NULL);
11596 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11597
78134374 11598 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11599 base_type = TYPE_TARGET_TYPE (raw_type);
11600 else
11601 base_type = raw_type;
11602
28c85d6c 11603 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11604 subtype_info = strstr (name, "___XD");
11605 if (subtype_info == NULL)
690cc4eb 11606 {
43bbcdc2
PH
11607 LONGEST L = ada_discrete_type_low_bound (raw_type);
11608 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11609
690cc4eb
PH
11610 if (L < INT_MIN || U > INT_MAX)
11611 return raw_type;
11612 else
0c9c3474
SA
11613 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11614 L, U);
690cc4eb 11615 }
14f9c5c9
AS
11616 else
11617 {
11618 static char *name_buf = NULL;
11619 static size_t name_len = 0;
11620 int prefix_len = subtype_info - name;
11621 LONGEST L, U;
11622 struct type *type;
108d56a4 11623 const char *bounds_str;
14f9c5c9
AS
11624 int n;
11625
11626 GROW_VECT (name_buf, name_len, prefix_len + 5);
11627 strncpy (name_buf, name, prefix_len);
11628 name_buf[prefix_len] = '\0';
11629
11630 subtype_info += 5;
11631 bounds_str = strchr (subtype_info, '_');
11632 n = 1;
11633
d2e4a39e 11634 if (*subtype_info == 'L')
4c4b4cd2
PH
11635 {
11636 if (!ada_scan_number (bounds_str, n, &L, &n)
11637 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11638 return raw_type;
11639 if (bounds_str[n] == '_')
11640 n += 2;
0963b4bd 11641 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11642 n += 1;
11643 subtype_info += 1;
11644 }
d2e4a39e 11645 else
4c4b4cd2 11646 {
4c4b4cd2 11647 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11648 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11649 {
323e0a4a 11650 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11651 L = 1;
11652 }
11653 }
14f9c5c9 11654
d2e4a39e 11655 if (*subtype_info == 'U')
4c4b4cd2
PH
11656 {
11657 if (!ada_scan_number (bounds_str, n, &U, &n)
11658 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11659 return raw_type;
11660 }
d2e4a39e 11661 else
4c4b4cd2 11662 {
4c4b4cd2 11663 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11664 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11665 {
323e0a4a 11666 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11667 U = L;
11668 }
11669 }
14f9c5c9 11670
0c9c3474
SA
11671 type = create_static_range_type (alloc_type_copy (raw_type),
11672 base_type, L, U);
f5a91472
JB
11673 /* create_static_range_type alters the resulting type's length
11674 to match the size of the base_type, which is not what we want.
11675 Set it back to the original range type's length. */
11676 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11677 TYPE_NAME (type) = name;
14f9c5c9
AS
11678 return type;
11679 }
11680}
11681
4c4b4cd2
PH
11682/* True iff NAME is the name of a range type. */
11683
14f9c5c9 11684int
d2e4a39e 11685ada_is_range_type_name (const char *name)
14f9c5c9
AS
11686{
11687 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11688}
14f9c5c9 11689\f
d2e4a39e 11690
4c4b4cd2
PH
11691 /* Modular types */
11692
11693/* True iff TYPE is an Ada modular type. */
14f9c5c9 11694
14f9c5c9 11695int
d2e4a39e 11696ada_is_modular_type (struct type *type)
14f9c5c9 11697{
18af8284 11698 struct type *subranged_type = get_base_type (type);
14f9c5c9 11699
78134374
SM
11700 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11701 && subranged_type->code () == TYPE_CODE_INT
4c4b4cd2 11702 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11703}
11704
4c4b4cd2
PH
11705/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11706
61ee279c 11707ULONGEST
0056e4d5 11708ada_modulus (struct type *type)
14f9c5c9 11709{
43bbcdc2 11710 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11711}
d2e4a39e 11712\f
f7f9143b
JB
11713
11714/* Ada exception catchpoint support:
11715 ---------------------------------
11716
11717 We support 3 kinds of exception catchpoints:
11718 . catchpoints on Ada exceptions
11719 . catchpoints on unhandled Ada exceptions
11720 . catchpoints on failed assertions
11721
11722 Exceptions raised during failed assertions, or unhandled exceptions
11723 could perfectly be caught with the general catchpoint on Ada exceptions.
11724 However, we can easily differentiate these two special cases, and having
11725 the option to distinguish these two cases from the rest can be useful
11726 to zero-in on certain situations.
11727
11728 Exception catchpoints are a specialized form of breakpoint,
11729 since they rely on inserting breakpoints inside known routines
11730 of the GNAT runtime. The implementation therefore uses a standard
11731 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11732 of breakpoint_ops.
11733
0259addd
JB
11734 Support in the runtime for exception catchpoints have been changed
11735 a few times already, and these changes affect the implementation
11736 of these catchpoints. In order to be able to support several
11737 variants of the runtime, we use a sniffer that will determine
28010a5d 11738 the runtime variant used by the program being debugged. */
f7f9143b 11739
82eacd52
JB
11740/* Ada's standard exceptions.
11741
11742 The Ada 83 standard also defined Numeric_Error. But there so many
11743 situations where it was unclear from the Ada 83 Reference Manual
11744 (RM) whether Constraint_Error or Numeric_Error should be raised,
11745 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11746 Interpretation saying that anytime the RM says that Numeric_Error
11747 should be raised, the implementation may raise Constraint_Error.
11748 Ada 95 went one step further and pretty much removed Numeric_Error
11749 from the list of standard exceptions (it made it a renaming of
11750 Constraint_Error, to help preserve compatibility when compiling
11751 an Ada83 compiler). As such, we do not include Numeric_Error from
11752 this list of standard exceptions. */
3d0b0fa3 11753
a121b7c1 11754static const char *standard_exc[] = {
3d0b0fa3
JB
11755 "constraint_error",
11756 "program_error",
11757 "storage_error",
11758 "tasking_error"
11759};
11760
0259addd
JB
11761typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11762
11763/* A structure that describes how to support exception catchpoints
11764 for a given executable. */
11765
11766struct exception_support_info
11767{
11768 /* The name of the symbol to break on in order to insert
11769 a catchpoint on exceptions. */
11770 const char *catch_exception_sym;
11771
11772 /* The name of the symbol to break on in order to insert
11773 a catchpoint on unhandled exceptions. */
11774 const char *catch_exception_unhandled_sym;
11775
11776 /* The name of the symbol to break on in order to insert
11777 a catchpoint on failed assertions. */
11778 const char *catch_assert_sym;
11779
9f757bf7
XR
11780 /* The name of the symbol to break on in order to insert
11781 a catchpoint on exception handling. */
11782 const char *catch_handlers_sym;
11783
0259addd
JB
11784 /* Assuming that the inferior just triggered an unhandled exception
11785 catchpoint, this function is responsible for returning the address
11786 in inferior memory where the name of that exception is stored.
11787 Return zero if the address could not be computed. */
11788 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11789};
11790
11791static CORE_ADDR ada_unhandled_exception_name_addr (void);
11792static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11793
11794/* The following exception support info structure describes how to
11795 implement exception catchpoints with the latest version of the
ca683e3a 11796 Ada runtime (as of 2019-08-??). */
0259addd
JB
11797
11798static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11799{
11800 "__gnat_debug_raise_exception", /* catch_exception_sym */
11801 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11802 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11803 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11804 ada_unhandled_exception_name_addr
11805};
11806
11807/* The following exception support info structure describes how to
11808 implement exception catchpoints with an earlier version of the
11809 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11810
11811static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11812{
11813 "__gnat_debug_raise_exception", /* catch_exception_sym */
11814 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11815 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11816 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11817 ada_unhandled_exception_name_addr
11818};
11819
11820/* The following exception support info structure describes how to
11821 implement exception catchpoints with a slightly older version
11822 of the Ada runtime. */
11823
11824static const struct exception_support_info exception_support_info_fallback =
11825{
11826 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11827 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11828 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11829 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11830 ada_unhandled_exception_name_addr_from_raise
11831};
11832
f17011e0
JB
11833/* Return nonzero if we can detect the exception support routines
11834 described in EINFO.
11835
11836 This function errors out if an abnormal situation is detected
11837 (for instance, if we find the exception support routines, but
11838 that support is found to be incomplete). */
11839
11840static int
11841ada_has_this_exception_support (const struct exception_support_info *einfo)
11842{
11843 struct symbol *sym;
11844
11845 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11846 that should be compiled with debugging information. As a result, we
11847 expect to find that symbol in the symtabs. */
11848
11849 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11850 if (sym == NULL)
a6af7abe
JB
11851 {
11852 /* Perhaps we did not find our symbol because the Ada runtime was
11853 compiled without debugging info, or simply stripped of it.
11854 It happens on some GNU/Linux distributions for instance, where
11855 users have to install a separate debug package in order to get
11856 the runtime's debugging info. In that situation, let the user
11857 know why we cannot insert an Ada exception catchpoint.
11858
11859 Note: Just for the purpose of inserting our Ada exception
11860 catchpoint, we could rely purely on the associated minimal symbol.
11861 But we would be operating in degraded mode anyway, since we are
11862 still lacking the debugging info needed later on to extract
11863 the name of the exception being raised (this name is printed in
11864 the catchpoint message, and is also used when trying to catch
11865 a specific exception). We do not handle this case for now. */
3b7344d5 11866 struct bound_minimal_symbol msym
1c8e84b0
JB
11867 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11868
3b7344d5 11869 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11870 error (_("Your Ada runtime appears to be missing some debugging "
11871 "information.\nCannot insert Ada exception catchpoint "
11872 "in this configuration."));
11873
11874 return 0;
11875 }
f17011e0
JB
11876
11877 /* Make sure that the symbol we found corresponds to a function. */
11878
11879 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11880 {
11881 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11882 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11883 return 0;
11884 }
11885
11886 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11887 if (sym == NULL)
11888 {
11889 struct bound_minimal_symbol msym
11890 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11891
11892 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11893 error (_("Your Ada runtime appears to be missing some debugging "
11894 "information.\nCannot insert Ada exception catchpoint "
11895 "in this configuration."));
11896
11897 return 0;
11898 }
11899
11900 /* Make sure that the symbol we found corresponds to a function. */
11901
11902 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11903 {
11904 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11905 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11906 return 0;
11907 }
f17011e0
JB
11908
11909 return 1;
11910}
11911
0259addd
JB
11912/* Inspect the Ada runtime and determine which exception info structure
11913 should be used to provide support for exception catchpoints.
11914
3eecfa55
JB
11915 This function will always set the per-inferior exception_info,
11916 or raise an error. */
0259addd
JB
11917
11918static void
11919ada_exception_support_info_sniffer (void)
11920{
3eecfa55 11921 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11922
11923 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11924 if (data->exception_info != NULL)
0259addd
JB
11925 return;
11926
11927 /* Check the latest (default) exception support info. */
f17011e0 11928 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11929 {
3eecfa55 11930 data->exception_info = &default_exception_support_info;
0259addd
JB
11931 return;
11932 }
11933
ca683e3a
AO
11934 /* Try the v0 exception suport info. */
11935 if (ada_has_this_exception_support (&exception_support_info_v0))
11936 {
11937 data->exception_info = &exception_support_info_v0;
11938 return;
11939 }
11940
0259addd 11941 /* Try our fallback exception suport info. */
f17011e0 11942 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11943 {
3eecfa55 11944 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11945 return;
11946 }
11947
11948 /* Sometimes, it is normal for us to not be able to find the routine
11949 we are looking for. This happens when the program is linked with
11950 the shared version of the GNAT runtime, and the program has not been
11951 started yet. Inform the user of these two possible causes if
11952 applicable. */
11953
ccefe4c4 11954 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11955 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11956
11957 /* If the symbol does not exist, then check that the program is
11958 already started, to make sure that shared libraries have been
11959 loaded. If it is not started, this may mean that the symbol is
11960 in a shared library. */
11961
e99b03dc 11962 if (inferior_ptid.pid () == 0)
0259addd
JB
11963 error (_("Unable to insert catchpoint. Try to start the program first."));
11964
11965 /* At this point, we know that we are debugging an Ada program and
11966 that the inferior has been started, but we still are not able to
0963b4bd 11967 find the run-time symbols. That can mean that we are in
0259addd
JB
11968 configurable run time mode, or that a-except as been optimized
11969 out by the linker... In any case, at this point it is not worth
11970 supporting this feature. */
11971
7dda8cff 11972 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11973}
11974
f7f9143b
JB
11975/* True iff FRAME is very likely to be that of a function that is
11976 part of the runtime system. This is all very heuristic, but is
11977 intended to be used as advice as to what frames are uninteresting
11978 to most users. */
11979
11980static int
11981is_known_support_routine (struct frame_info *frame)
11982{
692465f1 11983 enum language func_lang;
f7f9143b 11984 int i;
f35a17b5 11985 const char *fullname;
f7f9143b 11986
4ed6b5be
JB
11987 /* If this code does not have any debugging information (no symtab),
11988 This cannot be any user code. */
f7f9143b 11989
51abb421 11990 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11991 if (sal.symtab == NULL)
11992 return 1;
11993
4ed6b5be
JB
11994 /* If there is a symtab, but the associated source file cannot be
11995 located, then assume this is not user code: Selecting a frame
11996 for which we cannot display the code would not be very helpful
11997 for the user. This should also take care of case such as VxWorks
11998 where the kernel has some debugging info provided for a few units. */
f7f9143b 11999
f35a17b5
JK
12000 fullname = symtab_to_fullname (sal.symtab);
12001 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12002 return 1;
12003
85102364 12004 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
12005 We also check the name of the objfile against the name of some
12006 known system libraries that sometimes come with debugging info
12007 too. */
12008
f7f9143b
JB
12009 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12010 {
12011 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12012 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12013 return 1;
eb822aa6
DE
12014 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12015 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12016 return 1;
f7f9143b
JB
12017 }
12018
4ed6b5be 12019 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12020
c6dc63a1
TT
12021 gdb::unique_xmalloc_ptr<char> func_name
12022 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12023 if (func_name == NULL)
12024 return 1;
12025
12026 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12027 {
12028 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12029 if (re_exec (func_name.get ()))
12030 return 1;
f7f9143b
JB
12031 }
12032
12033 return 0;
12034}
12035
12036/* Find the first frame that contains debugging information and that is not
12037 part of the Ada run-time, starting from FI and moving upward. */
12038
0ef643c8 12039void
f7f9143b
JB
12040ada_find_printable_frame (struct frame_info *fi)
12041{
12042 for (; fi != NULL; fi = get_prev_frame (fi))
12043 {
12044 if (!is_known_support_routine (fi))
12045 {
12046 select_frame (fi);
12047 break;
12048 }
12049 }
12050
12051}
12052
12053/* Assuming that the inferior just triggered an unhandled exception
12054 catchpoint, return the address in inferior memory where the name
12055 of the exception is stored.
12056
12057 Return zero if the address could not be computed. */
12058
12059static CORE_ADDR
12060ada_unhandled_exception_name_addr (void)
0259addd
JB
12061{
12062 return parse_and_eval_address ("e.full_name");
12063}
12064
12065/* Same as ada_unhandled_exception_name_addr, except that this function
12066 should be used when the inferior uses an older version of the runtime,
12067 where the exception name needs to be extracted from a specific frame
12068 several frames up in the callstack. */
12069
12070static CORE_ADDR
12071ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12072{
12073 int frame_level;
12074 struct frame_info *fi;
3eecfa55 12075 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12076
12077 /* To determine the name of this exception, we need to select
12078 the frame corresponding to RAISE_SYM_NAME. This frame is
12079 at least 3 levels up, so we simply skip the first 3 frames
12080 without checking the name of their associated function. */
12081 fi = get_current_frame ();
12082 for (frame_level = 0; frame_level < 3; frame_level += 1)
12083 if (fi != NULL)
12084 fi = get_prev_frame (fi);
12085
12086 while (fi != NULL)
12087 {
692465f1
JB
12088 enum language func_lang;
12089
c6dc63a1
TT
12090 gdb::unique_xmalloc_ptr<char> func_name
12091 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12092 if (func_name != NULL)
12093 {
c6dc63a1 12094 if (strcmp (func_name.get (),
55b87a52
KS
12095 data->exception_info->catch_exception_sym) == 0)
12096 break; /* We found the frame we were looking for... */
55b87a52 12097 }
fb44b1a7 12098 fi = get_prev_frame (fi);
f7f9143b
JB
12099 }
12100
12101 if (fi == NULL)
12102 return 0;
12103
12104 select_frame (fi);
12105 return parse_and_eval_address ("id.full_name");
12106}
12107
12108/* Assuming the inferior just triggered an Ada exception catchpoint
12109 (of any type), return the address in inferior memory where the name
12110 of the exception is stored, if applicable.
12111
45db7c09
PA
12112 Assumes the selected frame is the current frame.
12113
f7f9143b
JB
12114 Return zero if the address could not be computed, or if not relevant. */
12115
12116static CORE_ADDR
761269c8 12117ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12118 struct breakpoint *b)
12119{
3eecfa55
JB
12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12121
f7f9143b
JB
12122 switch (ex)
12123 {
761269c8 12124 case ada_catch_exception:
f7f9143b
JB
12125 return (parse_and_eval_address ("e.full_name"));
12126 break;
12127
761269c8 12128 case ada_catch_exception_unhandled:
3eecfa55 12129 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12130 break;
9f757bf7
XR
12131
12132 case ada_catch_handlers:
12133 return 0; /* The runtimes does not provide access to the exception
12134 name. */
12135 break;
12136
761269c8 12137 case ada_catch_assert:
f7f9143b
JB
12138 return 0; /* Exception name is not relevant in this case. */
12139 break;
12140
12141 default:
12142 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12143 break;
12144 }
12145
12146 return 0; /* Should never be reached. */
12147}
12148
e547c119
JB
12149/* Assuming the inferior is stopped at an exception catchpoint,
12150 return the message which was associated to the exception, if
12151 available. Return NULL if the message could not be retrieved.
12152
e547c119
JB
12153 Note: The exception message can be associated to an exception
12154 either through the use of the Raise_Exception function, or
12155 more simply (Ada 2005 and later), via:
12156
12157 raise Exception_Name with "exception message";
12158
12159 */
12160
6f46ac85 12161static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12162ada_exception_message_1 (void)
12163{
12164 struct value *e_msg_val;
e547c119 12165 int e_msg_len;
e547c119
JB
12166
12167 /* For runtimes that support this feature, the exception message
12168 is passed as an unbounded string argument called "message". */
12169 e_msg_val = parse_and_eval ("message");
12170 if (e_msg_val == NULL)
12171 return NULL; /* Exception message not supported. */
12172
12173 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12174 gdb_assert (e_msg_val != NULL);
12175 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12176
12177 /* If the message string is empty, then treat it as if there was
12178 no exception message. */
12179 if (e_msg_len <= 0)
12180 return NULL;
12181
6f46ac85
TT
12182 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12183 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12184 e_msg.get ()[e_msg_len] = '\0';
e547c119 12185
e547c119
JB
12186 return e_msg;
12187}
12188
12189/* Same as ada_exception_message_1, except that all exceptions are
12190 contained here (returning NULL instead). */
12191
6f46ac85 12192static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12193ada_exception_message (void)
12194{
6f46ac85 12195 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12196
a70b8144 12197 try
e547c119
JB
12198 {
12199 e_msg = ada_exception_message_1 ();
12200 }
230d2906 12201 catch (const gdb_exception_error &e)
e547c119 12202 {
6f46ac85 12203 e_msg.reset (nullptr);
e547c119 12204 }
e547c119
JB
12205
12206 return e_msg;
12207}
12208
f7f9143b
JB
12209/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12210 any error that ada_exception_name_addr_1 might cause to be thrown.
12211 When an error is intercepted, a warning with the error message is printed,
12212 and zero is returned. */
12213
12214static CORE_ADDR
761269c8 12215ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12216 struct breakpoint *b)
12217{
f7f9143b
JB
12218 CORE_ADDR result = 0;
12219
a70b8144 12220 try
f7f9143b
JB
12221 {
12222 result = ada_exception_name_addr_1 (ex, b);
12223 }
12224
230d2906 12225 catch (const gdb_exception_error &e)
f7f9143b 12226 {
3d6e9d23 12227 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12228 return 0;
12229 }
12230
12231 return result;
12232}
12233
cb7de75e 12234static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12235 (const char *excep_string,
12236 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12237
12238/* Ada catchpoints.
12239
12240 In the case of catchpoints on Ada exceptions, the catchpoint will
12241 stop the target on every exception the program throws. When a user
12242 specifies the name of a specific exception, we translate this
12243 request into a condition expression (in text form), and then parse
12244 it into an expression stored in each of the catchpoint's locations.
12245 We then use this condition to check whether the exception that was
12246 raised is the one the user is interested in. If not, then the
12247 target is resumed again. We store the name of the requested
12248 exception, in order to be able to re-set the condition expression
12249 when symbols change. */
12250
12251/* An instance of this type is used to represent an Ada catchpoint
5625a286 12252 breakpoint location. */
28010a5d 12253
5625a286 12254class ada_catchpoint_location : public bp_location
28010a5d 12255{
5625a286 12256public:
5f486660 12257 ada_catchpoint_location (breakpoint *owner)
f06f1252 12258 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12259 {}
28010a5d
PA
12260
12261 /* The condition that checks whether the exception that was raised
12262 is the specific exception the user specified on catchpoint
12263 creation. */
4d01a485 12264 expression_up excep_cond_expr;
28010a5d
PA
12265};
12266
c1fc2657 12267/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12268
c1fc2657 12269struct ada_catchpoint : public breakpoint
28010a5d 12270{
37f6a7f4
TT
12271 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12272 : m_kind (kind)
12273 {
12274 }
12275
28010a5d 12276 /* The name of the specific exception the user specified. */
bc18fbb5 12277 std::string excep_string;
37f6a7f4
TT
12278
12279 /* What kind of catchpoint this is. */
12280 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12281};
12282
12283/* Parse the exception condition string in the context of each of the
12284 catchpoint's locations, and store them for later evaluation. */
12285
12286static void
9f757bf7
XR
12287create_excep_cond_exprs (struct ada_catchpoint *c,
12288 enum ada_exception_catchpoint_kind ex)
28010a5d 12289{
fccf9de1
TT
12290 struct bp_location *bl;
12291
28010a5d 12292 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12293 if (c->excep_string.empty ())
28010a5d
PA
12294 return;
12295
12296 /* Same if there are no locations... */
c1fc2657 12297 if (c->loc == NULL)
28010a5d
PA
12298 return;
12299
fccf9de1
TT
12300 /* Compute the condition expression in text form, from the specific
12301 expection we want to catch. */
12302 std::string cond_string
12303 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12304
fccf9de1
TT
12305 /* Iterate over all the catchpoint's locations, and parse an
12306 expression for each. */
12307 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12308 {
12309 struct ada_catchpoint_location *ada_loc
fccf9de1 12310 = (struct ada_catchpoint_location *) bl;
4d01a485 12311 expression_up exp;
28010a5d 12312
fccf9de1 12313 if (!bl->shlib_disabled)
28010a5d 12314 {
bbc13ae3 12315 const char *s;
28010a5d 12316
cb7de75e 12317 s = cond_string.c_str ();
a70b8144 12318 try
28010a5d 12319 {
fccf9de1
TT
12320 exp = parse_exp_1 (&s, bl->address,
12321 block_for_pc (bl->address),
036e657b 12322 0);
28010a5d 12323 }
230d2906 12324 catch (const gdb_exception_error &e)
849f2b52
JB
12325 {
12326 warning (_("failed to reevaluate internal exception condition "
12327 "for catchpoint %d: %s"),
3d6e9d23 12328 c->number, e.what ());
849f2b52 12329 }
28010a5d
PA
12330 }
12331
b22e99fd 12332 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12333 }
28010a5d
PA
12334}
12335
28010a5d
PA
12336/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12337 structure for all exception catchpoint kinds. */
12338
12339static struct bp_location *
37f6a7f4 12340allocate_location_exception (struct breakpoint *self)
28010a5d 12341{
5f486660 12342 return new ada_catchpoint_location (self);
28010a5d
PA
12343}
12344
12345/* Implement the RE_SET method in the breakpoint_ops structure for all
12346 exception catchpoint kinds. */
12347
12348static void
37f6a7f4 12349re_set_exception (struct breakpoint *b)
28010a5d
PA
12350{
12351 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12352
12353 /* Call the base class's method. This updates the catchpoint's
12354 locations. */
2060206e 12355 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12356
12357 /* Reparse the exception conditional expressions. One for each
12358 location. */
37f6a7f4 12359 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12360}
12361
12362/* Returns true if we should stop for this breakpoint hit. If the
12363 user specified a specific exception, we only want to cause a stop
12364 if the program thrown that exception. */
12365
12366static int
12367should_stop_exception (const struct bp_location *bl)
12368{
12369 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12370 const struct ada_catchpoint_location *ada_loc
12371 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12372 int stop;
12373
37f6a7f4
TT
12374 struct internalvar *var = lookup_internalvar ("_ada_exception");
12375 if (c->m_kind == ada_catch_assert)
12376 clear_internalvar (var);
12377 else
12378 {
12379 try
12380 {
12381 const char *expr;
12382
12383 if (c->m_kind == ada_catch_handlers)
12384 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12385 ".all.occurrence.id");
12386 else
12387 expr = "e";
12388
12389 struct value *exc = parse_and_eval (expr);
12390 set_internalvar (var, exc);
12391 }
12392 catch (const gdb_exception_error &ex)
12393 {
12394 clear_internalvar (var);
12395 }
12396 }
12397
28010a5d 12398 /* With no specific exception, should always stop. */
bc18fbb5 12399 if (c->excep_string.empty ())
28010a5d
PA
12400 return 1;
12401
12402 if (ada_loc->excep_cond_expr == NULL)
12403 {
12404 /* We will have a NULL expression if back when we were creating
12405 the expressions, this location's had failed to parse. */
12406 return 1;
12407 }
12408
12409 stop = 1;
a70b8144 12410 try
28010a5d
PA
12411 {
12412 struct value *mark;
12413
12414 mark = value_mark ();
4d01a485 12415 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12416 value_free_to_mark (mark);
12417 }
230d2906 12418 catch (const gdb_exception &ex)
492d29ea
PA
12419 {
12420 exception_fprintf (gdb_stderr, ex,
12421 _("Error in testing exception condition:\n"));
12422 }
492d29ea 12423
28010a5d
PA
12424 return stop;
12425}
12426
12427/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12428 for all exception catchpoint kinds. */
12429
12430static void
37f6a7f4 12431check_status_exception (bpstat bs)
28010a5d
PA
12432{
12433 bs->stop = should_stop_exception (bs->bp_location_at);
12434}
12435
f7f9143b
JB
12436/* Implement the PRINT_IT method in the breakpoint_ops structure
12437 for all exception catchpoint kinds. */
12438
12439static enum print_stop_action
37f6a7f4 12440print_it_exception (bpstat bs)
f7f9143b 12441{
79a45e25 12442 struct ui_out *uiout = current_uiout;
348d480f
PA
12443 struct breakpoint *b = bs->breakpoint_at;
12444
956a9fb9 12445 annotate_catchpoint (b->number);
f7f9143b 12446
112e8700 12447 if (uiout->is_mi_like_p ())
f7f9143b 12448 {
112e8700 12449 uiout->field_string ("reason",
956a9fb9 12450 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12451 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12452 }
12453
112e8700
SM
12454 uiout->text (b->disposition == disp_del
12455 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12456 uiout->field_signed ("bkptno", b->number);
112e8700 12457 uiout->text (", ");
f7f9143b 12458
45db7c09
PA
12459 /* ada_exception_name_addr relies on the selected frame being the
12460 current frame. Need to do this here because this function may be
12461 called more than once when printing a stop, and below, we'll
12462 select the first frame past the Ada run-time (see
12463 ada_find_printable_frame). */
12464 select_frame (get_current_frame ());
12465
37f6a7f4
TT
12466 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12467 switch (c->m_kind)
f7f9143b 12468 {
761269c8
JB
12469 case ada_catch_exception:
12470 case ada_catch_exception_unhandled:
9f757bf7 12471 case ada_catch_handlers:
956a9fb9 12472 {
37f6a7f4 12473 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12474 char exception_name[256];
12475
12476 if (addr != 0)
12477 {
c714b426
PA
12478 read_memory (addr, (gdb_byte *) exception_name,
12479 sizeof (exception_name) - 1);
956a9fb9
JB
12480 exception_name [sizeof (exception_name) - 1] = '\0';
12481 }
12482 else
12483 {
12484 /* For some reason, we were unable to read the exception
12485 name. This could happen if the Runtime was compiled
12486 without debugging info, for instance. In that case,
12487 just replace the exception name by the generic string
12488 "exception" - it will read as "an exception" in the
12489 notification we are about to print. */
967cff16 12490 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12491 }
12492 /* In the case of unhandled exception breakpoints, we print
12493 the exception name as "unhandled EXCEPTION_NAME", to make
12494 it clearer to the user which kind of catchpoint just got
12495 hit. We used ui_out_text to make sure that this extra
12496 info does not pollute the exception name in the MI case. */
37f6a7f4 12497 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12498 uiout->text ("unhandled ");
12499 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12500 }
12501 break;
761269c8 12502 case ada_catch_assert:
956a9fb9
JB
12503 /* In this case, the name of the exception is not really
12504 important. Just print "failed assertion" to make it clearer
12505 that his program just hit an assertion-failure catchpoint.
12506 We used ui_out_text because this info does not belong in
12507 the MI output. */
112e8700 12508 uiout->text ("failed assertion");
956a9fb9 12509 break;
f7f9143b 12510 }
e547c119 12511
6f46ac85 12512 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12513 if (exception_message != NULL)
12514 {
e547c119 12515 uiout->text (" (");
6f46ac85 12516 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12517 uiout->text (")");
e547c119
JB
12518 }
12519
112e8700 12520 uiout->text (" at ");
956a9fb9 12521 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12522
12523 return PRINT_SRC_AND_LOC;
12524}
12525
12526/* Implement the PRINT_ONE method in the breakpoint_ops structure
12527 for all exception catchpoint kinds. */
12528
12529static void
37f6a7f4 12530print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12531{
79a45e25 12532 struct ui_out *uiout = current_uiout;
28010a5d 12533 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12534 struct value_print_options opts;
12535
12536 get_user_print_options (&opts);
f06f1252 12537
79a45b7d 12538 if (opts.addressprint)
f06f1252 12539 uiout->field_skip ("addr");
f7f9143b
JB
12540
12541 annotate_field (5);
37f6a7f4 12542 switch (c->m_kind)
f7f9143b 12543 {
761269c8 12544 case ada_catch_exception:
bc18fbb5 12545 if (!c->excep_string.empty ())
f7f9143b 12546 {
bc18fbb5
TT
12547 std::string msg = string_printf (_("`%s' Ada exception"),
12548 c->excep_string.c_str ());
28010a5d 12549
112e8700 12550 uiout->field_string ("what", msg);
f7f9143b
JB
12551 }
12552 else
112e8700 12553 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12554
12555 break;
12556
761269c8 12557 case ada_catch_exception_unhandled:
112e8700 12558 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12559 break;
12560
9f757bf7 12561 case ada_catch_handlers:
bc18fbb5 12562 if (!c->excep_string.empty ())
9f757bf7
XR
12563 {
12564 uiout->field_fmt ("what",
12565 _("`%s' Ada exception handlers"),
bc18fbb5 12566 c->excep_string.c_str ());
9f757bf7
XR
12567 }
12568 else
12569 uiout->field_string ("what", "all Ada exceptions handlers");
12570 break;
12571
761269c8 12572 case ada_catch_assert:
112e8700 12573 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12574 break;
12575
12576 default:
12577 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12578 break;
12579 }
12580}
12581
12582/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12583 for all exception catchpoint kinds. */
12584
12585static void
37f6a7f4 12586print_mention_exception (struct breakpoint *b)
f7f9143b 12587{
28010a5d 12588 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12589 struct ui_out *uiout = current_uiout;
28010a5d 12590
112e8700 12591 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12592 : _("Catchpoint "));
381befee 12593 uiout->field_signed ("bkptno", b->number);
112e8700 12594 uiout->text (": ");
00eb2c4a 12595
37f6a7f4 12596 switch (c->m_kind)
f7f9143b 12597 {
761269c8 12598 case ada_catch_exception:
bc18fbb5 12599 if (!c->excep_string.empty ())
00eb2c4a 12600 {
862d101a 12601 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12602 c->excep_string.c_str ());
862d101a 12603 uiout->text (info.c_str ());
00eb2c4a 12604 }
f7f9143b 12605 else
112e8700 12606 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12607 break;
12608
761269c8 12609 case ada_catch_exception_unhandled:
112e8700 12610 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12611 break;
9f757bf7
XR
12612
12613 case ada_catch_handlers:
bc18fbb5 12614 if (!c->excep_string.empty ())
9f757bf7
XR
12615 {
12616 std::string info
12617 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12618 c->excep_string.c_str ());
9f757bf7
XR
12619 uiout->text (info.c_str ());
12620 }
12621 else
12622 uiout->text (_("all Ada exceptions handlers"));
12623 break;
12624
761269c8 12625 case ada_catch_assert:
112e8700 12626 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12627 break;
12628
12629 default:
12630 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12631 break;
12632 }
12633}
12634
6149aea9
PA
12635/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12636 for all exception catchpoint kinds. */
12637
12638static void
37f6a7f4 12639print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12640{
28010a5d
PA
12641 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12642
37f6a7f4 12643 switch (c->m_kind)
6149aea9 12644 {
761269c8 12645 case ada_catch_exception:
6149aea9 12646 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12647 if (!c->excep_string.empty ())
12648 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12649 break;
12650
761269c8 12651 case ada_catch_exception_unhandled:
78076abc 12652 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12653 break;
12654
9f757bf7
XR
12655 case ada_catch_handlers:
12656 fprintf_filtered (fp, "catch handlers");
12657 break;
12658
761269c8 12659 case ada_catch_assert:
6149aea9
PA
12660 fprintf_filtered (fp, "catch assert");
12661 break;
12662
12663 default:
12664 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12665 }
d9b3f62e 12666 print_recreate_thread (b, fp);
6149aea9
PA
12667}
12668
37f6a7f4 12669/* Virtual tables for various breakpoint types. */
2060206e 12670static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12671static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12672static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12673static struct breakpoint_ops catch_handlers_breakpoint_ops;
12674
f06f1252
TT
12675/* See ada-lang.h. */
12676
12677bool
12678is_ada_exception_catchpoint (breakpoint *bp)
12679{
12680 return (bp->ops == &catch_exception_breakpoint_ops
12681 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12682 || bp->ops == &catch_assert_breakpoint_ops
12683 || bp->ops == &catch_handlers_breakpoint_ops);
12684}
12685
f7f9143b
JB
12686/* Split the arguments specified in a "catch exception" command.
12687 Set EX to the appropriate catchpoint type.
28010a5d 12688 Set EXCEP_STRING to the name of the specific exception if
5845583d 12689 specified by the user.
9f757bf7
XR
12690 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12691 "catch handlers" command. False otherwise.
5845583d
JB
12692 If a condition is found at the end of the arguments, the condition
12693 expression is stored in COND_STRING (memory must be deallocated
12694 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12695
12696static void
a121b7c1 12697catch_ada_exception_command_split (const char *args,
9f757bf7 12698 bool is_catch_handlers_cmd,
761269c8 12699 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12700 std::string *excep_string,
12701 std::string *cond_string)
f7f9143b 12702{
bc18fbb5 12703 std::string exception_name;
f7f9143b 12704
bc18fbb5
TT
12705 exception_name = extract_arg (&args);
12706 if (exception_name == "if")
5845583d
JB
12707 {
12708 /* This is not an exception name; this is the start of a condition
12709 expression for a catchpoint on all exceptions. So, "un-get"
12710 this token, and set exception_name to NULL. */
bc18fbb5 12711 exception_name.clear ();
5845583d
JB
12712 args -= 2;
12713 }
f7f9143b 12714
5845583d 12715 /* Check to see if we have a condition. */
f7f9143b 12716
f1735a53 12717 args = skip_spaces (args);
61012eef 12718 if (startswith (args, "if")
5845583d
JB
12719 && (isspace (args[2]) || args[2] == '\0'))
12720 {
12721 args += 2;
f1735a53 12722 args = skip_spaces (args);
5845583d
JB
12723
12724 if (args[0] == '\0')
12725 error (_("Condition missing after `if' keyword"));
bc18fbb5 12726 *cond_string = args;
5845583d
JB
12727
12728 args += strlen (args);
12729 }
12730
12731 /* Check that we do not have any more arguments. Anything else
12732 is unexpected. */
f7f9143b
JB
12733
12734 if (args[0] != '\0')
12735 error (_("Junk at end of expression"));
12736
9f757bf7
XR
12737 if (is_catch_handlers_cmd)
12738 {
12739 /* Catch handling of exceptions. */
12740 *ex = ada_catch_handlers;
12741 *excep_string = exception_name;
12742 }
bc18fbb5 12743 else if (exception_name.empty ())
f7f9143b
JB
12744 {
12745 /* Catch all exceptions. */
761269c8 12746 *ex = ada_catch_exception;
bc18fbb5 12747 excep_string->clear ();
f7f9143b 12748 }
bc18fbb5 12749 else if (exception_name == "unhandled")
f7f9143b
JB
12750 {
12751 /* Catch unhandled exceptions. */
761269c8 12752 *ex = ada_catch_exception_unhandled;
bc18fbb5 12753 excep_string->clear ();
f7f9143b
JB
12754 }
12755 else
12756 {
12757 /* Catch a specific exception. */
761269c8 12758 *ex = ada_catch_exception;
28010a5d 12759 *excep_string = exception_name;
f7f9143b
JB
12760 }
12761}
12762
12763/* Return the name of the symbol on which we should break in order to
12764 implement a catchpoint of the EX kind. */
12765
12766static const char *
761269c8 12767ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12768{
3eecfa55
JB
12769 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12770
12771 gdb_assert (data->exception_info != NULL);
0259addd 12772
f7f9143b
JB
12773 switch (ex)
12774 {
761269c8 12775 case ada_catch_exception:
3eecfa55 12776 return (data->exception_info->catch_exception_sym);
f7f9143b 12777 break;
761269c8 12778 case ada_catch_exception_unhandled:
3eecfa55 12779 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12780 break;
761269c8 12781 case ada_catch_assert:
3eecfa55 12782 return (data->exception_info->catch_assert_sym);
f7f9143b 12783 break;
9f757bf7
XR
12784 case ada_catch_handlers:
12785 return (data->exception_info->catch_handlers_sym);
12786 break;
f7f9143b
JB
12787 default:
12788 internal_error (__FILE__, __LINE__,
12789 _("unexpected catchpoint kind (%d)"), ex);
12790 }
12791}
12792
12793/* Return the breakpoint ops "virtual table" used for catchpoints
12794 of the EX kind. */
12795
c0a91b2b 12796static const struct breakpoint_ops *
761269c8 12797ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12798{
12799 switch (ex)
12800 {
761269c8 12801 case ada_catch_exception:
f7f9143b
JB
12802 return (&catch_exception_breakpoint_ops);
12803 break;
761269c8 12804 case ada_catch_exception_unhandled:
f7f9143b
JB
12805 return (&catch_exception_unhandled_breakpoint_ops);
12806 break;
761269c8 12807 case ada_catch_assert:
f7f9143b
JB
12808 return (&catch_assert_breakpoint_ops);
12809 break;
9f757bf7
XR
12810 case ada_catch_handlers:
12811 return (&catch_handlers_breakpoint_ops);
12812 break;
f7f9143b
JB
12813 default:
12814 internal_error (__FILE__, __LINE__,
12815 _("unexpected catchpoint kind (%d)"), ex);
12816 }
12817}
12818
12819/* Return the condition that will be used to match the current exception
12820 being raised with the exception that the user wants to catch. This
12821 assumes that this condition is used when the inferior just triggered
12822 an exception catchpoint.
cb7de75e 12823 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12824
cb7de75e 12825static std::string
9f757bf7
XR
12826ada_exception_catchpoint_cond_string (const char *excep_string,
12827 enum ada_exception_catchpoint_kind ex)
f7f9143b 12828{
3d0b0fa3 12829 int i;
fccf9de1 12830 bool is_standard_exc = false;
cb7de75e 12831 std::string result;
9f757bf7
XR
12832
12833 if (ex == ada_catch_handlers)
12834 {
12835 /* For exception handlers catchpoints, the condition string does
12836 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12837 result = ("long_integer (GNAT_GCC_exception_Access"
12838 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12839 }
12840 else
fccf9de1 12841 result = "long_integer (e)";
3d0b0fa3 12842
0963b4bd 12843 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12844 runtime units that have been compiled without debugging info; if
28010a5d 12845 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12846 exception (e.g. "constraint_error") then, during the evaluation
12847 of the condition expression, the symbol lookup on this name would
0963b4bd 12848 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12849 may then be set only on user-defined exceptions which have the
12850 same not-fully-qualified name (e.g. my_package.constraint_error).
12851
12852 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12853 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12854 exception constraint_error" is rewritten into "catch exception
12855 standard.constraint_error".
12856
85102364 12857 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12858 the inferior program, then the only way to specify this exception as a
12859 breakpoint condition is to use its fully-qualified named:
fccf9de1 12860 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12861
12862 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12863 {
28010a5d 12864 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12865 {
fccf9de1 12866 is_standard_exc = true;
9f757bf7 12867 break;
3d0b0fa3
JB
12868 }
12869 }
9f757bf7 12870
fccf9de1
TT
12871 result += " = ";
12872
12873 if (is_standard_exc)
12874 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12875 else
12876 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12877
9f757bf7 12878 return result;
f7f9143b
JB
12879}
12880
12881/* Return the symtab_and_line that should be used to insert an exception
12882 catchpoint of the TYPE kind.
12883
28010a5d
PA
12884 ADDR_STRING returns the name of the function where the real
12885 breakpoint that implements the catchpoints is set, depending on the
12886 type of catchpoint we need to create. */
f7f9143b
JB
12887
12888static struct symtab_and_line
bc18fbb5 12889ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12890 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12891{
12892 const char *sym_name;
12893 struct symbol *sym;
f7f9143b 12894
0259addd
JB
12895 /* First, find out which exception support info to use. */
12896 ada_exception_support_info_sniffer ();
12897
12898 /* Then lookup the function on which we will break in order to catch
f7f9143b 12899 the Ada exceptions requested by the user. */
f7f9143b
JB
12900 sym_name = ada_exception_sym_name (ex);
12901 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12902
57aff202
JB
12903 if (sym == NULL)
12904 error (_("Catchpoint symbol not found: %s"), sym_name);
12905
12906 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12907 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12908
12909 /* Set ADDR_STRING. */
cc12f4a8 12910 *addr_string = sym_name;
f7f9143b 12911
f7f9143b 12912 /* Set OPS. */
4b9eee8c 12913 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12914
f17011e0 12915 return find_function_start_sal (sym, 1);
f7f9143b
JB
12916}
12917
b4a5b78b 12918/* Create an Ada exception catchpoint.
f7f9143b 12919
b4a5b78b 12920 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12921
bc18fbb5 12922 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12923 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12924 of the exception to which this catchpoint applies.
2df4d1d5 12925
bc18fbb5 12926 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12927
b4a5b78b
JB
12928 TEMPFLAG, if nonzero, means that the underlying breakpoint
12929 should be temporary.
28010a5d 12930
b4a5b78b 12931 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12932
349774ef 12933void
28010a5d 12934create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12935 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12936 const std::string &excep_string,
56ecd069 12937 const std::string &cond_string,
28010a5d 12938 int tempflag,
349774ef 12939 int disabled,
28010a5d
PA
12940 int from_tty)
12941{
cc12f4a8 12942 std::string addr_string;
b4a5b78b 12943 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12944 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12945
37f6a7f4 12946 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12947 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12948 ops, tempflag, disabled, from_tty);
28010a5d 12949 c->excep_string = excep_string;
9f757bf7 12950 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12951 if (!cond_string.empty ())
12952 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12953 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12954}
12955
9ac4176b
PA
12956/* Implement the "catch exception" command. */
12957
12958static void
eb4c3f4a 12959catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12960 struct cmd_list_element *command)
12961{
a121b7c1 12962 const char *arg = arg_entry;
9ac4176b
PA
12963 struct gdbarch *gdbarch = get_current_arch ();
12964 int tempflag;
761269c8 12965 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12966 std::string excep_string;
56ecd069 12967 std::string cond_string;
9ac4176b
PA
12968
12969 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12970
12971 if (!arg)
12972 arg = "";
9f757bf7 12973 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12974 &cond_string);
9f757bf7
XR
12975 create_ada_exception_catchpoint (gdbarch, ex_kind,
12976 excep_string, cond_string,
12977 tempflag, 1 /* enabled */,
12978 from_tty);
12979}
12980
12981/* Implement the "catch handlers" command. */
12982
12983static void
12984catch_ada_handlers_command (const char *arg_entry, int from_tty,
12985 struct cmd_list_element *command)
12986{
12987 const char *arg = arg_entry;
12988 struct gdbarch *gdbarch = get_current_arch ();
12989 int tempflag;
12990 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12991 std::string excep_string;
56ecd069 12992 std::string cond_string;
9f757bf7
XR
12993
12994 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12995
12996 if (!arg)
12997 arg = "";
12998 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12999 &cond_string);
b4a5b78b
JB
13000 create_ada_exception_catchpoint (gdbarch, ex_kind,
13001 excep_string, cond_string,
349774ef
JB
13002 tempflag, 1 /* enabled */,
13003 from_tty);
9ac4176b
PA
13004}
13005
71bed2db
TT
13006/* Completion function for the Ada "catch" commands. */
13007
13008static void
13009catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13010 const char *text, const char *word)
13011{
13012 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13013
13014 for (const ada_exc_info &info : exceptions)
13015 {
13016 if (startswith (info.name, word))
b02f78f9 13017 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13018 }
13019}
13020
b4a5b78b 13021/* Split the arguments specified in a "catch assert" command.
5845583d 13022
b4a5b78b
JB
13023 ARGS contains the command's arguments (or the empty string if
13024 no arguments were passed).
5845583d
JB
13025
13026 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13027 (the memory needs to be deallocated after use). */
5845583d 13028
b4a5b78b 13029static void
56ecd069 13030catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13031{
f1735a53 13032 args = skip_spaces (args);
f7f9143b 13033
5845583d 13034 /* Check whether a condition was provided. */
61012eef 13035 if (startswith (args, "if")
5845583d 13036 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13037 {
5845583d 13038 args += 2;
f1735a53 13039 args = skip_spaces (args);
5845583d
JB
13040 if (args[0] == '\0')
13041 error (_("condition missing after `if' keyword"));
56ecd069 13042 cond_string.assign (args);
f7f9143b
JB
13043 }
13044
5845583d
JB
13045 /* Otherwise, there should be no other argument at the end of
13046 the command. */
13047 else if (args[0] != '\0')
13048 error (_("Junk at end of arguments."));
f7f9143b
JB
13049}
13050
9ac4176b
PA
13051/* Implement the "catch assert" command. */
13052
13053static void
eb4c3f4a 13054catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13055 struct cmd_list_element *command)
13056{
a121b7c1 13057 const char *arg = arg_entry;
9ac4176b
PA
13058 struct gdbarch *gdbarch = get_current_arch ();
13059 int tempflag;
56ecd069 13060 std::string cond_string;
9ac4176b
PA
13061
13062 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13063
13064 if (!arg)
13065 arg = "";
56ecd069 13066 catch_ada_assert_command_split (arg, cond_string);
761269c8 13067 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13068 "", cond_string,
349774ef
JB
13069 tempflag, 1 /* enabled */,
13070 from_tty);
9ac4176b 13071}
778865d3
JB
13072
13073/* Return non-zero if the symbol SYM is an Ada exception object. */
13074
13075static int
13076ada_is_exception_sym (struct symbol *sym)
13077{
a737d952 13078 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13079
13080 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13081 && SYMBOL_CLASS (sym) != LOC_BLOCK
13082 && SYMBOL_CLASS (sym) != LOC_CONST
13083 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13084 && type_name != NULL && strcmp (type_name, "exception") == 0);
13085}
13086
13087/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13088 Ada exception object. This matches all exceptions except the ones
13089 defined by the Ada language. */
13090
13091static int
13092ada_is_non_standard_exception_sym (struct symbol *sym)
13093{
13094 int i;
13095
13096 if (!ada_is_exception_sym (sym))
13097 return 0;
13098
13099 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 13100 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
13101 return 0; /* A standard exception. */
13102
13103 /* Numeric_Error is also a standard exception, so exclude it.
13104 See the STANDARD_EXC description for more details as to why
13105 this exception is not listed in that array. */
987012b8 13106 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
13107 return 0;
13108
13109 return 1;
13110}
13111
ab816a27 13112/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13113 objects.
13114
13115 The comparison is determined first by exception name, and then
13116 by exception address. */
13117
ab816a27 13118bool
cc536b21 13119ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13120{
778865d3
JB
13121 int result;
13122
ab816a27
TT
13123 result = strcmp (name, other.name);
13124 if (result < 0)
13125 return true;
13126 if (result == 0 && addr < other.addr)
13127 return true;
13128 return false;
13129}
778865d3 13130
ab816a27 13131bool
cc536b21 13132ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13133{
13134 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13135}
13136
13137/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13138 routine, but keeping the first SKIP elements untouched.
13139
13140 All duplicates are also removed. */
13141
13142static void
ab816a27 13143sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13144 int skip)
13145{
ab816a27
TT
13146 std::sort (exceptions->begin () + skip, exceptions->end ());
13147 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13148 exceptions->end ());
778865d3
JB
13149}
13150
778865d3
JB
13151/* Add all exceptions defined by the Ada standard whose name match
13152 a regular expression.
13153
13154 If PREG is not NULL, then this regexp_t object is used to
13155 perform the symbol name matching. Otherwise, no name-based
13156 filtering is performed.
13157
13158 EXCEPTIONS is a vector of exceptions to which matching exceptions
13159 gets pushed. */
13160
13161static void
2d7cc5c7 13162ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13163 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13164{
13165 int i;
13166
13167 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13168 {
13169 if (preg == NULL
2d7cc5c7 13170 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13171 {
13172 struct bound_minimal_symbol msymbol
13173 = ada_lookup_simple_minsym (standard_exc[i]);
13174
13175 if (msymbol.minsym != NULL)
13176 {
13177 struct ada_exc_info info
77e371c0 13178 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13179
ab816a27 13180 exceptions->push_back (info);
778865d3
JB
13181 }
13182 }
13183 }
13184}
13185
13186/* Add all Ada exceptions defined locally and accessible from the given
13187 FRAME.
13188
13189 If PREG is not NULL, then this regexp_t object is used to
13190 perform the symbol name matching. Otherwise, no name-based
13191 filtering is performed.
13192
13193 EXCEPTIONS is a vector of exceptions to which matching exceptions
13194 gets pushed. */
13195
13196static void
2d7cc5c7
PA
13197ada_add_exceptions_from_frame (compiled_regex *preg,
13198 struct frame_info *frame,
ab816a27 13199 std::vector<ada_exc_info> *exceptions)
778865d3 13200{
3977b71f 13201 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13202
13203 while (block != 0)
13204 {
13205 struct block_iterator iter;
13206 struct symbol *sym;
13207
13208 ALL_BLOCK_SYMBOLS (block, iter, sym)
13209 {
13210 switch (SYMBOL_CLASS (sym))
13211 {
13212 case LOC_TYPEDEF:
13213 case LOC_BLOCK:
13214 case LOC_CONST:
13215 break;
13216 default:
13217 if (ada_is_exception_sym (sym))
13218 {
987012b8 13219 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13220 SYMBOL_VALUE_ADDRESS (sym)};
13221
ab816a27 13222 exceptions->push_back (info);
778865d3
JB
13223 }
13224 }
13225 }
13226 if (BLOCK_FUNCTION (block) != NULL)
13227 break;
13228 block = BLOCK_SUPERBLOCK (block);
13229 }
13230}
13231
14bc53a8
PA
13232/* Return true if NAME matches PREG or if PREG is NULL. */
13233
13234static bool
2d7cc5c7 13235name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13236{
13237 return (preg == NULL
f945dedf 13238 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13239}
13240
778865d3
JB
13241/* Add all exceptions defined globally whose name name match
13242 a regular expression, excluding standard exceptions.
13243
13244 The reason we exclude standard exceptions is that they need
13245 to be handled separately: Standard exceptions are defined inside
13246 a runtime unit which is normally not compiled with debugging info,
13247 and thus usually do not show up in our symbol search. However,
13248 if the unit was in fact built with debugging info, we need to
13249 exclude them because they would duplicate the entry we found
13250 during the special loop that specifically searches for those
13251 standard exceptions.
13252
13253 If PREG is not NULL, then this regexp_t object is used to
13254 perform the symbol name matching. Otherwise, no name-based
13255 filtering is performed.
13256
13257 EXCEPTIONS is a vector of exceptions to which matching exceptions
13258 gets pushed. */
13259
13260static void
2d7cc5c7 13261ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13262 std::vector<ada_exc_info> *exceptions)
778865d3 13263{
14bc53a8
PA
13264 /* In Ada, the symbol "search name" is a linkage name, whereas the
13265 regular expression used to do the matching refers to the natural
13266 name. So match against the decoded name. */
13267 expand_symtabs_matching (NULL,
b5ec771e 13268 lookup_name_info::match_any (),
14bc53a8
PA
13269 [&] (const char *search_name)
13270 {
f945dedf
CB
13271 std::string decoded = ada_decode (search_name);
13272 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13273 },
13274 NULL,
13275 VARIABLES_DOMAIN);
778865d3 13276
2030c079 13277 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13278 {
b669c953 13279 for (compunit_symtab *s : objfile->compunits ())
778865d3 13280 {
d8aeb77f
TT
13281 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13282 int i;
778865d3 13283
d8aeb77f
TT
13284 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13285 {
582942f4 13286 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13287 struct block_iterator iter;
13288 struct symbol *sym;
778865d3 13289
d8aeb77f
TT
13290 ALL_BLOCK_SYMBOLS (b, iter, sym)
13291 if (ada_is_non_standard_exception_sym (sym)
987012b8 13292 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13293 {
13294 struct ada_exc_info info
987012b8 13295 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13296
13297 exceptions->push_back (info);
13298 }
13299 }
778865d3
JB
13300 }
13301 }
13302}
13303
13304/* Implements ada_exceptions_list with the regular expression passed
13305 as a regex_t, rather than a string.
13306
13307 If not NULL, PREG is used to filter out exceptions whose names
13308 do not match. Otherwise, all exceptions are listed. */
13309
ab816a27 13310static std::vector<ada_exc_info>
2d7cc5c7 13311ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13312{
ab816a27 13313 std::vector<ada_exc_info> result;
778865d3
JB
13314 int prev_len;
13315
13316 /* First, list the known standard exceptions. These exceptions
13317 need to be handled separately, as they are usually defined in
13318 runtime units that have been compiled without debugging info. */
13319
13320 ada_add_standard_exceptions (preg, &result);
13321
13322 /* Next, find all exceptions whose scope is local and accessible
13323 from the currently selected frame. */
13324
13325 if (has_stack_frames ())
13326 {
ab816a27 13327 prev_len = result.size ();
778865d3
JB
13328 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13329 &result);
ab816a27 13330 if (result.size () > prev_len)
778865d3
JB
13331 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13332 }
13333
13334 /* Add all exceptions whose scope is global. */
13335
ab816a27 13336 prev_len = result.size ();
778865d3 13337 ada_add_global_exceptions (preg, &result);
ab816a27 13338 if (result.size () > prev_len)
778865d3
JB
13339 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13340
778865d3
JB
13341 return result;
13342}
13343
13344/* Return a vector of ada_exc_info.
13345
13346 If REGEXP is NULL, all exceptions are included in the result.
13347 Otherwise, it should contain a valid regular expression,
13348 and only the exceptions whose names match that regular expression
13349 are included in the result.
13350
13351 The exceptions are sorted in the following order:
13352 - Standard exceptions (defined by the Ada language), in
13353 alphabetical order;
13354 - Exceptions only visible from the current frame, in
13355 alphabetical order;
13356 - Exceptions whose scope is global, in alphabetical order. */
13357
ab816a27 13358std::vector<ada_exc_info>
778865d3
JB
13359ada_exceptions_list (const char *regexp)
13360{
2d7cc5c7
PA
13361 if (regexp == NULL)
13362 return ada_exceptions_list_1 (NULL);
778865d3 13363
2d7cc5c7
PA
13364 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13365 return ada_exceptions_list_1 (&reg);
778865d3
JB
13366}
13367
13368/* Implement the "info exceptions" command. */
13369
13370static void
1d12d88f 13371info_exceptions_command (const char *regexp, int from_tty)
778865d3 13372{
778865d3 13373 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13374
ab816a27 13375 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13376
13377 if (regexp != NULL)
13378 printf_filtered
13379 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13380 else
13381 printf_filtered (_("All defined Ada exceptions:\n"));
13382
ab816a27
TT
13383 for (const ada_exc_info &info : exceptions)
13384 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13385}
13386
4c4b4cd2
PH
13387 /* Operators */
13388/* Information about operators given special treatment in functions
13389 below. */
13390/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13391
13392#define ADA_OPERATORS \
13393 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13394 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13395 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13396 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13397 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13398 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13399 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13400 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13401 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13402 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13403 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13404 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13405 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13406 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13407 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13408 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13409 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13410 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13411 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13412
13413static void
554794dc
SDJ
13414ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13415 int *argsp)
4c4b4cd2
PH
13416{
13417 switch (exp->elts[pc - 1].opcode)
13418 {
76a01679 13419 default:
4c4b4cd2
PH
13420 operator_length_standard (exp, pc, oplenp, argsp);
13421 break;
13422
13423#define OP_DEFN(op, len, args, binop) \
13424 case op: *oplenp = len; *argsp = args; break;
13425 ADA_OPERATORS;
13426#undef OP_DEFN
52ce6436
PH
13427
13428 case OP_AGGREGATE:
13429 *oplenp = 3;
13430 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13431 break;
13432
13433 case OP_CHOICES:
13434 *oplenp = 3;
13435 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13436 break;
4c4b4cd2
PH
13437 }
13438}
13439
c0201579
JK
13440/* Implementation of the exp_descriptor method operator_check. */
13441
13442static int
13443ada_operator_check (struct expression *exp, int pos,
13444 int (*objfile_func) (struct objfile *objfile, void *data),
13445 void *data)
13446{
13447 const union exp_element *const elts = exp->elts;
13448 struct type *type = NULL;
13449
13450 switch (elts[pos].opcode)
13451 {
13452 case UNOP_IN_RANGE:
13453 case UNOP_QUAL:
13454 type = elts[pos + 1].type;
13455 break;
13456
13457 default:
13458 return operator_check_standard (exp, pos, objfile_func, data);
13459 }
13460
13461 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13462
13463 if (type && TYPE_OBJFILE (type)
13464 && (*objfile_func) (TYPE_OBJFILE (type), data))
13465 return 1;
13466
13467 return 0;
13468}
13469
a121b7c1 13470static const char *
4c4b4cd2
PH
13471ada_op_name (enum exp_opcode opcode)
13472{
13473 switch (opcode)
13474 {
76a01679 13475 default:
4c4b4cd2 13476 return op_name_standard (opcode);
52ce6436 13477
4c4b4cd2
PH
13478#define OP_DEFN(op, len, args, binop) case op: return #op;
13479 ADA_OPERATORS;
13480#undef OP_DEFN
52ce6436
PH
13481
13482 case OP_AGGREGATE:
13483 return "OP_AGGREGATE";
13484 case OP_CHOICES:
13485 return "OP_CHOICES";
13486 case OP_NAME:
13487 return "OP_NAME";
4c4b4cd2
PH
13488 }
13489}
13490
13491/* As for operator_length, but assumes PC is pointing at the first
13492 element of the operator, and gives meaningful results only for the
52ce6436 13493 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13494
13495static void
76a01679
JB
13496ada_forward_operator_length (struct expression *exp, int pc,
13497 int *oplenp, int *argsp)
4c4b4cd2 13498{
76a01679 13499 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13500 {
13501 default:
13502 *oplenp = *argsp = 0;
13503 break;
52ce6436 13504
4c4b4cd2
PH
13505#define OP_DEFN(op, len, args, binop) \
13506 case op: *oplenp = len; *argsp = args; break;
13507 ADA_OPERATORS;
13508#undef OP_DEFN
52ce6436
PH
13509
13510 case OP_AGGREGATE:
13511 *oplenp = 3;
13512 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13513 break;
13514
13515 case OP_CHOICES:
13516 *oplenp = 3;
13517 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13518 break;
13519
13520 case OP_STRING:
13521 case OP_NAME:
13522 {
13523 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13524
52ce6436
PH
13525 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13526 *argsp = 0;
13527 break;
13528 }
4c4b4cd2
PH
13529 }
13530}
13531
13532static int
13533ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13534{
13535 enum exp_opcode op = exp->elts[elt].opcode;
13536 int oplen, nargs;
13537 int pc = elt;
13538 int i;
76a01679 13539
4c4b4cd2
PH
13540 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13541
76a01679 13542 switch (op)
4c4b4cd2 13543 {
76a01679 13544 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13545 case OP_ATR_FIRST:
13546 case OP_ATR_LAST:
13547 case OP_ATR_LENGTH:
13548 case OP_ATR_IMAGE:
13549 case OP_ATR_MAX:
13550 case OP_ATR_MIN:
13551 case OP_ATR_MODULUS:
13552 case OP_ATR_POS:
13553 case OP_ATR_SIZE:
13554 case OP_ATR_TAG:
13555 case OP_ATR_VAL:
13556 break;
13557
13558 case UNOP_IN_RANGE:
13559 case UNOP_QUAL:
323e0a4a
AC
13560 /* XXX: gdb_sprint_host_address, type_sprint */
13561 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13562 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13563 fprintf_filtered (stream, " (");
13564 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13565 fprintf_filtered (stream, ")");
13566 break;
13567 case BINOP_IN_BOUNDS:
52ce6436
PH
13568 fprintf_filtered (stream, " (%d)",
13569 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13570 break;
13571 case TERNOP_IN_RANGE:
13572 break;
13573
52ce6436
PH
13574 case OP_AGGREGATE:
13575 case OP_OTHERS:
13576 case OP_DISCRETE_RANGE:
13577 case OP_POSITIONAL:
13578 case OP_CHOICES:
13579 break;
13580
13581 case OP_NAME:
13582 case OP_STRING:
13583 {
13584 char *name = &exp->elts[elt + 2].string;
13585 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13586
52ce6436
PH
13587 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13588 break;
13589 }
13590
4c4b4cd2
PH
13591 default:
13592 return dump_subexp_body_standard (exp, stream, elt);
13593 }
13594
13595 elt += oplen;
13596 for (i = 0; i < nargs; i += 1)
13597 elt = dump_subexp (exp, stream, elt);
13598
13599 return elt;
13600}
13601
13602/* The Ada extension of print_subexp (q.v.). */
13603
76a01679
JB
13604static void
13605ada_print_subexp (struct expression *exp, int *pos,
13606 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13607{
52ce6436 13608 int oplen, nargs, i;
4c4b4cd2
PH
13609 int pc = *pos;
13610 enum exp_opcode op = exp->elts[pc].opcode;
13611
13612 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13613
52ce6436 13614 *pos += oplen;
4c4b4cd2
PH
13615 switch (op)
13616 {
13617 default:
52ce6436 13618 *pos -= oplen;
4c4b4cd2
PH
13619 print_subexp_standard (exp, pos, stream, prec);
13620 return;
13621
13622 case OP_VAR_VALUE:
987012b8 13623 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13624 return;
13625
13626 case BINOP_IN_BOUNDS:
323e0a4a 13627 /* XXX: sprint_subexp */
4c4b4cd2 13628 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13629 fputs_filtered (" in ", stream);
4c4b4cd2 13630 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13631 fputs_filtered ("'range", stream);
4c4b4cd2 13632 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13633 fprintf_filtered (stream, "(%ld)",
13634 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13635 return;
13636
13637 case TERNOP_IN_RANGE:
4c4b4cd2 13638 if (prec >= PREC_EQUAL)
76a01679 13639 fputs_filtered ("(", stream);
323e0a4a 13640 /* XXX: sprint_subexp */
4c4b4cd2 13641 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13642 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13643 print_subexp (exp, pos, stream, PREC_EQUAL);
13644 fputs_filtered (" .. ", stream);
13645 print_subexp (exp, pos, stream, PREC_EQUAL);
13646 if (prec >= PREC_EQUAL)
76a01679
JB
13647 fputs_filtered (")", stream);
13648 return;
4c4b4cd2
PH
13649
13650 case OP_ATR_FIRST:
13651 case OP_ATR_LAST:
13652 case OP_ATR_LENGTH:
13653 case OP_ATR_IMAGE:
13654 case OP_ATR_MAX:
13655 case OP_ATR_MIN:
13656 case OP_ATR_MODULUS:
13657 case OP_ATR_POS:
13658 case OP_ATR_SIZE:
13659 case OP_ATR_TAG:
13660 case OP_ATR_VAL:
4c4b4cd2 13661 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679 13662 {
78134374 13663 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
79d43c61
TT
13664 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13665 &type_print_raw_options);
76a01679
JB
13666 *pos += 3;
13667 }
4c4b4cd2 13668 else
76a01679 13669 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13670 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13671 if (nargs > 1)
76a01679
JB
13672 {
13673 int tem;
5b4ee69b 13674
76a01679
JB
13675 for (tem = 1; tem < nargs; tem += 1)
13676 {
13677 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13678 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13679 }
13680 fputs_filtered (")", stream);
13681 }
4c4b4cd2 13682 return;
14f9c5c9 13683
4c4b4cd2 13684 case UNOP_QUAL:
4c4b4cd2
PH
13685 type_print (exp->elts[pc + 1].type, "", stream, 0);
13686 fputs_filtered ("'(", stream);
13687 print_subexp (exp, pos, stream, PREC_PREFIX);
13688 fputs_filtered (")", stream);
13689 return;
14f9c5c9 13690
4c4b4cd2 13691 case UNOP_IN_RANGE:
323e0a4a 13692 /* XXX: sprint_subexp */
4c4b4cd2 13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13694 fputs_filtered (" in ", stream);
79d43c61
TT
13695 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13696 &type_print_raw_options);
4c4b4cd2 13697 return;
52ce6436
PH
13698
13699 case OP_DISCRETE_RANGE:
13700 print_subexp (exp, pos, stream, PREC_SUFFIX);
13701 fputs_filtered ("..", stream);
13702 print_subexp (exp, pos, stream, PREC_SUFFIX);
13703 return;
13704
13705 case OP_OTHERS:
13706 fputs_filtered ("others => ", stream);
13707 print_subexp (exp, pos, stream, PREC_SUFFIX);
13708 return;
13709
13710 case OP_CHOICES:
13711 for (i = 0; i < nargs-1; i += 1)
13712 {
13713 if (i > 0)
13714 fputs_filtered ("|", stream);
13715 print_subexp (exp, pos, stream, PREC_SUFFIX);
13716 }
13717 fputs_filtered (" => ", stream);
13718 print_subexp (exp, pos, stream, PREC_SUFFIX);
13719 return;
13720
13721 case OP_POSITIONAL:
13722 print_subexp (exp, pos, stream, PREC_SUFFIX);
13723 return;
13724
13725 case OP_AGGREGATE:
13726 fputs_filtered ("(", stream);
13727 for (i = 0; i < nargs; i += 1)
13728 {
13729 if (i > 0)
13730 fputs_filtered (", ", stream);
13731 print_subexp (exp, pos, stream, PREC_SUFFIX);
13732 }
13733 fputs_filtered (")", stream);
13734 return;
4c4b4cd2
PH
13735 }
13736}
14f9c5c9
AS
13737
13738/* Table mapping opcodes into strings for printing operators
13739 and precedences of the operators. */
13740
d2e4a39e
AS
13741static const struct op_print ada_op_print_tab[] = {
13742 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13743 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13744 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13745 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13746 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13747 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13748 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13749 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13750 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13751 {">=", BINOP_GEQ, PREC_ORDER, 0},
13752 {">", BINOP_GTR, PREC_ORDER, 0},
13753 {"<", BINOP_LESS, PREC_ORDER, 0},
13754 {">>", BINOP_RSH, PREC_SHIFT, 0},
13755 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13756 {"+", BINOP_ADD, PREC_ADD, 0},
13757 {"-", BINOP_SUB, PREC_ADD, 0},
13758 {"&", BINOP_CONCAT, PREC_ADD, 0},
13759 {"*", BINOP_MUL, PREC_MUL, 0},
13760 {"/", BINOP_DIV, PREC_MUL, 0},
13761 {"rem", BINOP_REM, PREC_MUL, 0},
13762 {"mod", BINOP_MOD, PREC_MUL, 0},
13763 {"**", BINOP_EXP, PREC_REPEAT, 0},
13764 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13765 {"-", UNOP_NEG, PREC_PREFIX, 0},
13766 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13767 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13768 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13769 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13770 {".all", UNOP_IND, PREC_SUFFIX, 1},
13771 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13772 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13773 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13774};
13775\f
72d5681a
PH
13776enum ada_primitive_types {
13777 ada_primitive_type_int,
13778 ada_primitive_type_long,
13779 ada_primitive_type_short,
13780 ada_primitive_type_char,
13781 ada_primitive_type_float,
13782 ada_primitive_type_double,
13783 ada_primitive_type_void,
13784 ada_primitive_type_long_long,
13785 ada_primitive_type_long_double,
13786 ada_primitive_type_natural,
13787 ada_primitive_type_positive,
13788 ada_primitive_type_system_address,
08f49010 13789 ada_primitive_type_storage_offset,
72d5681a
PH
13790 nr_ada_primitive_types
13791};
6c038f32
PH
13792
13793static void
d4a9a881 13794ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13795 struct language_arch_info *lai)
13796{
d4a9a881 13797 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13798
72d5681a 13799 lai->primitive_type_vector
d4a9a881 13800 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13801 struct type *);
e9bb382b
UW
13802
13803 lai->primitive_type_vector [ada_primitive_type_int]
13804 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13805 0, "integer");
13806 lai->primitive_type_vector [ada_primitive_type_long]
13807 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13808 0, "long_integer");
13809 lai->primitive_type_vector [ada_primitive_type_short]
13810 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13811 0, "short_integer");
13812 lai->string_char_type
13813 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13814 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13815 lai->primitive_type_vector [ada_primitive_type_float]
13816 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13817 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13818 lai->primitive_type_vector [ada_primitive_type_double]
13819 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13820 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13821 lai->primitive_type_vector [ada_primitive_type_long_long]
13822 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13823 0, "long_long_integer");
13824 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13825 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13826 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13827 lai->primitive_type_vector [ada_primitive_type_natural]
13828 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13829 0, "natural");
13830 lai->primitive_type_vector [ada_primitive_type_positive]
13831 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13832 0, "positive");
13833 lai->primitive_type_vector [ada_primitive_type_void]
13834 = builtin->builtin_void;
13835
13836 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13837 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13838 "void"));
72d5681a
PH
13839 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13840 = "system__address";
fbb06eb1 13841
08f49010
XR
13842 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13843 type. This is a signed integral type whose size is the same as
13844 the size of addresses. */
13845 {
13846 unsigned int addr_length = TYPE_LENGTH
13847 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13848
13849 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13850 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13851 "storage_offset");
13852 }
13853
47e729a8 13854 lai->bool_type_symbol = NULL;
fbb06eb1 13855 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13856}
6c038f32
PH
13857\f
13858 /* Language vector */
13859
13860/* Not really used, but needed in the ada_language_defn. */
13861
13862static void
6c7a06a3 13863emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13864{
6c7a06a3 13865 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13866}
13867
13868static int
410a0ff2 13869parse (struct parser_state *ps)
6c038f32
PH
13870{
13871 warnings_issued = 0;
410a0ff2 13872 return ada_parse (ps);
6c038f32
PH
13873}
13874
13875static const struct exp_descriptor ada_exp_descriptor = {
13876 ada_print_subexp,
13877 ada_operator_length,
c0201579 13878 ada_operator_check,
6c038f32
PH
13879 ada_op_name,
13880 ada_dump_subexp_body,
13881 ada_evaluate_subexp
13882};
13883
b5ec771e
PA
13884/* symbol_name_matcher_ftype adapter for wild_match. */
13885
13886static bool
13887do_wild_match (const char *symbol_search_name,
13888 const lookup_name_info &lookup_name,
a207cff2 13889 completion_match_result *comp_match_res)
b5ec771e
PA
13890{
13891 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13892}
13893
13894/* symbol_name_matcher_ftype adapter for full_match. */
13895
13896static bool
13897do_full_match (const char *symbol_search_name,
13898 const lookup_name_info &lookup_name,
a207cff2 13899 completion_match_result *comp_match_res)
b5ec771e
PA
13900{
13901 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13902}
13903
a2cd4f14
JB
13904/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13905
13906static bool
13907do_exact_match (const char *symbol_search_name,
13908 const lookup_name_info &lookup_name,
13909 completion_match_result *comp_match_res)
13910{
13911 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13912}
13913
b5ec771e
PA
13914/* Build the Ada lookup name for LOOKUP_NAME. */
13915
13916ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13917{
e0802d59 13918 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13919
13920 if (user_name[0] == '<')
13921 {
13922 if (user_name.back () == '>')
e0802d59
TT
13923 m_encoded_name
13924 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13925 else
e0802d59
TT
13926 m_encoded_name
13927 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13928 m_encoded_p = true;
13929 m_verbatim_p = true;
13930 m_wild_match_p = false;
13931 m_standard_p = false;
13932 }
13933 else
13934 {
13935 m_verbatim_p = false;
13936
e0802d59 13937 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13938
13939 if (!m_encoded_p)
13940 {
e0802d59 13941 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13942 const char *encoded = ada_encode_1 (folded, false);
13943 if (encoded != NULL)
13944 m_encoded_name = encoded;
13945 else
e0802d59 13946 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13947 }
13948 else
e0802d59 13949 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13950
13951 /* Handle the 'package Standard' special case. See description
13952 of m_standard_p. */
13953 if (startswith (m_encoded_name.c_str (), "standard__"))
13954 {
13955 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13956 m_standard_p = true;
13957 }
13958 else
13959 m_standard_p = false;
74ccd7f5 13960
b5ec771e
PA
13961 /* If the name contains a ".", then the user is entering a fully
13962 qualified entity name, and the match must not be done in wild
13963 mode. Similarly, if the user wants to complete what looks
13964 like an encoded name, the match must not be done in wild
13965 mode. Also, in the standard__ special case always do
13966 non-wild matching. */
13967 m_wild_match_p
13968 = (lookup_name.match_type () != symbol_name_match_type::FULL
13969 && !m_encoded_p
13970 && !m_standard_p
13971 && user_name.find ('.') == std::string::npos);
13972 }
13973}
13974
13975/* symbol_name_matcher_ftype method for Ada. This only handles
13976 completion mode. */
13977
13978static bool
13979ada_symbol_name_matches (const char *symbol_search_name,
13980 const lookup_name_info &lookup_name,
a207cff2 13981 completion_match_result *comp_match_res)
74ccd7f5 13982{
b5ec771e
PA
13983 return lookup_name.ada ().matches (symbol_search_name,
13984 lookup_name.match_type (),
a207cff2 13985 comp_match_res);
b5ec771e
PA
13986}
13987
de63c46b
PA
13988/* A name matcher that matches the symbol name exactly, with
13989 strcmp. */
13990
13991static bool
13992literal_symbol_name_matcher (const char *symbol_search_name,
13993 const lookup_name_info &lookup_name,
13994 completion_match_result *comp_match_res)
13995{
e0802d59 13996 gdb::string_view name_view = lookup_name.name ();
de63c46b 13997
e0802d59
TT
13998 if (lookup_name.completion_mode ()
13999 ? (strncmp (symbol_search_name, name_view.data (),
14000 name_view.size ()) == 0)
14001 : symbol_search_name == name_view)
de63c46b
PA
14002 {
14003 if (comp_match_res != NULL)
14004 comp_match_res->set_match (symbol_search_name);
14005 return true;
14006 }
14007 else
14008 return false;
14009}
14010
b5ec771e
PA
14011/* Implement the "la_get_symbol_name_matcher" language_defn method for
14012 Ada. */
14013
14014static symbol_name_matcher_ftype *
14015ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14016{
de63c46b
PA
14017 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14018 return literal_symbol_name_matcher;
14019
b5ec771e
PA
14020 if (lookup_name.completion_mode ())
14021 return ada_symbol_name_matches;
74ccd7f5 14022 else
b5ec771e
PA
14023 {
14024 if (lookup_name.ada ().wild_match_p ())
14025 return do_wild_match;
a2cd4f14
JB
14026 else if (lookup_name.ada ().verbatim_p ())
14027 return do_exact_match;
b5ec771e
PA
14028 else
14029 return do_full_match;
14030 }
74ccd7f5
JB
14031}
14032
a5ee536b
JB
14033/* Implement the "la_read_var_value" language_defn method for Ada. */
14034
14035static struct value *
63e43d3a
PMR
14036ada_read_var_value (struct symbol *var, const struct block *var_block,
14037 struct frame_info *frame)
a5ee536b 14038{
a5ee536b
JB
14039 /* The only case where default_read_var_value is not sufficient
14040 is when VAR is a renaming... */
c0e70c62
TT
14041 if (frame != nullptr)
14042 {
14043 const struct block *frame_block = get_frame_block (frame, NULL);
14044 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14045 return ada_read_renaming_var_value (var, frame_block);
14046 }
a5ee536b
JB
14047
14048 /* This is a typical case where we expect the default_read_var_value
14049 function to work. */
63e43d3a 14050 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14051}
14052
56618e20
TT
14053static const char *ada_extensions[] =
14054{
14055 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14056};
14057
47e77640 14058extern const struct language_defn ada_language_defn = {
6c038f32 14059 "ada", /* Language name */
6abde28f 14060 "Ada",
6c038f32 14061 language_ada,
6c038f32 14062 range_check_off,
6c038f32
PH
14063 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14064 that's not quite what this means. */
6c038f32 14065 array_row_major,
9a044a89 14066 macro_expansion_no,
56618e20 14067 ada_extensions,
6c038f32
PH
14068 &ada_exp_descriptor,
14069 parse,
6c038f32
PH
14070 resolve,
14071 ada_printchar, /* Print a character constant */
14072 ada_printstr, /* Function to print string constant */
14073 emit_char, /* Function to print single char (not used) */
6c038f32 14074 ada_print_type, /* Print a type using appropriate syntax */
be942545 14075 ada_print_typedef, /* Print a typedef using appropriate syntax */
26792ee0 14076 ada_value_print_inner, /* la_value_print_inner */
6c038f32 14077 ada_value_print, /* Print a top-level value */
a5ee536b 14078 ada_read_var_value, /* la_read_var_value */
6c038f32 14079 NULL, /* Language specific skip_trampoline */
2b2d9e11 14080 NULL, /* name_of_this */
59cc4834 14081 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14082 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14083 basic_lookup_transparent_type, /* lookup_transparent_type */
14084 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14085 ada_sniff_from_mangled_name,
0963b4bd
MS
14086 NULL, /* Language specific
14087 class_name_from_physname */
6c038f32
PH
14088 ada_op_print_tab, /* expression operators for printing */
14089 0, /* c-style arrays */
14090 1, /* String lower bound */
6c038f32 14091 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14092 ada_collect_symbol_completion_matches,
72d5681a 14093 ada_language_arch_info,
e79af960 14094 ada_print_array_index,
41f1b697 14095 default_pass_by_reference,
e2b7af72 14096 ada_watch_location_expression,
b5ec771e 14097 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14098 ada_iterate_over_symbols,
5ffa0793 14099 default_search_name_hash,
a53b64ea 14100 &ada_varobj_ops,
bb2ec1b3 14101 NULL,
721b08c6 14102 NULL,
4be290b2 14103 ada_is_string_type,
721b08c6 14104 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14105};
14106
5bf03f13
JB
14107/* Command-list for the "set/show ada" prefix command. */
14108static struct cmd_list_element *set_ada_list;
14109static struct cmd_list_element *show_ada_list;
14110
2060206e
PA
14111static void
14112initialize_ada_catchpoint_ops (void)
14113{
14114 struct breakpoint_ops *ops;
14115
14116 initialize_breakpoint_ops ();
14117
14118 ops = &catch_exception_breakpoint_ops;
14119 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14120 ops->allocate_location = allocate_location_exception;
14121 ops->re_set = re_set_exception;
14122 ops->check_status = check_status_exception;
14123 ops->print_it = print_it_exception;
14124 ops->print_one = print_one_exception;
14125 ops->print_mention = print_mention_exception;
14126 ops->print_recreate = print_recreate_exception;
2060206e
PA
14127
14128 ops = &catch_exception_unhandled_breakpoint_ops;
14129 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14130 ops->allocate_location = allocate_location_exception;
14131 ops->re_set = re_set_exception;
14132 ops->check_status = check_status_exception;
14133 ops->print_it = print_it_exception;
14134 ops->print_one = print_one_exception;
14135 ops->print_mention = print_mention_exception;
14136 ops->print_recreate = print_recreate_exception;
2060206e
PA
14137
14138 ops = &catch_assert_breakpoint_ops;
14139 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14140 ops->allocate_location = allocate_location_exception;
14141 ops->re_set = re_set_exception;
14142 ops->check_status = check_status_exception;
14143 ops->print_it = print_it_exception;
14144 ops->print_one = print_one_exception;
14145 ops->print_mention = print_mention_exception;
14146 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14147
14148 ops = &catch_handlers_breakpoint_ops;
14149 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14150 ops->allocate_location = allocate_location_exception;
14151 ops->re_set = re_set_exception;
14152 ops->check_status = check_status_exception;
14153 ops->print_it = print_it_exception;
14154 ops->print_one = print_one_exception;
14155 ops->print_mention = print_mention_exception;
14156 ops->print_recreate = print_recreate_exception;
2060206e
PA
14157}
14158
3d9434b5
JB
14159/* This module's 'new_objfile' observer. */
14160
14161static void
14162ada_new_objfile_observer (struct objfile *objfile)
14163{
14164 ada_clear_symbol_cache ();
14165}
14166
14167/* This module's 'free_objfile' observer. */
14168
14169static void
14170ada_free_objfile_observer (struct objfile *objfile)
14171{
14172 ada_clear_symbol_cache ();
14173}
14174
6c265988 14175void _initialize_ada_language ();
d2e4a39e 14176void
6c265988 14177_initialize_ada_language ()
14f9c5c9 14178{
2060206e
PA
14179 initialize_ada_catchpoint_ops ();
14180
0743fc83
TT
14181 add_basic_prefix_cmd ("ada", no_class,
14182 _("Prefix command for changing Ada-specific settings."),
14183 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14184
0743fc83
TT
14185 add_show_prefix_cmd ("ada", no_class,
14186 _("Generic command for showing Ada-specific settings."),
14187 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14188
14189 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14190 &trust_pad_over_xvs, _("\
590042fc
PW
14191Enable or disable an optimization trusting PAD types over XVS types."), _("\
14192Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14193 _("\
14194This is related to the encoding used by the GNAT compiler. The debugger\n\
14195should normally trust the contents of PAD types, but certain older versions\n\
14196of GNAT have a bug that sometimes causes the information in the PAD type\n\
14197to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14198work around this bug. It is always safe to turn this option \"off\", but\n\
14199this incurs a slight performance penalty, so it is recommended to NOT change\n\
14200this option to \"off\" unless necessary."),
14201 NULL, NULL, &set_ada_list, &show_ada_list);
14202
d72413e6
PMR
14203 add_setshow_boolean_cmd ("print-signatures", class_vars,
14204 &print_signatures, _("\
14205Enable or disable the output of formal and return types for functions in the \
590042fc 14206overloads selection menu."), _("\
d72413e6 14207Show whether the output of formal and return types for functions in the \
590042fc 14208overloads selection menu is activated."),
d72413e6
PMR
14209 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14210
9ac4176b
PA
14211 add_catch_command ("exception", _("\
14212Catch Ada exceptions, when raised.\n\
9bf7038b 14213Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14214Without any argument, stop when any Ada exception is raised.\n\
14215If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14216being raised does not have a handler (and will therefore lead to the task's\n\
14217termination).\n\
14218Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14219raised is the same as ARG.\n\
14220CONDITION is a boolean expression that is evaluated to see whether the\n\
14221exception should cause a stop."),
9ac4176b 14222 catch_ada_exception_command,
71bed2db 14223 catch_ada_completer,
9ac4176b
PA
14224 CATCH_PERMANENT,
14225 CATCH_TEMPORARY);
9f757bf7
XR
14226
14227 add_catch_command ("handlers", _("\
14228Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14229Usage: catch handlers [ARG] [if CONDITION]\n\
14230Without any argument, stop when any Ada exception is handled.\n\
14231With an argument, catch only exceptions with the given name.\n\
14232CONDITION is a boolean expression that is evaluated to see whether the\n\
14233exception should cause a stop."),
9f757bf7 14234 catch_ada_handlers_command,
71bed2db 14235 catch_ada_completer,
9f757bf7
XR
14236 CATCH_PERMANENT,
14237 CATCH_TEMPORARY);
9ac4176b
PA
14238 add_catch_command ("assert", _("\
14239Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14240Usage: catch assert [if CONDITION]\n\
14241CONDITION is a boolean expression that is evaluated to see whether the\n\
14242exception should cause a stop."),
9ac4176b
PA
14243 catch_assert_command,
14244 NULL,
14245 CATCH_PERMANENT,
14246 CATCH_TEMPORARY);
14247
6c038f32 14248 varsize_limit = 65536;
3fcded8f
JB
14249 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14250 &varsize_limit, _("\
14251Set the maximum number of bytes allowed in a variable-size object."), _("\
14252Show the maximum number of bytes allowed in a variable-size object."), _("\
14253Attempts to access an object whose size is not a compile-time constant\n\
14254and exceeds this limit will cause an error."),
14255 NULL, NULL, &setlist, &showlist);
6c038f32 14256
778865d3
JB
14257 add_info ("exceptions", info_exceptions_command,
14258 _("\
14259List all Ada exception names.\n\
9bf7038b 14260Usage: info exceptions [REGEXP]\n\
778865d3
JB
14261If a regular expression is passed as an argument, only those matching\n\
14262the regular expression are listed."));
14263
0743fc83
TT
14264 add_basic_prefix_cmd ("ada", class_maintenance,
14265 _("Set Ada maintenance-related variables."),
14266 &maint_set_ada_cmdlist, "maintenance set ada ",
14267 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14268
0743fc83
TT
14269 add_show_prefix_cmd ("ada", class_maintenance,
14270 _("Show Ada maintenance-related variables."),
14271 &maint_show_ada_cmdlist, "maintenance show ada ",
14272 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14273
14274 add_setshow_boolean_cmd
14275 ("ignore-descriptive-types", class_maintenance,
14276 &ada_ignore_descriptive_types_p,
14277 _("Set whether descriptive types generated by GNAT should be ignored."),
14278 _("Show whether descriptive types generated by GNAT should be ignored."),
14279 _("\
14280When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14281DWARF attribute."),
14282 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14283
459a2e4c
TT
14284 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14285 NULL, xcalloc, xfree);
6b69afc4 14286
3d9434b5 14287 /* The ada-lang observers. */
76727919
TT
14288 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14289 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14290 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14291}